1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2006 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 #include "e1000.h" 30 #include <net/ip6_checksum.h> 31 #include <linux/io.h> 32 #include <linux/prefetch.h> 33 #include <linux/bitops.h> 34 #include <linux/if_vlan.h> 35 36 char e1000_driver_name[] = "e1000"; 37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; 38 #define DRV_VERSION "7.3.21-k8-NAPI" 39 const char e1000_driver_version[] = DRV_VERSION; 40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; 41 42 /* e1000_pci_tbl - PCI Device ID Table 43 * 44 * Last entry must be all 0s 45 * 46 * Macro expands to... 47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} 48 */ 49 static const struct pci_device_id e1000_pci_tbl[] = { 50 INTEL_E1000_ETHERNET_DEVICE(0x1000), 51 INTEL_E1000_ETHERNET_DEVICE(0x1001), 52 INTEL_E1000_ETHERNET_DEVICE(0x1004), 53 INTEL_E1000_ETHERNET_DEVICE(0x1008), 54 INTEL_E1000_ETHERNET_DEVICE(0x1009), 55 INTEL_E1000_ETHERNET_DEVICE(0x100C), 56 INTEL_E1000_ETHERNET_DEVICE(0x100D), 57 INTEL_E1000_ETHERNET_DEVICE(0x100E), 58 INTEL_E1000_ETHERNET_DEVICE(0x100F), 59 INTEL_E1000_ETHERNET_DEVICE(0x1010), 60 INTEL_E1000_ETHERNET_DEVICE(0x1011), 61 INTEL_E1000_ETHERNET_DEVICE(0x1012), 62 INTEL_E1000_ETHERNET_DEVICE(0x1013), 63 INTEL_E1000_ETHERNET_DEVICE(0x1014), 64 INTEL_E1000_ETHERNET_DEVICE(0x1015), 65 INTEL_E1000_ETHERNET_DEVICE(0x1016), 66 INTEL_E1000_ETHERNET_DEVICE(0x1017), 67 INTEL_E1000_ETHERNET_DEVICE(0x1018), 68 INTEL_E1000_ETHERNET_DEVICE(0x1019), 69 INTEL_E1000_ETHERNET_DEVICE(0x101A), 70 INTEL_E1000_ETHERNET_DEVICE(0x101D), 71 INTEL_E1000_ETHERNET_DEVICE(0x101E), 72 INTEL_E1000_ETHERNET_DEVICE(0x1026), 73 INTEL_E1000_ETHERNET_DEVICE(0x1027), 74 INTEL_E1000_ETHERNET_DEVICE(0x1028), 75 INTEL_E1000_ETHERNET_DEVICE(0x1075), 76 INTEL_E1000_ETHERNET_DEVICE(0x1076), 77 INTEL_E1000_ETHERNET_DEVICE(0x1077), 78 INTEL_E1000_ETHERNET_DEVICE(0x1078), 79 INTEL_E1000_ETHERNET_DEVICE(0x1079), 80 INTEL_E1000_ETHERNET_DEVICE(0x107A), 81 INTEL_E1000_ETHERNET_DEVICE(0x107B), 82 INTEL_E1000_ETHERNET_DEVICE(0x107C), 83 INTEL_E1000_ETHERNET_DEVICE(0x108A), 84 INTEL_E1000_ETHERNET_DEVICE(0x1099), 85 INTEL_E1000_ETHERNET_DEVICE(0x10B5), 86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E), 87 /* required last entry */ 88 {0,} 89 }; 90 91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 92 93 int e1000_up(struct e1000_adapter *adapter); 94 void e1000_down(struct e1000_adapter *adapter); 95 void e1000_reinit_locked(struct e1000_adapter *adapter); 96 void e1000_reset(struct e1000_adapter *adapter); 97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); 98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); 99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter); 100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter); 101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 102 struct e1000_tx_ring *txdr); 103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 104 struct e1000_rx_ring *rxdr); 105 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 106 struct e1000_tx_ring *tx_ring); 107 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 108 struct e1000_rx_ring *rx_ring); 109 void e1000_update_stats(struct e1000_adapter *adapter); 110 111 static int e1000_init_module(void); 112 static void e1000_exit_module(void); 113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); 114 static void e1000_remove(struct pci_dev *pdev); 115 static int e1000_alloc_queues(struct e1000_adapter *adapter); 116 static int e1000_sw_init(struct e1000_adapter *adapter); 117 int e1000_open(struct net_device *netdev); 118 int e1000_close(struct net_device *netdev); 119 static void e1000_configure_tx(struct e1000_adapter *adapter); 120 static void e1000_configure_rx(struct e1000_adapter *adapter); 121 static void e1000_setup_rctl(struct e1000_adapter *adapter); 122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); 123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); 124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 125 struct e1000_tx_ring *tx_ring); 126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 127 struct e1000_rx_ring *rx_ring); 128 static void e1000_set_rx_mode(struct net_device *netdev); 129 static void e1000_update_phy_info_task(struct work_struct *work); 130 static void e1000_watchdog(struct work_struct *work); 131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work); 132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 133 struct net_device *netdev); 134 static struct net_device_stats *e1000_get_stats(struct net_device *netdev); 135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu); 136 static int e1000_set_mac(struct net_device *netdev, void *p); 137 static irqreturn_t e1000_intr(int irq, void *data); 138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 139 struct e1000_tx_ring *tx_ring); 140 static int e1000_clean(struct napi_struct *napi, int budget); 141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 142 struct e1000_rx_ring *rx_ring, 143 int *work_done, int work_to_do); 144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 145 struct e1000_rx_ring *rx_ring, 146 int *work_done, int work_to_do); 147 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter, 148 struct e1000_rx_ring *rx_ring, 149 int cleaned_count) 150 { 151 } 152 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 153 struct e1000_rx_ring *rx_ring, 154 int cleaned_count); 155 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 156 struct e1000_rx_ring *rx_ring, 157 int cleaned_count); 158 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); 159 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 160 int cmd); 161 static void e1000_enter_82542_rst(struct e1000_adapter *adapter); 162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter); 163 static void e1000_tx_timeout(struct net_device *dev); 164 static void e1000_reset_task(struct work_struct *work); 165 static void e1000_smartspeed(struct e1000_adapter *adapter); 166 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 167 struct sk_buff *skb); 168 169 static bool e1000_vlan_used(struct e1000_adapter *adapter); 170 static void e1000_vlan_mode(struct net_device *netdev, 171 netdev_features_t features); 172 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 173 bool filter_on); 174 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 175 __be16 proto, u16 vid); 176 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 177 __be16 proto, u16 vid); 178 static void e1000_restore_vlan(struct e1000_adapter *adapter); 179 180 #ifdef CONFIG_PM 181 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); 182 static int e1000_resume(struct pci_dev *pdev); 183 #endif 184 static void e1000_shutdown(struct pci_dev *pdev); 185 186 #ifdef CONFIG_NET_POLL_CONTROLLER 187 /* for netdump / net console */ 188 static void e1000_netpoll (struct net_device *netdev); 189 #endif 190 191 #define COPYBREAK_DEFAULT 256 192 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; 193 module_param(copybreak, uint, 0644); 194 MODULE_PARM_DESC(copybreak, 195 "Maximum size of packet that is copied to a new buffer on receive"); 196 197 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 198 pci_channel_state_t state); 199 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); 200 static void e1000_io_resume(struct pci_dev *pdev); 201 202 static const struct pci_error_handlers e1000_err_handler = { 203 .error_detected = e1000_io_error_detected, 204 .slot_reset = e1000_io_slot_reset, 205 .resume = e1000_io_resume, 206 }; 207 208 static struct pci_driver e1000_driver = { 209 .name = e1000_driver_name, 210 .id_table = e1000_pci_tbl, 211 .probe = e1000_probe, 212 .remove = e1000_remove, 213 #ifdef CONFIG_PM 214 /* Power Management Hooks */ 215 .suspend = e1000_suspend, 216 .resume = e1000_resume, 217 #endif 218 .shutdown = e1000_shutdown, 219 .err_handler = &e1000_err_handler 220 }; 221 222 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 223 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 224 MODULE_LICENSE("GPL"); 225 MODULE_VERSION(DRV_VERSION); 226 227 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 228 static int debug = -1; 229 module_param(debug, int, 0); 230 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 231 232 /** 233 * e1000_get_hw_dev - return device 234 * used by hardware layer to print debugging information 235 * 236 **/ 237 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) 238 { 239 struct e1000_adapter *adapter = hw->back; 240 return adapter->netdev; 241 } 242 243 /** 244 * e1000_init_module - Driver Registration Routine 245 * 246 * e1000_init_module is the first routine called when the driver is 247 * loaded. All it does is register with the PCI subsystem. 248 **/ 249 static int __init e1000_init_module(void) 250 { 251 int ret; 252 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version); 253 254 pr_info("%s\n", e1000_copyright); 255 256 ret = pci_register_driver(&e1000_driver); 257 if (copybreak != COPYBREAK_DEFAULT) { 258 if (copybreak == 0) 259 pr_info("copybreak disabled\n"); 260 else 261 pr_info("copybreak enabled for " 262 "packets <= %u bytes\n", copybreak); 263 } 264 return ret; 265 } 266 267 module_init(e1000_init_module); 268 269 /** 270 * e1000_exit_module - Driver Exit Cleanup Routine 271 * 272 * e1000_exit_module is called just before the driver is removed 273 * from memory. 274 **/ 275 static void __exit e1000_exit_module(void) 276 { 277 pci_unregister_driver(&e1000_driver); 278 } 279 280 module_exit(e1000_exit_module); 281 282 static int e1000_request_irq(struct e1000_adapter *adapter) 283 { 284 struct net_device *netdev = adapter->netdev; 285 irq_handler_t handler = e1000_intr; 286 int irq_flags = IRQF_SHARED; 287 int err; 288 289 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, 290 netdev); 291 if (err) { 292 e_err(probe, "Unable to allocate interrupt Error: %d\n", err); 293 } 294 295 return err; 296 } 297 298 static void e1000_free_irq(struct e1000_adapter *adapter) 299 { 300 struct net_device *netdev = adapter->netdev; 301 302 free_irq(adapter->pdev->irq, netdev); 303 } 304 305 /** 306 * e1000_irq_disable - Mask off interrupt generation on the NIC 307 * @adapter: board private structure 308 **/ 309 static void e1000_irq_disable(struct e1000_adapter *adapter) 310 { 311 struct e1000_hw *hw = &adapter->hw; 312 313 ew32(IMC, ~0); 314 E1000_WRITE_FLUSH(); 315 synchronize_irq(adapter->pdev->irq); 316 } 317 318 /** 319 * e1000_irq_enable - Enable default interrupt generation settings 320 * @adapter: board private structure 321 **/ 322 static void e1000_irq_enable(struct e1000_adapter *adapter) 323 { 324 struct e1000_hw *hw = &adapter->hw; 325 326 ew32(IMS, IMS_ENABLE_MASK); 327 E1000_WRITE_FLUSH(); 328 } 329 330 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 331 { 332 struct e1000_hw *hw = &adapter->hw; 333 struct net_device *netdev = adapter->netdev; 334 u16 vid = hw->mng_cookie.vlan_id; 335 u16 old_vid = adapter->mng_vlan_id; 336 337 if (!e1000_vlan_used(adapter)) 338 return; 339 340 if (!test_bit(vid, adapter->active_vlans)) { 341 if (hw->mng_cookie.status & 342 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { 343 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); 344 adapter->mng_vlan_id = vid; 345 } else { 346 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 347 } 348 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && 349 (vid != old_vid) && 350 !test_bit(old_vid, adapter->active_vlans)) 351 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 352 old_vid); 353 } else { 354 adapter->mng_vlan_id = vid; 355 } 356 } 357 358 static void e1000_init_manageability(struct e1000_adapter *adapter) 359 { 360 struct e1000_hw *hw = &adapter->hw; 361 362 if (adapter->en_mng_pt) { 363 u32 manc = er32(MANC); 364 365 /* disable hardware interception of ARP */ 366 manc &= ~(E1000_MANC_ARP_EN); 367 368 ew32(MANC, manc); 369 } 370 } 371 372 static void e1000_release_manageability(struct e1000_adapter *adapter) 373 { 374 struct e1000_hw *hw = &adapter->hw; 375 376 if (adapter->en_mng_pt) { 377 u32 manc = er32(MANC); 378 379 /* re-enable hardware interception of ARP */ 380 manc |= E1000_MANC_ARP_EN; 381 382 ew32(MANC, manc); 383 } 384 } 385 386 /** 387 * e1000_configure - configure the hardware for RX and TX 388 * @adapter = private board structure 389 **/ 390 static void e1000_configure(struct e1000_adapter *adapter) 391 { 392 struct net_device *netdev = adapter->netdev; 393 int i; 394 395 e1000_set_rx_mode(netdev); 396 397 e1000_restore_vlan(adapter); 398 e1000_init_manageability(adapter); 399 400 e1000_configure_tx(adapter); 401 e1000_setup_rctl(adapter); 402 e1000_configure_rx(adapter); 403 /* call E1000_DESC_UNUSED which always leaves 404 * at least 1 descriptor unused to make sure 405 * next_to_use != next_to_clean 406 */ 407 for (i = 0; i < adapter->num_rx_queues; i++) { 408 struct e1000_rx_ring *ring = &adapter->rx_ring[i]; 409 adapter->alloc_rx_buf(adapter, ring, 410 E1000_DESC_UNUSED(ring)); 411 } 412 } 413 414 int e1000_up(struct e1000_adapter *adapter) 415 { 416 struct e1000_hw *hw = &adapter->hw; 417 418 /* hardware has been reset, we need to reload some things */ 419 e1000_configure(adapter); 420 421 clear_bit(__E1000_DOWN, &adapter->flags); 422 423 napi_enable(&adapter->napi); 424 425 e1000_irq_enable(adapter); 426 427 netif_wake_queue(adapter->netdev); 428 429 /* fire a link change interrupt to start the watchdog */ 430 ew32(ICS, E1000_ICS_LSC); 431 return 0; 432 } 433 434 /** 435 * e1000_power_up_phy - restore link in case the phy was powered down 436 * @adapter: address of board private structure 437 * 438 * The phy may be powered down to save power and turn off link when the 439 * driver is unloaded and wake on lan is not enabled (among others) 440 * *** this routine MUST be followed by a call to e1000_reset *** 441 **/ 442 void e1000_power_up_phy(struct e1000_adapter *adapter) 443 { 444 struct e1000_hw *hw = &adapter->hw; 445 u16 mii_reg = 0; 446 447 /* Just clear the power down bit to wake the phy back up */ 448 if (hw->media_type == e1000_media_type_copper) { 449 /* according to the manual, the phy will retain its 450 * settings across a power-down/up cycle 451 */ 452 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 453 mii_reg &= ~MII_CR_POWER_DOWN; 454 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 455 } 456 } 457 458 static void e1000_power_down_phy(struct e1000_adapter *adapter) 459 { 460 struct e1000_hw *hw = &adapter->hw; 461 462 /* Power down the PHY so no link is implied when interface is down * 463 * The PHY cannot be powered down if any of the following is true * 464 * (a) WoL is enabled 465 * (b) AMT is active 466 * (c) SoL/IDER session is active 467 */ 468 if (!adapter->wol && hw->mac_type >= e1000_82540 && 469 hw->media_type == e1000_media_type_copper) { 470 u16 mii_reg = 0; 471 472 switch (hw->mac_type) { 473 case e1000_82540: 474 case e1000_82545: 475 case e1000_82545_rev_3: 476 case e1000_82546: 477 case e1000_ce4100: 478 case e1000_82546_rev_3: 479 case e1000_82541: 480 case e1000_82541_rev_2: 481 case e1000_82547: 482 case e1000_82547_rev_2: 483 if (er32(MANC) & E1000_MANC_SMBUS_EN) 484 goto out; 485 break; 486 default: 487 goto out; 488 } 489 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 490 mii_reg |= MII_CR_POWER_DOWN; 491 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 492 msleep(1); 493 } 494 out: 495 return; 496 } 497 498 static void e1000_down_and_stop(struct e1000_adapter *adapter) 499 { 500 set_bit(__E1000_DOWN, &adapter->flags); 501 502 cancel_delayed_work_sync(&adapter->watchdog_task); 503 504 /* 505 * Since the watchdog task can reschedule other tasks, we should cancel 506 * it first, otherwise we can run into the situation when a work is 507 * still running after the adapter has been turned down. 508 */ 509 510 cancel_delayed_work_sync(&adapter->phy_info_task); 511 cancel_delayed_work_sync(&adapter->fifo_stall_task); 512 513 /* Only kill reset task if adapter is not resetting */ 514 if (!test_bit(__E1000_RESETTING, &adapter->flags)) 515 cancel_work_sync(&adapter->reset_task); 516 } 517 518 void e1000_down(struct e1000_adapter *adapter) 519 { 520 struct e1000_hw *hw = &adapter->hw; 521 struct net_device *netdev = adapter->netdev; 522 u32 rctl, tctl; 523 524 netif_carrier_off(netdev); 525 526 /* disable receives in the hardware */ 527 rctl = er32(RCTL); 528 ew32(RCTL, rctl & ~E1000_RCTL_EN); 529 /* flush and sleep below */ 530 531 netif_tx_disable(netdev); 532 533 /* disable transmits in the hardware */ 534 tctl = er32(TCTL); 535 tctl &= ~E1000_TCTL_EN; 536 ew32(TCTL, tctl); 537 /* flush both disables and wait for them to finish */ 538 E1000_WRITE_FLUSH(); 539 msleep(10); 540 541 napi_disable(&adapter->napi); 542 543 e1000_irq_disable(adapter); 544 545 /* Setting DOWN must be after irq_disable to prevent 546 * a screaming interrupt. Setting DOWN also prevents 547 * tasks from rescheduling. 548 */ 549 e1000_down_and_stop(adapter); 550 551 adapter->link_speed = 0; 552 adapter->link_duplex = 0; 553 554 e1000_reset(adapter); 555 e1000_clean_all_tx_rings(adapter); 556 e1000_clean_all_rx_rings(adapter); 557 } 558 559 void e1000_reinit_locked(struct e1000_adapter *adapter) 560 { 561 WARN_ON(in_interrupt()); 562 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 563 msleep(1); 564 e1000_down(adapter); 565 e1000_up(adapter); 566 clear_bit(__E1000_RESETTING, &adapter->flags); 567 } 568 569 void e1000_reset(struct e1000_adapter *adapter) 570 { 571 struct e1000_hw *hw = &adapter->hw; 572 u32 pba = 0, tx_space, min_tx_space, min_rx_space; 573 bool legacy_pba_adjust = false; 574 u16 hwm; 575 576 /* Repartition Pba for greater than 9k mtu 577 * To take effect CTRL.RST is required. 578 */ 579 580 switch (hw->mac_type) { 581 case e1000_82542_rev2_0: 582 case e1000_82542_rev2_1: 583 case e1000_82543: 584 case e1000_82544: 585 case e1000_82540: 586 case e1000_82541: 587 case e1000_82541_rev_2: 588 legacy_pba_adjust = true; 589 pba = E1000_PBA_48K; 590 break; 591 case e1000_82545: 592 case e1000_82545_rev_3: 593 case e1000_82546: 594 case e1000_ce4100: 595 case e1000_82546_rev_3: 596 pba = E1000_PBA_48K; 597 break; 598 case e1000_82547: 599 case e1000_82547_rev_2: 600 legacy_pba_adjust = true; 601 pba = E1000_PBA_30K; 602 break; 603 case e1000_undefined: 604 case e1000_num_macs: 605 break; 606 } 607 608 if (legacy_pba_adjust) { 609 if (hw->max_frame_size > E1000_RXBUFFER_8192) 610 pba -= 8; /* allocate more FIFO for Tx */ 611 612 if (hw->mac_type == e1000_82547) { 613 adapter->tx_fifo_head = 0; 614 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; 615 adapter->tx_fifo_size = 616 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; 617 atomic_set(&adapter->tx_fifo_stall, 0); 618 } 619 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { 620 /* adjust PBA for jumbo frames */ 621 ew32(PBA, pba); 622 623 /* To maintain wire speed transmits, the Tx FIFO should be 624 * large enough to accommodate two full transmit packets, 625 * rounded up to the next 1KB and expressed in KB. Likewise, 626 * the Rx FIFO should be large enough to accommodate at least 627 * one full receive packet and is similarly rounded up and 628 * expressed in KB. 629 */ 630 pba = er32(PBA); 631 /* upper 16 bits has Tx packet buffer allocation size in KB */ 632 tx_space = pba >> 16; 633 /* lower 16 bits has Rx packet buffer allocation size in KB */ 634 pba &= 0xffff; 635 /* the Tx fifo also stores 16 bytes of information about the Tx 636 * but don't include ethernet FCS because hardware appends it 637 */ 638 min_tx_space = (hw->max_frame_size + 639 sizeof(struct e1000_tx_desc) - 640 ETH_FCS_LEN) * 2; 641 min_tx_space = ALIGN(min_tx_space, 1024); 642 min_tx_space >>= 10; 643 /* software strips receive CRC, so leave room for it */ 644 min_rx_space = hw->max_frame_size; 645 min_rx_space = ALIGN(min_rx_space, 1024); 646 min_rx_space >>= 10; 647 648 /* If current Tx allocation is less than the min Tx FIFO size, 649 * and the min Tx FIFO size is less than the current Rx FIFO 650 * allocation, take space away from current Rx allocation 651 */ 652 if (tx_space < min_tx_space && 653 ((min_tx_space - tx_space) < pba)) { 654 pba = pba - (min_tx_space - tx_space); 655 656 /* PCI/PCIx hardware has PBA alignment constraints */ 657 switch (hw->mac_type) { 658 case e1000_82545 ... e1000_82546_rev_3: 659 pba &= ~(E1000_PBA_8K - 1); 660 break; 661 default: 662 break; 663 } 664 665 /* if short on Rx space, Rx wins and must trump Tx 666 * adjustment or use Early Receive if available 667 */ 668 if (pba < min_rx_space) 669 pba = min_rx_space; 670 } 671 } 672 673 ew32(PBA, pba); 674 675 /* flow control settings: 676 * The high water mark must be low enough to fit one full frame 677 * (or the size used for early receive) above it in the Rx FIFO. 678 * Set it to the lower of: 679 * - 90% of the Rx FIFO size, and 680 * - the full Rx FIFO size minus the early receive size (for parts 681 * with ERT support assuming ERT set to E1000_ERT_2048), or 682 * - the full Rx FIFO size minus one full frame 683 */ 684 hwm = min(((pba << 10) * 9 / 10), 685 ((pba << 10) - hw->max_frame_size)); 686 687 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ 688 hw->fc_low_water = hw->fc_high_water - 8; 689 hw->fc_pause_time = E1000_FC_PAUSE_TIME; 690 hw->fc_send_xon = 1; 691 hw->fc = hw->original_fc; 692 693 /* Allow time for pending master requests to run */ 694 e1000_reset_hw(hw); 695 if (hw->mac_type >= e1000_82544) 696 ew32(WUC, 0); 697 698 if (e1000_init_hw(hw)) 699 e_dev_err("Hardware Error\n"); 700 e1000_update_mng_vlan(adapter); 701 702 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ 703 if (hw->mac_type >= e1000_82544 && 704 hw->autoneg == 1 && 705 hw->autoneg_advertised == ADVERTISE_1000_FULL) { 706 u32 ctrl = er32(CTRL); 707 /* clear phy power management bit if we are in gig only mode, 708 * which if enabled will attempt negotiation to 100Mb, which 709 * can cause a loss of link at power off or driver unload 710 */ 711 ctrl &= ~E1000_CTRL_SWDPIN3; 712 ew32(CTRL, ctrl); 713 } 714 715 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 716 ew32(VET, ETHERNET_IEEE_VLAN_TYPE); 717 718 e1000_reset_adaptive(hw); 719 e1000_phy_get_info(hw, &adapter->phy_info); 720 721 e1000_release_manageability(adapter); 722 } 723 724 /* Dump the eeprom for users having checksum issues */ 725 static void e1000_dump_eeprom(struct e1000_adapter *adapter) 726 { 727 struct net_device *netdev = adapter->netdev; 728 struct ethtool_eeprom eeprom; 729 const struct ethtool_ops *ops = netdev->ethtool_ops; 730 u8 *data; 731 int i; 732 u16 csum_old, csum_new = 0; 733 734 eeprom.len = ops->get_eeprom_len(netdev); 735 eeprom.offset = 0; 736 737 data = kmalloc(eeprom.len, GFP_KERNEL); 738 if (!data) 739 return; 740 741 ops->get_eeprom(netdev, &eeprom, data); 742 743 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + 744 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); 745 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) 746 csum_new += data[i] + (data[i + 1] << 8); 747 csum_new = EEPROM_SUM - csum_new; 748 749 pr_err("/*********************/\n"); 750 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); 751 pr_err("Calculated : 0x%04x\n", csum_new); 752 753 pr_err("Offset Values\n"); 754 pr_err("======== ======\n"); 755 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); 756 757 pr_err("Include this output when contacting your support provider.\n"); 758 pr_err("This is not a software error! Something bad happened to\n"); 759 pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); 760 pr_err("result in further problems, possibly loss of data,\n"); 761 pr_err("corruption or system hangs!\n"); 762 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); 763 pr_err("which is invalid and requires you to set the proper MAC\n"); 764 pr_err("address manually before continuing to enable this network\n"); 765 pr_err("device. Please inspect the EEPROM dump and report the\n"); 766 pr_err("issue to your hardware vendor or Intel Customer Support.\n"); 767 pr_err("/*********************/\n"); 768 769 kfree(data); 770 } 771 772 /** 773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not 774 * @pdev: PCI device information struct 775 * 776 * Return true if an adapter needs ioport resources 777 **/ 778 static int e1000_is_need_ioport(struct pci_dev *pdev) 779 { 780 switch (pdev->device) { 781 case E1000_DEV_ID_82540EM: 782 case E1000_DEV_ID_82540EM_LOM: 783 case E1000_DEV_ID_82540EP: 784 case E1000_DEV_ID_82540EP_LOM: 785 case E1000_DEV_ID_82540EP_LP: 786 case E1000_DEV_ID_82541EI: 787 case E1000_DEV_ID_82541EI_MOBILE: 788 case E1000_DEV_ID_82541ER: 789 case E1000_DEV_ID_82541ER_LOM: 790 case E1000_DEV_ID_82541GI: 791 case E1000_DEV_ID_82541GI_LF: 792 case E1000_DEV_ID_82541GI_MOBILE: 793 case E1000_DEV_ID_82544EI_COPPER: 794 case E1000_DEV_ID_82544EI_FIBER: 795 case E1000_DEV_ID_82544GC_COPPER: 796 case E1000_DEV_ID_82544GC_LOM: 797 case E1000_DEV_ID_82545EM_COPPER: 798 case E1000_DEV_ID_82545EM_FIBER: 799 case E1000_DEV_ID_82546EB_COPPER: 800 case E1000_DEV_ID_82546EB_FIBER: 801 case E1000_DEV_ID_82546EB_QUAD_COPPER: 802 return true; 803 default: 804 return false; 805 } 806 } 807 808 static netdev_features_t e1000_fix_features(struct net_device *netdev, 809 netdev_features_t features) 810 { 811 /* Since there is no support for separate Rx/Tx vlan accel 812 * enable/disable make sure Tx flag is always in same state as Rx. 813 */ 814 if (features & NETIF_F_HW_VLAN_CTAG_RX) 815 features |= NETIF_F_HW_VLAN_CTAG_TX; 816 else 817 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 818 819 return features; 820 } 821 822 static int e1000_set_features(struct net_device *netdev, 823 netdev_features_t features) 824 { 825 struct e1000_adapter *adapter = netdev_priv(netdev); 826 netdev_features_t changed = features ^ netdev->features; 827 828 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 829 e1000_vlan_mode(netdev, features); 830 831 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL))) 832 return 0; 833 834 netdev->features = features; 835 adapter->rx_csum = !!(features & NETIF_F_RXCSUM); 836 837 if (netif_running(netdev)) 838 e1000_reinit_locked(adapter); 839 else 840 e1000_reset(adapter); 841 842 return 0; 843 } 844 845 static const struct net_device_ops e1000_netdev_ops = { 846 .ndo_open = e1000_open, 847 .ndo_stop = e1000_close, 848 .ndo_start_xmit = e1000_xmit_frame, 849 .ndo_get_stats = e1000_get_stats, 850 .ndo_set_rx_mode = e1000_set_rx_mode, 851 .ndo_set_mac_address = e1000_set_mac, 852 .ndo_tx_timeout = e1000_tx_timeout, 853 .ndo_change_mtu = e1000_change_mtu, 854 .ndo_do_ioctl = e1000_ioctl, 855 .ndo_validate_addr = eth_validate_addr, 856 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, 857 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, 858 #ifdef CONFIG_NET_POLL_CONTROLLER 859 .ndo_poll_controller = e1000_netpoll, 860 #endif 861 .ndo_fix_features = e1000_fix_features, 862 .ndo_set_features = e1000_set_features, 863 }; 864 865 /** 866 * e1000_init_hw_struct - initialize members of hw struct 867 * @adapter: board private struct 868 * @hw: structure used by e1000_hw.c 869 * 870 * Factors out initialization of the e1000_hw struct to its own function 871 * that can be called very early at init (just after struct allocation). 872 * Fields are initialized based on PCI device information and 873 * OS network device settings (MTU size). 874 * Returns negative error codes if MAC type setup fails. 875 */ 876 static int e1000_init_hw_struct(struct e1000_adapter *adapter, 877 struct e1000_hw *hw) 878 { 879 struct pci_dev *pdev = adapter->pdev; 880 881 /* PCI config space info */ 882 hw->vendor_id = pdev->vendor; 883 hw->device_id = pdev->device; 884 hw->subsystem_vendor_id = pdev->subsystem_vendor; 885 hw->subsystem_id = pdev->subsystem_device; 886 hw->revision_id = pdev->revision; 887 888 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); 889 890 hw->max_frame_size = adapter->netdev->mtu + 891 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; 892 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; 893 894 /* identify the MAC */ 895 if (e1000_set_mac_type(hw)) { 896 e_err(probe, "Unknown MAC Type\n"); 897 return -EIO; 898 } 899 900 switch (hw->mac_type) { 901 default: 902 break; 903 case e1000_82541: 904 case e1000_82547: 905 case e1000_82541_rev_2: 906 case e1000_82547_rev_2: 907 hw->phy_init_script = 1; 908 break; 909 } 910 911 e1000_set_media_type(hw); 912 e1000_get_bus_info(hw); 913 914 hw->wait_autoneg_complete = false; 915 hw->tbi_compatibility_en = true; 916 hw->adaptive_ifs = true; 917 918 /* Copper options */ 919 920 if (hw->media_type == e1000_media_type_copper) { 921 hw->mdix = AUTO_ALL_MODES; 922 hw->disable_polarity_correction = false; 923 hw->master_slave = E1000_MASTER_SLAVE; 924 } 925 926 return 0; 927 } 928 929 /** 930 * e1000_probe - Device Initialization Routine 931 * @pdev: PCI device information struct 932 * @ent: entry in e1000_pci_tbl 933 * 934 * Returns 0 on success, negative on failure 935 * 936 * e1000_probe initializes an adapter identified by a pci_dev structure. 937 * The OS initialization, configuring of the adapter private structure, 938 * and a hardware reset occur. 939 **/ 940 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 941 { 942 struct net_device *netdev; 943 struct e1000_adapter *adapter; 944 struct e1000_hw *hw; 945 946 static int cards_found; 947 static int global_quad_port_a; /* global ksp3 port a indication */ 948 int i, err, pci_using_dac; 949 u16 eeprom_data = 0; 950 u16 tmp = 0; 951 u16 eeprom_apme_mask = E1000_EEPROM_APME; 952 int bars, need_ioport; 953 954 /* do not allocate ioport bars when not needed */ 955 need_ioport = e1000_is_need_ioport(pdev); 956 if (need_ioport) { 957 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); 958 err = pci_enable_device(pdev); 959 } else { 960 bars = pci_select_bars(pdev, IORESOURCE_MEM); 961 err = pci_enable_device_mem(pdev); 962 } 963 if (err) 964 return err; 965 966 err = pci_request_selected_regions(pdev, bars, e1000_driver_name); 967 if (err) 968 goto err_pci_reg; 969 970 pci_set_master(pdev); 971 err = pci_save_state(pdev); 972 if (err) 973 goto err_alloc_etherdev; 974 975 err = -ENOMEM; 976 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 977 if (!netdev) 978 goto err_alloc_etherdev; 979 980 SET_NETDEV_DEV(netdev, &pdev->dev); 981 982 pci_set_drvdata(pdev, netdev); 983 adapter = netdev_priv(netdev); 984 adapter->netdev = netdev; 985 adapter->pdev = pdev; 986 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 987 adapter->bars = bars; 988 adapter->need_ioport = need_ioport; 989 990 hw = &adapter->hw; 991 hw->back = adapter; 992 993 err = -EIO; 994 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); 995 if (!hw->hw_addr) 996 goto err_ioremap; 997 998 if (adapter->need_ioport) { 999 for (i = BAR_1; i <= BAR_5; i++) { 1000 if (pci_resource_len(pdev, i) == 0) 1001 continue; 1002 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 1003 hw->io_base = pci_resource_start(pdev, i); 1004 break; 1005 } 1006 } 1007 } 1008 1009 /* make ready for any if (hw->...) below */ 1010 err = e1000_init_hw_struct(adapter, hw); 1011 if (err) 1012 goto err_sw_init; 1013 1014 /* there is a workaround being applied below that limits 1015 * 64-bit DMA addresses to 64-bit hardware. There are some 1016 * 32-bit adapters that Tx hang when given 64-bit DMA addresses 1017 */ 1018 pci_using_dac = 0; 1019 if ((hw->bus_type == e1000_bus_type_pcix) && 1020 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 1021 pci_using_dac = 1; 1022 } else { 1023 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1024 if (err) { 1025 pr_err("No usable DMA config, aborting\n"); 1026 goto err_dma; 1027 } 1028 } 1029 1030 netdev->netdev_ops = &e1000_netdev_ops; 1031 e1000_set_ethtool_ops(netdev); 1032 netdev->watchdog_timeo = 5 * HZ; 1033 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); 1034 1035 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 1036 1037 adapter->bd_number = cards_found; 1038 1039 /* setup the private structure */ 1040 1041 err = e1000_sw_init(adapter); 1042 if (err) 1043 goto err_sw_init; 1044 1045 err = -EIO; 1046 if (hw->mac_type == e1000_ce4100) { 1047 hw->ce4100_gbe_mdio_base_virt = 1048 ioremap(pci_resource_start(pdev, BAR_1), 1049 pci_resource_len(pdev, BAR_1)); 1050 1051 if (!hw->ce4100_gbe_mdio_base_virt) 1052 goto err_mdio_ioremap; 1053 } 1054 1055 if (hw->mac_type >= e1000_82543) { 1056 netdev->hw_features = NETIF_F_SG | 1057 NETIF_F_HW_CSUM | 1058 NETIF_F_HW_VLAN_CTAG_RX; 1059 netdev->features = NETIF_F_HW_VLAN_CTAG_TX | 1060 NETIF_F_HW_VLAN_CTAG_FILTER; 1061 } 1062 1063 if ((hw->mac_type >= e1000_82544) && 1064 (hw->mac_type != e1000_82547)) 1065 netdev->hw_features |= NETIF_F_TSO; 1066 1067 netdev->priv_flags |= IFF_SUPP_NOFCS; 1068 1069 netdev->features |= netdev->hw_features; 1070 netdev->hw_features |= (NETIF_F_RXCSUM | 1071 NETIF_F_RXALL | 1072 NETIF_F_RXFCS); 1073 1074 if (pci_using_dac) { 1075 netdev->features |= NETIF_F_HIGHDMA; 1076 netdev->vlan_features |= NETIF_F_HIGHDMA; 1077 } 1078 1079 netdev->vlan_features |= (NETIF_F_TSO | 1080 NETIF_F_HW_CSUM | 1081 NETIF_F_SG); 1082 1083 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */ 1084 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER || 1085 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE) 1086 netdev->priv_flags |= IFF_UNICAST_FLT; 1087 1088 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); 1089 1090 /* initialize eeprom parameters */ 1091 if (e1000_init_eeprom_params(hw)) { 1092 e_err(probe, "EEPROM initialization failed\n"); 1093 goto err_eeprom; 1094 } 1095 1096 /* before reading the EEPROM, reset the controller to 1097 * put the device in a known good starting state 1098 */ 1099 1100 e1000_reset_hw(hw); 1101 1102 /* make sure the EEPROM is good */ 1103 if (e1000_validate_eeprom_checksum(hw) < 0) { 1104 e_err(probe, "The EEPROM Checksum Is Not Valid\n"); 1105 e1000_dump_eeprom(adapter); 1106 /* set MAC address to all zeroes to invalidate and temporary 1107 * disable this device for the user. This blocks regular 1108 * traffic while still permitting ethtool ioctls from reaching 1109 * the hardware as well as allowing the user to run the 1110 * interface after manually setting a hw addr using 1111 * `ip set address` 1112 */ 1113 memset(hw->mac_addr, 0, netdev->addr_len); 1114 } else { 1115 /* copy the MAC address out of the EEPROM */ 1116 if (e1000_read_mac_addr(hw)) 1117 e_err(probe, "EEPROM Read Error\n"); 1118 } 1119 /* don't block initialization here due to bad MAC address */ 1120 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); 1121 1122 if (!is_valid_ether_addr(netdev->dev_addr)) 1123 e_err(probe, "Invalid MAC Address\n"); 1124 1125 1126 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog); 1127 INIT_DELAYED_WORK(&adapter->fifo_stall_task, 1128 e1000_82547_tx_fifo_stall_task); 1129 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task); 1130 INIT_WORK(&adapter->reset_task, e1000_reset_task); 1131 1132 e1000_check_options(adapter); 1133 1134 /* Initial Wake on LAN setting 1135 * If APM wake is enabled in the EEPROM, 1136 * enable the ACPI Magic Packet filter 1137 */ 1138 1139 switch (hw->mac_type) { 1140 case e1000_82542_rev2_0: 1141 case e1000_82542_rev2_1: 1142 case e1000_82543: 1143 break; 1144 case e1000_82544: 1145 e1000_read_eeprom(hw, 1146 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); 1147 eeprom_apme_mask = E1000_EEPROM_82544_APM; 1148 break; 1149 case e1000_82546: 1150 case e1000_82546_rev_3: 1151 if (er32(STATUS) & E1000_STATUS_FUNC_1) { 1152 e1000_read_eeprom(hw, 1153 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 1154 break; 1155 } 1156 /* Fall Through */ 1157 default: 1158 e1000_read_eeprom(hw, 1159 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 1160 break; 1161 } 1162 if (eeprom_data & eeprom_apme_mask) 1163 adapter->eeprom_wol |= E1000_WUFC_MAG; 1164 1165 /* now that we have the eeprom settings, apply the special cases 1166 * where the eeprom may be wrong or the board simply won't support 1167 * wake on lan on a particular port 1168 */ 1169 switch (pdev->device) { 1170 case E1000_DEV_ID_82546GB_PCIE: 1171 adapter->eeprom_wol = 0; 1172 break; 1173 case E1000_DEV_ID_82546EB_FIBER: 1174 case E1000_DEV_ID_82546GB_FIBER: 1175 /* Wake events only supported on port A for dual fiber 1176 * regardless of eeprom setting 1177 */ 1178 if (er32(STATUS) & E1000_STATUS_FUNC_1) 1179 adapter->eeprom_wol = 0; 1180 break; 1181 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1182 /* if quad port adapter, disable WoL on all but port A */ 1183 if (global_quad_port_a != 0) 1184 adapter->eeprom_wol = 0; 1185 else 1186 adapter->quad_port_a = true; 1187 /* Reset for multiple quad port adapters */ 1188 if (++global_quad_port_a == 4) 1189 global_quad_port_a = 0; 1190 break; 1191 } 1192 1193 /* initialize the wol settings based on the eeprom settings */ 1194 adapter->wol = adapter->eeprom_wol; 1195 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1196 1197 /* Auto detect PHY address */ 1198 if (hw->mac_type == e1000_ce4100) { 1199 for (i = 0; i < 32; i++) { 1200 hw->phy_addr = i; 1201 e1000_read_phy_reg(hw, PHY_ID2, &tmp); 1202 1203 if (tmp != 0 && tmp != 0xFF) 1204 break; 1205 } 1206 1207 if (i >= 32) 1208 goto err_eeprom; 1209 } 1210 1211 /* reset the hardware with the new settings */ 1212 e1000_reset(adapter); 1213 1214 strcpy(netdev->name, "eth%d"); 1215 err = register_netdev(netdev); 1216 if (err) 1217 goto err_register; 1218 1219 e1000_vlan_filter_on_off(adapter, false); 1220 1221 /* print bus type/speed/width info */ 1222 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n", 1223 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), 1224 ((hw->bus_speed == e1000_bus_speed_133) ? 133 : 1225 (hw->bus_speed == e1000_bus_speed_120) ? 120 : 1226 (hw->bus_speed == e1000_bus_speed_100) ? 100 : 1227 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), 1228 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), 1229 netdev->dev_addr); 1230 1231 /* carrier off reporting is important to ethtool even BEFORE open */ 1232 netif_carrier_off(netdev); 1233 1234 e_info(probe, "Intel(R) PRO/1000 Network Connection\n"); 1235 1236 cards_found++; 1237 return 0; 1238 1239 err_register: 1240 err_eeprom: 1241 e1000_phy_hw_reset(hw); 1242 1243 if (hw->flash_address) 1244 iounmap(hw->flash_address); 1245 kfree(adapter->tx_ring); 1246 kfree(adapter->rx_ring); 1247 err_dma: 1248 err_sw_init: 1249 err_mdio_ioremap: 1250 iounmap(hw->ce4100_gbe_mdio_base_virt); 1251 iounmap(hw->hw_addr); 1252 err_ioremap: 1253 free_netdev(netdev); 1254 err_alloc_etherdev: 1255 pci_release_selected_regions(pdev, bars); 1256 err_pci_reg: 1257 pci_disable_device(pdev); 1258 return err; 1259 } 1260 1261 /** 1262 * e1000_remove - Device Removal Routine 1263 * @pdev: PCI device information struct 1264 * 1265 * e1000_remove is called by the PCI subsystem to alert the driver 1266 * that it should release a PCI device. That could be caused by a 1267 * Hot-Plug event, or because the driver is going to be removed from 1268 * memory. 1269 **/ 1270 static void e1000_remove(struct pci_dev *pdev) 1271 { 1272 struct net_device *netdev = pci_get_drvdata(pdev); 1273 struct e1000_adapter *adapter = netdev_priv(netdev); 1274 struct e1000_hw *hw = &adapter->hw; 1275 1276 e1000_down_and_stop(adapter); 1277 e1000_release_manageability(adapter); 1278 1279 unregister_netdev(netdev); 1280 1281 e1000_phy_hw_reset(hw); 1282 1283 kfree(adapter->tx_ring); 1284 kfree(adapter->rx_ring); 1285 1286 if (hw->mac_type == e1000_ce4100) 1287 iounmap(hw->ce4100_gbe_mdio_base_virt); 1288 iounmap(hw->hw_addr); 1289 if (hw->flash_address) 1290 iounmap(hw->flash_address); 1291 pci_release_selected_regions(pdev, adapter->bars); 1292 1293 free_netdev(netdev); 1294 1295 pci_disable_device(pdev); 1296 } 1297 1298 /** 1299 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 1300 * @adapter: board private structure to initialize 1301 * 1302 * e1000_sw_init initializes the Adapter private data structure. 1303 * e1000_init_hw_struct MUST be called before this function 1304 **/ 1305 static int e1000_sw_init(struct e1000_adapter *adapter) 1306 { 1307 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 1308 1309 adapter->num_tx_queues = 1; 1310 adapter->num_rx_queues = 1; 1311 1312 if (e1000_alloc_queues(adapter)) { 1313 e_err(probe, "Unable to allocate memory for queues\n"); 1314 return -ENOMEM; 1315 } 1316 1317 /* Explicitly disable IRQ since the NIC can be in any state. */ 1318 e1000_irq_disable(adapter); 1319 1320 spin_lock_init(&adapter->stats_lock); 1321 1322 set_bit(__E1000_DOWN, &adapter->flags); 1323 1324 return 0; 1325 } 1326 1327 /** 1328 * e1000_alloc_queues - Allocate memory for all rings 1329 * @adapter: board private structure to initialize 1330 * 1331 * We allocate one ring per queue at run-time since we don't know the 1332 * number of queues at compile-time. 1333 **/ 1334 static int e1000_alloc_queues(struct e1000_adapter *adapter) 1335 { 1336 adapter->tx_ring = kcalloc(adapter->num_tx_queues, 1337 sizeof(struct e1000_tx_ring), GFP_KERNEL); 1338 if (!adapter->tx_ring) 1339 return -ENOMEM; 1340 1341 adapter->rx_ring = kcalloc(adapter->num_rx_queues, 1342 sizeof(struct e1000_rx_ring), GFP_KERNEL); 1343 if (!adapter->rx_ring) { 1344 kfree(adapter->tx_ring); 1345 return -ENOMEM; 1346 } 1347 1348 return E1000_SUCCESS; 1349 } 1350 1351 /** 1352 * e1000_open - Called when a network interface is made active 1353 * @netdev: network interface device structure 1354 * 1355 * Returns 0 on success, negative value on failure 1356 * 1357 * The open entry point is called when a network interface is made 1358 * active by the system (IFF_UP). At this point all resources needed 1359 * for transmit and receive operations are allocated, the interrupt 1360 * handler is registered with the OS, the watchdog task is started, 1361 * and the stack is notified that the interface is ready. 1362 **/ 1363 int e1000_open(struct net_device *netdev) 1364 { 1365 struct e1000_adapter *adapter = netdev_priv(netdev); 1366 struct e1000_hw *hw = &adapter->hw; 1367 int err; 1368 1369 /* disallow open during test */ 1370 if (test_bit(__E1000_TESTING, &adapter->flags)) 1371 return -EBUSY; 1372 1373 netif_carrier_off(netdev); 1374 1375 /* allocate transmit descriptors */ 1376 err = e1000_setup_all_tx_resources(adapter); 1377 if (err) 1378 goto err_setup_tx; 1379 1380 /* allocate receive descriptors */ 1381 err = e1000_setup_all_rx_resources(adapter); 1382 if (err) 1383 goto err_setup_rx; 1384 1385 e1000_power_up_phy(adapter); 1386 1387 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1388 if ((hw->mng_cookie.status & 1389 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { 1390 e1000_update_mng_vlan(adapter); 1391 } 1392 1393 /* before we allocate an interrupt, we must be ready to handle it. 1394 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1395 * as soon as we call pci_request_irq, so we have to setup our 1396 * clean_rx handler before we do so. 1397 */ 1398 e1000_configure(adapter); 1399 1400 err = e1000_request_irq(adapter); 1401 if (err) 1402 goto err_req_irq; 1403 1404 /* From here on the code is the same as e1000_up() */ 1405 clear_bit(__E1000_DOWN, &adapter->flags); 1406 1407 napi_enable(&adapter->napi); 1408 1409 e1000_irq_enable(adapter); 1410 1411 netif_start_queue(netdev); 1412 1413 /* fire a link status change interrupt to start the watchdog */ 1414 ew32(ICS, E1000_ICS_LSC); 1415 1416 return E1000_SUCCESS; 1417 1418 err_req_irq: 1419 e1000_power_down_phy(adapter); 1420 e1000_free_all_rx_resources(adapter); 1421 err_setup_rx: 1422 e1000_free_all_tx_resources(adapter); 1423 err_setup_tx: 1424 e1000_reset(adapter); 1425 1426 return err; 1427 } 1428 1429 /** 1430 * e1000_close - Disables a network interface 1431 * @netdev: network interface device structure 1432 * 1433 * Returns 0, this is not allowed to fail 1434 * 1435 * The close entry point is called when an interface is de-activated 1436 * by the OS. The hardware is still under the drivers control, but 1437 * needs to be disabled. A global MAC reset is issued to stop the 1438 * hardware, and all transmit and receive resources are freed. 1439 **/ 1440 int e1000_close(struct net_device *netdev) 1441 { 1442 struct e1000_adapter *adapter = netdev_priv(netdev); 1443 struct e1000_hw *hw = &adapter->hw; 1444 int count = E1000_CHECK_RESET_COUNT; 1445 1446 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 1447 usleep_range(10000, 20000); 1448 1449 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 1450 e1000_down(adapter); 1451 e1000_power_down_phy(adapter); 1452 e1000_free_irq(adapter); 1453 1454 e1000_free_all_tx_resources(adapter); 1455 e1000_free_all_rx_resources(adapter); 1456 1457 /* kill manageability vlan ID if supported, but not if a vlan with 1458 * the same ID is registered on the host OS (let 8021q kill it) 1459 */ 1460 if ((hw->mng_cookie.status & 1461 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 1462 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { 1463 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 1464 adapter->mng_vlan_id); 1465 } 1466 1467 return 0; 1468 } 1469 1470 /** 1471 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary 1472 * @adapter: address of board private structure 1473 * @start: address of beginning of memory 1474 * @len: length of memory 1475 **/ 1476 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, 1477 unsigned long len) 1478 { 1479 struct e1000_hw *hw = &adapter->hw; 1480 unsigned long begin = (unsigned long)start; 1481 unsigned long end = begin + len; 1482 1483 /* First rev 82545 and 82546 need to not allow any memory 1484 * write location to cross 64k boundary due to errata 23 1485 */ 1486 if (hw->mac_type == e1000_82545 || 1487 hw->mac_type == e1000_ce4100 || 1488 hw->mac_type == e1000_82546) { 1489 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; 1490 } 1491 1492 return true; 1493 } 1494 1495 /** 1496 * e1000_setup_tx_resources - allocate Tx resources (Descriptors) 1497 * @adapter: board private structure 1498 * @txdr: tx descriptor ring (for a specific queue) to setup 1499 * 1500 * Return 0 on success, negative on failure 1501 **/ 1502 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 1503 struct e1000_tx_ring *txdr) 1504 { 1505 struct pci_dev *pdev = adapter->pdev; 1506 int size; 1507 1508 size = sizeof(struct e1000_tx_buffer) * txdr->count; 1509 txdr->buffer_info = vzalloc(size); 1510 if (!txdr->buffer_info) 1511 return -ENOMEM; 1512 1513 /* round up to nearest 4K */ 1514 1515 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 1516 txdr->size = ALIGN(txdr->size, 4096); 1517 1518 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, 1519 GFP_KERNEL); 1520 if (!txdr->desc) { 1521 setup_tx_desc_die: 1522 vfree(txdr->buffer_info); 1523 return -ENOMEM; 1524 } 1525 1526 /* Fix for errata 23, can't cross 64kB boundary */ 1527 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1528 void *olddesc = txdr->desc; 1529 dma_addr_t olddma = txdr->dma; 1530 e_err(tx_err, "txdr align check failed: %u bytes at %p\n", 1531 txdr->size, txdr->desc); 1532 /* Try again, without freeing the previous */ 1533 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, 1534 &txdr->dma, GFP_KERNEL); 1535 /* Failed allocation, critical failure */ 1536 if (!txdr->desc) { 1537 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1538 olddma); 1539 goto setup_tx_desc_die; 1540 } 1541 1542 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1543 /* give up */ 1544 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, 1545 txdr->dma); 1546 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1547 olddma); 1548 e_err(probe, "Unable to allocate aligned memory " 1549 "for the transmit descriptor ring\n"); 1550 vfree(txdr->buffer_info); 1551 return -ENOMEM; 1552 } else { 1553 /* Free old allocation, new allocation was successful */ 1554 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1555 olddma); 1556 } 1557 } 1558 memset(txdr->desc, 0, txdr->size); 1559 1560 txdr->next_to_use = 0; 1561 txdr->next_to_clean = 0; 1562 1563 return 0; 1564 } 1565 1566 /** 1567 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources 1568 * (Descriptors) for all queues 1569 * @adapter: board private structure 1570 * 1571 * Return 0 on success, negative on failure 1572 **/ 1573 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) 1574 { 1575 int i, err = 0; 1576 1577 for (i = 0; i < adapter->num_tx_queues; i++) { 1578 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); 1579 if (err) { 1580 e_err(probe, "Allocation for Tx Queue %u failed\n", i); 1581 for (i-- ; i >= 0; i--) 1582 e1000_free_tx_resources(adapter, 1583 &adapter->tx_ring[i]); 1584 break; 1585 } 1586 } 1587 1588 return err; 1589 } 1590 1591 /** 1592 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset 1593 * @adapter: board private structure 1594 * 1595 * Configure the Tx unit of the MAC after a reset. 1596 **/ 1597 static void e1000_configure_tx(struct e1000_adapter *adapter) 1598 { 1599 u64 tdba; 1600 struct e1000_hw *hw = &adapter->hw; 1601 u32 tdlen, tctl, tipg; 1602 u32 ipgr1, ipgr2; 1603 1604 /* Setup the HW Tx Head and Tail descriptor pointers */ 1605 1606 switch (adapter->num_tx_queues) { 1607 case 1: 1608 default: 1609 tdba = adapter->tx_ring[0].dma; 1610 tdlen = adapter->tx_ring[0].count * 1611 sizeof(struct e1000_tx_desc); 1612 ew32(TDLEN, tdlen); 1613 ew32(TDBAH, (tdba >> 32)); 1614 ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); 1615 ew32(TDT, 0); 1616 ew32(TDH, 0); 1617 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? 1618 E1000_TDH : E1000_82542_TDH); 1619 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? 1620 E1000_TDT : E1000_82542_TDT); 1621 break; 1622 } 1623 1624 /* Set the default values for the Tx Inter Packet Gap timer */ 1625 if ((hw->media_type == e1000_media_type_fiber || 1626 hw->media_type == e1000_media_type_internal_serdes)) 1627 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 1628 else 1629 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 1630 1631 switch (hw->mac_type) { 1632 case e1000_82542_rev2_0: 1633 case e1000_82542_rev2_1: 1634 tipg = DEFAULT_82542_TIPG_IPGT; 1635 ipgr1 = DEFAULT_82542_TIPG_IPGR1; 1636 ipgr2 = DEFAULT_82542_TIPG_IPGR2; 1637 break; 1638 default: 1639 ipgr1 = DEFAULT_82543_TIPG_IPGR1; 1640 ipgr2 = DEFAULT_82543_TIPG_IPGR2; 1641 break; 1642 } 1643 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; 1644 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; 1645 ew32(TIPG, tipg); 1646 1647 /* Set the Tx Interrupt Delay register */ 1648 1649 ew32(TIDV, adapter->tx_int_delay); 1650 if (hw->mac_type >= e1000_82540) 1651 ew32(TADV, adapter->tx_abs_int_delay); 1652 1653 /* Program the Transmit Control Register */ 1654 1655 tctl = er32(TCTL); 1656 tctl &= ~E1000_TCTL_CT; 1657 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 1658 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 1659 1660 e1000_config_collision_dist(hw); 1661 1662 /* Setup Transmit Descriptor Settings for eop descriptor */ 1663 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 1664 1665 /* only set IDE if we are delaying interrupts using the timers */ 1666 if (adapter->tx_int_delay) 1667 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 1668 1669 if (hw->mac_type < e1000_82543) 1670 adapter->txd_cmd |= E1000_TXD_CMD_RPS; 1671 else 1672 adapter->txd_cmd |= E1000_TXD_CMD_RS; 1673 1674 /* Cache if we're 82544 running in PCI-X because we'll 1675 * need this to apply a workaround later in the send path. 1676 */ 1677 if (hw->mac_type == e1000_82544 && 1678 hw->bus_type == e1000_bus_type_pcix) 1679 adapter->pcix_82544 = true; 1680 1681 ew32(TCTL, tctl); 1682 1683 } 1684 1685 /** 1686 * e1000_setup_rx_resources - allocate Rx resources (Descriptors) 1687 * @adapter: board private structure 1688 * @rxdr: rx descriptor ring (for a specific queue) to setup 1689 * 1690 * Returns 0 on success, negative on failure 1691 **/ 1692 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 1693 struct e1000_rx_ring *rxdr) 1694 { 1695 struct pci_dev *pdev = adapter->pdev; 1696 int size, desc_len; 1697 1698 size = sizeof(struct e1000_rx_buffer) * rxdr->count; 1699 rxdr->buffer_info = vzalloc(size); 1700 if (!rxdr->buffer_info) 1701 return -ENOMEM; 1702 1703 desc_len = sizeof(struct e1000_rx_desc); 1704 1705 /* Round up to nearest 4K */ 1706 1707 rxdr->size = rxdr->count * desc_len; 1708 rxdr->size = ALIGN(rxdr->size, 4096); 1709 1710 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, 1711 GFP_KERNEL); 1712 if (!rxdr->desc) { 1713 setup_rx_desc_die: 1714 vfree(rxdr->buffer_info); 1715 return -ENOMEM; 1716 } 1717 1718 /* Fix for errata 23, can't cross 64kB boundary */ 1719 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1720 void *olddesc = rxdr->desc; 1721 dma_addr_t olddma = rxdr->dma; 1722 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n", 1723 rxdr->size, rxdr->desc); 1724 /* Try again, without freeing the previous */ 1725 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, 1726 &rxdr->dma, GFP_KERNEL); 1727 /* Failed allocation, critical failure */ 1728 if (!rxdr->desc) { 1729 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1730 olddma); 1731 goto setup_rx_desc_die; 1732 } 1733 1734 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1735 /* give up */ 1736 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, 1737 rxdr->dma); 1738 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1739 olddma); 1740 e_err(probe, "Unable to allocate aligned memory for " 1741 "the Rx descriptor ring\n"); 1742 goto setup_rx_desc_die; 1743 } else { 1744 /* Free old allocation, new allocation was successful */ 1745 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1746 olddma); 1747 } 1748 } 1749 memset(rxdr->desc, 0, rxdr->size); 1750 1751 rxdr->next_to_clean = 0; 1752 rxdr->next_to_use = 0; 1753 rxdr->rx_skb_top = NULL; 1754 1755 return 0; 1756 } 1757 1758 /** 1759 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources 1760 * (Descriptors) for all queues 1761 * @adapter: board private structure 1762 * 1763 * Return 0 on success, negative on failure 1764 **/ 1765 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) 1766 { 1767 int i, err = 0; 1768 1769 for (i = 0; i < adapter->num_rx_queues; i++) { 1770 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); 1771 if (err) { 1772 e_err(probe, "Allocation for Rx Queue %u failed\n", i); 1773 for (i-- ; i >= 0; i--) 1774 e1000_free_rx_resources(adapter, 1775 &adapter->rx_ring[i]); 1776 break; 1777 } 1778 } 1779 1780 return err; 1781 } 1782 1783 /** 1784 * e1000_setup_rctl - configure the receive control registers 1785 * @adapter: Board private structure 1786 **/ 1787 static void e1000_setup_rctl(struct e1000_adapter *adapter) 1788 { 1789 struct e1000_hw *hw = &adapter->hw; 1790 u32 rctl; 1791 1792 rctl = er32(RCTL); 1793 1794 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 1795 1796 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO | 1797 E1000_RCTL_RDMTS_HALF | 1798 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); 1799 1800 if (hw->tbi_compatibility_on == 1) 1801 rctl |= E1000_RCTL_SBP; 1802 else 1803 rctl &= ~E1000_RCTL_SBP; 1804 1805 if (adapter->netdev->mtu <= ETH_DATA_LEN) 1806 rctl &= ~E1000_RCTL_LPE; 1807 else 1808 rctl |= E1000_RCTL_LPE; 1809 1810 /* Setup buffer sizes */ 1811 rctl &= ~E1000_RCTL_SZ_4096; 1812 rctl |= E1000_RCTL_BSEX; 1813 switch (adapter->rx_buffer_len) { 1814 case E1000_RXBUFFER_2048: 1815 default: 1816 rctl |= E1000_RCTL_SZ_2048; 1817 rctl &= ~E1000_RCTL_BSEX; 1818 break; 1819 case E1000_RXBUFFER_4096: 1820 rctl |= E1000_RCTL_SZ_4096; 1821 break; 1822 case E1000_RXBUFFER_8192: 1823 rctl |= E1000_RCTL_SZ_8192; 1824 break; 1825 case E1000_RXBUFFER_16384: 1826 rctl |= E1000_RCTL_SZ_16384; 1827 break; 1828 } 1829 1830 /* This is useful for sniffing bad packets. */ 1831 if (adapter->netdev->features & NETIF_F_RXALL) { 1832 /* UPE and MPE will be handled by normal PROMISC logic 1833 * in e1000e_set_rx_mode 1834 */ 1835 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 1836 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 1837 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 1838 1839 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 1840 E1000_RCTL_DPF | /* Allow filtered pause */ 1841 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 1842 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 1843 * and that breaks VLANs. 1844 */ 1845 } 1846 1847 ew32(RCTL, rctl); 1848 } 1849 1850 /** 1851 * e1000_configure_rx - Configure 8254x Receive Unit after Reset 1852 * @adapter: board private structure 1853 * 1854 * Configure the Rx unit of the MAC after a reset. 1855 **/ 1856 static void e1000_configure_rx(struct e1000_adapter *adapter) 1857 { 1858 u64 rdba; 1859 struct e1000_hw *hw = &adapter->hw; 1860 u32 rdlen, rctl, rxcsum; 1861 1862 if (adapter->netdev->mtu > ETH_DATA_LEN) { 1863 rdlen = adapter->rx_ring[0].count * 1864 sizeof(struct e1000_rx_desc); 1865 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 1866 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 1867 } else { 1868 rdlen = adapter->rx_ring[0].count * 1869 sizeof(struct e1000_rx_desc); 1870 adapter->clean_rx = e1000_clean_rx_irq; 1871 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 1872 } 1873 1874 /* disable receives while setting up the descriptors */ 1875 rctl = er32(RCTL); 1876 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1877 1878 /* set the Receive Delay Timer Register */ 1879 ew32(RDTR, adapter->rx_int_delay); 1880 1881 if (hw->mac_type >= e1000_82540) { 1882 ew32(RADV, adapter->rx_abs_int_delay); 1883 if (adapter->itr_setting != 0) 1884 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1885 } 1886 1887 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1888 * the Base and Length of the Rx Descriptor Ring 1889 */ 1890 switch (adapter->num_rx_queues) { 1891 case 1: 1892 default: 1893 rdba = adapter->rx_ring[0].dma; 1894 ew32(RDLEN, rdlen); 1895 ew32(RDBAH, (rdba >> 32)); 1896 ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); 1897 ew32(RDT, 0); 1898 ew32(RDH, 0); 1899 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? 1900 E1000_RDH : E1000_82542_RDH); 1901 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? 1902 E1000_RDT : E1000_82542_RDT); 1903 break; 1904 } 1905 1906 /* Enable 82543 Receive Checksum Offload for TCP and UDP */ 1907 if (hw->mac_type >= e1000_82543) { 1908 rxcsum = er32(RXCSUM); 1909 if (adapter->rx_csum) 1910 rxcsum |= E1000_RXCSUM_TUOFL; 1911 else 1912 /* don't need to clear IPPCSE as it defaults to 0 */ 1913 rxcsum &= ~E1000_RXCSUM_TUOFL; 1914 ew32(RXCSUM, rxcsum); 1915 } 1916 1917 /* Enable Receives */ 1918 ew32(RCTL, rctl | E1000_RCTL_EN); 1919 } 1920 1921 /** 1922 * e1000_free_tx_resources - Free Tx Resources per Queue 1923 * @adapter: board private structure 1924 * @tx_ring: Tx descriptor ring for a specific queue 1925 * 1926 * Free all transmit software resources 1927 **/ 1928 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 1929 struct e1000_tx_ring *tx_ring) 1930 { 1931 struct pci_dev *pdev = adapter->pdev; 1932 1933 e1000_clean_tx_ring(adapter, tx_ring); 1934 1935 vfree(tx_ring->buffer_info); 1936 tx_ring->buffer_info = NULL; 1937 1938 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1939 tx_ring->dma); 1940 1941 tx_ring->desc = NULL; 1942 } 1943 1944 /** 1945 * e1000_free_all_tx_resources - Free Tx Resources for All Queues 1946 * @adapter: board private structure 1947 * 1948 * Free all transmit software resources 1949 **/ 1950 void e1000_free_all_tx_resources(struct e1000_adapter *adapter) 1951 { 1952 int i; 1953 1954 for (i = 0; i < adapter->num_tx_queues; i++) 1955 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); 1956 } 1957 1958 static void 1959 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, 1960 struct e1000_tx_buffer *buffer_info) 1961 { 1962 if (buffer_info->dma) { 1963 if (buffer_info->mapped_as_page) 1964 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, 1965 buffer_info->length, DMA_TO_DEVICE); 1966 else 1967 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1968 buffer_info->length, 1969 DMA_TO_DEVICE); 1970 buffer_info->dma = 0; 1971 } 1972 if (buffer_info->skb) { 1973 dev_kfree_skb_any(buffer_info->skb); 1974 buffer_info->skb = NULL; 1975 } 1976 buffer_info->time_stamp = 0; 1977 /* buffer_info must be completely set up in the transmit path */ 1978 } 1979 1980 /** 1981 * e1000_clean_tx_ring - Free Tx Buffers 1982 * @adapter: board private structure 1983 * @tx_ring: ring to be cleaned 1984 **/ 1985 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 1986 struct e1000_tx_ring *tx_ring) 1987 { 1988 struct e1000_hw *hw = &adapter->hw; 1989 struct e1000_tx_buffer *buffer_info; 1990 unsigned long size; 1991 unsigned int i; 1992 1993 /* Free all the Tx ring sk_buffs */ 1994 1995 for (i = 0; i < tx_ring->count; i++) { 1996 buffer_info = &tx_ring->buffer_info[i]; 1997 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 1998 } 1999 2000 netdev_reset_queue(adapter->netdev); 2001 size = sizeof(struct e1000_tx_buffer) * tx_ring->count; 2002 memset(tx_ring->buffer_info, 0, size); 2003 2004 /* Zero out the descriptor ring */ 2005 2006 memset(tx_ring->desc, 0, tx_ring->size); 2007 2008 tx_ring->next_to_use = 0; 2009 tx_ring->next_to_clean = 0; 2010 tx_ring->last_tx_tso = false; 2011 2012 writel(0, hw->hw_addr + tx_ring->tdh); 2013 writel(0, hw->hw_addr + tx_ring->tdt); 2014 } 2015 2016 /** 2017 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues 2018 * @adapter: board private structure 2019 **/ 2020 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) 2021 { 2022 int i; 2023 2024 for (i = 0; i < adapter->num_tx_queues; i++) 2025 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); 2026 } 2027 2028 /** 2029 * e1000_free_rx_resources - Free Rx Resources 2030 * @adapter: board private structure 2031 * @rx_ring: ring to clean the resources from 2032 * 2033 * Free all receive software resources 2034 **/ 2035 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 2036 struct e1000_rx_ring *rx_ring) 2037 { 2038 struct pci_dev *pdev = adapter->pdev; 2039 2040 e1000_clean_rx_ring(adapter, rx_ring); 2041 2042 vfree(rx_ring->buffer_info); 2043 rx_ring->buffer_info = NULL; 2044 2045 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 2046 rx_ring->dma); 2047 2048 rx_ring->desc = NULL; 2049 } 2050 2051 /** 2052 * e1000_free_all_rx_resources - Free Rx Resources for All Queues 2053 * @adapter: board private structure 2054 * 2055 * Free all receive software resources 2056 **/ 2057 void e1000_free_all_rx_resources(struct e1000_adapter *adapter) 2058 { 2059 int i; 2060 2061 for (i = 0; i < adapter->num_rx_queues; i++) 2062 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); 2063 } 2064 2065 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN) 2066 static unsigned int e1000_frag_len(const struct e1000_adapter *a) 2067 { 2068 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) + 2069 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2070 } 2071 2072 static void *e1000_alloc_frag(const struct e1000_adapter *a) 2073 { 2074 unsigned int len = e1000_frag_len(a); 2075 u8 *data = netdev_alloc_frag(len); 2076 2077 if (likely(data)) 2078 data += E1000_HEADROOM; 2079 return data; 2080 } 2081 2082 /** 2083 * e1000_clean_rx_ring - Free Rx Buffers per Queue 2084 * @adapter: board private structure 2085 * @rx_ring: ring to free buffers from 2086 **/ 2087 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 2088 struct e1000_rx_ring *rx_ring) 2089 { 2090 struct e1000_hw *hw = &adapter->hw; 2091 struct e1000_rx_buffer *buffer_info; 2092 struct pci_dev *pdev = adapter->pdev; 2093 unsigned long size; 2094 unsigned int i; 2095 2096 /* Free all the Rx netfrags */ 2097 for (i = 0; i < rx_ring->count; i++) { 2098 buffer_info = &rx_ring->buffer_info[i]; 2099 if (adapter->clean_rx == e1000_clean_rx_irq) { 2100 if (buffer_info->dma) 2101 dma_unmap_single(&pdev->dev, buffer_info->dma, 2102 adapter->rx_buffer_len, 2103 DMA_FROM_DEVICE); 2104 if (buffer_info->rxbuf.data) { 2105 skb_free_frag(buffer_info->rxbuf.data); 2106 buffer_info->rxbuf.data = NULL; 2107 } 2108 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) { 2109 if (buffer_info->dma) 2110 dma_unmap_page(&pdev->dev, buffer_info->dma, 2111 adapter->rx_buffer_len, 2112 DMA_FROM_DEVICE); 2113 if (buffer_info->rxbuf.page) { 2114 put_page(buffer_info->rxbuf.page); 2115 buffer_info->rxbuf.page = NULL; 2116 } 2117 } 2118 2119 buffer_info->dma = 0; 2120 } 2121 2122 /* there also may be some cached data from a chained receive */ 2123 napi_free_frags(&adapter->napi); 2124 rx_ring->rx_skb_top = NULL; 2125 2126 size = sizeof(struct e1000_rx_buffer) * rx_ring->count; 2127 memset(rx_ring->buffer_info, 0, size); 2128 2129 /* Zero out the descriptor ring */ 2130 memset(rx_ring->desc, 0, rx_ring->size); 2131 2132 rx_ring->next_to_clean = 0; 2133 rx_ring->next_to_use = 0; 2134 2135 writel(0, hw->hw_addr + rx_ring->rdh); 2136 writel(0, hw->hw_addr + rx_ring->rdt); 2137 } 2138 2139 /** 2140 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues 2141 * @adapter: board private structure 2142 **/ 2143 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) 2144 { 2145 int i; 2146 2147 for (i = 0; i < adapter->num_rx_queues; i++) 2148 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); 2149 } 2150 2151 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset 2152 * and memory write and invalidate disabled for certain operations 2153 */ 2154 static void e1000_enter_82542_rst(struct e1000_adapter *adapter) 2155 { 2156 struct e1000_hw *hw = &adapter->hw; 2157 struct net_device *netdev = adapter->netdev; 2158 u32 rctl; 2159 2160 e1000_pci_clear_mwi(hw); 2161 2162 rctl = er32(RCTL); 2163 rctl |= E1000_RCTL_RST; 2164 ew32(RCTL, rctl); 2165 E1000_WRITE_FLUSH(); 2166 mdelay(5); 2167 2168 if (netif_running(netdev)) 2169 e1000_clean_all_rx_rings(adapter); 2170 } 2171 2172 static void e1000_leave_82542_rst(struct e1000_adapter *adapter) 2173 { 2174 struct e1000_hw *hw = &adapter->hw; 2175 struct net_device *netdev = adapter->netdev; 2176 u32 rctl; 2177 2178 rctl = er32(RCTL); 2179 rctl &= ~E1000_RCTL_RST; 2180 ew32(RCTL, rctl); 2181 E1000_WRITE_FLUSH(); 2182 mdelay(5); 2183 2184 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) 2185 e1000_pci_set_mwi(hw); 2186 2187 if (netif_running(netdev)) { 2188 /* No need to loop, because 82542 supports only 1 queue */ 2189 struct e1000_rx_ring *ring = &adapter->rx_ring[0]; 2190 e1000_configure_rx(adapter); 2191 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); 2192 } 2193 } 2194 2195 /** 2196 * e1000_set_mac - Change the Ethernet Address of the NIC 2197 * @netdev: network interface device structure 2198 * @p: pointer to an address structure 2199 * 2200 * Returns 0 on success, negative on failure 2201 **/ 2202 static int e1000_set_mac(struct net_device *netdev, void *p) 2203 { 2204 struct e1000_adapter *adapter = netdev_priv(netdev); 2205 struct e1000_hw *hw = &adapter->hw; 2206 struct sockaddr *addr = p; 2207 2208 if (!is_valid_ether_addr(addr->sa_data)) 2209 return -EADDRNOTAVAIL; 2210 2211 /* 82542 2.0 needs to be in reset to write receive address registers */ 2212 2213 if (hw->mac_type == e1000_82542_rev2_0) 2214 e1000_enter_82542_rst(adapter); 2215 2216 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2217 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); 2218 2219 e1000_rar_set(hw, hw->mac_addr, 0); 2220 2221 if (hw->mac_type == e1000_82542_rev2_0) 2222 e1000_leave_82542_rst(adapter); 2223 2224 return 0; 2225 } 2226 2227 /** 2228 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 2229 * @netdev: network interface device structure 2230 * 2231 * The set_rx_mode entry point is called whenever the unicast or multicast 2232 * address lists or the network interface flags are updated. This routine is 2233 * responsible for configuring the hardware for proper unicast, multicast, 2234 * promiscuous mode, and all-multi behavior. 2235 **/ 2236 static void e1000_set_rx_mode(struct net_device *netdev) 2237 { 2238 struct e1000_adapter *adapter = netdev_priv(netdev); 2239 struct e1000_hw *hw = &adapter->hw; 2240 struct netdev_hw_addr *ha; 2241 bool use_uc = false; 2242 u32 rctl; 2243 u32 hash_value; 2244 int i, rar_entries = E1000_RAR_ENTRIES; 2245 int mta_reg_count = E1000_NUM_MTA_REGISTERS; 2246 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); 2247 2248 if (!mcarray) 2249 return; 2250 2251 /* Check for Promiscuous and All Multicast modes */ 2252 2253 rctl = er32(RCTL); 2254 2255 if (netdev->flags & IFF_PROMISC) { 2256 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 2257 rctl &= ~E1000_RCTL_VFE; 2258 } else { 2259 if (netdev->flags & IFF_ALLMULTI) 2260 rctl |= E1000_RCTL_MPE; 2261 else 2262 rctl &= ~E1000_RCTL_MPE; 2263 /* Enable VLAN filter if there is a VLAN */ 2264 if (e1000_vlan_used(adapter)) 2265 rctl |= E1000_RCTL_VFE; 2266 } 2267 2268 if (netdev_uc_count(netdev) > rar_entries - 1) { 2269 rctl |= E1000_RCTL_UPE; 2270 } else if (!(netdev->flags & IFF_PROMISC)) { 2271 rctl &= ~E1000_RCTL_UPE; 2272 use_uc = true; 2273 } 2274 2275 ew32(RCTL, rctl); 2276 2277 /* 82542 2.0 needs to be in reset to write receive address registers */ 2278 2279 if (hw->mac_type == e1000_82542_rev2_0) 2280 e1000_enter_82542_rst(adapter); 2281 2282 /* load the first 14 addresses into the exact filters 1-14. Unicast 2283 * addresses take precedence to avoid disabling unicast filtering 2284 * when possible. 2285 * 2286 * RAR 0 is used for the station MAC address 2287 * if there are not 14 addresses, go ahead and clear the filters 2288 */ 2289 i = 1; 2290 if (use_uc) 2291 netdev_for_each_uc_addr(ha, netdev) { 2292 if (i == rar_entries) 2293 break; 2294 e1000_rar_set(hw, ha->addr, i++); 2295 } 2296 2297 netdev_for_each_mc_addr(ha, netdev) { 2298 if (i == rar_entries) { 2299 /* load any remaining addresses into the hash table */ 2300 u32 hash_reg, hash_bit, mta; 2301 hash_value = e1000_hash_mc_addr(hw, ha->addr); 2302 hash_reg = (hash_value >> 5) & 0x7F; 2303 hash_bit = hash_value & 0x1F; 2304 mta = (1 << hash_bit); 2305 mcarray[hash_reg] |= mta; 2306 } else { 2307 e1000_rar_set(hw, ha->addr, i++); 2308 } 2309 } 2310 2311 for (; i < rar_entries; i++) { 2312 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); 2313 E1000_WRITE_FLUSH(); 2314 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); 2315 E1000_WRITE_FLUSH(); 2316 } 2317 2318 /* write the hash table completely, write from bottom to avoid 2319 * both stupid write combining chipsets, and flushing each write 2320 */ 2321 for (i = mta_reg_count - 1; i >= 0 ; i--) { 2322 /* If we are on an 82544 has an errata where writing odd 2323 * offsets overwrites the previous even offset, but writing 2324 * backwards over the range solves the issue by always 2325 * writing the odd offset first 2326 */ 2327 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); 2328 } 2329 E1000_WRITE_FLUSH(); 2330 2331 if (hw->mac_type == e1000_82542_rev2_0) 2332 e1000_leave_82542_rst(adapter); 2333 2334 kfree(mcarray); 2335 } 2336 2337 /** 2338 * e1000_update_phy_info_task - get phy info 2339 * @work: work struct contained inside adapter struct 2340 * 2341 * Need to wait a few seconds after link up to get diagnostic information from 2342 * the phy 2343 */ 2344 static void e1000_update_phy_info_task(struct work_struct *work) 2345 { 2346 struct e1000_adapter *adapter = container_of(work, 2347 struct e1000_adapter, 2348 phy_info_task.work); 2349 2350 e1000_phy_get_info(&adapter->hw, &adapter->phy_info); 2351 } 2352 2353 /** 2354 * e1000_82547_tx_fifo_stall_task - task to complete work 2355 * @work: work struct contained inside adapter struct 2356 **/ 2357 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work) 2358 { 2359 struct e1000_adapter *adapter = container_of(work, 2360 struct e1000_adapter, 2361 fifo_stall_task.work); 2362 struct e1000_hw *hw = &adapter->hw; 2363 struct net_device *netdev = adapter->netdev; 2364 u32 tctl; 2365 2366 if (atomic_read(&adapter->tx_fifo_stall)) { 2367 if ((er32(TDT) == er32(TDH)) && 2368 (er32(TDFT) == er32(TDFH)) && 2369 (er32(TDFTS) == er32(TDFHS))) { 2370 tctl = er32(TCTL); 2371 ew32(TCTL, tctl & ~E1000_TCTL_EN); 2372 ew32(TDFT, adapter->tx_head_addr); 2373 ew32(TDFH, adapter->tx_head_addr); 2374 ew32(TDFTS, adapter->tx_head_addr); 2375 ew32(TDFHS, adapter->tx_head_addr); 2376 ew32(TCTL, tctl); 2377 E1000_WRITE_FLUSH(); 2378 2379 adapter->tx_fifo_head = 0; 2380 atomic_set(&adapter->tx_fifo_stall, 0); 2381 netif_wake_queue(netdev); 2382 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { 2383 schedule_delayed_work(&adapter->fifo_stall_task, 1); 2384 } 2385 } 2386 } 2387 2388 bool e1000_has_link(struct e1000_adapter *adapter) 2389 { 2390 struct e1000_hw *hw = &adapter->hw; 2391 bool link_active = false; 2392 2393 /* get_link_status is set on LSC (link status) interrupt or rx 2394 * sequence error interrupt (except on intel ce4100). 2395 * get_link_status will stay false until the 2396 * e1000_check_for_link establishes link for copper adapters 2397 * ONLY 2398 */ 2399 switch (hw->media_type) { 2400 case e1000_media_type_copper: 2401 if (hw->mac_type == e1000_ce4100) 2402 hw->get_link_status = 1; 2403 if (hw->get_link_status) { 2404 e1000_check_for_link(hw); 2405 link_active = !hw->get_link_status; 2406 } else { 2407 link_active = true; 2408 } 2409 break; 2410 case e1000_media_type_fiber: 2411 e1000_check_for_link(hw); 2412 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 2413 break; 2414 case e1000_media_type_internal_serdes: 2415 e1000_check_for_link(hw); 2416 link_active = hw->serdes_has_link; 2417 break; 2418 default: 2419 break; 2420 } 2421 2422 return link_active; 2423 } 2424 2425 /** 2426 * e1000_watchdog - work function 2427 * @work: work struct contained inside adapter struct 2428 **/ 2429 static void e1000_watchdog(struct work_struct *work) 2430 { 2431 struct e1000_adapter *adapter = container_of(work, 2432 struct e1000_adapter, 2433 watchdog_task.work); 2434 struct e1000_hw *hw = &adapter->hw; 2435 struct net_device *netdev = adapter->netdev; 2436 struct e1000_tx_ring *txdr = adapter->tx_ring; 2437 u32 link, tctl; 2438 2439 link = e1000_has_link(adapter); 2440 if ((netif_carrier_ok(netdev)) && link) 2441 goto link_up; 2442 2443 if (link) { 2444 if (!netif_carrier_ok(netdev)) { 2445 u32 ctrl; 2446 bool txb2b = true; 2447 /* update snapshot of PHY registers on LSC */ 2448 e1000_get_speed_and_duplex(hw, 2449 &adapter->link_speed, 2450 &adapter->link_duplex); 2451 2452 ctrl = er32(CTRL); 2453 pr_info("%s NIC Link is Up %d Mbps %s, " 2454 "Flow Control: %s\n", 2455 netdev->name, 2456 adapter->link_speed, 2457 adapter->link_duplex == FULL_DUPLEX ? 2458 "Full Duplex" : "Half Duplex", 2459 ((ctrl & E1000_CTRL_TFCE) && (ctrl & 2460 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & 2461 E1000_CTRL_RFCE) ? "RX" : ((ctrl & 2462 E1000_CTRL_TFCE) ? "TX" : "None"))); 2463 2464 /* adjust timeout factor according to speed/duplex */ 2465 adapter->tx_timeout_factor = 1; 2466 switch (adapter->link_speed) { 2467 case SPEED_10: 2468 txb2b = false; 2469 adapter->tx_timeout_factor = 16; 2470 break; 2471 case SPEED_100: 2472 txb2b = false; 2473 /* maybe add some timeout factor ? */ 2474 break; 2475 } 2476 2477 /* enable transmits in the hardware */ 2478 tctl = er32(TCTL); 2479 tctl |= E1000_TCTL_EN; 2480 ew32(TCTL, tctl); 2481 2482 netif_carrier_on(netdev); 2483 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2484 schedule_delayed_work(&adapter->phy_info_task, 2485 2 * HZ); 2486 adapter->smartspeed = 0; 2487 } 2488 } else { 2489 if (netif_carrier_ok(netdev)) { 2490 adapter->link_speed = 0; 2491 adapter->link_duplex = 0; 2492 pr_info("%s NIC Link is Down\n", 2493 netdev->name); 2494 netif_carrier_off(netdev); 2495 2496 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2497 schedule_delayed_work(&adapter->phy_info_task, 2498 2 * HZ); 2499 } 2500 2501 e1000_smartspeed(adapter); 2502 } 2503 2504 link_up: 2505 e1000_update_stats(adapter); 2506 2507 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 2508 adapter->tpt_old = adapter->stats.tpt; 2509 hw->collision_delta = adapter->stats.colc - adapter->colc_old; 2510 adapter->colc_old = adapter->stats.colc; 2511 2512 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; 2513 adapter->gorcl_old = adapter->stats.gorcl; 2514 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; 2515 adapter->gotcl_old = adapter->stats.gotcl; 2516 2517 e1000_update_adaptive(hw); 2518 2519 if (!netif_carrier_ok(netdev)) { 2520 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { 2521 /* We've lost link, so the controller stops DMA, 2522 * but we've got queued Tx work that's never going 2523 * to get done, so reset controller to flush Tx. 2524 * (Do the reset outside of interrupt context). 2525 */ 2526 adapter->tx_timeout_count++; 2527 schedule_work(&adapter->reset_task); 2528 /* exit immediately since reset is imminent */ 2529 return; 2530 } 2531 } 2532 2533 /* Simple mode for Interrupt Throttle Rate (ITR) */ 2534 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { 2535 /* Symmetric Tx/Rx gets a reduced ITR=2000; 2536 * Total asymmetrical Tx or Rx gets ITR=8000; 2537 * everyone else is between 2000-8000. 2538 */ 2539 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; 2540 u32 dif = (adapter->gotcl > adapter->gorcl ? 2541 adapter->gotcl - adapter->gorcl : 2542 adapter->gorcl - adapter->gotcl) / 10000; 2543 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; 2544 2545 ew32(ITR, 1000000000 / (itr * 256)); 2546 } 2547 2548 /* Cause software interrupt to ensure rx ring is cleaned */ 2549 ew32(ICS, E1000_ICS_RXDMT0); 2550 2551 /* Force detection of hung controller every watchdog period */ 2552 adapter->detect_tx_hung = true; 2553 2554 /* Reschedule the task */ 2555 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2556 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ); 2557 } 2558 2559 enum latency_range { 2560 lowest_latency = 0, 2561 low_latency = 1, 2562 bulk_latency = 2, 2563 latency_invalid = 255 2564 }; 2565 2566 /** 2567 * e1000_update_itr - update the dynamic ITR value based on statistics 2568 * @adapter: pointer to adapter 2569 * @itr_setting: current adapter->itr 2570 * @packets: the number of packets during this measurement interval 2571 * @bytes: the number of bytes during this measurement interval 2572 * 2573 * Stores a new ITR value based on packets and byte 2574 * counts during the last interrupt. The advantage of per interrupt 2575 * computation is faster updates and more accurate ITR for the current 2576 * traffic pattern. Constants in this function were computed 2577 * based on theoretical maximum wire speed and thresholds were set based 2578 * on testing data as well as attempting to minimize response time 2579 * while increasing bulk throughput. 2580 * this functionality is controlled by the InterruptThrottleRate module 2581 * parameter (see e1000_param.c) 2582 **/ 2583 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, 2584 u16 itr_setting, int packets, int bytes) 2585 { 2586 unsigned int retval = itr_setting; 2587 struct e1000_hw *hw = &adapter->hw; 2588 2589 if (unlikely(hw->mac_type < e1000_82540)) 2590 goto update_itr_done; 2591 2592 if (packets == 0) 2593 goto update_itr_done; 2594 2595 switch (itr_setting) { 2596 case lowest_latency: 2597 /* jumbo frames get bulk treatment*/ 2598 if (bytes/packets > 8000) 2599 retval = bulk_latency; 2600 else if ((packets < 5) && (bytes > 512)) 2601 retval = low_latency; 2602 break; 2603 case low_latency: /* 50 usec aka 20000 ints/s */ 2604 if (bytes > 10000) { 2605 /* jumbo frames need bulk latency setting */ 2606 if (bytes/packets > 8000) 2607 retval = bulk_latency; 2608 else if ((packets < 10) || ((bytes/packets) > 1200)) 2609 retval = bulk_latency; 2610 else if ((packets > 35)) 2611 retval = lowest_latency; 2612 } else if (bytes/packets > 2000) 2613 retval = bulk_latency; 2614 else if (packets <= 2 && bytes < 512) 2615 retval = lowest_latency; 2616 break; 2617 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2618 if (bytes > 25000) { 2619 if (packets > 35) 2620 retval = low_latency; 2621 } else if (bytes < 6000) { 2622 retval = low_latency; 2623 } 2624 break; 2625 } 2626 2627 update_itr_done: 2628 return retval; 2629 } 2630 2631 static void e1000_set_itr(struct e1000_adapter *adapter) 2632 { 2633 struct e1000_hw *hw = &adapter->hw; 2634 u16 current_itr; 2635 u32 new_itr = adapter->itr; 2636 2637 if (unlikely(hw->mac_type < e1000_82540)) 2638 return; 2639 2640 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2641 if (unlikely(adapter->link_speed != SPEED_1000)) { 2642 current_itr = 0; 2643 new_itr = 4000; 2644 goto set_itr_now; 2645 } 2646 2647 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr, 2648 adapter->total_tx_packets, 2649 adapter->total_tx_bytes); 2650 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2651 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 2652 adapter->tx_itr = low_latency; 2653 2654 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr, 2655 adapter->total_rx_packets, 2656 adapter->total_rx_bytes); 2657 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2658 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 2659 adapter->rx_itr = low_latency; 2660 2661 current_itr = max(adapter->rx_itr, adapter->tx_itr); 2662 2663 switch (current_itr) { 2664 /* counts and packets in update_itr are dependent on these numbers */ 2665 case lowest_latency: 2666 new_itr = 70000; 2667 break; 2668 case low_latency: 2669 new_itr = 20000; /* aka hwitr = ~200 */ 2670 break; 2671 case bulk_latency: 2672 new_itr = 4000; 2673 break; 2674 default: 2675 break; 2676 } 2677 2678 set_itr_now: 2679 if (new_itr != adapter->itr) { 2680 /* this attempts to bias the interrupt rate towards Bulk 2681 * by adding intermediate steps when interrupt rate is 2682 * increasing 2683 */ 2684 new_itr = new_itr > adapter->itr ? 2685 min(adapter->itr + (new_itr >> 2), new_itr) : 2686 new_itr; 2687 adapter->itr = new_itr; 2688 ew32(ITR, 1000000000 / (new_itr * 256)); 2689 } 2690 } 2691 2692 #define E1000_TX_FLAGS_CSUM 0x00000001 2693 #define E1000_TX_FLAGS_VLAN 0x00000002 2694 #define E1000_TX_FLAGS_TSO 0x00000004 2695 #define E1000_TX_FLAGS_IPV4 0x00000008 2696 #define E1000_TX_FLAGS_NO_FCS 0x00000010 2697 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 2698 #define E1000_TX_FLAGS_VLAN_SHIFT 16 2699 2700 static int e1000_tso(struct e1000_adapter *adapter, 2701 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2702 __be16 protocol) 2703 { 2704 struct e1000_context_desc *context_desc; 2705 struct e1000_tx_buffer *buffer_info; 2706 unsigned int i; 2707 u32 cmd_length = 0; 2708 u16 ipcse = 0, tucse, mss; 2709 u8 ipcss, ipcso, tucss, tucso, hdr_len; 2710 2711 if (skb_is_gso(skb)) { 2712 int err; 2713 2714 err = skb_cow_head(skb, 0); 2715 if (err < 0) 2716 return err; 2717 2718 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2719 mss = skb_shinfo(skb)->gso_size; 2720 if (protocol == htons(ETH_P_IP)) { 2721 struct iphdr *iph = ip_hdr(skb); 2722 iph->tot_len = 0; 2723 iph->check = 0; 2724 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 2725 iph->daddr, 0, 2726 IPPROTO_TCP, 2727 0); 2728 cmd_length = E1000_TXD_CMD_IP; 2729 ipcse = skb_transport_offset(skb) - 1; 2730 } else if (skb_is_gso_v6(skb)) { 2731 ipv6_hdr(skb)->payload_len = 0; 2732 tcp_hdr(skb)->check = 2733 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 2734 &ipv6_hdr(skb)->daddr, 2735 0, IPPROTO_TCP, 0); 2736 ipcse = 0; 2737 } 2738 ipcss = skb_network_offset(skb); 2739 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 2740 tucss = skb_transport_offset(skb); 2741 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 2742 tucse = 0; 2743 2744 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 2745 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 2746 2747 i = tx_ring->next_to_use; 2748 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2749 buffer_info = &tx_ring->buffer_info[i]; 2750 2751 context_desc->lower_setup.ip_fields.ipcss = ipcss; 2752 context_desc->lower_setup.ip_fields.ipcso = ipcso; 2753 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 2754 context_desc->upper_setup.tcp_fields.tucss = tucss; 2755 context_desc->upper_setup.tcp_fields.tucso = tucso; 2756 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); 2757 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 2758 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 2759 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 2760 2761 buffer_info->time_stamp = jiffies; 2762 buffer_info->next_to_watch = i; 2763 2764 if (++i == tx_ring->count) 2765 i = 0; 2766 2767 tx_ring->next_to_use = i; 2768 2769 return true; 2770 } 2771 return false; 2772 } 2773 2774 static bool e1000_tx_csum(struct e1000_adapter *adapter, 2775 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2776 __be16 protocol) 2777 { 2778 struct e1000_context_desc *context_desc; 2779 struct e1000_tx_buffer *buffer_info; 2780 unsigned int i; 2781 u8 css; 2782 u32 cmd_len = E1000_TXD_CMD_DEXT; 2783 2784 if (skb->ip_summed != CHECKSUM_PARTIAL) 2785 return false; 2786 2787 switch (protocol) { 2788 case cpu_to_be16(ETH_P_IP): 2789 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 2790 cmd_len |= E1000_TXD_CMD_TCP; 2791 break; 2792 case cpu_to_be16(ETH_P_IPV6): 2793 /* XXX not handling all IPV6 headers */ 2794 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 2795 cmd_len |= E1000_TXD_CMD_TCP; 2796 break; 2797 default: 2798 if (unlikely(net_ratelimit())) 2799 e_warn(drv, "checksum_partial proto=%x!\n", 2800 skb->protocol); 2801 break; 2802 } 2803 2804 css = skb_checksum_start_offset(skb); 2805 2806 i = tx_ring->next_to_use; 2807 buffer_info = &tx_ring->buffer_info[i]; 2808 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2809 2810 context_desc->lower_setup.ip_config = 0; 2811 context_desc->upper_setup.tcp_fields.tucss = css; 2812 context_desc->upper_setup.tcp_fields.tucso = 2813 css + skb->csum_offset; 2814 context_desc->upper_setup.tcp_fields.tucse = 0; 2815 context_desc->tcp_seg_setup.data = 0; 2816 context_desc->cmd_and_length = cpu_to_le32(cmd_len); 2817 2818 buffer_info->time_stamp = jiffies; 2819 buffer_info->next_to_watch = i; 2820 2821 if (unlikely(++i == tx_ring->count)) 2822 i = 0; 2823 2824 tx_ring->next_to_use = i; 2825 2826 return true; 2827 } 2828 2829 #define E1000_MAX_TXD_PWR 12 2830 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) 2831 2832 static int e1000_tx_map(struct e1000_adapter *adapter, 2833 struct e1000_tx_ring *tx_ring, 2834 struct sk_buff *skb, unsigned int first, 2835 unsigned int max_per_txd, unsigned int nr_frags, 2836 unsigned int mss) 2837 { 2838 struct e1000_hw *hw = &adapter->hw; 2839 struct pci_dev *pdev = adapter->pdev; 2840 struct e1000_tx_buffer *buffer_info; 2841 unsigned int len = skb_headlen(skb); 2842 unsigned int offset = 0, size, count = 0, i; 2843 unsigned int f, bytecount, segs; 2844 2845 i = tx_ring->next_to_use; 2846 2847 while (len) { 2848 buffer_info = &tx_ring->buffer_info[i]; 2849 size = min(len, max_per_txd); 2850 /* Workaround for Controller erratum -- 2851 * descriptor for non-tso packet in a linear SKB that follows a 2852 * tso gets written back prematurely before the data is fully 2853 * DMA'd to the controller 2854 */ 2855 if (!skb->data_len && tx_ring->last_tx_tso && 2856 !skb_is_gso(skb)) { 2857 tx_ring->last_tx_tso = false; 2858 size -= 4; 2859 } 2860 2861 /* Workaround for premature desc write-backs 2862 * in TSO mode. Append 4-byte sentinel desc 2863 */ 2864 if (unlikely(mss && !nr_frags && size == len && size > 8)) 2865 size -= 4; 2866 /* work-around for errata 10 and it applies 2867 * to all controllers in PCI-X mode 2868 * The fix is to make sure that the first descriptor of a 2869 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes 2870 */ 2871 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 2872 (size > 2015) && count == 0)) 2873 size = 2015; 2874 2875 /* Workaround for potential 82544 hang in PCI-X. Avoid 2876 * terminating buffers within evenly-aligned dwords. 2877 */ 2878 if (unlikely(adapter->pcix_82544 && 2879 !((unsigned long)(skb->data + offset + size - 1) & 4) && 2880 size > 4)) 2881 size -= 4; 2882 2883 buffer_info->length = size; 2884 /* set time_stamp *before* dma to help avoid a possible race */ 2885 buffer_info->time_stamp = jiffies; 2886 buffer_info->mapped_as_page = false; 2887 buffer_info->dma = dma_map_single(&pdev->dev, 2888 skb->data + offset, 2889 size, DMA_TO_DEVICE); 2890 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2891 goto dma_error; 2892 buffer_info->next_to_watch = i; 2893 2894 len -= size; 2895 offset += size; 2896 count++; 2897 if (len) { 2898 i++; 2899 if (unlikely(i == tx_ring->count)) 2900 i = 0; 2901 } 2902 } 2903 2904 for (f = 0; f < nr_frags; f++) { 2905 const struct skb_frag_struct *frag; 2906 2907 frag = &skb_shinfo(skb)->frags[f]; 2908 len = skb_frag_size(frag); 2909 offset = 0; 2910 2911 while (len) { 2912 unsigned long bufend; 2913 i++; 2914 if (unlikely(i == tx_ring->count)) 2915 i = 0; 2916 2917 buffer_info = &tx_ring->buffer_info[i]; 2918 size = min(len, max_per_txd); 2919 /* Workaround for premature desc write-backs 2920 * in TSO mode. Append 4-byte sentinel desc 2921 */ 2922 if (unlikely(mss && f == (nr_frags-1) && 2923 size == len && size > 8)) 2924 size -= 4; 2925 /* Workaround for potential 82544 hang in PCI-X. 2926 * Avoid terminating buffers within evenly-aligned 2927 * dwords. 2928 */ 2929 bufend = (unsigned long) 2930 page_to_phys(skb_frag_page(frag)); 2931 bufend += offset + size - 1; 2932 if (unlikely(adapter->pcix_82544 && 2933 !(bufend & 4) && 2934 size > 4)) 2935 size -= 4; 2936 2937 buffer_info->length = size; 2938 buffer_info->time_stamp = jiffies; 2939 buffer_info->mapped_as_page = true; 2940 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 2941 offset, size, DMA_TO_DEVICE); 2942 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2943 goto dma_error; 2944 buffer_info->next_to_watch = i; 2945 2946 len -= size; 2947 offset += size; 2948 count++; 2949 } 2950 } 2951 2952 segs = skb_shinfo(skb)->gso_segs ?: 1; 2953 /* multiply data chunks by size of headers */ 2954 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; 2955 2956 tx_ring->buffer_info[i].skb = skb; 2957 tx_ring->buffer_info[i].segs = segs; 2958 tx_ring->buffer_info[i].bytecount = bytecount; 2959 tx_ring->buffer_info[first].next_to_watch = i; 2960 2961 return count; 2962 2963 dma_error: 2964 dev_err(&pdev->dev, "TX DMA map failed\n"); 2965 buffer_info->dma = 0; 2966 if (count) 2967 count--; 2968 2969 while (count--) { 2970 if (i == 0) 2971 i += tx_ring->count; 2972 i--; 2973 buffer_info = &tx_ring->buffer_info[i]; 2974 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 2975 } 2976 2977 return 0; 2978 } 2979 2980 static void e1000_tx_queue(struct e1000_adapter *adapter, 2981 struct e1000_tx_ring *tx_ring, int tx_flags, 2982 int count) 2983 { 2984 struct e1000_tx_desc *tx_desc = NULL; 2985 struct e1000_tx_buffer *buffer_info; 2986 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 2987 unsigned int i; 2988 2989 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { 2990 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 2991 E1000_TXD_CMD_TSE; 2992 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2993 2994 if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) 2995 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 2996 } 2997 2998 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { 2999 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 3000 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 3001 } 3002 3003 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { 3004 txd_lower |= E1000_TXD_CMD_VLE; 3005 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 3006 } 3007 3008 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 3009 txd_lower &= ~(E1000_TXD_CMD_IFCS); 3010 3011 i = tx_ring->next_to_use; 3012 3013 while (count--) { 3014 buffer_info = &tx_ring->buffer_info[i]; 3015 tx_desc = E1000_TX_DESC(*tx_ring, i); 3016 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 3017 tx_desc->lower.data = 3018 cpu_to_le32(txd_lower | buffer_info->length); 3019 tx_desc->upper.data = cpu_to_le32(txd_upper); 3020 if (unlikely(++i == tx_ring->count)) 3021 i = 0; 3022 } 3023 3024 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 3025 3026 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ 3027 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 3028 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); 3029 3030 /* Force memory writes to complete before letting h/w 3031 * know there are new descriptors to fetch. (Only 3032 * applicable for weak-ordered memory model archs, 3033 * such as IA-64). 3034 */ 3035 wmb(); 3036 3037 tx_ring->next_to_use = i; 3038 } 3039 3040 /* 82547 workaround to avoid controller hang in half-duplex environment. 3041 * The workaround is to avoid queuing a large packet that would span 3042 * the internal Tx FIFO ring boundary by notifying the stack to resend 3043 * the packet at a later time. This gives the Tx FIFO an opportunity to 3044 * flush all packets. When that occurs, we reset the Tx FIFO pointers 3045 * to the beginning of the Tx FIFO. 3046 */ 3047 3048 #define E1000_FIFO_HDR 0x10 3049 #define E1000_82547_PAD_LEN 0x3E0 3050 3051 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 3052 struct sk_buff *skb) 3053 { 3054 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; 3055 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; 3056 3057 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); 3058 3059 if (adapter->link_duplex != HALF_DUPLEX) 3060 goto no_fifo_stall_required; 3061 3062 if (atomic_read(&adapter->tx_fifo_stall)) 3063 return 1; 3064 3065 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { 3066 atomic_set(&adapter->tx_fifo_stall, 1); 3067 return 1; 3068 } 3069 3070 no_fifo_stall_required: 3071 adapter->tx_fifo_head += skb_fifo_len; 3072 if (adapter->tx_fifo_head >= adapter->tx_fifo_size) 3073 adapter->tx_fifo_head -= adapter->tx_fifo_size; 3074 return 0; 3075 } 3076 3077 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) 3078 { 3079 struct e1000_adapter *adapter = netdev_priv(netdev); 3080 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3081 3082 netif_stop_queue(netdev); 3083 /* Herbert's original patch had: 3084 * smp_mb__after_netif_stop_queue(); 3085 * but since that doesn't exist yet, just open code it. 3086 */ 3087 smp_mb(); 3088 3089 /* We need to check again in a case another CPU has just 3090 * made room available. 3091 */ 3092 if (likely(E1000_DESC_UNUSED(tx_ring) < size)) 3093 return -EBUSY; 3094 3095 /* A reprieve! */ 3096 netif_start_queue(netdev); 3097 ++adapter->restart_queue; 3098 return 0; 3099 } 3100 3101 static int e1000_maybe_stop_tx(struct net_device *netdev, 3102 struct e1000_tx_ring *tx_ring, int size) 3103 { 3104 if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) 3105 return 0; 3106 return __e1000_maybe_stop_tx(netdev, size); 3107 } 3108 3109 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X)) 3110 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 3111 struct net_device *netdev) 3112 { 3113 struct e1000_adapter *adapter = netdev_priv(netdev); 3114 struct e1000_hw *hw = &adapter->hw; 3115 struct e1000_tx_ring *tx_ring; 3116 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; 3117 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; 3118 unsigned int tx_flags = 0; 3119 unsigned int len = skb_headlen(skb); 3120 unsigned int nr_frags; 3121 unsigned int mss; 3122 int count = 0; 3123 int tso; 3124 unsigned int f; 3125 __be16 protocol = vlan_get_protocol(skb); 3126 3127 /* This goes back to the question of how to logically map a Tx queue 3128 * to a flow. Right now, performance is impacted slightly negatively 3129 * if using multiple Tx queues. If the stack breaks away from a 3130 * single qdisc implementation, we can look at this again. 3131 */ 3132 tx_ring = adapter->tx_ring; 3133 3134 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN, 3135 * packets may get corrupted during padding by HW. 3136 * To WA this issue, pad all small packets manually. 3137 */ 3138 if (eth_skb_pad(skb)) 3139 return NETDEV_TX_OK; 3140 3141 mss = skb_shinfo(skb)->gso_size; 3142 /* The controller does a simple calculation to 3143 * make sure there is enough room in the FIFO before 3144 * initiating the DMA for each buffer. The calc is: 3145 * 4 = ceil(buffer len/mss). To make sure we don't 3146 * overrun the FIFO, adjust the max buffer len if mss 3147 * drops. 3148 */ 3149 if (mss) { 3150 u8 hdr_len; 3151 max_per_txd = min(mss << 2, max_per_txd); 3152 max_txd_pwr = fls(max_per_txd) - 1; 3153 3154 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3155 if (skb->data_len && hdr_len == len) { 3156 switch (hw->mac_type) { 3157 unsigned int pull_size; 3158 case e1000_82544: 3159 /* Make sure we have room to chop off 4 bytes, 3160 * and that the end alignment will work out to 3161 * this hardware's requirements 3162 * NOTE: this is a TSO only workaround 3163 * if end byte alignment not correct move us 3164 * into the next dword 3165 */ 3166 if ((unsigned long)(skb_tail_pointer(skb) - 1) 3167 & 4) 3168 break; 3169 /* fall through */ 3170 pull_size = min((unsigned int)4, skb->data_len); 3171 if (!__pskb_pull_tail(skb, pull_size)) { 3172 e_err(drv, "__pskb_pull_tail " 3173 "failed.\n"); 3174 dev_kfree_skb_any(skb); 3175 return NETDEV_TX_OK; 3176 } 3177 len = skb_headlen(skb); 3178 break; 3179 default: 3180 /* do nothing */ 3181 break; 3182 } 3183 } 3184 } 3185 3186 /* reserve a descriptor for the offload context */ 3187 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 3188 count++; 3189 count++; 3190 3191 /* Controller Erratum workaround */ 3192 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) 3193 count++; 3194 3195 count += TXD_USE_COUNT(len, max_txd_pwr); 3196 3197 if (adapter->pcix_82544) 3198 count++; 3199 3200 /* work-around for errata 10 and it applies to all controllers 3201 * in PCI-X mode, so add one more descriptor to the count 3202 */ 3203 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 3204 (len > 2015))) 3205 count++; 3206 3207 nr_frags = skb_shinfo(skb)->nr_frags; 3208 for (f = 0; f < nr_frags; f++) 3209 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]), 3210 max_txd_pwr); 3211 if (adapter->pcix_82544) 3212 count += nr_frags; 3213 3214 /* need: count + 2 desc gap to keep tail from touching 3215 * head, otherwise try next time 3216 */ 3217 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) 3218 return NETDEV_TX_BUSY; 3219 3220 if (unlikely((hw->mac_type == e1000_82547) && 3221 (e1000_82547_fifo_workaround(adapter, skb)))) { 3222 netif_stop_queue(netdev); 3223 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3224 schedule_delayed_work(&adapter->fifo_stall_task, 1); 3225 return NETDEV_TX_BUSY; 3226 } 3227 3228 if (skb_vlan_tag_present(skb)) { 3229 tx_flags |= E1000_TX_FLAGS_VLAN; 3230 tx_flags |= (skb_vlan_tag_get(skb) << 3231 E1000_TX_FLAGS_VLAN_SHIFT); 3232 } 3233 3234 first = tx_ring->next_to_use; 3235 3236 tso = e1000_tso(adapter, tx_ring, skb, protocol); 3237 if (tso < 0) { 3238 dev_kfree_skb_any(skb); 3239 return NETDEV_TX_OK; 3240 } 3241 3242 if (likely(tso)) { 3243 if (likely(hw->mac_type != e1000_82544)) 3244 tx_ring->last_tx_tso = true; 3245 tx_flags |= E1000_TX_FLAGS_TSO; 3246 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol))) 3247 tx_flags |= E1000_TX_FLAGS_CSUM; 3248 3249 if (protocol == htons(ETH_P_IP)) 3250 tx_flags |= E1000_TX_FLAGS_IPV4; 3251 3252 if (unlikely(skb->no_fcs)) 3253 tx_flags |= E1000_TX_FLAGS_NO_FCS; 3254 3255 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, 3256 nr_frags, mss); 3257 3258 if (count) { 3259 /* The descriptors needed is higher than other Intel drivers 3260 * due to a number of workarounds. The breakdown is below: 3261 * Data descriptors: MAX_SKB_FRAGS + 1 3262 * Context Descriptor: 1 3263 * Keep head from touching tail: 2 3264 * Workarounds: 3 3265 */ 3266 int desc_needed = MAX_SKB_FRAGS + 7; 3267 3268 netdev_sent_queue(netdev, skb->len); 3269 skb_tx_timestamp(skb); 3270 3271 e1000_tx_queue(adapter, tx_ring, tx_flags, count); 3272 3273 /* 82544 potentially requires twice as many data descriptors 3274 * in order to guarantee buffers don't end on evenly-aligned 3275 * dwords 3276 */ 3277 if (adapter->pcix_82544) 3278 desc_needed += MAX_SKB_FRAGS + 1; 3279 3280 /* Make sure there is space in the ring for the next send. */ 3281 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed); 3282 3283 if (!skb->xmit_more || 3284 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) { 3285 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt); 3286 /* we need this if more than one processor can write to 3287 * our tail at a time, it synchronizes IO on IA64/Altix 3288 * systems 3289 */ 3290 mmiowb(); 3291 } 3292 } else { 3293 dev_kfree_skb_any(skb); 3294 tx_ring->buffer_info[first].time_stamp = 0; 3295 tx_ring->next_to_use = first; 3296 } 3297 3298 return NETDEV_TX_OK; 3299 } 3300 3301 #define NUM_REGS 38 /* 1 based count */ 3302 static void e1000_regdump(struct e1000_adapter *adapter) 3303 { 3304 struct e1000_hw *hw = &adapter->hw; 3305 u32 regs[NUM_REGS]; 3306 u32 *regs_buff = regs; 3307 int i = 0; 3308 3309 static const char * const reg_name[] = { 3310 "CTRL", "STATUS", 3311 "RCTL", "RDLEN", "RDH", "RDT", "RDTR", 3312 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT", 3313 "TIDV", "TXDCTL", "TADV", "TARC0", 3314 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1", 3315 "TXDCTL1", "TARC1", 3316 "CTRL_EXT", "ERT", "RDBAL", "RDBAH", 3317 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC", 3318 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC" 3319 }; 3320 3321 regs_buff[0] = er32(CTRL); 3322 regs_buff[1] = er32(STATUS); 3323 3324 regs_buff[2] = er32(RCTL); 3325 regs_buff[3] = er32(RDLEN); 3326 regs_buff[4] = er32(RDH); 3327 regs_buff[5] = er32(RDT); 3328 regs_buff[6] = er32(RDTR); 3329 3330 regs_buff[7] = er32(TCTL); 3331 regs_buff[8] = er32(TDBAL); 3332 regs_buff[9] = er32(TDBAH); 3333 regs_buff[10] = er32(TDLEN); 3334 regs_buff[11] = er32(TDH); 3335 regs_buff[12] = er32(TDT); 3336 regs_buff[13] = er32(TIDV); 3337 regs_buff[14] = er32(TXDCTL); 3338 regs_buff[15] = er32(TADV); 3339 regs_buff[16] = er32(TARC0); 3340 3341 regs_buff[17] = er32(TDBAL1); 3342 regs_buff[18] = er32(TDBAH1); 3343 regs_buff[19] = er32(TDLEN1); 3344 regs_buff[20] = er32(TDH1); 3345 regs_buff[21] = er32(TDT1); 3346 regs_buff[22] = er32(TXDCTL1); 3347 regs_buff[23] = er32(TARC1); 3348 regs_buff[24] = er32(CTRL_EXT); 3349 regs_buff[25] = er32(ERT); 3350 regs_buff[26] = er32(RDBAL0); 3351 regs_buff[27] = er32(RDBAH0); 3352 regs_buff[28] = er32(TDFH); 3353 regs_buff[29] = er32(TDFT); 3354 regs_buff[30] = er32(TDFHS); 3355 regs_buff[31] = er32(TDFTS); 3356 regs_buff[32] = er32(TDFPC); 3357 regs_buff[33] = er32(RDFH); 3358 regs_buff[34] = er32(RDFT); 3359 regs_buff[35] = er32(RDFHS); 3360 regs_buff[36] = er32(RDFTS); 3361 regs_buff[37] = er32(RDFPC); 3362 3363 pr_info("Register dump\n"); 3364 for (i = 0; i < NUM_REGS; i++) 3365 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]); 3366 } 3367 3368 /* 3369 * e1000_dump: Print registers, tx ring and rx ring 3370 */ 3371 static void e1000_dump(struct e1000_adapter *adapter) 3372 { 3373 /* this code doesn't handle multiple rings */ 3374 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3375 struct e1000_rx_ring *rx_ring = adapter->rx_ring; 3376 int i; 3377 3378 if (!netif_msg_hw(adapter)) 3379 return; 3380 3381 /* Print Registers */ 3382 e1000_regdump(adapter); 3383 3384 /* transmit dump */ 3385 pr_info("TX Desc ring0 dump\n"); 3386 3387 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) 3388 * 3389 * Legacy Transmit Descriptor 3390 * +--------------------------------------------------------------+ 3391 * 0 | Buffer Address [63:0] (Reserved on Write Back) | 3392 * +--------------------------------------------------------------+ 3393 * 8 | Special | CSS | Status | CMD | CSO | Length | 3394 * +--------------------------------------------------------------+ 3395 * 63 48 47 36 35 32 31 24 23 16 15 0 3396 * 3397 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload 3398 * 63 48 47 40 39 32 31 16 15 8 7 0 3399 * +----------------------------------------------------------------+ 3400 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | 3401 * +----------------------------------------------------------------+ 3402 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | 3403 * +----------------------------------------------------------------+ 3404 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3405 * 3406 * Extended Data Descriptor (DTYP=0x1) 3407 * +----------------------------------------------------------------+ 3408 * 0 | Buffer Address [63:0] | 3409 * +----------------------------------------------------------------+ 3410 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | 3411 * +----------------------------------------------------------------+ 3412 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3413 */ 3414 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3415 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3416 3417 if (!netif_msg_tx_done(adapter)) 3418 goto rx_ring_summary; 3419 3420 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 3421 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 3422 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i]; 3423 struct my_u { __le64 a; __le64 b; }; 3424 struct my_u *u = (struct my_u *)tx_desc; 3425 const char *type; 3426 3427 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) 3428 type = "NTC/U"; 3429 else if (i == tx_ring->next_to_use) 3430 type = "NTU"; 3431 else if (i == tx_ring->next_to_clean) 3432 type = "NTC"; 3433 else 3434 type = ""; 3435 3436 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n", 3437 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i, 3438 le64_to_cpu(u->a), le64_to_cpu(u->b), 3439 (u64)buffer_info->dma, buffer_info->length, 3440 buffer_info->next_to_watch, 3441 (u64)buffer_info->time_stamp, buffer_info->skb, type); 3442 } 3443 3444 rx_ring_summary: 3445 /* receive dump */ 3446 pr_info("\nRX Desc ring dump\n"); 3447 3448 /* Legacy Receive Descriptor Format 3449 * 3450 * +-----------------------------------------------------+ 3451 * | Buffer Address [63:0] | 3452 * +-----------------------------------------------------+ 3453 * | VLAN Tag | Errors | Status 0 | Packet csum | Length | 3454 * +-----------------------------------------------------+ 3455 * 63 48 47 40 39 32 31 16 15 0 3456 */ 3457 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n"); 3458 3459 if (!netif_msg_rx_status(adapter)) 3460 goto exit; 3461 3462 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { 3463 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); 3464 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i]; 3465 struct my_u { __le64 a; __le64 b; }; 3466 struct my_u *u = (struct my_u *)rx_desc; 3467 const char *type; 3468 3469 if (i == rx_ring->next_to_use) 3470 type = "NTU"; 3471 else if (i == rx_ring->next_to_clean) 3472 type = "NTC"; 3473 else 3474 type = ""; 3475 3476 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n", 3477 i, le64_to_cpu(u->a), le64_to_cpu(u->b), 3478 (u64)buffer_info->dma, buffer_info->rxbuf.data, type); 3479 } /* for */ 3480 3481 /* dump the descriptor caches */ 3482 /* rx */ 3483 pr_info("Rx descriptor cache in 64bit format\n"); 3484 for (i = 0x6000; i <= 0x63FF ; i += 0x10) { 3485 pr_info("R%04X: %08X|%08X %08X|%08X\n", 3486 i, 3487 readl(adapter->hw.hw_addr + i+4), 3488 readl(adapter->hw.hw_addr + i), 3489 readl(adapter->hw.hw_addr + i+12), 3490 readl(adapter->hw.hw_addr + i+8)); 3491 } 3492 /* tx */ 3493 pr_info("Tx descriptor cache in 64bit format\n"); 3494 for (i = 0x7000; i <= 0x73FF ; i += 0x10) { 3495 pr_info("T%04X: %08X|%08X %08X|%08X\n", 3496 i, 3497 readl(adapter->hw.hw_addr + i+4), 3498 readl(adapter->hw.hw_addr + i), 3499 readl(adapter->hw.hw_addr + i+12), 3500 readl(adapter->hw.hw_addr + i+8)); 3501 } 3502 exit: 3503 return; 3504 } 3505 3506 /** 3507 * e1000_tx_timeout - Respond to a Tx Hang 3508 * @netdev: network interface device structure 3509 **/ 3510 static void e1000_tx_timeout(struct net_device *netdev) 3511 { 3512 struct e1000_adapter *adapter = netdev_priv(netdev); 3513 3514 /* Do the reset outside of interrupt context */ 3515 adapter->tx_timeout_count++; 3516 schedule_work(&adapter->reset_task); 3517 } 3518 3519 static void e1000_reset_task(struct work_struct *work) 3520 { 3521 struct e1000_adapter *adapter = 3522 container_of(work, struct e1000_adapter, reset_task); 3523 3524 e_err(drv, "Reset adapter\n"); 3525 e1000_reinit_locked(adapter); 3526 } 3527 3528 /** 3529 * e1000_get_stats - Get System Network Statistics 3530 * @netdev: network interface device structure 3531 * 3532 * Returns the address of the device statistics structure. 3533 * The statistics are actually updated from the watchdog. 3534 **/ 3535 static struct net_device_stats *e1000_get_stats(struct net_device *netdev) 3536 { 3537 /* only return the current stats */ 3538 return &netdev->stats; 3539 } 3540 3541 /** 3542 * e1000_change_mtu - Change the Maximum Transfer Unit 3543 * @netdev: network interface device structure 3544 * @new_mtu: new value for maximum frame size 3545 * 3546 * Returns 0 on success, negative on failure 3547 **/ 3548 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 3549 { 3550 struct e1000_adapter *adapter = netdev_priv(netdev); 3551 struct e1000_hw *hw = &adapter->hw; 3552 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; 3553 3554 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || 3555 (max_frame > MAX_JUMBO_FRAME_SIZE)) { 3556 e_err(probe, "Invalid MTU setting\n"); 3557 return -EINVAL; 3558 } 3559 3560 /* Adapter-specific max frame size limits. */ 3561 switch (hw->mac_type) { 3562 case e1000_undefined ... e1000_82542_rev2_1: 3563 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { 3564 e_err(probe, "Jumbo Frames not supported.\n"); 3565 return -EINVAL; 3566 } 3567 break; 3568 default: 3569 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ 3570 break; 3571 } 3572 3573 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 3574 msleep(1); 3575 /* e1000_down has a dependency on max_frame_size */ 3576 hw->max_frame_size = max_frame; 3577 if (netif_running(netdev)) { 3578 /* prevent buffers from being reallocated */ 3579 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers; 3580 e1000_down(adapter); 3581 } 3582 3583 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 3584 * means we reserve 2 more, this pushes us to allocate from the next 3585 * larger slab size. 3586 * i.e. RXBUFFER_2048 --> size-4096 slab 3587 * however with the new *_jumbo_rx* routines, jumbo receives will use 3588 * fragmented skbs 3589 */ 3590 3591 if (max_frame <= E1000_RXBUFFER_2048) 3592 adapter->rx_buffer_len = E1000_RXBUFFER_2048; 3593 else 3594 #if (PAGE_SIZE >= E1000_RXBUFFER_16384) 3595 adapter->rx_buffer_len = E1000_RXBUFFER_16384; 3596 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096) 3597 adapter->rx_buffer_len = PAGE_SIZE; 3598 #endif 3599 3600 /* adjust allocation if LPE protects us, and we aren't using SBP */ 3601 if (!hw->tbi_compatibility_on && 3602 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || 3603 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) 3604 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 3605 3606 pr_info("%s changing MTU from %d to %d\n", 3607 netdev->name, netdev->mtu, new_mtu); 3608 netdev->mtu = new_mtu; 3609 3610 if (netif_running(netdev)) 3611 e1000_up(adapter); 3612 else 3613 e1000_reset(adapter); 3614 3615 clear_bit(__E1000_RESETTING, &adapter->flags); 3616 3617 return 0; 3618 } 3619 3620 /** 3621 * e1000_update_stats - Update the board statistics counters 3622 * @adapter: board private structure 3623 **/ 3624 void e1000_update_stats(struct e1000_adapter *adapter) 3625 { 3626 struct net_device *netdev = adapter->netdev; 3627 struct e1000_hw *hw = &adapter->hw; 3628 struct pci_dev *pdev = adapter->pdev; 3629 unsigned long flags; 3630 u16 phy_tmp; 3631 3632 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 3633 3634 /* Prevent stats update while adapter is being reset, or if the pci 3635 * connection is down. 3636 */ 3637 if (adapter->link_speed == 0) 3638 return; 3639 if (pci_channel_offline(pdev)) 3640 return; 3641 3642 spin_lock_irqsave(&adapter->stats_lock, flags); 3643 3644 /* these counters are modified from e1000_tbi_adjust_stats, 3645 * called from the interrupt context, so they must only 3646 * be written while holding adapter->stats_lock 3647 */ 3648 3649 adapter->stats.crcerrs += er32(CRCERRS); 3650 adapter->stats.gprc += er32(GPRC); 3651 adapter->stats.gorcl += er32(GORCL); 3652 adapter->stats.gorch += er32(GORCH); 3653 adapter->stats.bprc += er32(BPRC); 3654 adapter->stats.mprc += er32(MPRC); 3655 adapter->stats.roc += er32(ROC); 3656 3657 adapter->stats.prc64 += er32(PRC64); 3658 adapter->stats.prc127 += er32(PRC127); 3659 adapter->stats.prc255 += er32(PRC255); 3660 adapter->stats.prc511 += er32(PRC511); 3661 adapter->stats.prc1023 += er32(PRC1023); 3662 adapter->stats.prc1522 += er32(PRC1522); 3663 3664 adapter->stats.symerrs += er32(SYMERRS); 3665 adapter->stats.mpc += er32(MPC); 3666 adapter->stats.scc += er32(SCC); 3667 adapter->stats.ecol += er32(ECOL); 3668 adapter->stats.mcc += er32(MCC); 3669 adapter->stats.latecol += er32(LATECOL); 3670 adapter->stats.dc += er32(DC); 3671 adapter->stats.sec += er32(SEC); 3672 adapter->stats.rlec += er32(RLEC); 3673 adapter->stats.xonrxc += er32(XONRXC); 3674 adapter->stats.xontxc += er32(XONTXC); 3675 adapter->stats.xoffrxc += er32(XOFFRXC); 3676 adapter->stats.xofftxc += er32(XOFFTXC); 3677 adapter->stats.fcruc += er32(FCRUC); 3678 adapter->stats.gptc += er32(GPTC); 3679 adapter->stats.gotcl += er32(GOTCL); 3680 adapter->stats.gotch += er32(GOTCH); 3681 adapter->stats.rnbc += er32(RNBC); 3682 adapter->stats.ruc += er32(RUC); 3683 adapter->stats.rfc += er32(RFC); 3684 adapter->stats.rjc += er32(RJC); 3685 adapter->stats.torl += er32(TORL); 3686 adapter->stats.torh += er32(TORH); 3687 adapter->stats.totl += er32(TOTL); 3688 adapter->stats.toth += er32(TOTH); 3689 adapter->stats.tpr += er32(TPR); 3690 3691 adapter->stats.ptc64 += er32(PTC64); 3692 adapter->stats.ptc127 += er32(PTC127); 3693 adapter->stats.ptc255 += er32(PTC255); 3694 adapter->stats.ptc511 += er32(PTC511); 3695 adapter->stats.ptc1023 += er32(PTC1023); 3696 adapter->stats.ptc1522 += er32(PTC1522); 3697 3698 adapter->stats.mptc += er32(MPTC); 3699 adapter->stats.bptc += er32(BPTC); 3700 3701 /* used for adaptive IFS */ 3702 3703 hw->tx_packet_delta = er32(TPT); 3704 adapter->stats.tpt += hw->tx_packet_delta; 3705 hw->collision_delta = er32(COLC); 3706 adapter->stats.colc += hw->collision_delta; 3707 3708 if (hw->mac_type >= e1000_82543) { 3709 adapter->stats.algnerrc += er32(ALGNERRC); 3710 adapter->stats.rxerrc += er32(RXERRC); 3711 adapter->stats.tncrs += er32(TNCRS); 3712 adapter->stats.cexterr += er32(CEXTERR); 3713 adapter->stats.tsctc += er32(TSCTC); 3714 adapter->stats.tsctfc += er32(TSCTFC); 3715 } 3716 3717 /* Fill out the OS statistics structure */ 3718 netdev->stats.multicast = adapter->stats.mprc; 3719 netdev->stats.collisions = adapter->stats.colc; 3720 3721 /* Rx Errors */ 3722 3723 /* RLEC on some newer hardware can be incorrect so build 3724 * our own version based on RUC and ROC 3725 */ 3726 netdev->stats.rx_errors = adapter->stats.rxerrc + 3727 adapter->stats.crcerrs + adapter->stats.algnerrc + 3728 adapter->stats.ruc + adapter->stats.roc + 3729 adapter->stats.cexterr; 3730 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; 3731 netdev->stats.rx_length_errors = adapter->stats.rlerrc; 3732 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; 3733 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; 3734 netdev->stats.rx_missed_errors = adapter->stats.mpc; 3735 3736 /* Tx Errors */ 3737 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; 3738 netdev->stats.tx_errors = adapter->stats.txerrc; 3739 netdev->stats.tx_aborted_errors = adapter->stats.ecol; 3740 netdev->stats.tx_window_errors = adapter->stats.latecol; 3741 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; 3742 if (hw->bad_tx_carr_stats_fd && 3743 adapter->link_duplex == FULL_DUPLEX) { 3744 netdev->stats.tx_carrier_errors = 0; 3745 adapter->stats.tncrs = 0; 3746 } 3747 3748 /* Tx Dropped needs to be maintained elsewhere */ 3749 3750 /* Phy Stats */ 3751 if (hw->media_type == e1000_media_type_copper) { 3752 if ((adapter->link_speed == SPEED_1000) && 3753 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { 3754 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 3755 adapter->phy_stats.idle_errors += phy_tmp; 3756 } 3757 3758 if ((hw->mac_type <= e1000_82546) && 3759 (hw->phy_type == e1000_phy_m88) && 3760 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) 3761 adapter->phy_stats.receive_errors += phy_tmp; 3762 } 3763 3764 /* Management Stats */ 3765 if (hw->has_smbus) { 3766 adapter->stats.mgptc += er32(MGTPTC); 3767 adapter->stats.mgprc += er32(MGTPRC); 3768 adapter->stats.mgpdc += er32(MGTPDC); 3769 } 3770 3771 spin_unlock_irqrestore(&adapter->stats_lock, flags); 3772 } 3773 3774 /** 3775 * e1000_intr - Interrupt Handler 3776 * @irq: interrupt number 3777 * @data: pointer to a network interface device structure 3778 **/ 3779 static irqreturn_t e1000_intr(int irq, void *data) 3780 { 3781 struct net_device *netdev = data; 3782 struct e1000_adapter *adapter = netdev_priv(netdev); 3783 struct e1000_hw *hw = &adapter->hw; 3784 u32 icr = er32(ICR); 3785 3786 if (unlikely((!icr))) 3787 return IRQ_NONE; /* Not our interrupt */ 3788 3789 /* we might have caused the interrupt, but the above 3790 * read cleared it, and just in case the driver is 3791 * down there is nothing to do so return handled 3792 */ 3793 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags))) 3794 return IRQ_HANDLED; 3795 3796 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { 3797 hw->get_link_status = 1; 3798 /* guard against interrupt when we're going down */ 3799 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3800 schedule_delayed_work(&adapter->watchdog_task, 1); 3801 } 3802 3803 /* disable interrupts, without the synchronize_irq bit */ 3804 ew32(IMC, ~0); 3805 E1000_WRITE_FLUSH(); 3806 3807 if (likely(napi_schedule_prep(&adapter->napi))) { 3808 adapter->total_tx_bytes = 0; 3809 adapter->total_tx_packets = 0; 3810 adapter->total_rx_bytes = 0; 3811 adapter->total_rx_packets = 0; 3812 __napi_schedule(&adapter->napi); 3813 } else { 3814 /* this really should not happen! if it does it is basically a 3815 * bug, but not a hard error, so enable ints and continue 3816 */ 3817 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3818 e1000_irq_enable(adapter); 3819 } 3820 3821 return IRQ_HANDLED; 3822 } 3823 3824 /** 3825 * e1000_clean - NAPI Rx polling callback 3826 * @adapter: board private structure 3827 **/ 3828 static int e1000_clean(struct napi_struct *napi, int budget) 3829 { 3830 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, 3831 napi); 3832 int tx_clean_complete = 0, work_done = 0; 3833 3834 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); 3835 3836 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); 3837 3838 if (!tx_clean_complete) 3839 work_done = budget; 3840 3841 /* If budget not fully consumed, exit the polling mode */ 3842 if (work_done < budget) { 3843 if (likely(adapter->itr_setting & 3)) 3844 e1000_set_itr(adapter); 3845 napi_complete_done(napi, work_done); 3846 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3847 e1000_irq_enable(adapter); 3848 } 3849 3850 return work_done; 3851 } 3852 3853 /** 3854 * e1000_clean_tx_irq - Reclaim resources after transmit completes 3855 * @adapter: board private structure 3856 **/ 3857 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 3858 struct e1000_tx_ring *tx_ring) 3859 { 3860 struct e1000_hw *hw = &adapter->hw; 3861 struct net_device *netdev = adapter->netdev; 3862 struct e1000_tx_desc *tx_desc, *eop_desc; 3863 struct e1000_tx_buffer *buffer_info; 3864 unsigned int i, eop; 3865 unsigned int count = 0; 3866 unsigned int total_tx_bytes = 0, total_tx_packets = 0; 3867 unsigned int bytes_compl = 0, pkts_compl = 0; 3868 3869 i = tx_ring->next_to_clean; 3870 eop = tx_ring->buffer_info[i].next_to_watch; 3871 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3872 3873 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && 3874 (count < tx_ring->count)) { 3875 bool cleaned = false; 3876 dma_rmb(); /* read buffer_info after eop_desc */ 3877 for ( ; !cleaned; count++) { 3878 tx_desc = E1000_TX_DESC(*tx_ring, i); 3879 buffer_info = &tx_ring->buffer_info[i]; 3880 cleaned = (i == eop); 3881 3882 if (cleaned) { 3883 total_tx_packets += buffer_info->segs; 3884 total_tx_bytes += buffer_info->bytecount; 3885 if (buffer_info->skb) { 3886 bytes_compl += buffer_info->skb->len; 3887 pkts_compl++; 3888 } 3889 3890 } 3891 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 3892 tx_desc->upper.data = 0; 3893 3894 if (unlikely(++i == tx_ring->count)) 3895 i = 0; 3896 } 3897 3898 eop = tx_ring->buffer_info[i].next_to_watch; 3899 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3900 } 3901 3902 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame, 3903 * which will reuse the cleaned buffers. 3904 */ 3905 smp_store_release(&tx_ring->next_to_clean, i); 3906 3907 netdev_completed_queue(netdev, pkts_compl, bytes_compl); 3908 3909 #define TX_WAKE_THRESHOLD 32 3910 if (unlikely(count && netif_carrier_ok(netdev) && 3911 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { 3912 /* Make sure that anybody stopping the queue after this 3913 * sees the new next_to_clean. 3914 */ 3915 smp_mb(); 3916 3917 if (netif_queue_stopped(netdev) && 3918 !(test_bit(__E1000_DOWN, &adapter->flags))) { 3919 netif_wake_queue(netdev); 3920 ++adapter->restart_queue; 3921 } 3922 } 3923 3924 if (adapter->detect_tx_hung) { 3925 /* Detect a transmit hang in hardware, this serializes the 3926 * check with the clearing of time_stamp and movement of i 3927 */ 3928 adapter->detect_tx_hung = false; 3929 if (tx_ring->buffer_info[eop].time_stamp && 3930 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + 3931 (adapter->tx_timeout_factor * HZ)) && 3932 !(er32(STATUS) & E1000_STATUS_TXOFF)) { 3933 3934 /* detected Tx unit hang */ 3935 e_err(drv, "Detected Tx Unit Hang\n" 3936 " Tx Queue <%lu>\n" 3937 " TDH <%x>\n" 3938 " TDT <%x>\n" 3939 " next_to_use <%x>\n" 3940 " next_to_clean <%x>\n" 3941 "buffer_info[next_to_clean]\n" 3942 " time_stamp <%lx>\n" 3943 " next_to_watch <%x>\n" 3944 " jiffies <%lx>\n" 3945 " next_to_watch.status <%x>\n", 3946 (unsigned long)(tx_ring - adapter->tx_ring), 3947 readl(hw->hw_addr + tx_ring->tdh), 3948 readl(hw->hw_addr + tx_ring->tdt), 3949 tx_ring->next_to_use, 3950 tx_ring->next_to_clean, 3951 tx_ring->buffer_info[eop].time_stamp, 3952 eop, 3953 jiffies, 3954 eop_desc->upper.fields.status); 3955 e1000_dump(adapter); 3956 netif_stop_queue(netdev); 3957 } 3958 } 3959 adapter->total_tx_bytes += total_tx_bytes; 3960 adapter->total_tx_packets += total_tx_packets; 3961 netdev->stats.tx_bytes += total_tx_bytes; 3962 netdev->stats.tx_packets += total_tx_packets; 3963 return count < tx_ring->count; 3964 } 3965 3966 /** 3967 * e1000_rx_checksum - Receive Checksum Offload for 82543 3968 * @adapter: board private structure 3969 * @status_err: receive descriptor status and error fields 3970 * @csum: receive descriptor csum field 3971 * @sk_buff: socket buffer with received data 3972 **/ 3973 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 3974 u32 csum, struct sk_buff *skb) 3975 { 3976 struct e1000_hw *hw = &adapter->hw; 3977 u16 status = (u16)status_err; 3978 u8 errors = (u8)(status_err >> 24); 3979 3980 skb_checksum_none_assert(skb); 3981 3982 /* 82543 or newer only */ 3983 if (unlikely(hw->mac_type < e1000_82543)) 3984 return; 3985 /* Ignore Checksum bit is set */ 3986 if (unlikely(status & E1000_RXD_STAT_IXSM)) 3987 return; 3988 /* TCP/UDP checksum error bit is set */ 3989 if (unlikely(errors & E1000_RXD_ERR_TCPE)) { 3990 /* let the stack verify checksum errors */ 3991 adapter->hw_csum_err++; 3992 return; 3993 } 3994 /* TCP/UDP Checksum has not been calculated */ 3995 if (!(status & E1000_RXD_STAT_TCPCS)) 3996 return; 3997 3998 /* It must be a TCP or UDP packet with a valid checksum */ 3999 if (likely(status & E1000_RXD_STAT_TCPCS)) { 4000 /* TCP checksum is good */ 4001 skb->ip_summed = CHECKSUM_UNNECESSARY; 4002 } 4003 adapter->hw_csum_good++; 4004 } 4005 4006 /** 4007 * e1000_consume_page - helper function for jumbo Rx path 4008 **/ 4009 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb, 4010 u16 length) 4011 { 4012 bi->rxbuf.page = NULL; 4013 skb->len += length; 4014 skb->data_len += length; 4015 skb->truesize += PAGE_SIZE; 4016 } 4017 4018 /** 4019 * e1000_receive_skb - helper function to handle rx indications 4020 * @adapter: board private structure 4021 * @status: descriptor status field as written by hardware 4022 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 4023 * @skb: pointer to sk_buff to be indicated to stack 4024 */ 4025 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, 4026 __le16 vlan, struct sk_buff *skb) 4027 { 4028 skb->protocol = eth_type_trans(skb, adapter->netdev); 4029 4030 if (status & E1000_RXD_STAT_VP) { 4031 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 4032 4033 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 4034 } 4035 napi_gro_receive(&adapter->napi, skb); 4036 } 4037 4038 /** 4039 * e1000_tbi_adjust_stats 4040 * @hw: Struct containing variables accessed by shared code 4041 * @frame_len: The length of the frame in question 4042 * @mac_addr: The Ethernet destination address of the frame in question 4043 * 4044 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT 4045 */ 4046 static void e1000_tbi_adjust_stats(struct e1000_hw *hw, 4047 struct e1000_hw_stats *stats, 4048 u32 frame_len, const u8 *mac_addr) 4049 { 4050 u64 carry_bit; 4051 4052 /* First adjust the frame length. */ 4053 frame_len--; 4054 /* We need to adjust the statistics counters, since the hardware 4055 * counters overcount this packet as a CRC error and undercount 4056 * the packet as a good packet 4057 */ 4058 /* This packet should not be counted as a CRC error. */ 4059 stats->crcerrs--; 4060 /* This packet does count as a Good Packet Received. */ 4061 stats->gprc++; 4062 4063 /* Adjust the Good Octets received counters */ 4064 carry_bit = 0x80000000 & stats->gorcl; 4065 stats->gorcl += frame_len; 4066 /* If the high bit of Gorcl (the low 32 bits of the Good Octets 4067 * Received Count) was one before the addition, 4068 * AND it is zero after, then we lost the carry out, 4069 * need to add one to Gorch (Good Octets Received Count High). 4070 * This could be simplified if all environments supported 4071 * 64-bit integers. 4072 */ 4073 if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) 4074 stats->gorch++; 4075 /* Is this a broadcast or multicast? Check broadcast first, 4076 * since the test for a multicast frame will test positive on 4077 * a broadcast frame. 4078 */ 4079 if (is_broadcast_ether_addr(mac_addr)) 4080 stats->bprc++; 4081 else if (is_multicast_ether_addr(mac_addr)) 4082 stats->mprc++; 4083 4084 if (frame_len == hw->max_frame_size) { 4085 /* In this case, the hardware has overcounted the number of 4086 * oversize frames. 4087 */ 4088 if (stats->roc > 0) 4089 stats->roc--; 4090 } 4091 4092 /* Adjust the bin counters when the extra byte put the frame in the 4093 * wrong bin. Remember that the frame_len was adjusted above. 4094 */ 4095 if (frame_len == 64) { 4096 stats->prc64++; 4097 stats->prc127--; 4098 } else if (frame_len == 127) { 4099 stats->prc127++; 4100 stats->prc255--; 4101 } else if (frame_len == 255) { 4102 stats->prc255++; 4103 stats->prc511--; 4104 } else if (frame_len == 511) { 4105 stats->prc511++; 4106 stats->prc1023--; 4107 } else if (frame_len == 1023) { 4108 stats->prc1023++; 4109 stats->prc1522--; 4110 } else if (frame_len == 1522) { 4111 stats->prc1522++; 4112 } 4113 } 4114 4115 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter, 4116 u8 status, u8 errors, 4117 u32 length, const u8 *data) 4118 { 4119 struct e1000_hw *hw = &adapter->hw; 4120 u8 last_byte = *(data + length - 1); 4121 4122 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) { 4123 unsigned long irq_flags; 4124 4125 spin_lock_irqsave(&adapter->stats_lock, irq_flags); 4126 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data); 4127 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); 4128 4129 return true; 4130 } 4131 4132 return false; 4133 } 4134 4135 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter, 4136 unsigned int bufsz) 4137 { 4138 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz); 4139 4140 if (unlikely(!skb)) 4141 adapter->alloc_rx_buff_failed++; 4142 return skb; 4143 } 4144 4145 /** 4146 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 4147 * @adapter: board private structure 4148 * @rx_ring: ring to clean 4149 * @work_done: amount of napi work completed this call 4150 * @work_to_do: max amount of work allowed for this call to do 4151 * 4152 * the return value indicates whether actual cleaning was done, there 4153 * is no guarantee that everything was cleaned 4154 */ 4155 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 4156 struct e1000_rx_ring *rx_ring, 4157 int *work_done, int work_to_do) 4158 { 4159 struct net_device *netdev = adapter->netdev; 4160 struct pci_dev *pdev = adapter->pdev; 4161 struct e1000_rx_desc *rx_desc, *next_rxd; 4162 struct e1000_rx_buffer *buffer_info, *next_buffer; 4163 u32 length; 4164 unsigned int i; 4165 int cleaned_count = 0; 4166 bool cleaned = false; 4167 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 4168 4169 i = rx_ring->next_to_clean; 4170 rx_desc = E1000_RX_DESC(*rx_ring, i); 4171 buffer_info = &rx_ring->buffer_info[i]; 4172 4173 while (rx_desc->status & E1000_RXD_STAT_DD) { 4174 struct sk_buff *skb; 4175 u8 status; 4176 4177 if (*work_done >= work_to_do) 4178 break; 4179 (*work_done)++; 4180 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 4181 4182 status = rx_desc->status; 4183 4184 if (++i == rx_ring->count) 4185 i = 0; 4186 4187 next_rxd = E1000_RX_DESC(*rx_ring, i); 4188 prefetch(next_rxd); 4189 4190 next_buffer = &rx_ring->buffer_info[i]; 4191 4192 cleaned = true; 4193 cleaned_count++; 4194 dma_unmap_page(&pdev->dev, buffer_info->dma, 4195 adapter->rx_buffer_len, DMA_FROM_DEVICE); 4196 buffer_info->dma = 0; 4197 4198 length = le16_to_cpu(rx_desc->length); 4199 4200 /* errors is only valid for DD + EOP descriptors */ 4201 if (unlikely((status & E1000_RXD_STAT_EOP) && 4202 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { 4203 u8 *mapped = page_address(buffer_info->rxbuf.page); 4204 4205 if (e1000_tbi_should_accept(adapter, status, 4206 rx_desc->errors, 4207 length, mapped)) { 4208 length--; 4209 } else if (netdev->features & NETIF_F_RXALL) { 4210 goto process_skb; 4211 } else { 4212 /* an error means any chain goes out the window 4213 * too 4214 */ 4215 if (rx_ring->rx_skb_top) 4216 dev_kfree_skb(rx_ring->rx_skb_top); 4217 rx_ring->rx_skb_top = NULL; 4218 goto next_desc; 4219 } 4220 } 4221 4222 #define rxtop rx_ring->rx_skb_top 4223 process_skb: 4224 if (!(status & E1000_RXD_STAT_EOP)) { 4225 /* this descriptor is only the beginning (or middle) */ 4226 if (!rxtop) { 4227 /* this is the beginning of a chain */ 4228 rxtop = napi_get_frags(&adapter->napi); 4229 if (!rxtop) 4230 break; 4231 4232 skb_fill_page_desc(rxtop, 0, 4233 buffer_info->rxbuf.page, 4234 0, length); 4235 } else { 4236 /* this is the middle of a chain */ 4237 skb_fill_page_desc(rxtop, 4238 skb_shinfo(rxtop)->nr_frags, 4239 buffer_info->rxbuf.page, 0, length); 4240 } 4241 e1000_consume_page(buffer_info, rxtop, length); 4242 goto next_desc; 4243 } else { 4244 if (rxtop) { 4245 /* end of the chain */ 4246 skb_fill_page_desc(rxtop, 4247 skb_shinfo(rxtop)->nr_frags, 4248 buffer_info->rxbuf.page, 0, length); 4249 skb = rxtop; 4250 rxtop = NULL; 4251 e1000_consume_page(buffer_info, skb, length); 4252 } else { 4253 struct page *p; 4254 /* no chain, got EOP, this buf is the packet 4255 * copybreak to save the put_page/alloc_page 4256 */ 4257 p = buffer_info->rxbuf.page; 4258 if (length <= copybreak) { 4259 u8 *vaddr; 4260 4261 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4262 length -= 4; 4263 skb = e1000_alloc_rx_skb(adapter, 4264 length); 4265 if (!skb) 4266 break; 4267 4268 vaddr = kmap_atomic(p); 4269 memcpy(skb_tail_pointer(skb), vaddr, 4270 length); 4271 kunmap_atomic(vaddr); 4272 /* re-use the page, so don't erase 4273 * buffer_info->rxbuf.page 4274 */ 4275 skb_put(skb, length); 4276 e1000_rx_checksum(adapter, 4277 status | rx_desc->errors << 24, 4278 le16_to_cpu(rx_desc->csum), skb); 4279 4280 total_rx_bytes += skb->len; 4281 total_rx_packets++; 4282 4283 e1000_receive_skb(adapter, status, 4284 rx_desc->special, skb); 4285 goto next_desc; 4286 } else { 4287 skb = napi_get_frags(&adapter->napi); 4288 if (!skb) { 4289 adapter->alloc_rx_buff_failed++; 4290 break; 4291 } 4292 skb_fill_page_desc(skb, 0, p, 0, 4293 length); 4294 e1000_consume_page(buffer_info, skb, 4295 length); 4296 } 4297 } 4298 } 4299 4300 /* Receive Checksum Offload XXX recompute due to CRC strip? */ 4301 e1000_rx_checksum(adapter, 4302 (u32)(status) | 4303 ((u32)(rx_desc->errors) << 24), 4304 le16_to_cpu(rx_desc->csum), skb); 4305 4306 total_rx_bytes += (skb->len - 4); /* don't count FCS */ 4307 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4308 pskb_trim(skb, skb->len - 4); 4309 total_rx_packets++; 4310 4311 if (status & E1000_RXD_STAT_VP) { 4312 __le16 vlan = rx_desc->special; 4313 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 4314 4315 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 4316 } 4317 4318 napi_gro_frags(&adapter->napi); 4319 4320 next_desc: 4321 rx_desc->status = 0; 4322 4323 /* return some buffers to hardware, one at a time is too slow */ 4324 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4325 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4326 cleaned_count = 0; 4327 } 4328 4329 /* use prefetched values */ 4330 rx_desc = next_rxd; 4331 buffer_info = next_buffer; 4332 } 4333 rx_ring->next_to_clean = i; 4334 4335 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4336 if (cleaned_count) 4337 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4338 4339 adapter->total_rx_packets += total_rx_packets; 4340 adapter->total_rx_bytes += total_rx_bytes; 4341 netdev->stats.rx_bytes += total_rx_bytes; 4342 netdev->stats.rx_packets += total_rx_packets; 4343 return cleaned; 4344 } 4345 4346 /* this should improve performance for small packets with large amounts 4347 * of reassembly being done in the stack 4348 */ 4349 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter, 4350 struct e1000_rx_buffer *buffer_info, 4351 u32 length, const void *data) 4352 { 4353 struct sk_buff *skb; 4354 4355 if (length > copybreak) 4356 return NULL; 4357 4358 skb = e1000_alloc_rx_skb(adapter, length); 4359 if (!skb) 4360 return NULL; 4361 4362 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma, 4363 length, DMA_FROM_DEVICE); 4364 4365 memcpy(skb_put(skb, length), data, length); 4366 4367 return skb; 4368 } 4369 4370 /** 4371 * e1000_clean_rx_irq - Send received data up the network stack; legacy 4372 * @adapter: board private structure 4373 * @rx_ring: ring to clean 4374 * @work_done: amount of napi work completed this call 4375 * @work_to_do: max amount of work allowed for this call to do 4376 */ 4377 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 4378 struct e1000_rx_ring *rx_ring, 4379 int *work_done, int work_to_do) 4380 { 4381 struct net_device *netdev = adapter->netdev; 4382 struct pci_dev *pdev = adapter->pdev; 4383 struct e1000_rx_desc *rx_desc, *next_rxd; 4384 struct e1000_rx_buffer *buffer_info, *next_buffer; 4385 u32 length; 4386 unsigned int i; 4387 int cleaned_count = 0; 4388 bool cleaned = false; 4389 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 4390 4391 i = rx_ring->next_to_clean; 4392 rx_desc = E1000_RX_DESC(*rx_ring, i); 4393 buffer_info = &rx_ring->buffer_info[i]; 4394 4395 while (rx_desc->status & E1000_RXD_STAT_DD) { 4396 struct sk_buff *skb; 4397 u8 *data; 4398 u8 status; 4399 4400 if (*work_done >= work_to_do) 4401 break; 4402 (*work_done)++; 4403 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 4404 4405 status = rx_desc->status; 4406 length = le16_to_cpu(rx_desc->length); 4407 4408 data = buffer_info->rxbuf.data; 4409 prefetch(data); 4410 skb = e1000_copybreak(adapter, buffer_info, length, data); 4411 if (!skb) { 4412 unsigned int frag_len = e1000_frag_len(adapter); 4413 4414 skb = build_skb(data - E1000_HEADROOM, frag_len); 4415 if (!skb) { 4416 adapter->alloc_rx_buff_failed++; 4417 break; 4418 } 4419 4420 skb_reserve(skb, E1000_HEADROOM); 4421 dma_unmap_single(&pdev->dev, buffer_info->dma, 4422 adapter->rx_buffer_len, 4423 DMA_FROM_DEVICE); 4424 buffer_info->dma = 0; 4425 buffer_info->rxbuf.data = NULL; 4426 } 4427 4428 if (++i == rx_ring->count) 4429 i = 0; 4430 4431 next_rxd = E1000_RX_DESC(*rx_ring, i); 4432 prefetch(next_rxd); 4433 4434 next_buffer = &rx_ring->buffer_info[i]; 4435 4436 cleaned = true; 4437 cleaned_count++; 4438 4439 /* !EOP means multiple descriptors were used to store a single 4440 * packet, if thats the case we need to toss it. In fact, we 4441 * to toss every packet with the EOP bit clear and the next 4442 * frame that _does_ have the EOP bit set, as it is by 4443 * definition only a frame fragment 4444 */ 4445 if (unlikely(!(status & E1000_RXD_STAT_EOP))) 4446 adapter->discarding = true; 4447 4448 if (adapter->discarding) { 4449 /* All receives must fit into a single buffer */ 4450 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n"); 4451 dev_kfree_skb(skb); 4452 if (status & E1000_RXD_STAT_EOP) 4453 adapter->discarding = false; 4454 goto next_desc; 4455 } 4456 4457 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { 4458 if (e1000_tbi_should_accept(adapter, status, 4459 rx_desc->errors, 4460 length, data)) { 4461 length--; 4462 } else if (netdev->features & NETIF_F_RXALL) { 4463 goto process_skb; 4464 } else { 4465 dev_kfree_skb(skb); 4466 goto next_desc; 4467 } 4468 } 4469 4470 process_skb: 4471 total_rx_bytes += (length - 4); /* don't count FCS */ 4472 total_rx_packets++; 4473 4474 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4475 /* adjust length to remove Ethernet CRC, this must be 4476 * done after the TBI_ACCEPT workaround above 4477 */ 4478 length -= 4; 4479 4480 if (buffer_info->rxbuf.data == NULL) 4481 skb_put(skb, length); 4482 else /* copybreak skb */ 4483 skb_trim(skb, length); 4484 4485 /* Receive Checksum Offload */ 4486 e1000_rx_checksum(adapter, 4487 (u32)(status) | 4488 ((u32)(rx_desc->errors) << 24), 4489 le16_to_cpu(rx_desc->csum), skb); 4490 4491 e1000_receive_skb(adapter, status, rx_desc->special, skb); 4492 4493 next_desc: 4494 rx_desc->status = 0; 4495 4496 /* return some buffers to hardware, one at a time is too slow */ 4497 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4498 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4499 cleaned_count = 0; 4500 } 4501 4502 /* use prefetched values */ 4503 rx_desc = next_rxd; 4504 buffer_info = next_buffer; 4505 } 4506 rx_ring->next_to_clean = i; 4507 4508 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4509 if (cleaned_count) 4510 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4511 4512 adapter->total_rx_packets += total_rx_packets; 4513 adapter->total_rx_bytes += total_rx_bytes; 4514 netdev->stats.rx_bytes += total_rx_bytes; 4515 netdev->stats.rx_packets += total_rx_packets; 4516 return cleaned; 4517 } 4518 4519 /** 4520 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 4521 * @adapter: address of board private structure 4522 * @rx_ring: pointer to receive ring structure 4523 * @cleaned_count: number of buffers to allocate this pass 4524 **/ 4525 static void 4526 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 4527 struct e1000_rx_ring *rx_ring, int cleaned_count) 4528 { 4529 struct pci_dev *pdev = adapter->pdev; 4530 struct e1000_rx_desc *rx_desc; 4531 struct e1000_rx_buffer *buffer_info; 4532 unsigned int i; 4533 4534 i = rx_ring->next_to_use; 4535 buffer_info = &rx_ring->buffer_info[i]; 4536 4537 while (cleaned_count--) { 4538 /* allocate a new page if necessary */ 4539 if (!buffer_info->rxbuf.page) { 4540 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC); 4541 if (unlikely(!buffer_info->rxbuf.page)) { 4542 adapter->alloc_rx_buff_failed++; 4543 break; 4544 } 4545 } 4546 4547 if (!buffer_info->dma) { 4548 buffer_info->dma = dma_map_page(&pdev->dev, 4549 buffer_info->rxbuf.page, 0, 4550 adapter->rx_buffer_len, 4551 DMA_FROM_DEVICE); 4552 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4553 put_page(buffer_info->rxbuf.page); 4554 buffer_info->rxbuf.page = NULL; 4555 buffer_info->dma = 0; 4556 adapter->alloc_rx_buff_failed++; 4557 break; 4558 } 4559 } 4560 4561 rx_desc = E1000_RX_DESC(*rx_ring, i); 4562 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4563 4564 if (unlikely(++i == rx_ring->count)) 4565 i = 0; 4566 buffer_info = &rx_ring->buffer_info[i]; 4567 } 4568 4569 if (likely(rx_ring->next_to_use != i)) { 4570 rx_ring->next_to_use = i; 4571 if (unlikely(i-- == 0)) 4572 i = (rx_ring->count - 1); 4573 4574 /* Force memory writes to complete before letting h/w 4575 * know there are new descriptors to fetch. (Only 4576 * applicable for weak-ordered memory model archs, 4577 * such as IA-64). 4578 */ 4579 wmb(); 4580 writel(i, adapter->hw.hw_addr + rx_ring->rdt); 4581 } 4582 } 4583 4584 /** 4585 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended 4586 * @adapter: address of board private structure 4587 **/ 4588 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 4589 struct e1000_rx_ring *rx_ring, 4590 int cleaned_count) 4591 { 4592 struct e1000_hw *hw = &adapter->hw; 4593 struct pci_dev *pdev = adapter->pdev; 4594 struct e1000_rx_desc *rx_desc; 4595 struct e1000_rx_buffer *buffer_info; 4596 unsigned int i; 4597 unsigned int bufsz = adapter->rx_buffer_len; 4598 4599 i = rx_ring->next_to_use; 4600 buffer_info = &rx_ring->buffer_info[i]; 4601 4602 while (cleaned_count--) { 4603 void *data; 4604 4605 if (buffer_info->rxbuf.data) 4606 goto skip; 4607 4608 data = e1000_alloc_frag(adapter); 4609 if (!data) { 4610 /* Better luck next round */ 4611 adapter->alloc_rx_buff_failed++; 4612 break; 4613 } 4614 4615 /* Fix for errata 23, can't cross 64kB boundary */ 4616 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4617 void *olddata = data; 4618 e_err(rx_err, "skb align check failed: %u bytes at " 4619 "%p\n", bufsz, data); 4620 /* Try again, without freeing the previous */ 4621 data = e1000_alloc_frag(adapter); 4622 /* Failed allocation, critical failure */ 4623 if (!data) { 4624 skb_free_frag(olddata); 4625 adapter->alloc_rx_buff_failed++; 4626 break; 4627 } 4628 4629 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4630 /* give up */ 4631 skb_free_frag(data); 4632 skb_free_frag(olddata); 4633 adapter->alloc_rx_buff_failed++; 4634 break; 4635 } 4636 4637 /* Use new allocation */ 4638 skb_free_frag(olddata); 4639 } 4640 buffer_info->dma = dma_map_single(&pdev->dev, 4641 data, 4642 adapter->rx_buffer_len, 4643 DMA_FROM_DEVICE); 4644 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4645 skb_free_frag(data); 4646 buffer_info->dma = 0; 4647 adapter->alloc_rx_buff_failed++; 4648 break; 4649 } 4650 4651 /* XXX if it was allocated cleanly it will never map to a 4652 * boundary crossing 4653 */ 4654 4655 /* Fix for errata 23, can't cross 64kB boundary */ 4656 if (!e1000_check_64k_bound(adapter, 4657 (void *)(unsigned long)buffer_info->dma, 4658 adapter->rx_buffer_len)) { 4659 e_err(rx_err, "dma align check failed: %u bytes at " 4660 "%p\n", adapter->rx_buffer_len, 4661 (void *)(unsigned long)buffer_info->dma); 4662 4663 dma_unmap_single(&pdev->dev, buffer_info->dma, 4664 adapter->rx_buffer_len, 4665 DMA_FROM_DEVICE); 4666 4667 skb_free_frag(data); 4668 buffer_info->rxbuf.data = NULL; 4669 buffer_info->dma = 0; 4670 4671 adapter->alloc_rx_buff_failed++; 4672 break; 4673 } 4674 buffer_info->rxbuf.data = data; 4675 skip: 4676 rx_desc = E1000_RX_DESC(*rx_ring, i); 4677 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4678 4679 if (unlikely(++i == rx_ring->count)) 4680 i = 0; 4681 buffer_info = &rx_ring->buffer_info[i]; 4682 } 4683 4684 if (likely(rx_ring->next_to_use != i)) { 4685 rx_ring->next_to_use = i; 4686 if (unlikely(i-- == 0)) 4687 i = (rx_ring->count - 1); 4688 4689 /* Force memory writes to complete before letting h/w 4690 * know there are new descriptors to fetch. (Only 4691 * applicable for weak-ordered memory model archs, 4692 * such as IA-64). 4693 */ 4694 wmb(); 4695 writel(i, hw->hw_addr + rx_ring->rdt); 4696 } 4697 } 4698 4699 /** 4700 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. 4701 * @adapter: 4702 **/ 4703 static void e1000_smartspeed(struct e1000_adapter *adapter) 4704 { 4705 struct e1000_hw *hw = &adapter->hw; 4706 u16 phy_status; 4707 u16 phy_ctrl; 4708 4709 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || 4710 !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) 4711 return; 4712 4713 if (adapter->smartspeed == 0) { 4714 /* If Master/Slave config fault is asserted twice, 4715 * we assume back-to-back 4716 */ 4717 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4718 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) 4719 return; 4720 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4721 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) 4722 return; 4723 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4724 if (phy_ctrl & CR_1000T_MS_ENABLE) { 4725 phy_ctrl &= ~CR_1000T_MS_ENABLE; 4726 e1000_write_phy_reg(hw, PHY_1000T_CTRL, 4727 phy_ctrl); 4728 adapter->smartspeed++; 4729 if (!e1000_phy_setup_autoneg(hw) && 4730 !e1000_read_phy_reg(hw, PHY_CTRL, 4731 &phy_ctrl)) { 4732 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4733 MII_CR_RESTART_AUTO_NEG); 4734 e1000_write_phy_reg(hw, PHY_CTRL, 4735 phy_ctrl); 4736 } 4737 } 4738 return; 4739 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { 4740 /* If still no link, perhaps using 2/3 pair cable */ 4741 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4742 phy_ctrl |= CR_1000T_MS_ENABLE; 4743 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); 4744 if (!e1000_phy_setup_autoneg(hw) && 4745 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { 4746 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4747 MII_CR_RESTART_AUTO_NEG); 4748 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); 4749 } 4750 } 4751 /* Restart process after E1000_SMARTSPEED_MAX iterations */ 4752 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) 4753 adapter->smartspeed = 0; 4754 } 4755 4756 /** 4757 * e1000_ioctl - 4758 * @netdev: 4759 * @ifreq: 4760 * @cmd: 4761 **/ 4762 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 4763 { 4764 switch (cmd) { 4765 case SIOCGMIIPHY: 4766 case SIOCGMIIREG: 4767 case SIOCSMIIREG: 4768 return e1000_mii_ioctl(netdev, ifr, cmd); 4769 default: 4770 return -EOPNOTSUPP; 4771 } 4772 } 4773 4774 /** 4775 * e1000_mii_ioctl - 4776 * @netdev: 4777 * @ifreq: 4778 * @cmd: 4779 **/ 4780 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 4781 int cmd) 4782 { 4783 struct e1000_adapter *adapter = netdev_priv(netdev); 4784 struct e1000_hw *hw = &adapter->hw; 4785 struct mii_ioctl_data *data = if_mii(ifr); 4786 int retval; 4787 u16 mii_reg; 4788 unsigned long flags; 4789 4790 if (hw->media_type != e1000_media_type_copper) 4791 return -EOPNOTSUPP; 4792 4793 switch (cmd) { 4794 case SIOCGMIIPHY: 4795 data->phy_id = hw->phy_addr; 4796 break; 4797 case SIOCGMIIREG: 4798 spin_lock_irqsave(&adapter->stats_lock, flags); 4799 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, 4800 &data->val_out)) { 4801 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4802 return -EIO; 4803 } 4804 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4805 break; 4806 case SIOCSMIIREG: 4807 if (data->reg_num & ~(0x1F)) 4808 return -EFAULT; 4809 mii_reg = data->val_in; 4810 spin_lock_irqsave(&adapter->stats_lock, flags); 4811 if (e1000_write_phy_reg(hw, data->reg_num, 4812 mii_reg)) { 4813 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4814 return -EIO; 4815 } 4816 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4817 if (hw->media_type == e1000_media_type_copper) { 4818 switch (data->reg_num) { 4819 case PHY_CTRL: 4820 if (mii_reg & MII_CR_POWER_DOWN) 4821 break; 4822 if (mii_reg & MII_CR_AUTO_NEG_EN) { 4823 hw->autoneg = 1; 4824 hw->autoneg_advertised = 0x2F; 4825 } else { 4826 u32 speed; 4827 if (mii_reg & 0x40) 4828 speed = SPEED_1000; 4829 else if (mii_reg & 0x2000) 4830 speed = SPEED_100; 4831 else 4832 speed = SPEED_10; 4833 retval = e1000_set_spd_dplx( 4834 adapter, speed, 4835 ((mii_reg & 0x100) 4836 ? DUPLEX_FULL : 4837 DUPLEX_HALF)); 4838 if (retval) 4839 return retval; 4840 } 4841 if (netif_running(adapter->netdev)) 4842 e1000_reinit_locked(adapter); 4843 else 4844 e1000_reset(adapter); 4845 break; 4846 case M88E1000_PHY_SPEC_CTRL: 4847 case M88E1000_EXT_PHY_SPEC_CTRL: 4848 if (e1000_phy_reset(hw)) 4849 return -EIO; 4850 break; 4851 } 4852 } else { 4853 switch (data->reg_num) { 4854 case PHY_CTRL: 4855 if (mii_reg & MII_CR_POWER_DOWN) 4856 break; 4857 if (netif_running(adapter->netdev)) 4858 e1000_reinit_locked(adapter); 4859 else 4860 e1000_reset(adapter); 4861 break; 4862 } 4863 } 4864 break; 4865 default: 4866 return -EOPNOTSUPP; 4867 } 4868 return E1000_SUCCESS; 4869 } 4870 4871 void e1000_pci_set_mwi(struct e1000_hw *hw) 4872 { 4873 struct e1000_adapter *adapter = hw->back; 4874 int ret_val = pci_set_mwi(adapter->pdev); 4875 4876 if (ret_val) 4877 e_err(probe, "Error in setting MWI\n"); 4878 } 4879 4880 void e1000_pci_clear_mwi(struct e1000_hw *hw) 4881 { 4882 struct e1000_adapter *adapter = hw->back; 4883 4884 pci_clear_mwi(adapter->pdev); 4885 } 4886 4887 int e1000_pcix_get_mmrbc(struct e1000_hw *hw) 4888 { 4889 struct e1000_adapter *adapter = hw->back; 4890 return pcix_get_mmrbc(adapter->pdev); 4891 } 4892 4893 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) 4894 { 4895 struct e1000_adapter *adapter = hw->back; 4896 pcix_set_mmrbc(adapter->pdev, mmrbc); 4897 } 4898 4899 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) 4900 { 4901 outl(value, port); 4902 } 4903 4904 static bool e1000_vlan_used(struct e1000_adapter *adapter) 4905 { 4906 u16 vid; 4907 4908 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 4909 return true; 4910 return false; 4911 } 4912 4913 static void __e1000_vlan_mode(struct e1000_adapter *adapter, 4914 netdev_features_t features) 4915 { 4916 struct e1000_hw *hw = &adapter->hw; 4917 u32 ctrl; 4918 4919 ctrl = er32(CTRL); 4920 if (features & NETIF_F_HW_VLAN_CTAG_RX) { 4921 /* enable VLAN tag insert/strip */ 4922 ctrl |= E1000_CTRL_VME; 4923 } else { 4924 /* disable VLAN tag insert/strip */ 4925 ctrl &= ~E1000_CTRL_VME; 4926 } 4927 ew32(CTRL, ctrl); 4928 } 4929 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 4930 bool filter_on) 4931 { 4932 struct e1000_hw *hw = &adapter->hw; 4933 u32 rctl; 4934 4935 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4936 e1000_irq_disable(adapter); 4937 4938 __e1000_vlan_mode(adapter, adapter->netdev->features); 4939 if (filter_on) { 4940 /* enable VLAN receive filtering */ 4941 rctl = er32(RCTL); 4942 rctl &= ~E1000_RCTL_CFIEN; 4943 if (!(adapter->netdev->flags & IFF_PROMISC)) 4944 rctl |= E1000_RCTL_VFE; 4945 ew32(RCTL, rctl); 4946 e1000_update_mng_vlan(adapter); 4947 } else { 4948 /* disable VLAN receive filtering */ 4949 rctl = er32(RCTL); 4950 rctl &= ~E1000_RCTL_VFE; 4951 ew32(RCTL, rctl); 4952 } 4953 4954 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4955 e1000_irq_enable(adapter); 4956 } 4957 4958 static void e1000_vlan_mode(struct net_device *netdev, 4959 netdev_features_t features) 4960 { 4961 struct e1000_adapter *adapter = netdev_priv(netdev); 4962 4963 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4964 e1000_irq_disable(adapter); 4965 4966 __e1000_vlan_mode(adapter, features); 4967 4968 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4969 e1000_irq_enable(adapter); 4970 } 4971 4972 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 4973 __be16 proto, u16 vid) 4974 { 4975 struct e1000_adapter *adapter = netdev_priv(netdev); 4976 struct e1000_hw *hw = &adapter->hw; 4977 u32 vfta, index; 4978 4979 if ((hw->mng_cookie.status & 4980 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 4981 (vid == adapter->mng_vlan_id)) 4982 return 0; 4983 4984 if (!e1000_vlan_used(adapter)) 4985 e1000_vlan_filter_on_off(adapter, true); 4986 4987 /* add VID to filter table */ 4988 index = (vid >> 5) & 0x7F; 4989 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4990 vfta |= (1 << (vid & 0x1F)); 4991 e1000_write_vfta(hw, index, vfta); 4992 4993 set_bit(vid, adapter->active_vlans); 4994 4995 return 0; 4996 } 4997 4998 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 4999 __be16 proto, u16 vid) 5000 { 5001 struct e1000_adapter *adapter = netdev_priv(netdev); 5002 struct e1000_hw *hw = &adapter->hw; 5003 u32 vfta, index; 5004 5005 if (!test_bit(__E1000_DOWN, &adapter->flags)) 5006 e1000_irq_disable(adapter); 5007 if (!test_bit(__E1000_DOWN, &adapter->flags)) 5008 e1000_irq_enable(adapter); 5009 5010 /* remove VID from filter table */ 5011 index = (vid >> 5) & 0x7F; 5012 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 5013 vfta &= ~(1 << (vid & 0x1F)); 5014 e1000_write_vfta(hw, index, vfta); 5015 5016 clear_bit(vid, adapter->active_vlans); 5017 5018 if (!e1000_vlan_used(adapter)) 5019 e1000_vlan_filter_on_off(adapter, false); 5020 5021 return 0; 5022 } 5023 5024 static void e1000_restore_vlan(struct e1000_adapter *adapter) 5025 { 5026 u16 vid; 5027 5028 if (!e1000_vlan_used(adapter)) 5029 return; 5030 5031 e1000_vlan_filter_on_off(adapter, true); 5032 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 5033 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 5034 } 5035 5036 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 5037 { 5038 struct e1000_hw *hw = &adapter->hw; 5039 5040 hw->autoneg = 0; 5041 5042 /* Make sure dplx is at most 1 bit and lsb of speed is not set 5043 * for the switch() below to work 5044 */ 5045 if ((spd & 1) || (dplx & ~1)) 5046 goto err_inval; 5047 5048 /* Fiber NICs only allow 1000 gbps Full duplex */ 5049 if ((hw->media_type == e1000_media_type_fiber) && 5050 spd != SPEED_1000 && 5051 dplx != DUPLEX_FULL) 5052 goto err_inval; 5053 5054 switch (spd + dplx) { 5055 case SPEED_10 + DUPLEX_HALF: 5056 hw->forced_speed_duplex = e1000_10_half; 5057 break; 5058 case SPEED_10 + DUPLEX_FULL: 5059 hw->forced_speed_duplex = e1000_10_full; 5060 break; 5061 case SPEED_100 + DUPLEX_HALF: 5062 hw->forced_speed_duplex = e1000_100_half; 5063 break; 5064 case SPEED_100 + DUPLEX_FULL: 5065 hw->forced_speed_duplex = e1000_100_full; 5066 break; 5067 case SPEED_1000 + DUPLEX_FULL: 5068 hw->autoneg = 1; 5069 hw->autoneg_advertised = ADVERTISE_1000_FULL; 5070 break; 5071 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 5072 default: 5073 goto err_inval; 5074 } 5075 5076 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 5077 hw->mdix = AUTO_ALL_MODES; 5078 5079 return 0; 5080 5081 err_inval: 5082 e_err(probe, "Unsupported Speed/Duplex configuration\n"); 5083 return -EINVAL; 5084 } 5085 5086 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) 5087 { 5088 struct net_device *netdev = pci_get_drvdata(pdev); 5089 struct e1000_adapter *adapter = netdev_priv(netdev); 5090 struct e1000_hw *hw = &adapter->hw; 5091 u32 ctrl, ctrl_ext, rctl, status; 5092 u32 wufc = adapter->wol; 5093 #ifdef CONFIG_PM 5094 int retval = 0; 5095 #endif 5096 5097 netif_device_detach(netdev); 5098 5099 if (netif_running(netdev)) { 5100 int count = E1000_CHECK_RESET_COUNT; 5101 5102 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 5103 usleep_range(10000, 20000); 5104 5105 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 5106 e1000_down(adapter); 5107 } 5108 5109 #ifdef CONFIG_PM 5110 retval = pci_save_state(pdev); 5111 if (retval) 5112 return retval; 5113 #endif 5114 5115 status = er32(STATUS); 5116 if (status & E1000_STATUS_LU) 5117 wufc &= ~E1000_WUFC_LNKC; 5118 5119 if (wufc) { 5120 e1000_setup_rctl(adapter); 5121 e1000_set_rx_mode(netdev); 5122 5123 rctl = er32(RCTL); 5124 5125 /* turn on all-multi mode if wake on multicast is enabled */ 5126 if (wufc & E1000_WUFC_MC) 5127 rctl |= E1000_RCTL_MPE; 5128 5129 /* enable receives in the hardware */ 5130 ew32(RCTL, rctl | E1000_RCTL_EN); 5131 5132 if (hw->mac_type >= e1000_82540) { 5133 ctrl = er32(CTRL); 5134 /* advertise wake from D3Cold */ 5135 #define E1000_CTRL_ADVD3WUC 0x00100000 5136 /* phy power management enable */ 5137 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 5138 ctrl |= E1000_CTRL_ADVD3WUC | 5139 E1000_CTRL_EN_PHY_PWR_MGMT; 5140 ew32(CTRL, ctrl); 5141 } 5142 5143 if (hw->media_type == e1000_media_type_fiber || 5144 hw->media_type == e1000_media_type_internal_serdes) { 5145 /* keep the laser running in D3 */ 5146 ctrl_ext = er32(CTRL_EXT); 5147 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; 5148 ew32(CTRL_EXT, ctrl_ext); 5149 } 5150 5151 ew32(WUC, E1000_WUC_PME_EN); 5152 ew32(WUFC, wufc); 5153 } else { 5154 ew32(WUC, 0); 5155 ew32(WUFC, 0); 5156 } 5157 5158 e1000_release_manageability(adapter); 5159 5160 *enable_wake = !!wufc; 5161 5162 /* make sure adapter isn't asleep if manageability is enabled */ 5163 if (adapter->en_mng_pt) 5164 *enable_wake = true; 5165 5166 if (netif_running(netdev)) 5167 e1000_free_irq(adapter); 5168 5169 pci_disable_device(pdev); 5170 5171 return 0; 5172 } 5173 5174 #ifdef CONFIG_PM 5175 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) 5176 { 5177 int retval; 5178 bool wake; 5179 5180 retval = __e1000_shutdown(pdev, &wake); 5181 if (retval) 5182 return retval; 5183 5184 if (wake) { 5185 pci_prepare_to_sleep(pdev); 5186 } else { 5187 pci_wake_from_d3(pdev, false); 5188 pci_set_power_state(pdev, PCI_D3hot); 5189 } 5190 5191 return 0; 5192 } 5193 5194 static int e1000_resume(struct pci_dev *pdev) 5195 { 5196 struct net_device *netdev = pci_get_drvdata(pdev); 5197 struct e1000_adapter *adapter = netdev_priv(netdev); 5198 struct e1000_hw *hw = &adapter->hw; 5199 u32 err; 5200 5201 pci_set_power_state(pdev, PCI_D0); 5202 pci_restore_state(pdev); 5203 pci_save_state(pdev); 5204 5205 if (adapter->need_ioport) 5206 err = pci_enable_device(pdev); 5207 else 5208 err = pci_enable_device_mem(pdev); 5209 if (err) { 5210 pr_err("Cannot enable PCI device from suspend\n"); 5211 return err; 5212 } 5213 pci_set_master(pdev); 5214 5215 pci_enable_wake(pdev, PCI_D3hot, 0); 5216 pci_enable_wake(pdev, PCI_D3cold, 0); 5217 5218 if (netif_running(netdev)) { 5219 err = e1000_request_irq(adapter); 5220 if (err) 5221 return err; 5222 } 5223 5224 e1000_power_up_phy(adapter); 5225 e1000_reset(adapter); 5226 ew32(WUS, ~0); 5227 5228 e1000_init_manageability(adapter); 5229 5230 if (netif_running(netdev)) 5231 e1000_up(adapter); 5232 5233 netif_device_attach(netdev); 5234 5235 return 0; 5236 } 5237 #endif 5238 5239 static void e1000_shutdown(struct pci_dev *pdev) 5240 { 5241 bool wake; 5242 5243 __e1000_shutdown(pdev, &wake); 5244 5245 if (system_state == SYSTEM_POWER_OFF) { 5246 pci_wake_from_d3(pdev, wake); 5247 pci_set_power_state(pdev, PCI_D3hot); 5248 } 5249 } 5250 5251 #ifdef CONFIG_NET_POLL_CONTROLLER 5252 /* Polling 'interrupt' - used by things like netconsole to send skbs 5253 * without having to re-enable interrupts. It's not called while 5254 * the interrupt routine is executing. 5255 */ 5256 static void e1000_netpoll(struct net_device *netdev) 5257 { 5258 struct e1000_adapter *adapter = netdev_priv(netdev); 5259 5260 disable_irq(adapter->pdev->irq); 5261 e1000_intr(adapter->pdev->irq, netdev); 5262 enable_irq(adapter->pdev->irq); 5263 } 5264 #endif 5265 5266 /** 5267 * e1000_io_error_detected - called when PCI error is detected 5268 * @pdev: Pointer to PCI device 5269 * @state: The current pci connection state 5270 * 5271 * This function is called after a PCI bus error affecting 5272 * this device has been detected. 5273 */ 5274 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 5275 pci_channel_state_t state) 5276 { 5277 struct net_device *netdev = pci_get_drvdata(pdev); 5278 struct e1000_adapter *adapter = netdev_priv(netdev); 5279 5280 netif_device_detach(netdev); 5281 5282 if (state == pci_channel_io_perm_failure) 5283 return PCI_ERS_RESULT_DISCONNECT; 5284 5285 if (netif_running(netdev)) 5286 e1000_down(adapter); 5287 pci_disable_device(pdev); 5288 5289 /* Request a slot slot reset. */ 5290 return PCI_ERS_RESULT_NEED_RESET; 5291 } 5292 5293 /** 5294 * e1000_io_slot_reset - called after the pci bus has been reset. 5295 * @pdev: Pointer to PCI device 5296 * 5297 * Restart the card from scratch, as if from a cold-boot. Implementation 5298 * resembles the first-half of the e1000_resume routine. 5299 */ 5300 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 5301 { 5302 struct net_device *netdev = pci_get_drvdata(pdev); 5303 struct e1000_adapter *adapter = netdev_priv(netdev); 5304 struct e1000_hw *hw = &adapter->hw; 5305 int err; 5306 5307 if (adapter->need_ioport) 5308 err = pci_enable_device(pdev); 5309 else 5310 err = pci_enable_device_mem(pdev); 5311 if (err) { 5312 pr_err("Cannot re-enable PCI device after reset.\n"); 5313 return PCI_ERS_RESULT_DISCONNECT; 5314 } 5315 pci_set_master(pdev); 5316 5317 pci_enable_wake(pdev, PCI_D3hot, 0); 5318 pci_enable_wake(pdev, PCI_D3cold, 0); 5319 5320 e1000_reset(adapter); 5321 ew32(WUS, ~0); 5322 5323 return PCI_ERS_RESULT_RECOVERED; 5324 } 5325 5326 /** 5327 * e1000_io_resume - called when traffic can start flowing again. 5328 * @pdev: Pointer to PCI device 5329 * 5330 * This callback is called when the error recovery driver tells us that 5331 * its OK to resume normal operation. Implementation resembles the 5332 * second-half of the e1000_resume routine. 5333 */ 5334 static void e1000_io_resume(struct pci_dev *pdev) 5335 { 5336 struct net_device *netdev = pci_get_drvdata(pdev); 5337 struct e1000_adapter *adapter = netdev_priv(netdev); 5338 5339 e1000_init_manageability(adapter); 5340 5341 if (netif_running(netdev)) { 5342 if (e1000_up(adapter)) { 5343 pr_info("can't bring device back up after reset\n"); 5344 return; 5345 } 5346 } 5347 5348 netif_device_attach(netdev); 5349 } 5350 5351 /* e1000_main.c */ 5352