1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3 
4 #include "e1000.h"
5 #include <net/ip6_checksum.h>
6 #include <linux/io.h>
7 #include <linux/prefetch.h>
8 #include <linux/bitops.h>
9 #include <linux/if_vlan.h>
10 
11 char e1000_driver_name[] = "e1000";
12 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13 #define DRV_VERSION "7.3.21-k8-NAPI"
14 const char e1000_driver_version[] = DRV_VERSION;
15 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
16 
17 /* e1000_pci_tbl - PCI Device ID Table
18  *
19  * Last entry must be all 0s
20  *
21  * Macro expands to...
22  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
23  */
24 static const struct pci_device_id e1000_pci_tbl[] = {
25 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
26 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
27 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
28 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
29 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
30 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
31 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
32 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
33 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
34 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
35 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
36 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
37 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
38 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
39 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
40 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
41 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
42 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
43 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
44 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
45 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
46 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
47 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
48 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
49 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
50 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
51 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
52 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
53 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
54 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
55 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
56 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
57 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
58 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
59 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
60 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
61 	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
62 	/* required last entry */
63 	{0,}
64 };
65 
66 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
67 
68 int e1000_up(struct e1000_adapter *adapter);
69 void e1000_down(struct e1000_adapter *adapter);
70 void e1000_reinit_locked(struct e1000_adapter *adapter);
71 void e1000_reset(struct e1000_adapter *adapter);
72 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
73 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
74 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
75 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
76 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
77 				    struct e1000_tx_ring *txdr);
78 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
79 				    struct e1000_rx_ring *rxdr);
80 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
81 				    struct e1000_tx_ring *tx_ring);
82 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
83 				    struct e1000_rx_ring *rx_ring);
84 void e1000_update_stats(struct e1000_adapter *adapter);
85 
86 static int e1000_init_module(void);
87 static void e1000_exit_module(void);
88 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
89 static void e1000_remove(struct pci_dev *pdev);
90 static int e1000_alloc_queues(struct e1000_adapter *adapter);
91 static int e1000_sw_init(struct e1000_adapter *adapter);
92 int e1000_open(struct net_device *netdev);
93 int e1000_close(struct net_device *netdev);
94 static void e1000_configure_tx(struct e1000_adapter *adapter);
95 static void e1000_configure_rx(struct e1000_adapter *adapter);
96 static void e1000_setup_rctl(struct e1000_adapter *adapter);
97 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
98 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
99 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
100 				struct e1000_tx_ring *tx_ring);
101 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
102 				struct e1000_rx_ring *rx_ring);
103 static void e1000_set_rx_mode(struct net_device *netdev);
104 static void e1000_update_phy_info_task(struct work_struct *work);
105 static void e1000_watchdog(struct work_struct *work);
106 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
107 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
108 				    struct net_device *netdev);
109 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
110 static int e1000_set_mac(struct net_device *netdev, void *p);
111 static irqreturn_t e1000_intr(int irq, void *data);
112 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
113 			       struct e1000_tx_ring *tx_ring);
114 static int e1000_clean(struct napi_struct *napi, int budget);
115 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
116 			       struct e1000_rx_ring *rx_ring,
117 			       int *work_done, int work_to_do);
118 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
119 				     struct e1000_rx_ring *rx_ring,
120 				     int *work_done, int work_to_do);
121 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
122 					 struct e1000_rx_ring *rx_ring,
123 					 int cleaned_count)
124 {
125 }
126 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
127 				   struct e1000_rx_ring *rx_ring,
128 				   int cleaned_count);
129 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
130 					 struct e1000_rx_ring *rx_ring,
131 					 int cleaned_count);
132 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
133 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
134 			   int cmd);
135 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
136 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
137 static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
138 static void e1000_reset_task(struct work_struct *work);
139 static void e1000_smartspeed(struct e1000_adapter *adapter);
140 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
141 				       struct sk_buff *skb);
142 
143 static bool e1000_vlan_used(struct e1000_adapter *adapter);
144 static void e1000_vlan_mode(struct net_device *netdev,
145 			    netdev_features_t features);
146 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
147 				     bool filter_on);
148 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
149 				 __be16 proto, u16 vid);
150 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
151 				  __be16 proto, u16 vid);
152 static void e1000_restore_vlan(struct e1000_adapter *adapter);
153 
154 #ifdef CONFIG_PM
155 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
156 static int e1000_resume(struct pci_dev *pdev);
157 #endif
158 static void e1000_shutdown(struct pci_dev *pdev);
159 
160 #ifdef CONFIG_NET_POLL_CONTROLLER
161 /* for netdump / net console */
162 static void e1000_netpoll (struct net_device *netdev);
163 #endif
164 
165 #define COPYBREAK_DEFAULT 256
166 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
167 module_param(copybreak, uint, 0644);
168 MODULE_PARM_DESC(copybreak,
169 	"Maximum size of packet that is copied to a new buffer on receive");
170 
171 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
172 						pci_channel_state_t state);
173 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
174 static void e1000_io_resume(struct pci_dev *pdev);
175 
176 static const struct pci_error_handlers e1000_err_handler = {
177 	.error_detected = e1000_io_error_detected,
178 	.slot_reset = e1000_io_slot_reset,
179 	.resume = e1000_io_resume,
180 };
181 
182 static struct pci_driver e1000_driver = {
183 	.name     = e1000_driver_name,
184 	.id_table = e1000_pci_tbl,
185 	.probe    = e1000_probe,
186 	.remove   = e1000_remove,
187 #ifdef CONFIG_PM
188 	/* Power Management Hooks */
189 	.suspend  = e1000_suspend,
190 	.resume   = e1000_resume,
191 #endif
192 	.shutdown = e1000_shutdown,
193 	.err_handler = &e1000_err_handler
194 };
195 
196 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
197 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
198 MODULE_LICENSE("GPL v2");
199 MODULE_VERSION(DRV_VERSION);
200 
201 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
202 static int debug = -1;
203 module_param(debug, int, 0);
204 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
205 
206 /**
207  * e1000_get_hw_dev - return device
208  * used by hardware layer to print debugging information
209  *
210  **/
211 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
212 {
213 	struct e1000_adapter *adapter = hw->back;
214 	return adapter->netdev;
215 }
216 
217 /**
218  * e1000_init_module - Driver Registration Routine
219  *
220  * e1000_init_module is the first routine called when the driver is
221  * loaded. All it does is register with the PCI subsystem.
222  **/
223 static int __init e1000_init_module(void)
224 {
225 	int ret;
226 	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
227 
228 	pr_info("%s\n", e1000_copyright);
229 
230 	ret = pci_register_driver(&e1000_driver);
231 	if (copybreak != COPYBREAK_DEFAULT) {
232 		if (copybreak == 0)
233 			pr_info("copybreak disabled\n");
234 		else
235 			pr_info("copybreak enabled for "
236 				   "packets <= %u bytes\n", copybreak);
237 	}
238 	return ret;
239 }
240 
241 module_init(e1000_init_module);
242 
243 /**
244  * e1000_exit_module - Driver Exit Cleanup Routine
245  *
246  * e1000_exit_module is called just before the driver is removed
247  * from memory.
248  **/
249 static void __exit e1000_exit_module(void)
250 {
251 	pci_unregister_driver(&e1000_driver);
252 }
253 
254 module_exit(e1000_exit_module);
255 
256 static int e1000_request_irq(struct e1000_adapter *adapter)
257 {
258 	struct net_device *netdev = adapter->netdev;
259 	irq_handler_t handler = e1000_intr;
260 	int irq_flags = IRQF_SHARED;
261 	int err;
262 
263 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
264 			  netdev);
265 	if (err) {
266 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
267 	}
268 
269 	return err;
270 }
271 
272 static void e1000_free_irq(struct e1000_adapter *adapter)
273 {
274 	struct net_device *netdev = adapter->netdev;
275 
276 	free_irq(adapter->pdev->irq, netdev);
277 }
278 
279 /**
280  * e1000_irq_disable - Mask off interrupt generation on the NIC
281  * @adapter: board private structure
282  **/
283 static void e1000_irq_disable(struct e1000_adapter *adapter)
284 {
285 	struct e1000_hw *hw = &adapter->hw;
286 
287 	ew32(IMC, ~0);
288 	E1000_WRITE_FLUSH();
289 	synchronize_irq(adapter->pdev->irq);
290 }
291 
292 /**
293  * e1000_irq_enable - Enable default interrupt generation settings
294  * @adapter: board private structure
295  **/
296 static void e1000_irq_enable(struct e1000_adapter *adapter)
297 {
298 	struct e1000_hw *hw = &adapter->hw;
299 
300 	ew32(IMS, IMS_ENABLE_MASK);
301 	E1000_WRITE_FLUSH();
302 }
303 
304 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
305 {
306 	struct e1000_hw *hw = &adapter->hw;
307 	struct net_device *netdev = adapter->netdev;
308 	u16 vid = hw->mng_cookie.vlan_id;
309 	u16 old_vid = adapter->mng_vlan_id;
310 
311 	if (!e1000_vlan_used(adapter))
312 		return;
313 
314 	if (!test_bit(vid, adapter->active_vlans)) {
315 		if (hw->mng_cookie.status &
316 		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
317 			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
318 			adapter->mng_vlan_id = vid;
319 		} else {
320 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
321 		}
322 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
323 		    (vid != old_vid) &&
324 		    !test_bit(old_vid, adapter->active_vlans))
325 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
326 					       old_vid);
327 	} else {
328 		adapter->mng_vlan_id = vid;
329 	}
330 }
331 
332 static void e1000_init_manageability(struct e1000_adapter *adapter)
333 {
334 	struct e1000_hw *hw = &adapter->hw;
335 
336 	if (adapter->en_mng_pt) {
337 		u32 manc = er32(MANC);
338 
339 		/* disable hardware interception of ARP */
340 		manc &= ~(E1000_MANC_ARP_EN);
341 
342 		ew32(MANC, manc);
343 	}
344 }
345 
346 static void e1000_release_manageability(struct e1000_adapter *adapter)
347 {
348 	struct e1000_hw *hw = &adapter->hw;
349 
350 	if (adapter->en_mng_pt) {
351 		u32 manc = er32(MANC);
352 
353 		/* re-enable hardware interception of ARP */
354 		manc |= E1000_MANC_ARP_EN;
355 
356 		ew32(MANC, manc);
357 	}
358 }
359 
360 /**
361  * e1000_configure - configure the hardware for RX and TX
362  * @adapter = private board structure
363  **/
364 static void e1000_configure(struct e1000_adapter *adapter)
365 {
366 	struct net_device *netdev = adapter->netdev;
367 	int i;
368 
369 	e1000_set_rx_mode(netdev);
370 
371 	e1000_restore_vlan(adapter);
372 	e1000_init_manageability(adapter);
373 
374 	e1000_configure_tx(adapter);
375 	e1000_setup_rctl(adapter);
376 	e1000_configure_rx(adapter);
377 	/* call E1000_DESC_UNUSED which always leaves
378 	 * at least 1 descriptor unused to make sure
379 	 * next_to_use != next_to_clean
380 	 */
381 	for (i = 0; i < adapter->num_rx_queues; i++) {
382 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
383 		adapter->alloc_rx_buf(adapter, ring,
384 				      E1000_DESC_UNUSED(ring));
385 	}
386 }
387 
388 int e1000_up(struct e1000_adapter *adapter)
389 {
390 	struct e1000_hw *hw = &adapter->hw;
391 
392 	/* hardware has been reset, we need to reload some things */
393 	e1000_configure(adapter);
394 
395 	clear_bit(__E1000_DOWN, &adapter->flags);
396 
397 	napi_enable(&adapter->napi);
398 
399 	e1000_irq_enable(adapter);
400 
401 	netif_wake_queue(adapter->netdev);
402 
403 	/* fire a link change interrupt to start the watchdog */
404 	ew32(ICS, E1000_ICS_LSC);
405 	return 0;
406 }
407 
408 /**
409  * e1000_power_up_phy - restore link in case the phy was powered down
410  * @adapter: address of board private structure
411  *
412  * The phy may be powered down to save power and turn off link when the
413  * driver is unloaded and wake on lan is not enabled (among others)
414  * *** this routine MUST be followed by a call to e1000_reset ***
415  **/
416 void e1000_power_up_phy(struct e1000_adapter *adapter)
417 {
418 	struct e1000_hw *hw = &adapter->hw;
419 	u16 mii_reg = 0;
420 
421 	/* Just clear the power down bit to wake the phy back up */
422 	if (hw->media_type == e1000_media_type_copper) {
423 		/* according to the manual, the phy will retain its
424 		 * settings across a power-down/up cycle
425 		 */
426 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
427 		mii_reg &= ~MII_CR_POWER_DOWN;
428 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
429 	}
430 }
431 
432 static void e1000_power_down_phy(struct e1000_adapter *adapter)
433 {
434 	struct e1000_hw *hw = &adapter->hw;
435 
436 	/* Power down the PHY so no link is implied when interface is down *
437 	 * The PHY cannot be powered down if any of the following is true *
438 	 * (a) WoL is enabled
439 	 * (b) AMT is active
440 	 * (c) SoL/IDER session is active
441 	 */
442 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
443 	   hw->media_type == e1000_media_type_copper) {
444 		u16 mii_reg = 0;
445 
446 		switch (hw->mac_type) {
447 		case e1000_82540:
448 		case e1000_82545:
449 		case e1000_82545_rev_3:
450 		case e1000_82546:
451 		case e1000_ce4100:
452 		case e1000_82546_rev_3:
453 		case e1000_82541:
454 		case e1000_82541_rev_2:
455 		case e1000_82547:
456 		case e1000_82547_rev_2:
457 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
458 				goto out;
459 			break;
460 		default:
461 			goto out;
462 		}
463 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
464 		mii_reg |= MII_CR_POWER_DOWN;
465 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
466 		msleep(1);
467 	}
468 out:
469 	return;
470 }
471 
472 static void e1000_down_and_stop(struct e1000_adapter *adapter)
473 {
474 	set_bit(__E1000_DOWN, &adapter->flags);
475 
476 	cancel_delayed_work_sync(&adapter->watchdog_task);
477 
478 	/*
479 	 * Since the watchdog task can reschedule other tasks, we should cancel
480 	 * it first, otherwise we can run into the situation when a work is
481 	 * still running after the adapter has been turned down.
482 	 */
483 
484 	cancel_delayed_work_sync(&adapter->phy_info_task);
485 	cancel_delayed_work_sync(&adapter->fifo_stall_task);
486 
487 	/* Only kill reset task if adapter is not resetting */
488 	if (!test_bit(__E1000_RESETTING, &adapter->flags))
489 		cancel_work_sync(&adapter->reset_task);
490 }
491 
492 void e1000_down(struct e1000_adapter *adapter)
493 {
494 	struct e1000_hw *hw = &adapter->hw;
495 	struct net_device *netdev = adapter->netdev;
496 	u32 rctl, tctl;
497 
498 	/* disable receives in the hardware */
499 	rctl = er32(RCTL);
500 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
501 	/* flush and sleep below */
502 
503 	netif_tx_disable(netdev);
504 
505 	/* disable transmits in the hardware */
506 	tctl = er32(TCTL);
507 	tctl &= ~E1000_TCTL_EN;
508 	ew32(TCTL, tctl);
509 	/* flush both disables and wait for them to finish */
510 	E1000_WRITE_FLUSH();
511 	msleep(10);
512 
513 	/* Set the carrier off after transmits have been disabled in the
514 	 * hardware, to avoid race conditions with e1000_watchdog() (which
515 	 * may be running concurrently to us, checking for the carrier
516 	 * bit to decide whether it should enable transmits again). Such
517 	 * a race condition would result into transmission being disabled
518 	 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
519 	 */
520 	netif_carrier_off(netdev);
521 
522 	napi_disable(&adapter->napi);
523 
524 	e1000_irq_disable(adapter);
525 
526 	/* Setting DOWN must be after irq_disable to prevent
527 	 * a screaming interrupt.  Setting DOWN also prevents
528 	 * tasks from rescheduling.
529 	 */
530 	e1000_down_and_stop(adapter);
531 
532 	adapter->link_speed = 0;
533 	adapter->link_duplex = 0;
534 
535 	e1000_reset(adapter);
536 	e1000_clean_all_tx_rings(adapter);
537 	e1000_clean_all_rx_rings(adapter);
538 }
539 
540 void e1000_reinit_locked(struct e1000_adapter *adapter)
541 {
542 	WARN_ON(in_interrupt());
543 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
544 		msleep(1);
545 
546 	/* only run the task if not already down */
547 	if (!test_bit(__E1000_DOWN, &adapter->flags)) {
548 		e1000_down(adapter);
549 		e1000_up(adapter);
550 	}
551 
552 	clear_bit(__E1000_RESETTING, &adapter->flags);
553 }
554 
555 void e1000_reset(struct e1000_adapter *adapter)
556 {
557 	struct e1000_hw *hw = &adapter->hw;
558 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
559 	bool legacy_pba_adjust = false;
560 	u16 hwm;
561 
562 	/* Repartition Pba for greater than 9k mtu
563 	 * To take effect CTRL.RST is required.
564 	 */
565 
566 	switch (hw->mac_type) {
567 	case e1000_82542_rev2_0:
568 	case e1000_82542_rev2_1:
569 	case e1000_82543:
570 	case e1000_82544:
571 	case e1000_82540:
572 	case e1000_82541:
573 	case e1000_82541_rev_2:
574 		legacy_pba_adjust = true;
575 		pba = E1000_PBA_48K;
576 		break;
577 	case e1000_82545:
578 	case e1000_82545_rev_3:
579 	case e1000_82546:
580 	case e1000_ce4100:
581 	case e1000_82546_rev_3:
582 		pba = E1000_PBA_48K;
583 		break;
584 	case e1000_82547:
585 	case e1000_82547_rev_2:
586 		legacy_pba_adjust = true;
587 		pba = E1000_PBA_30K;
588 		break;
589 	case e1000_undefined:
590 	case e1000_num_macs:
591 		break;
592 	}
593 
594 	if (legacy_pba_adjust) {
595 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
596 			pba -= 8; /* allocate more FIFO for Tx */
597 
598 		if (hw->mac_type == e1000_82547) {
599 			adapter->tx_fifo_head = 0;
600 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
601 			adapter->tx_fifo_size =
602 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
603 			atomic_set(&adapter->tx_fifo_stall, 0);
604 		}
605 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
606 		/* adjust PBA for jumbo frames */
607 		ew32(PBA, pba);
608 
609 		/* To maintain wire speed transmits, the Tx FIFO should be
610 		 * large enough to accommodate two full transmit packets,
611 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
612 		 * the Rx FIFO should be large enough to accommodate at least
613 		 * one full receive packet and is similarly rounded up and
614 		 * expressed in KB.
615 		 */
616 		pba = er32(PBA);
617 		/* upper 16 bits has Tx packet buffer allocation size in KB */
618 		tx_space = pba >> 16;
619 		/* lower 16 bits has Rx packet buffer allocation size in KB */
620 		pba &= 0xffff;
621 		/* the Tx fifo also stores 16 bytes of information about the Tx
622 		 * but don't include ethernet FCS because hardware appends it
623 		 */
624 		min_tx_space = (hw->max_frame_size +
625 				sizeof(struct e1000_tx_desc) -
626 				ETH_FCS_LEN) * 2;
627 		min_tx_space = ALIGN(min_tx_space, 1024);
628 		min_tx_space >>= 10;
629 		/* software strips receive CRC, so leave room for it */
630 		min_rx_space = hw->max_frame_size;
631 		min_rx_space = ALIGN(min_rx_space, 1024);
632 		min_rx_space >>= 10;
633 
634 		/* If current Tx allocation is less than the min Tx FIFO size,
635 		 * and the min Tx FIFO size is less than the current Rx FIFO
636 		 * allocation, take space away from current Rx allocation
637 		 */
638 		if (tx_space < min_tx_space &&
639 		    ((min_tx_space - tx_space) < pba)) {
640 			pba = pba - (min_tx_space - tx_space);
641 
642 			/* PCI/PCIx hardware has PBA alignment constraints */
643 			switch (hw->mac_type) {
644 			case e1000_82545 ... e1000_82546_rev_3:
645 				pba &= ~(E1000_PBA_8K - 1);
646 				break;
647 			default:
648 				break;
649 			}
650 
651 			/* if short on Rx space, Rx wins and must trump Tx
652 			 * adjustment or use Early Receive if available
653 			 */
654 			if (pba < min_rx_space)
655 				pba = min_rx_space;
656 		}
657 	}
658 
659 	ew32(PBA, pba);
660 
661 	/* flow control settings:
662 	 * The high water mark must be low enough to fit one full frame
663 	 * (or the size used for early receive) above it in the Rx FIFO.
664 	 * Set it to the lower of:
665 	 * - 90% of the Rx FIFO size, and
666 	 * - the full Rx FIFO size minus the early receive size (for parts
667 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
668 	 * - the full Rx FIFO size minus one full frame
669 	 */
670 	hwm = min(((pba << 10) * 9 / 10),
671 		  ((pba << 10) - hw->max_frame_size));
672 
673 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
674 	hw->fc_low_water = hw->fc_high_water - 8;
675 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
676 	hw->fc_send_xon = 1;
677 	hw->fc = hw->original_fc;
678 
679 	/* Allow time for pending master requests to run */
680 	e1000_reset_hw(hw);
681 	if (hw->mac_type >= e1000_82544)
682 		ew32(WUC, 0);
683 
684 	if (e1000_init_hw(hw))
685 		e_dev_err("Hardware Error\n");
686 	e1000_update_mng_vlan(adapter);
687 
688 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
689 	if (hw->mac_type >= e1000_82544 &&
690 	    hw->autoneg == 1 &&
691 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
692 		u32 ctrl = er32(CTRL);
693 		/* clear phy power management bit if we are in gig only mode,
694 		 * which if enabled will attempt negotiation to 100Mb, which
695 		 * can cause a loss of link at power off or driver unload
696 		 */
697 		ctrl &= ~E1000_CTRL_SWDPIN3;
698 		ew32(CTRL, ctrl);
699 	}
700 
701 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
702 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
703 
704 	e1000_reset_adaptive(hw);
705 	e1000_phy_get_info(hw, &adapter->phy_info);
706 
707 	e1000_release_manageability(adapter);
708 }
709 
710 /* Dump the eeprom for users having checksum issues */
711 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
712 {
713 	struct net_device *netdev = adapter->netdev;
714 	struct ethtool_eeprom eeprom;
715 	const struct ethtool_ops *ops = netdev->ethtool_ops;
716 	u8 *data;
717 	int i;
718 	u16 csum_old, csum_new = 0;
719 
720 	eeprom.len = ops->get_eeprom_len(netdev);
721 	eeprom.offset = 0;
722 
723 	data = kmalloc(eeprom.len, GFP_KERNEL);
724 	if (!data)
725 		return;
726 
727 	ops->get_eeprom(netdev, &eeprom, data);
728 
729 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
730 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
731 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
732 		csum_new += data[i] + (data[i + 1] << 8);
733 	csum_new = EEPROM_SUM - csum_new;
734 
735 	pr_err("/*********************/\n");
736 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
737 	pr_err("Calculated              : 0x%04x\n", csum_new);
738 
739 	pr_err("Offset    Values\n");
740 	pr_err("========  ======\n");
741 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
742 
743 	pr_err("Include this output when contacting your support provider.\n");
744 	pr_err("This is not a software error! Something bad happened to\n");
745 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
746 	pr_err("result in further problems, possibly loss of data,\n");
747 	pr_err("corruption or system hangs!\n");
748 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
749 	pr_err("which is invalid and requires you to set the proper MAC\n");
750 	pr_err("address manually before continuing to enable this network\n");
751 	pr_err("device. Please inspect the EEPROM dump and report the\n");
752 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
753 	pr_err("/*********************/\n");
754 
755 	kfree(data);
756 }
757 
758 /**
759  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
760  * @pdev: PCI device information struct
761  *
762  * Return true if an adapter needs ioport resources
763  **/
764 static int e1000_is_need_ioport(struct pci_dev *pdev)
765 {
766 	switch (pdev->device) {
767 	case E1000_DEV_ID_82540EM:
768 	case E1000_DEV_ID_82540EM_LOM:
769 	case E1000_DEV_ID_82540EP:
770 	case E1000_DEV_ID_82540EP_LOM:
771 	case E1000_DEV_ID_82540EP_LP:
772 	case E1000_DEV_ID_82541EI:
773 	case E1000_DEV_ID_82541EI_MOBILE:
774 	case E1000_DEV_ID_82541ER:
775 	case E1000_DEV_ID_82541ER_LOM:
776 	case E1000_DEV_ID_82541GI:
777 	case E1000_DEV_ID_82541GI_LF:
778 	case E1000_DEV_ID_82541GI_MOBILE:
779 	case E1000_DEV_ID_82544EI_COPPER:
780 	case E1000_DEV_ID_82544EI_FIBER:
781 	case E1000_DEV_ID_82544GC_COPPER:
782 	case E1000_DEV_ID_82544GC_LOM:
783 	case E1000_DEV_ID_82545EM_COPPER:
784 	case E1000_DEV_ID_82545EM_FIBER:
785 	case E1000_DEV_ID_82546EB_COPPER:
786 	case E1000_DEV_ID_82546EB_FIBER:
787 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
788 		return true;
789 	default:
790 		return false;
791 	}
792 }
793 
794 static netdev_features_t e1000_fix_features(struct net_device *netdev,
795 	netdev_features_t features)
796 {
797 	/* Since there is no support for separate Rx/Tx vlan accel
798 	 * enable/disable make sure Tx flag is always in same state as Rx.
799 	 */
800 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
801 		features |= NETIF_F_HW_VLAN_CTAG_TX;
802 	else
803 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
804 
805 	return features;
806 }
807 
808 static int e1000_set_features(struct net_device *netdev,
809 	netdev_features_t features)
810 {
811 	struct e1000_adapter *adapter = netdev_priv(netdev);
812 	netdev_features_t changed = features ^ netdev->features;
813 
814 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
815 		e1000_vlan_mode(netdev, features);
816 
817 	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
818 		return 0;
819 
820 	netdev->features = features;
821 	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
822 
823 	if (netif_running(netdev))
824 		e1000_reinit_locked(adapter);
825 	else
826 		e1000_reset(adapter);
827 
828 	return 1;
829 }
830 
831 static const struct net_device_ops e1000_netdev_ops = {
832 	.ndo_open		= e1000_open,
833 	.ndo_stop		= e1000_close,
834 	.ndo_start_xmit		= e1000_xmit_frame,
835 	.ndo_set_rx_mode	= e1000_set_rx_mode,
836 	.ndo_set_mac_address	= e1000_set_mac,
837 	.ndo_tx_timeout		= e1000_tx_timeout,
838 	.ndo_change_mtu		= e1000_change_mtu,
839 	.ndo_do_ioctl		= e1000_ioctl,
840 	.ndo_validate_addr	= eth_validate_addr,
841 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
842 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
843 #ifdef CONFIG_NET_POLL_CONTROLLER
844 	.ndo_poll_controller	= e1000_netpoll,
845 #endif
846 	.ndo_fix_features	= e1000_fix_features,
847 	.ndo_set_features	= e1000_set_features,
848 };
849 
850 /**
851  * e1000_init_hw_struct - initialize members of hw struct
852  * @adapter: board private struct
853  * @hw: structure used by e1000_hw.c
854  *
855  * Factors out initialization of the e1000_hw struct to its own function
856  * that can be called very early at init (just after struct allocation).
857  * Fields are initialized based on PCI device information and
858  * OS network device settings (MTU size).
859  * Returns negative error codes if MAC type setup fails.
860  */
861 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
862 				struct e1000_hw *hw)
863 {
864 	struct pci_dev *pdev = adapter->pdev;
865 
866 	/* PCI config space info */
867 	hw->vendor_id = pdev->vendor;
868 	hw->device_id = pdev->device;
869 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
870 	hw->subsystem_id = pdev->subsystem_device;
871 	hw->revision_id = pdev->revision;
872 
873 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
874 
875 	hw->max_frame_size = adapter->netdev->mtu +
876 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
877 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
878 
879 	/* identify the MAC */
880 	if (e1000_set_mac_type(hw)) {
881 		e_err(probe, "Unknown MAC Type\n");
882 		return -EIO;
883 	}
884 
885 	switch (hw->mac_type) {
886 	default:
887 		break;
888 	case e1000_82541:
889 	case e1000_82547:
890 	case e1000_82541_rev_2:
891 	case e1000_82547_rev_2:
892 		hw->phy_init_script = 1;
893 		break;
894 	}
895 
896 	e1000_set_media_type(hw);
897 	e1000_get_bus_info(hw);
898 
899 	hw->wait_autoneg_complete = false;
900 	hw->tbi_compatibility_en = true;
901 	hw->adaptive_ifs = true;
902 
903 	/* Copper options */
904 
905 	if (hw->media_type == e1000_media_type_copper) {
906 		hw->mdix = AUTO_ALL_MODES;
907 		hw->disable_polarity_correction = false;
908 		hw->master_slave = E1000_MASTER_SLAVE;
909 	}
910 
911 	return 0;
912 }
913 
914 /**
915  * e1000_probe - Device Initialization Routine
916  * @pdev: PCI device information struct
917  * @ent: entry in e1000_pci_tbl
918  *
919  * Returns 0 on success, negative on failure
920  *
921  * e1000_probe initializes an adapter identified by a pci_dev structure.
922  * The OS initialization, configuring of the adapter private structure,
923  * and a hardware reset occur.
924  **/
925 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
926 {
927 	struct net_device *netdev;
928 	struct e1000_adapter *adapter = NULL;
929 	struct e1000_hw *hw;
930 
931 	static int cards_found;
932 	static int global_quad_port_a; /* global ksp3 port a indication */
933 	int i, err, pci_using_dac;
934 	u16 eeprom_data = 0;
935 	u16 tmp = 0;
936 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
937 	int bars, need_ioport;
938 	bool disable_dev = false;
939 
940 	/* do not allocate ioport bars when not needed */
941 	need_ioport = e1000_is_need_ioport(pdev);
942 	if (need_ioport) {
943 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
944 		err = pci_enable_device(pdev);
945 	} else {
946 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
947 		err = pci_enable_device_mem(pdev);
948 	}
949 	if (err)
950 		return err;
951 
952 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
953 	if (err)
954 		goto err_pci_reg;
955 
956 	pci_set_master(pdev);
957 	err = pci_save_state(pdev);
958 	if (err)
959 		goto err_alloc_etherdev;
960 
961 	err = -ENOMEM;
962 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
963 	if (!netdev)
964 		goto err_alloc_etherdev;
965 
966 	SET_NETDEV_DEV(netdev, &pdev->dev);
967 
968 	pci_set_drvdata(pdev, netdev);
969 	adapter = netdev_priv(netdev);
970 	adapter->netdev = netdev;
971 	adapter->pdev = pdev;
972 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
973 	adapter->bars = bars;
974 	adapter->need_ioport = need_ioport;
975 
976 	hw = &adapter->hw;
977 	hw->back = adapter;
978 
979 	err = -EIO;
980 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
981 	if (!hw->hw_addr)
982 		goto err_ioremap;
983 
984 	if (adapter->need_ioport) {
985 		for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
986 			if (pci_resource_len(pdev, i) == 0)
987 				continue;
988 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
989 				hw->io_base = pci_resource_start(pdev, i);
990 				break;
991 			}
992 		}
993 	}
994 
995 	/* make ready for any if (hw->...) below */
996 	err = e1000_init_hw_struct(adapter, hw);
997 	if (err)
998 		goto err_sw_init;
999 
1000 	/* there is a workaround being applied below that limits
1001 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1002 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1003 	 */
1004 	pci_using_dac = 0;
1005 	if ((hw->bus_type == e1000_bus_type_pcix) &&
1006 	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1007 		pci_using_dac = 1;
1008 	} else {
1009 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1010 		if (err) {
1011 			pr_err("No usable DMA config, aborting\n");
1012 			goto err_dma;
1013 		}
1014 	}
1015 
1016 	netdev->netdev_ops = &e1000_netdev_ops;
1017 	e1000_set_ethtool_ops(netdev);
1018 	netdev->watchdog_timeo = 5 * HZ;
1019 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1020 
1021 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1022 
1023 	adapter->bd_number = cards_found;
1024 
1025 	/* setup the private structure */
1026 
1027 	err = e1000_sw_init(adapter);
1028 	if (err)
1029 		goto err_sw_init;
1030 
1031 	err = -EIO;
1032 	if (hw->mac_type == e1000_ce4100) {
1033 		hw->ce4100_gbe_mdio_base_virt =
1034 					ioremap(pci_resource_start(pdev, BAR_1),
1035 						pci_resource_len(pdev, BAR_1));
1036 
1037 		if (!hw->ce4100_gbe_mdio_base_virt)
1038 			goto err_mdio_ioremap;
1039 	}
1040 
1041 	if (hw->mac_type >= e1000_82543) {
1042 		netdev->hw_features = NETIF_F_SG |
1043 				   NETIF_F_HW_CSUM |
1044 				   NETIF_F_HW_VLAN_CTAG_RX;
1045 		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1046 				   NETIF_F_HW_VLAN_CTAG_FILTER;
1047 	}
1048 
1049 	if ((hw->mac_type >= e1000_82544) &&
1050 	   (hw->mac_type != e1000_82547))
1051 		netdev->hw_features |= NETIF_F_TSO;
1052 
1053 	netdev->priv_flags |= IFF_SUPP_NOFCS;
1054 
1055 	netdev->features |= netdev->hw_features;
1056 	netdev->hw_features |= (NETIF_F_RXCSUM |
1057 				NETIF_F_RXALL |
1058 				NETIF_F_RXFCS);
1059 
1060 	if (pci_using_dac) {
1061 		netdev->features |= NETIF_F_HIGHDMA;
1062 		netdev->vlan_features |= NETIF_F_HIGHDMA;
1063 	}
1064 
1065 	netdev->vlan_features |= (NETIF_F_TSO |
1066 				  NETIF_F_HW_CSUM |
1067 				  NETIF_F_SG);
1068 
1069 	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1070 	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1071 	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1072 		netdev->priv_flags |= IFF_UNICAST_FLT;
1073 
1074 	/* MTU range: 46 - 16110 */
1075 	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1076 	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1077 
1078 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1079 
1080 	/* initialize eeprom parameters */
1081 	if (e1000_init_eeprom_params(hw)) {
1082 		e_err(probe, "EEPROM initialization failed\n");
1083 		goto err_eeprom;
1084 	}
1085 
1086 	/* before reading the EEPROM, reset the controller to
1087 	 * put the device in a known good starting state
1088 	 */
1089 
1090 	e1000_reset_hw(hw);
1091 
1092 	/* make sure the EEPROM is good */
1093 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1094 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1095 		e1000_dump_eeprom(adapter);
1096 		/* set MAC address to all zeroes to invalidate and temporary
1097 		 * disable this device for the user. This blocks regular
1098 		 * traffic while still permitting ethtool ioctls from reaching
1099 		 * the hardware as well as allowing the user to run the
1100 		 * interface after manually setting a hw addr using
1101 		 * `ip set address`
1102 		 */
1103 		memset(hw->mac_addr, 0, netdev->addr_len);
1104 	} else {
1105 		/* copy the MAC address out of the EEPROM */
1106 		if (e1000_read_mac_addr(hw))
1107 			e_err(probe, "EEPROM Read Error\n");
1108 	}
1109 	/* don't block initialization here due to bad MAC address */
1110 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1111 
1112 	if (!is_valid_ether_addr(netdev->dev_addr))
1113 		e_err(probe, "Invalid MAC Address\n");
1114 
1115 
1116 	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1117 	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1118 			  e1000_82547_tx_fifo_stall_task);
1119 	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1120 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1121 
1122 	e1000_check_options(adapter);
1123 
1124 	/* Initial Wake on LAN setting
1125 	 * If APM wake is enabled in the EEPROM,
1126 	 * enable the ACPI Magic Packet filter
1127 	 */
1128 
1129 	switch (hw->mac_type) {
1130 	case e1000_82542_rev2_0:
1131 	case e1000_82542_rev2_1:
1132 	case e1000_82543:
1133 		break;
1134 	case e1000_82544:
1135 		e1000_read_eeprom(hw,
1136 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1137 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1138 		break;
1139 	case e1000_82546:
1140 	case e1000_82546_rev_3:
1141 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1142 			e1000_read_eeprom(hw,
1143 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1144 			break;
1145 		}
1146 		/* Fall Through */
1147 	default:
1148 		e1000_read_eeprom(hw,
1149 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1150 		break;
1151 	}
1152 	if (eeprom_data & eeprom_apme_mask)
1153 		adapter->eeprom_wol |= E1000_WUFC_MAG;
1154 
1155 	/* now that we have the eeprom settings, apply the special cases
1156 	 * where the eeprom may be wrong or the board simply won't support
1157 	 * wake on lan on a particular port
1158 	 */
1159 	switch (pdev->device) {
1160 	case E1000_DEV_ID_82546GB_PCIE:
1161 		adapter->eeprom_wol = 0;
1162 		break;
1163 	case E1000_DEV_ID_82546EB_FIBER:
1164 	case E1000_DEV_ID_82546GB_FIBER:
1165 		/* Wake events only supported on port A for dual fiber
1166 		 * regardless of eeprom setting
1167 		 */
1168 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1169 			adapter->eeprom_wol = 0;
1170 		break;
1171 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1172 		/* if quad port adapter, disable WoL on all but port A */
1173 		if (global_quad_port_a != 0)
1174 			adapter->eeprom_wol = 0;
1175 		else
1176 			adapter->quad_port_a = true;
1177 		/* Reset for multiple quad port adapters */
1178 		if (++global_quad_port_a == 4)
1179 			global_quad_port_a = 0;
1180 		break;
1181 	}
1182 
1183 	/* initialize the wol settings based on the eeprom settings */
1184 	adapter->wol = adapter->eeprom_wol;
1185 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1186 
1187 	/* Auto detect PHY address */
1188 	if (hw->mac_type == e1000_ce4100) {
1189 		for (i = 0; i < 32; i++) {
1190 			hw->phy_addr = i;
1191 			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1192 
1193 			if (tmp != 0 && tmp != 0xFF)
1194 				break;
1195 		}
1196 
1197 		if (i >= 32)
1198 			goto err_eeprom;
1199 	}
1200 
1201 	/* reset the hardware with the new settings */
1202 	e1000_reset(adapter);
1203 
1204 	strcpy(netdev->name, "eth%d");
1205 	err = register_netdev(netdev);
1206 	if (err)
1207 		goto err_register;
1208 
1209 	e1000_vlan_filter_on_off(adapter, false);
1210 
1211 	/* print bus type/speed/width info */
1212 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1213 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1214 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1215 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1216 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1217 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1218 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1219 	       netdev->dev_addr);
1220 
1221 	/* carrier off reporting is important to ethtool even BEFORE open */
1222 	netif_carrier_off(netdev);
1223 
1224 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1225 
1226 	cards_found++;
1227 	return 0;
1228 
1229 err_register:
1230 err_eeprom:
1231 	e1000_phy_hw_reset(hw);
1232 
1233 	if (hw->flash_address)
1234 		iounmap(hw->flash_address);
1235 	kfree(adapter->tx_ring);
1236 	kfree(adapter->rx_ring);
1237 err_dma:
1238 err_sw_init:
1239 err_mdio_ioremap:
1240 	iounmap(hw->ce4100_gbe_mdio_base_virt);
1241 	iounmap(hw->hw_addr);
1242 err_ioremap:
1243 	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1244 	free_netdev(netdev);
1245 err_alloc_etherdev:
1246 	pci_release_selected_regions(pdev, bars);
1247 err_pci_reg:
1248 	if (!adapter || disable_dev)
1249 		pci_disable_device(pdev);
1250 	return err;
1251 }
1252 
1253 /**
1254  * e1000_remove - Device Removal Routine
1255  * @pdev: PCI device information struct
1256  *
1257  * e1000_remove is called by the PCI subsystem to alert the driver
1258  * that it should release a PCI device. That could be caused by a
1259  * Hot-Plug event, or because the driver is going to be removed from
1260  * memory.
1261  **/
1262 static void e1000_remove(struct pci_dev *pdev)
1263 {
1264 	struct net_device *netdev = pci_get_drvdata(pdev);
1265 	struct e1000_adapter *adapter = netdev_priv(netdev);
1266 	struct e1000_hw *hw = &adapter->hw;
1267 	bool disable_dev;
1268 
1269 	e1000_down_and_stop(adapter);
1270 	e1000_release_manageability(adapter);
1271 
1272 	unregister_netdev(netdev);
1273 
1274 	e1000_phy_hw_reset(hw);
1275 
1276 	kfree(adapter->tx_ring);
1277 	kfree(adapter->rx_ring);
1278 
1279 	if (hw->mac_type == e1000_ce4100)
1280 		iounmap(hw->ce4100_gbe_mdio_base_virt);
1281 	iounmap(hw->hw_addr);
1282 	if (hw->flash_address)
1283 		iounmap(hw->flash_address);
1284 	pci_release_selected_regions(pdev, adapter->bars);
1285 
1286 	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1287 	free_netdev(netdev);
1288 
1289 	if (disable_dev)
1290 		pci_disable_device(pdev);
1291 }
1292 
1293 /**
1294  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1295  * @adapter: board private structure to initialize
1296  *
1297  * e1000_sw_init initializes the Adapter private data structure.
1298  * e1000_init_hw_struct MUST be called before this function
1299  **/
1300 static int e1000_sw_init(struct e1000_adapter *adapter)
1301 {
1302 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1303 
1304 	adapter->num_tx_queues = 1;
1305 	adapter->num_rx_queues = 1;
1306 
1307 	if (e1000_alloc_queues(adapter)) {
1308 		e_err(probe, "Unable to allocate memory for queues\n");
1309 		return -ENOMEM;
1310 	}
1311 
1312 	/* Explicitly disable IRQ since the NIC can be in any state. */
1313 	e1000_irq_disable(adapter);
1314 
1315 	spin_lock_init(&adapter->stats_lock);
1316 
1317 	set_bit(__E1000_DOWN, &adapter->flags);
1318 
1319 	return 0;
1320 }
1321 
1322 /**
1323  * e1000_alloc_queues - Allocate memory for all rings
1324  * @adapter: board private structure to initialize
1325  *
1326  * We allocate one ring per queue at run-time since we don't know the
1327  * number of queues at compile-time.
1328  **/
1329 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1330 {
1331 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1332 				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1333 	if (!adapter->tx_ring)
1334 		return -ENOMEM;
1335 
1336 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1337 				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1338 	if (!adapter->rx_ring) {
1339 		kfree(adapter->tx_ring);
1340 		return -ENOMEM;
1341 	}
1342 
1343 	return E1000_SUCCESS;
1344 }
1345 
1346 /**
1347  * e1000_open - Called when a network interface is made active
1348  * @netdev: network interface device structure
1349  *
1350  * Returns 0 on success, negative value on failure
1351  *
1352  * The open entry point is called when a network interface is made
1353  * active by the system (IFF_UP).  At this point all resources needed
1354  * for transmit and receive operations are allocated, the interrupt
1355  * handler is registered with the OS, the watchdog task is started,
1356  * and the stack is notified that the interface is ready.
1357  **/
1358 int e1000_open(struct net_device *netdev)
1359 {
1360 	struct e1000_adapter *adapter = netdev_priv(netdev);
1361 	struct e1000_hw *hw = &adapter->hw;
1362 	int err;
1363 
1364 	/* disallow open during test */
1365 	if (test_bit(__E1000_TESTING, &adapter->flags))
1366 		return -EBUSY;
1367 
1368 	netif_carrier_off(netdev);
1369 
1370 	/* allocate transmit descriptors */
1371 	err = e1000_setup_all_tx_resources(adapter);
1372 	if (err)
1373 		goto err_setup_tx;
1374 
1375 	/* allocate receive descriptors */
1376 	err = e1000_setup_all_rx_resources(adapter);
1377 	if (err)
1378 		goto err_setup_rx;
1379 
1380 	e1000_power_up_phy(adapter);
1381 
1382 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1383 	if ((hw->mng_cookie.status &
1384 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1385 		e1000_update_mng_vlan(adapter);
1386 	}
1387 
1388 	/* before we allocate an interrupt, we must be ready to handle it.
1389 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1390 	 * as soon as we call pci_request_irq, so we have to setup our
1391 	 * clean_rx handler before we do so.
1392 	 */
1393 	e1000_configure(adapter);
1394 
1395 	err = e1000_request_irq(adapter);
1396 	if (err)
1397 		goto err_req_irq;
1398 
1399 	/* From here on the code is the same as e1000_up() */
1400 	clear_bit(__E1000_DOWN, &adapter->flags);
1401 
1402 	napi_enable(&adapter->napi);
1403 
1404 	e1000_irq_enable(adapter);
1405 
1406 	netif_start_queue(netdev);
1407 
1408 	/* fire a link status change interrupt to start the watchdog */
1409 	ew32(ICS, E1000_ICS_LSC);
1410 
1411 	return E1000_SUCCESS;
1412 
1413 err_req_irq:
1414 	e1000_power_down_phy(adapter);
1415 	e1000_free_all_rx_resources(adapter);
1416 err_setup_rx:
1417 	e1000_free_all_tx_resources(adapter);
1418 err_setup_tx:
1419 	e1000_reset(adapter);
1420 
1421 	return err;
1422 }
1423 
1424 /**
1425  * e1000_close - Disables a network interface
1426  * @netdev: network interface device structure
1427  *
1428  * Returns 0, this is not allowed to fail
1429  *
1430  * The close entry point is called when an interface is de-activated
1431  * by the OS.  The hardware is still under the drivers control, but
1432  * needs to be disabled.  A global MAC reset is issued to stop the
1433  * hardware, and all transmit and receive resources are freed.
1434  **/
1435 int e1000_close(struct net_device *netdev)
1436 {
1437 	struct e1000_adapter *adapter = netdev_priv(netdev);
1438 	struct e1000_hw *hw = &adapter->hw;
1439 	int count = E1000_CHECK_RESET_COUNT;
1440 
1441 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1442 		usleep_range(10000, 20000);
1443 
1444 	WARN_ON(count < 0);
1445 
1446 	/* signal that we're down so that the reset task will no longer run */
1447 	set_bit(__E1000_DOWN, &adapter->flags);
1448 	clear_bit(__E1000_RESETTING, &adapter->flags);
1449 
1450 	e1000_down(adapter);
1451 	e1000_power_down_phy(adapter);
1452 	e1000_free_irq(adapter);
1453 
1454 	e1000_free_all_tx_resources(adapter);
1455 	e1000_free_all_rx_resources(adapter);
1456 
1457 	/* kill manageability vlan ID if supported, but not if a vlan with
1458 	 * the same ID is registered on the host OS (let 8021q kill it)
1459 	 */
1460 	if ((hw->mng_cookie.status &
1461 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1462 	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1463 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1464 				       adapter->mng_vlan_id);
1465 	}
1466 
1467 	return 0;
1468 }
1469 
1470 /**
1471  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1472  * @adapter: address of board private structure
1473  * @start: address of beginning of memory
1474  * @len: length of memory
1475  **/
1476 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1477 				  unsigned long len)
1478 {
1479 	struct e1000_hw *hw = &adapter->hw;
1480 	unsigned long begin = (unsigned long)start;
1481 	unsigned long end = begin + len;
1482 
1483 	/* First rev 82545 and 82546 need to not allow any memory
1484 	 * write location to cross 64k boundary due to errata 23
1485 	 */
1486 	if (hw->mac_type == e1000_82545 ||
1487 	    hw->mac_type == e1000_ce4100 ||
1488 	    hw->mac_type == e1000_82546) {
1489 		return ((begin ^ (end - 1)) >> 16) == 0;
1490 	}
1491 
1492 	return true;
1493 }
1494 
1495 /**
1496  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1497  * @adapter: board private structure
1498  * @txdr:    tx descriptor ring (for a specific queue) to setup
1499  *
1500  * Return 0 on success, negative on failure
1501  **/
1502 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1503 				    struct e1000_tx_ring *txdr)
1504 {
1505 	struct pci_dev *pdev = adapter->pdev;
1506 	int size;
1507 
1508 	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1509 	txdr->buffer_info = vzalloc(size);
1510 	if (!txdr->buffer_info)
1511 		return -ENOMEM;
1512 
1513 	/* round up to nearest 4K */
1514 
1515 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1516 	txdr->size = ALIGN(txdr->size, 4096);
1517 
1518 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1519 					GFP_KERNEL);
1520 	if (!txdr->desc) {
1521 setup_tx_desc_die:
1522 		vfree(txdr->buffer_info);
1523 		return -ENOMEM;
1524 	}
1525 
1526 	/* Fix for errata 23, can't cross 64kB boundary */
1527 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1528 		void *olddesc = txdr->desc;
1529 		dma_addr_t olddma = txdr->dma;
1530 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1531 		      txdr->size, txdr->desc);
1532 		/* Try again, without freeing the previous */
1533 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1534 						&txdr->dma, GFP_KERNEL);
1535 		/* Failed allocation, critical failure */
1536 		if (!txdr->desc) {
1537 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1538 					  olddma);
1539 			goto setup_tx_desc_die;
1540 		}
1541 
1542 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1543 			/* give up */
1544 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1545 					  txdr->dma);
1546 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547 					  olddma);
1548 			e_err(probe, "Unable to allocate aligned memory "
1549 			      "for the transmit descriptor ring\n");
1550 			vfree(txdr->buffer_info);
1551 			return -ENOMEM;
1552 		} else {
1553 			/* Free old allocation, new allocation was successful */
1554 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1555 					  olddma);
1556 		}
1557 	}
1558 	memset(txdr->desc, 0, txdr->size);
1559 
1560 	txdr->next_to_use = 0;
1561 	txdr->next_to_clean = 0;
1562 
1563 	return 0;
1564 }
1565 
1566 /**
1567  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1568  * 				  (Descriptors) for all queues
1569  * @adapter: board private structure
1570  *
1571  * Return 0 on success, negative on failure
1572  **/
1573 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1574 {
1575 	int i, err = 0;
1576 
1577 	for (i = 0; i < adapter->num_tx_queues; i++) {
1578 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1579 		if (err) {
1580 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1581 			for (i-- ; i >= 0; i--)
1582 				e1000_free_tx_resources(adapter,
1583 							&adapter->tx_ring[i]);
1584 			break;
1585 		}
1586 	}
1587 
1588 	return err;
1589 }
1590 
1591 /**
1592  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1593  * @adapter: board private structure
1594  *
1595  * Configure the Tx unit of the MAC after a reset.
1596  **/
1597 static void e1000_configure_tx(struct e1000_adapter *adapter)
1598 {
1599 	u64 tdba;
1600 	struct e1000_hw *hw = &adapter->hw;
1601 	u32 tdlen, tctl, tipg;
1602 	u32 ipgr1, ipgr2;
1603 
1604 	/* Setup the HW Tx Head and Tail descriptor pointers */
1605 
1606 	switch (adapter->num_tx_queues) {
1607 	case 1:
1608 	default:
1609 		tdba = adapter->tx_ring[0].dma;
1610 		tdlen = adapter->tx_ring[0].count *
1611 			sizeof(struct e1000_tx_desc);
1612 		ew32(TDLEN, tdlen);
1613 		ew32(TDBAH, (tdba >> 32));
1614 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1615 		ew32(TDT, 0);
1616 		ew32(TDH, 0);
1617 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1618 					   E1000_TDH : E1000_82542_TDH);
1619 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1620 					   E1000_TDT : E1000_82542_TDT);
1621 		break;
1622 	}
1623 
1624 	/* Set the default values for the Tx Inter Packet Gap timer */
1625 	if ((hw->media_type == e1000_media_type_fiber ||
1626 	     hw->media_type == e1000_media_type_internal_serdes))
1627 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1628 	else
1629 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1630 
1631 	switch (hw->mac_type) {
1632 	case e1000_82542_rev2_0:
1633 	case e1000_82542_rev2_1:
1634 		tipg = DEFAULT_82542_TIPG_IPGT;
1635 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1636 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1637 		break;
1638 	default:
1639 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1640 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1641 		break;
1642 	}
1643 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1644 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1645 	ew32(TIPG, tipg);
1646 
1647 	/* Set the Tx Interrupt Delay register */
1648 
1649 	ew32(TIDV, adapter->tx_int_delay);
1650 	if (hw->mac_type >= e1000_82540)
1651 		ew32(TADV, adapter->tx_abs_int_delay);
1652 
1653 	/* Program the Transmit Control Register */
1654 
1655 	tctl = er32(TCTL);
1656 	tctl &= ~E1000_TCTL_CT;
1657 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1658 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1659 
1660 	e1000_config_collision_dist(hw);
1661 
1662 	/* Setup Transmit Descriptor Settings for eop descriptor */
1663 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1664 
1665 	/* only set IDE if we are delaying interrupts using the timers */
1666 	if (adapter->tx_int_delay)
1667 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1668 
1669 	if (hw->mac_type < e1000_82543)
1670 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1671 	else
1672 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1673 
1674 	/* Cache if we're 82544 running in PCI-X because we'll
1675 	 * need this to apply a workaround later in the send path.
1676 	 */
1677 	if (hw->mac_type == e1000_82544 &&
1678 	    hw->bus_type == e1000_bus_type_pcix)
1679 		adapter->pcix_82544 = true;
1680 
1681 	ew32(TCTL, tctl);
1682 
1683 }
1684 
1685 /**
1686  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1687  * @adapter: board private structure
1688  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1689  *
1690  * Returns 0 on success, negative on failure
1691  **/
1692 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1693 				    struct e1000_rx_ring *rxdr)
1694 {
1695 	struct pci_dev *pdev = adapter->pdev;
1696 	int size, desc_len;
1697 
1698 	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1699 	rxdr->buffer_info = vzalloc(size);
1700 	if (!rxdr->buffer_info)
1701 		return -ENOMEM;
1702 
1703 	desc_len = sizeof(struct e1000_rx_desc);
1704 
1705 	/* Round up to nearest 4K */
1706 
1707 	rxdr->size = rxdr->count * desc_len;
1708 	rxdr->size = ALIGN(rxdr->size, 4096);
1709 
1710 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1711 					GFP_KERNEL);
1712 	if (!rxdr->desc) {
1713 setup_rx_desc_die:
1714 		vfree(rxdr->buffer_info);
1715 		return -ENOMEM;
1716 	}
1717 
1718 	/* Fix for errata 23, can't cross 64kB boundary */
1719 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1720 		void *olddesc = rxdr->desc;
1721 		dma_addr_t olddma = rxdr->dma;
1722 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1723 		      rxdr->size, rxdr->desc);
1724 		/* Try again, without freeing the previous */
1725 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1726 						&rxdr->dma, GFP_KERNEL);
1727 		/* Failed allocation, critical failure */
1728 		if (!rxdr->desc) {
1729 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1730 					  olddma);
1731 			goto setup_rx_desc_die;
1732 		}
1733 
1734 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1735 			/* give up */
1736 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1737 					  rxdr->dma);
1738 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1739 					  olddma);
1740 			e_err(probe, "Unable to allocate aligned memory for "
1741 			      "the Rx descriptor ring\n");
1742 			goto setup_rx_desc_die;
1743 		} else {
1744 			/* Free old allocation, new allocation was successful */
1745 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746 					  olddma);
1747 		}
1748 	}
1749 	memset(rxdr->desc, 0, rxdr->size);
1750 
1751 	rxdr->next_to_clean = 0;
1752 	rxdr->next_to_use = 0;
1753 	rxdr->rx_skb_top = NULL;
1754 
1755 	return 0;
1756 }
1757 
1758 /**
1759  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1760  * 				  (Descriptors) for all queues
1761  * @adapter: board private structure
1762  *
1763  * Return 0 on success, negative on failure
1764  **/
1765 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1766 {
1767 	int i, err = 0;
1768 
1769 	for (i = 0; i < adapter->num_rx_queues; i++) {
1770 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1771 		if (err) {
1772 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1773 			for (i-- ; i >= 0; i--)
1774 				e1000_free_rx_resources(adapter,
1775 							&adapter->rx_ring[i]);
1776 			break;
1777 		}
1778 	}
1779 
1780 	return err;
1781 }
1782 
1783 /**
1784  * e1000_setup_rctl - configure the receive control registers
1785  * @adapter: Board private structure
1786  **/
1787 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1788 {
1789 	struct e1000_hw *hw = &adapter->hw;
1790 	u32 rctl;
1791 
1792 	rctl = er32(RCTL);
1793 
1794 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1795 
1796 	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1797 		E1000_RCTL_RDMTS_HALF |
1798 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1799 
1800 	if (hw->tbi_compatibility_on == 1)
1801 		rctl |= E1000_RCTL_SBP;
1802 	else
1803 		rctl &= ~E1000_RCTL_SBP;
1804 
1805 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1806 		rctl &= ~E1000_RCTL_LPE;
1807 	else
1808 		rctl |= E1000_RCTL_LPE;
1809 
1810 	/* Setup buffer sizes */
1811 	rctl &= ~E1000_RCTL_SZ_4096;
1812 	rctl |= E1000_RCTL_BSEX;
1813 	switch (adapter->rx_buffer_len) {
1814 	case E1000_RXBUFFER_2048:
1815 	default:
1816 		rctl |= E1000_RCTL_SZ_2048;
1817 		rctl &= ~E1000_RCTL_BSEX;
1818 		break;
1819 	case E1000_RXBUFFER_4096:
1820 		rctl |= E1000_RCTL_SZ_4096;
1821 		break;
1822 	case E1000_RXBUFFER_8192:
1823 		rctl |= E1000_RCTL_SZ_8192;
1824 		break;
1825 	case E1000_RXBUFFER_16384:
1826 		rctl |= E1000_RCTL_SZ_16384;
1827 		break;
1828 	}
1829 
1830 	/* This is useful for sniffing bad packets. */
1831 	if (adapter->netdev->features & NETIF_F_RXALL) {
1832 		/* UPE and MPE will be handled by normal PROMISC logic
1833 		 * in e1000e_set_rx_mode
1834 		 */
1835 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1836 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1837 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1838 
1839 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1840 			  E1000_RCTL_DPF | /* Allow filtered pause */
1841 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1842 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1843 		 * and that breaks VLANs.
1844 		 */
1845 	}
1846 
1847 	ew32(RCTL, rctl);
1848 }
1849 
1850 /**
1851  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1852  * @adapter: board private structure
1853  *
1854  * Configure the Rx unit of the MAC after a reset.
1855  **/
1856 static void e1000_configure_rx(struct e1000_adapter *adapter)
1857 {
1858 	u64 rdba;
1859 	struct e1000_hw *hw = &adapter->hw;
1860 	u32 rdlen, rctl, rxcsum;
1861 
1862 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1863 		rdlen = adapter->rx_ring[0].count *
1864 			sizeof(struct e1000_rx_desc);
1865 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1866 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1867 	} else {
1868 		rdlen = adapter->rx_ring[0].count *
1869 			sizeof(struct e1000_rx_desc);
1870 		adapter->clean_rx = e1000_clean_rx_irq;
1871 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1872 	}
1873 
1874 	/* disable receives while setting up the descriptors */
1875 	rctl = er32(RCTL);
1876 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1877 
1878 	/* set the Receive Delay Timer Register */
1879 	ew32(RDTR, adapter->rx_int_delay);
1880 
1881 	if (hw->mac_type >= e1000_82540) {
1882 		ew32(RADV, adapter->rx_abs_int_delay);
1883 		if (adapter->itr_setting != 0)
1884 			ew32(ITR, 1000000000 / (adapter->itr * 256));
1885 	}
1886 
1887 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1888 	 * the Base and Length of the Rx Descriptor Ring
1889 	 */
1890 	switch (adapter->num_rx_queues) {
1891 	case 1:
1892 	default:
1893 		rdba = adapter->rx_ring[0].dma;
1894 		ew32(RDLEN, rdlen);
1895 		ew32(RDBAH, (rdba >> 32));
1896 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1897 		ew32(RDT, 0);
1898 		ew32(RDH, 0);
1899 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1900 					   E1000_RDH : E1000_82542_RDH);
1901 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1902 					   E1000_RDT : E1000_82542_RDT);
1903 		break;
1904 	}
1905 
1906 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1907 	if (hw->mac_type >= e1000_82543) {
1908 		rxcsum = er32(RXCSUM);
1909 		if (adapter->rx_csum)
1910 			rxcsum |= E1000_RXCSUM_TUOFL;
1911 		else
1912 			/* don't need to clear IPPCSE as it defaults to 0 */
1913 			rxcsum &= ~E1000_RXCSUM_TUOFL;
1914 		ew32(RXCSUM, rxcsum);
1915 	}
1916 
1917 	/* Enable Receives */
1918 	ew32(RCTL, rctl | E1000_RCTL_EN);
1919 }
1920 
1921 /**
1922  * e1000_free_tx_resources - Free Tx Resources per Queue
1923  * @adapter: board private structure
1924  * @tx_ring: Tx descriptor ring for a specific queue
1925  *
1926  * Free all transmit software resources
1927  **/
1928 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1929 				    struct e1000_tx_ring *tx_ring)
1930 {
1931 	struct pci_dev *pdev = adapter->pdev;
1932 
1933 	e1000_clean_tx_ring(adapter, tx_ring);
1934 
1935 	vfree(tx_ring->buffer_info);
1936 	tx_ring->buffer_info = NULL;
1937 
1938 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1939 			  tx_ring->dma);
1940 
1941 	tx_ring->desc = NULL;
1942 }
1943 
1944 /**
1945  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1946  * @adapter: board private structure
1947  *
1948  * Free all transmit software resources
1949  **/
1950 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1951 {
1952 	int i;
1953 
1954 	for (i = 0; i < adapter->num_tx_queues; i++)
1955 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1956 }
1957 
1958 static void
1959 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1960 				 struct e1000_tx_buffer *buffer_info)
1961 {
1962 	if (buffer_info->dma) {
1963 		if (buffer_info->mapped_as_page)
1964 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1965 				       buffer_info->length, DMA_TO_DEVICE);
1966 		else
1967 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1968 					 buffer_info->length,
1969 					 DMA_TO_DEVICE);
1970 		buffer_info->dma = 0;
1971 	}
1972 	if (buffer_info->skb) {
1973 		dev_kfree_skb_any(buffer_info->skb);
1974 		buffer_info->skb = NULL;
1975 	}
1976 	buffer_info->time_stamp = 0;
1977 	/* buffer_info must be completely set up in the transmit path */
1978 }
1979 
1980 /**
1981  * e1000_clean_tx_ring - Free Tx Buffers
1982  * @adapter: board private structure
1983  * @tx_ring: ring to be cleaned
1984  **/
1985 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1986 				struct e1000_tx_ring *tx_ring)
1987 {
1988 	struct e1000_hw *hw = &adapter->hw;
1989 	struct e1000_tx_buffer *buffer_info;
1990 	unsigned long size;
1991 	unsigned int i;
1992 
1993 	/* Free all the Tx ring sk_buffs */
1994 
1995 	for (i = 0; i < tx_ring->count; i++) {
1996 		buffer_info = &tx_ring->buffer_info[i];
1997 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1998 	}
1999 
2000 	netdev_reset_queue(adapter->netdev);
2001 	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2002 	memset(tx_ring->buffer_info, 0, size);
2003 
2004 	/* Zero out the descriptor ring */
2005 
2006 	memset(tx_ring->desc, 0, tx_ring->size);
2007 
2008 	tx_ring->next_to_use = 0;
2009 	tx_ring->next_to_clean = 0;
2010 	tx_ring->last_tx_tso = false;
2011 
2012 	writel(0, hw->hw_addr + tx_ring->tdh);
2013 	writel(0, hw->hw_addr + tx_ring->tdt);
2014 }
2015 
2016 /**
2017  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2018  * @adapter: board private structure
2019  **/
2020 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2021 {
2022 	int i;
2023 
2024 	for (i = 0; i < adapter->num_tx_queues; i++)
2025 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2026 }
2027 
2028 /**
2029  * e1000_free_rx_resources - Free Rx Resources
2030  * @adapter: board private structure
2031  * @rx_ring: ring to clean the resources from
2032  *
2033  * Free all receive software resources
2034  **/
2035 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2036 				    struct e1000_rx_ring *rx_ring)
2037 {
2038 	struct pci_dev *pdev = adapter->pdev;
2039 
2040 	e1000_clean_rx_ring(adapter, rx_ring);
2041 
2042 	vfree(rx_ring->buffer_info);
2043 	rx_ring->buffer_info = NULL;
2044 
2045 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2046 			  rx_ring->dma);
2047 
2048 	rx_ring->desc = NULL;
2049 }
2050 
2051 /**
2052  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2053  * @adapter: board private structure
2054  *
2055  * Free all receive software resources
2056  **/
2057 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2058 {
2059 	int i;
2060 
2061 	for (i = 0; i < adapter->num_rx_queues; i++)
2062 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2063 }
2064 
2065 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2066 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2067 {
2068 	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2069 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2070 }
2071 
2072 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2073 {
2074 	unsigned int len = e1000_frag_len(a);
2075 	u8 *data = netdev_alloc_frag(len);
2076 
2077 	if (likely(data))
2078 		data += E1000_HEADROOM;
2079 	return data;
2080 }
2081 
2082 /**
2083  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2084  * @adapter: board private structure
2085  * @rx_ring: ring to free buffers from
2086  **/
2087 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2088 				struct e1000_rx_ring *rx_ring)
2089 {
2090 	struct e1000_hw *hw = &adapter->hw;
2091 	struct e1000_rx_buffer *buffer_info;
2092 	struct pci_dev *pdev = adapter->pdev;
2093 	unsigned long size;
2094 	unsigned int i;
2095 
2096 	/* Free all the Rx netfrags */
2097 	for (i = 0; i < rx_ring->count; i++) {
2098 		buffer_info = &rx_ring->buffer_info[i];
2099 		if (adapter->clean_rx == e1000_clean_rx_irq) {
2100 			if (buffer_info->dma)
2101 				dma_unmap_single(&pdev->dev, buffer_info->dma,
2102 						 adapter->rx_buffer_len,
2103 						 DMA_FROM_DEVICE);
2104 			if (buffer_info->rxbuf.data) {
2105 				skb_free_frag(buffer_info->rxbuf.data);
2106 				buffer_info->rxbuf.data = NULL;
2107 			}
2108 		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2109 			if (buffer_info->dma)
2110 				dma_unmap_page(&pdev->dev, buffer_info->dma,
2111 					       adapter->rx_buffer_len,
2112 					       DMA_FROM_DEVICE);
2113 			if (buffer_info->rxbuf.page) {
2114 				put_page(buffer_info->rxbuf.page);
2115 				buffer_info->rxbuf.page = NULL;
2116 			}
2117 		}
2118 
2119 		buffer_info->dma = 0;
2120 	}
2121 
2122 	/* there also may be some cached data from a chained receive */
2123 	napi_free_frags(&adapter->napi);
2124 	rx_ring->rx_skb_top = NULL;
2125 
2126 	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2127 	memset(rx_ring->buffer_info, 0, size);
2128 
2129 	/* Zero out the descriptor ring */
2130 	memset(rx_ring->desc, 0, rx_ring->size);
2131 
2132 	rx_ring->next_to_clean = 0;
2133 	rx_ring->next_to_use = 0;
2134 
2135 	writel(0, hw->hw_addr + rx_ring->rdh);
2136 	writel(0, hw->hw_addr + rx_ring->rdt);
2137 }
2138 
2139 /**
2140  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2141  * @adapter: board private structure
2142  **/
2143 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2144 {
2145 	int i;
2146 
2147 	for (i = 0; i < adapter->num_rx_queues; i++)
2148 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2149 }
2150 
2151 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2152  * and memory write and invalidate disabled for certain operations
2153  */
2154 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2155 {
2156 	struct e1000_hw *hw = &adapter->hw;
2157 	struct net_device *netdev = adapter->netdev;
2158 	u32 rctl;
2159 
2160 	e1000_pci_clear_mwi(hw);
2161 
2162 	rctl = er32(RCTL);
2163 	rctl |= E1000_RCTL_RST;
2164 	ew32(RCTL, rctl);
2165 	E1000_WRITE_FLUSH();
2166 	mdelay(5);
2167 
2168 	if (netif_running(netdev))
2169 		e1000_clean_all_rx_rings(adapter);
2170 }
2171 
2172 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2173 {
2174 	struct e1000_hw *hw = &adapter->hw;
2175 	struct net_device *netdev = adapter->netdev;
2176 	u32 rctl;
2177 
2178 	rctl = er32(RCTL);
2179 	rctl &= ~E1000_RCTL_RST;
2180 	ew32(RCTL, rctl);
2181 	E1000_WRITE_FLUSH();
2182 	mdelay(5);
2183 
2184 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2185 		e1000_pci_set_mwi(hw);
2186 
2187 	if (netif_running(netdev)) {
2188 		/* No need to loop, because 82542 supports only 1 queue */
2189 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2190 		e1000_configure_rx(adapter);
2191 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2192 	}
2193 }
2194 
2195 /**
2196  * e1000_set_mac - Change the Ethernet Address of the NIC
2197  * @netdev: network interface device structure
2198  * @p: pointer to an address structure
2199  *
2200  * Returns 0 on success, negative on failure
2201  **/
2202 static int e1000_set_mac(struct net_device *netdev, void *p)
2203 {
2204 	struct e1000_adapter *adapter = netdev_priv(netdev);
2205 	struct e1000_hw *hw = &adapter->hw;
2206 	struct sockaddr *addr = p;
2207 
2208 	if (!is_valid_ether_addr(addr->sa_data))
2209 		return -EADDRNOTAVAIL;
2210 
2211 	/* 82542 2.0 needs to be in reset to write receive address registers */
2212 
2213 	if (hw->mac_type == e1000_82542_rev2_0)
2214 		e1000_enter_82542_rst(adapter);
2215 
2216 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2217 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2218 
2219 	e1000_rar_set(hw, hw->mac_addr, 0);
2220 
2221 	if (hw->mac_type == e1000_82542_rev2_0)
2222 		e1000_leave_82542_rst(adapter);
2223 
2224 	return 0;
2225 }
2226 
2227 /**
2228  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2229  * @netdev: network interface device structure
2230  *
2231  * The set_rx_mode entry point is called whenever the unicast or multicast
2232  * address lists or the network interface flags are updated. This routine is
2233  * responsible for configuring the hardware for proper unicast, multicast,
2234  * promiscuous mode, and all-multi behavior.
2235  **/
2236 static void e1000_set_rx_mode(struct net_device *netdev)
2237 {
2238 	struct e1000_adapter *adapter = netdev_priv(netdev);
2239 	struct e1000_hw *hw = &adapter->hw;
2240 	struct netdev_hw_addr *ha;
2241 	bool use_uc = false;
2242 	u32 rctl;
2243 	u32 hash_value;
2244 	int i, rar_entries = E1000_RAR_ENTRIES;
2245 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2246 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2247 
2248 	if (!mcarray)
2249 		return;
2250 
2251 	/* Check for Promiscuous and All Multicast modes */
2252 
2253 	rctl = er32(RCTL);
2254 
2255 	if (netdev->flags & IFF_PROMISC) {
2256 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2257 		rctl &= ~E1000_RCTL_VFE;
2258 	} else {
2259 		if (netdev->flags & IFF_ALLMULTI)
2260 			rctl |= E1000_RCTL_MPE;
2261 		else
2262 			rctl &= ~E1000_RCTL_MPE;
2263 		/* Enable VLAN filter if there is a VLAN */
2264 		if (e1000_vlan_used(adapter))
2265 			rctl |= E1000_RCTL_VFE;
2266 	}
2267 
2268 	if (netdev_uc_count(netdev) > rar_entries - 1) {
2269 		rctl |= E1000_RCTL_UPE;
2270 	} else if (!(netdev->flags & IFF_PROMISC)) {
2271 		rctl &= ~E1000_RCTL_UPE;
2272 		use_uc = true;
2273 	}
2274 
2275 	ew32(RCTL, rctl);
2276 
2277 	/* 82542 2.0 needs to be in reset to write receive address registers */
2278 
2279 	if (hw->mac_type == e1000_82542_rev2_0)
2280 		e1000_enter_82542_rst(adapter);
2281 
2282 	/* load the first 14 addresses into the exact filters 1-14. Unicast
2283 	 * addresses take precedence to avoid disabling unicast filtering
2284 	 * when possible.
2285 	 *
2286 	 * RAR 0 is used for the station MAC address
2287 	 * if there are not 14 addresses, go ahead and clear the filters
2288 	 */
2289 	i = 1;
2290 	if (use_uc)
2291 		netdev_for_each_uc_addr(ha, netdev) {
2292 			if (i == rar_entries)
2293 				break;
2294 			e1000_rar_set(hw, ha->addr, i++);
2295 		}
2296 
2297 	netdev_for_each_mc_addr(ha, netdev) {
2298 		if (i == rar_entries) {
2299 			/* load any remaining addresses into the hash table */
2300 			u32 hash_reg, hash_bit, mta;
2301 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2302 			hash_reg = (hash_value >> 5) & 0x7F;
2303 			hash_bit = hash_value & 0x1F;
2304 			mta = (1 << hash_bit);
2305 			mcarray[hash_reg] |= mta;
2306 		} else {
2307 			e1000_rar_set(hw, ha->addr, i++);
2308 		}
2309 	}
2310 
2311 	for (; i < rar_entries; i++) {
2312 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2313 		E1000_WRITE_FLUSH();
2314 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2315 		E1000_WRITE_FLUSH();
2316 	}
2317 
2318 	/* write the hash table completely, write from bottom to avoid
2319 	 * both stupid write combining chipsets, and flushing each write
2320 	 */
2321 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2322 		/* If we are on an 82544 has an errata where writing odd
2323 		 * offsets overwrites the previous even offset, but writing
2324 		 * backwards over the range solves the issue by always
2325 		 * writing the odd offset first
2326 		 */
2327 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2328 	}
2329 	E1000_WRITE_FLUSH();
2330 
2331 	if (hw->mac_type == e1000_82542_rev2_0)
2332 		e1000_leave_82542_rst(adapter);
2333 
2334 	kfree(mcarray);
2335 }
2336 
2337 /**
2338  * e1000_update_phy_info_task - get phy info
2339  * @work: work struct contained inside adapter struct
2340  *
2341  * Need to wait a few seconds after link up to get diagnostic information from
2342  * the phy
2343  */
2344 static void e1000_update_phy_info_task(struct work_struct *work)
2345 {
2346 	struct e1000_adapter *adapter = container_of(work,
2347 						     struct e1000_adapter,
2348 						     phy_info_task.work);
2349 
2350 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2351 }
2352 
2353 /**
2354  * e1000_82547_tx_fifo_stall_task - task to complete work
2355  * @work: work struct contained inside adapter struct
2356  **/
2357 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2358 {
2359 	struct e1000_adapter *adapter = container_of(work,
2360 						     struct e1000_adapter,
2361 						     fifo_stall_task.work);
2362 	struct e1000_hw *hw = &adapter->hw;
2363 	struct net_device *netdev = adapter->netdev;
2364 	u32 tctl;
2365 
2366 	if (atomic_read(&adapter->tx_fifo_stall)) {
2367 		if ((er32(TDT) == er32(TDH)) &&
2368 		   (er32(TDFT) == er32(TDFH)) &&
2369 		   (er32(TDFTS) == er32(TDFHS))) {
2370 			tctl = er32(TCTL);
2371 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2372 			ew32(TDFT, adapter->tx_head_addr);
2373 			ew32(TDFH, adapter->tx_head_addr);
2374 			ew32(TDFTS, adapter->tx_head_addr);
2375 			ew32(TDFHS, adapter->tx_head_addr);
2376 			ew32(TCTL, tctl);
2377 			E1000_WRITE_FLUSH();
2378 
2379 			adapter->tx_fifo_head = 0;
2380 			atomic_set(&adapter->tx_fifo_stall, 0);
2381 			netif_wake_queue(netdev);
2382 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2383 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2384 		}
2385 	}
2386 }
2387 
2388 bool e1000_has_link(struct e1000_adapter *adapter)
2389 {
2390 	struct e1000_hw *hw = &adapter->hw;
2391 	bool link_active = false;
2392 
2393 	/* get_link_status is set on LSC (link status) interrupt or rx
2394 	 * sequence error interrupt (except on intel ce4100).
2395 	 * get_link_status will stay false until the
2396 	 * e1000_check_for_link establishes link for copper adapters
2397 	 * ONLY
2398 	 */
2399 	switch (hw->media_type) {
2400 	case e1000_media_type_copper:
2401 		if (hw->mac_type == e1000_ce4100)
2402 			hw->get_link_status = 1;
2403 		if (hw->get_link_status) {
2404 			e1000_check_for_link(hw);
2405 			link_active = !hw->get_link_status;
2406 		} else {
2407 			link_active = true;
2408 		}
2409 		break;
2410 	case e1000_media_type_fiber:
2411 		e1000_check_for_link(hw);
2412 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2413 		break;
2414 	case e1000_media_type_internal_serdes:
2415 		e1000_check_for_link(hw);
2416 		link_active = hw->serdes_has_link;
2417 		break;
2418 	default:
2419 		break;
2420 	}
2421 
2422 	return link_active;
2423 }
2424 
2425 /**
2426  * e1000_watchdog - work function
2427  * @work: work struct contained inside adapter struct
2428  **/
2429 static void e1000_watchdog(struct work_struct *work)
2430 {
2431 	struct e1000_adapter *adapter = container_of(work,
2432 						     struct e1000_adapter,
2433 						     watchdog_task.work);
2434 	struct e1000_hw *hw = &adapter->hw;
2435 	struct net_device *netdev = adapter->netdev;
2436 	struct e1000_tx_ring *txdr = adapter->tx_ring;
2437 	u32 link, tctl;
2438 
2439 	link = e1000_has_link(adapter);
2440 	if ((netif_carrier_ok(netdev)) && link)
2441 		goto link_up;
2442 
2443 	if (link) {
2444 		if (!netif_carrier_ok(netdev)) {
2445 			u32 ctrl;
2446 			/* update snapshot of PHY registers on LSC */
2447 			e1000_get_speed_and_duplex(hw,
2448 						   &adapter->link_speed,
2449 						   &adapter->link_duplex);
2450 
2451 			ctrl = er32(CTRL);
2452 			pr_info("%s NIC Link is Up %d Mbps %s, "
2453 				"Flow Control: %s\n",
2454 				netdev->name,
2455 				adapter->link_speed,
2456 				adapter->link_duplex == FULL_DUPLEX ?
2457 				"Full Duplex" : "Half Duplex",
2458 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2459 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2460 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2461 				E1000_CTRL_TFCE) ? "TX" : "None")));
2462 
2463 			/* adjust timeout factor according to speed/duplex */
2464 			adapter->tx_timeout_factor = 1;
2465 			switch (adapter->link_speed) {
2466 			case SPEED_10:
2467 				adapter->tx_timeout_factor = 16;
2468 				break;
2469 			case SPEED_100:
2470 				/* maybe add some timeout factor ? */
2471 				break;
2472 			}
2473 
2474 			/* enable transmits in the hardware */
2475 			tctl = er32(TCTL);
2476 			tctl |= E1000_TCTL_EN;
2477 			ew32(TCTL, tctl);
2478 
2479 			netif_carrier_on(netdev);
2480 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2481 				schedule_delayed_work(&adapter->phy_info_task,
2482 						      2 * HZ);
2483 			adapter->smartspeed = 0;
2484 		}
2485 	} else {
2486 		if (netif_carrier_ok(netdev)) {
2487 			adapter->link_speed = 0;
2488 			adapter->link_duplex = 0;
2489 			pr_info("%s NIC Link is Down\n",
2490 				netdev->name);
2491 			netif_carrier_off(netdev);
2492 
2493 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2494 				schedule_delayed_work(&adapter->phy_info_task,
2495 						      2 * HZ);
2496 		}
2497 
2498 		e1000_smartspeed(adapter);
2499 	}
2500 
2501 link_up:
2502 	e1000_update_stats(adapter);
2503 
2504 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2505 	adapter->tpt_old = adapter->stats.tpt;
2506 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2507 	adapter->colc_old = adapter->stats.colc;
2508 
2509 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2510 	adapter->gorcl_old = adapter->stats.gorcl;
2511 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2512 	adapter->gotcl_old = adapter->stats.gotcl;
2513 
2514 	e1000_update_adaptive(hw);
2515 
2516 	if (!netif_carrier_ok(netdev)) {
2517 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2518 			/* We've lost link, so the controller stops DMA,
2519 			 * but we've got queued Tx work that's never going
2520 			 * to get done, so reset controller to flush Tx.
2521 			 * (Do the reset outside of interrupt context).
2522 			 */
2523 			adapter->tx_timeout_count++;
2524 			schedule_work(&adapter->reset_task);
2525 			/* exit immediately since reset is imminent */
2526 			return;
2527 		}
2528 	}
2529 
2530 	/* Simple mode for Interrupt Throttle Rate (ITR) */
2531 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2532 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2533 		 * Total asymmetrical Tx or Rx gets ITR=8000;
2534 		 * everyone else is between 2000-8000.
2535 		 */
2536 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2537 		u32 dif = (adapter->gotcl > adapter->gorcl ?
2538 			    adapter->gotcl - adapter->gorcl :
2539 			    adapter->gorcl - adapter->gotcl) / 10000;
2540 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2541 
2542 		ew32(ITR, 1000000000 / (itr * 256));
2543 	}
2544 
2545 	/* Cause software interrupt to ensure rx ring is cleaned */
2546 	ew32(ICS, E1000_ICS_RXDMT0);
2547 
2548 	/* Force detection of hung controller every watchdog period */
2549 	adapter->detect_tx_hung = true;
2550 
2551 	/* Reschedule the task */
2552 	if (!test_bit(__E1000_DOWN, &adapter->flags))
2553 		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2554 }
2555 
2556 enum latency_range {
2557 	lowest_latency = 0,
2558 	low_latency = 1,
2559 	bulk_latency = 2,
2560 	latency_invalid = 255
2561 };
2562 
2563 /**
2564  * e1000_update_itr - update the dynamic ITR value based on statistics
2565  * @adapter: pointer to adapter
2566  * @itr_setting: current adapter->itr
2567  * @packets: the number of packets during this measurement interval
2568  * @bytes: the number of bytes during this measurement interval
2569  *
2570  *      Stores a new ITR value based on packets and byte
2571  *      counts during the last interrupt.  The advantage of per interrupt
2572  *      computation is faster updates and more accurate ITR for the current
2573  *      traffic pattern.  Constants in this function were computed
2574  *      based on theoretical maximum wire speed and thresholds were set based
2575  *      on testing data as well as attempting to minimize response time
2576  *      while increasing bulk throughput.
2577  *      this functionality is controlled by the InterruptThrottleRate module
2578  *      parameter (see e1000_param.c)
2579  **/
2580 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2581 				     u16 itr_setting, int packets, int bytes)
2582 {
2583 	unsigned int retval = itr_setting;
2584 	struct e1000_hw *hw = &adapter->hw;
2585 
2586 	if (unlikely(hw->mac_type < e1000_82540))
2587 		goto update_itr_done;
2588 
2589 	if (packets == 0)
2590 		goto update_itr_done;
2591 
2592 	switch (itr_setting) {
2593 	case lowest_latency:
2594 		/* jumbo frames get bulk treatment*/
2595 		if (bytes/packets > 8000)
2596 			retval = bulk_latency;
2597 		else if ((packets < 5) && (bytes > 512))
2598 			retval = low_latency;
2599 		break;
2600 	case low_latency:  /* 50 usec aka 20000 ints/s */
2601 		if (bytes > 10000) {
2602 			/* jumbo frames need bulk latency setting */
2603 			if (bytes/packets > 8000)
2604 				retval = bulk_latency;
2605 			else if ((packets < 10) || ((bytes/packets) > 1200))
2606 				retval = bulk_latency;
2607 			else if ((packets > 35))
2608 				retval = lowest_latency;
2609 		} else if (bytes/packets > 2000)
2610 			retval = bulk_latency;
2611 		else if (packets <= 2 && bytes < 512)
2612 			retval = lowest_latency;
2613 		break;
2614 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2615 		if (bytes > 25000) {
2616 			if (packets > 35)
2617 				retval = low_latency;
2618 		} else if (bytes < 6000) {
2619 			retval = low_latency;
2620 		}
2621 		break;
2622 	}
2623 
2624 update_itr_done:
2625 	return retval;
2626 }
2627 
2628 static void e1000_set_itr(struct e1000_adapter *adapter)
2629 {
2630 	struct e1000_hw *hw = &adapter->hw;
2631 	u16 current_itr;
2632 	u32 new_itr = adapter->itr;
2633 
2634 	if (unlikely(hw->mac_type < e1000_82540))
2635 		return;
2636 
2637 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2638 	if (unlikely(adapter->link_speed != SPEED_1000)) {
2639 		current_itr = 0;
2640 		new_itr = 4000;
2641 		goto set_itr_now;
2642 	}
2643 
2644 	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2645 					   adapter->total_tx_packets,
2646 					   adapter->total_tx_bytes);
2647 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2648 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2649 		adapter->tx_itr = low_latency;
2650 
2651 	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2652 					   adapter->total_rx_packets,
2653 					   adapter->total_rx_bytes);
2654 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2655 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2656 		adapter->rx_itr = low_latency;
2657 
2658 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2659 
2660 	switch (current_itr) {
2661 	/* counts and packets in update_itr are dependent on these numbers */
2662 	case lowest_latency:
2663 		new_itr = 70000;
2664 		break;
2665 	case low_latency:
2666 		new_itr = 20000; /* aka hwitr = ~200 */
2667 		break;
2668 	case bulk_latency:
2669 		new_itr = 4000;
2670 		break;
2671 	default:
2672 		break;
2673 	}
2674 
2675 set_itr_now:
2676 	if (new_itr != adapter->itr) {
2677 		/* this attempts to bias the interrupt rate towards Bulk
2678 		 * by adding intermediate steps when interrupt rate is
2679 		 * increasing
2680 		 */
2681 		new_itr = new_itr > adapter->itr ?
2682 			  min(adapter->itr + (new_itr >> 2), new_itr) :
2683 			  new_itr;
2684 		adapter->itr = new_itr;
2685 		ew32(ITR, 1000000000 / (new_itr * 256));
2686 	}
2687 }
2688 
2689 #define E1000_TX_FLAGS_CSUM		0x00000001
2690 #define E1000_TX_FLAGS_VLAN		0x00000002
2691 #define E1000_TX_FLAGS_TSO		0x00000004
2692 #define E1000_TX_FLAGS_IPV4		0x00000008
2693 #define E1000_TX_FLAGS_NO_FCS		0x00000010
2694 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2695 #define E1000_TX_FLAGS_VLAN_SHIFT	16
2696 
2697 static int e1000_tso(struct e1000_adapter *adapter,
2698 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2699 		     __be16 protocol)
2700 {
2701 	struct e1000_context_desc *context_desc;
2702 	struct e1000_tx_buffer *buffer_info;
2703 	unsigned int i;
2704 	u32 cmd_length = 0;
2705 	u16 ipcse = 0, tucse, mss;
2706 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2707 
2708 	if (skb_is_gso(skb)) {
2709 		int err;
2710 
2711 		err = skb_cow_head(skb, 0);
2712 		if (err < 0)
2713 			return err;
2714 
2715 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2716 		mss = skb_shinfo(skb)->gso_size;
2717 		if (protocol == htons(ETH_P_IP)) {
2718 			struct iphdr *iph = ip_hdr(skb);
2719 			iph->tot_len = 0;
2720 			iph->check = 0;
2721 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2722 								 iph->daddr, 0,
2723 								 IPPROTO_TCP,
2724 								 0);
2725 			cmd_length = E1000_TXD_CMD_IP;
2726 			ipcse = skb_transport_offset(skb) - 1;
2727 		} else if (skb_is_gso_v6(skb)) {
2728 			tcp_v6_gso_csum_prep(skb);
2729 			ipcse = 0;
2730 		}
2731 		ipcss = skb_network_offset(skb);
2732 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2733 		tucss = skb_transport_offset(skb);
2734 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2735 		tucse = 0;
2736 
2737 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2738 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2739 
2740 		i = tx_ring->next_to_use;
2741 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2742 		buffer_info = &tx_ring->buffer_info[i];
2743 
2744 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2745 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2746 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2747 		context_desc->upper_setup.tcp_fields.tucss = tucss;
2748 		context_desc->upper_setup.tcp_fields.tucso = tucso;
2749 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2750 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2751 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2752 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2753 
2754 		buffer_info->time_stamp = jiffies;
2755 		buffer_info->next_to_watch = i;
2756 
2757 		if (++i == tx_ring->count)
2758 			i = 0;
2759 
2760 		tx_ring->next_to_use = i;
2761 
2762 		return true;
2763 	}
2764 	return false;
2765 }
2766 
2767 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2768 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2769 			  __be16 protocol)
2770 {
2771 	struct e1000_context_desc *context_desc;
2772 	struct e1000_tx_buffer *buffer_info;
2773 	unsigned int i;
2774 	u8 css;
2775 	u32 cmd_len = E1000_TXD_CMD_DEXT;
2776 
2777 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2778 		return false;
2779 
2780 	switch (protocol) {
2781 	case cpu_to_be16(ETH_P_IP):
2782 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2783 			cmd_len |= E1000_TXD_CMD_TCP;
2784 		break;
2785 	case cpu_to_be16(ETH_P_IPV6):
2786 		/* XXX not handling all IPV6 headers */
2787 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2788 			cmd_len |= E1000_TXD_CMD_TCP;
2789 		break;
2790 	default:
2791 		if (unlikely(net_ratelimit()))
2792 			e_warn(drv, "checksum_partial proto=%x!\n",
2793 			       skb->protocol);
2794 		break;
2795 	}
2796 
2797 	css = skb_checksum_start_offset(skb);
2798 
2799 	i = tx_ring->next_to_use;
2800 	buffer_info = &tx_ring->buffer_info[i];
2801 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2802 
2803 	context_desc->lower_setup.ip_config = 0;
2804 	context_desc->upper_setup.tcp_fields.tucss = css;
2805 	context_desc->upper_setup.tcp_fields.tucso =
2806 		css + skb->csum_offset;
2807 	context_desc->upper_setup.tcp_fields.tucse = 0;
2808 	context_desc->tcp_seg_setup.data = 0;
2809 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2810 
2811 	buffer_info->time_stamp = jiffies;
2812 	buffer_info->next_to_watch = i;
2813 
2814 	if (unlikely(++i == tx_ring->count))
2815 		i = 0;
2816 
2817 	tx_ring->next_to_use = i;
2818 
2819 	return true;
2820 }
2821 
2822 #define E1000_MAX_TXD_PWR	12
2823 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2824 
2825 static int e1000_tx_map(struct e1000_adapter *adapter,
2826 			struct e1000_tx_ring *tx_ring,
2827 			struct sk_buff *skb, unsigned int first,
2828 			unsigned int max_per_txd, unsigned int nr_frags,
2829 			unsigned int mss)
2830 {
2831 	struct e1000_hw *hw = &adapter->hw;
2832 	struct pci_dev *pdev = adapter->pdev;
2833 	struct e1000_tx_buffer *buffer_info;
2834 	unsigned int len = skb_headlen(skb);
2835 	unsigned int offset = 0, size, count = 0, i;
2836 	unsigned int f, bytecount, segs;
2837 
2838 	i = tx_ring->next_to_use;
2839 
2840 	while (len) {
2841 		buffer_info = &tx_ring->buffer_info[i];
2842 		size = min(len, max_per_txd);
2843 		/* Workaround for Controller erratum --
2844 		 * descriptor for non-tso packet in a linear SKB that follows a
2845 		 * tso gets written back prematurely before the data is fully
2846 		 * DMA'd to the controller
2847 		 */
2848 		if (!skb->data_len && tx_ring->last_tx_tso &&
2849 		    !skb_is_gso(skb)) {
2850 			tx_ring->last_tx_tso = false;
2851 			size -= 4;
2852 		}
2853 
2854 		/* Workaround for premature desc write-backs
2855 		 * in TSO mode.  Append 4-byte sentinel desc
2856 		 */
2857 		if (unlikely(mss && !nr_frags && size == len && size > 8))
2858 			size -= 4;
2859 		/* work-around for errata 10 and it applies
2860 		 * to all controllers in PCI-X mode
2861 		 * The fix is to make sure that the first descriptor of a
2862 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2863 		 */
2864 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2865 			     (size > 2015) && count == 0))
2866 			size = 2015;
2867 
2868 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2869 		 * terminating buffers within evenly-aligned dwords.
2870 		 */
2871 		if (unlikely(adapter->pcix_82544 &&
2872 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2873 		   size > 4))
2874 			size -= 4;
2875 
2876 		buffer_info->length = size;
2877 		/* set time_stamp *before* dma to help avoid a possible race */
2878 		buffer_info->time_stamp = jiffies;
2879 		buffer_info->mapped_as_page = false;
2880 		buffer_info->dma = dma_map_single(&pdev->dev,
2881 						  skb->data + offset,
2882 						  size, DMA_TO_DEVICE);
2883 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2884 			goto dma_error;
2885 		buffer_info->next_to_watch = i;
2886 
2887 		len -= size;
2888 		offset += size;
2889 		count++;
2890 		if (len) {
2891 			i++;
2892 			if (unlikely(i == tx_ring->count))
2893 				i = 0;
2894 		}
2895 	}
2896 
2897 	for (f = 0; f < nr_frags; f++) {
2898 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2899 
2900 		len = skb_frag_size(frag);
2901 		offset = 0;
2902 
2903 		while (len) {
2904 			unsigned long bufend;
2905 			i++;
2906 			if (unlikely(i == tx_ring->count))
2907 				i = 0;
2908 
2909 			buffer_info = &tx_ring->buffer_info[i];
2910 			size = min(len, max_per_txd);
2911 			/* Workaround for premature desc write-backs
2912 			 * in TSO mode.  Append 4-byte sentinel desc
2913 			 */
2914 			if (unlikely(mss && f == (nr_frags-1) &&
2915 			    size == len && size > 8))
2916 				size -= 4;
2917 			/* Workaround for potential 82544 hang in PCI-X.
2918 			 * Avoid terminating buffers within evenly-aligned
2919 			 * dwords.
2920 			 */
2921 			bufend = (unsigned long)
2922 				page_to_phys(skb_frag_page(frag));
2923 			bufend += offset + size - 1;
2924 			if (unlikely(adapter->pcix_82544 &&
2925 				     !(bufend & 4) &&
2926 				     size > 4))
2927 				size -= 4;
2928 
2929 			buffer_info->length = size;
2930 			buffer_info->time_stamp = jiffies;
2931 			buffer_info->mapped_as_page = true;
2932 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2933 						offset, size, DMA_TO_DEVICE);
2934 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2935 				goto dma_error;
2936 			buffer_info->next_to_watch = i;
2937 
2938 			len -= size;
2939 			offset += size;
2940 			count++;
2941 		}
2942 	}
2943 
2944 	segs = skb_shinfo(skb)->gso_segs ?: 1;
2945 	/* multiply data chunks by size of headers */
2946 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2947 
2948 	tx_ring->buffer_info[i].skb = skb;
2949 	tx_ring->buffer_info[i].segs = segs;
2950 	tx_ring->buffer_info[i].bytecount = bytecount;
2951 	tx_ring->buffer_info[first].next_to_watch = i;
2952 
2953 	return count;
2954 
2955 dma_error:
2956 	dev_err(&pdev->dev, "TX DMA map failed\n");
2957 	buffer_info->dma = 0;
2958 	if (count)
2959 		count--;
2960 
2961 	while (count--) {
2962 		if (i == 0)
2963 			i += tx_ring->count;
2964 		i--;
2965 		buffer_info = &tx_ring->buffer_info[i];
2966 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2967 	}
2968 
2969 	return 0;
2970 }
2971 
2972 static void e1000_tx_queue(struct e1000_adapter *adapter,
2973 			   struct e1000_tx_ring *tx_ring, int tx_flags,
2974 			   int count)
2975 {
2976 	struct e1000_tx_desc *tx_desc = NULL;
2977 	struct e1000_tx_buffer *buffer_info;
2978 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2979 	unsigned int i;
2980 
2981 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2982 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2983 			     E1000_TXD_CMD_TSE;
2984 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2985 
2986 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2987 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2988 	}
2989 
2990 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2991 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2992 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2993 	}
2994 
2995 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2996 		txd_lower |= E1000_TXD_CMD_VLE;
2997 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2998 	}
2999 
3000 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3001 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3002 
3003 	i = tx_ring->next_to_use;
3004 
3005 	while (count--) {
3006 		buffer_info = &tx_ring->buffer_info[i];
3007 		tx_desc = E1000_TX_DESC(*tx_ring, i);
3008 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3009 		tx_desc->lower.data =
3010 			cpu_to_le32(txd_lower | buffer_info->length);
3011 		tx_desc->upper.data = cpu_to_le32(txd_upper);
3012 		if (unlikely(++i == tx_ring->count))
3013 			i = 0;
3014 	}
3015 
3016 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3017 
3018 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3019 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3020 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3021 
3022 	/* Force memory writes to complete before letting h/w
3023 	 * know there are new descriptors to fetch.  (Only
3024 	 * applicable for weak-ordered memory model archs,
3025 	 * such as IA-64).
3026 	 */
3027 	dma_wmb();
3028 
3029 	tx_ring->next_to_use = i;
3030 }
3031 
3032 /* 82547 workaround to avoid controller hang in half-duplex environment.
3033  * The workaround is to avoid queuing a large packet that would span
3034  * the internal Tx FIFO ring boundary by notifying the stack to resend
3035  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3036  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3037  * to the beginning of the Tx FIFO.
3038  */
3039 
3040 #define E1000_FIFO_HDR			0x10
3041 #define E1000_82547_PAD_LEN		0x3E0
3042 
3043 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3044 				       struct sk_buff *skb)
3045 {
3046 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3047 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3048 
3049 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3050 
3051 	if (adapter->link_duplex != HALF_DUPLEX)
3052 		goto no_fifo_stall_required;
3053 
3054 	if (atomic_read(&adapter->tx_fifo_stall))
3055 		return 1;
3056 
3057 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3058 		atomic_set(&adapter->tx_fifo_stall, 1);
3059 		return 1;
3060 	}
3061 
3062 no_fifo_stall_required:
3063 	adapter->tx_fifo_head += skb_fifo_len;
3064 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3065 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3066 	return 0;
3067 }
3068 
3069 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3070 {
3071 	struct e1000_adapter *adapter = netdev_priv(netdev);
3072 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3073 
3074 	netif_stop_queue(netdev);
3075 	/* Herbert's original patch had:
3076 	 *  smp_mb__after_netif_stop_queue();
3077 	 * but since that doesn't exist yet, just open code it.
3078 	 */
3079 	smp_mb();
3080 
3081 	/* We need to check again in a case another CPU has just
3082 	 * made room available.
3083 	 */
3084 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3085 		return -EBUSY;
3086 
3087 	/* A reprieve! */
3088 	netif_start_queue(netdev);
3089 	++adapter->restart_queue;
3090 	return 0;
3091 }
3092 
3093 static int e1000_maybe_stop_tx(struct net_device *netdev,
3094 			       struct e1000_tx_ring *tx_ring, int size)
3095 {
3096 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3097 		return 0;
3098 	return __e1000_maybe_stop_tx(netdev, size);
3099 }
3100 
3101 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3102 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3103 				    struct net_device *netdev)
3104 {
3105 	struct e1000_adapter *adapter = netdev_priv(netdev);
3106 	struct e1000_hw *hw = &adapter->hw;
3107 	struct e1000_tx_ring *tx_ring;
3108 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3109 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3110 	unsigned int tx_flags = 0;
3111 	unsigned int len = skb_headlen(skb);
3112 	unsigned int nr_frags;
3113 	unsigned int mss;
3114 	int count = 0;
3115 	int tso;
3116 	unsigned int f;
3117 	__be16 protocol = vlan_get_protocol(skb);
3118 
3119 	/* This goes back to the question of how to logically map a Tx queue
3120 	 * to a flow.  Right now, performance is impacted slightly negatively
3121 	 * if using multiple Tx queues.  If the stack breaks away from a
3122 	 * single qdisc implementation, we can look at this again.
3123 	 */
3124 	tx_ring = adapter->tx_ring;
3125 
3126 	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3127 	 * packets may get corrupted during padding by HW.
3128 	 * To WA this issue, pad all small packets manually.
3129 	 */
3130 	if (eth_skb_pad(skb))
3131 		return NETDEV_TX_OK;
3132 
3133 	mss = skb_shinfo(skb)->gso_size;
3134 	/* The controller does a simple calculation to
3135 	 * make sure there is enough room in the FIFO before
3136 	 * initiating the DMA for each buffer.  The calc is:
3137 	 * 4 = ceil(buffer len/mss).  To make sure we don't
3138 	 * overrun the FIFO, adjust the max buffer len if mss
3139 	 * drops.
3140 	 */
3141 	if (mss) {
3142 		u8 hdr_len;
3143 		max_per_txd = min(mss << 2, max_per_txd);
3144 		max_txd_pwr = fls(max_per_txd) - 1;
3145 
3146 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3147 		if (skb->data_len && hdr_len == len) {
3148 			switch (hw->mac_type) {
3149 			case e1000_82544: {
3150 				unsigned int pull_size;
3151 
3152 				/* Make sure we have room to chop off 4 bytes,
3153 				 * and that the end alignment will work out to
3154 				 * this hardware's requirements
3155 				 * NOTE: this is a TSO only workaround
3156 				 * if end byte alignment not correct move us
3157 				 * into the next dword
3158 				 */
3159 				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3160 				    & 4)
3161 					break;
3162 				/* fall through */
3163 				pull_size = min((unsigned int)4, skb->data_len);
3164 				if (!__pskb_pull_tail(skb, pull_size)) {
3165 					e_err(drv, "__pskb_pull_tail "
3166 					      "failed.\n");
3167 					dev_kfree_skb_any(skb);
3168 					return NETDEV_TX_OK;
3169 				}
3170 				len = skb_headlen(skb);
3171 				break;
3172 			}
3173 			default:
3174 				/* do nothing */
3175 				break;
3176 			}
3177 		}
3178 	}
3179 
3180 	/* reserve a descriptor for the offload context */
3181 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3182 		count++;
3183 	count++;
3184 
3185 	/* Controller Erratum workaround */
3186 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3187 		count++;
3188 
3189 	count += TXD_USE_COUNT(len, max_txd_pwr);
3190 
3191 	if (adapter->pcix_82544)
3192 		count++;
3193 
3194 	/* work-around for errata 10 and it applies to all controllers
3195 	 * in PCI-X mode, so add one more descriptor to the count
3196 	 */
3197 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3198 			(len > 2015)))
3199 		count++;
3200 
3201 	nr_frags = skb_shinfo(skb)->nr_frags;
3202 	for (f = 0; f < nr_frags; f++)
3203 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3204 				       max_txd_pwr);
3205 	if (adapter->pcix_82544)
3206 		count += nr_frags;
3207 
3208 	/* need: count + 2 desc gap to keep tail from touching
3209 	 * head, otherwise try next time
3210 	 */
3211 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3212 		return NETDEV_TX_BUSY;
3213 
3214 	if (unlikely((hw->mac_type == e1000_82547) &&
3215 		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3216 		netif_stop_queue(netdev);
3217 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3218 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3219 		return NETDEV_TX_BUSY;
3220 	}
3221 
3222 	if (skb_vlan_tag_present(skb)) {
3223 		tx_flags |= E1000_TX_FLAGS_VLAN;
3224 		tx_flags |= (skb_vlan_tag_get(skb) <<
3225 			     E1000_TX_FLAGS_VLAN_SHIFT);
3226 	}
3227 
3228 	first = tx_ring->next_to_use;
3229 
3230 	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3231 	if (tso < 0) {
3232 		dev_kfree_skb_any(skb);
3233 		return NETDEV_TX_OK;
3234 	}
3235 
3236 	if (likely(tso)) {
3237 		if (likely(hw->mac_type != e1000_82544))
3238 			tx_ring->last_tx_tso = true;
3239 		tx_flags |= E1000_TX_FLAGS_TSO;
3240 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3241 		tx_flags |= E1000_TX_FLAGS_CSUM;
3242 
3243 	if (protocol == htons(ETH_P_IP))
3244 		tx_flags |= E1000_TX_FLAGS_IPV4;
3245 
3246 	if (unlikely(skb->no_fcs))
3247 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3248 
3249 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3250 			     nr_frags, mss);
3251 
3252 	if (count) {
3253 		/* The descriptors needed is higher than other Intel drivers
3254 		 * due to a number of workarounds.  The breakdown is below:
3255 		 * Data descriptors: MAX_SKB_FRAGS + 1
3256 		 * Context Descriptor: 1
3257 		 * Keep head from touching tail: 2
3258 		 * Workarounds: 3
3259 		 */
3260 		int desc_needed = MAX_SKB_FRAGS + 7;
3261 
3262 		netdev_sent_queue(netdev, skb->len);
3263 		skb_tx_timestamp(skb);
3264 
3265 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3266 
3267 		/* 82544 potentially requires twice as many data descriptors
3268 		 * in order to guarantee buffers don't end on evenly-aligned
3269 		 * dwords
3270 		 */
3271 		if (adapter->pcix_82544)
3272 			desc_needed += MAX_SKB_FRAGS + 1;
3273 
3274 		/* Make sure there is space in the ring for the next send. */
3275 		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3276 
3277 		if (!netdev_xmit_more() ||
3278 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3279 			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3280 		}
3281 	} else {
3282 		dev_kfree_skb_any(skb);
3283 		tx_ring->buffer_info[first].time_stamp = 0;
3284 		tx_ring->next_to_use = first;
3285 	}
3286 
3287 	return NETDEV_TX_OK;
3288 }
3289 
3290 #define NUM_REGS 38 /* 1 based count */
3291 static void e1000_regdump(struct e1000_adapter *adapter)
3292 {
3293 	struct e1000_hw *hw = &adapter->hw;
3294 	u32 regs[NUM_REGS];
3295 	u32 *regs_buff = regs;
3296 	int i = 0;
3297 
3298 	static const char * const reg_name[] = {
3299 		"CTRL",  "STATUS",
3300 		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3301 		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3302 		"TIDV", "TXDCTL", "TADV", "TARC0",
3303 		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3304 		"TXDCTL1", "TARC1",
3305 		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3306 		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3307 		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3308 	};
3309 
3310 	regs_buff[0]  = er32(CTRL);
3311 	regs_buff[1]  = er32(STATUS);
3312 
3313 	regs_buff[2]  = er32(RCTL);
3314 	regs_buff[3]  = er32(RDLEN);
3315 	regs_buff[4]  = er32(RDH);
3316 	regs_buff[5]  = er32(RDT);
3317 	regs_buff[6]  = er32(RDTR);
3318 
3319 	regs_buff[7]  = er32(TCTL);
3320 	regs_buff[8]  = er32(TDBAL);
3321 	regs_buff[9]  = er32(TDBAH);
3322 	regs_buff[10] = er32(TDLEN);
3323 	regs_buff[11] = er32(TDH);
3324 	regs_buff[12] = er32(TDT);
3325 	regs_buff[13] = er32(TIDV);
3326 	regs_buff[14] = er32(TXDCTL);
3327 	regs_buff[15] = er32(TADV);
3328 	regs_buff[16] = er32(TARC0);
3329 
3330 	regs_buff[17] = er32(TDBAL1);
3331 	regs_buff[18] = er32(TDBAH1);
3332 	regs_buff[19] = er32(TDLEN1);
3333 	regs_buff[20] = er32(TDH1);
3334 	regs_buff[21] = er32(TDT1);
3335 	regs_buff[22] = er32(TXDCTL1);
3336 	regs_buff[23] = er32(TARC1);
3337 	regs_buff[24] = er32(CTRL_EXT);
3338 	regs_buff[25] = er32(ERT);
3339 	regs_buff[26] = er32(RDBAL0);
3340 	regs_buff[27] = er32(RDBAH0);
3341 	regs_buff[28] = er32(TDFH);
3342 	regs_buff[29] = er32(TDFT);
3343 	regs_buff[30] = er32(TDFHS);
3344 	regs_buff[31] = er32(TDFTS);
3345 	regs_buff[32] = er32(TDFPC);
3346 	regs_buff[33] = er32(RDFH);
3347 	regs_buff[34] = er32(RDFT);
3348 	regs_buff[35] = er32(RDFHS);
3349 	regs_buff[36] = er32(RDFTS);
3350 	regs_buff[37] = er32(RDFPC);
3351 
3352 	pr_info("Register dump\n");
3353 	for (i = 0; i < NUM_REGS; i++)
3354 		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3355 }
3356 
3357 /*
3358  * e1000_dump: Print registers, tx ring and rx ring
3359  */
3360 static void e1000_dump(struct e1000_adapter *adapter)
3361 {
3362 	/* this code doesn't handle multiple rings */
3363 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3364 	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3365 	int i;
3366 
3367 	if (!netif_msg_hw(adapter))
3368 		return;
3369 
3370 	/* Print Registers */
3371 	e1000_regdump(adapter);
3372 
3373 	/* transmit dump */
3374 	pr_info("TX Desc ring0 dump\n");
3375 
3376 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3377 	 *
3378 	 * Legacy Transmit Descriptor
3379 	 *   +--------------------------------------------------------------+
3380 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3381 	 *   +--------------------------------------------------------------+
3382 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3383 	 *   +--------------------------------------------------------------+
3384 	 *   63       48 47        36 35    32 31     24 23    16 15        0
3385 	 *
3386 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3387 	 *   63      48 47    40 39       32 31             16 15    8 7      0
3388 	 *   +----------------------------------------------------------------+
3389 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3390 	 *   +----------------------------------------------------------------+
3391 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3392 	 *   +----------------------------------------------------------------+
3393 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3394 	 *
3395 	 * Extended Data Descriptor (DTYP=0x1)
3396 	 *   +----------------------------------------------------------------+
3397 	 * 0 |                     Buffer Address [63:0]                      |
3398 	 *   +----------------------------------------------------------------+
3399 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3400 	 *   +----------------------------------------------------------------+
3401 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3402 	 */
3403 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3404 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3405 
3406 	if (!netif_msg_tx_done(adapter))
3407 		goto rx_ring_summary;
3408 
3409 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3410 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3411 		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3412 		struct my_u { __le64 a; __le64 b; };
3413 		struct my_u *u = (struct my_u *)tx_desc;
3414 		const char *type;
3415 
3416 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3417 			type = "NTC/U";
3418 		else if (i == tx_ring->next_to_use)
3419 			type = "NTU";
3420 		else if (i == tx_ring->next_to_clean)
3421 			type = "NTC";
3422 		else
3423 			type = "";
3424 
3425 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3426 			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3427 			le64_to_cpu(u->a), le64_to_cpu(u->b),
3428 			(u64)buffer_info->dma, buffer_info->length,
3429 			buffer_info->next_to_watch,
3430 			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3431 	}
3432 
3433 rx_ring_summary:
3434 	/* receive dump */
3435 	pr_info("\nRX Desc ring dump\n");
3436 
3437 	/* Legacy Receive Descriptor Format
3438 	 *
3439 	 * +-----------------------------------------------------+
3440 	 * |                Buffer Address [63:0]                |
3441 	 * +-----------------------------------------------------+
3442 	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3443 	 * +-----------------------------------------------------+
3444 	 * 63       48 47    40 39      32 31         16 15      0
3445 	 */
3446 	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3447 
3448 	if (!netif_msg_rx_status(adapter))
3449 		goto exit;
3450 
3451 	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3452 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3453 		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3454 		struct my_u { __le64 a; __le64 b; };
3455 		struct my_u *u = (struct my_u *)rx_desc;
3456 		const char *type;
3457 
3458 		if (i == rx_ring->next_to_use)
3459 			type = "NTU";
3460 		else if (i == rx_ring->next_to_clean)
3461 			type = "NTC";
3462 		else
3463 			type = "";
3464 
3465 		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3466 			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3467 			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3468 	} /* for */
3469 
3470 	/* dump the descriptor caches */
3471 	/* rx */
3472 	pr_info("Rx descriptor cache in 64bit format\n");
3473 	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3474 		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3475 			i,
3476 			readl(adapter->hw.hw_addr + i+4),
3477 			readl(adapter->hw.hw_addr + i),
3478 			readl(adapter->hw.hw_addr + i+12),
3479 			readl(adapter->hw.hw_addr + i+8));
3480 	}
3481 	/* tx */
3482 	pr_info("Tx descriptor cache in 64bit format\n");
3483 	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3484 		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3485 			i,
3486 			readl(adapter->hw.hw_addr + i+4),
3487 			readl(adapter->hw.hw_addr + i),
3488 			readl(adapter->hw.hw_addr + i+12),
3489 			readl(adapter->hw.hw_addr + i+8));
3490 	}
3491 exit:
3492 	return;
3493 }
3494 
3495 /**
3496  * e1000_tx_timeout - Respond to a Tx Hang
3497  * @netdev: network interface device structure
3498  **/
3499 static void e1000_tx_timeout(struct net_device *netdev, unsigned int txqueue)
3500 {
3501 	struct e1000_adapter *adapter = netdev_priv(netdev);
3502 
3503 	/* Do the reset outside of interrupt context */
3504 	adapter->tx_timeout_count++;
3505 	schedule_work(&adapter->reset_task);
3506 }
3507 
3508 static void e1000_reset_task(struct work_struct *work)
3509 {
3510 	struct e1000_adapter *adapter =
3511 		container_of(work, struct e1000_adapter, reset_task);
3512 
3513 	e_err(drv, "Reset adapter\n");
3514 	e1000_reinit_locked(adapter);
3515 }
3516 
3517 /**
3518  * e1000_change_mtu - Change the Maximum Transfer Unit
3519  * @netdev: network interface device structure
3520  * @new_mtu: new value for maximum frame size
3521  *
3522  * Returns 0 on success, negative on failure
3523  **/
3524 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3525 {
3526 	struct e1000_adapter *adapter = netdev_priv(netdev);
3527 	struct e1000_hw *hw = &adapter->hw;
3528 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3529 
3530 	/* Adapter-specific max frame size limits. */
3531 	switch (hw->mac_type) {
3532 	case e1000_undefined ... e1000_82542_rev2_1:
3533 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3534 			e_err(probe, "Jumbo Frames not supported.\n");
3535 			return -EINVAL;
3536 		}
3537 		break;
3538 	default:
3539 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3540 		break;
3541 	}
3542 
3543 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3544 		msleep(1);
3545 	/* e1000_down has a dependency on max_frame_size */
3546 	hw->max_frame_size = max_frame;
3547 	if (netif_running(netdev)) {
3548 		/* prevent buffers from being reallocated */
3549 		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3550 		e1000_down(adapter);
3551 	}
3552 
3553 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3554 	 * means we reserve 2 more, this pushes us to allocate from the next
3555 	 * larger slab size.
3556 	 * i.e. RXBUFFER_2048 --> size-4096 slab
3557 	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3558 	 * fragmented skbs
3559 	 */
3560 
3561 	if (max_frame <= E1000_RXBUFFER_2048)
3562 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3563 	else
3564 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3565 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3566 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3567 		adapter->rx_buffer_len = PAGE_SIZE;
3568 #endif
3569 
3570 	/* adjust allocation if LPE protects us, and we aren't using SBP */
3571 	if (!hw->tbi_compatibility_on &&
3572 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3573 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3574 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3575 
3576 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
3577 		   netdev->mtu, new_mtu);
3578 	netdev->mtu = new_mtu;
3579 
3580 	if (netif_running(netdev))
3581 		e1000_up(adapter);
3582 	else
3583 		e1000_reset(adapter);
3584 
3585 	clear_bit(__E1000_RESETTING, &adapter->flags);
3586 
3587 	return 0;
3588 }
3589 
3590 /**
3591  * e1000_update_stats - Update the board statistics counters
3592  * @adapter: board private structure
3593  **/
3594 void e1000_update_stats(struct e1000_adapter *adapter)
3595 {
3596 	struct net_device *netdev = adapter->netdev;
3597 	struct e1000_hw *hw = &adapter->hw;
3598 	struct pci_dev *pdev = adapter->pdev;
3599 	unsigned long flags;
3600 	u16 phy_tmp;
3601 
3602 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3603 
3604 	/* Prevent stats update while adapter is being reset, or if the pci
3605 	 * connection is down.
3606 	 */
3607 	if (adapter->link_speed == 0)
3608 		return;
3609 	if (pci_channel_offline(pdev))
3610 		return;
3611 
3612 	spin_lock_irqsave(&adapter->stats_lock, flags);
3613 
3614 	/* these counters are modified from e1000_tbi_adjust_stats,
3615 	 * called from the interrupt context, so they must only
3616 	 * be written while holding adapter->stats_lock
3617 	 */
3618 
3619 	adapter->stats.crcerrs += er32(CRCERRS);
3620 	adapter->stats.gprc += er32(GPRC);
3621 	adapter->stats.gorcl += er32(GORCL);
3622 	adapter->stats.gorch += er32(GORCH);
3623 	adapter->stats.bprc += er32(BPRC);
3624 	adapter->stats.mprc += er32(MPRC);
3625 	adapter->stats.roc += er32(ROC);
3626 
3627 	adapter->stats.prc64 += er32(PRC64);
3628 	adapter->stats.prc127 += er32(PRC127);
3629 	adapter->stats.prc255 += er32(PRC255);
3630 	adapter->stats.prc511 += er32(PRC511);
3631 	adapter->stats.prc1023 += er32(PRC1023);
3632 	adapter->stats.prc1522 += er32(PRC1522);
3633 
3634 	adapter->stats.symerrs += er32(SYMERRS);
3635 	adapter->stats.mpc += er32(MPC);
3636 	adapter->stats.scc += er32(SCC);
3637 	adapter->stats.ecol += er32(ECOL);
3638 	adapter->stats.mcc += er32(MCC);
3639 	adapter->stats.latecol += er32(LATECOL);
3640 	adapter->stats.dc += er32(DC);
3641 	adapter->stats.sec += er32(SEC);
3642 	adapter->stats.rlec += er32(RLEC);
3643 	adapter->stats.xonrxc += er32(XONRXC);
3644 	adapter->stats.xontxc += er32(XONTXC);
3645 	adapter->stats.xoffrxc += er32(XOFFRXC);
3646 	adapter->stats.xofftxc += er32(XOFFTXC);
3647 	adapter->stats.fcruc += er32(FCRUC);
3648 	adapter->stats.gptc += er32(GPTC);
3649 	adapter->stats.gotcl += er32(GOTCL);
3650 	adapter->stats.gotch += er32(GOTCH);
3651 	adapter->stats.rnbc += er32(RNBC);
3652 	adapter->stats.ruc += er32(RUC);
3653 	adapter->stats.rfc += er32(RFC);
3654 	adapter->stats.rjc += er32(RJC);
3655 	adapter->stats.torl += er32(TORL);
3656 	adapter->stats.torh += er32(TORH);
3657 	adapter->stats.totl += er32(TOTL);
3658 	adapter->stats.toth += er32(TOTH);
3659 	adapter->stats.tpr += er32(TPR);
3660 
3661 	adapter->stats.ptc64 += er32(PTC64);
3662 	adapter->stats.ptc127 += er32(PTC127);
3663 	adapter->stats.ptc255 += er32(PTC255);
3664 	adapter->stats.ptc511 += er32(PTC511);
3665 	adapter->stats.ptc1023 += er32(PTC1023);
3666 	adapter->stats.ptc1522 += er32(PTC1522);
3667 
3668 	adapter->stats.mptc += er32(MPTC);
3669 	adapter->stats.bptc += er32(BPTC);
3670 
3671 	/* used for adaptive IFS */
3672 
3673 	hw->tx_packet_delta = er32(TPT);
3674 	adapter->stats.tpt += hw->tx_packet_delta;
3675 	hw->collision_delta = er32(COLC);
3676 	adapter->stats.colc += hw->collision_delta;
3677 
3678 	if (hw->mac_type >= e1000_82543) {
3679 		adapter->stats.algnerrc += er32(ALGNERRC);
3680 		adapter->stats.rxerrc += er32(RXERRC);
3681 		adapter->stats.tncrs += er32(TNCRS);
3682 		adapter->stats.cexterr += er32(CEXTERR);
3683 		adapter->stats.tsctc += er32(TSCTC);
3684 		adapter->stats.tsctfc += er32(TSCTFC);
3685 	}
3686 
3687 	/* Fill out the OS statistics structure */
3688 	netdev->stats.multicast = adapter->stats.mprc;
3689 	netdev->stats.collisions = adapter->stats.colc;
3690 
3691 	/* Rx Errors */
3692 
3693 	/* RLEC on some newer hardware can be incorrect so build
3694 	 * our own version based on RUC and ROC
3695 	 */
3696 	netdev->stats.rx_errors = adapter->stats.rxerrc +
3697 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3698 		adapter->stats.ruc + adapter->stats.roc +
3699 		adapter->stats.cexterr;
3700 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3701 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3702 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3703 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3704 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3705 
3706 	/* Tx Errors */
3707 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3708 	netdev->stats.tx_errors = adapter->stats.txerrc;
3709 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3710 	netdev->stats.tx_window_errors = adapter->stats.latecol;
3711 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3712 	if (hw->bad_tx_carr_stats_fd &&
3713 	    adapter->link_duplex == FULL_DUPLEX) {
3714 		netdev->stats.tx_carrier_errors = 0;
3715 		adapter->stats.tncrs = 0;
3716 	}
3717 
3718 	/* Tx Dropped needs to be maintained elsewhere */
3719 
3720 	/* Phy Stats */
3721 	if (hw->media_type == e1000_media_type_copper) {
3722 		if ((adapter->link_speed == SPEED_1000) &&
3723 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3724 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3725 			adapter->phy_stats.idle_errors += phy_tmp;
3726 		}
3727 
3728 		if ((hw->mac_type <= e1000_82546) &&
3729 		   (hw->phy_type == e1000_phy_m88) &&
3730 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3731 			adapter->phy_stats.receive_errors += phy_tmp;
3732 	}
3733 
3734 	/* Management Stats */
3735 	if (hw->has_smbus) {
3736 		adapter->stats.mgptc += er32(MGTPTC);
3737 		adapter->stats.mgprc += er32(MGTPRC);
3738 		adapter->stats.mgpdc += er32(MGTPDC);
3739 	}
3740 
3741 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3742 }
3743 
3744 /**
3745  * e1000_intr - Interrupt Handler
3746  * @irq: interrupt number
3747  * @data: pointer to a network interface device structure
3748  **/
3749 static irqreturn_t e1000_intr(int irq, void *data)
3750 {
3751 	struct net_device *netdev = data;
3752 	struct e1000_adapter *adapter = netdev_priv(netdev);
3753 	struct e1000_hw *hw = &adapter->hw;
3754 	u32 icr = er32(ICR);
3755 
3756 	if (unlikely((!icr)))
3757 		return IRQ_NONE;  /* Not our interrupt */
3758 
3759 	/* we might have caused the interrupt, but the above
3760 	 * read cleared it, and just in case the driver is
3761 	 * down there is nothing to do so return handled
3762 	 */
3763 	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3764 		return IRQ_HANDLED;
3765 
3766 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3767 		hw->get_link_status = 1;
3768 		/* guard against interrupt when we're going down */
3769 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3770 			schedule_delayed_work(&adapter->watchdog_task, 1);
3771 	}
3772 
3773 	/* disable interrupts, without the synchronize_irq bit */
3774 	ew32(IMC, ~0);
3775 	E1000_WRITE_FLUSH();
3776 
3777 	if (likely(napi_schedule_prep(&adapter->napi))) {
3778 		adapter->total_tx_bytes = 0;
3779 		adapter->total_tx_packets = 0;
3780 		adapter->total_rx_bytes = 0;
3781 		adapter->total_rx_packets = 0;
3782 		__napi_schedule(&adapter->napi);
3783 	} else {
3784 		/* this really should not happen! if it does it is basically a
3785 		 * bug, but not a hard error, so enable ints and continue
3786 		 */
3787 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3788 			e1000_irq_enable(adapter);
3789 	}
3790 
3791 	return IRQ_HANDLED;
3792 }
3793 
3794 /**
3795  * e1000_clean - NAPI Rx polling callback
3796  * @adapter: board private structure
3797  **/
3798 static int e1000_clean(struct napi_struct *napi, int budget)
3799 {
3800 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3801 						     napi);
3802 	int tx_clean_complete = 0, work_done = 0;
3803 
3804 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3805 
3806 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3807 
3808 	if (!tx_clean_complete || work_done == budget)
3809 		return budget;
3810 
3811 	/* Exit the polling mode, but don't re-enable interrupts if stack might
3812 	 * poll us due to busy-polling
3813 	 */
3814 	if (likely(napi_complete_done(napi, work_done))) {
3815 		if (likely(adapter->itr_setting & 3))
3816 			e1000_set_itr(adapter);
3817 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3818 			e1000_irq_enable(adapter);
3819 	}
3820 
3821 	return work_done;
3822 }
3823 
3824 /**
3825  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3826  * @adapter: board private structure
3827  **/
3828 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3829 			       struct e1000_tx_ring *tx_ring)
3830 {
3831 	struct e1000_hw *hw = &adapter->hw;
3832 	struct net_device *netdev = adapter->netdev;
3833 	struct e1000_tx_desc *tx_desc, *eop_desc;
3834 	struct e1000_tx_buffer *buffer_info;
3835 	unsigned int i, eop;
3836 	unsigned int count = 0;
3837 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3838 	unsigned int bytes_compl = 0, pkts_compl = 0;
3839 
3840 	i = tx_ring->next_to_clean;
3841 	eop = tx_ring->buffer_info[i].next_to_watch;
3842 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3843 
3844 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3845 	       (count < tx_ring->count)) {
3846 		bool cleaned = false;
3847 		dma_rmb();	/* read buffer_info after eop_desc */
3848 		for ( ; !cleaned; count++) {
3849 			tx_desc = E1000_TX_DESC(*tx_ring, i);
3850 			buffer_info = &tx_ring->buffer_info[i];
3851 			cleaned = (i == eop);
3852 
3853 			if (cleaned) {
3854 				total_tx_packets += buffer_info->segs;
3855 				total_tx_bytes += buffer_info->bytecount;
3856 				if (buffer_info->skb) {
3857 					bytes_compl += buffer_info->skb->len;
3858 					pkts_compl++;
3859 				}
3860 
3861 			}
3862 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3863 			tx_desc->upper.data = 0;
3864 
3865 			if (unlikely(++i == tx_ring->count))
3866 				i = 0;
3867 		}
3868 
3869 		eop = tx_ring->buffer_info[i].next_to_watch;
3870 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3871 	}
3872 
3873 	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3874 	 * which will reuse the cleaned buffers.
3875 	 */
3876 	smp_store_release(&tx_ring->next_to_clean, i);
3877 
3878 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3879 
3880 #define TX_WAKE_THRESHOLD 32
3881 	if (unlikely(count && netif_carrier_ok(netdev) &&
3882 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3883 		/* Make sure that anybody stopping the queue after this
3884 		 * sees the new next_to_clean.
3885 		 */
3886 		smp_mb();
3887 
3888 		if (netif_queue_stopped(netdev) &&
3889 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3890 			netif_wake_queue(netdev);
3891 			++adapter->restart_queue;
3892 		}
3893 	}
3894 
3895 	if (adapter->detect_tx_hung) {
3896 		/* Detect a transmit hang in hardware, this serializes the
3897 		 * check with the clearing of time_stamp and movement of i
3898 		 */
3899 		adapter->detect_tx_hung = false;
3900 		if (tx_ring->buffer_info[eop].time_stamp &&
3901 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3902 			       (adapter->tx_timeout_factor * HZ)) &&
3903 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3904 
3905 			/* detected Tx unit hang */
3906 			e_err(drv, "Detected Tx Unit Hang\n"
3907 			      "  Tx Queue             <%lu>\n"
3908 			      "  TDH                  <%x>\n"
3909 			      "  TDT                  <%x>\n"
3910 			      "  next_to_use          <%x>\n"
3911 			      "  next_to_clean        <%x>\n"
3912 			      "buffer_info[next_to_clean]\n"
3913 			      "  time_stamp           <%lx>\n"
3914 			      "  next_to_watch        <%x>\n"
3915 			      "  jiffies              <%lx>\n"
3916 			      "  next_to_watch.status <%x>\n",
3917 				(unsigned long)(tx_ring - adapter->tx_ring),
3918 				readl(hw->hw_addr + tx_ring->tdh),
3919 				readl(hw->hw_addr + tx_ring->tdt),
3920 				tx_ring->next_to_use,
3921 				tx_ring->next_to_clean,
3922 				tx_ring->buffer_info[eop].time_stamp,
3923 				eop,
3924 				jiffies,
3925 				eop_desc->upper.fields.status);
3926 			e1000_dump(adapter);
3927 			netif_stop_queue(netdev);
3928 		}
3929 	}
3930 	adapter->total_tx_bytes += total_tx_bytes;
3931 	adapter->total_tx_packets += total_tx_packets;
3932 	netdev->stats.tx_bytes += total_tx_bytes;
3933 	netdev->stats.tx_packets += total_tx_packets;
3934 	return count < tx_ring->count;
3935 }
3936 
3937 /**
3938  * e1000_rx_checksum - Receive Checksum Offload for 82543
3939  * @adapter:     board private structure
3940  * @status_err:  receive descriptor status and error fields
3941  * @csum:        receive descriptor csum field
3942  * @sk_buff:     socket buffer with received data
3943  **/
3944 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3945 			      u32 csum, struct sk_buff *skb)
3946 {
3947 	struct e1000_hw *hw = &adapter->hw;
3948 	u16 status = (u16)status_err;
3949 	u8 errors = (u8)(status_err >> 24);
3950 
3951 	skb_checksum_none_assert(skb);
3952 
3953 	/* 82543 or newer only */
3954 	if (unlikely(hw->mac_type < e1000_82543))
3955 		return;
3956 	/* Ignore Checksum bit is set */
3957 	if (unlikely(status & E1000_RXD_STAT_IXSM))
3958 		return;
3959 	/* TCP/UDP checksum error bit is set */
3960 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3961 		/* let the stack verify checksum errors */
3962 		adapter->hw_csum_err++;
3963 		return;
3964 	}
3965 	/* TCP/UDP Checksum has not been calculated */
3966 	if (!(status & E1000_RXD_STAT_TCPCS))
3967 		return;
3968 
3969 	/* It must be a TCP or UDP packet with a valid checksum */
3970 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3971 		/* TCP checksum is good */
3972 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3973 	}
3974 	adapter->hw_csum_good++;
3975 }
3976 
3977 /**
3978  * e1000_consume_page - helper function for jumbo Rx path
3979  **/
3980 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3981 			       u16 length)
3982 {
3983 	bi->rxbuf.page = NULL;
3984 	skb->len += length;
3985 	skb->data_len += length;
3986 	skb->truesize += PAGE_SIZE;
3987 }
3988 
3989 /**
3990  * e1000_receive_skb - helper function to handle rx indications
3991  * @adapter: board private structure
3992  * @status: descriptor status field as written by hardware
3993  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3994  * @skb: pointer to sk_buff to be indicated to stack
3995  */
3996 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3997 			      __le16 vlan, struct sk_buff *skb)
3998 {
3999 	skb->protocol = eth_type_trans(skb, adapter->netdev);
4000 
4001 	if (status & E1000_RXD_STAT_VP) {
4002 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4003 
4004 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4005 	}
4006 	napi_gro_receive(&adapter->napi, skb);
4007 }
4008 
4009 /**
4010  * e1000_tbi_adjust_stats
4011  * @hw: Struct containing variables accessed by shared code
4012  * @frame_len: The length of the frame in question
4013  * @mac_addr: The Ethernet destination address of the frame in question
4014  *
4015  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4016  */
4017 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4018 				   struct e1000_hw_stats *stats,
4019 				   u32 frame_len, const u8 *mac_addr)
4020 {
4021 	u64 carry_bit;
4022 
4023 	/* First adjust the frame length. */
4024 	frame_len--;
4025 	/* We need to adjust the statistics counters, since the hardware
4026 	 * counters overcount this packet as a CRC error and undercount
4027 	 * the packet as a good packet
4028 	 */
4029 	/* This packet should not be counted as a CRC error. */
4030 	stats->crcerrs--;
4031 	/* This packet does count as a Good Packet Received. */
4032 	stats->gprc++;
4033 
4034 	/* Adjust the Good Octets received counters */
4035 	carry_bit = 0x80000000 & stats->gorcl;
4036 	stats->gorcl += frame_len;
4037 	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4038 	 * Received Count) was one before the addition,
4039 	 * AND it is zero after, then we lost the carry out,
4040 	 * need to add one to Gorch (Good Octets Received Count High).
4041 	 * This could be simplified if all environments supported
4042 	 * 64-bit integers.
4043 	 */
4044 	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4045 		stats->gorch++;
4046 	/* Is this a broadcast or multicast?  Check broadcast first,
4047 	 * since the test for a multicast frame will test positive on
4048 	 * a broadcast frame.
4049 	 */
4050 	if (is_broadcast_ether_addr(mac_addr))
4051 		stats->bprc++;
4052 	else if (is_multicast_ether_addr(mac_addr))
4053 		stats->mprc++;
4054 
4055 	if (frame_len == hw->max_frame_size) {
4056 		/* In this case, the hardware has overcounted the number of
4057 		 * oversize frames.
4058 		 */
4059 		if (stats->roc > 0)
4060 			stats->roc--;
4061 	}
4062 
4063 	/* Adjust the bin counters when the extra byte put the frame in the
4064 	 * wrong bin. Remember that the frame_len was adjusted above.
4065 	 */
4066 	if (frame_len == 64) {
4067 		stats->prc64++;
4068 		stats->prc127--;
4069 	} else if (frame_len == 127) {
4070 		stats->prc127++;
4071 		stats->prc255--;
4072 	} else if (frame_len == 255) {
4073 		stats->prc255++;
4074 		stats->prc511--;
4075 	} else if (frame_len == 511) {
4076 		stats->prc511++;
4077 		stats->prc1023--;
4078 	} else if (frame_len == 1023) {
4079 		stats->prc1023++;
4080 		stats->prc1522--;
4081 	} else if (frame_len == 1522) {
4082 		stats->prc1522++;
4083 	}
4084 }
4085 
4086 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4087 				    u8 status, u8 errors,
4088 				    u32 length, const u8 *data)
4089 {
4090 	struct e1000_hw *hw = &adapter->hw;
4091 	u8 last_byte = *(data + length - 1);
4092 
4093 	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4094 		unsigned long irq_flags;
4095 
4096 		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4097 		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4098 		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4099 
4100 		return true;
4101 	}
4102 
4103 	return false;
4104 }
4105 
4106 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4107 					  unsigned int bufsz)
4108 {
4109 	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4110 
4111 	if (unlikely(!skb))
4112 		adapter->alloc_rx_buff_failed++;
4113 	return skb;
4114 }
4115 
4116 /**
4117  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4118  * @adapter: board private structure
4119  * @rx_ring: ring to clean
4120  * @work_done: amount of napi work completed this call
4121  * @work_to_do: max amount of work allowed for this call to do
4122  *
4123  * the return value indicates whether actual cleaning was done, there
4124  * is no guarantee that everything was cleaned
4125  */
4126 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4127 				     struct e1000_rx_ring *rx_ring,
4128 				     int *work_done, int work_to_do)
4129 {
4130 	struct net_device *netdev = adapter->netdev;
4131 	struct pci_dev *pdev = adapter->pdev;
4132 	struct e1000_rx_desc *rx_desc, *next_rxd;
4133 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4134 	u32 length;
4135 	unsigned int i;
4136 	int cleaned_count = 0;
4137 	bool cleaned = false;
4138 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4139 
4140 	i = rx_ring->next_to_clean;
4141 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4142 	buffer_info = &rx_ring->buffer_info[i];
4143 
4144 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4145 		struct sk_buff *skb;
4146 		u8 status;
4147 
4148 		if (*work_done >= work_to_do)
4149 			break;
4150 		(*work_done)++;
4151 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4152 
4153 		status = rx_desc->status;
4154 
4155 		if (++i == rx_ring->count)
4156 			i = 0;
4157 
4158 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4159 		prefetch(next_rxd);
4160 
4161 		next_buffer = &rx_ring->buffer_info[i];
4162 
4163 		cleaned = true;
4164 		cleaned_count++;
4165 		dma_unmap_page(&pdev->dev, buffer_info->dma,
4166 			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4167 		buffer_info->dma = 0;
4168 
4169 		length = le16_to_cpu(rx_desc->length);
4170 
4171 		/* errors is only valid for DD + EOP descriptors */
4172 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4173 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4174 			u8 *mapped = page_address(buffer_info->rxbuf.page);
4175 
4176 			if (e1000_tbi_should_accept(adapter, status,
4177 						    rx_desc->errors,
4178 						    length, mapped)) {
4179 				length--;
4180 			} else if (netdev->features & NETIF_F_RXALL) {
4181 				goto process_skb;
4182 			} else {
4183 				/* an error means any chain goes out the window
4184 				 * too
4185 				 */
4186 				dev_kfree_skb(rx_ring->rx_skb_top);
4187 				rx_ring->rx_skb_top = NULL;
4188 				goto next_desc;
4189 			}
4190 		}
4191 
4192 #define rxtop rx_ring->rx_skb_top
4193 process_skb:
4194 		if (!(status & E1000_RXD_STAT_EOP)) {
4195 			/* this descriptor is only the beginning (or middle) */
4196 			if (!rxtop) {
4197 				/* this is the beginning of a chain */
4198 				rxtop = napi_get_frags(&adapter->napi);
4199 				if (!rxtop)
4200 					break;
4201 
4202 				skb_fill_page_desc(rxtop, 0,
4203 						   buffer_info->rxbuf.page,
4204 						   0, length);
4205 			} else {
4206 				/* this is the middle of a chain */
4207 				skb_fill_page_desc(rxtop,
4208 				    skb_shinfo(rxtop)->nr_frags,
4209 				    buffer_info->rxbuf.page, 0, length);
4210 			}
4211 			e1000_consume_page(buffer_info, rxtop, length);
4212 			goto next_desc;
4213 		} else {
4214 			if (rxtop) {
4215 				/* end of the chain */
4216 				skb_fill_page_desc(rxtop,
4217 				    skb_shinfo(rxtop)->nr_frags,
4218 				    buffer_info->rxbuf.page, 0, length);
4219 				skb = rxtop;
4220 				rxtop = NULL;
4221 				e1000_consume_page(buffer_info, skb, length);
4222 			} else {
4223 				struct page *p;
4224 				/* no chain, got EOP, this buf is the packet
4225 				 * copybreak to save the put_page/alloc_page
4226 				 */
4227 				p = buffer_info->rxbuf.page;
4228 				if (length <= copybreak) {
4229 					u8 *vaddr;
4230 
4231 					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4232 						length -= 4;
4233 					skb = e1000_alloc_rx_skb(adapter,
4234 								 length);
4235 					if (!skb)
4236 						break;
4237 
4238 					vaddr = kmap_atomic(p);
4239 					memcpy(skb_tail_pointer(skb), vaddr,
4240 					       length);
4241 					kunmap_atomic(vaddr);
4242 					/* re-use the page, so don't erase
4243 					 * buffer_info->rxbuf.page
4244 					 */
4245 					skb_put(skb, length);
4246 					e1000_rx_checksum(adapter,
4247 							  status | rx_desc->errors << 24,
4248 							  le16_to_cpu(rx_desc->csum), skb);
4249 
4250 					total_rx_bytes += skb->len;
4251 					total_rx_packets++;
4252 
4253 					e1000_receive_skb(adapter, status,
4254 							  rx_desc->special, skb);
4255 					goto next_desc;
4256 				} else {
4257 					skb = napi_get_frags(&adapter->napi);
4258 					if (!skb) {
4259 						adapter->alloc_rx_buff_failed++;
4260 						break;
4261 					}
4262 					skb_fill_page_desc(skb, 0, p, 0,
4263 							   length);
4264 					e1000_consume_page(buffer_info, skb,
4265 							   length);
4266 				}
4267 			}
4268 		}
4269 
4270 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4271 		e1000_rx_checksum(adapter,
4272 				  (u32)(status) |
4273 				  ((u32)(rx_desc->errors) << 24),
4274 				  le16_to_cpu(rx_desc->csum), skb);
4275 
4276 		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4277 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4278 			pskb_trim(skb, skb->len - 4);
4279 		total_rx_packets++;
4280 
4281 		if (status & E1000_RXD_STAT_VP) {
4282 			__le16 vlan = rx_desc->special;
4283 			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4284 
4285 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4286 		}
4287 
4288 		napi_gro_frags(&adapter->napi);
4289 
4290 next_desc:
4291 		rx_desc->status = 0;
4292 
4293 		/* return some buffers to hardware, one at a time is too slow */
4294 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4295 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4296 			cleaned_count = 0;
4297 		}
4298 
4299 		/* use prefetched values */
4300 		rx_desc = next_rxd;
4301 		buffer_info = next_buffer;
4302 	}
4303 	rx_ring->next_to_clean = i;
4304 
4305 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4306 	if (cleaned_count)
4307 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4308 
4309 	adapter->total_rx_packets += total_rx_packets;
4310 	adapter->total_rx_bytes += total_rx_bytes;
4311 	netdev->stats.rx_bytes += total_rx_bytes;
4312 	netdev->stats.rx_packets += total_rx_packets;
4313 	return cleaned;
4314 }
4315 
4316 /* this should improve performance for small packets with large amounts
4317  * of reassembly being done in the stack
4318  */
4319 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4320 				       struct e1000_rx_buffer *buffer_info,
4321 				       u32 length, const void *data)
4322 {
4323 	struct sk_buff *skb;
4324 
4325 	if (length > copybreak)
4326 		return NULL;
4327 
4328 	skb = e1000_alloc_rx_skb(adapter, length);
4329 	if (!skb)
4330 		return NULL;
4331 
4332 	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4333 				length, DMA_FROM_DEVICE);
4334 
4335 	skb_put_data(skb, data, length);
4336 
4337 	return skb;
4338 }
4339 
4340 /**
4341  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4342  * @adapter: board private structure
4343  * @rx_ring: ring to clean
4344  * @work_done: amount of napi work completed this call
4345  * @work_to_do: max amount of work allowed for this call to do
4346  */
4347 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4348 			       struct e1000_rx_ring *rx_ring,
4349 			       int *work_done, int work_to_do)
4350 {
4351 	struct net_device *netdev = adapter->netdev;
4352 	struct pci_dev *pdev = adapter->pdev;
4353 	struct e1000_rx_desc *rx_desc, *next_rxd;
4354 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4355 	u32 length;
4356 	unsigned int i;
4357 	int cleaned_count = 0;
4358 	bool cleaned = false;
4359 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4360 
4361 	i = rx_ring->next_to_clean;
4362 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4363 	buffer_info = &rx_ring->buffer_info[i];
4364 
4365 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4366 		struct sk_buff *skb;
4367 		u8 *data;
4368 		u8 status;
4369 
4370 		if (*work_done >= work_to_do)
4371 			break;
4372 		(*work_done)++;
4373 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4374 
4375 		status = rx_desc->status;
4376 		length = le16_to_cpu(rx_desc->length);
4377 
4378 		data = buffer_info->rxbuf.data;
4379 		prefetch(data);
4380 		skb = e1000_copybreak(adapter, buffer_info, length, data);
4381 		if (!skb) {
4382 			unsigned int frag_len = e1000_frag_len(adapter);
4383 
4384 			skb = build_skb(data - E1000_HEADROOM, frag_len);
4385 			if (!skb) {
4386 				adapter->alloc_rx_buff_failed++;
4387 				break;
4388 			}
4389 
4390 			skb_reserve(skb, E1000_HEADROOM);
4391 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4392 					 adapter->rx_buffer_len,
4393 					 DMA_FROM_DEVICE);
4394 			buffer_info->dma = 0;
4395 			buffer_info->rxbuf.data = NULL;
4396 		}
4397 
4398 		if (++i == rx_ring->count)
4399 			i = 0;
4400 
4401 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4402 		prefetch(next_rxd);
4403 
4404 		next_buffer = &rx_ring->buffer_info[i];
4405 
4406 		cleaned = true;
4407 		cleaned_count++;
4408 
4409 		/* !EOP means multiple descriptors were used to store a single
4410 		 * packet, if thats the case we need to toss it.  In fact, we
4411 		 * to toss every packet with the EOP bit clear and the next
4412 		 * frame that _does_ have the EOP bit set, as it is by
4413 		 * definition only a frame fragment
4414 		 */
4415 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4416 			adapter->discarding = true;
4417 
4418 		if (adapter->discarding) {
4419 			/* All receives must fit into a single buffer */
4420 			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4421 			dev_kfree_skb(skb);
4422 			if (status & E1000_RXD_STAT_EOP)
4423 				adapter->discarding = false;
4424 			goto next_desc;
4425 		}
4426 
4427 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4428 			if (e1000_tbi_should_accept(adapter, status,
4429 						    rx_desc->errors,
4430 						    length, data)) {
4431 				length--;
4432 			} else if (netdev->features & NETIF_F_RXALL) {
4433 				goto process_skb;
4434 			} else {
4435 				dev_kfree_skb(skb);
4436 				goto next_desc;
4437 			}
4438 		}
4439 
4440 process_skb:
4441 		total_rx_bytes += (length - 4); /* don't count FCS */
4442 		total_rx_packets++;
4443 
4444 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4445 			/* adjust length to remove Ethernet CRC, this must be
4446 			 * done after the TBI_ACCEPT workaround above
4447 			 */
4448 			length -= 4;
4449 
4450 		if (buffer_info->rxbuf.data == NULL)
4451 			skb_put(skb, length);
4452 		else /* copybreak skb */
4453 			skb_trim(skb, length);
4454 
4455 		/* Receive Checksum Offload */
4456 		e1000_rx_checksum(adapter,
4457 				  (u32)(status) |
4458 				  ((u32)(rx_desc->errors) << 24),
4459 				  le16_to_cpu(rx_desc->csum), skb);
4460 
4461 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4462 
4463 next_desc:
4464 		rx_desc->status = 0;
4465 
4466 		/* return some buffers to hardware, one at a time is too slow */
4467 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4468 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4469 			cleaned_count = 0;
4470 		}
4471 
4472 		/* use prefetched values */
4473 		rx_desc = next_rxd;
4474 		buffer_info = next_buffer;
4475 	}
4476 	rx_ring->next_to_clean = i;
4477 
4478 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4479 	if (cleaned_count)
4480 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4481 
4482 	adapter->total_rx_packets += total_rx_packets;
4483 	adapter->total_rx_bytes += total_rx_bytes;
4484 	netdev->stats.rx_bytes += total_rx_bytes;
4485 	netdev->stats.rx_packets += total_rx_packets;
4486 	return cleaned;
4487 }
4488 
4489 /**
4490  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4491  * @adapter: address of board private structure
4492  * @rx_ring: pointer to receive ring structure
4493  * @cleaned_count: number of buffers to allocate this pass
4494  **/
4495 static void
4496 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4497 			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4498 {
4499 	struct pci_dev *pdev = adapter->pdev;
4500 	struct e1000_rx_desc *rx_desc;
4501 	struct e1000_rx_buffer *buffer_info;
4502 	unsigned int i;
4503 
4504 	i = rx_ring->next_to_use;
4505 	buffer_info = &rx_ring->buffer_info[i];
4506 
4507 	while (cleaned_count--) {
4508 		/* allocate a new page if necessary */
4509 		if (!buffer_info->rxbuf.page) {
4510 			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4511 			if (unlikely(!buffer_info->rxbuf.page)) {
4512 				adapter->alloc_rx_buff_failed++;
4513 				break;
4514 			}
4515 		}
4516 
4517 		if (!buffer_info->dma) {
4518 			buffer_info->dma = dma_map_page(&pdev->dev,
4519 							buffer_info->rxbuf.page, 0,
4520 							adapter->rx_buffer_len,
4521 							DMA_FROM_DEVICE);
4522 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4523 				put_page(buffer_info->rxbuf.page);
4524 				buffer_info->rxbuf.page = NULL;
4525 				buffer_info->dma = 0;
4526 				adapter->alloc_rx_buff_failed++;
4527 				break;
4528 			}
4529 		}
4530 
4531 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4532 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4533 
4534 		if (unlikely(++i == rx_ring->count))
4535 			i = 0;
4536 		buffer_info = &rx_ring->buffer_info[i];
4537 	}
4538 
4539 	if (likely(rx_ring->next_to_use != i)) {
4540 		rx_ring->next_to_use = i;
4541 		if (unlikely(i-- == 0))
4542 			i = (rx_ring->count - 1);
4543 
4544 		/* Force memory writes to complete before letting h/w
4545 		 * know there are new descriptors to fetch.  (Only
4546 		 * applicable for weak-ordered memory model archs,
4547 		 * such as IA-64).
4548 		 */
4549 		dma_wmb();
4550 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4551 	}
4552 }
4553 
4554 /**
4555  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4556  * @adapter: address of board private structure
4557  **/
4558 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4559 				   struct e1000_rx_ring *rx_ring,
4560 				   int cleaned_count)
4561 {
4562 	struct e1000_hw *hw = &adapter->hw;
4563 	struct pci_dev *pdev = adapter->pdev;
4564 	struct e1000_rx_desc *rx_desc;
4565 	struct e1000_rx_buffer *buffer_info;
4566 	unsigned int i;
4567 	unsigned int bufsz = adapter->rx_buffer_len;
4568 
4569 	i = rx_ring->next_to_use;
4570 	buffer_info = &rx_ring->buffer_info[i];
4571 
4572 	while (cleaned_count--) {
4573 		void *data;
4574 
4575 		if (buffer_info->rxbuf.data)
4576 			goto skip;
4577 
4578 		data = e1000_alloc_frag(adapter);
4579 		if (!data) {
4580 			/* Better luck next round */
4581 			adapter->alloc_rx_buff_failed++;
4582 			break;
4583 		}
4584 
4585 		/* Fix for errata 23, can't cross 64kB boundary */
4586 		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4587 			void *olddata = data;
4588 			e_err(rx_err, "skb align check failed: %u bytes at "
4589 			      "%p\n", bufsz, data);
4590 			/* Try again, without freeing the previous */
4591 			data = e1000_alloc_frag(adapter);
4592 			/* Failed allocation, critical failure */
4593 			if (!data) {
4594 				skb_free_frag(olddata);
4595 				adapter->alloc_rx_buff_failed++;
4596 				break;
4597 			}
4598 
4599 			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4600 				/* give up */
4601 				skb_free_frag(data);
4602 				skb_free_frag(olddata);
4603 				adapter->alloc_rx_buff_failed++;
4604 				break;
4605 			}
4606 
4607 			/* Use new allocation */
4608 			skb_free_frag(olddata);
4609 		}
4610 		buffer_info->dma = dma_map_single(&pdev->dev,
4611 						  data,
4612 						  adapter->rx_buffer_len,
4613 						  DMA_FROM_DEVICE);
4614 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4615 			skb_free_frag(data);
4616 			buffer_info->dma = 0;
4617 			adapter->alloc_rx_buff_failed++;
4618 			break;
4619 		}
4620 
4621 		/* XXX if it was allocated cleanly it will never map to a
4622 		 * boundary crossing
4623 		 */
4624 
4625 		/* Fix for errata 23, can't cross 64kB boundary */
4626 		if (!e1000_check_64k_bound(adapter,
4627 					(void *)(unsigned long)buffer_info->dma,
4628 					adapter->rx_buffer_len)) {
4629 			e_err(rx_err, "dma align check failed: %u bytes at "
4630 			      "%p\n", adapter->rx_buffer_len,
4631 			      (void *)(unsigned long)buffer_info->dma);
4632 
4633 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4634 					 adapter->rx_buffer_len,
4635 					 DMA_FROM_DEVICE);
4636 
4637 			skb_free_frag(data);
4638 			buffer_info->rxbuf.data = NULL;
4639 			buffer_info->dma = 0;
4640 
4641 			adapter->alloc_rx_buff_failed++;
4642 			break;
4643 		}
4644 		buffer_info->rxbuf.data = data;
4645  skip:
4646 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4647 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4648 
4649 		if (unlikely(++i == rx_ring->count))
4650 			i = 0;
4651 		buffer_info = &rx_ring->buffer_info[i];
4652 	}
4653 
4654 	if (likely(rx_ring->next_to_use != i)) {
4655 		rx_ring->next_to_use = i;
4656 		if (unlikely(i-- == 0))
4657 			i = (rx_ring->count - 1);
4658 
4659 		/* Force memory writes to complete before letting h/w
4660 		 * know there are new descriptors to fetch.  (Only
4661 		 * applicable for weak-ordered memory model archs,
4662 		 * such as IA-64).
4663 		 */
4664 		dma_wmb();
4665 		writel(i, hw->hw_addr + rx_ring->rdt);
4666 	}
4667 }
4668 
4669 /**
4670  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4671  * @adapter:
4672  **/
4673 static void e1000_smartspeed(struct e1000_adapter *adapter)
4674 {
4675 	struct e1000_hw *hw = &adapter->hw;
4676 	u16 phy_status;
4677 	u16 phy_ctrl;
4678 
4679 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4680 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4681 		return;
4682 
4683 	if (adapter->smartspeed == 0) {
4684 		/* If Master/Slave config fault is asserted twice,
4685 		 * we assume back-to-back
4686 		 */
4687 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4688 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4689 			return;
4690 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4691 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4692 			return;
4693 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4694 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4695 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4696 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4697 					    phy_ctrl);
4698 			adapter->smartspeed++;
4699 			if (!e1000_phy_setup_autoneg(hw) &&
4700 			   !e1000_read_phy_reg(hw, PHY_CTRL,
4701 					       &phy_ctrl)) {
4702 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4703 					     MII_CR_RESTART_AUTO_NEG);
4704 				e1000_write_phy_reg(hw, PHY_CTRL,
4705 						    phy_ctrl);
4706 			}
4707 		}
4708 		return;
4709 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4710 		/* If still no link, perhaps using 2/3 pair cable */
4711 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4712 		phy_ctrl |= CR_1000T_MS_ENABLE;
4713 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4714 		if (!e1000_phy_setup_autoneg(hw) &&
4715 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4716 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4717 				     MII_CR_RESTART_AUTO_NEG);
4718 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4719 		}
4720 	}
4721 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4722 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4723 		adapter->smartspeed = 0;
4724 }
4725 
4726 /**
4727  * e1000_ioctl -
4728  * @netdev:
4729  * @ifreq:
4730  * @cmd:
4731  **/
4732 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4733 {
4734 	switch (cmd) {
4735 	case SIOCGMIIPHY:
4736 	case SIOCGMIIREG:
4737 	case SIOCSMIIREG:
4738 		return e1000_mii_ioctl(netdev, ifr, cmd);
4739 	default:
4740 		return -EOPNOTSUPP;
4741 	}
4742 }
4743 
4744 /**
4745  * e1000_mii_ioctl -
4746  * @netdev:
4747  * @ifreq:
4748  * @cmd:
4749  **/
4750 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4751 			   int cmd)
4752 {
4753 	struct e1000_adapter *adapter = netdev_priv(netdev);
4754 	struct e1000_hw *hw = &adapter->hw;
4755 	struct mii_ioctl_data *data = if_mii(ifr);
4756 	int retval;
4757 	u16 mii_reg;
4758 	unsigned long flags;
4759 
4760 	if (hw->media_type != e1000_media_type_copper)
4761 		return -EOPNOTSUPP;
4762 
4763 	switch (cmd) {
4764 	case SIOCGMIIPHY:
4765 		data->phy_id = hw->phy_addr;
4766 		break;
4767 	case SIOCGMIIREG:
4768 		spin_lock_irqsave(&adapter->stats_lock, flags);
4769 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4770 				   &data->val_out)) {
4771 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4772 			return -EIO;
4773 		}
4774 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4775 		break;
4776 	case SIOCSMIIREG:
4777 		if (data->reg_num & ~(0x1F))
4778 			return -EFAULT;
4779 		mii_reg = data->val_in;
4780 		spin_lock_irqsave(&adapter->stats_lock, flags);
4781 		if (e1000_write_phy_reg(hw, data->reg_num,
4782 					mii_reg)) {
4783 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4784 			return -EIO;
4785 		}
4786 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4787 		if (hw->media_type == e1000_media_type_copper) {
4788 			switch (data->reg_num) {
4789 			case PHY_CTRL:
4790 				if (mii_reg & MII_CR_POWER_DOWN)
4791 					break;
4792 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4793 					hw->autoneg = 1;
4794 					hw->autoneg_advertised = 0x2F;
4795 				} else {
4796 					u32 speed;
4797 					if (mii_reg & 0x40)
4798 						speed = SPEED_1000;
4799 					else if (mii_reg & 0x2000)
4800 						speed = SPEED_100;
4801 					else
4802 						speed = SPEED_10;
4803 					retval = e1000_set_spd_dplx(
4804 						adapter, speed,
4805 						((mii_reg & 0x100)
4806 						 ? DUPLEX_FULL :
4807 						 DUPLEX_HALF));
4808 					if (retval)
4809 						return retval;
4810 				}
4811 				if (netif_running(adapter->netdev))
4812 					e1000_reinit_locked(adapter);
4813 				else
4814 					e1000_reset(adapter);
4815 				break;
4816 			case M88E1000_PHY_SPEC_CTRL:
4817 			case M88E1000_EXT_PHY_SPEC_CTRL:
4818 				if (e1000_phy_reset(hw))
4819 					return -EIO;
4820 				break;
4821 			}
4822 		} else {
4823 			switch (data->reg_num) {
4824 			case PHY_CTRL:
4825 				if (mii_reg & MII_CR_POWER_DOWN)
4826 					break;
4827 				if (netif_running(adapter->netdev))
4828 					e1000_reinit_locked(adapter);
4829 				else
4830 					e1000_reset(adapter);
4831 				break;
4832 			}
4833 		}
4834 		break;
4835 	default:
4836 		return -EOPNOTSUPP;
4837 	}
4838 	return E1000_SUCCESS;
4839 }
4840 
4841 void e1000_pci_set_mwi(struct e1000_hw *hw)
4842 {
4843 	struct e1000_adapter *adapter = hw->back;
4844 	int ret_val = pci_set_mwi(adapter->pdev);
4845 
4846 	if (ret_val)
4847 		e_err(probe, "Error in setting MWI\n");
4848 }
4849 
4850 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4851 {
4852 	struct e1000_adapter *adapter = hw->back;
4853 
4854 	pci_clear_mwi(adapter->pdev);
4855 }
4856 
4857 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4858 {
4859 	struct e1000_adapter *adapter = hw->back;
4860 	return pcix_get_mmrbc(adapter->pdev);
4861 }
4862 
4863 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4864 {
4865 	struct e1000_adapter *adapter = hw->back;
4866 	pcix_set_mmrbc(adapter->pdev, mmrbc);
4867 }
4868 
4869 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4870 {
4871 	outl(value, port);
4872 }
4873 
4874 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4875 {
4876 	u16 vid;
4877 
4878 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4879 		return true;
4880 	return false;
4881 }
4882 
4883 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4884 			      netdev_features_t features)
4885 {
4886 	struct e1000_hw *hw = &adapter->hw;
4887 	u32 ctrl;
4888 
4889 	ctrl = er32(CTRL);
4890 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4891 		/* enable VLAN tag insert/strip */
4892 		ctrl |= E1000_CTRL_VME;
4893 	} else {
4894 		/* disable VLAN tag insert/strip */
4895 		ctrl &= ~E1000_CTRL_VME;
4896 	}
4897 	ew32(CTRL, ctrl);
4898 }
4899 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4900 				     bool filter_on)
4901 {
4902 	struct e1000_hw *hw = &adapter->hw;
4903 	u32 rctl;
4904 
4905 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4906 		e1000_irq_disable(adapter);
4907 
4908 	__e1000_vlan_mode(adapter, adapter->netdev->features);
4909 	if (filter_on) {
4910 		/* enable VLAN receive filtering */
4911 		rctl = er32(RCTL);
4912 		rctl &= ~E1000_RCTL_CFIEN;
4913 		if (!(adapter->netdev->flags & IFF_PROMISC))
4914 			rctl |= E1000_RCTL_VFE;
4915 		ew32(RCTL, rctl);
4916 		e1000_update_mng_vlan(adapter);
4917 	} else {
4918 		/* disable VLAN receive filtering */
4919 		rctl = er32(RCTL);
4920 		rctl &= ~E1000_RCTL_VFE;
4921 		ew32(RCTL, rctl);
4922 	}
4923 
4924 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4925 		e1000_irq_enable(adapter);
4926 }
4927 
4928 static void e1000_vlan_mode(struct net_device *netdev,
4929 			    netdev_features_t features)
4930 {
4931 	struct e1000_adapter *adapter = netdev_priv(netdev);
4932 
4933 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4934 		e1000_irq_disable(adapter);
4935 
4936 	__e1000_vlan_mode(adapter, features);
4937 
4938 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4939 		e1000_irq_enable(adapter);
4940 }
4941 
4942 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4943 				 __be16 proto, u16 vid)
4944 {
4945 	struct e1000_adapter *adapter = netdev_priv(netdev);
4946 	struct e1000_hw *hw = &adapter->hw;
4947 	u32 vfta, index;
4948 
4949 	if ((hw->mng_cookie.status &
4950 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4951 	    (vid == adapter->mng_vlan_id))
4952 		return 0;
4953 
4954 	if (!e1000_vlan_used(adapter))
4955 		e1000_vlan_filter_on_off(adapter, true);
4956 
4957 	/* add VID to filter table */
4958 	index = (vid >> 5) & 0x7F;
4959 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4960 	vfta |= (1 << (vid & 0x1F));
4961 	e1000_write_vfta(hw, index, vfta);
4962 
4963 	set_bit(vid, adapter->active_vlans);
4964 
4965 	return 0;
4966 }
4967 
4968 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4969 				  __be16 proto, u16 vid)
4970 {
4971 	struct e1000_adapter *adapter = netdev_priv(netdev);
4972 	struct e1000_hw *hw = &adapter->hw;
4973 	u32 vfta, index;
4974 
4975 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4976 		e1000_irq_disable(adapter);
4977 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4978 		e1000_irq_enable(adapter);
4979 
4980 	/* remove VID from filter table */
4981 	index = (vid >> 5) & 0x7F;
4982 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4983 	vfta &= ~(1 << (vid & 0x1F));
4984 	e1000_write_vfta(hw, index, vfta);
4985 
4986 	clear_bit(vid, adapter->active_vlans);
4987 
4988 	if (!e1000_vlan_used(adapter))
4989 		e1000_vlan_filter_on_off(adapter, false);
4990 
4991 	return 0;
4992 }
4993 
4994 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4995 {
4996 	u16 vid;
4997 
4998 	if (!e1000_vlan_used(adapter))
4999 		return;
5000 
5001 	e1000_vlan_filter_on_off(adapter, true);
5002 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5003 		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5004 }
5005 
5006 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5007 {
5008 	struct e1000_hw *hw = &adapter->hw;
5009 
5010 	hw->autoneg = 0;
5011 
5012 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5013 	 * for the switch() below to work
5014 	 */
5015 	if ((spd & 1) || (dplx & ~1))
5016 		goto err_inval;
5017 
5018 	/* Fiber NICs only allow 1000 gbps Full duplex */
5019 	if ((hw->media_type == e1000_media_type_fiber) &&
5020 	    spd != SPEED_1000 &&
5021 	    dplx != DUPLEX_FULL)
5022 		goto err_inval;
5023 
5024 	switch (spd + dplx) {
5025 	case SPEED_10 + DUPLEX_HALF:
5026 		hw->forced_speed_duplex = e1000_10_half;
5027 		break;
5028 	case SPEED_10 + DUPLEX_FULL:
5029 		hw->forced_speed_duplex = e1000_10_full;
5030 		break;
5031 	case SPEED_100 + DUPLEX_HALF:
5032 		hw->forced_speed_duplex = e1000_100_half;
5033 		break;
5034 	case SPEED_100 + DUPLEX_FULL:
5035 		hw->forced_speed_duplex = e1000_100_full;
5036 		break;
5037 	case SPEED_1000 + DUPLEX_FULL:
5038 		hw->autoneg = 1;
5039 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5040 		break;
5041 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5042 	default:
5043 		goto err_inval;
5044 	}
5045 
5046 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5047 	hw->mdix = AUTO_ALL_MODES;
5048 
5049 	return 0;
5050 
5051 err_inval:
5052 	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5053 	return -EINVAL;
5054 }
5055 
5056 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5057 {
5058 	struct net_device *netdev = pci_get_drvdata(pdev);
5059 	struct e1000_adapter *adapter = netdev_priv(netdev);
5060 	struct e1000_hw *hw = &adapter->hw;
5061 	u32 ctrl, ctrl_ext, rctl, status;
5062 	u32 wufc = adapter->wol;
5063 #ifdef CONFIG_PM
5064 	int retval = 0;
5065 #endif
5066 
5067 	netif_device_detach(netdev);
5068 
5069 	if (netif_running(netdev)) {
5070 		int count = E1000_CHECK_RESET_COUNT;
5071 
5072 		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5073 			usleep_range(10000, 20000);
5074 
5075 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5076 		e1000_down(adapter);
5077 	}
5078 
5079 #ifdef CONFIG_PM
5080 	retval = pci_save_state(pdev);
5081 	if (retval)
5082 		return retval;
5083 #endif
5084 
5085 	status = er32(STATUS);
5086 	if (status & E1000_STATUS_LU)
5087 		wufc &= ~E1000_WUFC_LNKC;
5088 
5089 	if (wufc) {
5090 		e1000_setup_rctl(adapter);
5091 		e1000_set_rx_mode(netdev);
5092 
5093 		rctl = er32(RCTL);
5094 
5095 		/* turn on all-multi mode if wake on multicast is enabled */
5096 		if (wufc & E1000_WUFC_MC)
5097 			rctl |= E1000_RCTL_MPE;
5098 
5099 		/* enable receives in the hardware */
5100 		ew32(RCTL, rctl | E1000_RCTL_EN);
5101 
5102 		if (hw->mac_type >= e1000_82540) {
5103 			ctrl = er32(CTRL);
5104 			/* advertise wake from D3Cold */
5105 			#define E1000_CTRL_ADVD3WUC 0x00100000
5106 			/* phy power management enable */
5107 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5108 			ctrl |= E1000_CTRL_ADVD3WUC |
5109 				E1000_CTRL_EN_PHY_PWR_MGMT;
5110 			ew32(CTRL, ctrl);
5111 		}
5112 
5113 		if (hw->media_type == e1000_media_type_fiber ||
5114 		    hw->media_type == e1000_media_type_internal_serdes) {
5115 			/* keep the laser running in D3 */
5116 			ctrl_ext = er32(CTRL_EXT);
5117 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5118 			ew32(CTRL_EXT, ctrl_ext);
5119 		}
5120 
5121 		ew32(WUC, E1000_WUC_PME_EN);
5122 		ew32(WUFC, wufc);
5123 	} else {
5124 		ew32(WUC, 0);
5125 		ew32(WUFC, 0);
5126 	}
5127 
5128 	e1000_release_manageability(adapter);
5129 
5130 	*enable_wake = !!wufc;
5131 
5132 	/* make sure adapter isn't asleep if manageability is enabled */
5133 	if (adapter->en_mng_pt)
5134 		*enable_wake = true;
5135 
5136 	if (netif_running(netdev))
5137 		e1000_free_irq(adapter);
5138 
5139 	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5140 		pci_disable_device(pdev);
5141 
5142 	return 0;
5143 }
5144 
5145 #ifdef CONFIG_PM
5146 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5147 {
5148 	int retval;
5149 	bool wake;
5150 
5151 	retval = __e1000_shutdown(pdev, &wake);
5152 	if (retval)
5153 		return retval;
5154 
5155 	if (wake) {
5156 		pci_prepare_to_sleep(pdev);
5157 	} else {
5158 		pci_wake_from_d3(pdev, false);
5159 		pci_set_power_state(pdev, PCI_D3hot);
5160 	}
5161 
5162 	return 0;
5163 }
5164 
5165 static int e1000_resume(struct pci_dev *pdev)
5166 {
5167 	struct net_device *netdev = pci_get_drvdata(pdev);
5168 	struct e1000_adapter *adapter = netdev_priv(netdev);
5169 	struct e1000_hw *hw = &adapter->hw;
5170 	u32 err;
5171 
5172 	pci_set_power_state(pdev, PCI_D0);
5173 	pci_restore_state(pdev);
5174 	pci_save_state(pdev);
5175 
5176 	if (adapter->need_ioport)
5177 		err = pci_enable_device(pdev);
5178 	else
5179 		err = pci_enable_device_mem(pdev);
5180 	if (err) {
5181 		pr_err("Cannot enable PCI device from suspend\n");
5182 		return err;
5183 	}
5184 
5185 	/* flush memory to make sure state is correct */
5186 	smp_mb__before_atomic();
5187 	clear_bit(__E1000_DISABLED, &adapter->flags);
5188 	pci_set_master(pdev);
5189 
5190 	pci_enable_wake(pdev, PCI_D3hot, 0);
5191 	pci_enable_wake(pdev, PCI_D3cold, 0);
5192 
5193 	if (netif_running(netdev)) {
5194 		err = e1000_request_irq(adapter);
5195 		if (err)
5196 			return err;
5197 	}
5198 
5199 	e1000_power_up_phy(adapter);
5200 	e1000_reset(adapter);
5201 	ew32(WUS, ~0);
5202 
5203 	e1000_init_manageability(adapter);
5204 
5205 	if (netif_running(netdev))
5206 		e1000_up(adapter);
5207 
5208 	netif_device_attach(netdev);
5209 
5210 	return 0;
5211 }
5212 #endif
5213 
5214 static void e1000_shutdown(struct pci_dev *pdev)
5215 {
5216 	bool wake;
5217 
5218 	__e1000_shutdown(pdev, &wake);
5219 
5220 	if (system_state == SYSTEM_POWER_OFF) {
5221 		pci_wake_from_d3(pdev, wake);
5222 		pci_set_power_state(pdev, PCI_D3hot);
5223 	}
5224 }
5225 
5226 #ifdef CONFIG_NET_POLL_CONTROLLER
5227 /* Polling 'interrupt' - used by things like netconsole to send skbs
5228  * without having to re-enable interrupts. It's not called while
5229  * the interrupt routine is executing.
5230  */
5231 static void e1000_netpoll(struct net_device *netdev)
5232 {
5233 	struct e1000_adapter *adapter = netdev_priv(netdev);
5234 
5235 	if (disable_hardirq(adapter->pdev->irq))
5236 		e1000_intr(adapter->pdev->irq, netdev);
5237 	enable_irq(adapter->pdev->irq);
5238 }
5239 #endif
5240 
5241 /**
5242  * e1000_io_error_detected - called when PCI error is detected
5243  * @pdev: Pointer to PCI device
5244  * @state: The current pci connection state
5245  *
5246  * This function is called after a PCI bus error affecting
5247  * this device has been detected.
5248  */
5249 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5250 						pci_channel_state_t state)
5251 {
5252 	struct net_device *netdev = pci_get_drvdata(pdev);
5253 	struct e1000_adapter *adapter = netdev_priv(netdev);
5254 
5255 	netif_device_detach(netdev);
5256 
5257 	if (state == pci_channel_io_perm_failure)
5258 		return PCI_ERS_RESULT_DISCONNECT;
5259 
5260 	if (netif_running(netdev))
5261 		e1000_down(adapter);
5262 
5263 	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5264 		pci_disable_device(pdev);
5265 
5266 	/* Request a slot slot reset. */
5267 	return PCI_ERS_RESULT_NEED_RESET;
5268 }
5269 
5270 /**
5271  * e1000_io_slot_reset - called after the pci bus has been reset.
5272  * @pdev: Pointer to PCI device
5273  *
5274  * Restart the card from scratch, as if from a cold-boot. Implementation
5275  * resembles the first-half of the e1000_resume routine.
5276  */
5277 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5278 {
5279 	struct net_device *netdev = pci_get_drvdata(pdev);
5280 	struct e1000_adapter *adapter = netdev_priv(netdev);
5281 	struct e1000_hw *hw = &adapter->hw;
5282 	int err;
5283 
5284 	if (adapter->need_ioport)
5285 		err = pci_enable_device(pdev);
5286 	else
5287 		err = pci_enable_device_mem(pdev);
5288 	if (err) {
5289 		pr_err("Cannot re-enable PCI device after reset.\n");
5290 		return PCI_ERS_RESULT_DISCONNECT;
5291 	}
5292 
5293 	/* flush memory to make sure state is correct */
5294 	smp_mb__before_atomic();
5295 	clear_bit(__E1000_DISABLED, &adapter->flags);
5296 	pci_set_master(pdev);
5297 
5298 	pci_enable_wake(pdev, PCI_D3hot, 0);
5299 	pci_enable_wake(pdev, PCI_D3cold, 0);
5300 
5301 	e1000_reset(adapter);
5302 	ew32(WUS, ~0);
5303 
5304 	return PCI_ERS_RESULT_RECOVERED;
5305 }
5306 
5307 /**
5308  * e1000_io_resume - called when traffic can start flowing again.
5309  * @pdev: Pointer to PCI device
5310  *
5311  * This callback is called when the error recovery driver tells us that
5312  * its OK to resume normal operation. Implementation resembles the
5313  * second-half of the e1000_resume routine.
5314  */
5315 static void e1000_io_resume(struct pci_dev *pdev)
5316 {
5317 	struct net_device *netdev = pci_get_drvdata(pdev);
5318 	struct e1000_adapter *adapter = netdev_priv(netdev);
5319 
5320 	e1000_init_manageability(adapter);
5321 
5322 	if (netif_running(netdev)) {
5323 		if (e1000_up(adapter)) {
5324 			pr_info("can't bring device back up after reset\n");
5325 			return;
5326 		}
5327 	}
5328 
5329 	netif_device_attach(netdev);
5330 }
5331 
5332 /* e1000_main.c */
5333