1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35 
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41 
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
50 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 	/* required last entry */
88 	{0,}
89 };
90 
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92 
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106                              struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108                              struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110 
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125                                 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127                                 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 				    struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 			       struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 			       struct e1000_rx_ring *rx_ring,
143 			       int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 				     struct e1000_rx_ring *rx_ring,
146 				     int *work_done, int work_to_do);
147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148 				   struct e1000_rx_ring *rx_ring,
149 				   int cleaned_count);
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151 					 struct e1000_rx_ring *rx_ring,
152 					 int cleaned_count);
153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155 			   int cmd);
156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158 static void e1000_tx_timeout(struct net_device *dev);
159 static void e1000_reset_task(struct work_struct *work);
160 static void e1000_smartspeed(struct e1000_adapter *adapter);
161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162                                        struct sk_buff *skb);
163 
164 static bool e1000_vlan_used(struct e1000_adapter *adapter);
165 static void e1000_vlan_mode(struct net_device *netdev,
166 			    netdev_features_t features);
167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168 				     bool filter_on);
169 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
170 				 __be16 proto, u16 vid);
171 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
172 				  __be16 proto, u16 vid);
173 static void e1000_restore_vlan(struct e1000_adapter *adapter);
174 
175 #ifdef CONFIG_PM
176 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
177 static int e1000_resume(struct pci_dev *pdev);
178 #endif
179 static void e1000_shutdown(struct pci_dev *pdev);
180 
181 #ifdef CONFIG_NET_POLL_CONTROLLER
182 /* for netdump / net console */
183 static void e1000_netpoll (struct net_device *netdev);
184 #endif
185 
186 #define COPYBREAK_DEFAULT 256
187 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
188 module_param(copybreak, uint, 0644);
189 MODULE_PARM_DESC(copybreak,
190 	"Maximum size of packet that is copied to a new buffer on receive");
191 
192 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
193                      pci_channel_state_t state);
194 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
195 static void e1000_io_resume(struct pci_dev *pdev);
196 
197 static const struct pci_error_handlers e1000_err_handler = {
198 	.error_detected = e1000_io_error_detected,
199 	.slot_reset = e1000_io_slot_reset,
200 	.resume = e1000_io_resume,
201 };
202 
203 static struct pci_driver e1000_driver = {
204 	.name     = e1000_driver_name,
205 	.id_table = e1000_pci_tbl,
206 	.probe    = e1000_probe,
207 	.remove   = e1000_remove,
208 #ifdef CONFIG_PM
209 	/* Power Management Hooks */
210 	.suspend  = e1000_suspend,
211 	.resume   = e1000_resume,
212 #endif
213 	.shutdown = e1000_shutdown,
214 	.err_handler = &e1000_err_handler
215 };
216 
217 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
218 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
219 MODULE_LICENSE("GPL");
220 MODULE_VERSION(DRV_VERSION);
221 
222 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
223 static int debug = -1;
224 module_param(debug, int, 0);
225 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
226 
227 /**
228  * e1000_get_hw_dev - return device
229  * used by hardware layer to print debugging information
230  *
231  **/
232 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
233 {
234 	struct e1000_adapter *adapter = hw->back;
235 	return adapter->netdev;
236 }
237 
238 /**
239  * e1000_init_module - Driver Registration Routine
240  *
241  * e1000_init_module is the first routine called when the driver is
242  * loaded. All it does is register with the PCI subsystem.
243  **/
244 static int __init e1000_init_module(void)
245 {
246 	int ret;
247 	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
248 
249 	pr_info("%s\n", e1000_copyright);
250 
251 	ret = pci_register_driver(&e1000_driver);
252 	if (copybreak != COPYBREAK_DEFAULT) {
253 		if (copybreak == 0)
254 			pr_info("copybreak disabled\n");
255 		else
256 			pr_info("copybreak enabled for "
257 				   "packets <= %u bytes\n", copybreak);
258 	}
259 	return ret;
260 }
261 
262 module_init(e1000_init_module);
263 
264 /**
265  * e1000_exit_module - Driver Exit Cleanup Routine
266  *
267  * e1000_exit_module is called just before the driver is removed
268  * from memory.
269  **/
270 static void __exit e1000_exit_module(void)
271 {
272 	pci_unregister_driver(&e1000_driver);
273 }
274 
275 module_exit(e1000_exit_module);
276 
277 static int e1000_request_irq(struct e1000_adapter *adapter)
278 {
279 	struct net_device *netdev = adapter->netdev;
280 	irq_handler_t handler = e1000_intr;
281 	int irq_flags = IRQF_SHARED;
282 	int err;
283 
284 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
285 	                  netdev);
286 	if (err) {
287 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
288 	}
289 
290 	return err;
291 }
292 
293 static void e1000_free_irq(struct e1000_adapter *adapter)
294 {
295 	struct net_device *netdev = adapter->netdev;
296 
297 	free_irq(adapter->pdev->irq, netdev);
298 }
299 
300 /**
301  * e1000_irq_disable - Mask off interrupt generation on the NIC
302  * @adapter: board private structure
303  **/
304 static void e1000_irq_disable(struct e1000_adapter *adapter)
305 {
306 	struct e1000_hw *hw = &adapter->hw;
307 
308 	ew32(IMC, ~0);
309 	E1000_WRITE_FLUSH();
310 	synchronize_irq(adapter->pdev->irq);
311 }
312 
313 /**
314  * e1000_irq_enable - Enable default interrupt generation settings
315  * @adapter: board private structure
316  **/
317 static void e1000_irq_enable(struct e1000_adapter *adapter)
318 {
319 	struct e1000_hw *hw = &adapter->hw;
320 
321 	ew32(IMS, IMS_ENABLE_MASK);
322 	E1000_WRITE_FLUSH();
323 }
324 
325 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
326 {
327 	struct e1000_hw *hw = &adapter->hw;
328 	struct net_device *netdev = adapter->netdev;
329 	u16 vid = hw->mng_cookie.vlan_id;
330 	u16 old_vid = adapter->mng_vlan_id;
331 
332 	if (!e1000_vlan_used(adapter))
333 		return;
334 
335 	if (!test_bit(vid, adapter->active_vlans)) {
336 		if (hw->mng_cookie.status &
337 		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
338 			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
339 			adapter->mng_vlan_id = vid;
340 		} else {
341 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
342 		}
343 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
344 		    (vid != old_vid) &&
345 		    !test_bit(old_vid, adapter->active_vlans))
346 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
347 					       old_vid);
348 	} else {
349 		adapter->mng_vlan_id = vid;
350 	}
351 }
352 
353 static void e1000_init_manageability(struct e1000_adapter *adapter)
354 {
355 	struct e1000_hw *hw = &adapter->hw;
356 
357 	if (adapter->en_mng_pt) {
358 		u32 manc = er32(MANC);
359 
360 		/* disable hardware interception of ARP */
361 		manc &= ~(E1000_MANC_ARP_EN);
362 
363 		ew32(MANC, manc);
364 	}
365 }
366 
367 static void e1000_release_manageability(struct e1000_adapter *adapter)
368 {
369 	struct e1000_hw *hw = &adapter->hw;
370 
371 	if (adapter->en_mng_pt) {
372 		u32 manc = er32(MANC);
373 
374 		/* re-enable hardware interception of ARP */
375 		manc |= E1000_MANC_ARP_EN;
376 
377 		ew32(MANC, manc);
378 	}
379 }
380 
381 /**
382  * e1000_configure - configure the hardware for RX and TX
383  * @adapter = private board structure
384  **/
385 static void e1000_configure(struct e1000_adapter *adapter)
386 {
387 	struct net_device *netdev = adapter->netdev;
388 	int i;
389 
390 	e1000_set_rx_mode(netdev);
391 
392 	e1000_restore_vlan(adapter);
393 	e1000_init_manageability(adapter);
394 
395 	e1000_configure_tx(adapter);
396 	e1000_setup_rctl(adapter);
397 	e1000_configure_rx(adapter);
398 	/* call E1000_DESC_UNUSED which always leaves
399 	 * at least 1 descriptor unused to make sure
400 	 * next_to_use != next_to_clean
401 	 */
402 	for (i = 0; i < adapter->num_rx_queues; i++) {
403 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
404 		adapter->alloc_rx_buf(adapter, ring,
405 				      E1000_DESC_UNUSED(ring));
406 	}
407 }
408 
409 int e1000_up(struct e1000_adapter *adapter)
410 {
411 	struct e1000_hw *hw = &adapter->hw;
412 
413 	/* hardware has been reset, we need to reload some things */
414 	e1000_configure(adapter);
415 
416 	clear_bit(__E1000_DOWN, &adapter->flags);
417 
418 	napi_enable(&adapter->napi);
419 
420 	e1000_irq_enable(adapter);
421 
422 	netif_wake_queue(adapter->netdev);
423 
424 	/* fire a link change interrupt to start the watchdog */
425 	ew32(ICS, E1000_ICS_LSC);
426 	return 0;
427 }
428 
429 /**
430  * e1000_power_up_phy - restore link in case the phy was powered down
431  * @adapter: address of board private structure
432  *
433  * The phy may be powered down to save power and turn off link when the
434  * driver is unloaded and wake on lan is not enabled (among others)
435  * *** this routine MUST be followed by a call to e1000_reset ***
436  **/
437 void e1000_power_up_phy(struct e1000_adapter *adapter)
438 {
439 	struct e1000_hw *hw = &adapter->hw;
440 	u16 mii_reg = 0;
441 
442 	/* Just clear the power down bit to wake the phy back up */
443 	if (hw->media_type == e1000_media_type_copper) {
444 		/* according to the manual, the phy will retain its
445 		 * settings across a power-down/up cycle
446 		 */
447 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
448 		mii_reg &= ~MII_CR_POWER_DOWN;
449 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
450 	}
451 }
452 
453 static void e1000_power_down_phy(struct e1000_adapter *adapter)
454 {
455 	struct e1000_hw *hw = &adapter->hw;
456 
457 	/* Power down the PHY so no link is implied when interface is down *
458 	 * The PHY cannot be powered down if any of the following is true *
459 	 * (a) WoL is enabled
460 	 * (b) AMT is active
461 	 * (c) SoL/IDER session is active
462 	 */
463 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
464 	   hw->media_type == e1000_media_type_copper) {
465 		u16 mii_reg = 0;
466 
467 		switch (hw->mac_type) {
468 		case e1000_82540:
469 		case e1000_82545:
470 		case e1000_82545_rev_3:
471 		case e1000_82546:
472 		case e1000_ce4100:
473 		case e1000_82546_rev_3:
474 		case e1000_82541:
475 		case e1000_82541_rev_2:
476 		case e1000_82547:
477 		case e1000_82547_rev_2:
478 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
479 				goto out;
480 			break;
481 		default:
482 			goto out;
483 		}
484 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
485 		mii_reg |= MII_CR_POWER_DOWN;
486 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
487 		msleep(1);
488 	}
489 out:
490 	return;
491 }
492 
493 static void e1000_down_and_stop(struct e1000_adapter *adapter)
494 {
495 	set_bit(__E1000_DOWN, &adapter->flags);
496 
497 	/* Only kill reset task if adapter is not resetting */
498 	if (!test_bit(__E1000_RESETTING, &adapter->flags))
499 		cancel_work_sync(&adapter->reset_task);
500 
501 	cancel_delayed_work_sync(&adapter->watchdog_task);
502 	cancel_delayed_work_sync(&adapter->phy_info_task);
503 	cancel_delayed_work_sync(&adapter->fifo_stall_task);
504 }
505 
506 void e1000_down(struct e1000_adapter *adapter)
507 {
508 	struct e1000_hw *hw = &adapter->hw;
509 	struct net_device *netdev = adapter->netdev;
510 	u32 rctl, tctl;
511 
512 
513 	/* disable receives in the hardware */
514 	rctl = er32(RCTL);
515 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
516 	/* flush and sleep below */
517 
518 	netif_tx_disable(netdev);
519 
520 	/* disable transmits in the hardware */
521 	tctl = er32(TCTL);
522 	tctl &= ~E1000_TCTL_EN;
523 	ew32(TCTL, tctl);
524 	/* flush both disables and wait for them to finish */
525 	E1000_WRITE_FLUSH();
526 	msleep(10);
527 
528 	napi_disable(&adapter->napi);
529 
530 	e1000_irq_disable(adapter);
531 
532 	/* Setting DOWN must be after irq_disable to prevent
533 	 * a screaming interrupt.  Setting DOWN also prevents
534 	 * tasks from rescheduling.
535 	 */
536 	e1000_down_and_stop(adapter);
537 
538 	adapter->link_speed = 0;
539 	adapter->link_duplex = 0;
540 	netif_carrier_off(netdev);
541 
542 	e1000_reset(adapter);
543 	e1000_clean_all_tx_rings(adapter);
544 	e1000_clean_all_rx_rings(adapter);
545 }
546 
547 static void e1000_reinit_safe(struct e1000_adapter *adapter)
548 {
549 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
550 		msleep(1);
551 	mutex_lock(&adapter->mutex);
552 	e1000_down(adapter);
553 	e1000_up(adapter);
554 	mutex_unlock(&adapter->mutex);
555 	clear_bit(__E1000_RESETTING, &adapter->flags);
556 }
557 
558 void e1000_reinit_locked(struct e1000_adapter *adapter)
559 {
560 	/* if rtnl_lock is not held the call path is bogus */
561 	ASSERT_RTNL();
562 	WARN_ON(in_interrupt());
563 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
564 		msleep(1);
565 	e1000_down(adapter);
566 	e1000_up(adapter);
567 	clear_bit(__E1000_RESETTING, &adapter->flags);
568 }
569 
570 void e1000_reset(struct e1000_adapter *adapter)
571 {
572 	struct e1000_hw *hw = &adapter->hw;
573 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
574 	bool legacy_pba_adjust = false;
575 	u16 hwm;
576 
577 	/* Repartition Pba for greater than 9k mtu
578 	 * To take effect CTRL.RST is required.
579 	 */
580 
581 	switch (hw->mac_type) {
582 	case e1000_82542_rev2_0:
583 	case e1000_82542_rev2_1:
584 	case e1000_82543:
585 	case e1000_82544:
586 	case e1000_82540:
587 	case e1000_82541:
588 	case e1000_82541_rev_2:
589 		legacy_pba_adjust = true;
590 		pba = E1000_PBA_48K;
591 		break;
592 	case e1000_82545:
593 	case e1000_82545_rev_3:
594 	case e1000_82546:
595 	case e1000_ce4100:
596 	case e1000_82546_rev_3:
597 		pba = E1000_PBA_48K;
598 		break;
599 	case e1000_82547:
600 	case e1000_82547_rev_2:
601 		legacy_pba_adjust = true;
602 		pba = E1000_PBA_30K;
603 		break;
604 	case e1000_undefined:
605 	case e1000_num_macs:
606 		break;
607 	}
608 
609 	if (legacy_pba_adjust) {
610 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
611 			pba -= 8; /* allocate more FIFO for Tx */
612 
613 		if (hw->mac_type == e1000_82547) {
614 			adapter->tx_fifo_head = 0;
615 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
616 			adapter->tx_fifo_size =
617 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
618 			atomic_set(&adapter->tx_fifo_stall, 0);
619 		}
620 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
621 		/* adjust PBA for jumbo frames */
622 		ew32(PBA, pba);
623 
624 		/* To maintain wire speed transmits, the Tx FIFO should be
625 		 * large enough to accommodate two full transmit packets,
626 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
627 		 * the Rx FIFO should be large enough to accommodate at least
628 		 * one full receive packet and is similarly rounded up and
629 		 * expressed in KB.
630 		 */
631 		pba = er32(PBA);
632 		/* upper 16 bits has Tx packet buffer allocation size in KB */
633 		tx_space = pba >> 16;
634 		/* lower 16 bits has Rx packet buffer allocation size in KB */
635 		pba &= 0xffff;
636 		/* the Tx fifo also stores 16 bytes of information about the Tx
637 		 * but don't include ethernet FCS because hardware appends it
638 		 */
639 		min_tx_space = (hw->max_frame_size +
640 		                sizeof(struct e1000_tx_desc) -
641 		                ETH_FCS_LEN) * 2;
642 		min_tx_space = ALIGN(min_tx_space, 1024);
643 		min_tx_space >>= 10;
644 		/* software strips receive CRC, so leave room for it */
645 		min_rx_space = hw->max_frame_size;
646 		min_rx_space = ALIGN(min_rx_space, 1024);
647 		min_rx_space >>= 10;
648 
649 		/* If current Tx allocation is less than the min Tx FIFO size,
650 		 * and the min Tx FIFO size is less than the current Rx FIFO
651 		 * allocation, take space away from current Rx allocation
652 		 */
653 		if (tx_space < min_tx_space &&
654 		    ((min_tx_space - tx_space) < pba)) {
655 			pba = pba - (min_tx_space - tx_space);
656 
657 			/* PCI/PCIx hardware has PBA alignment constraints */
658 			switch (hw->mac_type) {
659 			case e1000_82545 ... e1000_82546_rev_3:
660 				pba &= ~(E1000_PBA_8K - 1);
661 				break;
662 			default:
663 				break;
664 			}
665 
666 			/* if short on Rx space, Rx wins and must trump Tx
667 			 * adjustment or use Early Receive if available
668 			 */
669 			if (pba < min_rx_space)
670 				pba = min_rx_space;
671 		}
672 	}
673 
674 	ew32(PBA, pba);
675 
676 	/* flow control settings:
677 	 * The high water mark must be low enough to fit one full frame
678 	 * (or the size used for early receive) above it in the Rx FIFO.
679 	 * Set it to the lower of:
680 	 * - 90% of the Rx FIFO size, and
681 	 * - the full Rx FIFO size minus the early receive size (for parts
682 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
683 	 * - the full Rx FIFO size minus one full frame
684 	 */
685 	hwm = min(((pba << 10) * 9 / 10),
686 		  ((pba << 10) - hw->max_frame_size));
687 
688 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
689 	hw->fc_low_water = hw->fc_high_water - 8;
690 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
691 	hw->fc_send_xon = 1;
692 	hw->fc = hw->original_fc;
693 
694 	/* Allow time for pending master requests to run */
695 	e1000_reset_hw(hw);
696 	if (hw->mac_type >= e1000_82544)
697 		ew32(WUC, 0);
698 
699 	if (e1000_init_hw(hw))
700 		e_dev_err("Hardware Error\n");
701 	e1000_update_mng_vlan(adapter);
702 
703 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
704 	if (hw->mac_type >= e1000_82544 &&
705 	    hw->autoneg == 1 &&
706 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
707 		u32 ctrl = er32(CTRL);
708 		/* clear phy power management bit if we are in gig only mode,
709 		 * which if enabled will attempt negotiation to 100Mb, which
710 		 * can cause a loss of link at power off or driver unload
711 		 */
712 		ctrl &= ~E1000_CTRL_SWDPIN3;
713 		ew32(CTRL, ctrl);
714 	}
715 
716 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
717 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
718 
719 	e1000_reset_adaptive(hw);
720 	e1000_phy_get_info(hw, &adapter->phy_info);
721 
722 	e1000_release_manageability(adapter);
723 }
724 
725 /* Dump the eeprom for users having checksum issues */
726 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
727 {
728 	struct net_device *netdev = adapter->netdev;
729 	struct ethtool_eeprom eeprom;
730 	const struct ethtool_ops *ops = netdev->ethtool_ops;
731 	u8 *data;
732 	int i;
733 	u16 csum_old, csum_new = 0;
734 
735 	eeprom.len = ops->get_eeprom_len(netdev);
736 	eeprom.offset = 0;
737 
738 	data = kmalloc(eeprom.len, GFP_KERNEL);
739 	if (!data)
740 		return;
741 
742 	ops->get_eeprom(netdev, &eeprom, data);
743 
744 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
745 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
746 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
747 		csum_new += data[i] + (data[i + 1] << 8);
748 	csum_new = EEPROM_SUM - csum_new;
749 
750 	pr_err("/*********************/\n");
751 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
752 	pr_err("Calculated              : 0x%04x\n", csum_new);
753 
754 	pr_err("Offset    Values\n");
755 	pr_err("========  ======\n");
756 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
757 
758 	pr_err("Include this output when contacting your support provider.\n");
759 	pr_err("This is not a software error! Something bad happened to\n");
760 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
761 	pr_err("result in further problems, possibly loss of data,\n");
762 	pr_err("corruption or system hangs!\n");
763 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
764 	pr_err("which is invalid and requires you to set the proper MAC\n");
765 	pr_err("address manually before continuing to enable this network\n");
766 	pr_err("device. Please inspect the EEPROM dump and report the\n");
767 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
768 	pr_err("/*********************/\n");
769 
770 	kfree(data);
771 }
772 
773 /**
774  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
775  * @pdev: PCI device information struct
776  *
777  * Return true if an adapter needs ioport resources
778  **/
779 static int e1000_is_need_ioport(struct pci_dev *pdev)
780 {
781 	switch (pdev->device) {
782 	case E1000_DEV_ID_82540EM:
783 	case E1000_DEV_ID_82540EM_LOM:
784 	case E1000_DEV_ID_82540EP:
785 	case E1000_DEV_ID_82540EP_LOM:
786 	case E1000_DEV_ID_82540EP_LP:
787 	case E1000_DEV_ID_82541EI:
788 	case E1000_DEV_ID_82541EI_MOBILE:
789 	case E1000_DEV_ID_82541ER:
790 	case E1000_DEV_ID_82541ER_LOM:
791 	case E1000_DEV_ID_82541GI:
792 	case E1000_DEV_ID_82541GI_LF:
793 	case E1000_DEV_ID_82541GI_MOBILE:
794 	case E1000_DEV_ID_82544EI_COPPER:
795 	case E1000_DEV_ID_82544EI_FIBER:
796 	case E1000_DEV_ID_82544GC_COPPER:
797 	case E1000_DEV_ID_82544GC_LOM:
798 	case E1000_DEV_ID_82545EM_COPPER:
799 	case E1000_DEV_ID_82545EM_FIBER:
800 	case E1000_DEV_ID_82546EB_COPPER:
801 	case E1000_DEV_ID_82546EB_FIBER:
802 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
803 		return true;
804 	default:
805 		return false;
806 	}
807 }
808 
809 static netdev_features_t e1000_fix_features(struct net_device *netdev,
810 	netdev_features_t features)
811 {
812 	/* Since there is no support for separate Rx/Tx vlan accel
813 	 * enable/disable make sure Tx flag is always in same state as Rx.
814 	 */
815 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
816 		features |= NETIF_F_HW_VLAN_CTAG_TX;
817 	else
818 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
819 
820 	return features;
821 }
822 
823 static int e1000_set_features(struct net_device *netdev,
824 	netdev_features_t features)
825 {
826 	struct e1000_adapter *adapter = netdev_priv(netdev);
827 	netdev_features_t changed = features ^ netdev->features;
828 
829 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
830 		e1000_vlan_mode(netdev, features);
831 
832 	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
833 		return 0;
834 
835 	netdev->features = features;
836 	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
837 
838 	if (netif_running(netdev))
839 		e1000_reinit_locked(adapter);
840 	else
841 		e1000_reset(adapter);
842 
843 	return 0;
844 }
845 
846 static const struct net_device_ops e1000_netdev_ops = {
847 	.ndo_open		= e1000_open,
848 	.ndo_stop		= e1000_close,
849 	.ndo_start_xmit		= e1000_xmit_frame,
850 	.ndo_get_stats		= e1000_get_stats,
851 	.ndo_set_rx_mode	= e1000_set_rx_mode,
852 	.ndo_set_mac_address	= e1000_set_mac,
853 	.ndo_tx_timeout		= e1000_tx_timeout,
854 	.ndo_change_mtu		= e1000_change_mtu,
855 	.ndo_do_ioctl		= e1000_ioctl,
856 	.ndo_validate_addr	= eth_validate_addr,
857 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
858 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
859 #ifdef CONFIG_NET_POLL_CONTROLLER
860 	.ndo_poll_controller	= e1000_netpoll,
861 #endif
862 	.ndo_fix_features	= e1000_fix_features,
863 	.ndo_set_features	= e1000_set_features,
864 };
865 
866 /**
867  * e1000_init_hw_struct - initialize members of hw struct
868  * @adapter: board private struct
869  * @hw: structure used by e1000_hw.c
870  *
871  * Factors out initialization of the e1000_hw struct to its own function
872  * that can be called very early at init (just after struct allocation).
873  * Fields are initialized based on PCI device information and
874  * OS network device settings (MTU size).
875  * Returns negative error codes if MAC type setup fails.
876  */
877 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
878 				struct e1000_hw *hw)
879 {
880 	struct pci_dev *pdev = adapter->pdev;
881 
882 	/* PCI config space info */
883 	hw->vendor_id = pdev->vendor;
884 	hw->device_id = pdev->device;
885 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
886 	hw->subsystem_id = pdev->subsystem_device;
887 	hw->revision_id = pdev->revision;
888 
889 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
890 
891 	hw->max_frame_size = adapter->netdev->mtu +
892 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
893 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
894 
895 	/* identify the MAC */
896 	if (e1000_set_mac_type(hw)) {
897 		e_err(probe, "Unknown MAC Type\n");
898 		return -EIO;
899 	}
900 
901 	switch (hw->mac_type) {
902 	default:
903 		break;
904 	case e1000_82541:
905 	case e1000_82547:
906 	case e1000_82541_rev_2:
907 	case e1000_82547_rev_2:
908 		hw->phy_init_script = 1;
909 		break;
910 	}
911 
912 	e1000_set_media_type(hw);
913 	e1000_get_bus_info(hw);
914 
915 	hw->wait_autoneg_complete = false;
916 	hw->tbi_compatibility_en = true;
917 	hw->adaptive_ifs = true;
918 
919 	/* Copper options */
920 
921 	if (hw->media_type == e1000_media_type_copper) {
922 		hw->mdix = AUTO_ALL_MODES;
923 		hw->disable_polarity_correction = false;
924 		hw->master_slave = E1000_MASTER_SLAVE;
925 	}
926 
927 	return 0;
928 }
929 
930 /**
931  * e1000_probe - Device Initialization Routine
932  * @pdev: PCI device information struct
933  * @ent: entry in e1000_pci_tbl
934  *
935  * Returns 0 on success, negative on failure
936  *
937  * e1000_probe initializes an adapter identified by a pci_dev structure.
938  * The OS initialization, configuring of the adapter private structure,
939  * and a hardware reset occur.
940  **/
941 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
942 {
943 	struct net_device *netdev;
944 	struct e1000_adapter *adapter;
945 	struct e1000_hw *hw;
946 
947 	static int cards_found = 0;
948 	static int global_quad_port_a = 0; /* global ksp3 port a indication */
949 	int i, err, pci_using_dac;
950 	u16 eeprom_data = 0;
951 	u16 tmp = 0;
952 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
953 	int bars, need_ioport;
954 
955 	/* do not allocate ioport bars when not needed */
956 	need_ioport = e1000_is_need_ioport(pdev);
957 	if (need_ioport) {
958 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
959 		err = pci_enable_device(pdev);
960 	} else {
961 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
962 		err = pci_enable_device_mem(pdev);
963 	}
964 	if (err)
965 		return err;
966 
967 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
968 	if (err)
969 		goto err_pci_reg;
970 
971 	pci_set_master(pdev);
972 	err = pci_save_state(pdev);
973 	if (err)
974 		goto err_alloc_etherdev;
975 
976 	err = -ENOMEM;
977 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
978 	if (!netdev)
979 		goto err_alloc_etherdev;
980 
981 	SET_NETDEV_DEV(netdev, &pdev->dev);
982 
983 	pci_set_drvdata(pdev, netdev);
984 	adapter = netdev_priv(netdev);
985 	adapter->netdev = netdev;
986 	adapter->pdev = pdev;
987 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
988 	adapter->bars = bars;
989 	adapter->need_ioport = need_ioport;
990 
991 	hw = &adapter->hw;
992 	hw->back = adapter;
993 
994 	err = -EIO;
995 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
996 	if (!hw->hw_addr)
997 		goto err_ioremap;
998 
999 	if (adapter->need_ioport) {
1000 		for (i = BAR_1; i <= BAR_5; i++) {
1001 			if (pci_resource_len(pdev, i) == 0)
1002 				continue;
1003 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1004 				hw->io_base = pci_resource_start(pdev, i);
1005 				break;
1006 			}
1007 		}
1008 	}
1009 
1010 	/* make ready for any if (hw->...) below */
1011 	err = e1000_init_hw_struct(adapter, hw);
1012 	if (err)
1013 		goto err_sw_init;
1014 
1015 	/* there is a workaround being applied below that limits
1016 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1017 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1018 	 */
1019 	pci_using_dac = 0;
1020 	if ((hw->bus_type == e1000_bus_type_pcix) &&
1021 	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1022 		pci_using_dac = 1;
1023 	} else {
1024 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1025 		if (err) {
1026 			pr_err("No usable DMA config, aborting\n");
1027 			goto err_dma;
1028 		}
1029 	}
1030 
1031 	netdev->netdev_ops = &e1000_netdev_ops;
1032 	e1000_set_ethtool_ops(netdev);
1033 	netdev->watchdog_timeo = 5 * HZ;
1034 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1035 
1036 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1037 
1038 	adapter->bd_number = cards_found;
1039 
1040 	/* setup the private structure */
1041 
1042 	err = e1000_sw_init(adapter);
1043 	if (err)
1044 		goto err_sw_init;
1045 
1046 	err = -EIO;
1047 	if (hw->mac_type == e1000_ce4100) {
1048 		hw->ce4100_gbe_mdio_base_virt =
1049 					ioremap(pci_resource_start(pdev, BAR_1),
1050 		                                pci_resource_len(pdev, BAR_1));
1051 
1052 		if (!hw->ce4100_gbe_mdio_base_virt)
1053 			goto err_mdio_ioremap;
1054 	}
1055 
1056 	if (hw->mac_type >= e1000_82543) {
1057 		netdev->hw_features = NETIF_F_SG |
1058 				   NETIF_F_HW_CSUM |
1059 				   NETIF_F_HW_VLAN_CTAG_RX;
1060 		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1061 				   NETIF_F_HW_VLAN_CTAG_FILTER;
1062 	}
1063 
1064 	if ((hw->mac_type >= e1000_82544) &&
1065 	   (hw->mac_type != e1000_82547))
1066 		netdev->hw_features |= NETIF_F_TSO;
1067 
1068 	netdev->priv_flags |= IFF_SUPP_NOFCS;
1069 
1070 	netdev->features |= netdev->hw_features;
1071 	netdev->hw_features |= (NETIF_F_RXCSUM |
1072 				NETIF_F_RXALL |
1073 				NETIF_F_RXFCS);
1074 
1075 	if (pci_using_dac) {
1076 		netdev->features |= NETIF_F_HIGHDMA;
1077 		netdev->vlan_features |= NETIF_F_HIGHDMA;
1078 	}
1079 
1080 	netdev->vlan_features |= (NETIF_F_TSO |
1081 				  NETIF_F_HW_CSUM |
1082 				  NETIF_F_SG);
1083 
1084 	netdev->priv_flags |= IFF_UNICAST_FLT;
1085 
1086 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1087 
1088 	/* initialize eeprom parameters */
1089 	if (e1000_init_eeprom_params(hw)) {
1090 		e_err(probe, "EEPROM initialization failed\n");
1091 		goto err_eeprom;
1092 	}
1093 
1094 	/* before reading the EEPROM, reset the controller to
1095 	 * put the device in a known good starting state
1096 	 */
1097 
1098 	e1000_reset_hw(hw);
1099 
1100 	/* make sure the EEPROM is good */
1101 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1102 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1103 		e1000_dump_eeprom(adapter);
1104 		/* set MAC address to all zeroes to invalidate and temporary
1105 		 * disable this device for the user. This blocks regular
1106 		 * traffic while still permitting ethtool ioctls from reaching
1107 		 * the hardware as well as allowing the user to run the
1108 		 * interface after manually setting a hw addr using
1109 		 * `ip set address`
1110 		 */
1111 		memset(hw->mac_addr, 0, netdev->addr_len);
1112 	} else {
1113 		/* copy the MAC address out of the EEPROM */
1114 		if (e1000_read_mac_addr(hw))
1115 			e_err(probe, "EEPROM Read Error\n");
1116 	}
1117 	/* don't block initalization here due to bad MAC address */
1118 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1119 
1120 	if (!is_valid_ether_addr(netdev->dev_addr))
1121 		e_err(probe, "Invalid MAC Address\n");
1122 
1123 
1124 	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1125 	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1126 			  e1000_82547_tx_fifo_stall_task);
1127 	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1128 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1129 
1130 	e1000_check_options(adapter);
1131 
1132 	/* Initial Wake on LAN setting
1133 	 * If APM wake is enabled in the EEPROM,
1134 	 * enable the ACPI Magic Packet filter
1135 	 */
1136 
1137 	switch (hw->mac_type) {
1138 	case e1000_82542_rev2_0:
1139 	case e1000_82542_rev2_1:
1140 	case e1000_82543:
1141 		break;
1142 	case e1000_82544:
1143 		e1000_read_eeprom(hw,
1144 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1145 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1146 		break;
1147 	case e1000_82546:
1148 	case e1000_82546_rev_3:
1149 		if (er32(STATUS) & E1000_STATUS_FUNC_1){
1150 			e1000_read_eeprom(hw,
1151 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1152 			break;
1153 		}
1154 		/* Fall Through */
1155 	default:
1156 		e1000_read_eeprom(hw,
1157 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1158 		break;
1159 	}
1160 	if (eeprom_data & eeprom_apme_mask)
1161 		adapter->eeprom_wol |= E1000_WUFC_MAG;
1162 
1163 	/* now that we have the eeprom settings, apply the special cases
1164 	 * where the eeprom may be wrong or the board simply won't support
1165 	 * wake on lan on a particular port
1166 	 */
1167 	switch (pdev->device) {
1168 	case E1000_DEV_ID_82546GB_PCIE:
1169 		adapter->eeprom_wol = 0;
1170 		break;
1171 	case E1000_DEV_ID_82546EB_FIBER:
1172 	case E1000_DEV_ID_82546GB_FIBER:
1173 		/* Wake events only supported on port A for dual fiber
1174 		 * regardless of eeprom setting
1175 		 */
1176 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1177 			adapter->eeprom_wol = 0;
1178 		break;
1179 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1180 		/* if quad port adapter, disable WoL on all but port A */
1181 		if (global_quad_port_a != 0)
1182 			adapter->eeprom_wol = 0;
1183 		else
1184 			adapter->quad_port_a = true;
1185 		/* Reset for multiple quad port adapters */
1186 		if (++global_quad_port_a == 4)
1187 			global_quad_port_a = 0;
1188 		break;
1189 	}
1190 
1191 	/* initialize the wol settings based on the eeprom settings */
1192 	adapter->wol = adapter->eeprom_wol;
1193 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1194 
1195 	/* Auto detect PHY address */
1196 	if (hw->mac_type == e1000_ce4100) {
1197 		for (i = 0; i < 32; i++) {
1198 			hw->phy_addr = i;
1199 			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1200 			if (tmp == 0 || tmp == 0xFF) {
1201 				if (i == 31)
1202 					goto err_eeprom;
1203 				continue;
1204 			} else
1205 				break;
1206 		}
1207 	}
1208 
1209 	/* reset the hardware with the new settings */
1210 	e1000_reset(adapter);
1211 
1212 	strcpy(netdev->name, "eth%d");
1213 	err = register_netdev(netdev);
1214 	if (err)
1215 		goto err_register;
1216 
1217 	e1000_vlan_filter_on_off(adapter, false);
1218 
1219 	/* print bus type/speed/width info */
1220 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1221 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1222 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1223 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1224 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1225 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1226 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1227 	       netdev->dev_addr);
1228 
1229 	/* carrier off reporting is important to ethtool even BEFORE open */
1230 	netif_carrier_off(netdev);
1231 
1232 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1233 
1234 	cards_found++;
1235 	return 0;
1236 
1237 err_register:
1238 err_eeprom:
1239 	e1000_phy_hw_reset(hw);
1240 
1241 	if (hw->flash_address)
1242 		iounmap(hw->flash_address);
1243 	kfree(adapter->tx_ring);
1244 	kfree(adapter->rx_ring);
1245 err_dma:
1246 err_sw_init:
1247 err_mdio_ioremap:
1248 	iounmap(hw->ce4100_gbe_mdio_base_virt);
1249 	iounmap(hw->hw_addr);
1250 err_ioremap:
1251 	free_netdev(netdev);
1252 err_alloc_etherdev:
1253 	pci_release_selected_regions(pdev, bars);
1254 err_pci_reg:
1255 	pci_disable_device(pdev);
1256 	return err;
1257 }
1258 
1259 /**
1260  * e1000_remove - Device Removal Routine
1261  * @pdev: PCI device information struct
1262  *
1263  * e1000_remove is called by the PCI subsystem to alert the driver
1264  * that it should release a PCI device.  The could be caused by a
1265  * Hot-Plug event, or because the driver is going to be removed from
1266  * memory.
1267  **/
1268 static void e1000_remove(struct pci_dev *pdev)
1269 {
1270 	struct net_device *netdev = pci_get_drvdata(pdev);
1271 	struct e1000_adapter *adapter = netdev_priv(netdev);
1272 	struct e1000_hw *hw = &adapter->hw;
1273 
1274 	e1000_down_and_stop(adapter);
1275 	e1000_release_manageability(adapter);
1276 
1277 	unregister_netdev(netdev);
1278 
1279 	e1000_phy_hw_reset(hw);
1280 
1281 	kfree(adapter->tx_ring);
1282 	kfree(adapter->rx_ring);
1283 
1284 	if (hw->mac_type == e1000_ce4100)
1285 		iounmap(hw->ce4100_gbe_mdio_base_virt);
1286 	iounmap(hw->hw_addr);
1287 	if (hw->flash_address)
1288 		iounmap(hw->flash_address);
1289 	pci_release_selected_regions(pdev, adapter->bars);
1290 
1291 	free_netdev(netdev);
1292 
1293 	pci_disable_device(pdev);
1294 }
1295 
1296 /**
1297  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1298  * @adapter: board private structure to initialize
1299  *
1300  * e1000_sw_init initializes the Adapter private data structure.
1301  * e1000_init_hw_struct MUST be called before this function
1302  **/
1303 static int e1000_sw_init(struct e1000_adapter *adapter)
1304 {
1305 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1306 
1307 	adapter->num_tx_queues = 1;
1308 	adapter->num_rx_queues = 1;
1309 
1310 	if (e1000_alloc_queues(adapter)) {
1311 		e_err(probe, "Unable to allocate memory for queues\n");
1312 		return -ENOMEM;
1313 	}
1314 
1315 	/* Explicitly disable IRQ since the NIC can be in any state. */
1316 	e1000_irq_disable(adapter);
1317 
1318 	spin_lock_init(&adapter->stats_lock);
1319 	mutex_init(&adapter->mutex);
1320 
1321 	set_bit(__E1000_DOWN, &adapter->flags);
1322 
1323 	return 0;
1324 }
1325 
1326 /**
1327  * e1000_alloc_queues - Allocate memory for all rings
1328  * @adapter: board private structure to initialize
1329  *
1330  * We allocate one ring per queue at run-time since we don't know the
1331  * number of queues at compile-time.
1332  **/
1333 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1334 {
1335 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1336 	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
1337 	if (!adapter->tx_ring)
1338 		return -ENOMEM;
1339 
1340 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1341 	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
1342 	if (!adapter->rx_ring) {
1343 		kfree(adapter->tx_ring);
1344 		return -ENOMEM;
1345 	}
1346 
1347 	return E1000_SUCCESS;
1348 }
1349 
1350 /**
1351  * e1000_open - Called when a network interface is made active
1352  * @netdev: network interface device structure
1353  *
1354  * Returns 0 on success, negative value on failure
1355  *
1356  * The open entry point is called when a network interface is made
1357  * active by the system (IFF_UP).  At this point all resources needed
1358  * for transmit and receive operations are allocated, the interrupt
1359  * handler is registered with the OS, the watchdog task is started,
1360  * and the stack is notified that the interface is ready.
1361  **/
1362 static int e1000_open(struct net_device *netdev)
1363 {
1364 	struct e1000_adapter *adapter = netdev_priv(netdev);
1365 	struct e1000_hw *hw = &adapter->hw;
1366 	int err;
1367 
1368 	/* disallow open during test */
1369 	if (test_bit(__E1000_TESTING, &adapter->flags))
1370 		return -EBUSY;
1371 
1372 	netif_carrier_off(netdev);
1373 
1374 	/* allocate transmit descriptors */
1375 	err = e1000_setup_all_tx_resources(adapter);
1376 	if (err)
1377 		goto err_setup_tx;
1378 
1379 	/* allocate receive descriptors */
1380 	err = e1000_setup_all_rx_resources(adapter);
1381 	if (err)
1382 		goto err_setup_rx;
1383 
1384 	e1000_power_up_phy(adapter);
1385 
1386 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1387 	if ((hw->mng_cookie.status &
1388 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1389 		e1000_update_mng_vlan(adapter);
1390 	}
1391 
1392 	/* before we allocate an interrupt, we must be ready to handle it.
1393 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1394 	 * as soon as we call pci_request_irq, so we have to setup our
1395 	 * clean_rx handler before we do so.
1396 	 */
1397 	e1000_configure(adapter);
1398 
1399 	err = e1000_request_irq(adapter);
1400 	if (err)
1401 		goto err_req_irq;
1402 
1403 	/* From here on the code is the same as e1000_up() */
1404 	clear_bit(__E1000_DOWN, &adapter->flags);
1405 
1406 	napi_enable(&adapter->napi);
1407 
1408 	e1000_irq_enable(adapter);
1409 
1410 	netif_start_queue(netdev);
1411 
1412 	/* fire a link status change interrupt to start the watchdog */
1413 	ew32(ICS, E1000_ICS_LSC);
1414 
1415 	return E1000_SUCCESS;
1416 
1417 err_req_irq:
1418 	e1000_power_down_phy(adapter);
1419 	e1000_free_all_rx_resources(adapter);
1420 err_setup_rx:
1421 	e1000_free_all_tx_resources(adapter);
1422 err_setup_tx:
1423 	e1000_reset(adapter);
1424 
1425 	return err;
1426 }
1427 
1428 /**
1429  * e1000_close - Disables a network interface
1430  * @netdev: network interface device structure
1431  *
1432  * Returns 0, this is not allowed to fail
1433  *
1434  * The close entry point is called when an interface is de-activated
1435  * by the OS.  The hardware is still under the drivers control, but
1436  * needs to be disabled.  A global MAC reset is issued to stop the
1437  * hardware, and all transmit and receive resources are freed.
1438  **/
1439 static int e1000_close(struct net_device *netdev)
1440 {
1441 	struct e1000_adapter *adapter = netdev_priv(netdev);
1442 	struct e1000_hw *hw = &adapter->hw;
1443 
1444 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1445 	e1000_down(adapter);
1446 	e1000_power_down_phy(adapter);
1447 	e1000_free_irq(adapter);
1448 
1449 	e1000_free_all_tx_resources(adapter);
1450 	e1000_free_all_rx_resources(adapter);
1451 
1452 	/* kill manageability vlan ID if supported, but not if a vlan with
1453 	 * the same ID is registered on the host OS (let 8021q kill it)
1454 	 */
1455 	if ((hw->mng_cookie.status &
1456 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1457 	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1458 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1459 				       adapter->mng_vlan_id);
1460 	}
1461 
1462 	return 0;
1463 }
1464 
1465 /**
1466  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1467  * @adapter: address of board private structure
1468  * @start: address of beginning of memory
1469  * @len: length of memory
1470  **/
1471 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1472 				  unsigned long len)
1473 {
1474 	struct e1000_hw *hw = &adapter->hw;
1475 	unsigned long begin = (unsigned long)start;
1476 	unsigned long end = begin + len;
1477 
1478 	/* First rev 82545 and 82546 need to not allow any memory
1479 	 * write location to cross 64k boundary due to errata 23
1480 	 */
1481 	if (hw->mac_type == e1000_82545 ||
1482 	    hw->mac_type == e1000_ce4100 ||
1483 	    hw->mac_type == e1000_82546) {
1484 		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1485 	}
1486 
1487 	return true;
1488 }
1489 
1490 /**
1491  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1492  * @adapter: board private structure
1493  * @txdr:    tx descriptor ring (for a specific queue) to setup
1494  *
1495  * Return 0 on success, negative on failure
1496  **/
1497 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1498 				    struct e1000_tx_ring *txdr)
1499 {
1500 	struct pci_dev *pdev = adapter->pdev;
1501 	int size;
1502 
1503 	size = sizeof(struct e1000_buffer) * txdr->count;
1504 	txdr->buffer_info = vzalloc(size);
1505 	if (!txdr->buffer_info)
1506 		return -ENOMEM;
1507 
1508 	/* round up to nearest 4K */
1509 
1510 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1511 	txdr->size = ALIGN(txdr->size, 4096);
1512 
1513 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1514 					GFP_KERNEL);
1515 	if (!txdr->desc) {
1516 setup_tx_desc_die:
1517 		vfree(txdr->buffer_info);
1518 		return -ENOMEM;
1519 	}
1520 
1521 	/* Fix for errata 23, can't cross 64kB boundary */
1522 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1523 		void *olddesc = txdr->desc;
1524 		dma_addr_t olddma = txdr->dma;
1525 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1526 		      txdr->size, txdr->desc);
1527 		/* Try again, without freeing the previous */
1528 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1529 						&txdr->dma, GFP_KERNEL);
1530 		/* Failed allocation, critical failure */
1531 		if (!txdr->desc) {
1532 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1533 					  olddma);
1534 			goto setup_tx_desc_die;
1535 		}
1536 
1537 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1538 			/* give up */
1539 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1540 					  txdr->dma);
1541 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1542 					  olddma);
1543 			e_err(probe, "Unable to allocate aligned memory "
1544 			      "for the transmit descriptor ring\n");
1545 			vfree(txdr->buffer_info);
1546 			return -ENOMEM;
1547 		} else {
1548 			/* Free old allocation, new allocation was successful */
1549 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1550 					  olddma);
1551 		}
1552 	}
1553 	memset(txdr->desc, 0, txdr->size);
1554 
1555 	txdr->next_to_use = 0;
1556 	txdr->next_to_clean = 0;
1557 
1558 	return 0;
1559 }
1560 
1561 /**
1562  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1563  * 				  (Descriptors) for all queues
1564  * @adapter: board private structure
1565  *
1566  * Return 0 on success, negative on failure
1567  **/
1568 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1569 {
1570 	int i, err = 0;
1571 
1572 	for (i = 0; i < adapter->num_tx_queues; i++) {
1573 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1574 		if (err) {
1575 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1576 			for (i-- ; i >= 0; i--)
1577 				e1000_free_tx_resources(adapter,
1578 							&adapter->tx_ring[i]);
1579 			break;
1580 		}
1581 	}
1582 
1583 	return err;
1584 }
1585 
1586 /**
1587  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1588  * @adapter: board private structure
1589  *
1590  * Configure the Tx unit of the MAC after a reset.
1591  **/
1592 static void e1000_configure_tx(struct e1000_adapter *adapter)
1593 {
1594 	u64 tdba;
1595 	struct e1000_hw *hw = &adapter->hw;
1596 	u32 tdlen, tctl, tipg;
1597 	u32 ipgr1, ipgr2;
1598 
1599 	/* Setup the HW Tx Head and Tail descriptor pointers */
1600 
1601 	switch (adapter->num_tx_queues) {
1602 	case 1:
1603 	default:
1604 		tdba = adapter->tx_ring[0].dma;
1605 		tdlen = adapter->tx_ring[0].count *
1606 			sizeof(struct e1000_tx_desc);
1607 		ew32(TDLEN, tdlen);
1608 		ew32(TDBAH, (tdba >> 32));
1609 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1610 		ew32(TDT, 0);
1611 		ew32(TDH, 0);
1612 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1613 					   E1000_TDH : E1000_82542_TDH);
1614 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1615 					   E1000_TDT : E1000_82542_TDT);
1616 		break;
1617 	}
1618 
1619 	/* Set the default values for the Tx Inter Packet Gap timer */
1620 	if ((hw->media_type == e1000_media_type_fiber ||
1621 	     hw->media_type == e1000_media_type_internal_serdes))
1622 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1623 	else
1624 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1625 
1626 	switch (hw->mac_type) {
1627 	case e1000_82542_rev2_0:
1628 	case e1000_82542_rev2_1:
1629 		tipg = DEFAULT_82542_TIPG_IPGT;
1630 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1631 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1632 		break;
1633 	default:
1634 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1635 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1636 		break;
1637 	}
1638 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1639 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1640 	ew32(TIPG, tipg);
1641 
1642 	/* Set the Tx Interrupt Delay register */
1643 
1644 	ew32(TIDV, adapter->tx_int_delay);
1645 	if (hw->mac_type >= e1000_82540)
1646 		ew32(TADV, adapter->tx_abs_int_delay);
1647 
1648 	/* Program the Transmit Control Register */
1649 
1650 	tctl = er32(TCTL);
1651 	tctl &= ~E1000_TCTL_CT;
1652 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1653 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1654 
1655 	e1000_config_collision_dist(hw);
1656 
1657 	/* Setup Transmit Descriptor Settings for eop descriptor */
1658 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1659 
1660 	/* only set IDE if we are delaying interrupts using the timers */
1661 	if (adapter->tx_int_delay)
1662 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1663 
1664 	if (hw->mac_type < e1000_82543)
1665 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1666 	else
1667 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1668 
1669 	/* Cache if we're 82544 running in PCI-X because we'll
1670 	 * need this to apply a workaround later in the send path.
1671 	 */
1672 	if (hw->mac_type == e1000_82544 &&
1673 	    hw->bus_type == e1000_bus_type_pcix)
1674 		adapter->pcix_82544 = true;
1675 
1676 	ew32(TCTL, tctl);
1677 
1678 }
1679 
1680 /**
1681  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1682  * @adapter: board private structure
1683  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1684  *
1685  * Returns 0 on success, negative on failure
1686  **/
1687 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1688 				    struct e1000_rx_ring *rxdr)
1689 {
1690 	struct pci_dev *pdev = adapter->pdev;
1691 	int size, desc_len;
1692 
1693 	size = sizeof(struct e1000_buffer) * rxdr->count;
1694 	rxdr->buffer_info = vzalloc(size);
1695 	if (!rxdr->buffer_info)
1696 		return -ENOMEM;
1697 
1698 	desc_len = sizeof(struct e1000_rx_desc);
1699 
1700 	/* Round up to nearest 4K */
1701 
1702 	rxdr->size = rxdr->count * desc_len;
1703 	rxdr->size = ALIGN(rxdr->size, 4096);
1704 
1705 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1706 					GFP_KERNEL);
1707 	if (!rxdr->desc) {
1708 setup_rx_desc_die:
1709 		vfree(rxdr->buffer_info);
1710 		return -ENOMEM;
1711 	}
1712 
1713 	/* Fix for errata 23, can't cross 64kB boundary */
1714 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1715 		void *olddesc = rxdr->desc;
1716 		dma_addr_t olddma = rxdr->dma;
1717 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1718 		      rxdr->size, rxdr->desc);
1719 		/* Try again, without freeing the previous */
1720 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1721 						&rxdr->dma, GFP_KERNEL);
1722 		/* Failed allocation, critical failure */
1723 		if (!rxdr->desc) {
1724 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1725 					  olddma);
1726 			goto setup_rx_desc_die;
1727 		}
1728 
1729 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1730 			/* give up */
1731 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1732 					  rxdr->dma);
1733 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1734 					  olddma);
1735 			e_err(probe, "Unable to allocate aligned memory for "
1736 			      "the Rx descriptor ring\n");
1737 			goto setup_rx_desc_die;
1738 		} else {
1739 			/* Free old allocation, new allocation was successful */
1740 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1741 					  olddma);
1742 		}
1743 	}
1744 	memset(rxdr->desc, 0, rxdr->size);
1745 
1746 	rxdr->next_to_clean = 0;
1747 	rxdr->next_to_use = 0;
1748 	rxdr->rx_skb_top = NULL;
1749 
1750 	return 0;
1751 }
1752 
1753 /**
1754  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1755  * 				  (Descriptors) for all queues
1756  * @adapter: board private structure
1757  *
1758  * Return 0 on success, negative on failure
1759  **/
1760 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1761 {
1762 	int i, err = 0;
1763 
1764 	for (i = 0; i < adapter->num_rx_queues; i++) {
1765 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1766 		if (err) {
1767 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1768 			for (i-- ; i >= 0; i--)
1769 				e1000_free_rx_resources(adapter,
1770 							&adapter->rx_ring[i]);
1771 			break;
1772 		}
1773 	}
1774 
1775 	return err;
1776 }
1777 
1778 /**
1779  * e1000_setup_rctl - configure the receive control registers
1780  * @adapter: Board private structure
1781  **/
1782 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1783 {
1784 	struct e1000_hw *hw = &adapter->hw;
1785 	u32 rctl;
1786 
1787 	rctl = er32(RCTL);
1788 
1789 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1790 
1791 	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1792 		E1000_RCTL_RDMTS_HALF |
1793 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1794 
1795 	if (hw->tbi_compatibility_on == 1)
1796 		rctl |= E1000_RCTL_SBP;
1797 	else
1798 		rctl &= ~E1000_RCTL_SBP;
1799 
1800 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1801 		rctl &= ~E1000_RCTL_LPE;
1802 	else
1803 		rctl |= E1000_RCTL_LPE;
1804 
1805 	/* Setup buffer sizes */
1806 	rctl &= ~E1000_RCTL_SZ_4096;
1807 	rctl |= E1000_RCTL_BSEX;
1808 	switch (adapter->rx_buffer_len) {
1809 		case E1000_RXBUFFER_2048:
1810 		default:
1811 			rctl |= E1000_RCTL_SZ_2048;
1812 			rctl &= ~E1000_RCTL_BSEX;
1813 			break;
1814 		case E1000_RXBUFFER_4096:
1815 			rctl |= E1000_RCTL_SZ_4096;
1816 			break;
1817 		case E1000_RXBUFFER_8192:
1818 			rctl |= E1000_RCTL_SZ_8192;
1819 			break;
1820 		case E1000_RXBUFFER_16384:
1821 			rctl |= E1000_RCTL_SZ_16384;
1822 			break;
1823 	}
1824 
1825 	/* This is useful for sniffing bad packets. */
1826 	if (adapter->netdev->features & NETIF_F_RXALL) {
1827 		/* UPE and MPE will be handled by normal PROMISC logic
1828 		 * in e1000e_set_rx_mode
1829 		 */
1830 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1831 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1832 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1833 
1834 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1835 			  E1000_RCTL_DPF | /* Allow filtered pause */
1836 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1837 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1838 		 * and that breaks VLANs.
1839 		 */
1840 	}
1841 
1842 	ew32(RCTL, rctl);
1843 }
1844 
1845 /**
1846  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1847  * @adapter: board private structure
1848  *
1849  * Configure the Rx unit of the MAC after a reset.
1850  **/
1851 static void e1000_configure_rx(struct e1000_adapter *adapter)
1852 {
1853 	u64 rdba;
1854 	struct e1000_hw *hw = &adapter->hw;
1855 	u32 rdlen, rctl, rxcsum;
1856 
1857 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1858 		rdlen = adapter->rx_ring[0].count *
1859 		        sizeof(struct e1000_rx_desc);
1860 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1861 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1862 	} else {
1863 		rdlen = adapter->rx_ring[0].count *
1864 		        sizeof(struct e1000_rx_desc);
1865 		adapter->clean_rx = e1000_clean_rx_irq;
1866 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1867 	}
1868 
1869 	/* disable receives while setting up the descriptors */
1870 	rctl = er32(RCTL);
1871 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1872 
1873 	/* set the Receive Delay Timer Register */
1874 	ew32(RDTR, adapter->rx_int_delay);
1875 
1876 	if (hw->mac_type >= e1000_82540) {
1877 		ew32(RADV, adapter->rx_abs_int_delay);
1878 		if (adapter->itr_setting != 0)
1879 			ew32(ITR, 1000000000 / (adapter->itr * 256));
1880 	}
1881 
1882 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1883 	 * the Base and Length of the Rx Descriptor Ring
1884 	 */
1885 	switch (adapter->num_rx_queues) {
1886 	case 1:
1887 	default:
1888 		rdba = adapter->rx_ring[0].dma;
1889 		ew32(RDLEN, rdlen);
1890 		ew32(RDBAH, (rdba >> 32));
1891 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1892 		ew32(RDT, 0);
1893 		ew32(RDH, 0);
1894 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1895 					   E1000_RDH : E1000_82542_RDH);
1896 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1897 					   E1000_RDT : E1000_82542_RDT);
1898 		break;
1899 	}
1900 
1901 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1902 	if (hw->mac_type >= e1000_82543) {
1903 		rxcsum = er32(RXCSUM);
1904 		if (adapter->rx_csum)
1905 			rxcsum |= E1000_RXCSUM_TUOFL;
1906 		else
1907 			/* don't need to clear IPPCSE as it defaults to 0 */
1908 			rxcsum &= ~E1000_RXCSUM_TUOFL;
1909 		ew32(RXCSUM, rxcsum);
1910 	}
1911 
1912 	/* Enable Receives */
1913 	ew32(RCTL, rctl | E1000_RCTL_EN);
1914 }
1915 
1916 /**
1917  * e1000_free_tx_resources - Free Tx Resources per Queue
1918  * @adapter: board private structure
1919  * @tx_ring: Tx descriptor ring for a specific queue
1920  *
1921  * Free all transmit software resources
1922  **/
1923 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1924 				    struct e1000_tx_ring *tx_ring)
1925 {
1926 	struct pci_dev *pdev = adapter->pdev;
1927 
1928 	e1000_clean_tx_ring(adapter, tx_ring);
1929 
1930 	vfree(tx_ring->buffer_info);
1931 	tx_ring->buffer_info = NULL;
1932 
1933 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1934 			  tx_ring->dma);
1935 
1936 	tx_ring->desc = NULL;
1937 }
1938 
1939 /**
1940  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1941  * @adapter: board private structure
1942  *
1943  * Free all transmit software resources
1944  **/
1945 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1946 {
1947 	int i;
1948 
1949 	for (i = 0; i < adapter->num_tx_queues; i++)
1950 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1951 }
1952 
1953 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1954 					     struct e1000_buffer *buffer_info)
1955 {
1956 	if (buffer_info->dma) {
1957 		if (buffer_info->mapped_as_page)
1958 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1959 				       buffer_info->length, DMA_TO_DEVICE);
1960 		else
1961 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1962 					 buffer_info->length,
1963 					 DMA_TO_DEVICE);
1964 		buffer_info->dma = 0;
1965 	}
1966 	if (buffer_info->skb) {
1967 		dev_kfree_skb_any(buffer_info->skb);
1968 		buffer_info->skb = NULL;
1969 	}
1970 	buffer_info->time_stamp = 0;
1971 	/* buffer_info must be completely set up in the transmit path */
1972 }
1973 
1974 /**
1975  * e1000_clean_tx_ring - Free Tx Buffers
1976  * @adapter: board private structure
1977  * @tx_ring: ring to be cleaned
1978  **/
1979 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1980 				struct e1000_tx_ring *tx_ring)
1981 {
1982 	struct e1000_hw *hw = &adapter->hw;
1983 	struct e1000_buffer *buffer_info;
1984 	unsigned long size;
1985 	unsigned int i;
1986 
1987 	/* Free all the Tx ring sk_buffs */
1988 
1989 	for (i = 0; i < tx_ring->count; i++) {
1990 		buffer_info = &tx_ring->buffer_info[i];
1991 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1992 	}
1993 
1994 	netdev_reset_queue(adapter->netdev);
1995 	size = sizeof(struct e1000_buffer) * tx_ring->count;
1996 	memset(tx_ring->buffer_info, 0, size);
1997 
1998 	/* Zero out the descriptor ring */
1999 
2000 	memset(tx_ring->desc, 0, tx_ring->size);
2001 
2002 	tx_ring->next_to_use = 0;
2003 	tx_ring->next_to_clean = 0;
2004 	tx_ring->last_tx_tso = false;
2005 
2006 	writel(0, hw->hw_addr + tx_ring->tdh);
2007 	writel(0, hw->hw_addr + tx_ring->tdt);
2008 }
2009 
2010 /**
2011  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2012  * @adapter: board private structure
2013  **/
2014 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2015 {
2016 	int i;
2017 
2018 	for (i = 0; i < adapter->num_tx_queues; i++)
2019 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2020 }
2021 
2022 /**
2023  * e1000_free_rx_resources - Free Rx Resources
2024  * @adapter: board private structure
2025  * @rx_ring: ring to clean the resources from
2026  *
2027  * Free all receive software resources
2028  **/
2029 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2030 				    struct e1000_rx_ring *rx_ring)
2031 {
2032 	struct pci_dev *pdev = adapter->pdev;
2033 
2034 	e1000_clean_rx_ring(adapter, rx_ring);
2035 
2036 	vfree(rx_ring->buffer_info);
2037 	rx_ring->buffer_info = NULL;
2038 
2039 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2040 			  rx_ring->dma);
2041 
2042 	rx_ring->desc = NULL;
2043 }
2044 
2045 /**
2046  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2047  * @adapter: board private structure
2048  *
2049  * Free all receive software resources
2050  **/
2051 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2052 {
2053 	int i;
2054 
2055 	for (i = 0; i < adapter->num_rx_queues; i++)
2056 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2057 }
2058 
2059 /**
2060  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2061  * @adapter: board private structure
2062  * @rx_ring: ring to free buffers from
2063  **/
2064 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2065 				struct e1000_rx_ring *rx_ring)
2066 {
2067 	struct e1000_hw *hw = &adapter->hw;
2068 	struct e1000_buffer *buffer_info;
2069 	struct pci_dev *pdev = adapter->pdev;
2070 	unsigned long size;
2071 	unsigned int i;
2072 
2073 	/* Free all the Rx ring sk_buffs */
2074 	for (i = 0; i < rx_ring->count; i++) {
2075 		buffer_info = &rx_ring->buffer_info[i];
2076 		if (buffer_info->dma &&
2077 		    adapter->clean_rx == e1000_clean_rx_irq) {
2078 			dma_unmap_single(&pdev->dev, buffer_info->dma,
2079 			                 buffer_info->length,
2080 					 DMA_FROM_DEVICE);
2081 		} else if (buffer_info->dma &&
2082 		           adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2083 			dma_unmap_page(&pdev->dev, buffer_info->dma,
2084 				       buffer_info->length,
2085 				       DMA_FROM_DEVICE);
2086 		}
2087 
2088 		buffer_info->dma = 0;
2089 		if (buffer_info->page) {
2090 			put_page(buffer_info->page);
2091 			buffer_info->page = NULL;
2092 		}
2093 		if (buffer_info->skb) {
2094 			dev_kfree_skb(buffer_info->skb);
2095 			buffer_info->skb = NULL;
2096 		}
2097 	}
2098 
2099 	/* there also may be some cached data from a chained receive */
2100 	if (rx_ring->rx_skb_top) {
2101 		dev_kfree_skb(rx_ring->rx_skb_top);
2102 		rx_ring->rx_skb_top = NULL;
2103 	}
2104 
2105 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2106 	memset(rx_ring->buffer_info, 0, size);
2107 
2108 	/* Zero out the descriptor ring */
2109 	memset(rx_ring->desc, 0, rx_ring->size);
2110 
2111 	rx_ring->next_to_clean = 0;
2112 	rx_ring->next_to_use = 0;
2113 
2114 	writel(0, hw->hw_addr + rx_ring->rdh);
2115 	writel(0, hw->hw_addr + rx_ring->rdt);
2116 }
2117 
2118 /**
2119  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2120  * @adapter: board private structure
2121  **/
2122 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2123 {
2124 	int i;
2125 
2126 	for (i = 0; i < adapter->num_rx_queues; i++)
2127 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2128 }
2129 
2130 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2131  * and memory write and invalidate disabled for certain operations
2132  */
2133 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2134 {
2135 	struct e1000_hw *hw = &adapter->hw;
2136 	struct net_device *netdev = adapter->netdev;
2137 	u32 rctl;
2138 
2139 	e1000_pci_clear_mwi(hw);
2140 
2141 	rctl = er32(RCTL);
2142 	rctl |= E1000_RCTL_RST;
2143 	ew32(RCTL, rctl);
2144 	E1000_WRITE_FLUSH();
2145 	mdelay(5);
2146 
2147 	if (netif_running(netdev))
2148 		e1000_clean_all_rx_rings(adapter);
2149 }
2150 
2151 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2152 {
2153 	struct e1000_hw *hw = &adapter->hw;
2154 	struct net_device *netdev = adapter->netdev;
2155 	u32 rctl;
2156 
2157 	rctl = er32(RCTL);
2158 	rctl &= ~E1000_RCTL_RST;
2159 	ew32(RCTL, rctl);
2160 	E1000_WRITE_FLUSH();
2161 	mdelay(5);
2162 
2163 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2164 		e1000_pci_set_mwi(hw);
2165 
2166 	if (netif_running(netdev)) {
2167 		/* No need to loop, because 82542 supports only 1 queue */
2168 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2169 		e1000_configure_rx(adapter);
2170 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2171 	}
2172 }
2173 
2174 /**
2175  * e1000_set_mac - Change the Ethernet Address of the NIC
2176  * @netdev: network interface device structure
2177  * @p: pointer to an address structure
2178  *
2179  * Returns 0 on success, negative on failure
2180  **/
2181 static int e1000_set_mac(struct net_device *netdev, void *p)
2182 {
2183 	struct e1000_adapter *adapter = netdev_priv(netdev);
2184 	struct e1000_hw *hw = &adapter->hw;
2185 	struct sockaddr *addr = p;
2186 
2187 	if (!is_valid_ether_addr(addr->sa_data))
2188 		return -EADDRNOTAVAIL;
2189 
2190 	/* 82542 2.0 needs to be in reset to write receive address registers */
2191 
2192 	if (hw->mac_type == e1000_82542_rev2_0)
2193 		e1000_enter_82542_rst(adapter);
2194 
2195 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2196 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2197 
2198 	e1000_rar_set(hw, hw->mac_addr, 0);
2199 
2200 	if (hw->mac_type == e1000_82542_rev2_0)
2201 		e1000_leave_82542_rst(adapter);
2202 
2203 	return 0;
2204 }
2205 
2206 /**
2207  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2208  * @netdev: network interface device structure
2209  *
2210  * The set_rx_mode entry point is called whenever the unicast or multicast
2211  * address lists or the network interface flags are updated. This routine is
2212  * responsible for configuring the hardware for proper unicast, multicast,
2213  * promiscuous mode, and all-multi behavior.
2214  **/
2215 static void e1000_set_rx_mode(struct net_device *netdev)
2216 {
2217 	struct e1000_adapter *adapter = netdev_priv(netdev);
2218 	struct e1000_hw *hw = &adapter->hw;
2219 	struct netdev_hw_addr *ha;
2220 	bool use_uc = false;
2221 	u32 rctl;
2222 	u32 hash_value;
2223 	int i, rar_entries = E1000_RAR_ENTRIES;
2224 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2225 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2226 
2227 	if (!mcarray)
2228 		return;
2229 
2230 	/* Check for Promiscuous and All Multicast modes */
2231 
2232 	rctl = er32(RCTL);
2233 
2234 	if (netdev->flags & IFF_PROMISC) {
2235 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2236 		rctl &= ~E1000_RCTL_VFE;
2237 	} else {
2238 		if (netdev->flags & IFF_ALLMULTI)
2239 			rctl |= E1000_RCTL_MPE;
2240 		else
2241 			rctl &= ~E1000_RCTL_MPE;
2242 		/* Enable VLAN filter if there is a VLAN */
2243 		if (e1000_vlan_used(adapter))
2244 			rctl |= E1000_RCTL_VFE;
2245 	}
2246 
2247 	if (netdev_uc_count(netdev) > rar_entries - 1) {
2248 		rctl |= E1000_RCTL_UPE;
2249 	} else if (!(netdev->flags & IFF_PROMISC)) {
2250 		rctl &= ~E1000_RCTL_UPE;
2251 		use_uc = true;
2252 	}
2253 
2254 	ew32(RCTL, rctl);
2255 
2256 	/* 82542 2.0 needs to be in reset to write receive address registers */
2257 
2258 	if (hw->mac_type == e1000_82542_rev2_0)
2259 		e1000_enter_82542_rst(adapter);
2260 
2261 	/* load the first 14 addresses into the exact filters 1-14. Unicast
2262 	 * addresses take precedence to avoid disabling unicast filtering
2263 	 * when possible.
2264 	 *
2265 	 * RAR 0 is used for the station MAC address
2266 	 * if there are not 14 addresses, go ahead and clear the filters
2267 	 */
2268 	i = 1;
2269 	if (use_uc)
2270 		netdev_for_each_uc_addr(ha, netdev) {
2271 			if (i == rar_entries)
2272 				break;
2273 			e1000_rar_set(hw, ha->addr, i++);
2274 		}
2275 
2276 	netdev_for_each_mc_addr(ha, netdev) {
2277 		if (i == rar_entries) {
2278 			/* load any remaining addresses into the hash table */
2279 			u32 hash_reg, hash_bit, mta;
2280 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2281 			hash_reg = (hash_value >> 5) & 0x7F;
2282 			hash_bit = hash_value & 0x1F;
2283 			mta = (1 << hash_bit);
2284 			mcarray[hash_reg] |= mta;
2285 		} else {
2286 			e1000_rar_set(hw, ha->addr, i++);
2287 		}
2288 	}
2289 
2290 	for (; i < rar_entries; i++) {
2291 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2292 		E1000_WRITE_FLUSH();
2293 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2294 		E1000_WRITE_FLUSH();
2295 	}
2296 
2297 	/* write the hash table completely, write from bottom to avoid
2298 	 * both stupid write combining chipsets, and flushing each write
2299 	 */
2300 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2301 		/* If we are on an 82544 has an errata where writing odd
2302 		 * offsets overwrites the previous even offset, but writing
2303 		 * backwards over the range solves the issue by always
2304 		 * writing the odd offset first
2305 		 */
2306 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2307 	}
2308 	E1000_WRITE_FLUSH();
2309 
2310 	if (hw->mac_type == e1000_82542_rev2_0)
2311 		e1000_leave_82542_rst(adapter);
2312 
2313 	kfree(mcarray);
2314 }
2315 
2316 /**
2317  * e1000_update_phy_info_task - get phy info
2318  * @work: work struct contained inside adapter struct
2319  *
2320  * Need to wait a few seconds after link up to get diagnostic information from
2321  * the phy
2322  */
2323 static void e1000_update_phy_info_task(struct work_struct *work)
2324 {
2325 	struct e1000_adapter *adapter = container_of(work,
2326 						     struct e1000_adapter,
2327 						     phy_info_task.work);
2328 	if (test_bit(__E1000_DOWN, &adapter->flags))
2329 		return;
2330 	mutex_lock(&adapter->mutex);
2331 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2332 	mutex_unlock(&adapter->mutex);
2333 }
2334 
2335 /**
2336  * e1000_82547_tx_fifo_stall_task - task to complete work
2337  * @work: work struct contained inside adapter struct
2338  **/
2339 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2340 {
2341 	struct e1000_adapter *adapter = container_of(work,
2342 						     struct e1000_adapter,
2343 						     fifo_stall_task.work);
2344 	struct e1000_hw *hw = &adapter->hw;
2345 	struct net_device *netdev = adapter->netdev;
2346 	u32 tctl;
2347 
2348 	if (test_bit(__E1000_DOWN, &adapter->flags))
2349 		return;
2350 	mutex_lock(&adapter->mutex);
2351 	if (atomic_read(&adapter->tx_fifo_stall)) {
2352 		if ((er32(TDT) == er32(TDH)) &&
2353 		   (er32(TDFT) == er32(TDFH)) &&
2354 		   (er32(TDFTS) == er32(TDFHS))) {
2355 			tctl = er32(TCTL);
2356 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2357 			ew32(TDFT, adapter->tx_head_addr);
2358 			ew32(TDFH, adapter->tx_head_addr);
2359 			ew32(TDFTS, adapter->tx_head_addr);
2360 			ew32(TDFHS, adapter->tx_head_addr);
2361 			ew32(TCTL, tctl);
2362 			E1000_WRITE_FLUSH();
2363 
2364 			adapter->tx_fifo_head = 0;
2365 			atomic_set(&adapter->tx_fifo_stall, 0);
2366 			netif_wake_queue(netdev);
2367 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2368 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2369 		}
2370 	}
2371 	mutex_unlock(&adapter->mutex);
2372 }
2373 
2374 bool e1000_has_link(struct e1000_adapter *adapter)
2375 {
2376 	struct e1000_hw *hw = &adapter->hw;
2377 	bool link_active = false;
2378 
2379 	/* get_link_status is set on LSC (link status) interrupt or rx
2380 	 * sequence error interrupt (except on intel ce4100).
2381 	 * get_link_status will stay false until the
2382 	 * e1000_check_for_link establishes link for copper adapters
2383 	 * ONLY
2384 	 */
2385 	switch (hw->media_type) {
2386 	case e1000_media_type_copper:
2387 		if (hw->mac_type == e1000_ce4100)
2388 			hw->get_link_status = 1;
2389 		if (hw->get_link_status) {
2390 			e1000_check_for_link(hw);
2391 			link_active = !hw->get_link_status;
2392 		} else {
2393 			link_active = true;
2394 		}
2395 		break;
2396 	case e1000_media_type_fiber:
2397 		e1000_check_for_link(hw);
2398 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2399 		break;
2400 	case e1000_media_type_internal_serdes:
2401 		e1000_check_for_link(hw);
2402 		link_active = hw->serdes_has_link;
2403 		break;
2404 	default:
2405 		break;
2406 	}
2407 
2408 	return link_active;
2409 }
2410 
2411 /**
2412  * e1000_watchdog - work function
2413  * @work: work struct contained inside adapter struct
2414  **/
2415 static void e1000_watchdog(struct work_struct *work)
2416 {
2417 	struct e1000_adapter *adapter = container_of(work,
2418 						     struct e1000_adapter,
2419 						     watchdog_task.work);
2420 	struct e1000_hw *hw = &adapter->hw;
2421 	struct net_device *netdev = adapter->netdev;
2422 	struct e1000_tx_ring *txdr = adapter->tx_ring;
2423 	u32 link, tctl;
2424 
2425 	if (test_bit(__E1000_DOWN, &adapter->flags))
2426 		return;
2427 
2428 	mutex_lock(&adapter->mutex);
2429 	link = e1000_has_link(adapter);
2430 	if ((netif_carrier_ok(netdev)) && link)
2431 		goto link_up;
2432 
2433 	if (link) {
2434 		if (!netif_carrier_ok(netdev)) {
2435 			u32 ctrl;
2436 			bool txb2b = true;
2437 			/* update snapshot of PHY registers on LSC */
2438 			e1000_get_speed_and_duplex(hw,
2439 						   &adapter->link_speed,
2440 						   &adapter->link_duplex);
2441 
2442 			ctrl = er32(CTRL);
2443 			pr_info("%s NIC Link is Up %d Mbps %s, "
2444 				"Flow Control: %s\n",
2445 				netdev->name,
2446 				adapter->link_speed,
2447 				adapter->link_duplex == FULL_DUPLEX ?
2448 				"Full Duplex" : "Half Duplex",
2449 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2450 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2451 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2452 				E1000_CTRL_TFCE) ? "TX" : "None")));
2453 
2454 			/* adjust timeout factor according to speed/duplex */
2455 			adapter->tx_timeout_factor = 1;
2456 			switch (adapter->link_speed) {
2457 			case SPEED_10:
2458 				txb2b = false;
2459 				adapter->tx_timeout_factor = 16;
2460 				break;
2461 			case SPEED_100:
2462 				txb2b = false;
2463 				/* maybe add some timeout factor ? */
2464 				break;
2465 			}
2466 
2467 			/* enable transmits in the hardware */
2468 			tctl = er32(TCTL);
2469 			tctl |= E1000_TCTL_EN;
2470 			ew32(TCTL, tctl);
2471 
2472 			netif_carrier_on(netdev);
2473 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2474 				schedule_delayed_work(&adapter->phy_info_task,
2475 						      2 * HZ);
2476 			adapter->smartspeed = 0;
2477 		}
2478 	} else {
2479 		if (netif_carrier_ok(netdev)) {
2480 			adapter->link_speed = 0;
2481 			adapter->link_duplex = 0;
2482 			pr_info("%s NIC Link is Down\n",
2483 				netdev->name);
2484 			netif_carrier_off(netdev);
2485 
2486 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2487 				schedule_delayed_work(&adapter->phy_info_task,
2488 						      2 * HZ);
2489 		}
2490 
2491 		e1000_smartspeed(adapter);
2492 	}
2493 
2494 link_up:
2495 	e1000_update_stats(adapter);
2496 
2497 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2498 	adapter->tpt_old = adapter->stats.tpt;
2499 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2500 	adapter->colc_old = adapter->stats.colc;
2501 
2502 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2503 	adapter->gorcl_old = adapter->stats.gorcl;
2504 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2505 	adapter->gotcl_old = adapter->stats.gotcl;
2506 
2507 	e1000_update_adaptive(hw);
2508 
2509 	if (!netif_carrier_ok(netdev)) {
2510 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2511 			/* We've lost link, so the controller stops DMA,
2512 			 * but we've got queued Tx work that's never going
2513 			 * to get done, so reset controller to flush Tx.
2514 			 * (Do the reset outside of interrupt context).
2515 			 */
2516 			adapter->tx_timeout_count++;
2517 			schedule_work(&adapter->reset_task);
2518 			/* exit immediately since reset is imminent */
2519 			goto unlock;
2520 		}
2521 	}
2522 
2523 	/* Simple mode for Interrupt Throttle Rate (ITR) */
2524 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2525 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2526 		 * Total asymmetrical Tx or Rx gets ITR=8000;
2527 		 * everyone else is between 2000-8000.
2528 		 */
2529 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2530 		u32 dif = (adapter->gotcl > adapter->gorcl ?
2531 			    adapter->gotcl - adapter->gorcl :
2532 			    adapter->gorcl - adapter->gotcl) / 10000;
2533 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2534 
2535 		ew32(ITR, 1000000000 / (itr * 256));
2536 	}
2537 
2538 	/* Cause software interrupt to ensure rx ring is cleaned */
2539 	ew32(ICS, E1000_ICS_RXDMT0);
2540 
2541 	/* Force detection of hung controller every watchdog period */
2542 	adapter->detect_tx_hung = true;
2543 
2544 	/* Reschedule the task */
2545 	if (!test_bit(__E1000_DOWN, &adapter->flags))
2546 		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2547 
2548 unlock:
2549 	mutex_unlock(&adapter->mutex);
2550 }
2551 
2552 enum latency_range {
2553 	lowest_latency = 0,
2554 	low_latency = 1,
2555 	bulk_latency = 2,
2556 	latency_invalid = 255
2557 };
2558 
2559 /**
2560  * e1000_update_itr - update the dynamic ITR value based on statistics
2561  * @adapter: pointer to adapter
2562  * @itr_setting: current adapter->itr
2563  * @packets: the number of packets during this measurement interval
2564  * @bytes: the number of bytes during this measurement interval
2565  *
2566  *      Stores a new ITR value based on packets and byte
2567  *      counts during the last interrupt.  The advantage of per interrupt
2568  *      computation is faster updates and more accurate ITR for the current
2569  *      traffic pattern.  Constants in this function were computed
2570  *      based on theoretical maximum wire speed and thresholds were set based
2571  *      on testing data as well as attempting to minimize response time
2572  *      while increasing bulk throughput.
2573  *      this functionality is controlled by the InterruptThrottleRate module
2574  *      parameter (see e1000_param.c)
2575  **/
2576 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2577 				     u16 itr_setting, int packets, int bytes)
2578 {
2579 	unsigned int retval = itr_setting;
2580 	struct e1000_hw *hw = &adapter->hw;
2581 
2582 	if (unlikely(hw->mac_type < e1000_82540))
2583 		goto update_itr_done;
2584 
2585 	if (packets == 0)
2586 		goto update_itr_done;
2587 
2588 	switch (itr_setting) {
2589 	case lowest_latency:
2590 		/* jumbo frames get bulk treatment*/
2591 		if (bytes/packets > 8000)
2592 			retval = bulk_latency;
2593 		else if ((packets < 5) && (bytes > 512))
2594 			retval = low_latency;
2595 		break;
2596 	case low_latency:  /* 50 usec aka 20000 ints/s */
2597 		if (bytes > 10000) {
2598 			/* jumbo frames need bulk latency setting */
2599 			if (bytes/packets > 8000)
2600 				retval = bulk_latency;
2601 			else if ((packets < 10) || ((bytes/packets) > 1200))
2602 				retval = bulk_latency;
2603 			else if ((packets > 35))
2604 				retval = lowest_latency;
2605 		} else if (bytes/packets > 2000)
2606 			retval = bulk_latency;
2607 		else if (packets <= 2 && bytes < 512)
2608 			retval = lowest_latency;
2609 		break;
2610 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2611 		if (bytes > 25000) {
2612 			if (packets > 35)
2613 				retval = low_latency;
2614 		} else if (bytes < 6000) {
2615 			retval = low_latency;
2616 		}
2617 		break;
2618 	}
2619 
2620 update_itr_done:
2621 	return retval;
2622 }
2623 
2624 static void e1000_set_itr(struct e1000_adapter *adapter)
2625 {
2626 	struct e1000_hw *hw = &adapter->hw;
2627 	u16 current_itr;
2628 	u32 new_itr = adapter->itr;
2629 
2630 	if (unlikely(hw->mac_type < e1000_82540))
2631 		return;
2632 
2633 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2634 	if (unlikely(adapter->link_speed != SPEED_1000)) {
2635 		current_itr = 0;
2636 		new_itr = 4000;
2637 		goto set_itr_now;
2638 	}
2639 
2640 	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2641 					   adapter->total_tx_packets,
2642 					   adapter->total_tx_bytes);
2643 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2644 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2645 		adapter->tx_itr = low_latency;
2646 
2647 	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2648 					   adapter->total_rx_packets,
2649 					   adapter->total_rx_bytes);
2650 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2651 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2652 		adapter->rx_itr = low_latency;
2653 
2654 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2655 
2656 	switch (current_itr) {
2657 	/* counts and packets in update_itr are dependent on these numbers */
2658 	case lowest_latency:
2659 		new_itr = 70000;
2660 		break;
2661 	case low_latency:
2662 		new_itr = 20000; /* aka hwitr = ~200 */
2663 		break;
2664 	case bulk_latency:
2665 		new_itr = 4000;
2666 		break;
2667 	default:
2668 		break;
2669 	}
2670 
2671 set_itr_now:
2672 	if (new_itr != adapter->itr) {
2673 		/* this attempts to bias the interrupt rate towards Bulk
2674 		 * by adding intermediate steps when interrupt rate is
2675 		 * increasing
2676 		 */
2677 		new_itr = new_itr > adapter->itr ?
2678 			  min(adapter->itr + (new_itr >> 2), new_itr) :
2679 			  new_itr;
2680 		adapter->itr = new_itr;
2681 		ew32(ITR, 1000000000 / (new_itr * 256));
2682 	}
2683 }
2684 
2685 #define E1000_TX_FLAGS_CSUM		0x00000001
2686 #define E1000_TX_FLAGS_VLAN		0x00000002
2687 #define E1000_TX_FLAGS_TSO		0x00000004
2688 #define E1000_TX_FLAGS_IPV4		0x00000008
2689 #define E1000_TX_FLAGS_NO_FCS		0x00000010
2690 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2691 #define E1000_TX_FLAGS_VLAN_SHIFT	16
2692 
2693 static int e1000_tso(struct e1000_adapter *adapter,
2694 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2695 {
2696 	struct e1000_context_desc *context_desc;
2697 	struct e1000_buffer *buffer_info;
2698 	unsigned int i;
2699 	u32 cmd_length = 0;
2700 	u16 ipcse = 0, tucse, mss;
2701 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2702 	int err;
2703 
2704 	if (skb_is_gso(skb)) {
2705 		if (skb_header_cloned(skb)) {
2706 			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2707 			if (err)
2708 				return err;
2709 		}
2710 
2711 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2712 		mss = skb_shinfo(skb)->gso_size;
2713 		if (skb->protocol == htons(ETH_P_IP)) {
2714 			struct iphdr *iph = ip_hdr(skb);
2715 			iph->tot_len = 0;
2716 			iph->check = 0;
2717 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2718 								 iph->daddr, 0,
2719 								 IPPROTO_TCP,
2720 								 0);
2721 			cmd_length = E1000_TXD_CMD_IP;
2722 			ipcse = skb_transport_offset(skb) - 1;
2723 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
2724 			ipv6_hdr(skb)->payload_len = 0;
2725 			tcp_hdr(skb)->check =
2726 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2727 						 &ipv6_hdr(skb)->daddr,
2728 						 0, IPPROTO_TCP, 0);
2729 			ipcse = 0;
2730 		}
2731 		ipcss = skb_network_offset(skb);
2732 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2733 		tucss = skb_transport_offset(skb);
2734 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2735 		tucse = 0;
2736 
2737 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2738 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2739 
2740 		i = tx_ring->next_to_use;
2741 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2742 		buffer_info = &tx_ring->buffer_info[i];
2743 
2744 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2745 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2746 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2747 		context_desc->upper_setup.tcp_fields.tucss = tucss;
2748 		context_desc->upper_setup.tcp_fields.tucso = tucso;
2749 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2750 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2751 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2752 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2753 
2754 		buffer_info->time_stamp = jiffies;
2755 		buffer_info->next_to_watch = i;
2756 
2757 		if (++i == tx_ring->count) i = 0;
2758 		tx_ring->next_to_use = i;
2759 
2760 		return true;
2761 	}
2762 	return false;
2763 }
2764 
2765 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2766 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2767 {
2768 	struct e1000_context_desc *context_desc;
2769 	struct e1000_buffer *buffer_info;
2770 	unsigned int i;
2771 	u8 css;
2772 	u32 cmd_len = E1000_TXD_CMD_DEXT;
2773 
2774 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2775 		return false;
2776 
2777 	switch (skb->protocol) {
2778 	case cpu_to_be16(ETH_P_IP):
2779 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2780 			cmd_len |= E1000_TXD_CMD_TCP;
2781 		break;
2782 	case cpu_to_be16(ETH_P_IPV6):
2783 		/* XXX not handling all IPV6 headers */
2784 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2785 			cmd_len |= E1000_TXD_CMD_TCP;
2786 		break;
2787 	default:
2788 		if (unlikely(net_ratelimit()))
2789 			e_warn(drv, "checksum_partial proto=%x!\n",
2790 			       skb->protocol);
2791 		break;
2792 	}
2793 
2794 	css = skb_checksum_start_offset(skb);
2795 
2796 	i = tx_ring->next_to_use;
2797 	buffer_info = &tx_ring->buffer_info[i];
2798 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2799 
2800 	context_desc->lower_setup.ip_config = 0;
2801 	context_desc->upper_setup.tcp_fields.tucss = css;
2802 	context_desc->upper_setup.tcp_fields.tucso =
2803 		css + skb->csum_offset;
2804 	context_desc->upper_setup.tcp_fields.tucse = 0;
2805 	context_desc->tcp_seg_setup.data = 0;
2806 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2807 
2808 	buffer_info->time_stamp = jiffies;
2809 	buffer_info->next_to_watch = i;
2810 
2811 	if (unlikely(++i == tx_ring->count)) i = 0;
2812 	tx_ring->next_to_use = i;
2813 
2814 	return true;
2815 }
2816 
2817 #define E1000_MAX_TXD_PWR	12
2818 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2819 
2820 static int e1000_tx_map(struct e1000_adapter *adapter,
2821 			struct e1000_tx_ring *tx_ring,
2822 			struct sk_buff *skb, unsigned int first,
2823 			unsigned int max_per_txd, unsigned int nr_frags,
2824 			unsigned int mss)
2825 {
2826 	struct e1000_hw *hw = &adapter->hw;
2827 	struct pci_dev *pdev = adapter->pdev;
2828 	struct e1000_buffer *buffer_info;
2829 	unsigned int len = skb_headlen(skb);
2830 	unsigned int offset = 0, size, count = 0, i;
2831 	unsigned int f, bytecount, segs;
2832 
2833 	i = tx_ring->next_to_use;
2834 
2835 	while (len) {
2836 		buffer_info = &tx_ring->buffer_info[i];
2837 		size = min(len, max_per_txd);
2838 		/* Workaround for Controller erratum --
2839 		 * descriptor for non-tso packet in a linear SKB that follows a
2840 		 * tso gets written back prematurely before the data is fully
2841 		 * DMA'd to the controller
2842 		 */
2843 		if (!skb->data_len && tx_ring->last_tx_tso &&
2844 		    !skb_is_gso(skb)) {
2845 			tx_ring->last_tx_tso = false;
2846 			size -= 4;
2847 		}
2848 
2849 		/* Workaround for premature desc write-backs
2850 		 * in TSO mode.  Append 4-byte sentinel desc
2851 		 */
2852 		if (unlikely(mss && !nr_frags && size == len && size > 8))
2853 			size -= 4;
2854 		/* work-around for errata 10 and it applies
2855 		 * to all controllers in PCI-X mode
2856 		 * The fix is to make sure that the first descriptor of a
2857 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2858 		 */
2859 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2860 		                (size > 2015) && count == 0))
2861 		        size = 2015;
2862 
2863 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2864 		 * terminating buffers within evenly-aligned dwords.
2865 		 */
2866 		if (unlikely(adapter->pcix_82544 &&
2867 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2868 		   size > 4))
2869 			size -= 4;
2870 
2871 		buffer_info->length = size;
2872 		/* set time_stamp *before* dma to help avoid a possible race */
2873 		buffer_info->time_stamp = jiffies;
2874 		buffer_info->mapped_as_page = false;
2875 		buffer_info->dma = dma_map_single(&pdev->dev,
2876 						  skb->data + offset,
2877 						  size, DMA_TO_DEVICE);
2878 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2879 			goto dma_error;
2880 		buffer_info->next_to_watch = i;
2881 
2882 		len -= size;
2883 		offset += size;
2884 		count++;
2885 		if (len) {
2886 			i++;
2887 			if (unlikely(i == tx_ring->count))
2888 				i = 0;
2889 		}
2890 	}
2891 
2892 	for (f = 0; f < nr_frags; f++) {
2893 		const struct skb_frag_struct *frag;
2894 
2895 		frag = &skb_shinfo(skb)->frags[f];
2896 		len = skb_frag_size(frag);
2897 		offset = 0;
2898 
2899 		while (len) {
2900 			unsigned long bufend;
2901 			i++;
2902 			if (unlikely(i == tx_ring->count))
2903 				i = 0;
2904 
2905 			buffer_info = &tx_ring->buffer_info[i];
2906 			size = min(len, max_per_txd);
2907 			/* Workaround for premature desc write-backs
2908 			 * in TSO mode.  Append 4-byte sentinel desc
2909 			 */
2910 			if (unlikely(mss && f == (nr_frags-1) &&
2911 			    size == len && size > 8))
2912 				size -= 4;
2913 			/* Workaround for potential 82544 hang in PCI-X.
2914 			 * Avoid terminating buffers within evenly-aligned
2915 			 * dwords.
2916 			 */
2917 			bufend = (unsigned long)
2918 				page_to_phys(skb_frag_page(frag));
2919 			bufend += offset + size - 1;
2920 			if (unlikely(adapter->pcix_82544 &&
2921 				     !(bufend & 4) &&
2922 				     size > 4))
2923 				size -= 4;
2924 
2925 			buffer_info->length = size;
2926 			buffer_info->time_stamp = jiffies;
2927 			buffer_info->mapped_as_page = true;
2928 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2929 						offset, size, DMA_TO_DEVICE);
2930 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2931 				goto dma_error;
2932 			buffer_info->next_to_watch = i;
2933 
2934 			len -= size;
2935 			offset += size;
2936 			count++;
2937 		}
2938 	}
2939 
2940 	segs = skb_shinfo(skb)->gso_segs ?: 1;
2941 	/* multiply data chunks by size of headers */
2942 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2943 
2944 	tx_ring->buffer_info[i].skb = skb;
2945 	tx_ring->buffer_info[i].segs = segs;
2946 	tx_ring->buffer_info[i].bytecount = bytecount;
2947 	tx_ring->buffer_info[first].next_to_watch = i;
2948 
2949 	return count;
2950 
2951 dma_error:
2952 	dev_err(&pdev->dev, "TX DMA map failed\n");
2953 	buffer_info->dma = 0;
2954 	if (count)
2955 		count--;
2956 
2957 	while (count--) {
2958 		if (i==0)
2959 			i += tx_ring->count;
2960 		i--;
2961 		buffer_info = &tx_ring->buffer_info[i];
2962 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2963 	}
2964 
2965 	return 0;
2966 }
2967 
2968 static void e1000_tx_queue(struct e1000_adapter *adapter,
2969 			   struct e1000_tx_ring *tx_ring, int tx_flags,
2970 			   int count)
2971 {
2972 	struct e1000_hw *hw = &adapter->hw;
2973 	struct e1000_tx_desc *tx_desc = NULL;
2974 	struct e1000_buffer *buffer_info;
2975 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2976 	unsigned int i;
2977 
2978 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2979 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2980 			     E1000_TXD_CMD_TSE;
2981 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2982 
2983 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2984 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2985 	}
2986 
2987 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2988 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2989 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2990 	}
2991 
2992 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2993 		txd_lower |= E1000_TXD_CMD_VLE;
2994 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2995 	}
2996 
2997 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2998 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
2999 
3000 	i = tx_ring->next_to_use;
3001 
3002 	while (count--) {
3003 		buffer_info = &tx_ring->buffer_info[i];
3004 		tx_desc = E1000_TX_DESC(*tx_ring, i);
3005 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3006 		tx_desc->lower.data =
3007 			cpu_to_le32(txd_lower | buffer_info->length);
3008 		tx_desc->upper.data = cpu_to_le32(txd_upper);
3009 		if (unlikely(++i == tx_ring->count)) i = 0;
3010 	}
3011 
3012 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3013 
3014 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3015 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3016 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3017 
3018 	/* Force memory writes to complete before letting h/w
3019 	 * know there are new descriptors to fetch.  (Only
3020 	 * applicable for weak-ordered memory model archs,
3021 	 * such as IA-64).
3022 	 */
3023 	wmb();
3024 
3025 	tx_ring->next_to_use = i;
3026 	writel(i, hw->hw_addr + tx_ring->tdt);
3027 	/* we need this if more than one processor can write to our tail
3028 	 * at a time, it synchronizes IO on IA64/Altix systems
3029 	 */
3030 	mmiowb();
3031 }
3032 
3033 /* 82547 workaround to avoid controller hang in half-duplex environment.
3034  * The workaround is to avoid queuing a large packet that would span
3035  * the internal Tx FIFO ring boundary by notifying the stack to resend
3036  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3037  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3038  * to the beginning of the Tx FIFO.
3039  */
3040 
3041 #define E1000_FIFO_HDR			0x10
3042 #define E1000_82547_PAD_LEN		0x3E0
3043 
3044 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3045 				       struct sk_buff *skb)
3046 {
3047 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3048 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3049 
3050 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3051 
3052 	if (adapter->link_duplex != HALF_DUPLEX)
3053 		goto no_fifo_stall_required;
3054 
3055 	if (atomic_read(&adapter->tx_fifo_stall))
3056 		return 1;
3057 
3058 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3059 		atomic_set(&adapter->tx_fifo_stall, 1);
3060 		return 1;
3061 	}
3062 
3063 no_fifo_stall_required:
3064 	adapter->tx_fifo_head += skb_fifo_len;
3065 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3066 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3067 	return 0;
3068 }
3069 
3070 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3071 {
3072 	struct e1000_adapter *adapter = netdev_priv(netdev);
3073 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3074 
3075 	netif_stop_queue(netdev);
3076 	/* Herbert's original patch had:
3077 	 *  smp_mb__after_netif_stop_queue();
3078 	 * but since that doesn't exist yet, just open code it.
3079 	 */
3080 	smp_mb();
3081 
3082 	/* We need to check again in a case another CPU has just
3083 	 * made room available.
3084 	 */
3085 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3086 		return -EBUSY;
3087 
3088 	/* A reprieve! */
3089 	netif_start_queue(netdev);
3090 	++adapter->restart_queue;
3091 	return 0;
3092 }
3093 
3094 static int e1000_maybe_stop_tx(struct net_device *netdev,
3095 			       struct e1000_tx_ring *tx_ring, int size)
3096 {
3097 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3098 		return 0;
3099 	return __e1000_maybe_stop_tx(netdev, size);
3100 }
3101 
3102 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3103 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3104 				    struct net_device *netdev)
3105 {
3106 	struct e1000_adapter *adapter = netdev_priv(netdev);
3107 	struct e1000_hw *hw = &adapter->hw;
3108 	struct e1000_tx_ring *tx_ring;
3109 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3110 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3111 	unsigned int tx_flags = 0;
3112 	unsigned int len = skb_headlen(skb);
3113 	unsigned int nr_frags;
3114 	unsigned int mss;
3115 	int count = 0;
3116 	int tso;
3117 	unsigned int f;
3118 
3119 	/* This goes back to the question of how to logically map a Tx queue
3120 	 * to a flow.  Right now, performance is impacted slightly negatively
3121 	 * if using multiple Tx queues.  If the stack breaks away from a
3122 	 * single qdisc implementation, we can look at this again.
3123 	 */
3124 	tx_ring = adapter->tx_ring;
3125 
3126 	if (unlikely(skb->len <= 0)) {
3127 		dev_kfree_skb_any(skb);
3128 		return NETDEV_TX_OK;
3129 	}
3130 
3131 	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3132 	 * packets may get corrupted during padding by HW.
3133 	 * To WA this issue, pad all small packets manually.
3134 	 */
3135 	if (skb->len < ETH_ZLEN) {
3136 		if (skb_pad(skb, ETH_ZLEN - skb->len))
3137 			return NETDEV_TX_OK;
3138 		skb->len = ETH_ZLEN;
3139 		skb_set_tail_pointer(skb, ETH_ZLEN);
3140 	}
3141 
3142 	mss = skb_shinfo(skb)->gso_size;
3143 	/* The controller does a simple calculation to
3144 	 * make sure there is enough room in the FIFO before
3145 	 * initiating the DMA for each buffer.  The calc is:
3146 	 * 4 = ceil(buffer len/mss).  To make sure we don't
3147 	 * overrun the FIFO, adjust the max buffer len if mss
3148 	 * drops.
3149 	 */
3150 	if (mss) {
3151 		u8 hdr_len;
3152 		max_per_txd = min(mss << 2, max_per_txd);
3153 		max_txd_pwr = fls(max_per_txd) - 1;
3154 
3155 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3156 		if (skb->data_len && hdr_len == len) {
3157 			switch (hw->mac_type) {
3158 				unsigned int pull_size;
3159 			case e1000_82544:
3160 				/* Make sure we have room to chop off 4 bytes,
3161 				 * and that the end alignment will work out to
3162 				 * this hardware's requirements
3163 				 * NOTE: this is a TSO only workaround
3164 				 * if end byte alignment not correct move us
3165 				 * into the next dword
3166 				 */
3167 				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3168 				    & 4)
3169 					break;
3170 				/* fall through */
3171 				pull_size = min((unsigned int)4, skb->data_len);
3172 				if (!__pskb_pull_tail(skb, pull_size)) {
3173 					e_err(drv, "__pskb_pull_tail "
3174 					      "failed.\n");
3175 					dev_kfree_skb_any(skb);
3176 					return NETDEV_TX_OK;
3177 				}
3178 				len = skb_headlen(skb);
3179 				break;
3180 			default:
3181 				/* do nothing */
3182 				break;
3183 			}
3184 		}
3185 	}
3186 
3187 	/* reserve a descriptor for the offload context */
3188 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3189 		count++;
3190 	count++;
3191 
3192 	/* Controller Erratum workaround */
3193 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3194 		count++;
3195 
3196 	count += TXD_USE_COUNT(len, max_txd_pwr);
3197 
3198 	if (adapter->pcix_82544)
3199 		count++;
3200 
3201 	/* work-around for errata 10 and it applies to all controllers
3202 	 * in PCI-X mode, so add one more descriptor to the count
3203 	 */
3204 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3205 			(len > 2015)))
3206 		count++;
3207 
3208 	nr_frags = skb_shinfo(skb)->nr_frags;
3209 	for (f = 0; f < nr_frags; f++)
3210 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3211 				       max_txd_pwr);
3212 	if (adapter->pcix_82544)
3213 		count += nr_frags;
3214 
3215 	/* need: count + 2 desc gap to keep tail from touching
3216 	 * head, otherwise try next time
3217 	 */
3218 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3219 		return NETDEV_TX_BUSY;
3220 
3221 	if (unlikely((hw->mac_type == e1000_82547) &&
3222 		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3223 		netif_stop_queue(netdev);
3224 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3225 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3226 		return NETDEV_TX_BUSY;
3227 	}
3228 
3229 	if (vlan_tx_tag_present(skb)) {
3230 		tx_flags |= E1000_TX_FLAGS_VLAN;
3231 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3232 	}
3233 
3234 	first = tx_ring->next_to_use;
3235 
3236 	tso = e1000_tso(adapter, tx_ring, skb);
3237 	if (tso < 0) {
3238 		dev_kfree_skb_any(skb);
3239 		return NETDEV_TX_OK;
3240 	}
3241 
3242 	if (likely(tso)) {
3243 		if (likely(hw->mac_type != e1000_82544))
3244 			tx_ring->last_tx_tso = true;
3245 		tx_flags |= E1000_TX_FLAGS_TSO;
3246 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3247 		tx_flags |= E1000_TX_FLAGS_CSUM;
3248 
3249 	if (likely(skb->protocol == htons(ETH_P_IP)))
3250 		tx_flags |= E1000_TX_FLAGS_IPV4;
3251 
3252 	if (unlikely(skb->no_fcs))
3253 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3254 
3255 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3256 			     nr_frags, mss);
3257 
3258 	if (count) {
3259 		netdev_sent_queue(netdev, skb->len);
3260 		skb_tx_timestamp(skb);
3261 
3262 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3263 		/* Make sure there is space in the ring for the next send. */
3264 		e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3265 
3266 	} else {
3267 		dev_kfree_skb_any(skb);
3268 		tx_ring->buffer_info[first].time_stamp = 0;
3269 		tx_ring->next_to_use = first;
3270 	}
3271 
3272 	return NETDEV_TX_OK;
3273 }
3274 
3275 #define NUM_REGS 38 /* 1 based count */
3276 static void e1000_regdump(struct e1000_adapter *adapter)
3277 {
3278 	struct e1000_hw *hw = &adapter->hw;
3279 	u32 regs[NUM_REGS];
3280 	u32 *regs_buff = regs;
3281 	int i = 0;
3282 
3283 	static const char * const reg_name[] = {
3284 		"CTRL",  "STATUS",
3285 		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3286 		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3287 		"TIDV", "TXDCTL", "TADV", "TARC0",
3288 		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3289 		"TXDCTL1", "TARC1",
3290 		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3291 		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3292 		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3293 	};
3294 
3295 	regs_buff[0]  = er32(CTRL);
3296 	regs_buff[1]  = er32(STATUS);
3297 
3298 	regs_buff[2]  = er32(RCTL);
3299 	regs_buff[3]  = er32(RDLEN);
3300 	regs_buff[4]  = er32(RDH);
3301 	regs_buff[5]  = er32(RDT);
3302 	regs_buff[6]  = er32(RDTR);
3303 
3304 	regs_buff[7]  = er32(TCTL);
3305 	regs_buff[8]  = er32(TDBAL);
3306 	regs_buff[9]  = er32(TDBAH);
3307 	regs_buff[10] = er32(TDLEN);
3308 	regs_buff[11] = er32(TDH);
3309 	regs_buff[12] = er32(TDT);
3310 	regs_buff[13] = er32(TIDV);
3311 	regs_buff[14] = er32(TXDCTL);
3312 	regs_buff[15] = er32(TADV);
3313 	regs_buff[16] = er32(TARC0);
3314 
3315 	regs_buff[17] = er32(TDBAL1);
3316 	regs_buff[18] = er32(TDBAH1);
3317 	regs_buff[19] = er32(TDLEN1);
3318 	regs_buff[20] = er32(TDH1);
3319 	regs_buff[21] = er32(TDT1);
3320 	regs_buff[22] = er32(TXDCTL1);
3321 	regs_buff[23] = er32(TARC1);
3322 	regs_buff[24] = er32(CTRL_EXT);
3323 	regs_buff[25] = er32(ERT);
3324 	regs_buff[26] = er32(RDBAL0);
3325 	regs_buff[27] = er32(RDBAH0);
3326 	regs_buff[28] = er32(TDFH);
3327 	regs_buff[29] = er32(TDFT);
3328 	regs_buff[30] = er32(TDFHS);
3329 	regs_buff[31] = er32(TDFTS);
3330 	regs_buff[32] = er32(TDFPC);
3331 	regs_buff[33] = er32(RDFH);
3332 	regs_buff[34] = er32(RDFT);
3333 	regs_buff[35] = er32(RDFHS);
3334 	regs_buff[36] = er32(RDFTS);
3335 	regs_buff[37] = er32(RDFPC);
3336 
3337 	pr_info("Register dump\n");
3338 	for (i = 0; i < NUM_REGS; i++)
3339 		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3340 }
3341 
3342 /*
3343  * e1000_dump: Print registers, tx ring and rx ring
3344  */
3345 static void e1000_dump(struct e1000_adapter *adapter)
3346 {
3347 	/* this code doesn't handle multiple rings */
3348 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3349 	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3350 	int i;
3351 
3352 	if (!netif_msg_hw(adapter))
3353 		return;
3354 
3355 	/* Print Registers */
3356 	e1000_regdump(adapter);
3357 
3358 	/* transmit dump */
3359 	pr_info("TX Desc ring0 dump\n");
3360 
3361 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3362 	 *
3363 	 * Legacy Transmit Descriptor
3364 	 *   +--------------------------------------------------------------+
3365 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3366 	 *   +--------------------------------------------------------------+
3367 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3368 	 *   +--------------------------------------------------------------+
3369 	 *   63       48 47        36 35    32 31     24 23    16 15        0
3370 	 *
3371 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3372 	 *   63      48 47    40 39       32 31             16 15    8 7      0
3373 	 *   +----------------------------------------------------------------+
3374 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3375 	 *   +----------------------------------------------------------------+
3376 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3377 	 *   +----------------------------------------------------------------+
3378 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3379 	 *
3380 	 * Extended Data Descriptor (DTYP=0x1)
3381 	 *   +----------------------------------------------------------------+
3382 	 * 0 |                     Buffer Address [63:0]                      |
3383 	 *   +----------------------------------------------------------------+
3384 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3385 	 *   +----------------------------------------------------------------+
3386 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3387 	 */
3388 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3389 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3390 
3391 	if (!netif_msg_tx_done(adapter))
3392 		goto rx_ring_summary;
3393 
3394 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3395 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3396 		struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3397 		struct my_u { __le64 a; __le64 b; };
3398 		struct my_u *u = (struct my_u *)tx_desc;
3399 		const char *type;
3400 
3401 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3402 			type = "NTC/U";
3403 		else if (i == tx_ring->next_to_use)
3404 			type = "NTU";
3405 		else if (i == tx_ring->next_to_clean)
3406 			type = "NTC";
3407 		else
3408 			type = "";
3409 
3410 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3411 			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3412 			le64_to_cpu(u->a), le64_to_cpu(u->b),
3413 			(u64)buffer_info->dma, buffer_info->length,
3414 			buffer_info->next_to_watch,
3415 			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3416 	}
3417 
3418 rx_ring_summary:
3419 	/* receive dump */
3420 	pr_info("\nRX Desc ring dump\n");
3421 
3422 	/* Legacy Receive Descriptor Format
3423 	 *
3424 	 * +-----------------------------------------------------+
3425 	 * |                Buffer Address [63:0]                |
3426 	 * +-----------------------------------------------------+
3427 	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3428 	 * +-----------------------------------------------------+
3429 	 * 63       48 47    40 39      32 31         16 15      0
3430 	 */
3431 	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3432 
3433 	if (!netif_msg_rx_status(adapter))
3434 		goto exit;
3435 
3436 	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3437 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3438 		struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3439 		struct my_u { __le64 a; __le64 b; };
3440 		struct my_u *u = (struct my_u *)rx_desc;
3441 		const char *type;
3442 
3443 		if (i == rx_ring->next_to_use)
3444 			type = "NTU";
3445 		else if (i == rx_ring->next_to_clean)
3446 			type = "NTC";
3447 		else
3448 			type = "";
3449 
3450 		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3451 			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3452 			(u64)buffer_info->dma, buffer_info->skb, type);
3453 	} /* for */
3454 
3455 	/* dump the descriptor caches */
3456 	/* rx */
3457 	pr_info("Rx descriptor cache in 64bit format\n");
3458 	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3459 		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3460 			i,
3461 			readl(adapter->hw.hw_addr + i+4),
3462 			readl(adapter->hw.hw_addr + i),
3463 			readl(adapter->hw.hw_addr + i+12),
3464 			readl(adapter->hw.hw_addr + i+8));
3465 	}
3466 	/* tx */
3467 	pr_info("Tx descriptor cache in 64bit format\n");
3468 	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3469 		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3470 			i,
3471 			readl(adapter->hw.hw_addr + i+4),
3472 			readl(adapter->hw.hw_addr + i),
3473 			readl(adapter->hw.hw_addr + i+12),
3474 			readl(adapter->hw.hw_addr + i+8));
3475 	}
3476 exit:
3477 	return;
3478 }
3479 
3480 /**
3481  * e1000_tx_timeout - Respond to a Tx Hang
3482  * @netdev: network interface device structure
3483  **/
3484 static void e1000_tx_timeout(struct net_device *netdev)
3485 {
3486 	struct e1000_adapter *adapter = netdev_priv(netdev);
3487 
3488 	/* Do the reset outside of interrupt context */
3489 	adapter->tx_timeout_count++;
3490 	schedule_work(&adapter->reset_task);
3491 }
3492 
3493 static void e1000_reset_task(struct work_struct *work)
3494 {
3495 	struct e1000_adapter *adapter =
3496 		container_of(work, struct e1000_adapter, reset_task);
3497 
3498 	if (test_bit(__E1000_DOWN, &adapter->flags))
3499 		return;
3500 	e_err(drv, "Reset adapter\n");
3501 	e1000_reinit_safe(adapter);
3502 }
3503 
3504 /**
3505  * e1000_get_stats - Get System Network Statistics
3506  * @netdev: network interface device structure
3507  *
3508  * Returns the address of the device statistics structure.
3509  * The statistics are actually updated from the watchdog.
3510  **/
3511 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3512 {
3513 	/* only return the current stats */
3514 	return &netdev->stats;
3515 }
3516 
3517 /**
3518  * e1000_change_mtu - Change the Maximum Transfer Unit
3519  * @netdev: network interface device structure
3520  * @new_mtu: new value for maximum frame size
3521  *
3522  * Returns 0 on success, negative on failure
3523  **/
3524 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3525 {
3526 	struct e1000_adapter *adapter = netdev_priv(netdev);
3527 	struct e1000_hw *hw = &adapter->hw;
3528 	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3529 
3530 	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3531 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3532 		e_err(probe, "Invalid MTU setting\n");
3533 		return -EINVAL;
3534 	}
3535 
3536 	/* Adapter-specific max frame size limits. */
3537 	switch (hw->mac_type) {
3538 	case e1000_undefined ... e1000_82542_rev2_1:
3539 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3540 			e_err(probe, "Jumbo Frames not supported.\n");
3541 			return -EINVAL;
3542 		}
3543 		break;
3544 	default:
3545 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3546 		break;
3547 	}
3548 
3549 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3550 		msleep(1);
3551 	/* e1000_down has a dependency on max_frame_size */
3552 	hw->max_frame_size = max_frame;
3553 	if (netif_running(netdev))
3554 		e1000_down(adapter);
3555 
3556 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3557 	 * means we reserve 2 more, this pushes us to allocate from the next
3558 	 * larger slab size.
3559 	 * i.e. RXBUFFER_2048 --> size-4096 slab
3560 	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3561 	 * fragmented skbs
3562 	 */
3563 
3564 	if (max_frame <= E1000_RXBUFFER_2048)
3565 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3566 	else
3567 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3568 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3569 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3570 		adapter->rx_buffer_len = PAGE_SIZE;
3571 #endif
3572 
3573 	/* adjust allocation if LPE protects us, and we aren't using SBP */
3574 	if (!hw->tbi_compatibility_on &&
3575 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3576 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3577 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3578 
3579 	pr_info("%s changing MTU from %d to %d\n",
3580 		netdev->name, netdev->mtu, new_mtu);
3581 	netdev->mtu = new_mtu;
3582 
3583 	if (netif_running(netdev))
3584 		e1000_up(adapter);
3585 	else
3586 		e1000_reset(adapter);
3587 
3588 	clear_bit(__E1000_RESETTING, &adapter->flags);
3589 
3590 	return 0;
3591 }
3592 
3593 /**
3594  * e1000_update_stats - Update the board statistics counters
3595  * @adapter: board private structure
3596  **/
3597 void e1000_update_stats(struct e1000_adapter *adapter)
3598 {
3599 	struct net_device *netdev = adapter->netdev;
3600 	struct e1000_hw *hw = &adapter->hw;
3601 	struct pci_dev *pdev = adapter->pdev;
3602 	unsigned long flags;
3603 	u16 phy_tmp;
3604 
3605 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3606 
3607 	/* Prevent stats update while adapter is being reset, or if the pci
3608 	 * connection is down.
3609 	 */
3610 	if (adapter->link_speed == 0)
3611 		return;
3612 	if (pci_channel_offline(pdev))
3613 		return;
3614 
3615 	spin_lock_irqsave(&adapter->stats_lock, flags);
3616 
3617 	/* these counters are modified from e1000_tbi_adjust_stats,
3618 	 * called from the interrupt context, so they must only
3619 	 * be written while holding adapter->stats_lock
3620 	 */
3621 
3622 	adapter->stats.crcerrs += er32(CRCERRS);
3623 	adapter->stats.gprc += er32(GPRC);
3624 	adapter->stats.gorcl += er32(GORCL);
3625 	adapter->stats.gorch += er32(GORCH);
3626 	adapter->stats.bprc += er32(BPRC);
3627 	adapter->stats.mprc += er32(MPRC);
3628 	adapter->stats.roc += er32(ROC);
3629 
3630 	adapter->stats.prc64 += er32(PRC64);
3631 	adapter->stats.prc127 += er32(PRC127);
3632 	adapter->stats.prc255 += er32(PRC255);
3633 	adapter->stats.prc511 += er32(PRC511);
3634 	adapter->stats.prc1023 += er32(PRC1023);
3635 	adapter->stats.prc1522 += er32(PRC1522);
3636 
3637 	adapter->stats.symerrs += er32(SYMERRS);
3638 	adapter->stats.mpc += er32(MPC);
3639 	adapter->stats.scc += er32(SCC);
3640 	adapter->stats.ecol += er32(ECOL);
3641 	adapter->stats.mcc += er32(MCC);
3642 	adapter->stats.latecol += er32(LATECOL);
3643 	adapter->stats.dc += er32(DC);
3644 	adapter->stats.sec += er32(SEC);
3645 	adapter->stats.rlec += er32(RLEC);
3646 	adapter->stats.xonrxc += er32(XONRXC);
3647 	adapter->stats.xontxc += er32(XONTXC);
3648 	adapter->stats.xoffrxc += er32(XOFFRXC);
3649 	adapter->stats.xofftxc += er32(XOFFTXC);
3650 	adapter->stats.fcruc += er32(FCRUC);
3651 	adapter->stats.gptc += er32(GPTC);
3652 	adapter->stats.gotcl += er32(GOTCL);
3653 	adapter->stats.gotch += er32(GOTCH);
3654 	adapter->stats.rnbc += er32(RNBC);
3655 	adapter->stats.ruc += er32(RUC);
3656 	adapter->stats.rfc += er32(RFC);
3657 	adapter->stats.rjc += er32(RJC);
3658 	adapter->stats.torl += er32(TORL);
3659 	adapter->stats.torh += er32(TORH);
3660 	adapter->stats.totl += er32(TOTL);
3661 	adapter->stats.toth += er32(TOTH);
3662 	adapter->stats.tpr += er32(TPR);
3663 
3664 	adapter->stats.ptc64 += er32(PTC64);
3665 	adapter->stats.ptc127 += er32(PTC127);
3666 	adapter->stats.ptc255 += er32(PTC255);
3667 	adapter->stats.ptc511 += er32(PTC511);
3668 	adapter->stats.ptc1023 += er32(PTC1023);
3669 	adapter->stats.ptc1522 += er32(PTC1522);
3670 
3671 	adapter->stats.mptc += er32(MPTC);
3672 	adapter->stats.bptc += er32(BPTC);
3673 
3674 	/* used for adaptive IFS */
3675 
3676 	hw->tx_packet_delta = er32(TPT);
3677 	adapter->stats.tpt += hw->tx_packet_delta;
3678 	hw->collision_delta = er32(COLC);
3679 	adapter->stats.colc += hw->collision_delta;
3680 
3681 	if (hw->mac_type >= e1000_82543) {
3682 		adapter->stats.algnerrc += er32(ALGNERRC);
3683 		adapter->stats.rxerrc += er32(RXERRC);
3684 		adapter->stats.tncrs += er32(TNCRS);
3685 		adapter->stats.cexterr += er32(CEXTERR);
3686 		adapter->stats.tsctc += er32(TSCTC);
3687 		adapter->stats.tsctfc += er32(TSCTFC);
3688 	}
3689 
3690 	/* Fill out the OS statistics structure */
3691 	netdev->stats.multicast = adapter->stats.mprc;
3692 	netdev->stats.collisions = adapter->stats.colc;
3693 
3694 	/* Rx Errors */
3695 
3696 	/* RLEC on some newer hardware can be incorrect so build
3697 	 * our own version based on RUC and ROC
3698 	 */
3699 	netdev->stats.rx_errors = adapter->stats.rxerrc +
3700 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3701 		adapter->stats.ruc + adapter->stats.roc +
3702 		adapter->stats.cexterr;
3703 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3704 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3705 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3706 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3707 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3708 
3709 	/* Tx Errors */
3710 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3711 	netdev->stats.tx_errors = adapter->stats.txerrc;
3712 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3713 	netdev->stats.tx_window_errors = adapter->stats.latecol;
3714 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3715 	if (hw->bad_tx_carr_stats_fd &&
3716 	    adapter->link_duplex == FULL_DUPLEX) {
3717 		netdev->stats.tx_carrier_errors = 0;
3718 		adapter->stats.tncrs = 0;
3719 	}
3720 
3721 	/* Tx Dropped needs to be maintained elsewhere */
3722 
3723 	/* Phy Stats */
3724 	if (hw->media_type == e1000_media_type_copper) {
3725 		if ((adapter->link_speed == SPEED_1000) &&
3726 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3727 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3728 			adapter->phy_stats.idle_errors += phy_tmp;
3729 		}
3730 
3731 		if ((hw->mac_type <= e1000_82546) &&
3732 		   (hw->phy_type == e1000_phy_m88) &&
3733 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3734 			adapter->phy_stats.receive_errors += phy_tmp;
3735 	}
3736 
3737 	/* Management Stats */
3738 	if (hw->has_smbus) {
3739 		adapter->stats.mgptc += er32(MGTPTC);
3740 		adapter->stats.mgprc += er32(MGTPRC);
3741 		adapter->stats.mgpdc += er32(MGTPDC);
3742 	}
3743 
3744 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3745 }
3746 
3747 /**
3748  * e1000_intr - Interrupt Handler
3749  * @irq: interrupt number
3750  * @data: pointer to a network interface device structure
3751  **/
3752 static irqreturn_t e1000_intr(int irq, void *data)
3753 {
3754 	struct net_device *netdev = data;
3755 	struct e1000_adapter *adapter = netdev_priv(netdev);
3756 	struct e1000_hw *hw = &adapter->hw;
3757 	u32 icr = er32(ICR);
3758 
3759 	if (unlikely((!icr)))
3760 		return IRQ_NONE;  /* Not our interrupt */
3761 
3762 	/* we might have caused the interrupt, but the above
3763 	 * read cleared it, and just in case the driver is
3764 	 * down there is nothing to do so return handled
3765 	 */
3766 	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3767 		return IRQ_HANDLED;
3768 
3769 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3770 		hw->get_link_status = 1;
3771 		/* guard against interrupt when we're going down */
3772 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3773 			schedule_delayed_work(&adapter->watchdog_task, 1);
3774 	}
3775 
3776 	/* disable interrupts, without the synchronize_irq bit */
3777 	ew32(IMC, ~0);
3778 	E1000_WRITE_FLUSH();
3779 
3780 	if (likely(napi_schedule_prep(&adapter->napi))) {
3781 		adapter->total_tx_bytes = 0;
3782 		adapter->total_tx_packets = 0;
3783 		adapter->total_rx_bytes = 0;
3784 		adapter->total_rx_packets = 0;
3785 		__napi_schedule(&adapter->napi);
3786 	} else {
3787 		/* this really should not happen! if it does it is basically a
3788 		 * bug, but not a hard error, so enable ints and continue
3789 		 */
3790 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3791 			e1000_irq_enable(adapter);
3792 	}
3793 
3794 	return IRQ_HANDLED;
3795 }
3796 
3797 /**
3798  * e1000_clean - NAPI Rx polling callback
3799  * @adapter: board private structure
3800  **/
3801 static int e1000_clean(struct napi_struct *napi, int budget)
3802 {
3803 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3804 						     napi);
3805 	int tx_clean_complete = 0, work_done = 0;
3806 
3807 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3808 
3809 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3810 
3811 	if (!tx_clean_complete)
3812 		work_done = budget;
3813 
3814 	/* If budget not fully consumed, exit the polling mode */
3815 	if (work_done < budget) {
3816 		if (likely(adapter->itr_setting & 3))
3817 			e1000_set_itr(adapter);
3818 		napi_complete(napi);
3819 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3820 			e1000_irq_enable(adapter);
3821 	}
3822 
3823 	return work_done;
3824 }
3825 
3826 /**
3827  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3828  * @adapter: board private structure
3829  **/
3830 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3831 			       struct e1000_tx_ring *tx_ring)
3832 {
3833 	struct e1000_hw *hw = &adapter->hw;
3834 	struct net_device *netdev = adapter->netdev;
3835 	struct e1000_tx_desc *tx_desc, *eop_desc;
3836 	struct e1000_buffer *buffer_info;
3837 	unsigned int i, eop;
3838 	unsigned int count = 0;
3839 	unsigned int total_tx_bytes=0, total_tx_packets=0;
3840 	unsigned int bytes_compl = 0, pkts_compl = 0;
3841 
3842 	i = tx_ring->next_to_clean;
3843 	eop = tx_ring->buffer_info[i].next_to_watch;
3844 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3845 
3846 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3847 	       (count < tx_ring->count)) {
3848 		bool cleaned = false;
3849 		rmb();	/* read buffer_info after eop_desc */
3850 		for ( ; !cleaned; count++) {
3851 			tx_desc = E1000_TX_DESC(*tx_ring, i);
3852 			buffer_info = &tx_ring->buffer_info[i];
3853 			cleaned = (i == eop);
3854 
3855 			if (cleaned) {
3856 				total_tx_packets += buffer_info->segs;
3857 				total_tx_bytes += buffer_info->bytecount;
3858 				if (buffer_info->skb) {
3859 					bytes_compl += buffer_info->skb->len;
3860 					pkts_compl++;
3861 				}
3862 
3863 			}
3864 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3865 			tx_desc->upper.data = 0;
3866 
3867 			if (unlikely(++i == tx_ring->count)) i = 0;
3868 		}
3869 
3870 		eop = tx_ring->buffer_info[i].next_to_watch;
3871 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3872 	}
3873 
3874 	tx_ring->next_to_clean = i;
3875 
3876 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3877 
3878 #define TX_WAKE_THRESHOLD 32
3879 	if (unlikely(count && netif_carrier_ok(netdev) &&
3880 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3881 		/* Make sure that anybody stopping the queue after this
3882 		 * sees the new next_to_clean.
3883 		 */
3884 		smp_mb();
3885 
3886 		if (netif_queue_stopped(netdev) &&
3887 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3888 			netif_wake_queue(netdev);
3889 			++adapter->restart_queue;
3890 		}
3891 	}
3892 
3893 	if (adapter->detect_tx_hung) {
3894 		/* Detect a transmit hang in hardware, this serializes the
3895 		 * check with the clearing of time_stamp and movement of i
3896 		 */
3897 		adapter->detect_tx_hung = false;
3898 		if (tx_ring->buffer_info[eop].time_stamp &&
3899 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3900 			       (adapter->tx_timeout_factor * HZ)) &&
3901 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3902 
3903 			/* detected Tx unit hang */
3904 			e_err(drv, "Detected Tx Unit Hang\n"
3905 			      "  Tx Queue             <%lu>\n"
3906 			      "  TDH                  <%x>\n"
3907 			      "  TDT                  <%x>\n"
3908 			      "  next_to_use          <%x>\n"
3909 			      "  next_to_clean        <%x>\n"
3910 			      "buffer_info[next_to_clean]\n"
3911 			      "  time_stamp           <%lx>\n"
3912 			      "  next_to_watch        <%x>\n"
3913 			      "  jiffies              <%lx>\n"
3914 			      "  next_to_watch.status <%x>\n",
3915 				(unsigned long)(tx_ring - adapter->tx_ring),
3916 				readl(hw->hw_addr + tx_ring->tdh),
3917 				readl(hw->hw_addr + tx_ring->tdt),
3918 				tx_ring->next_to_use,
3919 				tx_ring->next_to_clean,
3920 				tx_ring->buffer_info[eop].time_stamp,
3921 				eop,
3922 				jiffies,
3923 				eop_desc->upper.fields.status);
3924 			e1000_dump(adapter);
3925 			netif_stop_queue(netdev);
3926 		}
3927 	}
3928 	adapter->total_tx_bytes += total_tx_bytes;
3929 	adapter->total_tx_packets += total_tx_packets;
3930 	netdev->stats.tx_bytes += total_tx_bytes;
3931 	netdev->stats.tx_packets += total_tx_packets;
3932 	return count < tx_ring->count;
3933 }
3934 
3935 /**
3936  * e1000_rx_checksum - Receive Checksum Offload for 82543
3937  * @adapter:     board private structure
3938  * @status_err:  receive descriptor status and error fields
3939  * @csum:        receive descriptor csum field
3940  * @sk_buff:     socket buffer with received data
3941  **/
3942 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3943 			      u32 csum, struct sk_buff *skb)
3944 {
3945 	struct e1000_hw *hw = &adapter->hw;
3946 	u16 status = (u16)status_err;
3947 	u8 errors = (u8)(status_err >> 24);
3948 
3949 	skb_checksum_none_assert(skb);
3950 
3951 	/* 82543 or newer only */
3952 	if (unlikely(hw->mac_type < e1000_82543)) return;
3953 	/* Ignore Checksum bit is set */
3954 	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3955 	/* TCP/UDP checksum error bit is set */
3956 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3957 		/* let the stack verify checksum errors */
3958 		adapter->hw_csum_err++;
3959 		return;
3960 	}
3961 	/* TCP/UDP Checksum has not been calculated */
3962 	if (!(status & E1000_RXD_STAT_TCPCS))
3963 		return;
3964 
3965 	/* It must be a TCP or UDP packet with a valid checksum */
3966 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3967 		/* TCP checksum is good */
3968 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3969 	}
3970 	adapter->hw_csum_good++;
3971 }
3972 
3973 /**
3974  * e1000_consume_page - helper function
3975  **/
3976 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3977 			       u16 length)
3978 {
3979 	bi->page = NULL;
3980 	skb->len += length;
3981 	skb->data_len += length;
3982 	skb->truesize += PAGE_SIZE;
3983 }
3984 
3985 /**
3986  * e1000_receive_skb - helper function to handle rx indications
3987  * @adapter: board private structure
3988  * @status: descriptor status field as written by hardware
3989  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3990  * @skb: pointer to sk_buff to be indicated to stack
3991  */
3992 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3993 			      __le16 vlan, struct sk_buff *skb)
3994 {
3995 	skb->protocol = eth_type_trans(skb, adapter->netdev);
3996 
3997 	if (status & E1000_RXD_STAT_VP) {
3998 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3999 
4000 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4001 	}
4002 	napi_gro_receive(&adapter->napi, skb);
4003 }
4004 
4005 /**
4006  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4007  * @adapter: board private structure
4008  * @rx_ring: ring to clean
4009  * @work_done: amount of napi work completed this call
4010  * @work_to_do: max amount of work allowed for this call to do
4011  *
4012  * the return value indicates whether actual cleaning was done, there
4013  * is no guarantee that everything was cleaned
4014  */
4015 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4016 				     struct e1000_rx_ring *rx_ring,
4017 				     int *work_done, int work_to_do)
4018 {
4019 	struct e1000_hw *hw = &adapter->hw;
4020 	struct net_device *netdev = adapter->netdev;
4021 	struct pci_dev *pdev = adapter->pdev;
4022 	struct e1000_rx_desc *rx_desc, *next_rxd;
4023 	struct e1000_buffer *buffer_info, *next_buffer;
4024 	unsigned long irq_flags;
4025 	u32 length;
4026 	unsigned int i;
4027 	int cleaned_count = 0;
4028 	bool cleaned = false;
4029 	unsigned int total_rx_bytes=0, total_rx_packets=0;
4030 
4031 	i = rx_ring->next_to_clean;
4032 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4033 	buffer_info = &rx_ring->buffer_info[i];
4034 
4035 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4036 		struct sk_buff *skb;
4037 		u8 status;
4038 
4039 		if (*work_done >= work_to_do)
4040 			break;
4041 		(*work_done)++;
4042 		rmb(); /* read descriptor and rx_buffer_info after status DD */
4043 
4044 		status = rx_desc->status;
4045 		skb = buffer_info->skb;
4046 		buffer_info->skb = NULL;
4047 
4048 		if (++i == rx_ring->count) i = 0;
4049 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4050 		prefetch(next_rxd);
4051 
4052 		next_buffer = &rx_ring->buffer_info[i];
4053 
4054 		cleaned = true;
4055 		cleaned_count++;
4056 		dma_unmap_page(&pdev->dev, buffer_info->dma,
4057 			       buffer_info->length, DMA_FROM_DEVICE);
4058 		buffer_info->dma = 0;
4059 
4060 		length = le16_to_cpu(rx_desc->length);
4061 
4062 		/* errors is only valid for DD + EOP descriptors */
4063 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4064 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4065 			u8 *mapped;
4066 			u8 last_byte;
4067 
4068 			mapped = page_address(buffer_info->page);
4069 			last_byte = *(mapped + length - 1);
4070 			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4071 				       last_byte)) {
4072 				spin_lock_irqsave(&adapter->stats_lock,
4073 						  irq_flags);
4074 				e1000_tbi_adjust_stats(hw, &adapter->stats,
4075 						       length, mapped);
4076 				spin_unlock_irqrestore(&adapter->stats_lock,
4077 						       irq_flags);
4078 				length--;
4079 			} else {
4080 				if (netdev->features & NETIF_F_RXALL)
4081 					goto process_skb;
4082 				/* recycle both page and skb */
4083 				buffer_info->skb = skb;
4084 				/* an error means any chain goes out the window
4085 				 * too
4086 				 */
4087 				if (rx_ring->rx_skb_top)
4088 					dev_kfree_skb(rx_ring->rx_skb_top);
4089 				rx_ring->rx_skb_top = NULL;
4090 				goto next_desc;
4091 			}
4092 		}
4093 
4094 #define rxtop rx_ring->rx_skb_top
4095 process_skb:
4096 		if (!(status & E1000_RXD_STAT_EOP)) {
4097 			/* this descriptor is only the beginning (or middle) */
4098 			if (!rxtop) {
4099 				/* this is the beginning of a chain */
4100 				rxtop = skb;
4101 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
4102 						   0, length);
4103 			} else {
4104 				/* this is the middle of a chain */
4105 				skb_fill_page_desc(rxtop,
4106 				    skb_shinfo(rxtop)->nr_frags,
4107 				    buffer_info->page, 0, length);
4108 				/* re-use the skb, only consumed the page */
4109 				buffer_info->skb = skb;
4110 			}
4111 			e1000_consume_page(buffer_info, rxtop, length);
4112 			goto next_desc;
4113 		} else {
4114 			if (rxtop) {
4115 				/* end of the chain */
4116 				skb_fill_page_desc(rxtop,
4117 				    skb_shinfo(rxtop)->nr_frags,
4118 				    buffer_info->page, 0, length);
4119 				/* re-use the current skb, we only consumed the
4120 				 * page
4121 				 */
4122 				buffer_info->skb = skb;
4123 				skb = rxtop;
4124 				rxtop = NULL;
4125 				e1000_consume_page(buffer_info, skb, length);
4126 			} else {
4127 				/* no chain, got EOP, this buf is the packet
4128 				 * copybreak to save the put_page/alloc_page
4129 				 */
4130 				if (length <= copybreak &&
4131 				    skb_tailroom(skb) >= length) {
4132 					u8 *vaddr;
4133 					vaddr = kmap_atomic(buffer_info->page);
4134 					memcpy(skb_tail_pointer(skb), vaddr,
4135 					       length);
4136 					kunmap_atomic(vaddr);
4137 					/* re-use the page, so don't erase
4138 					 * buffer_info->page
4139 					 */
4140 					skb_put(skb, length);
4141 				} else {
4142 					skb_fill_page_desc(skb, 0,
4143 							   buffer_info->page, 0,
4144 							   length);
4145 					e1000_consume_page(buffer_info, skb,
4146 							   length);
4147 				}
4148 			}
4149 		}
4150 
4151 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4152 		e1000_rx_checksum(adapter,
4153 				  (u32)(status) |
4154 				  ((u32)(rx_desc->errors) << 24),
4155 				  le16_to_cpu(rx_desc->csum), skb);
4156 
4157 		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4158 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4159 			pskb_trim(skb, skb->len - 4);
4160 		total_rx_packets++;
4161 
4162 		/* eth type trans needs skb->data to point to something */
4163 		if (!pskb_may_pull(skb, ETH_HLEN)) {
4164 			e_err(drv, "pskb_may_pull failed.\n");
4165 			dev_kfree_skb(skb);
4166 			goto next_desc;
4167 		}
4168 
4169 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4170 
4171 next_desc:
4172 		rx_desc->status = 0;
4173 
4174 		/* return some buffers to hardware, one at a time is too slow */
4175 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4176 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4177 			cleaned_count = 0;
4178 		}
4179 
4180 		/* use prefetched values */
4181 		rx_desc = next_rxd;
4182 		buffer_info = next_buffer;
4183 	}
4184 	rx_ring->next_to_clean = i;
4185 
4186 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4187 	if (cleaned_count)
4188 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4189 
4190 	adapter->total_rx_packets += total_rx_packets;
4191 	adapter->total_rx_bytes += total_rx_bytes;
4192 	netdev->stats.rx_bytes += total_rx_bytes;
4193 	netdev->stats.rx_packets += total_rx_packets;
4194 	return cleaned;
4195 }
4196 
4197 /* this should improve performance for small packets with large amounts
4198  * of reassembly being done in the stack
4199  */
4200 static void e1000_check_copybreak(struct net_device *netdev,
4201 				 struct e1000_buffer *buffer_info,
4202 				 u32 length, struct sk_buff **skb)
4203 {
4204 	struct sk_buff *new_skb;
4205 
4206 	if (length > copybreak)
4207 		return;
4208 
4209 	new_skb = netdev_alloc_skb_ip_align(netdev, length);
4210 	if (!new_skb)
4211 		return;
4212 
4213 	skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4214 				       (*skb)->data - NET_IP_ALIGN,
4215 				       length + NET_IP_ALIGN);
4216 	/* save the skb in buffer_info as good */
4217 	buffer_info->skb = *skb;
4218 	*skb = new_skb;
4219 }
4220 
4221 /**
4222  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4223  * @adapter: board private structure
4224  * @rx_ring: ring to clean
4225  * @work_done: amount of napi work completed this call
4226  * @work_to_do: max amount of work allowed for this call to do
4227  */
4228 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4229 			       struct e1000_rx_ring *rx_ring,
4230 			       int *work_done, int work_to_do)
4231 {
4232 	struct e1000_hw *hw = &adapter->hw;
4233 	struct net_device *netdev = adapter->netdev;
4234 	struct pci_dev *pdev = adapter->pdev;
4235 	struct e1000_rx_desc *rx_desc, *next_rxd;
4236 	struct e1000_buffer *buffer_info, *next_buffer;
4237 	unsigned long flags;
4238 	u32 length;
4239 	unsigned int i;
4240 	int cleaned_count = 0;
4241 	bool cleaned = false;
4242 	unsigned int total_rx_bytes=0, total_rx_packets=0;
4243 
4244 	i = rx_ring->next_to_clean;
4245 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4246 	buffer_info = &rx_ring->buffer_info[i];
4247 
4248 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4249 		struct sk_buff *skb;
4250 		u8 status;
4251 
4252 		if (*work_done >= work_to_do)
4253 			break;
4254 		(*work_done)++;
4255 		rmb(); /* read descriptor and rx_buffer_info after status DD */
4256 
4257 		status = rx_desc->status;
4258 		skb = buffer_info->skb;
4259 		buffer_info->skb = NULL;
4260 
4261 		prefetch(skb->data - NET_IP_ALIGN);
4262 
4263 		if (++i == rx_ring->count) i = 0;
4264 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4265 		prefetch(next_rxd);
4266 
4267 		next_buffer = &rx_ring->buffer_info[i];
4268 
4269 		cleaned = true;
4270 		cleaned_count++;
4271 		dma_unmap_single(&pdev->dev, buffer_info->dma,
4272 				 buffer_info->length, DMA_FROM_DEVICE);
4273 		buffer_info->dma = 0;
4274 
4275 		length = le16_to_cpu(rx_desc->length);
4276 		/* !EOP means multiple descriptors were used to store a single
4277 		 * packet, if thats the case we need to toss it.  In fact, we
4278 		 * to toss every packet with the EOP bit clear and the next
4279 		 * frame that _does_ have the EOP bit set, as it is by
4280 		 * definition only a frame fragment
4281 		 */
4282 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4283 			adapter->discarding = true;
4284 
4285 		if (adapter->discarding) {
4286 			/* All receives must fit into a single buffer */
4287 			e_dbg("Receive packet consumed multiple buffers\n");
4288 			/* recycle */
4289 			buffer_info->skb = skb;
4290 			if (status & E1000_RXD_STAT_EOP)
4291 				adapter->discarding = false;
4292 			goto next_desc;
4293 		}
4294 
4295 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4296 			u8 last_byte = *(skb->data + length - 1);
4297 			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4298 				       last_byte)) {
4299 				spin_lock_irqsave(&adapter->stats_lock, flags);
4300 				e1000_tbi_adjust_stats(hw, &adapter->stats,
4301 						       length, skb->data);
4302 				spin_unlock_irqrestore(&adapter->stats_lock,
4303 						       flags);
4304 				length--;
4305 			} else {
4306 				if (netdev->features & NETIF_F_RXALL)
4307 					goto process_skb;
4308 				/* recycle */
4309 				buffer_info->skb = skb;
4310 				goto next_desc;
4311 			}
4312 		}
4313 
4314 process_skb:
4315 		total_rx_bytes += (length - 4); /* don't count FCS */
4316 		total_rx_packets++;
4317 
4318 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4319 			/* adjust length to remove Ethernet CRC, this must be
4320 			 * done after the TBI_ACCEPT workaround above
4321 			 */
4322 			length -= 4;
4323 
4324 		e1000_check_copybreak(netdev, buffer_info, length, &skb);
4325 
4326 		skb_put(skb, length);
4327 
4328 		/* Receive Checksum Offload */
4329 		e1000_rx_checksum(adapter,
4330 				  (u32)(status) |
4331 				  ((u32)(rx_desc->errors) << 24),
4332 				  le16_to_cpu(rx_desc->csum), skb);
4333 
4334 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4335 
4336 next_desc:
4337 		rx_desc->status = 0;
4338 
4339 		/* return some buffers to hardware, one at a time is too slow */
4340 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4341 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4342 			cleaned_count = 0;
4343 		}
4344 
4345 		/* use prefetched values */
4346 		rx_desc = next_rxd;
4347 		buffer_info = next_buffer;
4348 	}
4349 	rx_ring->next_to_clean = i;
4350 
4351 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4352 	if (cleaned_count)
4353 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4354 
4355 	adapter->total_rx_packets += total_rx_packets;
4356 	adapter->total_rx_bytes += total_rx_bytes;
4357 	netdev->stats.rx_bytes += total_rx_bytes;
4358 	netdev->stats.rx_packets += total_rx_packets;
4359 	return cleaned;
4360 }
4361 
4362 /**
4363  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4364  * @adapter: address of board private structure
4365  * @rx_ring: pointer to receive ring structure
4366  * @cleaned_count: number of buffers to allocate this pass
4367  **/
4368 static void
4369 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4370 			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4371 {
4372 	struct net_device *netdev = adapter->netdev;
4373 	struct pci_dev *pdev = adapter->pdev;
4374 	struct e1000_rx_desc *rx_desc;
4375 	struct e1000_buffer *buffer_info;
4376 	struct sk_buff *skb;
4377 	unsigned int i;
4378 	unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4379 
4380 	i = rx_ring->next_to_use;
4381 	buffer_info = &rx_ring->buffer_info[i];
4382 
4383 	while (cleaned_count--) {
4384 		skb = buffer_info->skb;
4385 		if (skb) {
4386 			skb_trim(skb, 0);
4387 			goto check_page;
4388 		}
4389 
4390 		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4391 		if (unlikely(!skb)) {
4392 			/* Better luck next round */
4393 			adapter->alloc_rx_buff_failed++;
4394 			break;
4395 		}
4396 
4397 		buffer_info->skb = skb;
4398 		buffer_info->length = adapter->rx_buffer_len;
4399 check_page:
4400 		/* allocate a new page if necessary */
4401 		if (!buffer_info->page) {
4402 			buffer_info->page = alloc_page(GFP_ATOMIC);
4403 			if (unlikely(!buffer_info->page)) {
4404 				adapter->alloc_rx_buff_failed++;
4405 				break;
4406 			}
4407 		}
4408 
4409 		if (!buffer_info->dma) {
4410 			buffer_info->dma = dma_map_page(&pdev->dev,
4411 							buffer_info->page, 0,
4412 							buffer_info->length,
4413 							DMA_FROM_DEVICE);
4414 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4415 				put_page(buffer_info->page);
4416 				dev_kfree_skb(skb);
4417 				buffer_info->page = NULL;
4418 				buffer_info->skb = NULL;
4419 				buffer_info->dma = 0;
4420 				adapter->alloc_rx_buff_failed++;
4421 				break; /* while !buffer_info->skb */
4422 			}
4423 		}
4424 
4425 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4426 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4427 
4428 		if (unlikely(++i == rx_ring->count))
4429 			i = 0;
4430 		buffer_info = &rx_ring->buffer_info[i];
4431 	}
4432 
4433 	if (likely(rx_ring->next_to_use != i)) {
4434 		rx_ring->next_to_use = i;
4435 		if (unlikely(i-- == 0))
4436 			i = (rx_ring->count - 1);
4437 
4438 		/* Force memory writes to complete before letting h/w
4439 		 * know there are new descriptors to fetch.  (Only
4440 		 * applicable for weak-ordered memory model archs,
4441 		 * such as IA-64).
4442 		 */
4443 		wmb();
4444 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4445 	}
4446 }
4447 
4448 /**
4449  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4450  * @adapter: address of board private structure
4451  **/
4452 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4453 				   struct e1000_rx_ring *rx_ring,
4454 				   int cleaned_count)
4455 {
4456 	struct e1000_hw *hw = &adapter->hw;
4457 	struct net_device *netdev = adapter->netdev;
4458 	struct pci_dev *pdev = adapter->pdev;
4459 	struct e1000_rx_desc *rx_desc;
4460 	struct e1000_buffer *buffer_info;
4461 	struct sk_buff *skb;
4462 	unsigned int i;
4463 	unsigned int bufsz = adapter->rx_buffer_len;
4464 
4465 	i = rx_ring->next_to_use;
4466 	buffer_info = &rx_ring->buffer_info[i];
4467 
4468 	while (cleaned_count--) {
4469 		skb = buffer_info->skb;
4470 		if (skb) {
4471 			skb_trim(skb, 0);
4472 			goto map_skb;
4473 		}
4474 
4475 		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4476 		if (unlikely(!skb)) {
4477 			/* Better luck next round */
4478 			adapter->alloc_rx_buff_failed++;
4479 			break;
4480 		}
4481 
4482 		/* Fix for errata 23, can't cross 64kB boundary */
4483 		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4484 			struct sk_buff *oldskb = skb;
4485 			e_err(rx_err, "skb align check failed: %u bytes at "
4486 			      "%p\n", bufsz, skb->data);
4487 			/* Try again, without freeing the previous */
4488 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4489 			/* Failed allocation, critical failure */
4490 			if (!skb) {
4491 				dev_kfree_skb(oldskb);
4492 				adapter->alloc_rx_buff_failed++;
4493 				break;
4494 			}
4495 
4496 			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4497 				/* give up */
4498 				dev_kfree_skb(skb);
4499 				dev_kfree_skb(oldskb);
4500 				adapter->alloc_rx_buff_failed++;
4501 				break; /* while !buffer_info->skb */
4502 			}
4503 
4504 			/* Use new allocation */
4505 			dev_kfree_skb(oldskb);
4506 		}
4507 		buffer_info->skb = skb;
4508 		buffer_info->length = adapter->rx_buffer_len;
4509 map_skb:
4510 		buffer_info->dma = dma_map_single(&pdev->dev,
4511 						  skb->data,
4512 						  buffer_info->length,
4513 						  DMA_FROM_DEVICE);
4514 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4515 			dev_kfree_skb(skb);
4516 			buffer_info->skb = NULL;
4517 			buffer_info->dma = 0;
4518 			adapter->alloc_rx_buff_failed++;
4519 			break; /* while !buffer_info->skb */
4520 		}
4521 
4522 		/* XXX if it was allocated cleanly it will never map to a
4523 		 * boundary crossing
4524 		 */
4525 
4526 		/* Fix for errata 23, can't cross 64kB boundary */
4527 		if (!e1000_check_64k_bound(adapter,
4528 					(void *)(unsigned long)buffer_info->dma,
4529 					adapter->rx_buffer_len)) {
4530 			e_err(rx_err, "dma align check failed: %u bytes at "
4531 			      "%p\n", adapter->rx_buffer_len,
4532 			      (void *)(unsigned long)buffer_info->dma);
4533 			dev_kfree_skb(skb);
4534 			buffer_info->skb = NULL;
4535 
4536 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4537 					 adapter->rx_buffer_len,
4538 					 DMA_FROM_DEVICE);
4539 			buffer_info->dma = 0;
4540 
4541 			adapter->alloc_rx_buff_failed++;
4542 			break; /* while !buffer_info->skb */
4543 		}
4544 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4545 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4546 
4547 		if (unlikely(++i == rx_ring->count))
4548 			i = 0;
4549 		buffer_info = &rx_ring->buffer_info[i];
4550 	}
4551 
4552 	if (likely(rx_ring->next_to_use != i)) {
4553 		rx_ring->next_to_use = i;
4554 		if (unlikely(i-- == 0))
4555 			i = (rx_ring->count - 1);
4556 
4557 		/* Force memory writes to complete before letting h/w
4558 		 * know there are new descriptors to fetch.  (Only
4559 		 * applicable for weak-ordered memory model archs,
4560 		 * such as IA-64).
4561 		 */
4562 		wmb();
4563 		writel(i, hw->hw_addr + rx_ring->rdt);
4564 	}
4565 }
4566 
4567 /**
4568  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4569  * @adapter:
4570  **/
4571 static void e1000_smartspeed(struct e1000_adapter *adapter)
4572 {
4573 	struct e1000_hw *hw = &adapter->hw;
4574 	u16 phy_status;
4575 	u16 phy_ctrl;
4576 
4577 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4578 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4579 		return;
4580 
4581 	if (adapter->smartspeed == 0) {
4582 		/* If Master/Slave config fault is asserted twice,
4583 		 * we assume back-to-back
4584 		 */
4585 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4586 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4587 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4588 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4589 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4590 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4591 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4592 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4593 					    phy_ctrl);
4594 			adapter->smartspeed++;
4595 			if (!e1000_phy_setup_autoneg(hw) &&
4596 			   !e1000_read_phy_reg(hw, PHY_CTRL,
4597 					       &phy_ctrl)) {
4598 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4599 					     MII_CR_RESTART_AUTO_NEG);
4600 				e1000_write_phy_reg(hw, PHY_CTRL,
4601 						    phy_ctrl);
4602 			}
4603 		}
4604 		return;
4605 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4606 		/* If still no link, perhaps using 2/3 pair cable */
4607 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4608 		phy_ctrl |= CR_1000T_MS_ENABLE;
4609 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4610 		if (!e1000_phy_setup_autoneg(hw) &&
4611 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4612 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4613 				     MII_CR_RESTART_AUTO_NEG);
4614 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4615 		}
4616 	}
4617 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4618 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4619 		adapter->smartspeed = 0;
4620 }
4621 
4622 /**
4623  * e1000_ioctl -
4624  * @netdev:
4625  * @ifreq:
4626  * @cmd:
4627  **/
4628 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4629 {
4630 	switch (cmd) {
4631 	case SIOCGMIIPHY:
4632 	case SIOCGMIIREG:
4633 	case SIOCSMIIREG:
4634 		return e1000_mii_ioctl(netdev, ifr, cmd);
4635 	default:
4636 		return -EOPNOTSUPP;
4637 	}
4638 }
4639 
4640 /**
4641  * e1000_mii_ioctl -
4642  * @netdev:
4643  * @ifreq:
4644  * @cmd:
4645  **/
4646 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4647 			   int cmd)
4648 {
4649 	struct e1000_adapter *adapter = netdev_priv(netdev);
4650 	struct e1000_hw *hw = &adapter->hw;
4651 	struct mii_ioctl_data *data = if_mii(ifr);
4652 	int retval;
4653 	u16 mii_reg;
4654 	unsigned long flags;
4655 
4656 	if (hw->media_type != e1000_media_type_copper)
4657 		return -EOPNOTSUPP;
4658 
4659 	switch (cmd) {
4660 	case SIOCGMIIPHY:
4661 		data->phy_id = hw->phy_addr;
4662 		break;
4663 	case SIOCGMIIREG:
4664 		spin_lock_irqsave(&adapter->stats_lock, flags);
4665 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4666 				   &data->val_out)) {
4667 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4668 			return -EIO;
4669 		}
4670 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4671 		break;
4672 	case SIOCSMIIREG:
4673 		if (data->reg_num & ~(0x1F))
4674 			return -EFAULT;
4675 		mii_reg = data->val_in;
4676 		spin_lock_irqsave(&adapter->stats_lock, flags);
4677 		if (e1000_write_phy_reg(hw, data->reg_num,
4678 					mii_reg)) {
4679 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4680 			return -EIO;
4681 		}
4682 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4683 		if (hw->media_type == e1000_media_type_copper) {
4684 			switch (data->reg_num) {
4685 			case PHY_CTRL:
4686 				if (mii_reg & MII_CR_POWER_DOWN)
4687 					break;
4688 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4689 					hw->autoneg = 1;
4690 					hw->autoneg_advertised = 0x2F;
4691 				} else {
4692 					u32 speed;
4693 					if (mii_reg & 0x40)
4694 						speed = SPEED_1000;
4695 					else if (mii_reg & 0x2000)
4696 						speed = SPEED_100;
4697 					else
4698 						speed = SPEED_10;
4699 					retval = e1000_set_spd_dplx(
4700 						adapter, speed,
4701 						((mii_reg & 0x100)
4702 						 ? DUPLEX_FULL :
4703 						 DUPLEX_HALF));
4704 					if (retval)
4705 						return retval;
4706 				}
4707 				if (netif_running(adapter->netdev))
4708 					e1000_reinit_locked(adapter);
4709 				else
4710 					e1000_reset(adapter);
4711 				break;
4712 			case M88E1000_PHY_SPEC_CTRL:
4713 			case M88E1000_EXT_PHY_SPEC_CTRL:
4714 				if (e1000_phy_reset(hw))
4715 					return -EIO;
4716 				break;
4717 			}
4718 		} else {
4719 			switch (data->reg_num) {
4720 			case PHY_CTRL:
4721 				if (mii_reg & MII_CR_POWER_DOWN)
4722 					break;
4723 				if (netif_running(adapter->netdev))
4724 					e1000_reinit_locked(adapter);
4725 				else
4726 					e1000_reset(adapter);
4727 				break;
4728 			}
4729 		}
4730 		break;
4731 	default:
4732 		return -EOPNOTSUPP;
4733 	}
4734 	return E1000_SUCCESS;
4735 }
4736 
4737 void e1000_pci_set_mwi(struct e1000_hw *hw)
4738 {
4739 	struct e1000_adapter *adapter = hw->back;
4740 	int ret_val = pci_set_mwi(adapter->pdev);
4741 
4742 	if (ret_val)
4743 		e_err(probe, "Error in setting MWI\n");
4744 }
4745 
4746 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4747 {
4748 	struct e1000_adapter *adapter = hw->back;
4749 
4750 	pci_clear_mwi(adapter->pdev);
4751 }
4752 
4753 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4754 {
4755 	struct e1000_adapter *adapter = hw->back;
4756 	return pcix_get_mmrbc(adapter->pdev);
4757 }
4758 
4759 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4760 {
4761 	struct e1000_adapter *adapter = hw->back;
4762 	pcix_set_mmrbc(adapter->pdev, mmrbc);
4763 }
4764 
4765 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4766 {
4767 	outl(value, port);
4768 }
4769 
4770 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4771 {
4772 	u16 vid;
4773 
4774 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4775 		return true;
4776 	return false;
4777 }
4778 
4779 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4780 			      netdev_features_t features)
4781 {
4782 	struct e1000_hw *hw = &adapter->hw;
4783 	u32 ctrl;
4784 
4785 	ctrl = er32(CTRL);
4786 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4787 		/* enable VLAN tag insert/strip */
4788 		ctrl |= E1000_CTRL_VME;
4789 	} else {
4790 		/* disable VLAN tag insert/strip */
4791 		ctrl &= ~E1000_CTRL_VME;
4792 	}
4793 	ew32(CTRL, ctrl);
4794 }
4795 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4796 				     bool filter_on)
4797 {
4798 	struct e1000_hw *hw = &adapter->hw;
4799 	u32 rctl;
4800 
4801 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4802 		e1000_irq_disable(adapter);
4803 
4804 	__e1000_vlan_mode(adapter, adapter->netdev->features);
4805 	if (filter_on) {
4806 		/* enable VLAN receive filtering */
4807 		rctl = er32(RCTL);
4808 		rctl &= ~E1000_RCTL_CFIEN;
4809 		if (!(adapter->netdev->flags & IFF_PROMISC))
4810 			rctl |= E1000_RCTL_VFE;
4811 		ew32(RCTL, rctl);
4812 		e1000_update_mng_vlan(adapter);
4813 	} else {
4814 		/* disable VLAN receive filtering */
4815 		rctl = er32(RCTL);
4816 		rctl &= ~E1000_RCTL_VFE;
4817 		ew32(RCTL, rctl);
4818 	}
4819 
4820 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4821 		e1000_irq_enable(adapter);
4822 }
4823 
4824 static void e1000_vlan_mode(struct net_device *netdev,
4825 			    netdev_features_t features)
4826 {
4827 	struct e1000_adapter *adapter = netdev_priv(netdev);
4828 
4829 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4830 		e1000_irq_disable(adapter);
4831 
4832 	__e1000_vlan_mode(adapter, features);
4833 
4834 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4835 		e1000_irq_enable(adapter);
4836 }
4837 
4838 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4839 				 __be16 proto, u16 vid)
4840 {
4841 	struct e1000_adapter *adapter = netdev_priv(netdev);
4842 	struct e1000_hw *hw = &adapter->hw;
4843 	u32 vfta, index;
4844 
4845 	if ((hw->mng_cookie.status &
4846 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4847 	    (vid == adapter->mng_vlan_id))
4848 		return 0;
4849 
4850 	if (!e1000_vlan_used(adapter))
4851 		e1000_vlan_filter_on_off(adapter, true);
4852 
4853 	/* add VID to filter table */
4854 	index = (vid >> 5) & 0x7F;
4855 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4856 	vfta |= (1 << (vid & 0x1F));
4857 	e1000_write_vfta(hw, index, vfta);
4858 
4859 	set_bit(vid, adapter->active_vlans);
4860 
4861 	return 0;
4862 }
4863 
4864 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4865 				  __be16 proto, u16 vid)
4866 {
4867 	struct e1000_adapter *adapter = netdev_priv(netdev);
4868 	struct e1000_hw *hw = &adapter->hw;
4869 	u32 vfta, index;
4870 
4871 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4872 		e1000_irq_disable(adapter);
4873 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4874 		e1000_irq_enable(adapter);
4875 
4876 	/* remove VID from filter table */
4877 	index = (vid >> 5) & 0x7F;
4878 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4879 	vfta &= ~(1 << (vid & 0x1F));
4880 	e1000_write_vfta(hw, index, vfta);
4881 
4882 	clear_bit(vid, adapter->active_vlans);
4883 
4884 	if (!e1000_vlan_used(adapter))
4885 		e1000_vlan_filter_on_off(adapter, false);
4886 
4887 	return 0;
4888 }
4889 
4890 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4891 {
4892 	u16 vid;
4893 
4894 	if (!e1000_vlan_used(adapter))
4895 		return;
4896 
4897 	e1000_vlan_filter_on_off(adapter, true);
4898 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4899 		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
4900 }
4901 
4902 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4903 {
4904 	struct e1000_hw *hw = &adapter->hw;
4905 
4906 	hw->autoneg = 0;
4907 
4908 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
4909 	 * for the switch() below to work
4910 	 */
4911 	if ((spd & 1) || (dplx & ~1))
4912 		goto err_inval;
4913 
4914 	/* Fiber NICs only allow 1000 gbps Full duplex */
4915 	if ((hw->media_type == e1000_media_type_fiber) &&
4916 	    spd != SPEED_1000 &&
4917 	    dplx != DUPLEX_FULL)
4918 		goto err_inval;
4919 
4920 	switch (spd + dplx) {
4921 	case SPEED_10 + DUPLEX_HALF:
4922 		hw->forced_speed_duplex = e1000_10_half;
4923 		break;
4924 	case SPEED_10 + DUPLEX_FULL:
4925 		hw->forced_speed_duplex = e1000_10_full;
4926 		break;
4927 	case SPEED_100 + DUPLEX_HALF:
4928 		hw->forced_speed_duplex = e1000_100_half;
4929 		break;
4930 	case SPEED_100 + DUPLEX_FULL:
4931 		hw->forced_speed_duplex = e1000_100_full;
4932 		break;
4933 	case SPEED_1000 + DUPLEX_FULL:
4934 		hw->autoneg = 1;
4935 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
4936 		break;
4937 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
4938 	default:
4939 		goto err_inval;
4940 	}
4941 
4942 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4943 	hw->mdix = AUTO_ALL_MODES;
4944 
4945 	return 0;
4946 
4947 err_inval:
4948 	e_err(probe, "Unsupported Speed/Duplex configuration\n");
4949 	return -EINVAL;
4950 }
4951 
4952 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4953 {
4954 	struct net_device *netdev = pci_get_drvdata(pdev);
4955 	struct e1000_adapter *adapter = netdev_priv(netdev);
4956 	struct e1000_hw *hw = &adapter->hw;
4957 	u32 ctrl, ctrl_ext, rctl, status;
4958 	u32 wufc = adapter->wol;
4959 #ifdef CONFIG_PM
4960 	int retval = 0;
4961 #endif
4962 
4963 	netif_device_detach(netdev);
4964 
4965 	if (netif_running(netdev)) {
4966 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4967 		e1000_down(adapter);
4968 	}
4969 
4970 #ifdef CONFIG_PM
4971 	retval = pci_save_state(pdev);
4972 	if (retval)
4973 		return retval;
4974 #endif
4975 
4976 	status = er32(STATUS);
4977 	if (status & E1000_STATUS_LU)
4978 		wufc &= ~E1000_WUFC_LNKC;
4979 
4980 	if (wufc) {
4981 		e1000_setup_rctl(adapter);
4982 		e1000_set_rx_mode(netdev);
4983 
4984 		rctl = er32(RCTL);
4985 
4986 		/* turn on all-multi mode if wake on multicast is enabled */
4987 		if (wufc & E1000_WUFC_MC)
4988 			rctl |= E1000_RCTL_MPE;
4989 
4990 		/* enable receives in the hardware */
4991 		ew32(RCTL, rctl | E1000_RCTL_EN);
4992 
4993 		if (hw->mac_type >= e1000_82540) {
4994 			ctrl = er32(CTRL);
4995 			/* advertise wake from D3Cold */
4996 			#define E1000_CTRL_ADVD3WUC 0x00100000
4997 			/* phy power management enable */
4998 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4999 			ctrl |= E1000_CTRL_ADVD3WUC |
5000 				E1000_CTRL_EN_PHY_PWR_MGMT;
5001 			ew32(CTRL, ctrl);
5002 		}
5003 
5004 		if (hw->media_type == e1000_media_type_fiber ||
5005 		    hw->media_type == e1000_media_type_internal_serdes) {
5006 			/* keep the laser running in D3 */
5007 			ctrl_ext = er32(CTRL_EXT);
5008 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5009 			ew32(CTRL_EXT, ctrl_ext);
5010 		}
5011 
5012 		ew32(WUC, E1000_WUC_PME_EN);
5013 		ew32(WUFC, wufc);
5014 	} else {
5015 		ew32(WUC, 0);
5016 		ew32(WUFC, 0);
5017 	}
5018 
5019 	e1000_release_manageability(adapter);
5020 
5021 	*enable_wake = !!wufc;
5022 
5023 	/* make sure adapter isn't asleep if manageability is enabled */
5024 	if (adapter->en_mng_pt)
5025 		*enable_wake = true;
5026 
5027 	if (netif_running(netdev))
5028 		e1000_free_irq(adapter);
5029 
5030 	pci_disable_device(pdev);
5031 
5032 	return 0;
5033 }
5034 
5035 #ifdef CONFIG_PM
5036 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5037 {
5038 	int retval;
5039 	bool wake;
5040 
5041 	retval = __e1000_shutdown(pdev, &wake);
5042 	if (retval)
5043 		return retval;
5044 
5045 	if (wake) {
5046 		pci_prepare_to_sleep(pdev);
5047 	} else {
5048 		pci_wake_from_d3(pdev, false);
5049 		pci_set_power_state(pdev, PCI_D3hot);
5050 	}
5051 
5052 	return 0;
5053 }
5054 
5055 static int e1000_resume(struct pci_dev *pdev)
5056 {
5057 	struct net_device *netdev = pci_get_drvdata(pdev);
5058 	struct e1000_adapter *adapter = netdev_priv(netdev);
5059 	struct e1000_hw *hw = &adapter->hw;
5060 	u32 err;
5061 
5062 	pci_set_power_state(pdev, PCI_D0);
5063 	pci_restore_state(pdev);
5064 	pci_save_state(pdev);
5065 
5066 	if (adapter->need_ioport)
5067 		err = pci_enable_device(pdev);
5068 	else
5069 		err = pci_enable_device_mem(pdev);
5070 	if (err) {
5071 		pr_err("Cannot enable PCI device from suspend\n");
5072 		return err;
5073 	}
5074 	pci_set_master(pdev);
5075 
5076 	pci_enable_wake(pdev, PCI_D3hot, 0);
5077 	pci_enable_wake(pdev, PCI_D3cold, 0);
5078 
5079 	if (netif_running(netdev)) {
5080 		err = e1000_request_irq(adapter);
5081 		if (err)
5082 			return err;
5083 	}
5084 
5085 	e1000_power_up_phy(adapter);
5086 	e1000_reset(adapter);
5087 	ew32(WUS, ~0);
5088 
5089 	e1000_init_manageability(adapter);
5090 
5091 	if (netif_running(netdev))
5092 		e1000_up(adapter);
5093 
5094 	netif_device_attach(netdev);
5095 
5096 	return 0;
5097 }
5098 #endif
5099 
5100 static void e1000_shutdown(struct pci_dev *pdev)
5101 {
5102 	bool wake;
5103 
5104 	__e1000_shutdown(pdev, &wake);
5105 
5106 	if (system_state == SYSTEM_POWER_OFF) {
5107 		pci_wake_from_d3(pdev, wake);
5108 		pci_set_power_state(pdev, PCI_D3hot);
5109 	}
5110 }
5111 
5112 #ifdef CONFIG_NET_POLL_CONTROLLER
5113 /* Polling 'interrupt' - used by things like netconsole to send skbs
5114  * without having to re-enable interrupts. It's not called while
5115  * the interrupt routine is executing.
5116  */
5117 static void e1000_netpoll(struct net_device *netdev)
5118 {
5119 	struct e1000_adapter *adapter = netdev_priv(netdev);
5120 
5121 	disable_irq(adapter->pdev->irq);
5122 	e1000_intr(adapter->pdev->irq, netdev);
5123 	enable_irq(adapter->pdev->irq);
5124 }
5125 #endif
5126 
5127 /**
5128  * e1000_io_error_detected - called when PCI error is detected
5129  * @pdev: Pointer to PCI device
5130  * @state: The current pci connection state
5131  *
5132  * This function is called after a PCI bus error affecting
5133  * this device has been detected.
5134  */
5135 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5136 						pci_channel_state_t state)
5137 {
5138 	struct net_device *netdev = pci_get_drvdata(pdev);
5139 	struct e1000_adapter *adapter = netdev_priv(netdev);
5140 
5141 	netif_device_detach(netdev);
5142 
5143 	if (state == pci_channel_io_perm_failure)
5144 		return PCI_ERS_RESULT_DISCONNECT;
5145 
5146 	if (netif_running(netdev))
5147 		e1000_down(adapter);
5148 	pci_disable_device(pdev);
5149 
5150 	/* Request a slot slot reset. */
5151 	return PCI_ERS_RESULT_NEED_RESET;
5152 }
5153 
5154 /**
5155  * e1000_io_slot_reset - called after the pci bus has been reset.
5156  * @pdev: Pointer to PCI device
5157  *
5158  * Restart the card from scratch, as if from a cold-boot. Implementation
5159  * resembles the first-half of the e1000_resume routine.
5160  */
5161 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5162 {
5163 	struct net_device *netdev = pci_get_drvdata(pdev);
5164 	struct e1000_adapter *adapter = netdev_priv(netdev);
5165 	struct e1000_hw *hw = &adapter->hw;
5166 	int err;
5167 
5168 	if (adapter->need_ioport)
5169 		err = pci_enable_device(pdev);
5170 	else
5171 		err = pci_enable_device_mem(pdev);
5172 	if (err) {
5173 		pr_err("Cannot re-enable PCI device after reset.\n");
5174 		return PCI_ERS_RESULT_DISCONNECT;
5175 	}
5176 	pci_set_master(pdev);
5177 
5178 	pci_enable_wake(pdev, PCI_D3hot, 0);
5179 	pci_enable_wake(pdev, PCI_D3cold, 0);
5180 
5181 	e1000_reset(adapter);
5182 	ew32(WUS, ~0);
5183 
5184 	return PCI_ERS_RESULT_RECOVERED;
5185 }
5186 
5187 /**
5188  * e1000_io_resume - called when traffic can start flowing again.
5189  * @pdev: Pointer to PCI device
5190  *
5191  * This callback is called when the error recovery driver tells us that
5192  * its OK to resume normal operation. Implementation resembles the
5193  * second-half of the e1000_resume routine.
5194  */
5195 static void e1000_io_resume(struct pci_dev *pdev)
5196 {
5197 	struct net_device *netdev = pci_get_drvdata(pdev);
5198 	struct e1000_adapter *adapter = netdev_priv(netdev);
5199 
5200 	e1000_init_manageability(adapter);
5201 
5202 	if (netif_running(netdev)) {
5203 		if (e1000_up(adapter)) {
5204 			pr_info("can't bring device back up after reset\n");
5205 			return;
5206 		}
5207 	}
5208 
5209 	netif_device_attach(netdev);
5210 }
5211 
5212 /* e1000_main.c */
5213