1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35 
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41 
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static const struct pci_device_id e1000_pci_tbl[] = {
50 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 	/* required last entry */
88 	{0,}
89 };
90 
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92 
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 				    struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 				    struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 				    struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 				    struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110 
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 int e1000_open(struct net_device *netdev);
118 int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 				struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 				struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 				    struct net_device *netdev);
134 static struct net_device_stats *e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 			       struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 			       struct e1000_rx_ring *rx_ring,
143 			       int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 				     struct e1000_rx_ring *rx_ring,
146 				     int *work_done, int work_to_do);
147 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
148 					 struct e1000_rx_ring *rx_ring,
149 					 int cleaned_count)
150 {
151 }
152 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
153 				   struct e1000_rx_ring *rx_ring,
154 				   int cleaned_count);
155 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156 					 struct e1000_rx_ring *rx_ring,
157 					 int cleaned_count);
158 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160 			   int cmd);
161 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163 static void e1000_tx_timeout(struct net_device *dev);
164 static void e1000_reset_task(struct work_struct *work);
165 static void e1000_smartspeed(struct e1000_adapter *adapter);
166 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
167 				       struct sk_buff *skb);
168 
169 static bool e1000_vlan_used(struct e1000_adapter *adapter);
170 static void e1000_vlan_mode(struct net_device *netdev,
171 			    netdev_features_t features);
172 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
173 				     bool filter_on);
174 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
175 				 __be16 proto, u16 vid);
176 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
177 				  __be16 proto, u16 vid);
178 static void e1000_restore_vlan(struct e1000_adapter *adapter);
179 
180 #ifdef CONFIG_PM
181 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
182 static int e1000_resume(struct pci_dev *pdev);
183 #endif
184 static void e1000_shutdown(struct pci_dev *pdev);
185 
186 #ifdef CONFIG_NET_POLL_CONTROLLER
187 /* for netdump / net console */
188 static void e1000_netpoll (struct net_device *netdev);
189 #endif
190 
191 #define COPYBREAK_DEFAULT 256
192 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
193 module_param(copybreak, uint, 0644);
194 MODULE_PARM_DESC(copybreak,
195 	"Maximum size of packet that is copied to a new buffer on receive");
196 
197 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198 						pci_channel_state_t state);
199 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200 static void e1000_io_resume(struct pci_dev *pdev);
201 
202 static const struct pci_error_handlers e1000_err_handler = {
203 	.error_detected = e1000_io_error_detected,
204 	.slot_reset = e1000_io_slot_reset,
205 	.resume = e1000_io_resume,
206 };
207 
208 static struct pci_driver e1000_driver = {
209 	.name     = e1000_driver_name,
210 	.id_table = e1000_pci_tbl,
211 	.probe    = e1000_probe,
212 	.remove   = e1000_remove,
213 #ifdef CONFIG_PM
214 	/* Power Management Hooks */
215 	.suspend  = e1000_suspend,
216 	.resume   = e1000_resume,
217 #endif
218 	.shutdown = e1000_shutdown,
219 	.err_handler = &e1000_err_handler
220 };
221 
222 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(DRV_VERSION);
226 
227 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
228 static int debug = -1;
229 module_param(debug, int, 0);
230 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
231 
232 /**
233  * e1000_get_hw_dev - return device
234  * used by hardware layer to print debugging information
235  *
236  **/
237 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
238 {
239 	struct e1000_adapter *adapter = hw->back;
240 	return adapter->netdev;
241 }
242 
243 /**
244  * e1000_init_module - Driver Registration Routine
245  *
246  * e1000_init_module is the first routine called when the driver is
247  * loaded. All it does is register with the PCI subsystem.
248  **/
249 static int __init e1000_init_module(void)
250 {
251 	int ret;
252 	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
253 
254 	pr_info("%s\n", e1000_copyright);
255 
256 	ret = pci_register_driver(&e1000_driver);
257 	if (copybreak != COPYBREAK_DEFAULT) {
258 		if (copybreak == 0)
259 			pr_info("copybreak disabled\n");
260 		else
261 			pr_info("copybreak enabled for "
262 				   "packets <= %u bytes\n", copybreak);
263 	}
264 	return ret;
265 }
266 
267 module_init(e1000_init_module);
268 
269 /**
270  * e1000_exit_module - Driver Exit Cleanup Routine
271  *
272  * e1000_exit_module is called just before the driver is removed
273  * from memory.
274  **/
275 static void __exit e1000_exit_module(void)
276 {
277 	pci_unregister_driver(&e1000_driver);
278 }
279 
280 module_exit(e1000_exit_module);
281 
282 static int e1000_request_irq(struct e1000_adapter *adapter)
283 {
284 	struct net_device *netdev = adapter->netdev;
285 	irq_handler_t handler = e1000_intr;
286 	int irq_flags = IRQF_SHARED;
287 	int err;
288 
289 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
290 			  netdev);
291 	if (err) {
292 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
293 	}
294 
295 	return err;
296 }
297 
298 static void e1000_free_irq(struct e1000_adapter *adapter)
299 {
300 	struct net_device *netdev = adapter->netdev;
301 
302 	free_irq(adapter->pdev->irq, netdev);
303 }
304 
305 /**
306  * e1000_irq_disable - Mask off interrupt generation on the NIC
307  * @adapter: board private structure
308  **/
309 static void e1000_irq_disable(struct e1000_adapter *adapter)
310 {
311 	struct e1000_hw *hw = &adapter->hw;
312 
313 	ew32(IMC, ~0);
314 	E1000_WRITE_FLUSH();
315 	synchronize_irq(adapter->pdev->irq);
316 }
317 
318 /**
319  * e1000_irq_enable - Enable default interrupt generation settings
320  * @adapter: board private structure
321  **/
322 static void e1000_irq_enable(struct e1000_adapter *adapter)
323 {
324 	struct e1000_hw *hw = &adapter->hw;
325 
326 	ew32(IMS, IMS_ENABLE_MASK);
327 	E1000_WRITE_FLUSH();
328 }
329 
330 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
331 {
332 	struct e1000_hw *hw = &adapter->hw;
333 	struct net_device *netdev = adapter->netdev;
334 	u16 vid = hw->mng_cookie.vlan_id;
335 	u16 old_vid = adapter->mng_vlan_id;
336 
337 	if (!e1000_vlan_used(adapter))
338 		return;
339 
340 	if (!test_bit(vid, adapter->active_vlans)) {
341 		if (hw->mng_cookie.status &
342 		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
343 			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
344 			adapter->mng_vlan_id = vid;
345 		} else {
346 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
347 		}
348 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
349 		    (vid != old_vid) &&
350 		    !test_bit(old_vid, adapter->active_vlans))
351 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
352 					       old_vid);
353 	} else {
354 		adapter->mng_vlan_id = vid;
355 	}
356 }
357 
358 static void e1000_init_manageability(struct e1000_adapter *adapter)
359 {
360 	struct e1000_hw *hw = &adapter->hw;
361 
362 	if (adapter->en_mng_pt) {
363 		u32 manc = er32(MANC);
364 
365 		/* disable hardware interception of ARP */
366 		manc &= ~(E1000_MANC_ARP_EN);
367 
368 		ew32(MANC, manc);
369 	}
370 }
371 
372 static void e1000_release_manageability(struct e1000_adapter *adapter)
373 {
374 	struct e1000_hw *hw = &adapter->hw;
375 
376 	if (adapter->en_mng_pt) {
377 		u32 manc = er32(MANC);
378 
379 		/* re-enable hardware interception of ARP */
380 		manc |= E1000_MANC_ARP_EN;
381 
382 		ew32(MANC, manc);
383 	}
384 }
385 
386 /**
387  * e1000_configure - configure the hardware for RX and TX
388  * @adapter = private board structure
389  **/
390 static void e1000_configure(struct e1000_adapter *adapter)
391 {
392 	struct net_device *netdev = adapter->netdev;
393 	int i;
394 
395 	e1000_set_rx_mode(netdev);
396 
397 	e1000_restore_vlan(adapter);
398 	e1000_init_manageability(adapter);
399 
400 	e1000_configure_tx(adapter);
401 	e1000_setup_rctl(adapter);
402 	e1000_configure_rx(adapter);
403 	/* call E1000_DESC_UNUSED which always leaves
404 	 * at least 1 descriptor unused to make sure
405 	 * next_to_use != next_to_clean
406 	 */
407 	for (i = 0; i < adapter->num_rx_queues; i++) {
408 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
409 		adapter->alloc_rx_buf(adapter, ring,
410 				      E1000_DESC_UNUSED(ring));
411 	}
412 }
413 
414 int e1000_up(struct e1000_adapter *adapter)
415 {
416 	struct e1000_hw *hw = &adapter->hw;
417 
418 	/* hardware has been reset, we need to reload some things */
419 	e1000_configure(adapter);
420 
421 	clear_bit(__E1000_DOWN, &adapter->flags);
422 
423 	napi_enable(&adapter->napi);
424 
425 	e1000_irq_enable(adapter);
426 
427 	netif_wake_queue(adapter->netdev);
428 
429 	/* fire a link change interrupt to start the watchdog */
430 	ew32(ICS, E1000_ICS_LSC);
431 	return 0;
432 }
433 
434 /**
435  * e1000_power_up_phy - restore link in case the phy was powered down
436  * @adapter: address of board private structure
437  *
438  * The phy may be powered down to save power and turn off link when the
439  * driver is unloaded and wake on lan is not enabled (among others)
440  * *** this routine MUST be followed by a call to e1000_reset ***
441  **/
442 void e1000_power_up_phy(struct e1000_adapter *adapter)
443 {
444 	struct e1000_hw *hw = &adapter->hw;
445 	u16 mii_reg = 0;
446 
447 	/* Just clear the power down bit to wake the phy back up */
448 	if (hw->media_type == e1000_media_type_copper) {
449 		/* according to the manual, the phy will retain its
450 		 * settings across a power-down/up cycle
451 		 */
452 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
453 		mii_reg &= ~MII_CR_POWER_DOWN;
454 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
455 	}
456 }
457 
458 static void e1000_power_down_phy(struct e1000_adapter *adapter)
459 {
460 	struct e1000_hw *hw = &adapter->hw;
461 
462 	/* Power down the PHY so no link is implied when interface is down *
463 	 * The PHY cannot be powered down if any of the following is true *
464 	 * (a) WoL is enabled
465 	 * (b) AMT is active
466 	 * (c) SoL/IDER session is active
467 	 */
468 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
469 	   hw->media_type == e1000_media_type_copper) {
470 		u16 mii_reg = 0;
471 
472 		switch (hw->mac_type) {
473 		case e1000_82540:
474 		case e1000_82545:
475 		case e1000_82545_rev_3:
476 		case e1000_82546:
477 		case e1000_ce4100:
478 		case e1000_82546_rev_3:
479 		case e1000_82541:
480 		case e1000_82541_rev_2:
481 		case e1000_82547:
482 		case e1000_82547_rev_2:
483 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
484 				goto out;
485 			break;
486 		default:
487 			goto out;
488 		}
489 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
490 		mii_reg |= MII_CR_POWER_DOWN;
491 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
492 		msleep(1);
493 	}
494 out:
495 	return;
496 }
497 
498 static void e1000_down_and_stop(struct e1000_adapter *adapter)
499 {
500 	set_bit(__E1000_DOWN, &adapter->flags);
501 
502 	cancel_delayed_work_sync(&adapter->watchdog_task);
503 
504 	/*
505 	 * Since the watchdog task can reschedule other tasks, we should cancel
506 	 * it first, otherwise we can run into the situation when a work is
507 	 * still running after the adapter has been turned down.
508 	 */
509 
510 	cancel_delayed_work_sync(&adapter->phy_info_task);
511 	cancel_delayed_work_sync(&adapter->fifo_stall_task);
512 
513 	/* Only kill reset task if adapter is not resetting */
514 	if (!test_bit(__E1000_RESETTING, &adapter->flags))
515 		cancel_work_sync(&adapter->reset_task);
516 }
517 
518 void e1000_down(struct e1000_adapter *adapter)
519 {
520 	struct e1000_hw *hw = &adapter->hw;
521 	struct net_device *netdev = adapter->netdev;
522 	u32 rctl, tctl;
523 
524 	netif_carrier_off(netdev);
525 
526 	/* disable receives in the hardware */
527 	rctl = er32(RCTL);
528 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
529 	/* flush and sleep below */
530 
531 	netif_tx_disable(netdev);
532 
533 	/* disable transmits in the hardware */
534 	tctl = er32(TCTL);
535 	tctl &= ~E1000_TCTL_EN;
536 	ew32(TCTL, tctl);
537 	/* flush both disables and wait for them to finish */
538 	E1000_WRITE_FLUSH();
539 	msleep(10);
540 
541 	napi_disable(&adapter->napi);
542 
543 	e1000_irq_disable(adapter);
544 
545 	/* Setting DOWN must be after irq_disable to prevent
546 	 * a screaming interrupt.  Setting DOWN also prevents
547 	 * tasks from rescheduling.
548 	 */
549 	e1000_down_and_stop(adapter);
550 
551 	adapter->link_speed = 0;
552 	adapter->link_duplex = 0;
553 
554 	e1000_reset(adapter);
555 	e1000_clean_all_tx_rings(adapter);
556 	e1000_clean_all_rx_rings(adapter);
557 }
558 
559 void e1000_reinit_locked(struct e1000_adapter *adapter)
560 {
561 	WARN_ON(in_interrupt());
562 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
563 		msleep(1);
564 	e1000_down(adapter);
565 	e1000_up(adapter);
566 	clear_bit(__E1000_RESETTING, &adapter->flags);
567 }
568 
569 void e1000_reset(struct e1000_adapter *adapter)
570 {
571 	struct e1000_hw *hw = &adapter->hw;
572 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
573 	bool legacy_pba_adjust = false;
574 	u16 hwm;
575 
576 	/* Repartition Pba for greater than 9k mtu
577 	 * To take effect CTRL.RST is required.
578 	 */
579 
580 	switch (hw->mac_type) {
581 	case e1000_82542_rev2_0:
582 	case e1000_82542_rev2_1:
583 	case e1000_82543:
584 	case e1000_82544:
585 	case e1000_82540:
586 	case e1000_82541:
587 	case e1000_82541_rev_2:
588 		legacy_pba_adjust = true;
589 		pba = E1000_PBA_48K;
590 		break;
591 	case e1000_82545:
592 	case e1000_82545_rev_3:
593 	case e1000_82546:
594 	case e1000_ce4100:
595 	case e1000_82546_rev_3:
596 		pba = E1000_PBA_48K;
597 		break;
598 	case e1000_82547:
599 	case e1000_82547_rev_2:
600 		legacy_pba_adjust = true;
601 		pba = E1000_PBA_30K;
602 		break;
603 	case e1000_undefined:
604 	case e1000_num_macs:
605 		break;
606 	}
607 
608 	if (legacy_pba_adjust) {
609 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
610 			pba -= 8; /* allocate more FIFO for Tx */
611 
612 		if (hw->mac_type == e1000_82547) {
613 			adapter->tx_fifo_head = 0;
614 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
615 			adapter->tx_fifo_size =
616 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
617 			atomic_set(&adapter->tx_fifo_stall, 0);
618 		}
619 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
620 		/* adjust PBA for jumbo frames */
621 		ew32(PBA, pba);
622 
623 		/* To maintain wire speed transmits, the Tx FIFO should be
624 		 * large enough to accommodate two full transmit packets,
625 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
626 		 * the Rx FIFO should be large enough to accommodate at least
627 		 * one full receive packet and is similarly rounded up and
628 		 * expressed in KB.
629 		 */
630 		pba = er32(PBA);
631 		/* upper 16 bits has Tx packet buffer allocation size in KB */
632 		tx_space = pba >> 16;
633 		/* lower 16 bits has Rx packet buffer allocation size in KB */
634 		pba &= 0xffff;
635 		/* the Tx fifo also stores 16 bytes of information about the Tx
636 		 * but don't include ethernet FCS because hardware appends it
637 		 */
638 		min_tx_space = (hw->max_frame_size +
639 				sizeof(struct e1000_tx_desc) -
640 				ETH_FCS_LEN) * 2;
641 		min_tx_space = ALIGN(min_tx_space, 1024);
642 		min_tx_space >>= 10;
643 		/* software strips receive CRC, so leave room for it */
644 		min_rx_space = hw->max_frame_size;
645 		min_rx_space = ALIGN(min_rx_space, 1024);
646 		min_rx_space >>= 10;
647 
648 		/* If current Tx allocation is less than the min Tx FIFO size,
649 		 * and the min Tx FIFO size is less than the current Rx FIFO
650 		 * allocation, take space away from current Rx allocation
651 		 */
652 		if (tx_space < min_tx_space &&
653 		    ((min_tx_space - tx_space) < pba)) {
654 			pba = pba - (min_tx_space - tx_space);
655 
656 			/* PCI/PCIx hardware has PBA alignment constraints */
657 			switch (hw->mac_type) {
658 			case e1000_82545 ... e1000_82546_rev_3:
659 				pba &= ~(E1000_PBA_8K - 1);
660 				break;
661 			default:
662 				break;
663 			}
664 
665 			/* if short on Rx space, Rx wins and must trump Tx
666 			 * adjustment or use Early Receive if available
667 			 */
668 			if (pba < min_rx_space)
669 				pba = min_rx_space;
670 		}
671 	}
672 
673 	ew32(PBA, pba);
674 
675 	/* flow control settings:
676 	 * The high water mark must be low enough to fit one full frame
677 	 * (or the size used for early receive) above it in the Rx FIFO.
678 	 * Set it to the lower of:
679 	 * - 90% of the Rx FIFO size, and
680 	 * - the full Rx FIFO size minus the early receive size (for parts
681 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
682 	 * - the full Rx FIFO size minus one full frame
683 	 */
684 	hwm = min(((pba << 10) * 9 / 10),
685 		  ((pba << 10) - hw->max_frame_size));
686 
687 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
688 	hw->fc_low_water = hw->fc_high_water - 8;
689 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
690 	hw->fc_send_xon = 1;
691 	hw->fc = hw->original_fc;
692 
693 	/* Allow time for pending master requests to run */
694 	e1000_reset_hw(hw);
695 	if (hw->mac_type >= e1000_82544)
696 		ew32(WUC, 0);
697 
698 	if (e1000_init_hw(hw))
699 		e_dev_err("Hardware Error\n");
700 	e1000_update_mng_vlan(adapter);
701 
702 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
703 	if (hw->mac_type >= e1000_82544 &&
704 	    hw->autoneg == 1 &&
705 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
706 		u32 ctrl = er32(CTRL);
707 		/* clear phy power management bit if we are in gig only mode,
708 		 * which if enabled will attempt negotiation to 100Mb, which
709 		 * can cause a loss of link at power off or driver unload
710 		 */
711 		ctrl &= ~E1000_CTRL_SWDPIN3;
712 		ew32(CTRL, ctrl);
713 	}
714 
715 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
717 
718 	e1000_reset_adaptive(hw);
719 	e1000_phy_get_info(hw, &adapter->phy_info);
720 
721 	e1000_release_manageability(adapter);
722 }
723 
724 /* Dump the eeprom for users having checksum issues */
725 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
726 {
727 	struct net_device *netdev = adapter->netdev;
728 	struct ethtool_eeprom eeprom;
729 	const struct ethtool_ops *ops = netdev->ethtool_ops;
730 	u8 *data;
731 	int i;
732 	u16 csum_old, csum_new = 0;
733 
734 	eeprom.len = ops->get_eeprom_len(netdev);
735 	eeprom.offset = 0;
736 
737 	data = kmalloc(eeprom.len, GFP_KERNEL);
738 	if (!data)
739 		return;
740 
741 	ops->get_eeprom(netdev, &eeprom, data);
742 
743 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
744 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
745 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
746 		csum_new += data[i] + (data[i + 1] << 8);
747 	csum_new = EEPROM_SUM - csum_new;
748 
749 	pr_err("/*********************/\n");
750 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
751 	pr_err("Calculated              : 0x%04x\n", csum_new);
752 
753 	pr_err("Offset    Values\n");
754 	pr_err("========  ======\n");
755 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
756 
757 	pr_err("Include this output when contacting your support provider.\n");
758 	pr_err("This is not a software error! Something bad happened to\n");
759 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
760 	pr_err("result in further problems, possibly loss of data,\n");
761 	pr_err("corruption or system hangs!\n");
762 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
763 	pr_err("which is invalid and requires you to set the proper MAC\n");
764 	pr_err("address manually before continuing to enable this network\n");
765 	pr_err("device. Please inspect the EEPROM dump and report the\n");
766 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
767 	pr_err("/*********************/\n");
768 
769 	kfree(data);
770 }
771 
772 /**
773  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
774  * @pdev: PCI device information struct
775  *
776  * Return true if an adapter needs ioport resources
777  **/
778 static int e1000_is_need_ioport(struct pci_dev *pdev)
779 {
780 	switch (pdev->device) {
781 	case E1000_DEV_ID_82540EM:
782 	case E1000_DEV_ID_82540EM_LOM:
783 	case E1000_DEV_ID_82540EP:
784 	case E1000_DEV_ID_82540EP_LOM:
785 	case E1000_DEV_ID_82540EP_LP:
786 	case E1000_DEV_ID_82541EI:
787 	case E1000_DEV_ID_82541EI_MOBILE:
788 	case E1000_DEV_ID_82541ER:
789 	case E1000_DEV_ID_82541ER_LOM:
790 	case E1000_DEV_ID_82541GI:
791 	case E1000_DEV_ID_82541GI_LF:
792 	case E1000_DEV_ID_82541GI_MOBILE:
793 	case E1000_DEV_ID_82544EI_COPPER:
794 	case E1000_DEV_ID_82544EI_FIBER:
795 	case E1000_DEV_ID_82544GC_COPPER:
796 	case E1000_DEV_ID_82544GC_LOM:
797 	case E1000_DEV_ID_82545EM_COPPER:
798 	case E1000_DEV_ID_82545EM_FIBER:
799 	case E1000_DEV_ID_82546EB_COPPER:
800 	case E1000_DEV_ID_82546EB_FIBER:
801 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
802 		return true;
803 	default:
804 		return false;
805 	}
806 }
807 
808 static netdev_features_t e1000_fix_features(struct net_device *netdev,
809 	netdev_features_t features)
810 {
811 	/* Since there is no support for separate Rx/Tx vlan accel
812 	 * enable/disable make sure Tx flag is always in same state as Rx.
813 	 */
814 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
815 		features |= NETIF_F_HW_VLAN_CTAG_TX;
816 	else
817 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
818 
819 	return features;
820 }
821 
822 static int e1000_set_features(struct net_device *netdev,
823 	netdev_features_t features)
824 {
825 	struct e1000_adapter *adapter = netdev_priv(netdev);
826 	netdev_features_t changed = features ^ netdev->features;
827 
828 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
829 		e1000_vlan_mode(netdev, features);
830 
831 	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
832 		return 0;
833 
834 	netdev->features = features;
835 	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
836 
837 	if (netif_running(netdev))
838 		e1000_reinit_locked(adapter);
839 	else
840 		e1000_reset(adapter);
841 
842 	return 0;
843 }
844 
845 static const struct net_device_ops e1000_netdev_ops = {
846 	.ndo_open		= e1000_open,
847 	.ndo_stop		= e1000_close,
848 	.ndo_start_xmit		= e1000_xmit_frame,
849 	.ndo_get_stats		= e1000_get_stats,
850 	.ndo_set_rx_mode	= e1000_set_rx_mode,
851 	.ndo_set_mac_address	= e1000_set_mac,
852 	.ndo_tx_timeout		= e1000_tx_timeout,
853 	.ndo_change_mtu		= e1000_change_mtu,
854 	.ndo_do_ioctl		= e1000_ioctl,
855 	.ndo_validate_addr	= eth_validate_addr,
856 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
857 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
858 #ifdef CONFIG_NET_POLL_CONTROLLER
859 	.ndo_poll_controller	= e1000_netpoll,
860 #endif
861 	.ndo_fix_features	= e1000_fix_features,
862 	.ndo_set_features	= e1000_set_features,
863 };
864 
865 /**
866  * e1000_init_hw_struct - initialize members of hw struct
867  * @adapter: board private struct
868  * @hw: structure used by e1000_hw.c
869  *
870  * Factors out initialization of the e1000_hw struct to its own function
871  * that can be called very early at init (just after struct allocation).
872  * Fields are initialized based on PCI device information and
873  * OS network device settings (MTU size).
874  * Returns negative error codes if MAC type setup fails.
875  */
876 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
877 				struct e1000_hw *hw)
878 {
879 	struct pci_dev *pdev = adapter->pdev;
880 
881 	/* PCI config space info */
882 	hw->vendor_id = pdev->vendor;
883 	hw->device_id = pdev->device;
884 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
885 	hw->subsystem_id = pdev->subsystem_device;
886 	hw->revision_id = pdev->revision;
887 
888 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
889 
890 	hw->max_frame_size = adapter->netdev->mtu +
891 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
892 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
893 
894 	/* identify the MAC */
895 	if (e1000_set_mac_type(hw)) {
896 		e_err(probe, "Unknown MAC Type\n");
897 		return -EIO;
898 	}
899 
900 	switch (hw->mac_type) {
901 	default:
902 		break;
903 	case e1000_82541:
904 	case e1000_82547:
905 	case e1000_82541_rev_2:
906 	case e1000_82547_rev_2:
907 		hw->phy_init_script = 1;
908 		break;
909 	}
910 
911 	e1000_set_media_type(hw);
912 	e1000_get_bus_info(hw);
913 
914 	hw->wait_autoneg_complete = false;
915 	hw->tbi_compatibility_en = true;
916 	hw->adaptive_ifs = true;
917 
918 	/* Copper options */
919 
920 	if (hw->media_type == e1000_media_type_copper) {
921 		hw->mdix = AUTO_ALL_MODES;
922 		hw->disable_polarity_correction = false;
923 		hw->master_slave = E1000_MASTER_SLAVE;
924 	}
925 
926 	return 0;
927 }
928 
929 /**
930  * e1000_probe - Device Initialization Routine
931  * @pdev: PCI device information struct
932  * @ent: entry in e1000_pci_tbl
933  *
934  * Returns 0 on success, negative on failure
935  *
936  * e1000_probe initializes an adapter identified by a pci_dev structure.
937  * The OS initialization, configuring of the adapter private structure,
938  * and a hardware reset occur.
939  **/
940 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
941 {
942 	struct net_device *netdev;
943 	struct e1000_adapter *adapter;
944 	struct e1000_hw *hw;
945 
946 	static int cards_found;
947 	static int global_quad_port_a; /* global ksp3 port a indication */
948 	int i, err, pci_using_dac;
949 	u16 eeprom_data = 0;
950 	u16 tmp = 0;
951 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
952 	int bars, need_ioport;
953 
954 	/* do not allocate ioport bars when not needed */
955 	need_ioport = e1000_is_need_ioport(pdev);
956 	if (need_ioport) {
957 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
958 		err = pci_enable_device(pdev);
959 	} else {
960 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
961 		err = pci_enable_device_mem(pdev);
962 	}
963 	if (err)
964 		return err;
965 
966 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
967 	if (err)
968 		goto err_pci_reg;
969 
970 	pci_set_master(pdev);
971 	err = pci_save_state(pdev);
972 	if (err)
973 		goto err_alloc_etherdev;
974 
975 	err = -ENOMEM;
976 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
977 	if (!netdev)
978 		goto err_alloc_etherdev;
979 
980 	SET_NETDEV_DEV(netdev, &pdev->dev);
981 
982 	pci_set_drvdata(pdev, netdev);
983 	adapter = netdev_priv(netdev);
984 	adapter->netdev = netdev;
985 	adapter->pdev = pdev;
986 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
987 	adapter->bars = bars;
988 	adapter->need_ioport = need_ioport;
989 
990 	hw = &adapter->hw;
991 	hw->back = adapter;
992 
993 	err = -EIO;
994 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
995 	if (!hw->hw_addr)
996 		goto err_ioremap;
997 
998 	if (adapter->need_ioport) {
999 		for (i = BAR_1; i <= BAR_5; i++) {
1000 			if (pci_resource_len(pdev, i) == 0)
1001 				continue;
1002 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1003 				hw->io_base = pci_resource_start(pdev, i);
1004 				break;
1005 			}
1006 		}
1007 	}
1008 
1009 	/* make ready for any if (hw->...) below */
1010 	err = e1000_init_hw_struct(adapter, hw);
1011 	if (err)
1012 		goto err_sw_init;
1013 
1014 	/* there is a workaround being applied below that limits
1015 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1016 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1017 	 */
1018 	pci_using_dac = 0;
1019 	if ((hw->bus_type == e1000_bus_type_pcix) &&
1020 	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1021 		pci_using_dac = 1;
1022 	} else {
1023 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1024 		if (err) {
1025 			pr_err("No usable DMA config, aborting\n");
1026 			goto err_dma;
1027 		}
1028 	}
1029 
1030 	netdev->netdev_ops = &e1000_netdev_ops;
1031 	e1000_set_ethtool_ops(netdev);
1032 	netdev->watchdog_timeo = 5 * HZ;
1033 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1034 
1035 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1036 
1037 	adapter->bd_number = cards_found;
1038 
1039 	/* setup the private structure */
1040 
1041 	err = e1000_sw_init(adapter);
1042 	if (err)
1043 		goto err_sw_init;
1044 
1045 	err = -EIO;
1046 	if (hw->mac_type == e1000_ce4100) {
1047 		hw->ce4100_gbe_mdio_base_virt =
1048 					ioremap(pci_resource_start(pdev, BAR_1),
1049 						pci_resource_len(pdev, BAR_1));
1050 
1051 		if (!hw->ce4100_gbe_mdio_base_virt)
1052 			goto err_mdio_ioremap;
1053 	}
1054 
1055 	if (hw->mac_type >= e1000_82543) {
1056 		netdev->hw_features = NETIF_F_SG |
1057 				   NETIF_F_HW_CSUM |
1058 				   NETIF_F_HW_VLAN_CTAG_RX;
1059 		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1060 				   NETIF_F_HW_VLAN_CTAG_FILTER;
1061 	}
1062 
1063 	if ((hw->mac_type >= e1000_82544) &&
1064 	   (hw->mac_type != e1000_82547))
1065 		netdev->hw_features |= NETIF_F_TSO;
1066 
1067 	netdev->priv_flags |= IFF_SUPP_NOFCS;
1068 
1069 	netdev->features |= netdev->hw_features;
1070 	netdev->hw_features |= (NETIF_F_RXCSUM |
1071 				NETIF_F_RXALL |
1072 				NETIF_F_RXFCS);
1073 
1074 	if (pci_using_dac) {
1075 		netdev->features |= NETIF_F_HIGHDMA;
1076 		netdev->vlan_features |= NETIF_F_HIGHDMA;
1077 	}
1078 
1079 	netdev->vlan_features |= (NETIF_F_TSO |
1080 				  NETIF_F_HW_CSUM |
1081 				  NETIF_F_SG);
1082 
1083 	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1084 	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1085 	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1086 		netdev->priv_flags |= IFF_UNICAST_FLT;
1087 
1088 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1089 
1090 	/* initialize eeprom parameters */
1091 	if (e1000_init_eeprom_params(hw)) {
1092 		e_err(probe, "EEPROM initialization failed\n");
1093 		goto err_eeprom;
1094 	}
1095 
1096 	/* before reading the EEPROM, reset the controller to
1097 	 * put the device in a known good starting state
1098 	 */
1099 
1100 	e1000_reset_hw(hw);
1101 
1102 	/* make sure the EEPROM is good */
1103 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1104 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1105 		e1000_dump_eeprom(adapter);
1106 		/* set MAC address to all zeroes to invalidate and temporary
1107 		 * disable this device for the user. This blocks regular
1108 		 * traffic while still permitting ethtool ioctls from reaching
1109 		 * the hardware as well as allowing the user to run the
1110 		 * interface after manually setting a hw addr using
1111 		 * `ip set address`
1112 		 */
1113 		memset(hw->mac_addr, 0, netdev->addr_len);
1114 	} else {
1115 		/* copy the MAC address out of the EEPROM */
1116 		if (e1000_read_mac_addr(hw))
1117 			e_err(probe, "EEPROM Read Error\n");
1118 	}
1119 	/* don't block initialization here due to bad MAC address */
1120 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1121 
1122 	if (!is_valid_ether_addr(netdev->dev_addr))
1123 		e_err(probe, "Invalid MAC Address\n");
1124 
1125 
1126 	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1127 	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1128 			  e1000_82547_tx_fifo_stall_task);
1129 	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1130 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1131 
1132 	e1000_check_options(adapter);
1133 
1134 	/* Initial Wake on LAN setting
1135 	 * If APM wake is enabled in the EEPROM,
1136 	 * enable the ACPI Magic Packet filter
1137 	 */
1138 
1139 	switch (hw->mac_type) {
1140 	case e1000_82542_rev2_0:
1141 	case e1000_82542_rev2_1:
1142 	case e1000_82543:
1143 		break;
1144 	case e1000_82544:
1145 		e1000_read_eeprom(hw,
1146 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1147 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1148 		break;
1149 	case e1000_82546:
1150 	case e1000_82546_rev_3:
1151 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1152 			e1000_read_eeprom(hw,
1153 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1154 			break;
1155 		}
1156 		/* Fall Through */
1157 	default:
1158 		e1000_read_eeprom(hw,
1159 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1160 		break;
1161 	}
1162 	if (eeprom_data & eeprom_apme_mask)
1163 		adapter->eeprom_wol |= E1000_WUFC_MAG;
1164 
1165 	/* now that we have the eeprom settings, apply the special cases
1166 	 * where the eeprom may be wrong or the board simply won't support
1167 	 * wake on lan on a particular port
1168 	 */
1169 	switch (pdev->device) {
1170 	case E1000_DEV_ID_82546GB_PCIE:
1171 		adapter->eeprom_wol = 0;
1172 		break;
1173 	case E1000_DEV_ID_82546EB_FIBER:
1174 	case E1000_DEV_ID_82546GB_FIBER:
1175 		/* Wake events only supported on port A for dual fiber
1176 		 * regardless of eeprom setting
1177 		 */
1178 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1179 			adapter->eeprom_wol = 0;
1180 		break;
1181 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1182 		/* if quad port adapter, disable WoL on all but port A */
1183 		if (global_quad_port_a != 0)
1184 			adapter->eeprom_wol = 0;
1185 		else
1186 			adapter->quad_port_a = true;
1187 		/* Reset for multiple quad port adapters */
1188 		if (++global_quad_port_a == 4)
1189 			global_quad_port_a = 0;
1190 		break;
1191 	}
1192 
1193 	/* initialize the wol settings based on the eeprom settings */
1194 	adapter->wol = adapter->eeprom_wol;
1195 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1196 
1197 	/* Auto detect PHY address */
1198 	if (hw->mac_type == e1000_ce4100) {
1199 		for (i = 0; i < 32; i++) {
1200 			hw->phy_addr = i;
1201 			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1202 
1203 			if (tmp != 0 && tmp != 0xFF)
1204 				break;
1205 		}
1206 
1207 		if (i >= 32)
1208 			goto err_eeprom;
1209 	}
1210 
1211 	/* reset the hardware with the new settings */
1212 	e1000_reset(adapter);
1213 
1214 	strcpy(netdev->name, "eth%d");
1215 	err = register_netdev(netdev);
1216 	if (err)
1217 		goto err_register;
1218 
1219 	e1000_vlan_filter_on_off(adapter, false);
1220 
1221 	/* print bus type/speed/width info */
1222 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1223 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1224 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1225 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1226 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1227 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1228 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1229 	       netdev->dev_addr);
1230 
1231 	/* carrier off reporting is important to ethtool even BEFORE open */
1232 	netif_carrier_off(netdev);
1233 
1234 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1235 
1236 	cards_found++;
1237 	return 0;
1238 
1239 err_register:
1240 err_eeprom:
1241 	e1000_phy_hw_reset(hw);
1242 
1243 	if (hw->flash_address)
1244 		iounmap(hw->flash_address);
1245 	kfree(adapter->tx_ring);
1246 	kfree(adapter->rx_ring);
1247 err_dma:
1248 err_sw_init:
1249 err_mdio_ioremap:
1250 	iounmap(hw->ce4100_gbe_mdio_base_virt);
1251 	iounmap(hw->hw_addr);
1252 err_ioremap:
1253 	free_netdev(netdev);
1254 err_alloc_etherdev:
1255 	pci_release_selected_regions(pdev, bars);
1256 err_pci_reg:
1257 	pci_disable_device(pdev);
1258 	return err;
1259 }
1260 
1261 /**
1262  * e1000_remove - Device Removal Routine
1263  * @pdev: PCI device information struct
1264  *
1265  * e1000_remove is called by the PCI subsystem to alert the driver
1266  * that it should release a PCI device. That could be caused by a
1267  * Hot-Plug event, or because the driver is going to be removed from
1268  * memory.
1269  **/
1270 static void e1000_remove(struct pci_dev *pdev)
1271 {
1272 	struct net_device *netdev = pci_get_drvdata(pdev);
1273 	struct e1000_adapter *adapter = netdev_priv(netdev);
1274 	struct e1000_hw *hw = &adapter->hw;
1275 
1276 	e1000_down_and_stop(adapter);
1277 	e1000_release_manageability(adapter);
1278 
1279 	unregister_netdev(netdev);
1280 
1281 	e1000_phy_hw_reset(hw);
1282 
1283 	kfree(adapter->tx_ring);
1284 	kfree(adapter->rx_ring);
1285 
1286 	if (hw->mac_type == e1000_ce4100)
1287 		iounmap(hw->ce4100_gbe_mdio_base_virt);
1288 	iounmap(hw->hw_addr);
1289 	if (hw->flash_address)
1290 		iounmap(hw->flash_address);
1291 	pci_release_selected_regions(pdev, adapter->bars);
1292 
1293 	free_netdev(netdev);
1294 
1295 	pci_disable_device(pdev);
1296 }
1297 
1298 /**
1299  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1300  * @adapter: board private structure to initialize
1301  *
1302  * e1000_sw_init initializes the Adapter private data structure.
1303  * e1000_init_hw_struct MUST be called before this function
1304  **/
1305 static int e1000_sw_init(struct e1000_adapter *adapter)
1306 {
1307 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1308 
1309 	adapter->num_tx_queues = 1;
1310 	adapter->num_rx_queues = 1;
1311 
1312 	if (e1000_alloc_queues(adapter)) {
1313 		e_err(probe, "Unable to allocate memory for queues\n");
1314 		return -ENOMEM;
1315 	}
1316 
1317 	/* Explicitly disable IRQ since the NIC can be in any state. */
1318 	e1000_irq_disable(adapter);
1319 
1320 	spin_lock_init(&adapter->stats_lock);
1321 
1322 	set_bit(__E1000_DOWN, &adapter->flags);
1323 
1324 	return 0;
1325 }
1326 
1327 /**
1328  * e1000_alloc_queues - Allocate memory for all rings
1329  * @adapter: board private structure to initialize
1330  *
1331  * We allocate one ring per queue at run-time since we don't know the
1332  * number of queues at compile-time.
1333  **/
1334 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1335 {
1336 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1337 				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1338 	if (!adapter->tx_ring)
1339 		return -ENOMEM;
1340 
1341 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1342 				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1343 	if (!adapter->rx_ring) {
1344 		kfree(adapter->tx_ring);
1345 		return -ENOMEM;
1346 	}
1347 
1348 	return E1000_SUCCESS;
1349 }
1350 
1351 /**
1352  * e1000_open - Called when a network interface is made active
1353  * @netdev: network interface device structure
1354  *
1355  * Returns 0 on success, negative value on failure
1356  *
1357  * The open entry point is called when a network interface is made
1358  * active by the system (IFF_UP).  At this point all resources needed
1359  * for transmit and receive operations are allocated, the interrupt
1360  * handler is registered with the OS, the watchdog task is started,
1361  * and the stack is notified that the interface is ready.
1362  **/
1363 int e1000_open(struct net_device *netdev)
1364 {
1365 	struct e1000_adapter *adapter = netdev_priv(netdev);
1366 	struct e1000_hw *hw = &adapter->hw;
1367 	int err;
1368 
1369 	/* disallow open during test */
1370 	if (test_bit(__E1000_TESTING, &adapter->flags))
1371 		return -EBUSY;
1372 
1373 	netif_carrier_off(netdev);
1374 
1375 	/* allocate transmit descriptors */
1376 	err = e1000_setup_all_tx_resources(adapter);
1377 	if (err)
1378 		goto err_setup_tx;
1379 
1380 	/* allocate receive descriptors */
1381 	err = e1000_setup_all_rx_resources(adapter);
1382 	if (err)
1383 		goto err_setup_rx;
1384 
1385 	e1000_power_up_phy(adapter);
1386 
1387 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1388 	if ((hw->mng_cookie.status &
1389 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1390 		e1000_update_mng_vlan(adapter);
1391 	}
1392 
1393 	/* before we allocate an interrupt, we must be ready to handle it.
1394 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1395 	 * as soon as we call pci_request_irq, so we have to setup our
1396 	 * clean_rx handler before we do so.
1397 	 */
1398 	e1000_configure(adapter);
1399 
1400 	err = e1000_request_irq(adapter);
1401 	if (err)
1402 		goto err_req_irq;
1403 
1404 	/* From here on the code is the same as e1000_up() */
1405 	clear_bit(__E1000_DOWN, &adapter->flags);
1406 
1407 	napi_enable(&adapter->napi);
1408 
1409 	e1000_irq_enable(adapter);
1410 
1411 	netif_start_queue(netdev);
1412 
1413 	/* fire a link status change interrupt to start the watchdog */
1414 	ew32(ICS, E1000_ICS_LSC);
1415 
1416 	return E1000_SUCCESS;
1417 
1418 err_req_irq:
1419 	e1000_power_down_phy(adapter);
1420 	e1000_free_all_rx_resources(adapter);
1421 err_setup_rx:
1422 	e1000_free_all_tx_resources(adapter);
1423 err_setup_tx:
1424 	e1000_reset(adapter);
1425 
1426 	return err;
1427 }
1428 
1429 /**
1430  * e1000_close - Disables a network interface
1431  * @netdev: network interface device structure
1432  *
1433  * Returns 0, this is not allowed to fail
1434  *
1435  * The close entry point is called when an interface is de-activated
1436  * by the OS.  The hardware is still under the drivers control, but
1437  * needs to be disabled.  A global MAC reset is issued to stop the
1438  * hardware, and all transmit and receive resources are freed.
1439  **/
1440 int e1000_close(struct net_device *netdev)
1441 {
1442 	struct e1000_adapter *adapter = netdev_priv(netdev);
1443 	struct e1000_hw *hw = &adapter->hw;
1444 	int count = E1000_CHECK_RESET_COUNT;
1445 
1446 	while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1447 		usleep_range(10000, 20000);
1448 
1449 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1450 	e1000_down(adapter);
1451 	e1000_power_down_phy(adapter);
1452 	e1000_free_irq(adapter);
1453 
1454 	e1000_free_all_tx_resources(adapter);
1455 	e1000_free_all_rx_resources(adapter);
1456 
1457 	/* kill manageability vlan ID if supported, but not if a vlan with
1458 	 * the same ID is registered on the host OS (let 8021q kill it)
1459 	 */
1460 	if ((hw->mng_cookie.status &
1461 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1462 	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1463 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1464 				       adapter->mng_vlan_id);
1465 	}
1466 
1467 	return 0;
1468 }
1469 
1470 /**
1471  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1472  * @adapter: address of board private structure
1473  * @start: address of beginning of memory
1474  * @len: length of memory
1475  **/
1476 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1477 				  unsigned long len)
1478 {
1479 	struct e1000_hw *hw = &adapter->hw;
1480 	unsigned long begin = (unsigned long)start;
1481 	unsigned long end = begin + len;
1482 
1483 	/* First rev 82545 and 82546 need to not allow any memory
1484 	 * write location to cross 64k boundary due to errata 23
1485 	 */
1486 	if (hw->mac_type == e1000_82545 ||
1487 	    hw->mac_type == e1000_ce4100 ||
1488 	    hw->mac_type == e1000_82546) {
1489 		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1490 	}
1491 
1492 	return true;
1493 }
1494 
1495 /**
1496  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1497  * @adapter: board private structure
1498  * @txdr:    tx descriptor ring (for a specific queue) to setup
1499  *
1500  * Return 0 on success, negative on failure
1501  **/
1502 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1503 				    struct e1000_tx_ring *txdr)
1504 {
1505 	struct pci_dev *pdev = adapter->pdev;
1506 	int size;
1507 
1508 	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1509 	txdr->buffer_info = vzalloc(size);
1510 	if (!txdr->buffer_info)
1511 		return -ENOMEM;
1512 
1513 	/* round up to nearest 4K */
1514 
1515 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1516 	txdr->size = ALIGN(txdr->size, 4096);
1517 
1518 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1519 					GFP_KERNEL);
1520 	if (!txdr->desc) {
1521 setup_tx_desc_die:
1522 		vfree(txdr->buffer_info);
1523 		return -ENOMEM;
1524 	}
1525 
1526 	/* Fix for errata 23, can't cross 64kB boundary */
1527 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1528 		void *olddesc = txdr->desc;
1529 		dma_addr_t olddma = txdr->dma;
1530 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1531 		      txdr->size, txdr->desc);
1532 		/* Try again, without freeing the previous */
1533 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1534 						&txdr->dma, GFP_KERNEL);
1535 		/* Failed allocation, critical failure */
1536 		if (!txdr->desc) {
1537 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1538 					  olddma);
1539 			goto setup_tx_desc_die;
1540 		}
1541 
1542 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1543 			/* give up */
1544 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1545 					  txdr->dma);
1546 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547 					  olddma);
1548 			e_err(probe, "Unable to allocate aligned memory "
1549 			      "for the transmit descriptor ring\n");
1550 			vfree(txdr->buffer_info);
1551 			return -ENOMEM;
1552 		} else {
1553 			/* Free old allocation, new allocation was successful */
1554 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1555 					  olddma);
1556 		}
1557 	}
1558 	memset(txdr->desc, 0, txdr->size);
1559 
1560 	txdr->next_to_use = 0;
1561 	txdr->next_to_clean = 0;
1562 
1563 	return 0;
1564 }
1565 
1566 /**
1567  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1568  * 				  (Descriptors) for all queues
1569  * @adapter: board private structure
1570  *
1571  * Return 0 on success, negative on failure
1572  **/
1573 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1574 {
1575 	int i, err = 0;
1576 
1577 	for (i = 0; i < adapter->num_tx_queues; i++) {
1578 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1579 		if (err) {
1580 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1581 			for (i-- ; i >= 0; i--)
1582 				e1000_free_tx_resources(adapter,
1583 							&adapter->tx_ring[i]);
1584 			break;
1585 		}
1586 	}
1587 
1588 	return err;
1589 }
1590 
1591 /**
1592  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1593  * @adapter: board private structure
1594  *
1595  * Configure the Tx unit of the MAC after a reset.
1596  **/
1597 static void e1000_configure_tx(struct e1000_adapter *adapter)
1598 {
1599 	u64 tdba;
1600 	struct e1000_hw *hw = &adapter->hw;
1601 	u32 tdlen, tctl, tipg;
1602 	u32 ipgr1, ipgr2;
1603 
1604 	/* Setup the HW Tx Head and Tail descriptor pointers */
1605 
1606 	switch (adapter->num_tx_queues) {
1607 	case 1:
1608 	default:
1609 		tdba = adapter->tx_ring[0].dma;
1610 		tdlen = adapter->tx_ring[0].count *
1611 			sizeof(struct e1000_tx_desc);
1612 		ew32(TDLEN, tdlen);
1613 		ew32(TDBAH, (tdba >> 32));
1614 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1615 		ew32(TDT, 0);
1616 		ew32(TDH, 0);
1617 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1618 					   E1000_TDH : E1000_82542_TDH);
1619 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1620 					   E1000_TDT : E1000_82542_TDT);
1621 		break;
1622 	}
1623 
1624 	/* Set the default values for the Tx Inter Packet Gap timer */
1625 	if ((hw->media_type == e1000_media_type_fiber ||
1626 	     hw->media_type == e1000_media_type_internal_serdes))
1627 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1628 	else
1629 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1630 
1631 	switch (hw->mac_type) {
1632 	case e1000_82542_rev2_0:
1633 	case e1000_82542_rev2_1:
1634 		tipg = DEFAULT_82542_TIPG_IPGT;
1635 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1636 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1637 		break;
1638 	default:
1639 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1640 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1641 		break;
1642 	}
1643 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1644 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1645 	ew32(TIPG, tipg);
1646 
1647 	/* Set the Tx Interrupt Delay register */
1648 
1649 	ew32(TIDV, adapter->tx_int_delay);
1650 	if (hw->mac_type >= e1000_82540)
1651 		ew32(TADV, adapter->tx_abs_int_delay);
1652 
1653 	/* Program the Transmit Control Register */
1654 
1655 	tctl = er32(TCTL);
1656 	tctl &= ~E1000_TCTL_CT;
1657 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1658 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1659 
1660 	e1000_config_collision_dist(hw);
1661 
1662 	/* Setup Transmit Descriptor Settings for eop descriptor */
1663 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1664 
1665 	/* only set IDE if we are delaying interrupts using the timers */
1666 	if (adapter->tx_int_delay)
1667 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1668 
1669 	if (hw->mac_type < e1000_82543)
1670 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1671 	else
1672 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1673 
1674 	/* Cache if we're 82544 running in PCI-X because we'll
1675 	 * need this to apply a workaround later in the send path.
1676 	 */
1677 	if (hw->mac_type == e1000_82544 &&
1678 	    hw->bus_type == e1000_bus_type_pcix)
1679 		adapter->pcix_82544 = true;
1680 
1681 	ew32(TCTL, tctl);
1682 
1683 }
1684 
1685 /**
1686  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1687  * @adapter: board private structure
1688  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1689  *
1690  * Returns 0 on success, negative on failure
1691  **/
1692 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1693 				    struct e1000_rx_ring *rxdr)
1694 {
1695 	struct pci_dev *pdev = adapter->pdev;
1696 	int size, desc_len;
1697 
1698 	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1699 	rxdr->buffer_info = vzalloc(size);
1700 	if (!rxdr->buffer_info)
1701 		return -ENOMEM;
1702 
1703 	desc_len = sizeof(struct e1000_rx_desc);
1704 
1705 	/* Round up to nearest 4K */
1706 
1707 	rxdr->size = rxdr->count * desc_len;
1708 	rxdr->size = ALIGN(rxdr->size, 4096);
1709 
1710 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1711 					GFP_KERNEL);
1712 	if (!rxdr->desc) {
1713 setup_rx_desc_die:
1714 		vfree(rxdr->buffer_info);
1715 		return -ENOMEM;
1716 	}
1717 
1718 	/* Fix for errata 23, can't cross 64kB boundary */
1719 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1720 		void *olddesc = rxdr->desc;
1721 		dma_addr_t olddma = rxdr->dma;
1722 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1723 		      rxdr->size, rxdr->desc);
1724 		/* Try again, without freeing the previous */
1725 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1726 						&rxdr->dma, GFP_KERNEL);
1727 		/* Failed allocation, critical failure */
1728 		if (!rxdr->desc) {
1729 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1730 					  olddma);
1731 			goto setup_rx_desc_die;
1732 		}
1733 
1734 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1735 			/* give up */
1736 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1737 					  rxdr->dma);
1738 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1739 					  olddma);
1740 			e_err(probe, "Unable to allocate aligned memory for "
1741 			      "the Rx descriptor ring\n");
1742 			goto setup_rx_desc_die;
1743 		} else {
1744 			/* Free old allocation, new allocation was successful */
1745 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746 					  olddma);
1747 		}
1748 	}
1749 	memset(rxdr->desc, 0, rxdr->size);
1750 
1751 	rxdr->next_to_clean = 0;
1752 	rxdr->next_to_use = 0;
1753 	rxdr->rx_skb_top = NULL;
1754 
1755 	return 0;
1756 }
1757 
1758 /**
1759  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1760  * 				  (Descriptors) for all queues
1761  * @adapter: board private structure
1762  *
1763  * Return 0 on success, negative on failure
1764  **/
1765 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1766 {
1767 	int i, err = 0;
1768 
1769 	for (i = 0; i < adapter->num_rx_queues; i++) {
1770 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1771 		if (err) {
1772 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1773 			for (i-- ; i >= 0; i--)
1774 				e1000_free_rx_resources(adapter,
1775 							&adapter->rx_ring[i]);
1776 			break;
1777 		}
1778 	}
1779 
1780 	return err;
1781 }
1782 
1783 /**
1784  * e1000_setup_rctl - configure the receive control registers
1785  * @adapter: Board private structure
1786  **/
1787 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1788 {
1789 	struct e1000_hw *hw = &adapter->hw;
1790 	u32 rctl;
1791 
1792 	rctl = er32(RCTL);
1793 
1794 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1795 
1796 	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1797 		E1000_RCTL_RDMTS_HALF |
1798 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1799 
1800 	if (hw->tbi_compatibility_on == 1)
1801 		rctl |= E1000_RCTL_SBP;
1802 	else
1803 		rctl &= ~E1000_RCTL_SBP;
1804 
1805 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1806 		rctl &= ~E1000_RCTL_LPE;
1807 	else
1808 		rctl |= E1000_RCTL_LPE;
1809 
1810 	/* Setup buffer sizes */
1811 	rctl &= ~E1000_RCTL_SZ_4096;
1812 	rctl |= E1000_RCTL_BSEX;
1813 	switch (adapter->rx_buffer_len) {
1814 	case E1000_RXBUFFER_2048:
1815 	default:
1816 		rctl |= E1000_RCTL_SZ_2048;
1817 		rctl &= ~E1000_RCTL_BSEX;
1818 		break;
1819 	case E1000_RXBUFFER_4096:
1820 		rctl |= E1000_RCTL_SZ_4096;
1821 		break;
1822 	case E1000_RXBUFFER_8192:
1823 		rctl |= E1000_RCTL_SZ_8192;
1824 		break;
1825 	case E1000_RXBUFFER_16384:
1826 		rctl |= E1000_RCTL_SZ_16384;
1827 		break;
1828 	}
1829 
1830 	/* This is useful for sniffing bad packets. */
1831 	if (adapter->netdev->features & NETIF_F_RXALL) {
1832 		/* UPE and MPE will be handled by normal PROMISC logic
1833 		 * in e1000e_set_rx_mode
1834 		 */
1835 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1836 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1837 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1838 
1839 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1840 			  E1000_RCTL_DPF | /* Allow filtered pause */
1841 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1842 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1843 		 * and that breaks VLANs.
1844 		 */
1845 	}
1846 
1847 	ew32(RCTL, rctl);
1848 }
1849 
1850 /**
1851  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1852  * @adapter: board private structure
1853  *
1854  * Configure the Rx unit of the MAC after a reset.
1855  **/
1856 static void e1000_configure_rx(struct e1000_adapter *adapter)
1857 {
1858 	u64 rdba;
1859 	struct e1000_hw *hw = &adapter->hw;
1860 	u32 rdlen, rctl, rxcsum;
1861 
1862 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1863 		rdlen = adapter->rx_ring[0].count *
1864 			sizeof(struct e1000_rx_desc);
1865 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1866 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1867 	} else {
1868 		rdlen = adapter->rx_ring[0].count *
1869 			sizeof(struct e1000_rx_desc);
1870 		adapter->clean_rx = e1000_clean_rx_irq;
1871 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1872 	}
1873 
1874 	/* disable receives while setting up the descriptors */
1875 	rctl = er32(RCTL);
1876 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1877 
1878 	/* set the Receive Delay Timer Register */
1879 	ew32(RDTR, adapter->rx_int_delay);
1880 
1881 	if (hw->mac_type >= e1000_82540) {
1882 		ew32(RADV, adapter->rx_abs_int_delay);
1883 		if (adapter->itr_setting != 0)
1884 			ew32(ITR, 1000000000 / (adapter->itr * 256));
1885 	}
1886 
1887 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1888 	 * the Base and Length of the Rx Descriptor Ring
1889 	 */
1890 	switch (adapter->num_rx_queues) {
1891 	case 1:
1892 	default:
1893 		rdba = adapter->rx_ring[0].dma;
1894 		ew32(RDLEN, rdlen);
1895 		ew32(RDBAH, (rdba >> 32));
1896 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1897 		ew32(RDT, 0);
1898 		ew32(RDH, 0);
1899 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1900 					   E1000_RDH : E1000_82542_RDH);
1901 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1902 					   E1000_RDT : E1000_82542_RDT);
1903 		break;
1904 	}
1905 
1906 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1907 	if (hw->mac_type >= e1000_82543) {
1908 		rxcsum = er32(RXCSUM);
1909 		if (adapter->rx_csum)
1910 			rxcsum |= E1000_RXCSUM_TUOFL;
1911 		else
1912 			/* don't need to clear IPPCSE as it defaults to 0 */
1913 			rxcsum &= ~E1000_RXCSUM_TUOFL;
1914 		ew32(RXCSUM, rxcsum);
1915 	}
1916 
1917 	/* Enable Receives */
1918 	ew32(RCTL, rctl | E1000_RCTL_EN);
1919 }
1920 
1921 /**
1922  * e1000_free_tx_resources - Free Tx Resources per Queue
1923  * @adapter: board private structure
1924  * @tx_ring: Tx descriptor ring for a specific queue
1925  *
1926  * Free all transmit software resources
1927  **/
1928 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1929 				    struct e1000_tx_ring *tx_ring)
1930 {
1931 	struct pci_dev *pdev = adapter->pdev;
1932 
1933 	e1000_clean_tx_ring(adapter, tx_ring);
1934 
1935 	vfree(tx_ring->buffer_info);
1936 	tx_ring->buffer_info = NULL;
1937 
1938 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1939 			  tx_ring->dma);
1940 
1941 	tx_ring->desc = NULL;
1942 }
1943 
1944 /**
1945  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1946  * @adapter: board private structure
1947  *
1948  * Free all transmit software resources
1949  **/
1950 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1951 {
1952 	int i;
1953 
1954 	for (i = 0; i < adapter->num_tx_queues; i++)
1955 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1956 }
1957 
1958 static void
1959 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1960 				 struct e1000_tx_buffer *buffer_info)
1961 {
1962 	if (buffer_info->dma) {
1963 		if (buffer_info->mapped_as_page)
1964 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1965 				       buffer_info->length, DMA_TO_DEVICE);
1966 		else
1967 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1968 					 buffer_info->length,
1969 					 DMA_TO_DEVICE);
1970 		buffer_info->dma = 0;
1971 	}
1972 	if (buffer_info->skb) {
1973 		dev_kfree_skb_any(buffer_info->skb);
1974 		buffer_info->skb = NULL;
1975 	}
1976 	buffer_info->time_stamp = 0;
1977 	/* buffer_info must be completely set up in the transmit path */
1978 }
1979 
1980 /**
1981  * e1000_clean_tx_ring - Free Tx Buffers
1982  * @adapter: board private structure
1983  * @tx_ring: ring to be cleaned
1984  **/
1985 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1986 				struct e1000_tx_ring *tx_ring)
1987 {
1988 	struct e1000_hw *hw = &adapter->hw;
1989 	struct e1000_tx_buffer *buffer_info;
1990 	unsigned long size;
1991 	unsigned int i;
1992 
1993 	/* Free all the Tx ring sk_buffs */
1994 
1995 	for (i = 0; i < tx_ring->count; i++) {
1996 		buffer_info = &tx_ring->buffer_info[i];
1997 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1998 	}
1999 
2000 	netdev_reset_queue(adapter->netdev);
2001 	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2002 	memset(tx_ring->buffer_info, 0, size);
2003 
2004 	/* Zero out the descriptor ring */
2005 
2006 	memset(tx_ring->desc, 0, tx_ring->size);
2007 
2008 	tx_ring->next_to_use = 0;
2009 	tx_ring->next_to_clean = 0;
2010 	tx_ring->last_tx_tso = false;
2011 
2012 	writel(0, hw->hw_addr + tx_ring->tdh);
2013 	writel(0, hw->hw_addr + tx_ring->tdt);
2014 }
2015 
2016 /**
2017  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2018  * @adapter: board private structure
2019  **/
2020 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2021 {
2022 	int i;
2023 
2024 	for (i = 0; i < adapter->num_tx_queues; i++)
2025 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2026 }
2027 
2028 /**
2029  * e1000_free_rx_resources - Free Rx Resources
2030  * @adapter: board private structure
2031  * @rx_ring: ring to clean the resources from
2032  *
2033  * Free all receive software resources
2034  **/
2035 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2036 				    struct e1000_rx_ring *rx_ring)
2037 {
2038 	struct pci_dev *pdev = adapter->pdev;
2039 
2040 	e1000_clean_rx_ring(adapter, rx_ring);
2041 
2042 	vfree(rx_ring->buffer_info);
2043 	rx_ring->buffer_info = NULL;
2044 
2045 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2046 			  rx_ring->dma);
2047 
2048 	rx_ring->desc = NULL;
2049 }
2050 
2051 /**
2052  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2053  * @adapter: board private structure
2054  *
2055  * Free all receive software resources
2056  **/
2057 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2058 {
2059 	int i;
2060 
2061 	for (i = 0; i < adapter->num_rx_queues; i++)
2062 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2063 }
2064 
2065 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2066 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2067 {
2068 	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2069 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2070 }
2071 
2072 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2073 {
2074 	unsigned int len = e1000_frag_len(a);
2075 	u8 *data = netdev_alloc_frag(len);
2076 
2077 	if (likely(data))
2078 		data += E1000_HEADROOM;
2079 	return data;
2080 }
2081 
2082 /**
2083  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2084  * @adapter: board private structure
2085  * @rx_ring: ring to free buffers from
2086  **/
2087 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2088 				struct e1000_rx_ring *rx_ring)
2089 {
2090 	struct e1000_hw *hw = &adapter->hw;
2091 	struct e1000_rx_buffer *buffer_info;
2092 	struct pci_dev *pdev = adapter->pdev;
2093 	unsigned long size;
2094 	unsigned int i;
2095 
2096 	/* Free all the Rx netfrags */
2097 	for (i = 0; i < rx_ring->count; i++) {
2098 		buffer_info = &rx_ring->buffer_info[i];
2099 		if (adapter->clean_rx == e1000_clean_rx_irq) {
2100 			if (buffer_info->dma)
2101 				dma_unmap_single(&pdev->dev, buffer_info->dma,
2102 						 adapter->rx_buffer_len,
2103 						 DMA_FROM_DEVICE);
2104 			if (buffer_info->rxbuf.data) {
2105 				skb_free_frag(buffer_info->rxbuf.data);
2106 				buffer_info->rxbuf.data = NULL;
2107 			}
2108 		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2109 			if (buffer_info->dma)
2110 				dma_unmap_page(&pdev->dev, buffer_info->dma,
2111 					       adapter->rx_buffer_len,
2112 					       DMA_FROM_DEVICE);
2113 			if (buffer_info->rxbuf.page) {
2114 				put_page(buffer_info->rxbuf.page);
2115 				buffer_info->rxbuf.page = NULL;
2116 			}
2117 		}
2118 
2119 		buffer_info->dma = 0;
2120 	}
2121 
2122 	/* there also may be some cached data from a chained receive */
2123 	napi_free_frags(&adapter->napi);
2124 	rx_ring->rx_skb_top = NULL;
2125 
2126 	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2127 	memset(rx_ring->buffer_info, 0, size);
2128 
2129 	/* Zero out the descriptor ring */
2130 	memset(rx_ring->desc, 0, rx_ring->size);
2131 
2132 	rx_ring->next_to_clean = 0;
2133 	rx_ring->next_to_use = 0;
2134 
2135 	writel(0, hw->hw_addr + rx_ring->rdh);
2136 	writel(0, hw->hw_addr + rx_ring->rdt);
2137 }
2138 
2139 /**
2140  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2141  * @adapter: board private structure
2142  **/
2143 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2144 {
2145 	int i;
2146 
2147 	for (i = 0; i < adapter->num_rx_queues; i++)
2148 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2149 }
2150 
2151 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2152  * and memory write and invalidate disabled for certain operations
2153  */
2154 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2155 {
2156 	struct e1000_hw *hw = &adapter->hw;
2157 	struct net_device *netdev = adapter->netdev;
2158 	u32 rctl;
2159 
2160 	e1000_pci_clear_mwi(hw);
2161 
2162 	rctl = er32(RCTL);
2163 	rctl |= E1000_RCTL_RST;
2164 	ew32(RCTL, rctl);
2165 	E1000_WRITE_FLUSH();
2166 	mdelay(5);
2167 
2168 	if (netif_running(netdev))
2169 		e1000_clean_all_rx_rings(adapter);
2170 }
2171 
2172 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2173 {
2174 	struct e1000_hw *hw = &adapter->hw;
2175 	struct net_device *netdev = adapter->netdev;
2176 	u32 rctl;
2177 
2178 	rctl = er32(RCTL);
2179 	rctl &= ~E1000_RCTL_RST;
2180 	ew32(RCTL, rctl);
2181 	E1000_WRITE_FLUSH();
2182 	mdelay(5);
2183 
2184 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2185 		e1000_pci_set_mwi(hw);
2186 
2187 	if (netif_running(netdev)) {
2188 		/* No need to loop, because 82542 supports only 1 queue */
2189 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2190 		e1000_configure_rx(adapter);
2191 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2192 	}
2193 }
2194 
2195 /**
2196  * e1000_set_mac - Change the Ethernet Address of the NIC
2197  * @netdev: network interface device structure
2198  * @p: pointer to an address structure
2199  *
2200  * Returns 0 on success, negative on failure
2201  **/
2202 static int e1000_set_mac(struct net_device *netdev, void *p)
2203 {
2204 	struct e1000_adapter *adapter = netdev_priv(netdev);
2205 	struct e1000_hw *hw = &adapter->hw;
2206 	struct sockaddr *addr = p;
2207 
2208 	if (!is_valid_ether_addr(addr->sa_data))
2209 		return -EADDRNOTAVAIL;
2210 
2211 	/* 82542 2.0 needs to be in reset to write receive address registers */
2212 
2213 	if (hw->mac_type == e1000_82542_rev2_0)
2214 		e1000_enter_82542_rst(adapter);
2215 
2216 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2217 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2218 
2219 	e1000_rar_set(hw, hw->mac_addr, 0);
2220 
2221 	if (hw->mac_type == e1000_82542_rev2_0)
2222 		e1000_leave_82542_rst(adapter);
2223 
2224 	return 0;
2225 }
2226 
2227 /**
2228  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2229  * @netdev: network interface device structure
2230  *
2231  * The set_rx_mode entry point is called whenever the unicast or multicast
2232  * address lists or the network interface flags are updated. This routine is
2233  * responsible for configuring the hardware for proper unicast, multicast,
2234  * promiscuous mode, and all-multi behavior.
2235  **/
2236 static void e1000_set_rx_mode(struct net_device *netdev)
2237 {
2238 	struct e1000_adapter *adapter = netdev_priv(netdev);
2239 	struct e1000_hw *hw = &adapter->hw;
2240 	struct netdev_hw_addr *ha;
2241 	bool use_uc = false;
2242 	u32 rctl;
2243 	u32 hash_value;
2244 	int i, rar_entries = E1000_RAR_ENTRIES;
2245 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2246 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2247 
2248 	if (!mcarray)
2249 		return;
2250 
2251 	/* Check for Promiscuous and All Multicast modes */
2252 
2253 	rctl = er32(RCTL);
2254 
2255 	if (netdev->flags & IFF_PROMISC) {
2256 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2257 		rctl &= ~E1000_RCTL_VFE;
2258 	} else {
2259 		if (netdev->flags & IFF_ALLMULTI)
2260 			rctl |= E1000_RCTL_MPE;
2261 		else
2262 			rctl &= ~E1000_RCTL_MPE;
2263 		/* Enable VLAN filter if there is a VLAN */
2264 		if (e1000_vlan_used(adapter))
2265 			rctl |= E1000_RCTL_VFE;
2266 	}
2267 
2268 	if (netdev_uc_count(netdev) > rar_entries - 1) {
2269 		rctl |= E1000_RCTL_UPE;
2270 	} else if (!(netdev->flags & IFF_PROMISC)) {
2271 		rctl &= ~E1000_RCTL_UPE;
2272 		use_uc = true;
2273 	}
2274 
2275 	ew32(RCTL, rctl);
2276 
2277 	/* 82542 2.0 needs to be in reset to write receive address registers */
2278 
2279 	if (hw->mac_type == e1000_82542_rev2_0)
2280 		e1000_enter_82542_rst(adapter);
2281 
2282 	/* load the first 14 addresses into the exact filters 1-14. Unicast
2283 	 * addresses take precedence to avoid disabling unicast filtering
2284 	 * when possible.
2285 	 *
2286 	 * RAR 0 is used for the station MAC address
2287 	 * if there are not 14 addresses, go ahead and clear the filters
2288 	 */
2289 	i = 1;
2290 	if (use_uc)
2291 		netdev_for_each_uc_addr(ha, netdev) {
2292 			if (i == rar_entries)
2293 				break;
2294 			e1000_rar_set(hw, ha->addr, i++);
2295 		}
2296 
2297 	netdev_for_each_mc_addr(ha, netdev) {
2298 		if (i == rar_entries) {
2299 			/* load any remaining addresses into the hash table */
2300 			u32 hash_reg, hash_bit, mta;
2301 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2302 			hash_reg = (hash_value >> 5) & 0x7F;
2303 			hash_bit = hash_value & 0x1F;
2304 			mta = (1 << hash_bit);
2305 			mcarray[hash_reg] |= mta;
2306 		} else {
2307 			e1000_rar_set(hw, ha->addr, i++);
2308 		}
2309 	}
2310 
2311 	for (; i < rar_entries; i++) {
2312 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2313 		E1000_WRITE_FLUSH();
2314 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2315 		E1000_WRITE_FLUSH();
2316 	}
2317 
2318 	/* write the hash table completely, write from bottom to avoid
2319 	 * both stupid write combining chipsets, and flushing each write
2320 	 */
2321 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2322 		/* If we are on an 82544 has an errata where writing odd
2323 		 * offsets overwrites the previous even offset, but writing
2324 		 * backwards over the range solves the issue by always
2325 		 * writing the odd offset first
2326 		 */
2327 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2328 	}
2329 	E1000_WRITE_FLUSH();
2330 
2331 	if (hw->mac_type == e1000_82542_rev2_0)
2332 		e1000_leave_82542_rst(adapter);
2333 
2334 	kfree(mcarray);
2335 }
2336 
2337 /**
2338  * e1000_update_phy_info_task - get phy info
2339  * @work: work struct contained inside adapter struct
2340  *
2341  * Need to wait a few seconds after link up to get diagnostic information from
2342  * the phy
2343  */
2344 static void e1000_update_phy_info_task(struct work_struct *work)
2345 {
2346 	struct e1000_adapter *adapter = container_of(work,
2347 						     struct e1000_adapter,
2348 						     phy_info_task.work);
2349 
2350 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2351 }
2352 
2353 /**
2354  * e1000_82547_tx_fifo_stall_task - task to complete work
2355  * @work: work struct contained inside adapter struct
2356  **/
2357 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2358 {
2359 	struct e1000_adapter *adapter = container_of(work,
2360 						     struct e1000_adapter,
2361 						     fifo_stall_task.work);
2362 	struct e1000_hw *hw = &adapter->hw;
2363 	struct net_device *netdev = adapter->netdev;
2364 	u32 tctl;
2365 
2366 	if (atomic_read(&adapter->tx_fifo_stall)) {
2367 		if ((er32(TDT) == er32(TDH)) &&
2368 		   (er32(TDFT) == er32(TDFH)) &&
2369 		   (er32(TDFTS) == er32(TDFHS))) {
2370 			tctl = er32(TCTL);
2371 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2372 			ew32(TDFT, adapter->tx_head_addr);
2373 			ew32(TDFH, adapter->tx_head_addr);
2374 			ew32(TDFTS, adapter->tx_head_addr);
2375 			ew32(TDFHS, adapter->tx_head_addr);
2376 			ew32(TCTL, tctl);
2377 			E1000_WRITE_FLUSH();
2378 
2379 			adapter->tx_fifo_head = 0;
2380 			atomic_set(&adapter->tx_fifo_stall, 0);
2381 			netif_wake_queue(netdev);
2382 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2383 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2384 		}
2385 	}
2386 }
2387 
2388 bool e1000_has_link(struct e1000_adapter *adapter)
2389 {
2390 	struct e1000_hw *hw = &adapter->hw;
2391 	bool link_active = false;
2392 
2393 	/* get_link_status is set on LSC (link status) interrupt or rx
2394 	 * sequence error interrupt (except on intel ce4100).
2395 	 * get_link_status will stay false until the
2396 	 * e1000_check_for_link establishes link for copper adapters
2397 	 * ONLY
2398 	 */
2399 	switch (hw->media_type) {
2400 	case e1000_media_type_copper:
2401 		if (hw->mac_type == e1000_ce4100)
2402 			hw->get_link_status = 1;
2403 		if (hw->get_link_status) {
2404 			e1000_check_for_link(hw);
2405 			link_active = !hw->get_link_status;
2406 		} else {
2407 			link_active = true;
2408 		}
2409 		break;
2410 	case e1000_media_type_fiber:
2411 		e1000_check_for_link(hw);
2412 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2413 		break;
2414 	case e1000_media_type_internal_serdes:
2415 		e1000_check_for_link(hw);
2416 		link_active = hw->serdes_has_link;
2417 		break;
2418 	default:
2419 		break;
2420 	}
2421 
2422 	return link_active;
2423 }
2424 
2425 /**
2426  * e1000_watchdog - work function
2427  * @work: work struct contained inside adapter struct
2428  **/
2429 static void e1000_watchdog(struct work_struct *work)
2430 {
2431 	struct e1000_adapter *adapter = container_of(work,
2432 						     struct e1000_adapter,
2433 						     watchdog_task.work);
2434 	struct e1000_hw *hw = &adapter->hw;
2435 	struct net_device *netdev = adapter->netdev;
2436 	struct e1000_tx_ring *txdr = adapter->tx_ring;
2437 	u32 link, tctl;
2438 
2439 	link = e1000_has_link(adapter);
2440 	if ((netif_carrier_ok(netdev)) && link)
2441 		goto link_up;
2442 
2443 	if (link) {
2444 		if (!netif_carrier_ok(netdev)) {
2445 			u32 ctrl;
2446 			bool txb2b = true;
2447 			/* update snapshot of PHY registers on LSC */
2448 			e1000_get_speed_and_duplex(hw,
2449 						   &adapter->link_speed,
2450 						   &adapter->link_duplex);
2451 
2452 			ctrl = er32(CTRL);
2453 			pr_info("%s NIC Link is Up %d Mbps %s, "
2454 				"Flow Control: %s\n",
2455 				netdev->name,
2456 				adapter->link_speed,
2457 				adapter->link_duplex == FULL_DUPLEX ?
2458 				"Full Duplex" : "Half Duplex",
2459 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2460 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2461 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2462 				E1000_CTRL_TFCE) ? "TX" : "None")));
2463 
2464 			/* adjust timeout factor according to speed/duplex */
2465 			adapter->tx_timeout_factor = 1;
2466 			switch (adapter->link_speed) {
2467 			case SPEED_10:
2468 				txb2b = false;
2469 				adapter->tx_timeout_factor = 16;
2470 				break;
2471 			case SPEED_100:
2472 				txb2b = false;
2473 				/* maybe add some timeout factor ? */
2474 				break;
2475 			}
2476 
2477 			/* enable transmits in the hardware */
2478 			tctl = er32(TCTL);
2479 			tctl |= E1000_TCTL_EN;
2480 			ew32(TCTL, tctl);
2481 
2482 			netif_carrier_on(netdev);
2483 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2484 				schedule_delayed_work(&adapter->phy_info_task,
2485 						      2 * HZ);
2486 			adapter->smartspeed = 0;
2487 		}
2488 	} else {
2489 		if (netif_carrier_ok(netdev)) {
2490 			adapter->link_speed = 0;
2491 			adapter->link_duplex = 0;
2492 			pr_info("%s NIC Link is Down\n",
2493 				netdev->name);
2494 			netif_carrier_off(netdev);
2495 
2496 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2497 				schedule_delayed_work(&adapter->phy_info_task,
2498 						      2 * HZ);
2499 		}
2500 
2501 		e1000_smartspeed(adapter);
2502 	}
2503 
2504 link_up:
2505 	e1000_update_stats(adapter);
2506 
2507 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2508 	adapter->tpt_old = adapter->stats.tpt;
2509 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2510 	adapter->colc_old = adapter->stats.colc;
2511 
2512 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2513 	adapter->gorcl_old = adapter->stats.gorcl;
2514 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2515 	adapter->gotcl_old = adapter->stats.gotcl;
2516 
2517 	e1000_update_adaptive(hw);
2518 
2519 	if (!netif_carrier_ok(netdev)) {
2520 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2521 			/* We've lost link, so the controller stops DMA,
2522 			 * but we've got queued Tx work that's never going
2523 			 * to get done, so reset controller to flush Tx.
2524 			 * (Do the reset outside of interrupt context).
2525 			 */
2526 			adapter->tx_timeout_count++;
2527 			schedule_work(&adapter->reset_task);
2528 			/* exit immediately since reset is imminent */
2529 			return;
2530 		}
2531 	}
2532 
2533 	/* Simple mode for Interrupt Throttle Rate (ITR) */
2534 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2535 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2536 		 * Total asymmetrical Tx or Rx gets ITR=8000;
2537 		 * everyone else is between 2000-8000.
2538 		 */
2539 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2540 		u32 dif = (adapter->gotcl > adapter->gorcl ?
2541 			    adapter->gotcl - adapter->gorcl :
2542 			    adapter->gorcl - adapter->gotcl) / 10000;
2543 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2544 
2545 		ew32(ITR, 1000000000 / (itr * 256));
2546 	}
2547 
2548 	/* Cause software interrupt to ensure rx ring is cleaned */
2549 	ew32(ICS, E1000_ICS_RXDMT0);
2550 
2551 	/* Force detection of hung controller every watchdog period */
2552 	adapter->detect_tx_hung = true;
2553 
2554 	/* Reschedule the task */
2555 	if (!test_bit(__E1000_DOWN, &adapter->flags))
2556 		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2557 }
2558 
2559 enum latency_range {
2560 	lowest_latency = 0,
2561 	low_latency = 1,
2562 	bulk_latency = 2,
2563 	latency_invalid = 255
2564 };
2565 
2566 /**
2567  * e1000_update_itr - update the dynamic ITR value based on statistics
2568  * @adapter: pointer to adapter
2569  * @itr_setting: current adapter->itr
2570  * @packets: the number of packets during this measurement interval
2571  * @bytes: the number of bytes during this measurement interval
2572  *
2573  *      Stores a new ITR value based on packets and byte
2574  *      counts during the last interrupt.  The advantage of per interrupt
2575  *      computation is faster updates and more accurate ITR for the current
2576  *      traffic pattern.  Constants in this function were computed
2577  *      based on theoretical maximum wire speed and thresholds were set based
2578  *      on testing data as well as attempting to minimize response time
2579  *      while increasing bulk throughput.
2580  *      this functionality is controlled by the InterruptThrottleRate module
2581  *      parameter (see e1000_param.c)
2582  **/
2583 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2584 				     u16 itr_setting, int packets, int bytes)
2585 {
2586 	unsigned int retval = itr_setting;
2587 	struct e1000_hw *hw = &adapter->hw;
2588 
2589 	if (unlikely(hw->mac_type < e1000_82540))
2590 		goto update_itr_done;
2591 
2592 	if (packets == 0)
2593 		goto update_itr_done;
2594 
2595 	switch (itr_setting) {
2596 	case lowest_latency:
2597 		/* jumbo frames get bulk treatment*/
2598 		if (bytes/packets > 8000)
2599 			retval = bulk_latency;
2600 		else if ((packets < 5) && (bytes > 512))
2601 			retval = low_latency;
2602 		break;
2603 	case low_latency:  /* 50 usec aka 20000 ints/s */
2604 		if (bytes > 10000) {
2605 			/* jumbo frames need bulk latency setting */
2606 			if (bytes/packets > 8000)
2607 				retval = bulk_latency;
2608 			else if ((packets < 10) || ((bytes/packets) > 1200))
2609 				retval = bulk_latency;
2610 			else if ((packets > 35))
2611 				retval = lowest_latency;
2612 		} else if (bytes/packets > 2000)
2613 			retval = bulk_latency;
2614 		else if (packets <= 2 && bytes < 512)
2615 			retval = lowest_latency;
2616 		break;
2617 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2618 		if (bytes > 25000) {
2619 			if (packets > 35)
2620 				retval = low_latency;
2621 		} else if (bytes < 6000) {
2622 			retval = low_latency;
2623 		}
2624 		break;
2625 	}
2626 
2627 update_itr_done:
2628 	return retval;
2629 }
2630 
2631 static void e1000_set_itr(struct e1000_adapter *adapter)
2632 {
2633 	struct e1000_hw *hw = &adapter->hw;
2634 	u16 current_itr;
2635 	u32 new_itr = adapter->itr;
2636 
2637 	if (unlikely(hw->mac_type < e1000_82540))
2638 		return;
2639 
2640 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2641 	if (unlikely(adapter->link_speed != SPEED_1000)) {
2642 		current_itr = 0;
2643 		new_itr = 4000;
2644 		goto set_itr_now;
2645 	}
2646 
2647 	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2648 					   adapter->total_tx_packets,
2649 					   adapter->total_tx_bytes);
2650 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2651 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2652 		adapter->tx_itr = low_latency;
2653 
2654 	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2655 					   adapter->total_rx_packets,
2656 					   adapter->total_rx_bytes);
2657 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2658 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2659 		adapter->rx_itr = low_latency;
2660 
2661 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2662 
2663 	switch (current_itr) {
2664 	/* counts and packets in update_itr are dependent on these numbers */
2665 	case lowest_latency:
2666 		new_itr = 70000;
2667 		break;
2668 	case low_latency:
2669 		new_itr = 20000; /* aka hwitr = ~200 */
2670 		break;
2671 	case bulk_latency:
2672 		new_itr = 4000;
2673 		break;
2674 	default:
2675 		break;
2676 	}
2677 
2678 set_itr_now:
2679 	if (new_itr != adapter->itr) {
2680 		/* this attempts to bias the interrupt rate towards Bulk
2681 		 * by adding intermediate steps when interrupt rate is
2682 		 * increasing
2683 		 */
2684 		new_itr = new_itr > adapter->itr ?
2685 			  min(adapter->itr + (new_itr >> 2), new_itr) :
2686 			  new_itr;
2687 		adapter->itr = new_itr;
2688 		ew32(ITR, 1000000000 / (new_itr * 256));
2689 	}
2690 }
2691 
2692 #define E1000_TX_FLAGS_CSUM		0x00000001
2693 #define E1000_TX_FLAGS_VLAN		0x00000002
2694 #define E1000_TX_FLAGS_TSO		0x00000004
2695 #define E1000_TX_FLAGS_IPV4		0x00000008
2696 #define E1000_TX_FLAGS_NO_FCS		0x00000010
2697 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2698 #define E1000_TX_FLAGS_VLAN_SHIFT	16
2699 
2700 static int e1000_tso(struct e1000_adapter *adapter,
2701 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2702 		     __be16 protocol)
2703 {
2704 	struct e1000_context_desc *context_desc;
2705 	struct e1000_tx_buffer *buffer_info;
2706 	unsigned int i;
2707 	u32 cmd_length = 0;
2708 	u16 ipcse = 0, tucse, mss;
2709 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2710 
2711 	if (skb_is_gso(skb)) {
2712 		int err;
2713 
2714 		err = skb_cow_head(skb, 0);
2715 		if (err < 0)
2716 			return err;
2717 
2718 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2719 		mss = skb_shinfo(skb)->gso_size;
2720 		if (protocol == htons(ETH_P_IP)) {
2721 			struct iphdr *iph = ip_hdr(skb);
2722 			iph->tot_len = 0;
2723 			iph->check = 0;
2724 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2725 								 iph->daddr, 0,
2726 								 IPPROTO_TCP,
2727 								 0);
2728 			cmd_length = E1000_TXD_CMD_IP;
2729 			ipcse = skb_transport_offset(skb) - 1;
2730 		} else if (skb_is_gso_v6(skb)) {
2731 			ipv6_hdr(skb)->payload_len = 0;
2732 			tcp_hdr(skb)->check =
2733 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2734 						 &ipv6_hdr(skb)->daddr,
2735 						 0, IPPROTO_TCP, 0);
2736 			ipcse = 0;
2737 		}
2738 		ipcss = skb_network_offset(skb);
2739 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2740 		tucss = skb_transport_offset(skb);
2741 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2742 		tucse = 0;
2743 
2744 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2745 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2746 
2747 		i = tx_ring->next_to_use;
2748 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2749 		buffer_info = &tx_ring->buffer_info[i];
2750 
2751 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2752 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2753 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2754 		context_desc->upper_setup.tcp_fields.tucss = tucss;
2755 		context_desc->upper_setup.tcp_fields.tucso = tucso;
2756 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2757 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2758 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2759 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2760 
2761 		buffer_info->time_stamp = jiffies;
2762 		buffer_info->next_to_watch = i;
2763 
2764 		if (++i == tx_ring->count)
2765 			i = 0;
2766 
2767 		tx_ring->next_to_use = i;
2768 
2769 		return true;
2770 	}
2771 	return false;
2772 }
2773 
2774 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2775 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2776 			  __be16 protocol)
2777 {
2778 	struct e1000_context_desc *context_desc;
2779 	struct e1000_tx_buffer *buffer_info;
2780 	unsigned int i;
2781 	u8 css;
2782 	u32 cmd_len = E1000_TXD_CMD_DEXT;
2783 
2784 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2785 		return false;
2786 
2787 	switch (protocol) {
2788 	case cpu_to_be16(ETH_P_IP):
2789 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2790 			cmd_len |= E1000_TXD_CMD_TCP;
2791 		break;
2792 	case cpu_to_be16(ETH_P_IPV6):
2793 		/* XXX not handling all IPV6 headers */
2794 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2795 			cmd_len |= E1000_TXD_CMD_TCP;
2796 		break;
2797 	default:
2798 		if (unlikely(net_ratelimit()))
2799 			e_warn(drv, "checksum_partial proto=%x!\n",
2800 			       skb->protocol);
2801 		break;
2802 	}
2803 
2804 	css = skb_checksum_start_offset(skb);
2805 
2806 	i = tx_ring->next_to_use;
2807 	buffer_info = &tx_ring->buffer_info[i];
2808 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2809 
2810 	context_desc->lower_setup.ip_config = 0;
2811 	context_desc->upper_setup.tcp_fields.tucss = css;
2812 	context_desc->upper_setup.tcp_fields.tucso =
2813 		css + skb->csum_offset;
2814 	context_desc->upper_setup.tcp_fields.tucse = 0;
2815 	context_desc->tcp_seg_setup.data = 0;
2816 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2817 
2818 	buffer_info->time_stamp = jiffies;
2819 	buffer_info->next_to_watch = i;
2820 
2821 	if (unlikely(++i == tx_ring->count))
2822 		i = 0;
2823 
2824 	tx_ring->next_to_use = i;
2825 
2826 	return true;
2827 }
2828 
2829 #define E1000_MAX_TXD_PWR	12
2830 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2831 
2832 static int e1000_tx_map(struct e1000_adapter *adapter,
2833 			struct e1000_tx_ring *tx_ring,
2834 			struct sk_buff *skb, unsigned int first,
2835 			unsigned int max_per_txd, unsigned int nr_frags,
2836 			unsigned int mss)
2837 {
2838 	struct e1000_hw *hw = &adapter->hw;
2839 	struct pci_dev *pdev = adapter->pdev;
2840 	struct e1000_tx_buffer *buffer_info;
2841 	unsigned int len = skb_headlen(skb);
2842 	unsigned int offset = 0, size, count = 0, i;
2843 	unsigned int f, bytecount, segs;
2844 
2845 	i = tx_ring->next_to_use;
2846 
2847 	while (len) {
2848 		buffer_info = &tx_ring->buffer_info[i];
2849 		size = min(len, max_per_txd);
2850 		/* Workaround for Controller erratum --
2851 		 * descriptor for non-tso packet in a linear SKB that follows a
2852 		 * tso gets written back prematurely before the data is fully
2853 		 * DMA'd to the controller
2854 		 */
2855 		if (!skb->data_len && tx_ring->last_tx_tso &&
2856 		    !skb_is_gso(skb)) {
2857 			tx_ring->last_tx_tso = false;
2858 			size -= 4;
2859 		}
2860 
2861 		/* Workaround for premature desc write-backs
2862 		 * in TSO mode.  Append 4-byte sentinel desc
2863 		 */
2864 		if (unlikely(mss && !nr_frags && size == len && size > 8))
2865 			size -= 4;
2866 		/* work-around for errata 10 and it applies
2867 		 * to all controllers in PCI-X mode
2868 		 * The fix is to make sure that the first descriptor of a
2869 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2870 		 */
2871 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2872 			     (size > 2015) && count == 0))
2873 			size = 2015;
2874 
2875 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2876 		 * terminating buffers within evenly-aligned dwords.
2877 		 */
2878 		if (unlikely(adapter->pcix_82544 &&
2879 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2880 		   size > 4))
2881 			size -= 4;
2882 
2883 		buffer_info->length = size;
2884 		/* set time_stamp *before* dma to help avoid a possible race */
2885 		buffer_info->time_stamp = jiffies;
2886 		buffer_info->mapped_as_page = false;
2887 		buffer_info->dma = dma_map_single(&pdev->dev,
2888 						  skb->data + offset,
2889 						  size, DMA_TO_DEVICE);
2890 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2891 			goto dma_error;
2892 		buffer_info->next_to_watch = i;
2893 
2894 		len -= size;
2895 		offset += size;
2896 		count++;
2897 		if (len) {
2898 			i++;
2899 			if (unlikely(i == tx_ring->count))
2900 				i = 0;
2901 		}
2902 	}
2903 
2904 	for (f = 0; f < nr_frags; f++) {
2905 		const struct skb_frag_struct *frag;
2906 
2907 		frag = &skb_shinfo(skb)->frags[f];
2908 		len = skb_frag_size(frag);
2909 		offset = 0;
2910 
2911 		while (len) {
2912 			unsigned long bufend;
2913 			i++;
2914 			if (unlikely(i == tx_ring->count))
2915 				i = 0;
2916 
2917 			buffer_info = &tx_ring->buffer_info[i];
2918 			size = min(len, max_per_txd);
2919 			/* Workaround for premature desc write-backs
2920 			 * in TSO mode.  Append 4-byte sentinel desc
2921 			 */
2922 			if (unlikely(mss && f == (nr_frags-1) &&
2923 			    size == len && size > 8))
2924 				size -= 4;
2925 			/* Workaround for potential 82544 hang in PCI-X.
2926 			 * Avoid terminating buffers within evenly-aligned
2927 			 * dwords.
2928 			 */
2929 			bufend = (unsigned long)
2930 				page_to_phys(skb_frag_page(frag));
2931 			bufend += offset + size - 1;
2932 			if (unlikely(adapter->pcix_82544 &&
2933 				     !(bufend & 4) &&
2934 				     size > 4))
2935 				size -= 4;
2936 
2937 			buffer_info->length = size;
2938 			buffer_info->time_stamp = jiffies;
2939 			buffer_info->mapped_as_page = true;
2940 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2941 						offset, size, DMA_TO_DEVICE);
2942 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2943 				goto dma_error;
2944 			buffer_info->next_to_watch = i;
2945 
2946 			len -= size;
2947 			offset += size;
2948 			count++;
2949 		}
2950 	}
2951 
2952 	segs = skb_shinfo(skb)->gso_segs ?: 1;
2953 	/* multiply data chunks by size of headers */
2954 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2955 
2956 	tx_ring->buffer_info[i].skb = skb;
2957 	tx_ring->buffer_info[i].segs = segs;
2958 	tx_ring->buffer_info[i].bytecount = bytecount;
2959 	tx_ring->buffer_info[first].next_to_watch = i;
2960 
2961 	return count;
2962 
2963 dma_error:
2964 	dev_err(&pdev->dev, "TX DMA map failed\n");
2965 	buffer_info->dma = 0;
2966 	if (count)
2967 		count--;
2968 
2969 	while (count--) {
2970 		if (i == 0)
2971 			i += tx_ring->count;
2972 		i--;
2973 		buffer_info = &tx_ring->buffer_info[i];
2974 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2975 	}
2976 
2977 	return 0;
2978 }
2979 
2980 static void e1000_tx_queue(struct e1000_adapter *adapter,
2981 			   struct e1000_tx_ring *tx_ring, int tx_flags,
2982 			   int count)
2983 {
2984 	struct e1000_tx_desc *tx_desc = NULL;
2985 	struct e1000_tx_buffer *buffer_info;
2986 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2987 	unsigned int i;
2988 
2989 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2990 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2991 			     E1000_TXD_CMD_TSE;
2992 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2993 
2994 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2995 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2996 	}
2997 
2998 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2999 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3000 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3001 	}
3002 
3003 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3004 		txd_lower |= E1000_TXD_CMD_VLE;
3005 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3006 	}
3007 
3008 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3009 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3010 
3011 	i = tx_ring->next_to_use;
3012 
3013 	while (count--) {
3014 		buffer_info = &tx_ring->buffer_info[i];
3015 		tx_desc = E1000_TX_DESC(*tx_ring, i);
3016 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3017 		tx_desc->lower.data =
3018 			cpu_to_le32(txd_lower | buffer_info->length);
3019 		tx_desc->upper.data = cpu_to_le32(txd_upper);
3020 		if (unlikely(++i == tx_ring->count))
3021 			i = 0;
3022 	}
3023 
3024 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3025 
3026 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3027 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3028 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3029 
3030 	/* Force memory writes to complete before letting h/w
3031 	 * know there are new descriptors to fetch.  (Only
3032 	 * applicable for weak-ordered memory model archs,
3033 	 * such as IA-64).
3034 	 */
3035 	wmb();
3036 
3037 	tx_ring->next_to_use = i;
3038 }
3039 
3040 /* 82547 workaround to avoid controller hang in half-duplex environment.
3041  * The workaround is to avoid queuing a large packet that would span
3042  * the internal Tx FIFO ring boundary by notifying the stack to resend
3043  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3044  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3045  * to the beginning of the Tx FIFO.
3046  */
3047 
3048 #define E1000_FIFO_HDR			0x10
3049 #define E1000_82547_PAD_LEN		0x3E0
3050 
3051 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3052 				       struct sk_buff *skb)
3053 {
3054 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3055 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3056 
3057 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3058 
3059 	if (adapter->link_duplex != HALF_DUPLEX)
3060 		goto no_fifo_stall_required;
3061 
3062 	if (atomic_read(&adapter->tx_fifo_stall))
3063 		return 1;
3064 
3065 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3066 		atomic_set(&adapter->tx_fifo_stall, 1);
3067 		return 1;
3068 	}
3069 
3070 no_fifo_stall_required:
3071 	adapter->tx_fifo_head += skb_fifo_len;
3072 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3073 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3074 	return 0;
3075 }
3076 
3077 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3078 {
3079 	struct e1000_adapter *adapter = netdev_priv(netdev);
3080 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3081 
3082 	netif_stop_queue(netdev);
3083 	/* Herbert's original patch had:
3084 	 *  smp_mb__after_netif_stop_queue();
3085 	 * but since that doesn't exist yet, just open code it.
3086 	 */
3087 	smp_mb();
3088 
3089 	/* We need to check again in a case another CPU has just
3090 	 * made room available.
3091 	 */
3092 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3093 		return -EBUSY;
3094 
3095 	/* A reprieve! */
3096 	netif_start_queue(netdev);
3097 	++adapter->restart_queue;
3098 	return 0;
3099 }
3100 
3101 static int e1000_maybe_stop_tx(struct net_device *netdev,
3102 			       struct e1000_tx_ring *tx_ring, int size)
3103 {
3104 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3105 		return 0;
3106 	return __e1000_maybe_stop_tx(netdev, size);
3107 }
3108 
3109 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3110 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3111 				    struct net_device *netdev)
3112 {
3113 	struct e1000_adapter *adapter = netdev_priv(netdev);
3114 	struct e1000_hw *hw = &adapter->hw;
3115 	struct e1000_tx_ring *tx_ring;
3116 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3117 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3118 	unsigned int tx_flags = 0;
3119 	unsigned int len = skb_headlen(skb);
3120 	unsigned int nr_frags;
3121 	unsigned int mss;
3122 	int count = 0;
3123 	int tso;
3124 	unsigned int f;
3125 	__be16 protocol = vlan_get_protocol(skb);
3126 
3127 	/* This goes back to the question of how to logically map a Tx queue
3128 	 * to a flow.  Right now, performance is impacted slightly negatively
3129 	 * if using multiple Tx queues.  If the stack breaks away from a
3130 	 * single qdisc implementation, we can look at this again.
3131 	 */
3132 	tx_ring = adapter->tx_ring;
3133 
3134 	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3135 	 * packets may get corrupted during padding by HW.
3136 	 * To WA this issue, pad all small packets manually.
3137 	 */
3138 	if (eth_skb_pad(skb))
3139 		return NETDEV_TX_OK;
3140 
3141 	mss = skb_shinfo(skb)->gso_size;
3142 	/* The controller does a simple calculation to
3143 	 * make sure there is enough room in the FIFO before
3144 	 * initiating the DMA for each buffer.  The calc is:
3145 	 * 4 = ceil(buffer len/mss).  To make sure we don't
3146 	 * overrun the FIFO, adjust the max buffer len if mss
3147 	 * drops.
3148 	 */
3149 	if (mss) {
3150 		u8 hdr_len;
3151 		max_per_txd = min(mss << 2, max_per_txd);
3152 		max_txd_pwr = fls(max_per_txd) - 1;
3153 
3154 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3155 		if (skb->data_len && hdr_len == len) {
3156 			switch (hw->mac_type) {
3157 				unsigned int pull_size;
3158 			case e1000_82544:
3159 				/* Make sure we have room to chop off 4 bytes,
3160 				 * and that the end alignment will work out to
3161 				 * this hardware's requirements
3162 				 * NOTE: this is a TSO only workaround
3163 				 * if end byte alignment not correct move us
3164 				 * into the next dword
3165 				 */
3166 				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3167 				    & 4)
3168 					break;
3169 				/* fall through */
3170 				pull_size = min((unsigned int)4, skb->data_len);
3171 				if (!__pskb_pull_tail(skb, pull_size)) {
3172 					e_err(drv, "__pskb_pull_tail "
3173 					      "failed.\n");
3174 					dev_kfree_skb_any(skb);
3175 					return NETDEV_TX_OK;
3176 				}
3177 				len = skb_headlen(skb);
3178 				break;
3179 			default:
3180 				/* do nothing */
3181 				break;
3182 			}
3183 		}
3184 	}
3185 
3186 	/* reserve a descriptor for the offload context */
3187 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3188 		count++;
3189 	count++;
3190 
3191 	/* Controller Erratum workaround */
3192 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3193 		count++;
3194 
3195 	count += TXD_USE_COUNT(len, max_txd_pwr);
3196 
3197 	if (adapter->pcix_82544)
3198 		count++;
3199 
3200 	/* work-around for errata 10 and it applies to all controllers
3201 	 * in PCI-X mode, so add one more descriptor to the count
3202 	 */
3203 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3204 			(len > 2015)))
3205 		count++;
3206 
3207 	nr_frags = skb_shinfo(skb)->nr_frags;
3208 	for (f = 0; f < nr_frags; f++)
3209 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3210 				       max_txd_pwr);
3211 	if (adapter->pcix_82544)
3212 		count += nr_frags;
3213 
3214 	/* need: count + 2 desc gap to keep tail from touching
3215 	 * head, otherwise try next time
3216 	 */
3217 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3218 		return NETDEV_TX_BUSY;
3219 
3220 	if (unlikely((hw->mac_type == e1000_82547) &&
3221 		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3222 		netif_stop_queue(netdev);
3223 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3224 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3225 		return NETDEV_TX_BUSY;
3226 	}
3227 
3228 	if (skb_vlan_tag_present(skb)) {
3229 		tx_flags |= E1000_TX_FLAGS_VLAN;
3230 		tx_flags |= (skb_vlan_tag_get(skb) <<
3231 			     E1000_TX_FLAGS_VLAN_SHIFT);
3232 	}
3233 
3234 	first = tx_ring->next_to_use;
3235 
3236 	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3237 	if (tso < 0) {
3238 		dev_kfree_skb_any(skb);
3239 		return NETDEV_TX_OK;
3240 	}
3241 
3242 	if (likely(tso)) {
3243 		if (likely(hw->mac_type != e1000_82544))
3244 			tx_ring->last_tx_tso = true;
3245 		tx_flags |= E1000_TX_FLAGS_TSO;
3246 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3247 		tx_flags |= E1000_TX_FLAGS_CSUM;
3248 
3249 	if (protocol == htons(ETH_P_IP))
3250 		tx_flags |= E1000_TX_FLAGS_IPV4;
3251 
3252 	if (unlikely(skb->no_fcs))
3253 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3254 
3255 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3256 			     nr_frags, mss);
3257 
3258 	if (count) {
3259 		/* The descriptors needed is higher than other Intel drivers
3260 		 * due to a number of workarounds.  The breakdown is below:
3261 		 * Data descriptors: MAX_SKB_FRAGS + 1
3262 		 * Context Descriptor: 1
3263 		 * Keep head from touching tail: 2
3264 		 * Workarounds: 3
3265 		 */
3266 		int desc_needed = MAX_SKB_FRAGS + 7;
3267 
3268 		netdev_sent_queue(netdev, skb->len);
3269 		skb_tx_timestamp(skb);
3270 
3271 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3272 
3273 		/* 82544 potentially requires twice as many data descriptors
3274 		 * in order to guarantee buffers don't end on evenly-aligned
3275 		 * dwords
3276 		 */
3277 		if (adapter->pcix_82544)
3278 			desc_needed += MAX_SKB_FRAGS + 1;
3279 
3280 		/* Make sure there is space in the ring for the next send. */
3281 		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3282 
3283 		if (!skb->xmit_more ||
3284 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3285 			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3286 			/* we need this if more than one processor can write to
3287 			 * our tail at a time, it synchronizes IO on IA64/Altix
3288 			 * systems
3289 			 */
3290 			mmiowb();
3291 		}
3292 	} else {
3293 		dev_kfree_skb_any(skb);
3294 		tx_ring->buffer_info[first].time_stamp = 0;
3295 		tx_ring->next_to_use = first;
3296 	}
3297 
3298 	return NETDEV_TX_OK;
3299 }
3300 
3301 #define NUM_REGS 38 /* 1 based count */
3302 static void e1000_regdump(struct e1000_adapter *adapter)
3303 {
3304 	struct e1000_hw *hw = &adapter->hw;
3305 	u32 regs[NUM_REGS];
3306 	u32 *regs_buff = regs;
3307 	int i = 0;
3308 
3309 	static const char * const reg_name[] = {
3310 		"CTRL",  "STATUS",
3311 		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3312 		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3313 		"TIDV", "TXDCTL", "TADV", "TARC0",
3314 		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3315 		"TXDCTL1", "TARC1",
3316 		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3317 		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3318 		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3319 	};
3320 
3321 	regs_buff[0]  = er32(CTRL);
3322 	regs_buff[1]  = er32(STATUS);
3323 
3324 	regs_buff[2]  = er32(RCTL);
3325 	regs_buff[3]  = er32(RDLEN);
3326 	regs_buff[4]  = er32(RDH);
3327 	regs_buff[5]  = er32(RDT);
3328 	regs_buff[6]  = er32(RDTR);
3329 
3330 	regs_buff[7]  = er32(TCTL);
3331 	regs_buff[8]  = er32(TDBAL);
3332 	regs_buff[9]  = er32(TDBAH);
3333 	regs_buff[10] = er32(TDLEN);
3334 	regs_buff[11] = er32(TDH);
3335 	regs_buff[12] = er32(TDT);
3336 	regs_buff[13] = er32(TIDV);
3337 	regs_buff[14] = er32(TXDCTL);
3338 	regs_buff[15] = er32(TADV);
3339 	regs_buff[16] = er32(TARC0);
3340 
3341 	regs_buff[17] = er32(TDBAL1);
3342 	regs_buff[18] = er32(TDBAH1);
3343 	regs_buff[19] = er32(TDLEN1);
3344 	regs_buff[20] = er32(TDH1);
3345 	regs_buff[21] = er32(TDT1);
3346 	regs_buff[22] = er32(TXDCTL1);
3347 	regs_buff[23] = er32(TARC1);
3348 	regs_buff[24] = er32(CTRL_EXT);
3349 	regs_buff[25] = er32(ERT);
3350 	regs_buff[26] = er32(RDBAL0);
3351 	regs_buff[27] = er32(RDBAH0);
3352 	regs_buff[28] = er32(TDFH);
3353 	regs_buff[29] = er32(TDFT);
3354 	regs_buff[30] = er32(TDFHS);
3355 	regs_buff[31] = er32(TDFTS);
3356 	regs_buff[32] = er32(TDFPC);
3357 	regs_buff[33] = er32(RDFH);
3358 	regs_buff[34] = er32(RDFT);
3359 	regs_buff[35] = er32(RDFHS);
3360 	regs_buff[36] = er32(RDFTS);
3361 	regs_buff[37] = er32(RDFPC);
3362 
3363 	pr_info("Register dump\n");
3364 	for (i = 0; i < NUM_REGS; i++)
3365 		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3366 }
3367 
3368 /*
3369  * e1000_dump: Print registers, tx ring and rx ring
3370  */
3371 static void e1000_dump(struct e1000_adapter *adapter)
3372 {
3373 	/* this code doesn't handle multiple rings */
3374 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3375 	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3376 	int i;
3377 
3378 	if (!netif_msg_hw(adapter))
3379 		return;
3380 
3381 	/* Print Registers */
3382 	e1000_regdump(adapter);
3383 
3384 	/* transmit dump */
3385 	pr_info("TX Desc ring0 dump\n");
3386 
3387 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3388 	 *
3389 	 * Legacy Transmit Descriptor
3390 	 *   +--------------------------------------------------------------+
3391 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3392 	 *   +--------------------------------------------------------------+
3393 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3394 	 *   +--------------------------------------------------------------+
3395 	 *   63       48 47        36 35    32 31     24 23    16 15        0
3396 	 *
3397 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3398 	 *   63      48 47    40 39       32 31             16 15    8 7      0
3399 	 *   +----------------------------------------------------------------+
3400 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3401 	 *   +----------------------------------------------------------------+
3402 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3403 	 *   +----------------------------------------------------------------+
3404 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3405 	 *
3406 	 * Extended Data Descriptor (DTYP=0x1)
3407 	 *   +----------------------------------------------------------------+
3408 	 * 0 |                     Buffer Address [63:0]                      |
3409 	 *   +----------------------------------------------------------------+
3410 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3411 	 *   +----------------------------------------------------------------+
3412 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3413 	 */
3414 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3415 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3416 
3417 	if (!netif_msg_tx_done(adapter))
3418 		goto rx_ring_summary;
3419 
3420 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3421 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3422 		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3423 		struct my_u { __le64 a; __le64 b; };
3424 		struct my_u *u = (struct my_u *)tx_desc;
3425 		const char *type;
3426 
3427 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3428 			type = "NTC/U";
3429 		else if (i == tx_ring->next_to_use)
3430 			type = "NTU";
3431 		else if (i == tx_ring->next_to_clean)
3432 			type = "NTC";
3433 		else
3434 			type = "";
3435 
3436 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3437 			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3438 			le64_to_cpu(u->a), le64_to_cpu(u->b),
3439 			(u64)buffer_info->dma, buffer_info->length,
3440 			buffer_info->next_to_watch,
3441 			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3442 	}
3443 
3444 rx_ring_summary:
3445 	/* receive dump */
3446 	pr_info("\nRX Desc ring dump\n");
3447 
3448 	/* Legacy Receive Descriptor Format
3449 	 *
3450 	 * +-----------------------------------------------------+
3451 	 * |                Buffer Address [63:0]                |
3452 	 * +-----------------------------------------------------+
3453 	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3454 	 * +-----------------------------------------------------+
3455 	 * 63       48 47    40 39      32 31         16 15      0
3456 	 */
3457 	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3458 
3459 	if (!netif_msg_rx_status(adapter))
3460 		goto exit;
3461 
3462 	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3463 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3464 		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3465 		struct my_u { __le64 a; __le64 b; };
3466 		struct my_u *u = (struct my_u *)rx_desc;
3467 		const char *type;
3468 
3469 		if (i == rx_ring->next_to_use)
3470 			type = "NTU";
3471 		else if (i == rx_ring->next_to_clean)
3472 			type = "NTC";
3473 		else
3474 			type = "";
3475 
3476 		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3477 			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3478 			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3479 	} /* for */
3480 
3481 	/* dump the descriptor caches */
3482 	/* rx */
3483 	pr_info("Rx descriptor cache in 64bit format\n");
3484 	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3485 		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3486 			i,
3487 			readl(adapter->hw.hw_addr + i+4),
3488 			readl(adapter->hw.hw_addr + i),
3489 			readl(adapter->hw.hw_addr + i+12),
3490 			readl(adapter->hw.hw_addr + i+8));
3491 	}
3492 	/* tx */
3493 	pr_info("Tx descriptor cache in 64bit format\n");
3494 	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3495 		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3496 			i,
3497 			readl(adapter->hw.hw_addr + i+4),
3498 			readl(adapter->hw.hw_addr + i),
3499 			readl(adapter->hw.hw_addr + i+12),
3500 			readl(adapter->hw.hw_addr + i+8));
3501 	}
3502 exit:
3503 	return;
3504 }
3505 
3506 /**
3507  * e1000_tx_timeout - Respond to a Tx Hang
3508  * @netdev: network interface device structure
3509  **/
3510 static void e1000_tx_timeout(struct net_device *netdev)
3511 {
3512 	struct e1000_adapter *adapter = netdev_priv(netdev);
3513 
3514 	/* Do the reset outside of interrupt context */
3515 	adapter->tx_timeout_count++;
3516 	schedule_work(&adapter->reset_task);
3517 }
3518 
3519 static void e1000_reset_task(struct work_struct *work)
3520 {
3521 	struct e1000_adapter *adapter =
3522 		container_of(work, struct e1000_adapter, reset_task);
3523 
3524 	e_err(drv, "Reset adapter\n");
3525 	e1000_reinit_locked(adapter);
3526 }
3527 
3528 /**
3529  * e1000_get_stats - Get System Network Statistics
3530  * @netdev: network interface device structure
3531  *
3532  * Returns the address of the device statistics structure.
3533  * The statistics are actually updated from the watchdog.
3534  **/
3535 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3536 {
3537 	/* only return the current stats */
3538 	return &netdev->stats;
3539 }
3540 
3541 /**
3542  * e1000_change_mtu - Change the Maximum Transfer Unit
3543  * @netdev: network interface device structure
3544  * @new_mtu: new value for maximum frame size
3545  *
3546  * Returns 0 on success, negative on failure
3547  **/
3548 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3549 {
3550 	struct e1000_adapter *adapter = netdev_priv(netdev);
3551 	struct e1000_hw *hw = &adapter->hw;
3552 	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3553 
3554 	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3555 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3556 		e_err(probe, "Invalid MTU setting\n");
3557 		return -EINVAL;
3558 	}
3559 
3560 	/* Adapter-specific max frame size limits. */
3561 	switch (hw->mac_type) {
3562 	case e1000_undefined ... e1000_82542_rev2_1:
3563 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3564 			e_err(probe, "Jumbo Frames not supported.\n");
3565 			return -EINVAL;
3566 		}
3567 		break;
3568 	default:
3569 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3570 		break;
3571 	}
3572 
3573 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3574 		msleep(1);
3575 	/* e1000_down has a dependency on max_frame_size */
3576 	hw->max_frame_size = max_frame;
3577 	if (netif_running(netdev)) {
3578 		/* prevent buffers from being reallocated */
3579 		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3580 		e1000_down(adapter);
3581 	}
3582 
3583 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3584 	 * means we reserve 2 more, this pushes us to allocate from the next
3585 	 * larger slab size.
3586 	 * i.e. RXBUFFER_2048 --> size-4096 slab
3587 	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3588 	 * fragmented skbs
3589 	 */
3590 
3591 	if (max_frame <= E1000_RXBUFFER_2048)
3592 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3593 	else
3594 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3595 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3596 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3597 		adapter->rx_buffer_len = PAGE_SIZE;
3598 #endif
3599 
3600 	/* adjust allocation if LPE protects us, and we aren't using SBP */
3601 	if (!hw->tbi_compatibility_on &&
3602 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3603 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3604 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3605 
3606 	pr_info("%s changing MTU from %d to %d\n",
3607 		netdev->name, netdev->mtu, new_mtu);
3608 	netdev->mtu = new_mtu;
3609 
3610 	if (netif_running(netdev))
3611 		e1000_up(adapter);
3612 	else
3613 		e1000_reset(adapter);
3614 
3615 	clear_bit(__E1000_RESETTING, &adapter->flags);
3616 
3617 	return 0;
3618 }
3619 
3620 /**
3621  * e1000_update_stats - Update the board statistics counters
3622  * @adapter: board private structure
3623  **/
3624 void e1000_update_stats(struct e1000_adapter *adapter)
3625 {
3626 	struct net_device *netdev = adapter->netdev;
3627 	struct e1000_hw *hw = &adapter->hw;
3628 	struct pci_dev *pdev = adapter->pdev;
3629 	unsigned long flags;
3630 	u16 phy_tmp;
3631 
3632 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3633 
3634 	/* Prevent stats update while adapter is being reset, or if the pci
3635 	 * connection is down.
3636 	 */
3637 	if (adapter->link_speed == 0)
3638 		return;
3639 	if (pci_channel_offline(pdev))
3640 		return;
3641 
3642 	spin_lock_irqsave(&adapter->stats_lock, flags);
3643 
3644 	/* these counters are modified from e1000_tbi_adjust_stats,
3645 	 * called from the interrupt context, so they must only
3646 	 * be written while holding adapter->stats_lock
3647 	 */
3648 
3649 	adapter->stats.crcerrs += er32(CRCERRS);
3650 	adapter->stats.gprc += er32(GPRC);
3651 	adapter->stats.gorcl += er32(GORCL);
3652 	adapter->stats.gorch += er32(GORCH);
3653 	adapter->stats.bprc += er32(BPRC);
3654 	adapter->stats.mprc += er32(MPRC);
3655 	adapter->stats.roc += er32(ROC);
3656 
3657 	adapter->stats.prc64 += er32(PRC64);
3658 	adapter->stats.prc127 += er32(PRC127);
3659 	adapter->stats.prc255 += er32(PRC255);
3660 	adapter->stats.prc511 += er32(PRC511);
3661 	adapter->stats.prc1023 += er32(PRC1023);
3662 	adapter->stats.prc1522 += er32(PRC1522);
3663 
3664 	adapter->stats.symerrs += er32(SYMERRS);
3665 	adapter->stats.mpc += er32(MPC);
3666 	adapter->stats.scc += er32(SCC);
3667 	adapter->stats.ecol += er32(ECOL);
3668 	adapter->stats.mcc += er32(MCC);
3669 	adapter->stats.latecol += er32(LATECOL);
3670 	adapter->stats.dc += er32(DC);
3671 	adapter->stats.sec += er32(SEC);
3672 	adapter->stats.rlec += er32(RLEC);
3673 	adapter->stats.xonrxc += er32(XONRXC);
3674 	adapter->stats.xontxc += er32(XONTXC);
3675 	adapter->stats.xoffrxc += er32(XOFFRXC);
3676 	adapter->stats.xofftxc += er32(XOFFTXC);
3677 	adapter->stats.fcruc += er32(FCRUC);
3678 	adapter->stats.gptc += er32(GPTC);
3679 	adapter->stats.gotcl += er32(GOTCL);
3680 	adapter->stats.gotch += er32(GOTCH);
3681 	adapter->stats.rnbc += er32(RNBC);
3682 	adapter->stats.ruc += er32(RUC);
3683 	adapter->stats.rfc += er32(RFC);
3684 	adapter->stats.rjc += er32(RJC);
3685 	adapter->stats.torl += er32(TORL);
3686 	adapter->stats.torh += er32(TORH);
3687 	adapter->stats.totl += er32(TOTL);
3688 	adapter->stats.toth += er32(TOTH);
3689 	adapter->stats.tpr += er32(TPR);
3690 
3691 	adapter->stats.ptc64 += er32(PTC64);
3692 	adapter->stats.ptc127 += er32(PTC127);
3693 	adapter->stats.ptc255 += er32(PTC255);
3694 	adapter->stats.ptc511 += er32(PTC511);
3695 	adapter->stats.ptc1023 += er32(PTC1023);
3696 	adapter->stats.ptc1522 += er32(PTC1522);
3697 
3698 	adapter->stats.mptc += er32(MPTC);
3699 	adapter->stats.bptc += er32(BPTC);
3700 
3701 	/* used for adaptive IFS */
3702 
3703 	hw->tx_packet_delta = er32(TPT);
3704 	adapter->stats.tpt += hw->tx_packet_delta;
3705 	hw->collision_delta = er32(COLC);
3706 	adapter->stats.colc += hw->collision_delta;
3707 
3708 	if (hw->mac_type >= e1000_82543) {
3709 		adapter->stats.algnerrc += er32(ALGNERRC);
3710 		adapter->stats.rxerrc += er32(RXERRC);
3711 		adapter->stats.tncrs += er32(TNCRS);
3712 		adapter->stats.cexterr += er32(CEXTERR);
3713 		adapter->stats.tsctc += er32(TSCTC);
3714 		adapter->stats.tsctfc += er32(TSCTFC);
3715 	}
3716 
3717 	/* Fill out the OS statistics structure */
3718 	netdev->stats.multicast = adapter->stats.mprc;
3719 	netdev->stats.collisions = adapter->stats.colc;
3720 
3721 	/* Rx Errors */
3722 
3723 	/* RLEC on some newer hardware can be incorrect so build
3724 	 * our own version based on RUC and ROC
3725 	 */
3726 	netdev->stats.rx_errors = adapter->stats.rxerrc +
3727 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3728 		adapter->stats.ruc + adapter->stats.roc +
3729 		adapter->stats.cexterr;
3730 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3731 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3732 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3733 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3734 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3735 
3736 	/* Tx Errors */
3737 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3738 	netdev->stats.tx_errors = adapter->stats.txerrc;
3739 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3740 	netdev->stats.tx_window_errors = adapter->stats.latecol;
3741 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3742 	if (hw->bad_tx_carr_stats_fd &&
3743 	    adapter->link_duplex == FULL_DUPLEX) {
3744 		netdev->stats.tx_carrier_errors = 0;
3745 		adapter->stats.tncrs = 0;
3746 	}
3747 
3748 	/* Tx Dropped needs to be maintained elsewhere */
3749 
3750 	/* Phy Stats */
3751 	if (hw->media_type == e1000_media_type_copper) {
3752 		if ((adapter->link_speed == SPEED_1000) &&
3753 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3754 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3755 			adapter->phy_stats.idle_errors += phy_tmp;
3756 		}
3757 
3758 		if ((hw->mac_type <= e1000_82546) &&
3759 		   (hw->phy_type == e1000_phy_m88) &&
3760 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3761 			adapter->phy_stats.receive_errors += phy_tmp;
3762 	}
3763 
3764 	/* Management Stats */
3765 	if (hw->has_smbus) {
3766 		adapter->stats.mgptc += er32(MGTPTC);
3767 		adapter->stats.mgprc += er32(MGTPRC);
3768 		adapter->stats.mgpdc += er32(MGTPDC);
3769 	}
3770 
3771 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3772 }
3773 
3774 /**
3775  * e1000_intr - Interrupt Handler
3776  * @irq: interrupt number
3777  * @data: pointer to a network interface device structure
3778  **/
3779 static irqreturn_t e1000_intr(int irq, void *data)
3780 {
3781 	struct net_device *netdev = data;
3782 	struct e1000_adapter *adapter = netdev_priv(netdev);
3783 	struct e1000_hw *hw = &adapter->hw;
3784 	u32 icr = er32(ICR);
3785 
3786 	if (unlikely((!icr)))
3787 		return IRQ_NONE;  /* Not our interrupt */
3788 
3789 	/* we might have caused the interrupt, but the above
3790 	 * read cleared it, and just in case the driver is
3791 	 * down there is nothing to do so return handled
3792 	 */
3793 	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3794 		return IRQ_HANDLED;
3795 
3796 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3797 		hw->get_link_status = 1;
3798 		/* guard against interrupt when we're going down */
3799 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3800 			schedule_delayed_work(&adapter->watchdog_task, 1);
3801 	}
3802 
3803 	/* disable interrupts, without the synchronize_irq bit */
3804 	ew32(IMC, ~0);
3805 	E1000_WRITE_FLUSH();
3806 
3807 	if (likely(napi_schedule_prep(&adapter->napi))) {
3808 		adapter->total_tx_bytes = 0;
3809 		adapter->total_tx_packets = 0;
3810 		adapter->total_rx_bytes = 0;
3811 		adapter->total_rx_packets = 0;
3812 		__napi_schedule(&adapter->napi);
3813 	} else {
3814 		/* this really should not happen! if it does it is basically a
3815 		 * bug, but not a hard error, so enable ints and continue
3816 		 */
3817 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3818 			e1000_irq_enable(adapter);
3819 	}
3820 
3821 	return IRQ_HANDLED;
3822 }
3823 
3824 /**
3825  * e1000_clean - NAPI Rx polling callback
3826  * @adapter: board private structure
3827  **/
3828 static int e1000_clean(struct napi_struct *napi, int budget)
3829 {
3830 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3831 						     napi);
3832 	int tx_clean_complete = 0, work_done = 0;
3833 
3834 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3835 
3836 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3837 
3838 	if (!tx_clean_complete)
3839 		work_done = budget;
3840 
3841 	/* If budget not fully consumed, exit the polling mode */
3842 	if (work_done < budget) {
3843 		if (likely(adapter->itr_setting & 3))
3844 			e1000_set_itr(adapter);
3845 		napi_complete_done(napi, work_done);
3846 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3847 			e1000_irq_enable(adapter);
3848 	}
3849 
3850 	return work_done;
3851 }
3852 
3853 /**
3854  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3855  * @adapter: board private structure
3856  **/
3857 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3858 			       struct e1000_tx_ring *tx_ring)
3859 {
3860 	struct e1000_hw *hw = &adapter->hw;
3861 	struct net_device *netdev = adapter->netdev;
3862 	struct e1000_tx_desc *tx_desc, *eop_desc;
3863 	struct e1000_tx_buffer *buffer_info;
3864 	unsigned int i, eop;
3865 	unsigned int count = 0;
3866 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3867 	unsigned int bytes_compl = 0, pkts_compl = 0;
3868 
3869 	i = tx_ring->next_to_clean;
3870 	eop = tx_ring->buffer_info[i].next_to_watch;
3871 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3872 
3873 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3874 	       (count < tx_ring->count)) {
3875 		bool cleaned = false;
3876 		dma_rmb();	/* read buffer_info after eop_desc */
3877 		for ( ; !cleaned; count++) {
3878 			tx_desc = E1000_TX_DESC(*tx_ring, i);
3879 			buffer_info = &tx_ring->buffer_info[i];
3880 			cleaned = (i == eop);
3881 
3882 			if (cleaned) {
3883 				total_tx_packets += buffer_info->segs;
3884 				total_tx_bytes += buffer_info->bytecount;
3885 				if (buffer_info->skb) {
3886 					bytes_compl += buffer_info->skb->len;
3887 					pkts_compl++;
3888 				}
3889 
3890 			}
3891 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3892 			tx_desc->upper.data = 0;
3893 
3894 			if (unlikely(++i == tx_ring->count))
3895 				i = 0;
3896 		}
3897 
3898 		eop = tx_ring->buffer_info[i].next_to_watch;
3899 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3900 	}
3901 
3902 	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3903 	 * which will reuse the cleaned buffers.
3904 	 */
3905 	smp_store_release(&tx_ring->next_to_clean, i);
3906 
3907 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3908 
3909 #define TX_WAKE_THRESHOLD 32
3910 	if (unlikely(count && netif_carrier_ok(netdev) &&
3911 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3912 		/* Make sure that anybody stopping the queue after this
3913 		 * sees the new next_to_clean.
3914 		 */
3915 		smp_mb();
3916 
3917 		if (netif_queue_stopped(netdev) &&
3918 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3919 			netif_wake_queue(netdev);
3920 			++adapter->restart_queue;
3921 		}
3922 	}
3923 
3924 	if (adapter->detect_tx_hung) {
3925 		/* Detect a transmit hang in hardware, this serializes the
3926 		 * check with the clearing of time_stamp and movement of i
3927 		 */
3928 		adapter->detect_tx_hung = false;
3929 		if (tx_ring->buffer_info[eop].time_stamp &&
3930 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3931 			       (adapter->tx_timeout_factor * HZ)) &&
3932 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3933 
3934 			/* detected Tx unit hang */
3935 			e_err(drv, "Detected Tx Unit Hang\n"
3936 			      "  Tx Queue             <%lu>\n"
3937 			      "  TDH                  <%x>\n"
3938 			      "  TDT                  <%x>\n"
3939 			      "  next_to_use          <%x>\n"
3940 			      "  next_to_clean        <%x>\n"
3941 			      "buffer_info[next_to_clean]\n"
3942 			      "  time_stamp           <%lx>\n"
3943 			      "  next_to_watch        <%x>\n"
3944 			      "  jiffies              <%lx>\n"
3945 			      "  next_to_watch.status <%x>\n",
3946 				(unsigned long)(tx_ring - adapter->tx_ring),
3947 				readl(hw->hw_addr + tx_ring->tdh),
3948 				readl(hw->hw_addr + tx_ring->tdt),
3949 				tx_ring->next_to_use,
3950 				tx_ring->next_to_clean,
3951 				tx_ring->buffer_info[eop].time_stamp,
3952 				eop,
3953 				jiffies,
3954 				eop_desc->upper.fields.status);
3955 			e1000_dump(adapter);
3956 			netif_stop_queue(netdev);
3957 		}
3958 	}
3959 	adapter->total_tx_bytes += total_tx_bytes;
3960 	adapter->total_tx_packets += total_tx_packets;
3961 	netdev->stats.tx_bytes += total_tx_bytes;
3962 	netdev->stats.tx_packets += total_tx_packets;
3963 	return count < tx_ring->count;
3964 }
3965 
3966 /**
3967  * e1000_rx_checksum - Receive Checksum Offload for 82543
3968  * @adapter:     board private structure
3969  * @status_err:  receive descriptor status and error fields
3970  * @csum:        receive descriptor csum field
3971  * @sk_buff:     socket buffer with received data
3972  **/
3973 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3974 			      u32 csum, struct sk_buff *skb)
3975 {
3976 	struct e1000_hw *hw = &adapter->hw;
3977 	u16 status = (u16)status_err;
3978 	u8 errors = (u8)(status_err >> 24);
3979 
3980 	skb_checksum_none_assert(skb);
3981 
3982 	/* 82543 or newer only */
3983 	if (unlikely(hw->mac_type < e1000_82543))
3984 		return;
3985 	/* Ignore Checksum bit is set */
3986 	if (unlikely(status & E1000_RXD_STAT_IXSM))
3987 		return;
3988 	/* TCP/UDP checksum error bit is set */
3989 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3990 		/* let the stack verify checksum errors */
3991 		adapter->hw_csum_err++;
3992 		return;
3993 	}
3994 	/* TCP/UDP Checksum has not been calculated */
3995 	if (!(status & E1000_RXD_STAT_TCPCS))
3996 		return;
3997 
3998 	/* It must be a TCP or UDP packet with a valid checksum */
3999 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
4000 		/* TCP checksum is good */
4001 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4002 	}
4003 	adapter->hw_csum_good++;
4004 }
4005 
4006 /**
4007  * e1000_consume_page - helper function for jumbo Rx path
4008  **/
4009 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
4010 			       u16 length)
4011 {
4012 	bi->rxbuf.page = NULL;
4013 	skb->len += length;
4014 	skb->data_len += length;
4015 	skb->truesize += PAGE_SIZE;
4016 }
4017 
4018 /**
4019  * e1000_receive_skb - helper function to handle rx indications
4020  * @adapter: board private structure
4021  * @status: descriptor status field as written by hardware
4022  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4023  * @skb: pointer to sk_buff to be indicated to stack
4024  */
4025 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4026 			      __le16 vlan, struct sk_buff *skb)
4027 {
4028 	skb->protocol = eth_type_trans(skb, adapter->netdev);
4029 
4030 	if (status & E1000_RXD_STAT_VP) {
4031 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4032 
4033 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4034 	}
4035 	napi_gro_receive(&adapter->napi, skb);
4036 }
4037 
4038 /**
4039  * e1000_tbi_adjust_stats
4040  * @hw: Struct containing variables accessed by shared code
4041  * @frame_len: The length of the frame in question
4042  * @mac_addr: The Ethernet destination address of the frame in question
4043  *
4044  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4045  */
4046 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4047 				   struct e1000_hw_stats *stats,
4048 				   u32 frame_len, const u8 *mac_addr)
4049 {
4050 	u64 carry_bit;
4051 
4052 	/* First adjust the frame length. */
4053 	frame_len--;
4054 	/* We need to adjust the statistics counters, since the hardware
4055 	 * counters overcount this packet as a CRC error and undercount
4056 	 * the packet as a good packet
4057 	 */
4058 	/* This packet should not be counted as a CRC error. */
4059 	stats->crcerrs--;
4060 	/* This packet does count as a Good Packet Received. */
4061 	stats->gprc++;
4062 
4063 	/* Adjust the Good Octets received counters */
4064 	carry_bit = 0x80000000 & stats->gorcl;
4065 	stats->gorcl += frame_len;
4066 	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4067 	 * Received Count) was one before the addition,
4068 	 * AND it is zero after, then we lost the carry out,
4069 	 * need to add one to Gorch (Good Octets Received Count High).
4070 	 * This could be simplified if all environments supported
4071 	 * 64-bit integers.
4072 	 */
4073 	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4074 		stats->gorch++;
4075 	/* Is this a broadcast or multicast?  Check broadcast first,
4076 	 * since the test for a multicast frame will test positive on
4077 	 * a broadcast frame.
4078 	 */
4079 	if (is_broadcast_ether_addr(mac_addr))
4080 		stats->bprc++;
4081 	else if (is_multicast_ether_addr(mac_addr))
4082 		stats->mprc++;
4083 
4084 	if (frame_len == hw->max_frame_size) {
4085 		/* In this case, the hardware has overcounted the number of
4086 		 * oversize frames.
4087 		 */
4088 		if (stats->roc > 0)
4089 			stats->roc--;
4090 	}
4091 
4092 	/* Adjust the bin counters when the extra byte put the frame in the
4093 	 * wrong bin. Remember that the frame_len was adjusted above.
4094 	 */
4095 	if (frame_len == 64) {
4096 		stats->prc64++;
4097 		stats->prc127--;
4098 	} else if (frame_len == 127) {
4099 		stats->prc127++;
4100 		stats->prc255--;
4101 	} else if (frame_len == 255) {
4102 		stats->prc255++;
4103 		stats->prc511--;
4104 	} else if (frame_len == 511) {
4105 		stats->prc511++;
4106 		stats->prc1023--;
4107 	} else if (frame_len == 1023) {
4108 		stats->prc1023++;
4109 		stats->prc1522--;
4110 	} else if (frame_len == 1522) {
4111 		stats->prc1522++;
4112 	}
4113 }
4114 
4115 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4116 				    u8 status, u8 errors,
4117 				    u32 length, const u8 *data)
4118 {
4119 	struct e1000_hw *hw = &adapter->hw;
4120 	u8 last_byte = *(data + length - 1);
4121 
4122 	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4123 		unsigned long irq_flags;
4124 
4125 		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4126 		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4127 		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4128 
4129 		return true;
4130 	}
4131 
4132 	return false;
4133 }
4134 
4135 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4136 					  unsigned int bufsz)
4137 {
4138 	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4139 
4140 	if (unlikely(!skb))
4141 		adapter->alloc_rx_buff_failed++;
4142 	return skb;
4143 }
4144 
4145 /**
4146  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4147  * @adapter: board private structure
4148  * @rx_ring: ring to clean
4149  * @work_done: amount of napi work completed this call
4150  * @work_to_do: max amount of work allowed for this call to do
4151  *
4152  * the return value indicates whether actual cleaning was done, there
4153  * is no guarantee that everything was cleaned
4154  */
4155 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4156 				     struct e1000_rx_ring *rx_ring,
4157 				     int *work_done, int work_to_do)
4158 {
4159 	struct net_device *netdev = adapter->netdev;
4160 	struct pci_dev *pdev = adapter->pdev;
4161 	struct e1000_rx_desc *rx_desc, *next_rxd;
4162 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4163 	u32 length;
4164 	unsigned int i;
4165 	int cleaned_count = 0;
4166 	bool cleaned = false;
4167 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4168 
4169 	i = rx_ring->next_to_clean;
4170 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4171 	buffer_info = &rx_ring->buffer_info[i];
4172 
4173 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4174 		struct sk_buff *skb;
4175 		u8 status;
4176 
4177 		if (*work_done >= work_to_do)
4178 			break;
4179 		(*work_done)++;
4180 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4181 
4182 		status = rx_desc->status;
4183 
4184 		if (++i == rx_ring->count)
4185 			i = 0;
4186 
4187 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4188 		prefetch(next_rxd);
4189 
4190 		next_buffer = &rx_ring->buffer_info[i];
4191 
4192 		cleaned = true;
4193 		cleaned_count++;
4194 		dma_unmap_page(&pdev->dev, buffer_info->dma,
4195 			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4196 		buffer_info->dma = 0;
4197 
4198 		length = le16_to_cpu(rx_desc->length);
4199 
4200 		/* errors is only valid for DD + EOP descriptors */
4201 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4202 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4203 			u8 *mapped = page_address(buffer_info->rxbuf.page);
4204 
4205 			if (e1000_tbi_should_accept(adapter, status,
4206 						    rx_desc->errors,
4207 						    length, mapped)) {
4208 				length--;
4209 			} else if (netdev->features & NETIF_F_RXALL) {
4210 				goto process_skb;
4211 			} else {
4212 				/* an error means any chain goes out the window
4213 				 * too
4214 				 */
4215 				if (rx_ring->rx_skb_top)
4216 					dev_kfree_skb(rx_ring->rx_skb_top);
4217 				rx_ring->rx_skb_top = NULL;
4218 				goto next_desc;
4219 			}
4220 		}
4221 
4222 #define rxtop rx_ring->rx_skb_top
4223 process_skb:
4224 		if (!(status & E1000_RXD_STAT_EOP)) {
4225 			/* this descriptor is only the beginning (or middle) */
4226 			if (!rxtop) {
4227 				/* this is the beginning of a chain */
4228 				rxtop = napi_get_frags(&adapter->napi);
4229 				if (!rxtop)
4230 					break;
4231 
4232 				skb_fill_page_desc(rxtop, 0,
4233 						   buffer_info->rxbuf.page,
4234 						   0, length);
4235 			} else {
4236 				/* this is the middle of a chain */
4237 				skb_fill_page_desc(rxtop,
4238 				    skb_shinfo(rxtop)->nr_frags,
4239 				    buffer_info->rxbuf.page, 0, length);
4240 			}
4241 			e1000_consume_page(buffer_info, rxtop, length);
4242 			goto next_desc;
4243 		} else {
4244 			if (rxtop) {
4245 				/* end of the chain */
4246 				skb_fill_page_desc(rxtop,
4247 				    skb_shinfo(rxtop)->nr_frags,
4248 				    buffer_info->rxbuf.page, 0, length);
4249 				skb = rxtop;
4250 				rxtop = NULL;
4251 				e1000_consume_page(buffer_info, skb, length);
4252 			} else {
4253 				struct page *p;
4254 				/* no chain, got EOP, this buf is the packet
4255 				 * copybreak to save the put_page/alloc_page
4256 				 */
4257 				p = buffer_info->rxbuf.page;
4258 				if (length <= copybreak) {
4259 					u8 *vaddr;
4260 
4261 					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4262 						length -= 4;
4263 					skb = e1000_alloc_rx_skb(adapter,
4264 								 length);
4265 					if (!skb)
4266 						break;
4267 
4268 					vaddr = kmap_atomic(p);
4269 					memcpy(skb_tail_pointer(skb), vaddr,
4270 					       length);
4271 					kunmap_atomic(vaddr);
4272 					/* re-use the page, so don't erase
4273 					 * buffer_info->rxbuf.page
4274 					 */
4275 					skb_put(skb, length);
4276 					e1000_rx_checksum(adapter,
4277 							  status | rx_desc->errors << 24,
4278 							  le16_to_cpu(rx_desc->csum), skb);
4279 
4280 					total_rx_bytes += skb->len;
4281 					total_rx_packets++;
4282 
4283 					e1000_receive_skb(adapter, status,
4284 							  rx_desc->special, skb);
4285 					goto next_desc;
4286 				} else {
4287 					skb = napi_get_frags(&adapter->napi);
4288 					if (!skb) {
4289 						adapter->alloc_rx_buff_failed++;
4290 						break;
4291 					}
4292 					skb_fill_page_desc(skb, 0, p, 0,
4293 							   length);
4294 					e1000_consume_page(buffer_info, skb,
4295 							   length);
4296 				}
4297 			}
4298 		}
4299 
4300 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4301 		e1000_rx_checksum(adapter,
4302 				  (u32)(status) |
4303 				  ((u32)(rx_desc->errors) << 24),
4304 				  le16_to_cpu(rx_desc->csum), skb);
4305 
4306 		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4307 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4308 			pskb_trim(skb, skb->len - 4);
4309 		total_rx_packets++;
4310 
4311 		if (status & E1000_RXD_STAT_VP) {
4312 			__le16 vlan = rx_desc->special;
4313 			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4314 
4315 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4316 		}
4317 
4318 		napi_gro_frags(&adapter->napi);
4319 
4320 next_desc:
4321 		rx_desc->status = 0;
4322 
4323 		/* return some buffers to hardware, one at a time is too slow */
4324 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4325 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4326 			cleaned_count = 0;
4327 		}
4328 
4329 		/* use prefetched values */
4330 		rx_desc = next_rxd;
4331 		buffer_info = next_buffer;
4332 	}
4333 	rx_ring->next_to_clean = i;
4334 
4335 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4336 	if (cleaned_count)
4337 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4338 
4339 	adapter->total_rx_packets += total_rx_packets;
4340 	adapter->total_rx_bytes += total_rx_bytes;
4341 	netdev->stats.rx_bytes += total_rx_bytes;
4342 	netdev->stats.rx_packets += total_rx_packets;
4343 	return cleaned;
4344 }
4345 
4346 /* this should improve performance for small packets with large amounts
4347  * of reassembly being done in the stack
4348  */
4349 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4350 				       struct e1000_rx_buffer *buffer_info,
4351 				       u32 length, const void *data)
4352 {
4353 	struct sk_buff *skb;
4354 
4355 	if (length > copybreak)
4356 		return NULL;
4357 
4358 	skb = e1000_alloc_rx_skb(adapter, length);
4359 	if (!skb)
4360 		return NULL;
4361 
4362 	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4363 				length, DMA_FROM_DEVICE);
4364 
4365 	memcpy(skb_put(skb, length), data, length);
4366 
4367 	return skb;
4368 }
4369 
4370 /**
4371  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4372  * @adapter: board private structure
4373  * @rx_ring: ring to clean
4374  * @work_done: amount of napi work completed this call
4375  * @work_to_do: max amount of work allowed for this call to do
4376  */
4377 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4378 			       struct e1000_rx_ring *rx_ring,
4379 			       int *work_done, int work_to_do)
4380 {
4381 	struct net_device *netdev = adapter->netdev;
4382 	struct pci_dev *pdev = adapter->pdev;
4383 	struct e1000_rx_desc *rx_desc, *next_rxd;
4384 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4385 	u32 length;
4386 	unsigned int i;
4387 	int cleaned_count = 0;
4388 	bool cleaned = false;
4389 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4390 
4391 	i = rx_ring->next_to_clean;
4392 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4393 	buffer_info = &rx_ring->buffer_info[i];
4394 
4395 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4396 		struct sk_buff *skb;
4397 		u8 *data;
4398 		u8 status;
4399 
4400 		if (*work_done >= work_to_do)
4401 			break;
4402 		(*work_done)++;
4403 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4404 
4405 		status = rx_desc->status;
4406 		length = le16_to_cpu(rx_desc->length);
4407 
4408 		data = buffer_info->rxbuf.data;
4409 		prefetch(data);
4410 		skb = e1000_copybreak(adapter, buffer_info, length, data);
4411 		if (!skb) {
4412 			unsigned int frag_len = e1000_frag_len(adapter);
4413 
4414 			skb = build_skb(data - E1000_HEADROOM, frag_len);
4415 			if (!skb) {
4416 				adapter->alloc_rx_buff_failed++;
4417 				break;
4418 			}
4419 
4420 			skb_reserve(skb, E1000_HEADROOM);
4421 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4422 					 adapter->rx_buffer_len,
4423 					 DMA_FROM_DEVICE);
4424 			buffer_info->dma = 0;
4425 			buffer_info->rxbuf.data = NULL;
4426 		}
4427 
4428 		if (++i == rx_ring->count)
4429 			i = 0;
4430 
4431 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4432 		prefetch(next_rxd);
4433 
4434 		next_buffer = &rx_ring->buffer_info[i];
4435 
4436 		cleaned = true;
4437 		cleaned_count++;
4438 
4439 		/* !EOP means multiple descriptors were used to store a single
4440 		 * packet, if thats the case we need to toss it.  In fact, we
4441 		 * to toss every packet with the EOP bit clear and the next
4442 		 * frame that _does_ have the EOP bit set, as it is by
4443 		 * definition only a frame fragment
4444 		 */
4445 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4446 			adapter->discarding = true;
4447 
4448 		if (adapter->discarding) {
4449 			/* All receives must fit into a single buffer */
4450 			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4451 			dev_kfree_skb(skb);
4452 			if (status & E1000_RXD_STAT_EOP)
4453 				adapter->discarding = false;
4454 			goto next_desc;
4455 		}
4456 
4457 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4458 			if (e1000_tbi_should_accept(adapter, status,
4459 						    rx_desc->errors,
4460 						    length, data)) {
4461 				length--;
4462 			} else if (netdev->features & NETIF_F_RXALL) {
4463 				goto process_skb;
4464 			} else {
4465 				dev_kfree_skb(skb);
4466 				goto next_desc;
4467 			}
4468 		}
4469 
4470 process_skb:
4471 		total_rx_bytes += (length - 4); /* don't count FCS */
4472 		total_rx_packets++;
4473 
4474 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4475 			/* adjust length to remove Ethernet CRC, this must be
4476 			 * done after the TBI_ACCEPT workaround above
4477 			 */
4478 			length -= 4;
4479 
4480 		if (buffer_info->rxbuf.data == NULL)
4481 			skb_put(skb, length);
4482 		else /* copybreak skb */
4483 			skb_trim(skb, length);
4484 
4485 		/* Receive Checksum Offload */
4486 		e1000_rx_checksum(adapter,
4487 				  (u32)(status) |
4488 				  ((u32)(rx_desc->errors) << 24),
4489 				  le16_to_cpu(rx_desc->csum), skb);
4490 
4491 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4492 
4493 next_desc:
4494 		rx_desc->status = 0;
4495 
4496 		/* return some buffers to hardware, one at a time is too slow */
4497 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4498 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4499 			cleaned_count = 0;
4500 		}
4501 
4502 		/* use prefetched values */
4503 		rx_desc = next_rxd;
4504 		buffer_info = next_buffer;
4505 	}
4506 	rx_ring->next_to_clean = i;
4507 
4508 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4509 	if (cleaned_count)
4510 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4511 
4512 	adapter->total_rx_packets += total_rx_packets;
4513 	adapter->total_rx_bytes += total_rx_bytes;
4514 	netdev->stats.rx_bytes += total_rx_bytes;
4515 	netdev->stats.rx_packets += total_rx_packets;
4516 	return cleaned;
4517 }
4518 
4519 /**
4520  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4521  * @adapter: address of board private structure
4522  * @rx_ring: pointer to receive ring structure
4523  * @cleaned_count: number of buffers to allocate this pass
4524  **/
4525 static void
4526 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4527 			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4528 {
4529 	struct pci_dev *pdev = adapter->pdev;
4530 	struct e1000_rx_desc *rx_desc;
4531 	struct e1000_rx_buffer *buffer_info;
4532 	unsigned int i;
4533 
4534 	i = rx_ring->next_to_use;
4535 	buffer_info = &rx_ring->buffer_info[i];
4536 
4537 	while (cleaned_count--) {
4538 		/* allocate a new page if necessary */
4539 		if (!buffer_info->rxbuf.page) {
4540 			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4541 			if (unlikely(!buffer_info->rxbuf.page)) {
4542 				adapter->alloc_rx_buff_failed++;
4543 				break;
4544 			}
4545 		}
4546 
4547 		if (!buffer_info->dma) {
4548 			buffer_info->dma = dma_map_page(&pdev->dev,
4549 							buffer_info->rxbuf.page, 0,
4550 							adapter->rx_buffer_len,
4551 							DMA_FROM_DEVICE);
4552 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4553 				put_page(buffer_info->rxbuf.page);
4554 				buffer_info->rxbuf.page = NULL;
4555 				buffer_info->dma = 0;
4556 				adapter->alloc_rx_buff_failed++;
4557 				break;
4558 			}
4559 		}
4560 
4561 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4562 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4563 
4564 		if (unlikely(++i == rx_ring->count))
4565 			i = 0;
4566 		buffer_info = &rx_ring->buffer_info[i];
4567 	}
4568 
4569 	if (likely(rx_ring->next_to_use != i)) {
4570 		rx_ring->next_to_use = i;
4571 		if (unlikely(i-- == 0))
4572 			i = (rx_ring->count - 1);
4573 
4574 		/* Force memory writes to complete before letting h/w
4575 		 * know there are new descriptors to fetch.  (Only
4576 		 * applicable for weak-ordered memory model archs,
4577 		 * such as IA-64).
4578 		 */
4579 		wmb();
4580 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4581 	}
4582 }
4583 
4584 /**
4585  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4586  * @adapter: address of board private structure
4587  **/
4588 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4589 				   struct e1000_rx_ring *rx_ring,
4590 				   int cleaned_count)
4591 {
4592 	struct e1000_hw *hw = &adapter->hw;
4593 	struct pci_dev *pdev = adapter->pdev;
4594 	struct e1000_rx_desc *rx_desc;
4595 	struct e1000_rx_buffer *buffer_info;
4596 	unsigned int i;
4597 	unsigned int bufsz = adapter->rx_buffer_len;
4598 
4599 	i = rx_ring->next_to_use;
4600 	buffer_info = &rx_ring->buffer_info[i];
4601 
4602 	while (cleaned_count--) {
4603 		void *data;
4604 
4605 		if (buffer_info->rxbuf.data)
4606 			goto skip;
4607 
4608 		data = e1000_alloc_frag(adapter);
4609 		if (!data) {
4610 			/* Better luck next round */
4611 			adapter->alloc_rx_buff_failed++;
4612 			break;
4613 		}
4614 
4615 		/* Fix for errata 23, can't cross 64kB boundary */
4616 		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4617 			void *olddata = data;
4618 			e_err(rx_err, "skb align check failed: %u bytes at "
4619 			      "%p\n", bufsz, data);
4620 			/* Try again, without freeing the previous */
4621 			data = e1000_alloc_frag(adapter);
4622 			/* Failed allocation, critical failure */
4623 			if (!data) {
4624 				skb_free_frag(olddata);
4625 				adapter->alloc_rx_buff_failed++;
4626 				break;
4627 			}
4628 
4629 			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4630 				/* give up */
4631 				skb_free_frag(data);
4632 				skb_free_frag(olddata);
4633 				adapter->alloc_rx_buff_failed++;
4634 				break;
4635 			}
4636 
4637 			/* Use new allocation */
4638 			skb_free_frag(olddata);
4639 		}
4640 		buffer_info->dma = dma_map_single(&pdev->dev,
4641 						  data,
4642 						  adapter->rx_buffer_len,
4643 						  DMA_FROM_DEVICE);
4644 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4645 			skb_free_frag(data);
4646 			buffer_info->dma = 0;
4647 			adapter->alloc_rx_buff_failed++;
4648 			break;
4649 		}
4650 
4651 		/* XXX if it was allocated cleanly it will never map to a
4652 		 * boundary crossing
4653 		 */
4654 
4655 		/* Fix for errata 23, can't cross 64kB boundary */
4656 		if (!e1000_check_64k_bound(adapter,
4657 					(void *)(unsigned long)buffer_info->dma,
4658 					adapter->rx_buffer_len)) {
4659 			e_err(rx_err, "dma align check failed: %u bytes at "
4660 			      "%p\n", adapter->rx_buffer_len,
4661 			      (void *)(unsigned long)buffer_info->dma);
4662 
4663 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4664 					 adapter->rx_buffer_len,
4665 					 DMA_FROM_DEVICE);
4666 
4667 			skb_free_frag(data);
4668 			buffer_info->rxbuf.data = NULL;
4669 			buffer_info->dma = 0;
4670 
4671 			adapter->alloc_rx_buff_failed++;
4672 			break;
4673 		}
4674 		buffer_info->rxbuf.data = data;
4675  skip:
4676 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4677 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4678 
4679 		if (unlikely(++i == rx_ring->count))
4680 			i = 0;
4681 		buffer_info = &rx_ring->buffer_info[i];
4682 	}
4683 
4684 	if (likely(rx_ring->next_to_use != i)) {
4685 		rx_ring->next_to_use = i;
4686 		if (unlikely(i-- == 0))
4687 			i = (rx_ring->count - 1);
4688 
4689 		/* Force memory writes to complete before letting h/w
4690 		 * know there are new descriptors to fetch.  (Only
4691 		 * applicable for weak-ordered memory model archs,
4692 		 * such as IA-64).
4693 		 */
4694 		wmb();
4695 		writel(i, hw->hw_addr + rx_ring->rdt);
4696 	}
4697 }
4698 
4699 /**
4700  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4701  * @adapter:
4702  **/
4703 static void e1000_smartspeed(struct e1000_adapter *adapter)
4704 {
4705 	struct e1000_hw *hw = &adapter->hw;
4706 	u16 phy_status;
4707 	u16 phy_ctrl;
4708 
4709 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4710 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4711 		return;
4712 
4713 	if (adapter->smartspeed == 0) {
4714 		/* If Master/Slave config fault is asserted twice,
4715 		 * we assume back-to-back
4716 		 */
4717 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4718 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4719 			return;
4720 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4721 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4722 			return;
4723 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4724 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4725 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4726 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4727 					    phy_ctrl);
4728 			adapter->smartspeed++;
4729 			if (!e1000_phy_setup_autoneg(hw) &&
4730 			   !e1000_read_phy_reg(hw, PHY_CTRL,
4731 					       &phy_ctrl)) {
4732 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4733 					     MII_CR_RESTART_AUTO_NEG);
4734 				e1000_write_phy_reg(hw, PHY_CTRL,
4735 						    phy_ctrl);
4736 			}
4737 		}
4738 		return;
4739 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4740 		/* If still no link, perhaps using 2/3 pair cable */
4741 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4742 		phy_ctrl |= CR_1000T_MS_ENABLE;
4743 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4744 		if (!e1000_phy_setup_autoneg(hw) &&
4745 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4746 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4747 				     MII_CR_RESTART_AUTO_NEG);
4748 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4749 		}
4750 	}
4751 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4752 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4753 		adapter->smartspeed = 0;
4754 }
4755 
4756 /**
4757  * e1000_ioctl -
4758  * @netdev:
4759  * @ifreq:
4760  * @cmd:
4761  **/
4762 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4763 {
4764 	switch (cmd) {
4765 	case SIOCGMIIPHY:
4766 	case SIOCGMIIREG:
4767 	case SIOCSMIIREG:
4768 		return e1000_mii_ioctl(netdev, ifr, cmd);
4769 	default:
4770 		return -EOPNOTSUPP;
4771 	}
4772 }
4773 
4774 /**
4775  * e1000_mii_ioctl -
4776  * @netdev:
4777  * @ifreq:
4778  * @cmd:
4779  **/
4780 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4781 			   int cmd)
4782 {
4783 	struct e1000_adapter *adapter = netdev_priv(netdev);
4784 	struct e1000_hw *hw = &adapter->hw;
4785 	struct mii_ioctl_data *data = if_mii(ifr);
4786 	int retval;
4787 	u16 mii_reg;
4788 	unsigned long flags;
4789 
4790 	if (hw->media_type != e1000_media_type_copper)
4791 		return -EOPNOTSUPP;
4792 
4793 	switch (cmd) {
4794 	case SIOCGMIIPHY:
4795 		data->phy_id = hw->phy_addr;
4796 		break;
4797 	case SIOCGMIIREG:
4798 		spin_lock_irqsave(&adapter->stats_lock, flags);
4799 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4800 				   &data->val_out)) {
4801 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4802 			return -EIO;
4803 		}
4804 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4805 		break;
4806 	case SIOCSMIIREG:
4807 		if (data->reg_num & ~(0x1F))
4808 			return -EFAULT;
4809 		mii_reg = data->val_in;
4810 		spin_lock_irqsave(&adapter->stats_lock, flags);
4811 		if (e1000_write_phy_reg(hw, data->reg_num,
4812 					mii_reg)) {
4813 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4814 			return -EIO;
4815 		}
4816 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4817 		if (hw->media_type == e1000_media_type_copper) {
4818 			switch (data->reg_num) {
4819 			case PHY_CTRL:
4820 				if (mii_reg & MII_CR_POWER_DOWN)
4821 					break;
4822 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4823 					hw->autoneg = 1;
4824 					hw->autoneg_advertised = 0x2F;
4825 				} else {
4826 					u32 speed;
4827 					if (mii_reg & 0x40)
4828 						speed = SPEED_1000;
4829 					else if (mii_reg & 0x2000)
4830 						speed = SPEED_100;
4831 					else
4832 						speed = SPEED_10;
4833 					retval = e1000_set_spd_dplx(
4834 						adapter, speed,
4835 						((mii_reg & 0x100)
4836 						 ? DUPLEX_FULL :
4837 						 DUPLEX_HALF));
4838 					if (retval)
4839 						return retval;
4840 				}
4841 				if (netif_running(adapter->netdev))
4842 					e1000_reinit_locked(adapter);
4843 				else
4844 					e1000_reset(adapter);
4845 				break;
4846 			case M88E1000_PHY_SPEC_CTRL:
4847 			case M88E1000_EXT_PHY_SPEC_CTRL:
4848 				if (e1000_phy_reset(hw))
4849 					return -EIO;
4850 				break;
4851 			}
4852 		} else {
4853 			switch (data->reg_num) {
4854 			case PHY_CTRL:
4855 				if (mii_reg & MII_CR_POWER_DOWN)
4856 					break;
4857 				if (netif_running(adapter->netdev))
4858 					e1000_reinit_locked(adapter);
4859 				else
4860 					e1000_reset(adapter);
4861 				break;
4862 			}
4863 		}
4864 		break;
4865 	default:
4866 		return -EOPNOTSUPP;
4867 	}
4868 	return E1000_SUCCESS;
4869 }
4870 
4871 void e1000_pci_set_mwi(struct e1000_hw *hw)
4872 {
4873 	struct e1000_adapter *adapter = hw->back;
4874 	int ret_val = pci_set_mwi(adapter->pdev);
4875 
4876 	if (ret_val)
4877 		e_err(probe, "Error in setting MWI\n");
4878 }
4879 
4880 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4881 {
4882 	struct e1000_adapter *adapter = hw->back;
4883 
4884 	pci_clear_mwi(adapter->pdev);
4885 }
4886 
4887 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4888 {
4889 	struct e1000_adapter *adapter = hw->back;
4890 	return pcix_get_mmrbc(adapter->pdev);
4891 }
4892 
4893 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4894 {
4895 	struct e1000_adapter *adapter = hw->back;
4896 	pcix_set_mmrbc(adapter->pdev, mmrbc);
4897 }
4898 
4899 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4900 {
4901 	outl(value, port);
4902 }
4903 
4904 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4905 {
4906 	u16 vid;
4907 
4908 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4909 		return true;
4910 	return false;
4911 }
4912 
4913 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4914 			      netdev_features_t features)
4915 {
4916 	struct e1000_hw *hw = &adapter->hw;
4917 	u32 ctrl;
4918 
4919 	ctrl = er32(CTRL);
4920 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4921 		/* enable VLAN tag insert/strip */
4922 		ctrl |= E1000_CTRL_VME;
4923 	} else {
4924 		/* disable VLAN tag insert/strip */
4925 		ctrl &= ~E1000_CTRL_VME;
4926 	}
4927 	ew32(CTRL, ctrl);
4928 }
4929 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4930 				     bool filter_on)
4931 {
4932 	struct e1000_hw *hw = &adapter->hw;
4933 	u32 rctl;
4934 
4935 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4936 		e1000_irq_disable(adapter);
4937 
4938 	__e1000_vlan_mode(adapter, adapter->netdev->features);
4939 	if (filter_on) {
4940 		/* enable VLAN receive filtering */
4941 		rctl = er32(RCTL);
4942 		rctl &= ~E1000_RCTL_CFIEN;
4943 		if (!(adapter->netdev->flags & IFF_PROMISC))
4944 			rctl |= E1000_RCTL_VFE;
4945 		ew32(RCTL, rctl);
4946 		e1000_update_mng_vlan(adapter);
4947 	} else {
4948 		/* disable VLAN receive filtering */
4949 		rctl = er32(RCTL);
4950 		rctl &= ~E1000_RCTL_VFE;
4951 		ew32(RCTL, rctl);
4952 	}
4953 
4954 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4955 		e1000_irq_enable(adapter);
4956 }
4957 
4958 static void e1000_vlan_mode(struct net_device *netdev,
4959 			    netdev_features_t features)
4960 {
4961 	struct e1000_adapter *adapter = netdev_priv(netdev);
4962 
4963 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4964 		e1000_irq_disable(adapter);
4965 
4966 	__e1000_vlan_mode(adapter, features);
4967 
4968 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4969 		e1000_irq_enable(adapter);
4970 }
4971 
4972 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4973 				 __be16 proto, u16 vid)
4974 {
4975 	struct e1000_adapter *adapter = netdev_priv(netdev);
4976 	struct e1000_hw *hw = &adapter->hw;
4977 	u32 vfta, index;
4978 
4979 	if ((hw->mng_cookie.status &
4980 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4981 	    (vid == adapter->mng_vlan_id))
4982 		return 0;
4983 
4984 	if (!e1000_vlan_used(adapter))
4985 		e1000_vlan_filter_on_off(adapter, true);
4986 
4987 	/* add VID to filter table */
4988 	index = (vid >> 5) & 0x7F;
4989 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4990 	vfta |= (1 << (vid & 0x1F));
4991 	e1000_write_vfta(hw, index, vfta);
4992 
4993 	set_bit(vid, adapter->active_vlans);
4994 
4995 	return 0;
4996 }
4997 
4998 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4999 				  __be16 proto, u16 vid)
5000 {
5001 	struct e1000_adapter *adapter = netdev_priv(netdev);
5002 	struct e1000_hw *hw = &adapter->hw;
5003 	u32 vfta, index;
5004 
5005 	if (!test_bit(__E1000_DOWN, &adapter->flags))
5006 		e1000_irq_disable(adapter);
5007 	if (!test_bit(__E1000_DOWN, &adapter->flags))
5008 		e1000_irq_enable(adapter);
5009 
5010 	/* remove VID from filter table */
5011 	index = (vid >> 5) & 0x7F;
5012 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
5013 	vfta &= ~(1 << (vid & 0x1F));
5014 	e1000_write_vfta(hw, index, vfta);
5015 
5016 	clear_bit(vid, adapter->active_vlans);
5017 
5018 	if (!e1000_vlan_used(adapter))
5019 		e1000_vlan_filter_on_off(adapter, false);
5020 
5021 	return 0;
5022 }
5023 
5024 static void e1000_restore_vlan(struct e1000_adapter *adapter)
5025 {
5026 	u16 vid;
5027 
5028 	if (!e1000_vlan_used(adapter))
5029 		return;
5030 
5031 	e1000_vlan_filter_on_off(adapter, true);
5032 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5033 		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5034 }
5035 
5036 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5037 {
5038 	struct e1000_hw *hw = &adapter->hw;
5039 
5040 	hw->autoneg = 0;
5041 
5042 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5043 	 * for the switch() below to work
5044 	 */
5045 	if ((spd & 1) || (dplx & ~1))
5046 		goto err_inval;
5047 
5048 	/* Fiber NICs only allow 1000 gbps Full duplex */
5049 	if ((hw->media_type == e1000_media_type_fiber) &&
5050 	    spd != SPEED_1000 &&
5051 	    dplx != DUPLEX_FULL)
5052 		goto err_inval;
5053 
5054 	switch (spd + dplx) {
5055 	case SPEED_10 + DUPLEX_HALF:
5056 		hw->forced_speed_duplex = e1000_10_half;
5057 		break;
5058 	case SPEED_10 + DUPLEX_FULL:
5059 		hw->forced_speed_duplex = e1000_10_full;
5060 		break;
5061 	case SPEED_100 + DUPLEX_HALF:
5062 		hw->forced_speed_duplex = e1000_100_half;
5063 		break;
5064 	case SPEED_100 + DUPLEX_FULL:
5065 		hw->forced_speed_duplex = e1000_100_full;
5066 		break;
5067 	case SPEED_1000 + DUPLEX_FULL:
5068 		hw->autoneg = 1;
5069 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5070 		break;
5071 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5072 	default:
5073 		goto err_inval;
5074 	}
5075 
5076 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5077 	hw->mdix = AUTO_ALL_MODES;
5078 
5079 	return 0;
5080 
5081 err_inval:
5082 	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5083 	return -EINVAL;
5084 }
5085 
5086 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5087 {
5088 	struct net_device *netdev = pci_get_drvdata(pdev);
5089 	struct e1000_adapter *adapter = netdev_priv(netdev);
5090 	struct e1000_hw *hw = &adapter->hw;
5091 	u32 ctrl, ctrl_ext, rctl, status;
5092 	u32 wufc = adapter->wol;
5093 #ifdef CONFIG_PM
5094 	int retval = 0;
5095 #endif
5096 
5097 	netif_device_detach(netdev);
5098 
5099 	if (netif_running(netdev)) {
5100 		int count = E1000_CHECK_RESET_COUNT;
5101 
5102 		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5103 			usleep_range(10000, 20000);
5104 
5105 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5106 		e1000_down(adapter);
5107 	}
5108 
5109 #ifdef CONFIG_PM
5110 	retval = pci_save_state(pdev);
5111 	if (retval)
5112 		return retval;
5113 #endif
5114 
5115 	status = er32(STATUS);
5116 	if (status & E1000_STATUS_LU)
5117 		wufc &= ~E1000_WUFC_LNKC;
5118 
5119 	if (wufc) {
5120 		e1000_setup_rctl(adapter);
5121 		e1000_set_rx_mode(netdev);
5122 
5123 		rctl = er32(RCTL);
5124 
5125 		/* turn on all-multi mode if wake on multicast is enabled */
5126 		if (wufc & E1000_WUFC_MC)
5127 			rctl |= E1000_RCTL_MPE;
5128 
5129 		/* enable receives in the hardware */
5130 		ew32(RCTL, rctl | E1000_RCTL_EN);
5131 
5132 		if (hw->mac_type >= e1000_82540) {
5133 			ctrl = er32(CTRL);
5134 			/* advertise wake from D3Cold */
5135 			#define E1000_CTRL_ADVD3WUC 0x00100000
5136 			/* phy power management enable */
5137 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5138 			ctrl |= E1000_CTRL_ADVD3WUC |
5139 				E1000_CTRL_EN_PHY_PWR_MGMT;
5140 			ew32(CTRL, ctrl);
5141 		}
5142 
5143 		if (hw->media_type == e1000_media_type_fiber ||
5144 		    hw->media_type == e1000_media_type_internal_serdes) {
5145 			/* keep the laser running in D3 */
5146 			ctrl_ext = er32(CTRL_EXT);
5147 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5148 			ew32(CTRL_EXT, ctrl_ext);
5149 		}
5150 
5151 		ew32(WUC, E1000_WUC_PME_EN);
5152 		ew32(WUFC, wufc);
5153 	} else {
5154 		ew32(WUC, 0);
5155 		ew32(WUFC, 0);
5156 	}
5157 
5158 	e1000_release_manageability(adapter);
5159 
5160 	*enable_wake = !!wufc;
5161 
5162 	/* make sure adapter isn't asleep if manageability is enabled */
5163 	if (adapter->en_mng_pt)
5164 		*enable_wake = true;
5165 
5166 	if (netif_running(netdev))
5167 		e1000_free_irq(adapter);
5168 
5169 	pci_disable_device(pdev);
5170 
5171 	return 0;
5172 }
5173 
5174 #ifdef CONFIG_PM
5175 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5176 {
5177 	int retval;
5178 	bool wake;
5179 
5180 	retval = __e1000_shutdown(pdev, &wake);
5181 	if (retval)
5182 		return retval;
5183 
5184 	if (wake) {
5185 		pci_prepare_to_sleep(pdev);
5186 	} else {
5187 		pci_wake_from_d3(pdev, false);
5188 		pci_set_power_state(pdev, PCI_D3hot);
5189 	}
5190 
5191 	return 0;
5192 }
5193 
5194 static int e1000_resume(struct pci_dev *pdev)
5195 {
5196 	struct net_device *netdev = pci_get_drvdata(pdev);
5197 	struct e1000_adapter *adapter = netdev_priv(netdev);
5198 	struct e1000_hw *hw = &adapter->hw;
5199 	u32 err;
5200 
5201 	pci_set_power_state(pdev, PCI_D0);
5202 	pci_restore_state(pdev);
5203 	pci_save_state(pdev);
5204 
5205 	if (adapter->need_ioport)
5206 		err = pci_enable_device(pdev);
5207 	else
5208 		err = pci_enable_device_mem(pdev);
5209 	if (err) {
5210 		pr_err("Cannot enable PCI device from suspend\n");
5211 		return err;
5212 	}
5213 	pci_set_master(pdev);
5214 
5215 	pci_enable_wake(pdev, PCI_D3hot, 0);
5216 	pci_enable_wake(pdev, PCI_D3cold, 0);
5217 
5218 	if (netif_running(netdev)) {
5219 		err = e1000_request_irq(adapter);
5220 		if (err)
5221 			return err;
5222 	}
5223 
5224 	e1000_power_up_phy(adapter);
5225 	e1000_reset(adapter);
5226 	ew32(WUS, ~0);
5227 
5228 	e1000_init_manageability(adapter);
5229 
5230 	if (netif_running(netdev))
5231 		e1000_up(adapter);
5232 
5233 	netif_device_attach(netdev);
5234 
5235 	return 0;
5236 }
5237 #endif
5238 
5239 static void e1000_shutdown(struct pci_dev *pdev)
5240 {
5241 	bool wake;
5242 
5243 	__e1000_shutdown(pdev, &wake);
5244 
5245 	if (system_state == SYSTEM_POWER_OFF) {
5246 		pci_wake_from_d3(pdev, wake);
5247 		pci_set_power_state(pdev, PCI_D3hot);
5248 	}
5249 }
5250 
5251 #ifdef CONFIG_NET_POLL_CONTROLLER
5252 /* Polling 'interrupt' - used by things like netconsole to send skbs
5253  * without having to re-enable interrupts. It's not called while
5254  * the interrupt routine is executing.
5255  */
5256 static void e1000_netpoll(struct net_device *netdev)
5257 {
5258 	struct e1000_adapter *adapter = netdev_priv(netdev);
5259 
5260 	disable_irq(adapter->pdev->irq);
5261 	e1000_intr(adapter->pdev->irq, netdev);
5262 	enable_irq(adapter->pdev->irq);
5263 }
5264 #endif
5265 
5266 /**
5267  * e1000_io_error_detected - called when PCI error is detected
5268  * @pdev: Pointer to PCI device
5269  * @state: The current pci connection state
5270  *
5271  * This function is called after a PCI bus error affecting
5272  * this device has been detected.
5273  */
5274 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5275 						pci_channel_state_t state)
5276 {
5277 	struct net_device *netdev = pci_get_drvdata(pdev);
5278 	struct e1000_adapter *adapter = netdev_priv(netdev);
5279 
5280 	netif_device_detach(netdev);
5281 
5282 	if (state == pci_channel_io_perm_failure)
5283 		return PCI_ERS_RESULT_DISCONNECT;
5284 
5285 	if (netif_running(netdev))
5286 		e1000_down(adapter);
5287 	pci_disable_device(pdev);
5288 
5289 	/* Request a slot slot reset. */
5290 	return PCI_ERS_RESULT_NEED_RESET;
5291 }
5292 
5293 /**
5294  * e1000_io_slot_reset - called after the pci bus has been reset.
5295  * @pdev: Pointer to PCI device
5296  *
5297  * Restart the card from scratch, as if from a cold-boot. Implementation
5298  * resembles the first-half of the e1000_resume routine.
5299  */
5300 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5301 {
5302 	struct net_device *netdev = pci_get_drvdata(pdev);
5303 	struct e1000_adapter *adapter = netdev_priv(netdev);
5304 	struct e1000_hw *hw = &adapter->hw;
5305 	int err;
5306 
5307 	if (adapter->need_ioport)
5308 		err = pci_enable_device(pdev);
5309 	else
5310 		err = pci_enable_device_mem(pdev);
5311 	if (err) {
5312 		pr_err("Cannot re-enable PCI device after reset.\n");
5313 		return PCI_ERS_RESULT_DISCONNECT;
5314 	}
5315 	pci_set_master(pdev);
5316 
5317 	pci_enable_wake(pdev, PCI_D3hot, 0);
5318 	pci_enable_wake(pdev, PCI_D3cold, 0);
5319 
5320 	e1000_reset(adapter);
5321 	ew32(WUS, ~0);
5322 
5323 	return PCI_ERS_RESULT_RECOVERED;
5324 }
5325 
5326 /**
5327  * e1000_io_resume - called when traffic can start flowing again.
5328  * @pdev: Pointer to PCI device
5329  *
5330  * This callback is called when the error recovery driver tells us that
5331  * its OK to resume normal operation. Implementation resembles the
5332  * second-half of the e1000_resume routine.
5333  */
5334 static void e1000_io_resume(struct pci_dev *pdev)
5335 {
5336 	struct net_device *netdev = pci_get_drvdata(pdev);
5337 	struct e1000_adapter *adapter = netdev_priv(netdev);
5338 
5339 	e1000_init_manageability(adapter);
5340 
5341 	if (netif_running(netdev)) {
5342 		if (e1000_up(adapter)) {
5343 			pr_info("can't bring device back up after reset\n");
5344 			return;
5345 		}
5346 	}
5347 
5348 	netif_device_attach(netdev);
5349 }
5350 
5351 /* e1000_main.c */
5352