1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35 
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41 
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static const struct pci_device_id e1000_pci_tbl[] = {
50 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 	/* required last entry */
88 	{0,}
89 };
90 
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92 
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106                              struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108                              struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110 
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125                                 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127                                 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 				    struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 			       struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 			       struct e1000_rx_ring *rx_ring,
143 			       int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 				     struct e1000_rx_ring *rx_ring,
146 				     int *work_done, int work_to_do);
147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148 				   struct e1000_rx_ring *rx_ring,
149 				   int cleaned_count);
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151 					 struct e1000_rx_ring *rx_ring,
152 					 int cleaned_count);
153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155 			   int cmd);
156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158 static void e1000_tx_timeout(struct net_device *dev);
159 static void e1000_reset_task(struct work_struct *work);
160 static void e1000_smartspeed(struct e1000_adapter *adapter);
161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162                                        struct sk_buff *skb);
163 
164 static bool e1000_vlan_used(struct e1000_adapter *adapter);
165 static void e1000_vlan_mode(struct net_device *netdev,
166 			    netdev_features_t features);
167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168 				     bool filter_on);
169 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
170 				 __be16 proto, u16 vid);
171 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
172 				  __be16 proto, u16 vid);
173 static void e1000_restore_vlan(struct e1000_adapter *adapter);
174 
175 #ifdef CONFIG_PM
176 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
177 static int e1000_resume(struct pci_dev *pdev);
178 #endif
179 static void e1000_shutdown(struct pci_dev *pdev);
180 
181 #ifdef CONFIG_NET_POLL_CONTROLLER
182 /* for netdump / net console */
183 static void e1000_netpoll (struct net_device *netdev);
184 #endif
185 
186 #define COPYBREAK_DEFAULT 256
187 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
188 module_param(copybreak, uint, 0644);
189 MODULE_PARM_DESC(copybreak,
190 	"Maximum size of packet that is copied to a new buffer on receive");
191 
192 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
193                      pci_channel_state_t state);
194 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
195 static void e1000_io_resume(struct pci_dev *pdev);
196 
197 static const struct pci_error_handlers e1000_err_handler = {
198 	.error_detected = e1000_io_error_detected,
199 	.slot_reset = e1000_io_slot_reset,
200 	.resume = e1000_io_resume,
201 };
202 
203 static struct pci_driver e1000_driver = {
204 	.name     = e1000_driver_name,
205 	.id_table = e1000_pci_tbl,
206 	.probe    = e1000_probe,
207 	.remove   = e1000_remove,
208 #ifdef CONFIG_PM
209 	/* Power Management Hooks */
210 	.suspend  = e1000_suspend,
211 	.resume   = e1000_resume,
212 #endif
213 	.shutdown = e1000_shutdown,
214 	.err_handler = &e1000_err_handler
215 };
216 
217 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
218 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
219 MODULE_LICENSE("GPL");
220 MODULE_VERSION(DRV_VERSION);
221 
222 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
223 static int debug = -1;
224 module_param(debug, int, 0);
225 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
226 
227 /**
228  * e1000_get_hw_dev - return device
229  * used by hardware layer to print debugging information
230  *
231  **/
232 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
233 {
234 	struct e1000_adapter *adapter = hw->back;
235 	return adapter->netdev;
236 }
237 
238 /**
239  * e1000_init_module - Driver Registration Routine
240  *
241  * e1000_init_module is the first routine called when the driver is
242  * loaded. All it does is register with the PCI subsystem.
243  **/
244 static int __init e1000_init_module(void)
245 {
246 	int ret;
247 	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
248 
249 	pr_info("%s\n", e1000_copyright);
250 
251 	ret = pci_register_driver(&e1000_driver);
252 	if (copybreak != COPYBREAK_DEFAULT) {
253 		if (copybreak == 0)
254 			pr_info("copybreak disabled\n");
255 		else
256 			pr_info("copybreak enabled for "
257 				   "packets <= %u bytes\n", copybreak);
258 	}
259 	return ret;
260 }
261 
262 module_init(e1000_init_module);
263 
264 /**
265  * e1000_exit_module - Driver Exit Cleanup Routine
266  *
267  * e1000_exit_module is called just before the driver is removed
268  * from memory.
269  **/
270 static void __exit e1000_exit_module(void)
271 {
272 	pci_unregister_driver(&e1000_driver);
273 }
274 
275 module_exit(e1000_exit_module);
276 
277 static int e1000_request_irq(struct e1000_adapter *adapter)
278 {
279 	struct net_device *netdev = adapter->netdev;
280 	irq_handler_t handler = e1000_intr;
281 	int irq_flags = IRQF_SHARED;
282 	int err;
283 
284 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
285 	                  netdev);
286 	if (err) {
287 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
288 	}
289 
290 	return err;
291 }
292 
293 static void e1000_free_irq(struct e1000_adapter *adapter)
294 {
295 	struct net_device *netdev = adapter->netdev;
296 
297 	free_irq(adapter->pdev->irq, netdev);
298 }
299 
300 /**
301  * e1000_irq_disable - Mask off interrupt generation on the NIC
302  * @adapter: board private structure
303  **/
304 static void e1000_irq_disable(struct e1000_adapter *adapter)
305 {
306 	struct e1000_hw *hw = &adapter->hw;
307 
308 	ew32(IMC, ~0);
309 	E1000_WRITE_FLUSH();
310 	synchronize_irq(adapter->pdev->irq);
311 }
312 
313 /**
314  * e1000_irq_enable - Enable default interrupt generation settings
315  * @adapter: board private structure
316  **/
317 static void e1000_irq_enable(struct e1000_adapter *adapter)
318 {
319 	struct e1000_hw *hw = &adapter->hw;
320 
321 	ew32(IMS, IMS_ENABLE_MASK);
322 	E1000_WRITE_FLUSH();
323 }
324 
325 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
326 {
327 	struct e1000_hw *hw = &adapter->hw;
328 	struct net_device *netdev = adapter->netdev;
329 	u16 vid = hw->mng_cookie.vlan_id;
330 	u16 old_vid = adapter->mng_vlan_id;
331 
332 	if (!e1000_vlan_used(adapter))
333 		return;
334 
335 	if (!test_bit(vid, adapter->active_vlans)) {
336 		if (hw->mng_cookie.status &
337 		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
338 			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
339 			adapter->mng_vlan_id = vid;
340 		} else {
341 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
342 		}
343 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
344 		    (vid != old_vid) &&
345 		    !test_bit(old_vid, adapter->active_vlans))
346 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
347 					       old_vid);
348 	} else {
349 		adapter->mng_vlan_id = vid;
350 	}
351 }
352 
353 static void e1000_init_manageability(struct e1000_adapter *adapter)
354 {
355 	struct e1000_hw *hw = &adapter->hw;
356 
357 	if (adapter->en_mng_pt) {
358 		u32 manc = er32(MANC);
359 
360 		/* disable hardware interception of ARP */
361 		manc &= ~(E1000_MANC_ARP_EN);
362 
363 		ew32(MANC, manc);
364 	}
365 }
366 
367 static void e1000_release_manageability(struct e1000_adapter *adapter)
368 {
369 	struct e1000_hw *hw = &adapter->hw;
370 
371 	if (adapter->en_mng_pt) {
372 		u32 manc = er32(MANC);
373 
374 		/* re-enable hardware interception of ARP */
375 		manc |= E1000_MANC_ARP_EN;
376 
377 		ew32(MANC, manc);
378 	}
379 }
380 
381 /**
382  * e1000_configure - configure the hardware for RX and TX
383  * @adapter = private board structure
384  **/
385 static void e1000_configure(struct e1000_adapter *adapter)
386 {
387 	struct net_device *netdev = adapter->netdev;
388 	int i;
389 
390 	e1000_set_rx_mode(netdev);
391 
392 	e1000_restore_vlan(adapter);
393 	e1000_init_manageability(adapter);
394 
395 	e1000_configure_tx(adapter);
396 	e1000_setup_rctl(adapter);
397 	e1000_configure_rx(adapter);
398 	/* call E1000_DESC_UNUSED which always leaves
399 	 * at least 1 descriptor unused to make sure
400 	 * next_to_use != next_to_clean
401 	 */
402 	for (i = 0; i < adapter->num_rx_queues; i++) {
403 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
404 		adapter->alloc_rx_buf(adapter, ring,
405 				      E1000_DESC_UNUSED(ring));
406 	}
407 }
408 
409 int e1000_up(struct e1000_adapter *adapter)
410 {
411 	struct e1000_hw *hw = &adapter->hw;
412 
413 	/* hardware has been reset, we need to reload some things */
414 	e1000_configure(adapter);
415 
416 	clear_bit(__E1000_DOWN, &adapter->flags);
417 
418 	napi_enable(&adapter->napi);
419 
420 	e1000_irq_enable(adapter);
421 
422 	netif_wake_queue(adapter->netdev);
423 
424 	/* fire a link change interrupt to start the watchdog */
425 	ew32(ICS, E1000_ICS_LSC);
426 	return 0;
427 }
428 
429 /**
430  * e1000_power_up_phy - restore link in case the phy was powered down
431  * @adapter: address of board private structure
432  *
433  * The phy may be powered down to save power and turn off link when the
434  * driver is unloaded and wake on lan is not enabled (among others)
435  * *** this routine MUST be followed by a call to e1000_reset ***
436  **/
437 void e1000_power_up_phy(struct e1000_adapter *adapter)
438 {
439 	struct e1000_hw *hw = &adapter->hw;
440 	u16 mii_reg = 0;
441 
442 	/* Just clear the power down bit to wake the phy back up */
443 	if (hw->media_type == e1000_media_type_copper) {
444 		/* according to the manual, the phy will retain its
445 		 * settings across a power-down/up cycle
446 		 */
447 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
448 		mii_reg &= ~MII_CR_POWER_DOWN;
449 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
450 	}
451 }
452 
453 static void e1000_power_down_phy(struct e1000_adapter *adapter)
454 {
455 	struct e1000_hw *hw = &adapter->hw;
456 
457 	/* Power down the PHY so no link is implied when interface is down *
458 	 * The PHY cannot be powered down if any of the following is true *
459 	 * (a) WoL is enabled
460 	 * (b) AMT is active
461 	 * (c) SoL/IDER session is active
462 	 */
463 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
464 	   hw->media_type == e1000_media_type_copper) {
465 		u16 mii_reg = 0;
466 
467 		switch (hw->mac_type) {
468 		case e1000_82540:
469 		case e1000_82545:
470 		case e1000_82545_rev_3:
471 		case e1000_82546:
472 		case e1000_ce4100:
473 		case e1000_82546_rev_3:
474 		case e1000_82541:
475 		case e1000_82541_rev_2:
476 		case e1000_82547:
477 		case e1000_82547_rev_2:
478 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
479 				goto out;
480 			break;
481 		default:
482 			goto out;
483 		}
484 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
485 		mii_reg |= MII_CR_POWER_DOWN;
486 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
487 		msleep(1);
488 	}
489 out:
490 	return;
491 }
492 
493 static void e1000_down_and_stop(struct e1000_adapter *adapter)
494 {
495 	set_bit(__E1000_DOWN, &adapter->flags);
496 
497 	cancel_delayed_work_sync(&adapter->watchdog_task);
498 
499 	/*
500 	 * Since the watchdog task can reschedule other tasks, we should cancel
501 	 * it first, otherwise we can run into the situation when a work is
502 	 * still running after the adapter has been turned down.
503 	 */
504 
505 	cancel_delayed_work_sync(&adapter->phy_info_task);
506 	cancel_delayed_work_sync(&adapter->fifo_stall_task);
507 
508 	/* Only kill reset task if adapter is not resetting */
509 	if (!test_bit(__E1000_RESETTING, &adapter->flags))
510 		cancel_work_sync(&adapter->reset_task);
511 }
512 
513 void e1000_down(struct e1000_adapter *adapter)
514 {
515 	struct e1000_hw *hw = &adapter->hw;
516 	struct net_device *netdev = adapter->netdev;
517 	u32 rctl, tctl;
518 
519 
520 	/* disable receives in the hardware */
521 	rctl = er32(RCTL);
522 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
523 	/* flush and sleep below */
524 
525 	netif_tx_disable(netdev);
526 
527 	/* disable transmits in the hardware */
528 	tctl = er32(TCTL);
529 	tctl &= ~E1000_TCTL_EN;
530 	ew32(TCTL, tctl);
531 	/* flush both disables and wait for them to finish */
532 	E1000_WRITE_FLUSH();
533 	msleep(10);
534 
535 	napi_disable(&adapter->napi);
536 
537 	e1000_irq_disable(adapter);
538 
539 	/* Setting DOWN must be after irq_disable to prevent
540 	 * a screaming interrupt.  Setting DOWN also prevents
541 	 * tasks from rescheduling.
542 	 */
543 	e1000_down_and_stop(adapter);
544 
545 	adapter->link_speed = 0;
546 	adapter->link_duplex = 0;
547 	netif_carrier_off(netdev);
548 
549 	e1000_reset(adapter);
550 	e1000_clean_all_tx_rings(adapter);
551 	e1000_clean_all_rx_rings(adapter);
552 }
553 
554 void e1000_reinit_locked(struct e1000_adapter *adapter)
555 {
556 	WARN_ON(in_interrupt());
557 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
558 		msleep(1);
559 	e1000_down(adapter);
560 	e1000_up(adapter);
561 	clear_bit(__E1000_RESETTING, &adapter->flags);
562 }
563 
564 void e1000_reset(struct e1000_adapter *adapter)
565 {
566 	struct e1000_hw *hw = &adapter->hw;
567 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
568 	bool legacy_pba_adjust = false;
569 	u16 hwm;
570 
571 	/* Repartition Pba for greater than 9k mtu
572 	 * To take effect CTRL.RST is required.
573 	 */
574 
575 	switch (hw->mac_type) {
576 	case e1000_82542_rev2_0:
577 	case e1000_82542_rev2_1:
578 	case e1000_82543:
579 	case e1000_82544:
580 	case e1000_82540:
581 	case e1000_82541:
582 	case e1000_82541_rev_2:
583 		legacy_pba_adjust = true;
584 		pba = E1000_PBA_48K;
585 		break;
586 	case e1000_82545:
587 	case e1000_82545_rev_3:
588 	case e1000_82546:
589 	case e1000_ce4100:
590 	case e1000_82546_rev_3:
591 		pba = E1000_PBA_48K;
592 		break;
593 	case e1000_82547:
594 	case e1000_82547_rev_2:
595 		legacy_pba_adjust = true;
596 		pba = E1000_PBA_30K;
597 		break;
598 	case e1000_undefined:
599 	case e1000_num_macs:
600 		break;
601 	}
602 
603 	if (legacy_pba_adjust) {
604 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
605 			pba -= 8; /* allocate more FIFO for Tx */
606 
607 		if (hw->mac_type == e1000_82547) {
608 			adapter->tx_fifo_head = 0;
609 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
610 			adapter->tx_fifo_size =
611 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
612 			atomic_set(&adapter->tx_fifo_stall, 0);
613 		}
614 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
615 		/* adjust PBA for jumbo frames */
616 		ew32(PBA, pba);
617 
618 		/* To maintain wire speed transmits, the Tx FIFO should be
619 		 * large enough to accommodate two full transmit packets,
620 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
621 		 * the Rx FIFO should be large enough to accommodate at least
622 		 * one full receive packet and is similarly rounded up and
623 		 * expressed in KB.
624 		 */
625 		pba = er32(PBA);
626 		/* upper 16 bits has Tx packet buffer allocation size in KB */
627 		tx_space = pba >> 16;
628 		/* lower 16 bits has Rx packet buffer allocation size in KB */
629 		pba &= 0xffff;
630 		/* the Tx fifo also stores 16 bytes of information about the Tx
631 		 * but don't include ethernet FCS because hardware appends it
632 		 */
633 		min_tx_space = (hw->max_frame_size +
634 		                sizeof(struct e1000_tx_desc) -
635 		                ETH_FCS_LEN) * 2;
636 		min_tx_space = ALIGN(min_tx_space, 1024);
637 		min_tx_space >>= 10;
638 		/* software strips receive CRC, so leave room for it */
639 		min_rx_space = hw->max_frame_size;
640 		min_rx_space = ALIGN(min_rx_space, 1024);
641 		min_rx_space >>= 10;
642 
643 		/* If current Tx allocation is less than the min Tx FIFO size,
644 		 * and the min Tx FIFO size is less than the current Rx FIFO
645 		 * allocation, take space away from current Rx allocation
646 		 */
647 		if (tx_space < min_tx_space &&
648 		    ((min_tx_space - tx_space) < pba)) {
649 			pba = pba - (min_tx_space - tx_space);
650 
651 			/* PCI/PCIx hardware has PBA alignment constraints */
652 			switch (hw->mac_type) {
653 			case e1000_82545 ... e1000_82546_rev_3:
654 				pba &= ~(E1000_PBA_8K - 1);
655 				break;
656 			default:
657 				break;
658 			}
659 
660 			/* if short on Rx space, Rx wins and must trump Tx
661 			 * adjustment or use Early Receive if available
662 			 */
663 			if (pba < min_rx_space)
664 				pba = min_rx_space;
665 		}
666 	}
667 
668 	ew32(PBA, pba);
669 
670 	/* flow control settings:
671 	 * The high water mark must be low enough to fit one full frame
672 	 * (or the size used for early receive) above it in the Rx FIFO.
673 	 * Set it to the lower of:
674 	 * - 90% of the Rx FIFO size, and
675 	 * - the full Rx FIFO size minus the early receive size (for parts
676 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
677 	 * - the full Rx FIFO size minus one full frame
678 	 */
679 	hwm = min(((pba << 10) * 9 / 10),
680 		  ((pba << 10) - hw->max_frame_size));
681 
682 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
683 	hw->fc_low_water = hw->fc_high_water - 8;
684 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
685 	hw->fc_send_xon = 1;
686 	hw->fc = hw->original_fc;
687 
688 	/* Allow time for pending master requests to run */
689 	e1000_reset_hw(hw);
690 	if (hw->mac_type >= e1000_82544)
691 		ew32(WUC, 0);
692 
693 	if (e1000_init_hw(hw))
694 		e_dev_err("Hardware Error\n");
695 	e1000_update_mng_vlan(adapter);
696 
697 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
698 	if (hw->mac_type >= e1000_82544 &&
699 	    hw->autoneg == 1 &&
700 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
701 		u32 ctrl = er32(CTRL);
702 		/* clear phy power management bit if we are in gig only mode,
703 		 * which if enabled will attempt negotiation to 100Mb, which
704 		 * can cause a loss of link at power off or driver unload
705 		 */
706 		ctrl &= ~E1000_CTRL_SWDPIN3;
707 		ew32(CTRL, ctrl);
708 	}
709 
710 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
711 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
712 
713 	e1000_reset_adaptive(hw);
714 	e1000_phy_get_info(hw, &adapter->phy_info);
715 
716 	e1000_release_manageability(adapter);
717 }
718 
719 /* Dump the eeprom for users having checksum issues */
720 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
721 {
722 	struct net_device *netdev = adapter->netdev;
723 	struct ethtool_eeprom eeprom;
724 	const struct ethtool_ops *ops = netdev->ethtool_ops;
725 	u8 *data;
726 	int i;
727 	u16 csum_old, csum_new = 0;
728 
729 	eeprom.len = ops->get_eeprom_len(netdev);
730 	eeprom.offset = 0;
731 
732 	data = kmalloc(eeprom.len, GFP_KERNEL);
733 	if (!data)
734 		return;
735 
736 	ops->get_eeprom(netdev, &eeprom, data);
737 
738 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
739 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
740 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
741 		csum_new += data[i] + (data[i + 1] << 8);
742 	csum_new = EEPROM_SUM - csum_new;
743 
744 	pr_err("/*********************/\n");
745 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
746 	pr_err("Calculated              : 0x%04x\n", csum_new);
747 
748 	pr_err("Offset    Values\n");
749 	pr_err("========  ======\n");
750 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
751 
752 	pr_err("Include this output when contacting your support provider.\n");
753 	pr_err("This is not a software error! Something bad happened to\n");
754 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
755 	pr_err("result in further problems, possibly loss of data,\n");
756 	pr_err("corruption or system hangs!\n");
757 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
758 	pr_err("which is invalid and requires you to set the proper MAC\n");
759 	pr_err("address manually before continuing to enable this network\n");
760 	pr_err("device. Please inspect the EEPROM dump and report the\n");
761 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
762 	pr_err("/*********************/\n");
763 
764 	kfree(data);
765 }
766 
767 /**
768  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
769  * @pdev: PCI device information struct
770  *
771  * Return true if an adapter needs ioport resources
772  **/
773 static int e1000_is_need_ioport(struct pci_dev *pdev)
774 {
775 	switch (pdev->device) {
776 	case E1000_DEV_ID_82540EM:
777 	case E1000_DEV_ID_82540EM_LOM:
778 	case E1000_DEV_ID_82540EP:
779 	case E1000_DEV_ID_82540EP_LOM:
780 	case E1000_DEV_ID_82540EP_LP:
781 	case E1000_DEV_ID_82541EI:
782 	case E1000_DEV_ID_82541EI_MOBILE:
783 	case E1000_DEV_ID_82541ER:
784 	case E1000_DEV_ID_82541ER_LOM:
785 	case E1000_DEV_ID_82541GI:
786 	case E1000_DEV_ID_82541GI_LF:
787 	case E1000_DEV_ID_82541GI_MOBILE:
788 	case E1000_DEV_ID_82544EI_COPPER:
789 	case E1000_DEV_ID_82544EI_FIBER:
790 	case E1000_DEV_ID_82544GC_COPPER:
791 	case E1000_DEV_ID_82544GC_LOM:
792 	case E1000_DEV_ID_82545EM_COPPER:
793 	case E1000_DEV_ID_82545EM_FIBER:
794 	case E1000_DEV_ID_82546EB_COPPER:
795 	case E1000_DEV_ID_82546EB_FIBER:
796 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
797 		return true;
798 	default:
799 		return false;
800 	}
801 }
802 
803 static netdev_features_t e1000_fix_features(struct net_device *netdev,
804 	netdev_features_t features)
805 {
806 	/* Since there is no support for separate Rx/Tx vlan accel
807 	 * enable/disable make sure Tx flag is always in same state as Rx.
808 	 */
809 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
810 		features |= NETIF_F_HW_VLAN_CTAG_TX;
811 	else
812 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
813 
814 	return features;
815 }
816 
817 static int e1000_set_features(struct net_device *netdev,
818 	netdev_features_t features)
819 {
820 	struct e1000_adapter *adapter = netdev_priv(netdev);
821 	netdev_features_t changed = features ^ netdev->features;
822 
823 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
824 		e1000_vlan_mode(netdev, features);
825 
826 	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
827 		return 0;
828 
829 	netdev->features = features;
830 	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
831 
832 	if (netif_running(netdev))
833 		e1000_reinit_locked(adapter);
834 	else
835 		e1000_reset(adapter);
836 
837 	return 0;
838 }
839 
840 static const struct net_device_ops e1000_netdev_ops = {
841 	.ndo_open		= e1000_open,
842 	.ndo_stop		= e1000_close,
843 	.ndo_start_xmit		= e1000_xmit_frame,
844 	.ndo_get_stats		= e1000_get_stats,
845 	.ndo_set_rx_mode	= e1000_set_rx_mode,
846 	.ndo_set_mac_address	= e1000_set_mac,
847 	.ndo_tx_timeout		= e1000_tx_timeout,
848 	.ndo_change_mtu		= e1000_change_mtu,
849 	.ndo_do_ioctl		= e1000_ioctl,
850 	.ndo_validate_addr	= eth_validate_addr,
851 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
852 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
853 #ifdef CONFIG_NET_POLL_CONTROLLER
854 	.ndo_poll_controller	= e1000_netpoll,
855 #endif
856 	.ndo_fix_features	= e1000_fix_features,
857 	.ndo_set_features	= e1000_set_features,
858 };
859 
860 /**
861  * e1000_init_hw_struct - initialize members of hw struct
862  * @adapter: board private struct
863  * @hw: structure used by e1000_hw.c
864  *
865  * Factors out initialization of the e1000_hw struct to its own function
866  * that can be called very early at init (just after struct allocation).
867  * Fields are initialized based on PCI device information and
868  * OS network device settings (MTU size).
869  * Returns negative error codes if MAC type setup fails.
870  */
871 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
872 				struct e1000_hw *hw)
873 {
874 	struct pci_dev *pdev = adapter->pdev;
875 
876 	/* PCI config space info */
877 	hw->vendor_id = pdev->vendor;
878 	hw->device_id = pdev->device;
879 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
880 	hw->subsystem_id = pdev->subsystem_device;
881 	hw->revision_id = pdev->revision;
882 
883 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
884 
885 	hw->max_frame_size = adapter->netdev->mtu +
886 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
887 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
888 
889 	/* identify the MAC */
890 	if (e1000_set_mac_type(hw)) {
891 		e_err(probe, "Unknown MAC Type\n");
892 		return -EIO;
893 	}
894 
895 	switch (hw->mac_type) {
896 	default:
897 		break;
898 	case e1000_82541:
899 	case e1000_82547:
900 	case e1000_82541_rev_2:
901 	case e1000_82547_rev_2:
902 		hw->phy_init_script = 1;
903 		break;
904 	}
905 
906 	e1000_set_media_type(hw);
907 	e1000_get_bus_info(hw);
908 
909 	hw->wait_autoneg_complete = false;
910 	hw->tbi_compatibility_en = true;
911 	hw->adaptive_ifs = true;
912 
913 	/* Copper options */
914 
915 	if (hw->media_type == e1000_media_type_copper) {
916 		hw->mdix = AUTO_ALL_MODES;
917 		hw->disable_polarity_correction = false;
918 		hw->master_slave = E1000_MASTER_SLAVE;
919 	}
920 
921 	return 0;
922 }
923 
924 /**
925  * e1000_probe - Device Initialization Routine
926  * @pdev: PCI device information struct
927  * @ent: entry in e1000_pci_tbl
928  *
929  * Returns 0 on success, negative on failure
930  *
931  * e1000_probe initializes an adapter identified by a pci_dev structure.
932  * The OS initialization, configuring of the adapter private structure,
933  * and a hardware reset occur.
934  **/
935 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
936 {
937 	struct net_device *netdev;
938 	struct e1000_adapter *adapter;
939 	struct e1000_hw *hw;
940 
941 	static int cards_found = 0;
942 	static int global_quad_port_a = 0; /* global ksp3 port a indication */
943 	int i, err, pci_using_dac;
944 	u16 eeprom_data = 0;
945 	u16 tmp = 0;
946 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
947 	int bars, need_ioport;
948 
949 	/* do not allocate ioport bars when not needed */
950 	need_ioport = e1000_is_need_ioport(pdev);
951 	if (need_ioport) {
952 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
953 		err = pci_enable_device(pdev);
954 	} else {
955 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
956 		err = pci_enable_device_mem(pdev);
957 	}
958 	if (err)
959 		return err;
960 
961 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
962 	if (err)
963 		goto err_pci_reg;
964 
965 	pci_set_master(pdev);
966 	err = pci_save_state(pdev);
967 	if (err)
968 		goto err_alloc_etherdev;
969 
970 	err = -ENOMEM;
971 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
972 	if (!netdev)
973 		goto err_alloc_etherdev;
974 
975 	SET_NETDEV_DEV(netdev, &pdev->dev);
976 
977 	pci_set_drvdata(pdev, netdev);
978 	adapter = netdev_priv(netdev);
979 	adapter->netdev = netdev;
980 	adapter->pdev = pdev;
981 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
982 	adapter->bars = bars;
983 	adapter->need_ioport = need_ioport;
984 
985 	hw = &adapter->hw;
986 	hw->back = adapter;
987 
988 	err = -EIO;
989 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
990 	if (!hw->hw_addr)
991 		goto err_ioremap;
992 
993 	if (adapter->need_ioport) {
994 		for (i = BAR_1; i <= BAR_5; i++) {
995 			if (pci_resource_len(pdev, i) == 0)
996 				continue;
997 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
998 				hw->io_base = pci_resource_start(pdev, i);
999 				break;
1000 			}
1001 		}
1002 	}
1003 
1004 	/* make ready for any if (hw->...) below */
1005 	err = e1000_init_hw_struct(adapter, hw);
1006 	if (err)
1007 		goto err_sw_init;
1008 
1009 	/* there is a workaround being applied below that limits
1010 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1011 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1012 	 */
1013 	pci_using_dac = 0;
1014 	if ((hw->bus_type == e1000_bus_type_pcix) &&
1015 	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1016 		pci_using_dac = 1;
1017 	} else {
1018 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1019 		if (err) {
1020 			pr_err("No usable DMA config, aborting\n");
1021 			goto err_dma;
1022 		}
1023 	}
1024 
1025 	netdev->netdev_ops = &e1000_netdev_ops;
1026 	e1000_set_ethtool_ops(netdev);
1027 	netdev->watchdog_timeo = 5 * HZ;
1028 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1029 
1030 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1031 
1032 	adapter->bd_number = cards_found;
1033 
1034 	/* setup the private structure */
1035 
1036 	err = e1000_sw_init(adapter);
1037 	if (err)
1038 		goto err_sw_init;
1039 
1040 	err = -EIO;
1041 	if (hw->mac_type == e1000_ce4100) {
1042 		hw->ce4100_gbe_mdio_base_virt =
1043 					ioremap(pci_resource_start(pdev, BAR_1),
1044 		                                pci_resource_len(pdev, BAR_1));
1045 
1046 		if (!hw->ce4100_gbe_mdio_base_virt)
1047 			goto err_mdio_ioremap;
1048 	}
1049 
1050 	if (hw->mac_type >= e1000_82543) {
1051 		netdev->hw_features = NETIF_F_SG |
1052 				   NETIF_F_HW_CSUM |
1053 				   NETIF_F_HW_VLAN_CTAG_RX;
1054 		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1055 				   NETIF_F_HW_VLAN_CTAG_FILTER;
1056 	}
1057 
1058 	if ((hw->mac_type >= e1000_82544) &&
1059 	   (hw->mac_type != e1000_82547))
1060 		netdev->hw_features |= NETIF_F_TSO;
1061 
1062 	netdev->priv_flags |= IFF_SUPP_NOFCS;
1063 
1064 	netdev->features |= netdev->hw_features;
1065 	netdev->hw_features |= (NETIF_F_RXCSUM |
1066 				NETIF_F_RXALL |
1067 				NETIF_F_RXFCS);
1068 
1069 	if (pci_using_dac) {
1070 		netdev->features |= NETIF_F_HIGHDMA;
1071 		netdev->vlan_features |= NETIF_F_HIGHDMA;
1072 	}
1073 
1074 	netdev->vlan_features |= (NETIF_F_TSO |
1075 				  NETIF_F_HW_CSUM |
1076 				  NETIF_F_SG);
1077 
1078 	netdev->priv_flags |= IFF_UNICAST_FLT;
1079 
1080 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1081 
1082 	/* initialize eeprom parameters */
1083 	if (e1000_init_eeprom_params(hw)) {
1084 		e_err(probe, "EEPROM initialization failed\n");
1085 		goto err_eeprom;
1086 	}
1087 
1088 	/* before reading the EEPROM, reset the controller to
1089 	 * put the device in a known good starting state
1090 	 */
1091 
1092 	e1000_reset_hw(hw);
1093 
1094 	/* make sure the EEPROM is good */
1095 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1096 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1097 		e1000_dump_eeprom(adapter);
1098 		/* set MAC address to all zeroes to invalidate and temporary
1099 		 * disable this device for the user. This blocks regular
1100 		 * traffic while still permitting ethtool ioctls from reaching
1101 		 * the hardware as well as allowing the user to run the
1102 		 * interface after manually setting a hw addr using
1103 		 * `ip set address`
1104 		 */
1105 		memset(hw->mac_addr, 0, netdev->addr_len);
1106 	} else {
1107 		/* copy the MAC address out of the EEPROM */
1108 		if (e1000_read_mac_addr(hw))
1109 			e_err(probe, "EEPROM Read Error\n");
1110 	}
1111 	/* don't block initalization here due to bad MAC address */
1112 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1113 
1114 	if (!is_valid_ether_addr(netdev->dev_addr))
1115 		e_err(probe, "Invalid MAC Address\n");
1116 
1117 
1118 	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1119 	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1120 			  e1000_82547_tx_fifo_stall_task);
1121 	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1122 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1123 
1124 	e1000_check_options(adapter);
1125 
1126 	/* Initial Wake on LAN setting
1127 	 * If APM wake is enabled in the EEPROM,
1128 	 * enable the ACPI Magic Packet filter
1129 	 */
1130 
1131 	switch (hw->mac_type) {
1132 	case e1000_82542_rev2_0:
1133 	case e1000_82542_rev2_1:
1134 	case e1000_82543:
1135 		break;
1136 	case e1000_82544:
1137 		e1000_read_eeprom(hw,
1138 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1139 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1140 		break;
1141 	case e1000_82546:
1142 	case e1000_82546_rev_3:
1143 		if (er32(STATUS) & E1000_STATUS_FUNC_1){
1144 			e1000_read_eeprom(hw,
1145 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1146 			break;
1147 		}
1148 		/* Fall Through */
1149 	default:
1150 		e1000_read_eeprom(hw,
1151 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1152 		break;
1153 	}
1154 	if (eeprom_data & eeprom_apme_mask)
1155 		adapter->eeprom_wol |= E1000_WUFC_MAG;
1156 
1157 	/* now that we have the eeprom settings, apply the special cases
1158 	 * where the eeprom may be wrong or the board simply won't support
1159 	 * wake on lan on a particular port
1160 	 */
1161 	switch (pdev->device) {
1162 	case E1000_DEV_ID_82546GB_PCIE:
1163 		adapter->eeprom_wol = 0;
1164 		break;
1165 	case E1000_DEV_ID_82546EB_FIBER:
1166 	case E1000_DEV_ID_82546GB_FIBER:
1167 		/* Wake events only supported on port A for dual fiber
1168 		 * regardless of eeprom setting
1169 		 */
1170 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1171 			adapter->eeprom_wol = 0;
1172 		break;
1173 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1174 		/* if quad port adapter, disable WoL on all but port A */
1175 		if (global_quad_port_a != 0)
1176 			adapter->eeprom_wol = 0;
1177 		else
1178 			adapter->quad_port_a = true;
1179 		/* Reset for multiple quad port adapters */
1180 		if (++global_quad_port_a == 4)
1181 			global_quad_port_a = 0;
1182 		break;
1183 	}
1184 
1185 	/* initialize the wol settings based on the eeprom settings */
1186 	adapter->wol = adapter->eeprom_wol;
1187 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1188 
1189 	/* Auto detect PHY address */
1190 	if (hw->mac_type == e1000_ce4100) {
1191 		for (i = 0; i < 32; i++) {
1192 			hw->phy_addr = i;
1193 			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1194 			if (tmp == 0 || tmp == 0xFF) {
1195 				if (i == 31)
1196 					goto err_eeprom;
1197 				continue;
1198 			} else
1199 				break;
1200 		}
1201 	}
1202 
1203 	/* reset the hardware with the new settings */
1204 	e1000_reset(adapter);
1205 
1206 	strcpy(netdev->name, "eth%d");
1207 	err = register_netdev(netdev);
1208 	if (err)
1209 		goto err_register;
1210 
1211 	e1000_vlan_filter_on_off(adapter, false);
1212 
1213 	/* print bus type/speed/width info */
1214 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1215 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1216 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1217 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1218 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1219 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1220 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1221 	       netdev->dev_addr);
1222 
1223 	/* carrier off reporting is important to ethtool even BEFORE open */
1224 	netif_carrier_off(netdev);
1225 
1226 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1227 
1228 	cards_found++;
1229 	return 0;
1230 
1231 err_register:
1232 err_eeprom:
1233 	e1000_phy_hw_reset(hw);
1234 
1235 	if (hw->flash_address)
1236 		iounmap(hw->flash_address);
1237 	kfree(adapter->tx_ring);
1238 	kfree(adapter->rx_ring);
1239 err_dma:
1240 err_sw_init:
1241 err_mdio_ioremap:
1242 	iounmap(hw->ce4100_gbe_mdio_base_virt);
1243 	iounmap(hw->hw_addr);
1244 err_ioremap:
1245 	free_netdev(netdev);
1246 err_alloc_etherdev:
1247 	pci_release_selected_regions(pdev, bars);
1248 err_pci_reg:
1249 	pci_disable_device(pdev);
1250 	return err;
1251 }
1252 
1253 /**
1254  * e1000_remove - Device Removal Routine
1255  * @pdev: PCI device information struct
1256  *
1257  * e1000_remove is called by the PCI subsystem to alert the driver
1258  * that it should release a PCI device.  The could be caused by a
1259  * Hot-Plug event, or because the driver is going to be removed from
1260  * memory.
1261  **/
1262 static void e1000_remove(struct pci_dev *pdev)
1263 {
1264 	struct net_device *netdev = pci_get_drvdata(pdev);
1265 	struct e1000_adapter *adapter = netdev_priv(netdev);
1266 	struct e1000_hw *hw = &adapter->hw;
1267 
1268 	e1000_down_and_stop(adapter);
1269 	e1000_release_manageability(adapter);
1270 
1271 	unregister_netdev(netdev);
1272 
1273 	e1000_phy_hw_reset(hw);
1274 
1275 	kfree(adapter->tx_ring);
1276 	kfree(adapter->rx_ring);
1277 
1278 	if (hw->mac_type == e1000_ce4100)
1279 		iounmap(hw->ce4100_gbe_mdio_base_virt);
1280 	iounmap(hw->hw_addr);
1281 	if (hw->flash_address)
1282 		iounmap(hw->flash_address);
1283 	pci_release_selected_regions(pdev, adapter->bars);
1284 
1285 	free_netdev(netdev);
1286 
1287 	pci_disable_device(pdev);
1288 }
1289 
1290 /**
1291  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1292  * @adapter: board private structure to initialize
1293  *
1294  * e1000_sw_init initializes the Adapter private data structure.
1295  * e1000_init_hw_struct MUST be called before this function
1296  **/
1297 static int e1000_sw_init(struct e1000_adapter *adapter)
1298 {
1299 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1300 
1301 	adapter->num_tx_queues = 1;
1302 	adapter->num_rx_queues = 1;
1303 
1304 	if (e1000_alloc_queues(adapter)) {
1305 		e_err(probe, "Unable to allocate memory for queues\n");
1306 		return -ENOMEM;
1307 	}
1308 
1309 	/* Explicitly disable IRQ since the NIC can be in any state. */
1310 	e1000_irq_disable(adapter);
1311 
1312 	spin_lock_init(&adapter->stats_lock);
1313 
1314 	set_bit(__E1000_DOWN, &adapter->flags);
1315 
1316 	return 0;
1317 }
1318 
1319 /**
1320  * e1000_alloc_queues - Allocate memory for all rings
1321  * @adapter: board private structure to initialize
1322  *
1323  * We allocate one ring per queue at run-time since we don't know the
1324  * number of queues at compile-time.
1325  **/
1326 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1327 {
1328 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1329 	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
1330 	if (!adapter->tx_ring)
1331 		return -ENOMEM;
1332 
1333 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1334 	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
1335 	if (!adapter->rx_ring) {
1336 		kfree(adapter->tx_ring);
1337 		return -ENOMEM;
1338 	}
1339 
1340 	return E1000_SUCCESS;
1341 }
1342 
1343 /**
1344  * e1000_open - Called when a network interface is made active
1345  * @netdev: network interface device structure
1346  *
1347  * Returns 0 on success, negative value on failure
1348  *
1349  * The open entry point is called when a network interface is made
1350  * active by the system (IFF_UP).  At this point all resources needed
1351  * for transmit and receive operations are allocated, the interrupt
1352  * handler is registered with the OS, the watchdog task is started,
1353  * and the stack is notified that the interface is ready.
1354  **/
1355 static int e1000_open(struct net_device *netdev)
1356 {
1357 	struct e1000_adapter *adapter = netdev_priv(netdev);
1358 	struct e1000_hw *hw = &adapter->hw;
1359 	int err;
1360 
1361 	/* disallow open during test */
1362 	if (test_bit(__E1000_TESTING, &adapter->flags))
1363 		return -EBUSY;
1364 
1365 	netif_carrier_off(netdev);
1366 
1367 	/* allocate transmit descriptors */
1368 	err = e1000_setup_all_tx_resources(adapter);
1369 	if (err)
1370 		goto err_setup_tx;
1371 
1372 	/* allocate receive descriptors */
1373 	err = e1000_setup_all_rx_resources(adapter);
1374 	if (err)
1375 		goto err_setup_rx;
1376 
1377 	e1000_power_up_phy(adapter);
1378 
1379 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1380 	if ((hw->mng_cookie.status &
1381 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1382 		e1000_update_mng_vlan(adapter);
1383 	}
1384 
1385 	/* before we allocate an interrupt, we must be ready to handle it.
1386 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1387 	 * as soon as we call pci_request_irq, so we have to setup our
1388 	 * clean_rx handler before we do so.
1389 	 */
1390 	e1000_configure(adapter);
1391 
1392 	err = e1000_request_irq(adapter);
1393 	if (err)
1394 		goto err_req_irq;
1395 
1396 	/* From here on the code is the same as e1000_up() */
1397 	clear_bit(__E1000_DOWN, &adapter->flags);
1398 
1399 	napi_enable(&adapter->napi);
1400 
1401 	e1000_irq_enable(adapter);
1402 
1403 	netif_start_queue(netdev);
1404 
1405 	/* fire a link status change interrupt to start the watchdog */
1406 	ew32(ICS, E1000_ICS_LSC);
1407 
1408 	return E1000_SUCCESS;
1409 
1410 err_req_irq:
1411 	e1000_power_down_phy(adapter);
1412 	e1000_free_all_rx_resources(adapter);
1413 err_setup_rx:
1414 	e1000_free_all_tx_resources(adapter);
1415 err_setup_tx:
1416 	e1000_reset(adapter);
1417 
1418 	return err;
1419 }
1420 
1421 /**
1422  * e1000_close - Disables a network interface
1423  * @netdev: network interface device structure
1424  *
1425  * Returns 0, this is not allowed to fail
1426  *
1427  * The close entry point is called when an interface is de-activated
1428  * by the OS.  The hardware is still under the drivers control, but
1429  * needs to be disabled.  A global MAC reset is issued to stop the
1430  * hardware, and all transmit and receive resources are freed.
1431  **/
1432 static int e1000_close(struct net_device *netdev)
1433 {
1434 	struct e1000_adapter *adapter = netdev_priv(netdev);
1435 	struct e1000_hw *hw = &adapter->hw;
1436 	int count = E1000_CHECK_RESET_COUNT;
1437 
1438 	while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1439 		usleep_range(10000, 20000);
1440 
1441 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1442 	e1000_down(adapter);
1443 	e1000_power_down_phy(adapter);
1444 	e1000_free_irq(adapter);
1445 
1446 	e1000_free_all_tx_resources(adapter);
1447 	e1000_free_all_rx_resources(adapter);
1448 
1449 	/* kill manageability vlan ID if supported, but not if a vlan with
1450 	 * the same ID is registered on the host OS (let 8021q kill it)
1451 	 */
1452 	if ((hw->mng_cookie.status &
1453 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1454 	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1455 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1456 				       adapter->mng_vlan_id);
1457 	}
1458 
1459 	return 0;
1460 }
1461 
1462 /**
1463  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1464  * @adapter: address of board private structure
1465  * @start: address of beginning of memory
1466  * @len: length of memory
1467  **/
1468 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1469 				  unsigned long len)
1470 {
1471 	struct e1000_hw *hw = &adapter->hw;
1472 	unsigned long begin = (unsigned long)start;
1473 	unsigned long end = begin + len;
1474 
1475 	/* First rev 82545 and 82546 need to not allow any memory
1476 	 * write location to cross 64k boundary due to errata 23
1477 	 */
1478 	if (hw->mac_type == e1000_82545 ||
1479 	    hw->mac_type == e1000_ce4100 ||
1480 	    hw->mac_type == e1000_82546) {
1481 		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1482 	}
1483 
1484 	return true;
1485 }
1486 
1487 /**
1488  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1489  * @adapter: board private structure
1490  * @txdr:    tx descriptor ring (for a specific queue) to setup
1491  *
1492  * Return 0 on success, negative on failure
1493  **/
1494 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1495 				    struct e1000_tx_ring *txdr)
1496 {
1497 	struct pci_dev *pdev = adapter->pdev;
1498 	int size;
1499 
1500 	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1501 	txdr->buffer_info = vzalloc(size);
1502 	if (!txdr->buffer_info)
1503 		return -ENOMEM;
1504 
1505 	/* round up to nearest 4K */
1506 
1507 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1508 	txdr->size = ALIGN(txdr->size, 4096);
1509 
1510 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1511 					GFP_KERNEL);
1512 	if (!txdr->desc) {
1513 setup_tx_desc_die:
1514 		vfree(txdr->buffer_info);
1515 		return -ENOMEM;
1516 	}
1517 
1518 	/* Fix for errata 23, can't cross 64kB boundary */
1519 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1520 		void *olddesc = txdr->desc;
1521 		dma_addr_t olddma = txdr->dma;
1522 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1523 		      txdr->size, txdr->desc);
1524 		/* Try again, without freeing the previous */
1525 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1526 						&txdr->dma, GFP_KERNEL);
1527 		/* Failed allocation, critical failure */
1528 		if (!txdr->desc) {
1529 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1530 					  olddma);
1531 			goto setup_tx_desc_die;
1532 		}
1533 
1534 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1535 			/* give up */
1536 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1537 					  txdr->dma);
1538 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1539 					  olddma);
1540 			e_err(probe, "Unable to allocate aligned memory "
1541 			      "for the transmit descriptor ring\n");
1542 			vfree(txdr->buffer_info);
1543 			return -ENOMEM;
1544 		} else {
1545 			/* Free old allocation, new allocation was successful */
1546 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547 					  olddma);
1548 		}
1549 	}
1550 	memset(txdr->desc, 0, txdr->size);
1551 
1552 	txdr->next_to_use = 0;
1553 	txdr->next_to_clean = 0;
1554 
1555 	return 0;
1556 }
1557 
1558 /**
1559  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1560  * 				  (Descriptors) for all queues
1561  * @adapter: board private structure
1562  *
1563  * Return 0 on success, negative on failure
1564  **/
1565 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1566 {
1567 	int i, err = 0;
1568 
1569 	for (i = 0; i < adapter->num_tx_queues; i++) {
1570 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1571 		if (err) {
1572 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1573 			for (i-- ; i >= 0; i--)
1574 				e1000_free_tx_resources(adapter,
1575 							&adapter->tx_ring[i]);
1576 			break;
1577 		}
1578 	}
1579 
1580 	return err;
1581 }
1582 
1583 /**
1584  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1585  * @adapter: board private structure
1586  *
1587  * Configure the Tx unit of the MAC after a reset.
1588  **/
1589 static void e1000_configure_tx(struct e1000_adapter *adapter)
1590 {
1591 	u64 tdba;
1592 	struct e1000_hw *hw = &adapter->hw;
1593 	u32 tdlen, tctl, tipg;
1594 	u32 ipgr1, ipgr2;
1595 
1596 	/* Setup the HW Tx Head and Tail descriptor pointers */
1597 
1598 	switch (adapter->num_tx_queues) {
1599 	case 1:
1600 	default:
1601 		tdba = adapter->tx_ring[0].dma;
1602 		tdlen = adapter->tx_ring[0].count *
1603 			sizeof(struct e1000_tx_desc);
1604 		ew32(TDLEN, tdlen);
1605 		ew32(TDBAH, (tdba >> 32));
1606 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1607 		ew32(TDT, 0);
1608 		ew32(TDH, 0);
1609 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1610 					   E1000_TDH : E1000_82542_TDH);
1611 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1612 					   E1000_TDT : E1000_82542_TDT);
1613 		break;
1614 	}
1615 
1616 	/* Set the default values for the Tx Inter Packet Gap timer */
1617 	if ((hw->media_type == e1000_media_type_fiber ||
1618 	     hw->media_type == e1000_media_type_internal_serdes))
1619 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1620 	else
1621 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1622 
1623 	switch (hw->mac_type) {
1624 	case e1000_82542_rev2_0:
1625 	case e1000_82542_rev2_1:
1626 		tipg = DEFAULT_82542_TIPG_IPGT;
1627 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1628 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1629 		break;
1630 	default:
1631 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1632 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1633 		break;
1634 	}
1635 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1636 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1637 	ew32(TIPG, tipg);
1638 
1639 	/* Set the Tx Interrupt Delay register */
1640 
1641 	ew32(TIDV, adapter->tx_int_delay);
1642 	if (hw->mac_type >= e1000_82540)
1643 		ew32(TADV, adapter->tx_abs_int_delay);
1644 
1645 	/* Program the Transmit Control Register */
1646 
1647 	tctl = er32(TCTL);
1648 	tctl &= ~E1000_TCTL_CT;
1649 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1650 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1651 
1652 	e1000_config_collision_dist(hw);
1653 
1654 	/* Setup Transmit Descriptor Settings for eop descriptor */
1655 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1656 
1657 	/* only set IDE if we are delaying interrupts using the timers */
1658 	if (adapter->tx_int_delay)
1659 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1660 
1661 	if (hw->mac_type < e1000_82543)
1662 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1663 	else
1664 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1665 
1666 	/* Cache if we're 82544 running in PCI-X because we'll
1667 	 * need this to apply a workaround later in the send path.
1668 	 */
1669 	if (hw->mac_type == e1000_82544 &&
1670 	    hw->bus_type == e1000_bus_type_pcix)
1671 		adapter->pcix_82544 = true;
1672 
1673 	ew32(TCTL, tctl);
1674 
1675 }
1676 
1677 /**
1678  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1679  * @adapter: board private structure
1680  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1681  *
1682  * Returns 0 on success, negative on failure
1683  **/
1684 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1685 				    struct e1000_rx_ring *rxdr)
1686 {
1687 	struct pci_dev *pdev = adapter->pdev;
1688 	int size, desc_len;
1689 
1690 	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1691 	rxdr->buffer_info = vzalloc(size);
1692 	if (!rxdr->buffer_info)
1693 		return -ENOMEM;
1694 
1695 	desc_len = sizeof(struct e1000_rx_desc);
1696 
1697 	/* Round up to nearest 4K */
1698 
1699 	rxdr->size = rxdr->count * desc_len;
1700 	rxdr->size = ALIGN(rxdr->size, 4096);
1701 
1702 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1703 					GFP_KERNEL);
1704 	if (!rxdr->desc) {
1705 setup_rx_desc_die:
1706 		vfree(rxdr->buffer_info);
1707 		return -ENOMEM;
1708 	}
1709 
1710 	/* Fix for errata 23, can't cross 64kB boundary */
1711 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1712 		void *olddesc = rxdr->desc;
1713 		dma_addr_t olddma = rxdr->dma;
1714 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1715 		      rxdr->size, rxdr->desc);
1716 		/* Try again, without freeing the previous */
1717 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1718 						&rxdr->dma, GFP_KERNEL);
1719 		/* Failed allocation, critical failure */
1720 		if (!rxdr->desc) {
1721 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1722 					  olddma);
1723 			goto setup_rx_desc_die;
1724 		}
1725 
1726 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1727 			/* give up */
1728 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1729 					  rxdr->dma);
1730 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1731 					  olddma);
1732 			e_err(probe, "Unable to allocate aligned memory for "
1733 			      "the Rx descriptor ring\n");
1734 			goto setup_rx_desc_die;
1735 		} else {
1736 			/* Free old allocation, new allocation was successful */
1737 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1738 					  olddma);
1739 		}
1740 	}
1741 	memset(rxdr->desc, 0, rxdr->size);
1742 
1743 	rxdr->next_to_clean = 0;
1744 	rxdr->next_to_use = 0;
1745 	rxdr->rx_skb_top = NULL;
1746 
1747 	return 0;
1748 }
1749 
1750 /**
1751  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1752  * 				  (Descriptors) for all queues
1753  * @adapter: board private structure
1754  *
1755  * Return 0 on success, negative on failure
1756  **/
1757 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1758 {
1759 	int i, err = 0;
1760 
1761 	for (i = 0; i < adapter->num_rx_queues; i++) {
1762 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1763 		if (err) {
1764 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1765 			for (i-- ; i >= 0; i--)
1766 				e1000_free_rx_resources(adapter,
1767 							&adapter->rx_ring[i]);
1768 			break;
1769 		}
1770 	}
1771 
1772 	return err;
1773 }
1774 
1775 /**
1776  * e1000_setup_rctl - configure the receive control registers
1777  * @adapter: Board private structure
1778  **/
1779 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1780 {
1781 	struct e1000_hw *hw = &adapter->hw;
1782 	u32 rctl;
1783 
1784 	rctl = er32(RCTL);
1785 
1786 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1787 
1788 	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1789 		E1000_RCTL_RDMTS_HALF |
1790 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1791 
1792 	if (hw->tbi_compatibility_on == 1)
1793 		rctl |= E1000_RCTL_SBP;
1794 	else
1795 		rctl &= ~E1000_RCTL_SBP;
1796 
1797 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1798 		rctl &= ~E1000_RCTL_LPE;
1799 	else
1800 		rctl |= E1000_RCTL_LPE;
1801 
1802 	/* Setup buffer sizes */
1803 	rctl &= ~E1000_RCTL_SZ_4096;
1804 	rctl |= E1000_RCTL_BSEX;
1805 	switch (adapter->rx_buffer_len) {
1806 		case E1000_RXBUFFER_2048:
1807 		default:
1808 			rctl |= E1000_RCTL_SZ_2048;
1809 			rctl &= ~E1000_RCTL_BSEX;
1810 			break;
1811 		case E1000_RXBUFFER_4096:
1812 			rctl |= E1000_RCTL_SZ_4096;
1813 			break;
1814 		case E1000_RXBUFFER_8192:
1815 			rctl |= E1000_RCTL_SZ_8192;
1816 			break;
1817 		case E1000_RXBUFFER_16384:
1818 			rctl |= E1000_RCTL_SZ_16384;
1819 			break;
1820 	}
1821 
1822 	/* This is useful for sniffing bad packets. */
1823 	if (adapter->netdev->features & NETIF_F_RXALL) {
1824 		/* UPE and MPE will be handled by normal PROMISC logic
1825 		 * in e1000e_set_rx_mode
1826 		 */
1827 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1828 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1829 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1830 
1831 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1832 			  E1000_RCTL_DPF | /* Allow filtered pause */
1833 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1834 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1835 		 * and that breaks VLANs.
1836 		 */
1837 	}
1838 
1839 	ew32(RCTL, rctl);
1840 }
1841 
1842 /**
1843  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1844  * @adapter: board private structure
1845  *
1846  * Configure the Rx unit of the MAC after a reset.
1847  **/
1848 static void e1000_configure_rx(struct e1000_adapter *adapter)
1849 {
1850 	u64 rdba;
1851 	struct e1000_hw *hw = &adapter->hw;
1852 	u32 rdlen, rctl, rxcsum;
1853 
1854 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1855 		rdlen = adapter->rx_ring[0].count *
1856 		        sizeof(struct e1000_rx_desc);
1857 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1858 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1859 	} else {
1860 		rdlen = adapter->rx_ring[0].count *
1861 		        sizeof(struct e1000_rx_desc);
1862 		adapter->clean_rx = e1000_clean_rx_irq;
1863 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1864 	}
1865 
1866 	/* disable receives while setting up the descriptors */
1867 	rctl = er32(RCTL);
1868 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1869 
1870 	/* set the Receive Delay Timer Register */
1871 	ew32(RDTR, adapter->rx_int_delay);
1872 
1873 	if (hw->mac_type >= e1000_82540) {
1874 		ew32(RADV, adapter->rx_abs_int_delay);
1875 		if (adapter->itr_setting != 0)
1876 			ew32(ITR, 1000000000 / (adapter->itr * 256));
1877 	}
1878 
1879 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1880 	 * the Base and Length of the Rx Descriptor Ring
1881 	 */
1882 	switch (adapter->num_rx_queues) {
1883 	case 1:
1884 	default:
1885 		rdba = adapter->rx_ring[0].dma;
1886 		ew32(RDLEN, rdlen);
1887 		ew32(RDBAH, (rdba >> 32));
1888 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1889 		ew32(RDT, 0);
1890 		ew32(RDH, 0);
1891 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1892 					   E1000_RDH : E1000_82542_RDH);
1893 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1894 					   E1000_RDT : E1000_82542_RDT);
1895 		break;
1896 	}
1897 
1898 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1899 	if (hw->mac_type >= e1000_82543) {
1900 		rxcsum = er32(RXCSUM);
1901 		if (adapter->rx_csum)
1902 			rxcsum |= E1000_RXCSUM_TUOFL;
1903 		else
1904 			/* don't need to clear IPPCSE as it defaults to 0 */
1905 			rxcsum &= ~E1000_RXCSUM_TUOFL;
1906 		ew32(RXCSUM, rxcsum);
1907 	}
1908 
1909 	/* Enable Receives */
1910 	ew32(RCTL, rctl | E1000_RCTL_EN);
1911 }
1912 
1913 /**
1914  * e1000_free_tx_resources - Free Tx Resources per Queue
1915  * @adapter: board private structure
1916  * @tx_ring: Tx descriptor ring for a specific queue
1917  *
1918  * Free all transmit software resources
1919  **/
1920 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1921 				    struct e1000_tx_ring *tx_ring)
1922 {
1923 	struct pci_dev *pdev = adapter->pdev;
1924 
1925 	e1000_clean_tx_ring(adapter, tx_ring);
1926 
1927 	vfree(tx_ring->buffer_info);
1928 	tx_ring->buffer_info = NULL;
1929 
1930 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1931 			  tx_ring->dma);
1932 
1933 	tx_ring->desc = NULL;
1934 }
1935 
1936 /**
1937  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1938  * @adapter: board private structure
1939  *
1940  * Free all transmit software resources
1941  **/
1942 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1943 {
1944 	int i;
1945 
1946 	for (i = 0; i < adapter->num_tx_queues; i++)
1947 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1948 }
1949 
1950 static void
1951 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1952 				 struct e1000_tx_buffer *buffer_info)
1953 {
1954 	if (buffer_info->dma) {
1955 		if (buffer_info->mapped_as_page)
1956 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1957 				       buffer_info->length, DMA_TO_DEVICE);
1958 		else
1959 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1960 					 buffer_info->length,
1961 					 DMA_TO_DEVICE);
1962 		buffer_info->dma = 0;
1963 	}
1964 	if (buffer_info->skb) {
1965 		dev_kfree_skb_any(buffer_info->skb);
1966 		buffer_info->skb = NULL;
1967 	}
1968 	buffer_info->time_stamp = 0;
1969 	/* buffer_info must be completely set up in the transmit path */
1970 }
1971 
1972 /**
1973  * e1000_clean_tx_ring - Free Tx Buffers
1974  * @adapter: board private structure
1975  * @tx_ring: ring to be cleaned
1976  **/
1977 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1978 				struct e1000_tx_ring *tx_ring)
1979 {
1980 	struct e1000_hw *hw = &adapter->hw;
1981 	struct e1000_tx_buffer *buffer_info;
1982 	unsigned long size;
1983 	unsigned int i;
1984 
1985 	/* Free all the Tx ring sk_buffs */
1986 
1987 	for (i = 0; i < tx_ring->count; i++) {
1988 		buffer_info = &tx_ring->buffer_info[i];
1989 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1990 	}
1991 
1992 	netdev_reset_queue(adapter->netdev);
1993 	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
1994 	memset(tx_ring->buffer_info, 0, size);
1995 
1996 	/* Zero out the descriptor ring */
1997 
1998 	memset(tx_ring->desc, 0, tx_ring->size);
1999 
2000 	tx_ring->next_to_use = 0;
2001 	tx_ring->next_to_clean = 0;
2002 	tx_ring->last_tx_tso = false;
2003 
2004 	writel(0, hw->hw_addr + tx_ring->tdh);
2005 	writel(0, hw->hw_addr + tx_ring->tdt);
2006 }
2007 
2008 /**
2009  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2010  * @adapter: board private structure
2011  **/
2012 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2013 {
2014 	int i;
2015 
2016 	for (i = 0; i < adapter->num_tx_queues; i++)
2017 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2018 }
2019 
2020 /**
2021  * e1000_free_rx_resources - Free Rx Resources
2022  * @adapter: board private structure
2023  * @rx_ring: ring to clean the resources from
2024  *
2025  * Free all receive software resources
2026  **/
2027 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2028 				    struct e1000_rx_ring *rx_ring)
2029 {
2030 	struct pci_dev *pdev = adapter->pdev;
2031 
2032 	e1000_clean_rx_ring(adapter, rx_ring);
2033 
2034 	vfree(rx_ring->buffer_info);
2035 	rx_ring->buffer_info = NULL;
2036 
2037 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2038 			  rx_ring->dma);
2039 
2040 	rx_ring->desc = NULL;
2041 }
2042 
2043 /**
2044  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2045  * @adapter: board private structure
2046  *
2047  * Free all receive software resources
2048  **/
2049 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2050 {
2051 	int i;
2052 
2053 	for (i = 0; i < adapter->num_rx_queues; i++)
2054 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2055 }
2056 
2057 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2058 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2059 {
2060 	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2061 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2062 }
2063 
2064 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2065 {
2066 	unsigned int len = e1000_frag_len(a);
2067 	u8 *data = netdev_alloc_frag(len);
2068 
2069 	if (likely(data))
2070 		data += E1000_HEADROOM;
2071 	return data;
2072 }
2073 
2074 static void e1000_free_frag(const void *data)
2075 {
2076 	put_page(virt_to_head_page(data));
2077 }
2078 
2079 /**
2080  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2081  * @adapter: board private structure
2082  * @rx_ring: ring to free buffers from
2083  **/
2084 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2085 				struct e1000_rx_ring *rx_ring)
2086 {
2087 	struct e1000_hw *hw = &adapter->hw;
2088 	struct e1000_rx_buffer *buffer_info;
2089 	struct pci_dev *pdev = adapter->pdev;
2090 	unsigned long size;
2091 	unsigned int i;
2092 
2093 	/* Free all the Rx netfrags */
2094 	for (i = 0; i < rx_ring->count; i++) {
2095 		buffer_info = &rx_ring->buffer_info[i];
2096 		if (adapter->clean_rx == e1000_clean_rx_irq) {
2097 			if (buffer_info->dma)
2098 				dma_unmap_single(&pdev->dev, buffer_info->dma,
2099 						 adapter->rx_buffer_len,
2100 						 DMA_FROM_DEVICE);
2101 			if (buffer_info->rxbuf.data) {
2102 				e1000_free_frag(buffer_info->rxbuf.data);
2103 				buffer_info->rxbuf.data = NULL;
2104 			}
2105 		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2106 			if (buffer_info->dma)
2107 				dma_unmap_page(&pdev->dev, buffer_info->dma,
2108 					       adapter->rx_buffer_len,
2109 					       DMA_FROM_DEVICE);
2110 			if (buffer_info->rxbuf.page) {
2111 				put_page(buffer_info->rxbuf.page);
2112 				buffer_info->rxbuf.page = NULL;
2113 			}
2114 		}
2115 
2116 		buffer_info->dma = 0;
2117 	}
2118 
2119 	/* there also may be some cached data from a chained receive */
2120 	napi_free_frags(&adapter->napi);
2121 	rx_ring->rx_skb_top = NULL;
2122 
2123 	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2124 	memset(rx_ring->buffer_info, 0, size);
2125 
2126 	/* Zero out the descriptor ring */
2127 	memset(rx_ring->desc, 0, rx_ring->size);
2128 
2129 	rx_ring->next_to_clean = 0;
2130 	rx_ring->next_to_use = 0;
2131 
2132 	writel(0, hw->hw_addr + rx_ring->rdh);
2133 	writel(0, hw->hw_addr + rx_ring->rdt);
2134 }
2135 
2136 /**
2137  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2138  * @adapter: board private structure
2139  **/
2140 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2141 {
2142 	int i;
2143 
2144 	for (i = 0; i < adapter->num_rx_queues; i++)
2145 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2146 }
2147 
2148 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2149  * and memory write and invalidate disabled for certain operations
2150  */
2151 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2152 {
2153 	struct e1000_hw *hw = &adapter->hw;
2154 	struct net_device *netdev = adapter->netdev;
2155 	u32 rctl;
2156 
2157 	e1000_pci_clear_mwi(hw);
2158 
2159 	rctl = er32(RCTL);
2160 	rctl |= E1000_RCTL_RST;
2161 	ew32(RCTL, rctl);
2162 	E1000_WRITE_FLUSH();
2163 	mdelay(5);
2164 
2165 	if (netif_running(netdev))
2166 		e1000_clean_all_rx_rings(adapter);
2167 }
2168 
2169 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2170 {
2171 	struct e1000_hw *hw = &adapter->hw;
2172 	struct net_device *netdev = adapter->netdev;
2173 	u32 rctl;
2174 
2175 	rctl = er32(RCTL);
2176 	rctl &= ~E1000_RCTL_RST;
2177 	ew32(RCTL, rctl);
2178 	E1000_WRITE_FLUSH();
2179 	mdelay(5);
2180 
2181 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2182 		e1000_pci_set_mwi(hw);
2183 
2184 	if (netif_running(netdev)) {
2185 		/* No need to loop, because 82542 supports only 1 queue */
2186 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2187 		e1000_configure_rx(adapter);
2188 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2189 	}
2190 }
2191 
2192 /**
2193  * e1000_set_mac - Change the Ethernet Address of the NIC
2194  * @netdev: network interface device structure
2195  * @p: pointer to an address structure
2196  *
2197  * Returns 0 on success, negative on failure
2198  **/
2199 static int e1000_set_mac(struct net_device *netdev, void *p)
2200 {
2201 	struct e1000_adapter *adapter = netdev_priv(netdev);
2202 	struct e1000_hw *hw = &adapter->hw;
2203 	struct sockaddr *addr = p;
2204 
2205 	if (!is_valid_ether_addr(addr->sa_data))
2206 		return -EADDRNOTAVAIL;
2207 
2208 	/* 82542 2.0 needs to be in reset to write receive address registers */
2209 
2210 	if (hw->mac_type == e1000_82542_rev2_0)
2211 		e1000_enter_82542_rst(adapter);
2212 
2213 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2214 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2215 
2216 	e1000_rar_set(hw, hw->mac_addr, 0);
2217 
2218 	if (hw->mac_type == e1000_82542_rev2_0)
2219 		e1000_leave_82542_rst(adapter);
2220 
2221 	return 0;
2222 }
2223 
2224 /**
2225  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2226  * @netdev: network interface device structure
2227  *
2228  * The set_rx_mode entry point is called whenever the unicast or multicast
2229  * address lists or the network interface flags are updated. This routine is
2230  * responsible for configuring the hardware for proper unicast, multicast,
2231  * promiscuous mode, and all-multi behavior.
2232  **/
2233 static void e1000_set_rx_mode(struct net_device *netdev)
2234 {
2235 	struct e1000_adapter *adapter = netdev_priv(netdev);
2236 	struct e1000_hw *hw = &adapter->hw;
2237 	struct netdev_hw_addr *ha;
2238 	bool use_uc = false;
2239 	u32 rctl;
2240 	u32 hash_value;
2241 	int i, rar_entries = E1000_RAR_ENTRIES;
2242 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2243 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2244 
2245 	if (!mcarray)
2246 		return;
2247 
2248 	/* Check for Promiscuous and All Multicast modes */
2249 
2250 	rctl = er32(RCTL);
2251 
2252 	if (netdev->flags & IFF_PROMISC) {
2253 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2254 		rctl &= ~E1000_RCTL_VFE;
2255 	} else {
2256 		if (netdev->flags & IFF_ALLMULTI)
2257 			rctl |= E1000_RCTL_MPE;
2258 		else
2259 			rctl &= ~E1000_RCTL_MPE;
2260 		/* Enable VLAN filter if there is a VLAN */
2261 		if (e1000_vlan_used(adapter))
2262 			rctl |= E1000_RCTL_VFE;
2263 	}
2264 
2265 	if (netdev_uc_count(netdev) > rar_entries - 1) {
2266 		rctl |= E1000_RCTL_UPE;
2267 	} else if (!(netdev->flags & IFF_PROMISC)) {
2268 		rctl &= ~E1000_RCTL_UPE;
2269 		use_uc = true;
2270 	}
2271 
2272 	ew32(RCTL, rctl);
2273 
2274 	/* 82542 2.0 needs to be in reset to write receive address registers */
2275 
2276 	if (hw->mac_type == e1000_82542_rev2_0)
2277 		e1000_enter_82542_rst(adapter);
2278 
2279 	/* load the first 14 addresses into the exact filters 1-14. Unicast
2280 	 * addresses take precedence to avoid disabling unicast filtering
2281 	 * when possible.
2282 	 *
2283 	 * RAR 0 is used for the station MAC address
2284 	 * if there are not 14 addresses, go ahead and clear the filters
2285 	 */
2286 	i = 1;
2287 	if (use_uc)
2288 		netdev_for_each_uc_addr(ha, netdev) {
2289 			if (i == rar_entries)
2290 				break;
2291 			e1000_rar_set(hw, ha->addr, i++);
2292 		}
2293 
2294 	netdev_for_each_mc_addr(ha, netdev) {
2295 		if (i == rar_entries) {
2296 			/* load any remaining addresses into the hash table */
2297 			u32 hash_reg, hash_bit, mta;
2298 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2299 			hash_reg = (hash_value >> 5) & 0x7F;
2300 			hash_bit = hash_value & 0x1F;
2301 			mta = (1 << hash_bit);
2302 			mcarray[hash_reg] |= mta;
2303 		} else {
2304 			e1000_rar_set(hw, ha->addr, i++);
2305 		}
2306 	}
2307 
2308 	for (; i < rar_entries; i++) {
2309 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2310 		E1000_WRITE_FLUSH();
2311 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2312 		E1000_WRITE_FLUSH();
2313 	}
2314 
2315 	/* write the hash table completely, write from bottom to avoid
2316 	 * both stupid write combining chipsets, and flushing each write
2317 	 */
2318 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2319 		/* If we are on an 82544 has an errata where writing odd
2320 		 * offsets overwrites the previous even offset, but writing
2321 		 * backwards over the range solves the issue by always
2322 		 * writing the odd offset first
2323 		 */
2324 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2325 	}
2326 	E1000_WRITE_FLUSH();
2327 
2328 	if (hw->mac_type == e1000_82542_rev2_0)
2329 		e1000_leave_82542_rst(adapter);
2330 
2331 	kfree(mcarray);
2332 }
2333 
2334 /**
2335  * e1000_update_phy_info_task - get phy info
2336  * @work: work struct contained inside adapter struct
2337  *
2338  * Need to wait a few seconds after link up to get diagnostic information from
2339  * the phy
2340  */
2341 static void e1000_update_phy_info_task(struct work_struct *work)
2342 {
2343 	struct e1000_adapter *adapter = container_of(work,
2344 						     struct e1000_adapter,
2345 						     phy_info_task.work);
2346 
2347 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2348 }
2349 
2350 /**
2351  * e1000_82547_tx_fifo_stall_task - task to complete work
2352  * @work: work struct contained inside adapter struct
2353  **/
2354 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2355 {
2356 	struct e1000_adapter *adapter = container_of(work,
2357 						     struct e1000_adapter,
2358 						     fifo_stall_task.work);
2359 	struct e1000_hw *hw = &adapter->hw;
2360 	struct net_device *netdev = adapter->netdev;
2361 	u32 tctl;
2362 
2363 	if (atomic_read(&adapter->tx_fifo_stall)) {
2364 		if ((er32(TDT) == er32(TDH)) &&
2365 		   (er32(TDFT) == er32(TDFH)) &&
2366 		   (er32(TDFTS) == er32(TDFHS))) {
2367 			tctl = er32(TCTL);
2368 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2369 			ew32(TDFT, adapter->tx_head_addr);
2370 			ew32(TDFH, adapter->tx_head_addr);
2371 			ew32(TDFTS, adapter->tx_head_addr);
2372 			ew32(TDFHS, adapter->tx_head_addr);
2373 			ew32(TCTL, tctl);
2374 			E1000_WRITE_FLUSH();
2375 
2376 			adapter->tx_fifo_head = 0;
2377 			atomic_set(&adapter->tx_fifo_stall, 0);
2378 			netif_wake_queue(netdev);
2379 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2380 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2381 		}
2382 	}
2383 }
2384 
2385 bool e1000_has_link(struct e1000_adapter *adapter)
2386 {
2387 	struct e1000_hw *hw = &adapter->hw;
2388 	bool link_active = false;
2389 
2390 	/* get_link_status is set on LSC (link status) interrupt or rx
2391 	 * sequence error interrupt (except on intel ce4100).
2392 	 * get_link_status will stay false until the
2393 	 * e1000_check_for_link establishes link for copper adapters
2394 	 * ONLY
2395 	 */
2396 	switch (hw->media_type) {
2397 	case e1000_media_type_copper:
2398 		if (hw->mac_type == e1000_ce4100)
2399 			hw->get_link_status = 1;
2400 		if (hw->get_link_status) {
2401 			e1000_check_for_link(hw);
2402 			link_active = !hw->get_link_status;
2403 		} else {
2404 			link_active = true;
2405 		}
2406 		break;
2407 	case e1000_media_type_fiber:
2408 		e1000_check_for_link(hw);
2409 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2410 		break;
2411 	case e1000_media_type_internal_serdes:
2412 		e1000_check_for_link(hw);
2413 		link_active = hw->serdes_has_link;
2414 		break;
2415 	default:
2416 		break;
2417 	}
2418 
2419 	return link_active;
2420 }
2421 
2422 /**
2423  * e1000_watchdog - work function
2424  * @work: work struct contained inside adapter struct
2425  **/
2426 static void e1000_watchdog(struct work_struct *work)
2427 {
2428 	struct e1000_adapter *adapter = container_of(work,
2429 						     struct e1000_adapter,
2430 						     watchdog_task.work);
2431 	struct e1000_hw *hw = &adapter->hw;
2432 	struct net_device *netdev = adapter->netdev;
2433 	struct e1000_tx_ring *txdr = adapter->tx_ring;
2434 	u32 link, tctl;
2435 
2436 	link = e1000_has_link(adapter);
2437 	if ((netif_carrier_ok(netdev)) && link)
2438 		goto link_up;
2439 
2440 	if (link) {
2441 		if (!netif_carrier_ok(netdev)) {
2442 			u32 ctrl;
2443 			bool txb2b = true;
2444 			/* update snapshot of PHY registers on LSC */
2445 			e1000_get_speed_and_duplex(hw,
2446 						   &adapter->link_speed,
2447 						   &adapter->link_duplex);
2448 
2449 			ctrl = er32(CTRL);
2450 			pr_info("%s NIC Link is Up %d Mbps %s, "
2451 				"Flow Control: %s\n",
2452 				netdev->name,
2453 				adapter->link_speed,
2454 				adapter->link_duplex == FULL_DUPLEX ?
2455 				"Full Duplex" : "Half Duplex",
2456 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2457 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2458 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2459 				E1000_CTRL_TFCE) ? "TX" : "None")));
2460 
2461 			/* adjust timeout factor according to speed/duplex */
2462 			adapter->tx_timeout_factor = 1;
2463 			switch (adapter->link_speed) {
2464 			case SPEED_10:
2465 				txb2b = false;
2466 				adapter->tx_timeout_factor = 16;
2467 				break;
2468 			case SPEED_100:
2469 				txb2b = false;
2470 				/* maybe add some timeout factor ? */
2471 				break;
2472 			}
2473 
2474 			/* enable transmits in the hardware */
2475 			tctl = er32(TCTL);
2476 			tctl |= E1000_TCTL_EN;
2477 			ew32(TCTL, tctl);
2478 
2479 			netif_carrier_on(netdev);
2480 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2481 				schedule_delayed_work(&adapter->phy_info_task,
2482 						      2 * HZ);
2483 			adapter->smartspeed = 0;
2484 		}
2485 	} else {
2486 		if (netif_carrier_ok(netdev)) {
2487 			adapter->link_speed = 0;
2488 			adapter->link_duplex = 0;
2489 			pr_info("%s NIC Link is Down\n",
2490 				netdev->name);
2491 			netif_carrier_off(netdev);
2492 
2493 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2494 				schedule_delayed_work(&adapter->phy_info_task,
2495 						      2 * HZ);
2496 		}
2497 
2498 		e1000_smartspeed(adapter);
2499 	}
2500 
2501 link_up:
2502 	e1000_update_stats(adapter);
2503 
2504 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2505 	adapter->tpt_old = adapter->stats.tpt;
2506 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2507 	adapter->colc_old = adapter->stats.colc;
2508 
2509 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2510 	adapter->gorcl_old = adapter->stats.gorcl;
2511 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2512 	adapter->gotcl_old = adapter->stats.gotcl;
2513 
2514 	e1000_update_adaptive(hw);
2515 
2516 	if (!netif_carrier_ok(netdev)) {
2517 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2518 			/* We've lost link, so the controller stops DMA,
2519 			 * but we've got queued Tx work that's never going
2520 			 * to get done, so reset controller to flush Tx.
2521 			 * (Do the reset outside of interrupt context).
2522 			 */
2523 			adapter->tx_timeout_count++;
2524 			schedule_work(&adapter->reset_task);
2525 			/* exit immediately since reset is imminent */
2526 			return;
2527 		}
2528 	}
2529 
2530 	/* Simple mode for Interrupt Throttle Rate (ITR) */
2531 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2532 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2533 		 * Total asymmetrical Tx or Rx gets ITR=8000;
2534 		 * everyone else is between 2000-8000.
2535 		 */
2536 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2537 		u32 dif = (adapter->gotcl > adapter->gorcl ?
2538 			    adapter->gotcl - adapter->gorcl :
2539 			    adapter->gorcl - adapter->gotcl) / 10000;
2540 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2541 
2542 		ew32(ITR, 1000000000 / (itr * 256));
2543 	}
2544 
2545 	/* Cause software interrupt to ensure rx ring is cleaned */
2546 	ew32(ICS, E1000_ICS_RXDMT0);
2547 
2548 	/* Force detection of hung controller every watchdog period */
2549 	adapter->detect_tx_hung = true;
2550 
2551 	/* Reschedule the task */
2552 	if (!test_bit(__E1000_DOWN, &adapter->flags))
2553 		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2554 }
2555 
2556 enum latency_range {
2557 	lowest_latency = 0,
2558 	low_latency = 1,
2559 	bulk_latency = 2,
2560 	latency_invalid = 255
2561 };
2562 
2563 /**
2564  * e1000_update_itr - update the dynamic ITR value based on statistics
2565  * @adapter: pointer to adapter
2566  * @itr_setting: current adapter->itr
2567  * @packets: the number of packets during this measurement interval
2568  * @bytes: the number of bytes during this measurement interval
2569  *
2570  *      Stores a new ITR value based on packets and byte
2571  *      counts during the last interrupt.  The advantage of per interrupt
2572  *      computation is faster updates and more accurate ITR for the current
2573  *      traffic pattern.  Constants in this function were computed
2574  *      based on theoretical maximum wire speed and thresholds were set based
2575  *      on testing data as well as attempting to minimize response time
2576  *      while increasing bulk throughput.
2577  *      this functionality is controlled by the InterruptThrottleRate module
2578  *      parameter (see e1000_param.c)
2579  **/
2580 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2581 				     u16 itr_setting, int packets, int bytes)
2582 {
2583 	unsigned int retval = itr_setting;
2584 	struct e1000_hw *hw = &adapter->hw;
2585 
2586 	if (unlikely(hw->mac_type < e1000_82540))
2587 		goto update_itr_done;
2588 
2589 	if (packets == 0)
2590 		goto update_itr_done;
2591 
2592 	switch (itr_setting) {
2593 	case lowest_latency:
2594 		/* jumbo frames get bulk treatment*/
2595 		if (bytes/packets > 8000)
2596 			retval = bulk_latency;
2597 		else if ((packets < 5) && (bytes > 512))
2598 			retval = low_latency;
2599 		break;
2600 	case low_latency:  /* 50 usec aka 20000 ints/s */
2601 		if (bytes > 10000) {
2602 			/* jumbo frames need bulk latency setting */
2603 			if (bytes/packets > 8000)
2604 				retval = bulk_latency;
2605 			else if ((packets < 10) || ((bytes/packets) > 1200))
2606 				retval = bulk_latency;
2607 			else if ((packets > 35))
2608 				retval = lowest_latency;
2609 		} else if (bytes/packets > 2000)
2610 			retval = bulk_latency;
2611 		else if (packets <= 2 && bytes < 512)
2612 			retval = lowest_latency;
2613 		break;
2614 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2615 		if (bytes > 25000) {
2616 			if (packets > 35)
2617 				retval = low_latency;
2618 		} else if (bytes < 6000) {
2619 			retval = low_latency;
2620 		}
2621 		break;
2622 	}
2623 
2624 update_itr_done:
2625 	return retval;
2626 }
2627 
2628 static void e1000_set_itr(struct e1000_adapter *adapter)
2629 {
2630 	struct e1000_hw *hw = &adapter->hw;
2631 	u16 current_itr;
2632 	u32 new_itr = adapter->itr;
2633 
2634 	if (unlikely(hw->mac_type < e1000_82540))
2635 		return;
2636 
2637 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2638 	if (unlikely(adapter->link_speed != SPEED_1000)) {
2639 		current_itr = 0;
2640 		new_itr = 4000;
2641 		goto set_itr_now;
2642 	}
2643 
2644 	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2645 					   adapter->total_tx_packets,
2646 					   adapter->total_tx_bytes);
2647 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2648 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2649 		adapter->tx_itr = low_latency;
2650 
2651 	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2652 					   adapter->total_rx_packets,
2653 					   adapter->total_rx_bytes);
2654 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2655 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2656 		adapter->rx_itr = low_latency;
2657 
2658 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2659 
2660 	switch (current_itr) {
2661 	/* counts and packets in update_itr are dependent on these numbers */
2662 	case lowest_latency:
2663 		new_itr = 70000;
2664 		break;
2665 	case low_latency:
2666 		new_itr = 20000; /* aka hwitr = ~200 */
2667 		break;
2668 	case bulk_latency:
2669 		new_itr = 4000;
2670 		break;
2671 	default:
2672 		break;
2673 	}
2674 
2675 set_itr_now:
2676 	if (new_itr != adapter->itr) {
2677 		/* this attempts to bias the interrupt rate towards Bulk
2678 		 * by adding intermediate steps when interrupt rate is
2679 		 * increasing
2680 		 */
2681 		new_itr = new_itr > adapter->itr ?
2682 			  min(adapter->itr + (new_itr >> 2), new_itr) :
2683 			  new_itr;
2684 		adapter->itr = new_itr;
2685 		ew32(ITR, 1000000000 / (new_itr * 256));
2686 	}
2687 }
2688 
2689 #define E1000_TX_FLAGS_CSUM		0x00000001
2690 #define E1000_TX_FLAGS_VLAN		0x00000002
2691 #define E1000_TX_FLAGS_TSO		0x00000004
2692 #define E1000_TX_FLAGS_IPV4		0x00000008
2693 #define E1000_TX_FLAGS_NO_FCS		0x00000010
2694 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2695 #define E1000_TX_FLAGS_VLAN_SHIFT	16
2696 
2697 static int e1000_tso(struct e1000_adapter *adapter,
2698 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2699 		     __be16 protocol)
2700 {
2701 	struct e1000_context_desc *context_desc;
2702 	struct e1000_tx_buffer *buffer_info;
2703 	unsigned int i;
2704 	u32 cmd_length = 0;
2705 	u16 ipcse = 0, tucse, mss;
2706 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2707 
2708 	if (skb_is_gso(skb)) {
2709 		int err;
2710 
2711 		err = skb_cow_head(skb, 0);
2712 		if (err < 0)
2713 			return err;
2714 
2715 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2716 		mss = skb_shinfo(skb)->gso_size;
2717 		if (protocol == htons(ETH_P_IP)) {
2718 			struct iphdr *iph = ip_hdr(skb);
2719 			iph->tot_len = 0;
2720 			iph->check = 0;
2721 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2722 								 iph->daddr, 0,
2723 								 IPPROTO_TCP,
2724 								 0);
2725 			cmd_length = E1000_TXD_CMD_IP;
2726 			ipcse = skb_transport_offset(skb) - 1;
2727 		} else if (skb_is_gso_v6(skb)) {
2728 			ipv6_hdr(skb)->payload_len = 0;
2729 			tcp_hdr(skb)->check =
2730 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2731 						 &ipv6_hdr(skb)->daddr,
2732 						 0, IPPROTO_TCP, 0);
2733 			ipcse = 0;
2734 		}
2735 		ipcss = skb_network_offset(skb);
2736 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2737 		tucss = skb_transport_offset(skb);
2738 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2739 		tucse = 0;
2740 
2741 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2742 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2743 
2744 		i = tx_ring->next_to_use;
2745 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2746 		buffer_info = &tx_ring->buffer_info[i];
2747 
2748 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2749 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2750 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2751 		context_desc->upper_setup.tcp_fields.tucss = tucss;
2752 		context_desc->upper_setup.tcp_fields.tucso = tucso;
2753 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2754 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2755 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2756 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2757 
2758 		buffer_info->time_stamp = jiffies;
2759 		buffer_info->next_to_watch = i;
2760 
2761 		if (++i == tx_ring->count) i = 0;
2762 		tx_ring->next_to_use = i;
2763 
2764 		return true;
2765 	}
2766 	return false;
2767 }
2768 
2769 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2770 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2771 			  __be16 protocol)
2772 {
2773 	struct e1000_context_desc *context_desc;
2774 	struct e1000_tx_buffer *buffer_info;
2775 	unsigned int i;
2776 	u8 css;
2777 	u32 cmd_len = E1000_TXD_CMD_DEXT;
2778 
2779 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2780 		return false;
2781 
2782 	switch (protocol) {
2783 	case cpu_to_be16(ETH_P_IP):
2784 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2785 			cmd_len |= E1000_TXD_CMD_TCP;
2786 		break;
2787 	case cpu_to_be16(ETH_P_IPV6):
2788 		/* XXX not handling all IPV6 headers */
2789 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2790 			cmd_len |= E1000_TXD_CMD_TCP;
2791 		break;
2792 	default:
2793 		if (unlikely(net_ratelimit()))
2794 			e_warn(drv, "checksum_partial proto=%x!\n",
2795 			       skb->protocol);
2796 		break;
2797 	}
2798 
2799 	css = skb_checksum_start_offset(skb);
2800 
2801 	i = tx_ring->next_to_use;
2802 	buffer_info = &tx_ring->buffer_info[i];
2803 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2804 
2805 	context_desc->lower_setup.ip_config = 0;
2806 	context_desc->upper_setup.tcp_fields.tucss = css;
2807 	context_desc->upper_setup.tcp_fields.tucso =
2808 		css + skb->csum_offset;
2809 	context_desc->upper_setup.tcp_fields.tucse = 0;
2810 	context_desc->tcp_seg_setup.data = 0;
2811 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2812 
2813 	buffer_info->time_stamp = jiffies;
2814 	buffer_info->next_to_watch = i;
2815 
2816 	if (unlikely(++i == tx_ring->count)) i = 0;
2817 	tx_ring->next_to_use = i;
2818 
2819 	return true;
2820 }
2821 
2822 #define E1000_MAX_TXD_PWR	12
2823 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2824 
2825 static int e1000_tx_map(struct e1000_adapter *adapter,
2826 			struct e1000_tx_ring *tx_ring,
2827 			struct sk_buff *skb, unsigned int first,
2828 			unsigned int max_per_txd, unsigned int nr_frags,
2829 			unsigned int mss)
2830 {
2831 	struct e1000_hw *hw = &adapter->hw;
2832 	struct pci_dev *pdev = adapter->pdev;
2833 	struct e1000_tx_buffer *buffer_info;
2834 	unsigned int len = skb_headlen(skb);
2835 	unsigned int offset = 0, size, count = 0, i;
2836 	unsigned int f, bytecount, segs;
2837 
2838 	i = tx_ring->next_to_use;
2839 
2840 	while (len) {
2841 		buffer_info = &tx_ring->buffer_info[i];
2842 		size = min(len, max_per_txd);
2843 		/* Workaround for Controller erratum --
2844 		 * descriptor for non-tso packet in a linear SKB that follows a
2845 		 * tso gets written back prematurely before the data is fully
2846 		 * DMA'd to the controller
2847 		 */
2848 		if (!skb->data_len && tx_ring->last_tx_tso &&
2849 		    !skb_is_gso(skb)) {
2850 			tx_ring->last_tx_tso = false;
2851 			size -= 4;
2852 		}
2853 
2854 		/* Workaround for premature desc write-backs
2855 		 * in TSO mode.  Append 4-byte sentinel desc
2856 		 */
2857 		if (unlikely(mss && !nr_frags && size == len && size > 8))
2858 			size -= 4;
2859 		/* work-around for errata 10 and it applies
2860 		 * to all controllers in PCI-X mode
2861 		 * The fix is to make sure that the first descriptor of a
2862 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2863 		 */
2864 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2865 		                (size > 2015) && count == 0))
2866 		        size = 2015;
2867 
2868 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2869 		 * terminating buffers within evenly-aligned dwords.
2870 		 */
2871 		if (unlikely(adapter->pcix_82544 &&
2872 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2873 		   size > 4))
2874 			size -= 4;
2875 
2876 		buffer_info->length = size;
2877 		/* set time_stamp *before* dma to help avoid a possible race */
2878 		buffer_info->time_stamp = jiffies;
2879 		buffer_info->mapped_as_page = false;
2880 		buffer_info->dma = dma_map_single(&pdev->dev,
2881 						  skb->data + offset,
2882 						  size, DMA_TO_DEVICE);
2883 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2884 			goto dma_error;
2885 		buffer_info->next_to_watch = i;
2886 
2887 		len -= size;
2888 		offset += size;
2889 		count++;
2890 		if (len) {
2891 			i++;
2892 			if (unlikely(i == tx_ring->count))
2893 				i = 0;
2894 		}
2895 	}
2896 
2897 	for (f = 0; f < nr_frags; f++) {
2898 		const struct skb_frag_struct *frag;
2899 
2900 		frag = &skb_shinfo(skb)->frags[f];
2901 		len = skb_frag_size(frag);
2902 		offset = 0;
2903 
2904 		while (len) {
2905 			unsigned long bufend;
2906 			i++;
2907 			if (unlikely(i == tx_ring->count))
2908 				i = 0;
2909 
2910 			buffer_info = &tx_ring->buffer_info[i];
2911 			size = min(len, max_per_txd);
2912 			/* Workaround for premature desc write-backs
2913 			 * in TSO mode.  Append 4-byte sentinel desc
2914 			 */
2915 			if (unlikely(mss && f == (nr_frags-1) &&
2916 			    size == len && size > 8))
2917 				size -= 4;
2918 			/* Workaround for potential 82544 hang in PCI-X.
2919 			 * Avoid terminating buffers within evenly-aligned
2920 			 * dwords.
2921 			 */
2922 			bufend = (unsigned long)
2923 				page_to_phys(skb_frag_page(frag));
2924 			bufend += offset + size - 1;
2925 			if (unlikely(adapter->pcix_82544 &&
2926 				     !(bufend & 4) &&
2927 				     size > 4))
2928 				size -= 4;
2929 
2930 			buffer_info->length = size;
2931 			buffer_info->time_stamp = jiffies;
2932 			buffer_info->mapped_as_page = true;
2933 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2934 						offset, size, DMA_TO_DEVICE);
2935 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2936 				goto dma_error;
2937 			buffer_info->next_to_watch = i;
2938 
2939 			len -= size;
2940 			offset += size;
2941 			count++;
2942 		}
2943 	}
2944 
2945 	segs = skb_shinfo(skb)->gso_segs ?: 1;
2946 	/* multiply data chunks by size of headers */
2947 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2948 
2949 	tx_ring->buffer_info[i].skb = skb;
2950 	tx_ring->buffer_info[i].segs = segs;
2951 	tx_ring->buffer_info[i].bytecount = bytecount;
2952 	tx_ring->buffer_info[first].next_to_watch = i;
2953 
2954 	return count;
2955 
2956 dma_error:
2957 	dev_err(&pdev->dev, "TX DMA map failed\n");
2958 	buffer_info->dma = 0;
2959 	if (count)
2960 		count--;
2961 
2962 	while (count--) {
2963 		if (i==0)
2964 			i += tx_ring->count;
2965 		i--;
2966 		buffer_info = &tx_ring->buffer_info[i];
2967 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2968 	}
2969 
2970 	return 0;
2971 }
2972 
2973 static void e1000_tx_queue(struct e1000_adapter *adapter,
2974 			   struct e1000_tx_ring *tx_ring, int tx_flags,
2975 			   int count)
2976 {
2977 	struct e1000_hw *hw = &adapter->hw;
2978 	struct e1000_tx_desc *tx_desc = NULL;
2979 	struct e1000_tx_buffer *buffer_info;
2980 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2981 	unsigned int i;
2982 
2983 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2984 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2985 			     E1000_TXD_CMD_TSE;
2986 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2987 
2988 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2989 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2990 	}
2991 
2992 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2993 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2994 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2995 	}
2996 
2997 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2998 		txd_lower |= E1000_TXD_CMD_VLE;
2999 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3000 	}
3001 
3002 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3003 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3004 
3005 	i = tx_ring->next_to_use;
3006 
3007 	while (count--) {
3008 		buffer_info = &tx_ring->buffer_info[i];
3009 		tx_desc = E1000_TX_DESC(*tx_ring, i);
3010 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3011 		tx_desc->lower.data =
3012 			cpu_to_le32(txd_lower | buffer_info->length);
3013 		tx_desc->upper.data = cpu_to_le32(txd_upper);
3014 		if (unlikely(++i == tx_ring->count)) i = 0;
3015 	}
3016 
3017 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3018 
3019 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3020 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3021 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3022 
3023 	/* Force memory writes to complete before letting h/w
3024 	 * know there are new descriptors to fetch.  (Only
3025 	 * applicable for weak-ordered memory model archs,
3026 	 * such as IA-64).
3027 	 */
3028 	wmb();
3029 
3030 	tx_ring->next_to_use = i;
3031 	writel(i, hw->hw_addr + tx_ring->tdt);
3032 	/* we need this if more than one processor can write to our tail
3033 	 * at a time, it synchronizes IO on IA64/Altix systems
3034 	 */
3035 	mmiowb();
3036 }
3037 
3038 /* 82547 workaround to avoid controller hang in half-duplex environment.
3039  * The workaround is to avoid queuing a large packet that would span
3040  * the internal Tx FIFO ring boundary by notifying the stack to resend
3041  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3042  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3043  * to the beginning of the Tx FIFO.
3044  */
3045 
3046 #define E1000_FIFO_HDR			0x10
3047 #define E1000_82547_PAD_LEN		0x3E0
3048 
3049 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3050 				       struct sk_buff *skb)
3051 {
3052 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3053 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3054 
3055 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3056 
3057 	if (adapter->link_duplex != HALF_DUPLEX)
3058 		goto no_fifo_stall_required;
3059 
3060 	if (atomic_read(&adapter->tx_fifo_stall))
3061 		return 1;
3062 
3063 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3064 		atomic_set(&adapter->tx_fifo_stall, 1);
3065 		return 1;
3066 	}
3067 
3068 no_fifo_stall_required:
3069 	adapter->tx_fifo_head += skb_fifo_len;
3070 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3071 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3072 	return 0;
3073 }
3074 
3075 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3076 {
3077 	struct e1000_adapter *adapter = netdev_priv(netdev);
3078 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3079 
3080 	netif_stop_queue(netdev);
3081 	/* Herbert's original patch had:
3082 	 *  smp_mb__after_netif_stop_queue();
3083 	 * but since that doesn't exist yet, just open code it.
3084 	 */
3085 	smp_mb();
3086 
3087 	/* We need to check again in a case another CPU has just
3088 	 * made room available.
3089 	 */
3090 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3091 		return -EBUSY;
3092 
3093 	/* A reprieve! */
3094 	netif_start_queue(netdev);
3095 	++adapter->restart_queue;
3096 	return 0;
3097 }
3098 
3099 static int e1000_maybe_stop_tx(struct net_device *netdev,
3100 			       struct e1000_tx_ring *tx_ring, int size)
3101 {
3102 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3103 		return 0;
3104 	return __e1000_maybe_stop_tx(netdev, size);
3105 }
3106 
3107 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3108 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3109 				    struct net_device *netdev)
3110 {
3111 	struct e1000_adapter *adapter = netdev_priv(netdev);
3112 	struct e1000_hw *hw = &adapter->hw;
3113 	struct e1000_tx_ring *tx_ring;
3114 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3115 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3116 	unsigned int tx_flags = 0;
3117 	unsigned int len = skb_headlen(skb);
3118 	unsigned int nr_frags;
3119 	unsigned int mss;
3120 	int count = 0;
3121 	int tso;
3122 	unsigned int f;
3123 	__be16 protocol = vlan_get_protocol(skb);
3124 
3125 	/* This goes back to the question of how to logically map a Tx queue
3126 	 * to a flow.  Right now, performance is impacted slightly negatively
3127 	 * if using multiple Tx queues.  If the stack breaks away from a
3128 	 * single qdisc implementation, we can look at this again.
3129 	 */
3130 	tx_ring = adapter->tx_ring;
3131 
3132 	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3133 	 * packets may get corrupted during padding by HW.
3134 	 * To WA this issue, pad all small packets manually.
3135 	 */
3136 	if (skb->len < ETH_ZLEN) {
3137 		if (skb_pad(skb, ETH_ZLEN - skb->len))
3138 			return NETDEV_TX_OK;
3139 		skb->len = ETH_ZLEN;
3140 		skb_set_tail_pointer(skb, ETH_ZLEN);
3141 	}
3142 
3143 	mss = skb_shinfo(skb)->gso_size;
3144 	/* The controller does a simple calculation to
3145 	 * make sure there is enough room in the FIFO before
3146 	 * initiating the DMA for each buffer.  The calc is:
3147 	 * 4 = ceil(buffer len/mss).  To make sure we don't
3148 	 * overrun the FIFO, adjust the max buffer len if mss
3149 	 * drops.
3150 	 */
3151 	if (mss) {
3152 		u8 hdr_len;
3153 		max_per_txd = min(mss << 2, max_per_txd);
3154 		max_txd_pwr = fls(max_per_txd) - 1;
3155 
3156 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3157 		if (skb->data_len && hdr_len == len) {
3158 			switch (hw->mac_type) {
3159 				unsigned int pull_size;
3160 			case e1000_82544:
3161 				/* Make sure we have room to chop off 4 bytes,
3162 				 * and that the end alignment will work out to
3163 				 * this hardware's requirements
3164 				 * NOTE: this is a TSO only workaround
3165 				 * if end byte alignment not correct move us
3166 				 * into the next dword
3167 				 */
3168 				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3169 				    & 4)
3170 					break;
3171 				/* fall through */
3172 				pull_size = min((unsigned int)4, skb->data_len);
3173 				if (!__pskb_pull_tail(skb, pull_size)) {
3174 					e_err(drv, "__pskb_pull_tail "
3175 					      "failed.\n");
3176 					dev_kfree_skb_any(skb);
3177 					return NETDEV_TX_OK;
3178 				}
3179 				len = skb_headlen(skb);
3180 				break;
3181 			default:
3182 				/* do nothing */
3183 				break;
3184 			}
3185 		}
3186 	}
3187 
3188 	/* reserve a descriptor for the offload context */
3189 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3190 		count++;
3191 	count++;
3192 
3193 	/* Controller Erratum workaround */
3194 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3195 		count++;
3196 
3197 	count += TXD_USE_COUNT(len, max_txd_pwr);
3198 
3199 	if (adapter->pcix_82544)
3200 		count++;
3201 
3202 	/* work-around for errata 10 and it applies to all controllers
3203 	 * in PCI-X mode, so add one more descriptor to the count
3204 	 */
3205 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3206 			(len > 2015)))
3207 		count++;
3208 
3209 	nr_frags = skb_shinfo(skb)->nr_frags;
3210 	for (f = 0; f < nr_frags; f++)
3211 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3212 				       max_txd_pwr);
3213 	if (adapter->pcix_82544)
3214 		count += nr_frags;
3215 
3216 	/* need: count + 2 desc gap to keep tail from touching
3217 	 * head, otherwise try next time
3218 	 */
3219 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3220 		return NETDEV_TX_BUSY;
3221 
3222 	if (unlikely((hw->mac_type == e1000_82547) &&
3223 		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3224 		netif_stop_queue(netdev);
3225 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3226 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3227 		return NETDEV_TX_BUSY;
3228 	}
3229 
3230 	if (vlan_tx_tag_present(skb)) {
3231 		tx_flags |= E1000_TX_FLAGS_VLAN;
3232 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3233 	}
3234 
3235 	first = tx_ring->next_to_use;
3236 
3237 	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3238 	if (tso < 0) {
3239 		dev_kfree_skb_any(skb);
3240 		return NETDEV_TX_OK;
3241 	}
3242 
3243 	if (likely(tso)) {
3244 		if (likely(hw->mac_type != e1000_82544))
3245 			tx_ring->last_tx_tso = true;
3246 		tx_flags |= E1000_TX_FLAGS_TSO;
3247 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3248 		tx_flags |= E1000_TX_FLAGS_CSUM;
3249 
3250 	if (protocol == htons(ETH_P_IP))
3251 		tx_flags |= E1000_TX_FLAGS_IPV4;
3252 
3253 	if (unlikely(skb->no_fcs))
3254 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3255 
3256 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3257 			     nr_frags, mss);
3258 
3259 	if (count) {
3260 		netdev_sent_queue(netdev, skb->len);
3261 		skb_tx_timestamp(skb);
3262 
3263 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3264 		/* Make sure there is space in the ring for the next send. */
3265 		e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3266 
3267 	} else {
3268 		dev_kfree_skb_any(skb);
3269 		tx_ring->buffer_info[first].time_stamp = 0;
3270 		tx_ring->next_to_use = first;
3271 	}
3272 
3273 	return NETDEV_TX_OK;
3274 }
3275 
3276 #define NUM_REGS 38 /* 1 based count */
3277 static void e1000_regdump(struct e1000_adapter *adapter)
3278 {
3279 	struct e1000_hw *hw = &adapter->hw;
3280 	u32 regs[NUM_REGS];
3281 	u32 *regs_buff = regs;
3282 	int i = 0;
3283 
3284 	static const char * const reg_name[] = {
3285 		"CTRL",  "STATUS",
3286 		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3287 		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3288 		"TIDV", "TXDCTL", "TADV", "TARC0",
3289 		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3290 		"TXDCTL1", "TARC1",
3291 		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3292 		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3293 		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3294 	};
3295 
3296 	regs_buff[0]  = er32(CTRL);
3297 	regs_buff[1]  = er32(STATUS);
3298 
3299 	regs_buff[2]  = er32(RCTL);
3300 	regs_buff[3]  = er32(RDLEN);
3301 	regs_buff[4]  = er32(RDH);
3302 	regs_buff[5]  = er32(RDT);
3303 	regs_buff[6]  = er32(RDTR);
3304 
3305 	regs_buff[7]  = er32(TCTL);
3306 	regs_buff[8]  = er32(TDBAL);
3307 	regs_buff[9]  = er32(TDBAH);
3308 	regs_buff[10] = er32(TDLEN);
3309 	regs_buff[11] = er32(TDH);
3310 	regs_buff[12] = er32(TDT);
3311 	regs_buff[13] = er32(TIDV);
3312 	regs_buff[14] = er32(TXDCTL);
3313 	regs_buff[15] = er32(TADV);
3314 	regs_buff[16] = er32(TARC0);
3315 
3316 	regs_buff[17] = er32(TDBAL1);
3317 	regs_buff[18] = er32(TDBAH1);
3318 	regs_buff[19] = er32(TDLEN1);
3319 	regs_buff[20] = er32(TDH1);
3320 	regs_buff[21] = er32(TDT1);
3321 	regs_buff[22] = er32(TXDCTL1);
3322 	regs_buff[23] = er32(TARC1);
3323 	regs_buff[24] = er32(CTRL_EXT);
3324 	regs_buff[25] = er32(ERT);
3325 	regs_buff[26] = er32(RDBAL0);
3326 	regs_buff[27] = er32(RDBAH0);
3327 	regs_buff[28] = er32(TDFH);
3328 	regs_buff[29] = er32(TDFT);
3329 	regs_buff[30] = er32(TDFHS);
3330 	regs_buff[31] = er32(TDFTS);
3331 	regs_buff[32] = er32(TDFPC);
3332 	regs_buff[33] = er32(RDFH);
3333 	regs_buff[34] = er32(RDFT);
3334 	regs_buff[35] = er32(RDFHS);
3335 	regs_buff[36] = er32(RDFTS);
3336 	regs_buff[37] = er32(RDFPC);
3337 
3338 	pr_info("Register dump\n");
3339 	for (i = 0; i < NUM_REGS; i++)
3340 		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3341 }
3342 
3343 /*
3344  * e1000_dump: Print registers, tx ring and rx ring
3345  */
3346 static void e1000_dump(struct e1000_adapter *adapter)
3347 {
3348 	/* this code doesn't handle multiple rings */
3349 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3350 	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3351 	int i;
3352 
3353 	if (!netif_msg_hw(adapter))
3354 		return;
3355 
3356 	/* Print Registers */
3357 	e1000_regdump(adapter);
3358 
3359 	/* transmit dump */
3360 	pr_info("TX Desc ring0 dump\n");
3361 
3362 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3363 	 *
3364 	 * Legacy Transmit Descriptor
3365 	 *   +--------------------------------------------------------------+
3366 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3367 	 *   +--------------------------------------------------------------+
3368 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3369 	 *   +--------------------------------------------------------------+
3370 	 *   63       48 47        36 35    32 31     24 23    16 15        0
3371 	 *
3372 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3373 	 *   63      48 47    40 39       32 31             16 15    8 7      0
3374 	 *   +----------------------------------------------------------------+
3375 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3376 	 *   +----------------------------------------------------------------+
3377 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3378 	 *   +----------------------------------------------------------------+
3379 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3380 	 *
3381 	 * Extended Data Descriptor (DTYP=0x1)
3382 	 *   +----------------------------------------------------------------+
3383 	 * 0 |                     Buffer Address [63:0]                      |
3384 	 *   +----------------------------------------------------------------+
3385 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3386 	 *   +----------------------------------------------------------------+
3387 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3388 	 */
3389 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3390 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3391 
3392 	if (!netif_msg_tx_done(adapter))
3393 		goto rx_ring_summary;
3394 
3395 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3396 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3397 		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3398 		struct my_u { __le64 a; __le64 b; };
3399 		struct my_u *u = (struct my_u *)tx_desc;
3400 		const char *type;
3401 
3402 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3403 			type = "NTC/U";
3404 		else if (i == tx_ring->next_to_use)
3405 			type = "NTU";
3406 		else if (i == tx_ring->next_to_clean)
3407 			type = "NTC";
3408 		else
3409 			type = "";
3410 
3411 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3412 			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3413 			le64_to_cpu(u->a), le64_to_cpu(u->b),
3414 			(u64)buffer_info->dma, buffer_info->length,
3415 			buffer_info->next_to_watch,
3416 			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3417 	}
3418 
3419 rx_ring_summary:
3420 	/* receive dump */
3421 	pr_info("\nRX Desc ring dump\n");
3422 
3423 	/* Legacy Receive Descriptor Format
3424 	 *
3425 	 * +-----------------------------------------------------+
3426 	 * |                Buffer Address [63:0]                |
3427 	 * +-----------------------------------------------------+
3428 	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3429 	 * +-----------------------------------------------------+
3430 	 * 63       48 47    40 39      32 31         16 15      0
3431 	 */
3432 	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3433 
3434 	if (!netif_msg_rx_status(adapter))
3435 		goto exit;
3436 
3437 	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3438 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3439 		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3440 		struct my_u { __le64 a; __le64 b; };
3441 		struct my_u *u = (struct my_u *)rx_desc;
3442 		const char *type;
3443 
3444 		if (i == rx_ring->next_to_use)
3445 			type = "NTU";
3446 		else if (i == rx_ring->next_to_clean)
3447 			type = "NTC";
3448 		else
3449 			type = "";
3450 
3451 		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3452 			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3453 			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3454 	} /* for */
3455 
3456 	/* dump the descriptor caches */
3457 	/* rx */
3458 	pr_info("Rx descriptor cache in 64bit format\n");
3459 	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3460 		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3461 			i,
3462 			readl(adapter->hw.hw_addr + i+4),
3463 			readl(adapter->hw.hw_addr + i),
3464 			readl(adapter->hw.hw_addr + i+12),
3465 			readl(adapter->hw.hw_addr + i+8));
3466 	}
3467 	/* tx */
3468 	pr_info("Tx descriptor cache in 64bit format\n");
3469 	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3470 		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3471 			i,
3472 			readl(adapter->hw.hw_addr + i+4),
3473 			readl(adapter->hw.hw_addr + i),
3474 			readl(adapter->hw.hw_addr + i+12),
3475 			readl(adapter->hw.hw_addr + i+8));
3476 	}
3477 exit:
3478 	return;
3479 }
3480 
3481 /**
3482  * e1000_tx_timeout - Respond to a Tx Hang
3483  * @netdev: network interface device structure
3484  **/
3485 static void e1000_tx_timeout(struct net_device *netdev)
3486 {
3487 	struct e1000_adapter *adapter = netdev_priv(netdev);
3488 
3489 	/* Do the reset outside of interrupt context */
3490 	adapter->tx_timeout_count++;
3491 	schedule_work(&adapter->reset_task);
3492 }
3493 
3494 static void e1000_reset_task(struct work_struct *work)
3495 {
3496 	struct e1000_adapter *adapter =
3497 		container_of(work, struct e1000_adapter, reset_task);
3498 
3499 	e_err(drv, "Reset adapter\n");
3500 	e1000_reinit_locked(adapter);
3501 }
3502 
3503 /**
3504  * e1000_get_stats - Get System Network Statistics
3505  * @netdev: network interface device structure
3506  *
3507  * Returns the address of the device statistics structure.
3508  * The statistics are actually updated from the watchdog.
3509  **/
3510 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3511 {
3512 	/* only return the current stats */
3513 	return &netdev->stats;
3514 }
3515 
3516 /**
3517  * e1000_change_mtu - Change the Maximum Transfer Unit
3518  * @netdev: network interface device structure
3519  * @new_mtu: new value for maximum frame size
3520  *
3521  * Returns 0 on success, negative on failure
3522  **/
3523 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3524 {
3525 	struct e1000_adapter *adapter = netdev_priv(netdev);
3526 	struct e1000_hw *hw = &adapter->hw;
3527 	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3528 
3529 	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3530 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3531 		e_err(probe, "Invalid MTU setting\n");
3532 		return -EINVAL;
3533 	}
3534 
3535 	/* Adapter-specific max frame size limits. */
3536 	switch (hw->mac_type) {
3537 	case e1000_undefined ... e1000_82542_rev2_1:
3538 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3539 			e_err(probe, "Jumbo Frames not supported.\n");
3540 			return -EINVAL;
3541 		}
3542 		break;
3543 	default:
3544 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3545 		break;
3546 	}
3547 
3548 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3549 		msleep(1);
3550 	/* e1000_down has a dependency on max_frame_size */
3551 	hw->max_frame_size = max_frame;
3552 	if (netif_running(netdev))
3553 		e1000_down(adapter);
3554 
3555 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3556 	 * means we reserve 2 more, this pushes us to allocate from the next
3557 	 * larger slab size.
3558 	 * i.e. RXBUFFER_2048 --> size-4096 slab
3559 	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3560 	 * fragmented skbs
3561 	 */
3562 
3563 	if (max_frame <= E1000_RXBUFFER_2048)
3564 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3565 	else
3566 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3567 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3568 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3569 		adapter->rx_buffer_len = PAGE_SIZE;
3570 #endif
3571 
3572 	/* adjust allocation if LPE protects us, and we aren't using SBP */
3573 	if (!hw->tbi_compatibility_on &&
3574 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3575 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3576 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3577 
3578 	pr_info("%s changing MTU from %d to %d\n",
3579 		netdev->name, netdev->mtu, new_mtu);
3580 	netdev->mtu = new_mtu;
3581 
3582 	if (netif_running(netdev))
3583 		e1000_up(adapter);
3584 	else
3585 		e1000_reset(adapter);
3586 
3587 	clear_bit(__E1000_RESETTING, &adapter->flags);
3588 
3589 	return 0;
3590 }
3591 
3592 /**
3593  * e1000_update_stats - Update the board statistics counters
3594  * @adapter: board private structure
3595  **/
3596 void e1000_update_stats(struct e1000_adapter *adapter)
3597 {
3598 	struct net_device *netdev = adapter->netdev;
3599 	struct e1000_hw *hw = &adapter->hw;
3600 	struct pci_dev *pdev = adapter->pdev;
3601 	unsigned long flags;
3602 	u16 phy_tmp;
3603 
3604 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3605 
3606 	/* Prevent stats update while adapter is being reset, or if the pci
3607 	 * connection is down.
3608 	 */
3609 	if (adapter->link_speed == 0)
3610 		return;
3611 	if (pci_channel_offline(pdev))
3612 		return;
3613 
3614 	spin_lock_irqsave(&adapter->stats_lock, flags);
3615 
3616 	/* these counters are modified from e1000_tbi_adjust_stats,
3617 	 * called from the interrupt context, so they must only
3618 	 * be written while holding adapter->stats_lock
3619 	 */
3620 
3621 	adapter->stats.crcerrs += er32(CRCERRS);
3622 	adapter->stats.gprc += er32(GPRC);
3623 	adapter->stats.gorcl += er32(GORCL);
3624 	adapter->stats.gorch += er32(GORCH);
3625 	adapter->stats.bprc += er32(BPRC);
3626 	adapter->stats.mprc += er32(MPRC);
3627 	adapter->stats.roc += er32(ROC);
3628 
3629 	adapter->stats.prc64 += er32(PRC64);
3630 	adapter->stats.prc127 += er32(PRC127);
3631 	adapter->stats.prc255 += er32(PRC255);
3632 	adapter->stats.prc511 += er32(PRC511);
3633 	adapter->stats.prc1023 += er32(PRC1023);
3634 	adapter->stats.prc1522 += er32(PRC1522);
3635 
3636 	adapter->stats.symerrs += er32(SYMERRS);
3637 	adapter->stats.mpc += er32(MPC);
3638 	adapter->stats.scc += er32(SCC);
3639 	adapter->stats.ecol += er32(ECOL);
3640 	adapter->stats.mcc += er32(MCC);
3641 	adapter->stats.latecol += er32(LATECOL);
3642 	adapter->stats.dc += er32(DC);
3643 	adapter->stats.sec += er32(SEC);
3644 	adapter->stats.rlec += er32(RLEC);
3645 	adapter->stats.xonrxc += er32(XONRXC);
3646 	adapter->stats.xontxc += er32(XONTXC);
3647 	adapter->stats.xoffrxc += er32(XOFFRXC);
3648 	adapter->stats.xofftxc += er32(XOFFTXC);
3649 	adapter->stats.fcruc += er32(FCRUC);
3650 	adapter->stats.gptc += er32(GPTC);
3651 	adapter->stats.gotcl += er32(GOTCL);
3652 	adapter->stats.gotch += er32(GOTCH);
3653 	adapter->stats.rnbc += er32(RNBC);
3654 	adapter->stats.ruc += er32(RUC);
3655 	adapter->stats.rfc += er32(RFC);
3656 	adapter->stats.rjc += er32(RJC);
3657 	adapter->stats.torl += er32(TORL);
3658 	adapter->stats.torh += er32(TORH);
3659 	adapter->stats.totl += er32(TOTL);
3660 	adapter->stats.toth += er32(TOTH);
3661 	adapter->stats.tpr += er32(TPR);
3662 
3663 	adapter->stats.ptc64 += er32(PTC64);
3664 	adapter->stats.ptc127 += er32(PTC127);
3665 	adapter->stats.ptc255 += er32(PTC255);
3666 	adapter->stats.ptc511 += er32(PTC511);
3667 	adapter->stats.ptc1023 += er32(PTC1023);
3668 	adapter->stats.ptc1522 += er32(PTC1522);
3669 
3670 	adapter->stats.mptc += er32(MPTC);
3671 	adapter->stats.bptc += er32(BPTC);
3672 
3673 	/* used for adaptive IFS */
3674 
3675 	hw->tx_packet_delta = er32(TPT);
3676 	adapter->stats.tpt += hw->tx_packet_delta;
3677 	hw->collision_delta = er32(COLC);
3678 	adapter->stats.colc += hw->collision_delta;
3679 
3680 	if (hw->mac_type >= e1000_82543) {
3681 		adapter->stats.algnerrc += er32(ALGNERRC);
3682 		adapter->stats.rxerrc += er32(RXERRC);
3683 		adapter->stats.tncrs += er32(TNCRS);
3684 		adapter->stats.cexterr += er32(CEXTERR);
3685 		adapter->stats.tsctc += er32(TSCTC);
3686 		adapter->stats.tsctfc += er32(TSCTFC);
3687 	}
3688 
3689 	/* Fill out the OS statistics structure */
3690 	netdev->stats.multicast = adapter->stats.mprc;
3691 	netdev->stats.collisions = adapter->stats.colc;
3692 
3693 	/* Rx Errors */
3694 
3695 	/* RLEC on some newer hardware can be incorrect so build
3696 	 * our own version based on RUC and ROC
3697 	 */
3698 	netdev->stats.rx_errors = adapter->stats.rxerrc +
3699 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3700 		adapter->stats.ruc + adapter->stats.roc +
3701 		adapter->stats.cexterr;
3702 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3703 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3704 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3705 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3706 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3707 
3708 	/* Tx Errors */
3709 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3710 	netdev->stats.tx_errors = adapter->stats.txerrc;
3711 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3712 	netdev->stats.tx_window_errors = adapter->stats.latecol;
3713 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3714 	if (hw->bad_tx_carr_stats_fd &&
3715 	    adapter->link_duplex == FULL_DUPLEX) {
3716 		netdev->stats.tx_carrier_errors = 0;
3717 		adapter->stats.tncrs = 0;
3718 	}
3719 
3720 	/* Tx Dropped needs to be maintained elsewhere */
3721 
3722 	/* Phy Stats */
3723 	if (hw->media_type == e1000_media_type_copper) {
3724 		if ((adapter->link_speed == SPEED_1000) &&
3725 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3726 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3727 			adapter->phy_stats.idle_errors += phy_tmp;
3728 		}
3729 
3730 		if ((hw->mac_type <= e1000_82546) &&
3731 		   (hw->phy_type == e1000_phy_m88) &&
3732 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3733 			adapter->phy_stats.receive_errors += phy_tmp;
3734 	}
3735 
3736 	/* Management Stats */
3737 	if (hw->has_smbus) {
3738 		adapter->stats.mgptc += er32(MGTPTC);
3739 		adapter->stats.mgprc += er32(MGTPRC);
3740 		adapter->stats.mgpdc += er32(MGTPDC);
3741 	}
3742 
3743 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3744 }
3745 
3746 /**
3747  * e1000_intr - Interrupt Handler
3748  * @irq: interrupt number
3749  * @data: pointer to a network interface device structure
3750  **/
3751 static irqreturn_t e1000_intr(int irq, void *data)
3752 {
3753 	struct net_device *netdev = data;
3754 	struct e1000_adapter *adapter = netdev_priv(netdev);
3755 	struct e1000_hw *hw = &adapter->hw;
3756 	u32 icr = er32(ICR);
3757 
3758 	if (unlikely((!icr)))
3759 		return IRQ_NONE;  /* Not our interrupt */
3760 
3761 	/* we might have caused the interrupt, but the above
3762 	 * read cleared it, and just in case the driver is
3763 	 * down there is nothing to do so return handled
3764 	 */
3765 	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3766 		return IRQ_HANDLED;
3767 
3768 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3769 		hw->get_link_status = 1;
3770 		/* guard against interrupt when we're going down */
3771 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3772 			schedule_delayed_work(&adapter->watchdog_task, 1);
3773 	}
3774 
3775 	/* disable interrupts, without the synchronize_irq bit */
3776 	ew32(IMC, ~0);
3777 	E1000_WRITE_FLUSH();
3778 
3779 	if (likely(napi_schedule_prep(&adapter->napi))) {
3780 		adapter->total_tx_bytes = 0;
3781 		adapter->total_tx_packets = 0;
3782 		adapter->total_rx_bytes = 0;
3783 		adapter->total_rx_packets = 0;
3784 		__napi_schedule(&adapter->napi);
3785 	} else {
3786 		/* this really should not happen! if it does it is basically a
3787 		 * bug, but not a hard error, so enable ints and continue
3788 		 */
3789 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3790 			e1000_irq_enable(adapter);
3791 	}
3792 
3793 	return IRQ_HANDLED;
3794 }
3795 
3796 /**
3797  * e1000_clean - NAPI Rx polling callback
3798  * @adapter: board private structure
3799  **/
3800 static int e1000_clean(struct napi_struct *napi, int budget)
3801 {
3802 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3803 						     napi);
3804 	int tx_clean_complete = 0, work_done = 0;
3805 
3806 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3807 
3808 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3809 
3810 	if (!tx_clean_complete)
3811 		work_done = budget;
3812 
3813 	/* If budget not fully consumed, exit the polling mode */
3814 	if (work_done < budget) {
3815 		if (likely(adapter->itr_setting & 3))
3816 			e1000_set_itr(adapter);
3817 		napi_complete(napi);
3818 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3819 			e1000_irq_enable(adapter);
3820 	}
3821 
3822 	return work_done;
3823 }
3824 
3825 /**
3826  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3827  * @adapter: board private structure
3828  **/
3829 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3830 			       struct e1000_tx_ring *tx_ring)
3831 {
3832 	struct e1000_hw *hw = &adapter->hw;
3833 	struct net_device *netdev = adapter->netdev;
3834 	struct e1000_tx_desc *tx_desc, *eop_desc;
3835 	struct e1000_tx_buffer *buffer_info;
3836 	unsigned int i, eop;
3837 	unsigned int count = 0;
3838 	unsigned int total_tx_bytes=0, total_tx_packets=0;
3839 	unsigned int bytes_compl = 0, pkts_compl = 0;
3840 
3841 	i = tx_ring->next_to_clean;
3842 	eop = tx_ring->buffer_info[i].next_to_watch;
3843 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3844 
3845 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3846 	       (count < tx_ring->count)) {
3847 		bool cleaned = false;
3848 		rmb();	/* read buffer_info after eop_desc */
3849 		for ( ; !cleaned; count++) {
3850 			tx_desc = E1000_TX_DESC(*tx_ring, i);
3851 			buffer_info = &tx_ring->buffer_info[i];
3852 			cleaned = (i == eop);
3853 
3854 			if (cleaned) {
3855 				total_tx_packets += buffer_info->segs;
3856 				total_tx_bytes += buffer_info->bytecount;
3857 				if (buffer_info->skb) {
3858 					bytes_compl += buffer_info->skb->len;
3859 					pkts_compl++;
3860 				}
3861 
3862 			}
3863 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3864 			tx_desc->upper.data = 0;
3865 
3866 			if (unlikely(++i == tx_ring->count)) i = 0;
3867 		}
3868 
3869 		eop = tx_ring->buffer_info[i].next_to_watch;
3870 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3871 	}
3872 
3873 	tx_ring->next_to_clean = i;
3874 
3875 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3876 
3877 #define TX_WAKE_THRESHOLD 32
3878 	if (unlikely(count && netif_carrier_ok(netdev) &&
3879 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3880 		/* Make sure that anybody stopping the queue after this
3881 		 * sees the new next_to_clean.
3882 		 */
3883 		smp_mb();
3884 
3885 		if (netif_queue_stopped(netdev) &&
3886 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3887 			netif_wake_queue(netdev);
3888 			++adapter->restart_queue;
3889 		}
3890 	}
3891 
3892 	if (adapter->detect_tx_hung) {
3893 		/* Detect a transmit hang in hardware, this serializes the
3894 		 * check with the clearing of time_stamp and movement of i
3895 		 */
3896 		adapter->detect_tx_hung = false;
3897 		if (tx_ring->buffer_info[eop].time_stamp &&
3898 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3899 			       (adapter->tx_timeout_factor * HZ)) &&
3900 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3901 
3902 			/* detected Tx unit hang */
3903 			e_err(drv, "Detected Tx Unit Hang\n"
3904 			      "  Tx Queue             <%lu>\n"
3905 			      "  TDH                  <%x>\n"
3906 			      "  TDT                  <%x>\n"
3907 			      "  next_to_use          <%x>\n"
3908 			      "  next_to_clean        <%x>\n"
3909 			      "buffer_info[next_to_clean]\n"
3910 			      "  time_stamp           <%lx>\n"
3911 			      "  next_to_watch        <%x>\n"
3912 			      "  jiffies              <%lx>\n"
3913 			      "  next_to_watch.status <%x>\n",
3914 				(unsigned long)(tx_ring - adapter->tx_ring),
3915 				readl(hw->hw_addr + tx_ring->tdh),
3916 				readl(hw->hw_addr + tx_ring->tdt),
3917 				tx_ring->next_to_use,
3918 				tx_ring->next_to_clean,
3919 				tx_ring->buffer_info[eop].time_stamp,
3920 				eop,
3921 				jiffies,
3922 				eop_desc->upper.fields.status);
3923 			e1000_dump(adapter);
3924 			netif_stop_queue(netdev);
3925 		}
3926 	}
3927 	adapter->total_tx_bytes += total_tx_bytes;
3928 	adapter->total_tx_packets += total_tx_packets;
3929 	netdev->stats.tx_bytes += total_tx_bytes;
3930 	netdev->stats.tx_packets += total_tx_packets;
3931 	return count < tx_ring->count;
3932 }
3933 
3934 /**
3935  * e1000_rx_checksum - Receive Checksum Offload for 82543
3936  * @adapter:     board private structure
3937  * @status_err:  receive descriptor status and error fields
3938  * @csum:        receive descriptor csum field
3939  * @sk_buff:     socket buffer with received data
3940  **/
3941 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3942 			      u32 csum, struct sk_buff *skb)
3943 {
3944 	struct e1000_hw *hw = &adapter->hw;
3945 	u16 status = (u16)status_err;
3946 	u8 errors = (u8)(status_err >> 24);
3947 
3948 	skb_checksum_none_assert(skb);
3949 
3950 	/* 82543 or newer only */
3951 	if (unlikely(hw->mac_type < e1000_82543)) return;
3952 	/* Ignore Checksum bit is set */
3953 	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3954 	/* TCP/UDP checksum error bit is set */
3955 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3956 		/* let the stack verify checksum errors */
3957 		adapter->hw_csum_err++;
3958 		return;
3959 	}
3960 	/* TCP/UDP Checksum has not been calculated */
3961 	if (!(status & E1000_RXD_STAT_TCPCS))
3962 		return;
3963 
3964 	/* It must be a TCP or UDP packet with a valid checksum */
3965 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3966 		/* TCP checksum is good */
3967 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3968 	}
3969 	adapter->hw_csum_good++;
3970 }
3971 
3972 /**
3973  * e1000_consume_page - helper function for jumbo Rx path
3974  **/
3975 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3976 			       u16 length)
3977 {
3978 	bi->rxbuf.page = NULL;
3979 	skb->len += length;
3980 	skb->data_len += length;
3981 	skb->truesize += PAGE_SIZE;
3982 }
3983 
3984 /**
3985  * e1000_receive_skb - helper function to handle rx indications
3986  * @adapter: board private structure
3987  * @status: descriptor status field as written by hardware
3988  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3989  * @skb: pointer to sk_buff to be indicated to stack
3990  */
3991 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3992 			      __le16 vlan, struct sk_buff *skb)
3993 {
3994 	skb->protocol = eth_type_trans(skb, adapter->netdev);
3995 
3996 	if (status & E1000_RXD_STAT_VP) {
3997 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3998 
3999 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4000 	}
4001 	napi_gro_receive(&adapter->napi, skb);
4002 }
4003 
4004 /**
4005  * e1000_tbi_adjust_stats
4006  * @hw: Struct containing variables accessed by shared code
4007  * @frame_len: The length of the frame in question
4008  * @mac_addr: The Ethernet destination address of the frame in question
4009  *
4010  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4011  */
4012 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4013 				   struct e1000_hw_stats *stats,
4014 				   u32 frame_len, const u8 *mac_addr)
4015 {
4016 	u64 carry_bit;
4017 
4018 	/* First adjust the frame length. */
4019 	frame_len--;
4020 	/* We need to adjust the statistics counters, since the hardware
4021 	 * counters overcount this packet as a CRC error and undercount
4022 	 * the packet as a good packet
4023 	 */
4024 	/* This packet should not be counted as a CRC error. */
4025 	stats->crcerrs--;
4026 	/* This packet does count as a Good Packet Received. */
4027 	stats->gprc++;
4028 
4029 	/* Adjust the Good Octets received counters */
4030 	carry_bit = 0x80000000 & stats->gorcl;
4031 	stats->gorcl += frame_len;
4032 	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4033 	 * Received Count) was one before the addition,
4034 	 * AND it is zero after, then we lost the carry out,
4035 	 * need to add one to Gorch (Good Octets Received Count High).
4036 	 * This could be simplified if all environments supported
4037 	 * 64-bit integers.
4038 	 */
4039 	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4040 		stats->gorch++;
4041 	/* Is this a broadcast or multicast?  Check broadcast first,
4042 	 * since the test for a multicast frame will test positive on
4043 	 * a broadcast frame.
4044 	 */
4045 	if (is_broadcast_ether_addr(mac_addr))
4046 		stats->bprc++;
4047 	else if (is_multicast_ether_addr(mac_addr))
4048 		stats->mprc++;
4049 
4050 	if (frame_len == hw->max_frame_size) {
4051 		/* In this case, the hardware has overcounted the number of
4052 		 * oversize frames.
4053 		 */
4054 		if (stats->roc > 0)
4055 			stats->roc--;
4056 	}
4057 
4058 	/* Adjust the bin counters when the extra byte put the frame in the
4059 	 * wrong bin. Remember that the frame_len was adjusted above.
4060 	 */
4061 	if (frame_len == 64) {
4062 		stats->prc64++;
4063 		stats->prc127--;
4064 	} else if (frame_len == 127) {
4065 		stats->prc127++;
4066 		stats->prc255--;
4067 	} else if (frame_len == 255) {
4068 		stats->prc255++;
4069 		stats->prc511--;
4070 	} else if (frame_len == 511) {
4071 		stats->prc511++;
4072 		stats->prc1023--;
4073 	} else if (frame_len == 1023) {
4074 		stats->prc1023++;
4075 		stats->prc1522--;
4076 	} else if (frame_len == 1522) {
4077 		stats->prc1522++;
4078 	}
4079 }
4080 
4081 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4082 				    u8 status, u8 errors,
4083 				    u32 length, const u8 *data)
4084 {
4085 	struct e1000_hw *hw = &adapter->hw;
4086 	u8 last_byte = *(data + length - 1);
4087 
4088 	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4089 		unsigned long irq_flags;
4090 
4091 		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4092 		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4093 		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4094 
4095 		return true;
4096 	}
4097 
4098 	return false;
4099 }
4100 
4101 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4102 					  unsigned int bufsz)
4103 {
4104 	struct sk_buff *skb = netdev_alloc_skb_ip_align(adapter->netdev, bufsz);
4105 
4106 	if (unlikely(!skb))
4107 		adapter->alloc_rx_buff_failed++;
4108 	return skb;
4109 }
4110 
4111 /**
4112  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4113  * @adapter: board private structure
4114  * @rx_ring: ring to clean
4115  * @work_done: amount of napi work completed this call
4116  * @work_to_do: max amount of work allowed for this call to do
4117  *
4118  * the return value indicates whether actual cleaning was done, there
4119  * is no guarantee that everything was cleaned
4120  */
4121 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4122 				     struct e1000_rx_ring *rx_ring,
4123 				     int *work_done, int work_to_do)
4124 {
4125 	struct net_device *netdev = adapter->netdev;
4126 	struct pci_dev *pdev = adapter->pdev;
4127 	struct e1000_rx_desc *rx_desc, *next_rxd;
4128 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4129 	u32 length;
4130 	unsigned int i;
4131 	int cleaned_count = 0;
4132 	bool cleaned = false;
4133 	unsigned int total_rx_bytes=0, total_rx_packets=0;
4134 
4135 	i = rx_ring->next_to_clean;
4136 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4137 	buffer_info = &rx_ring->buffer_info[i];
4138 
4139 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4140 		struct sk_buff *skb;
4141 		u8 status;
4142 
4143 		if (*work_done >= work_to_do)
4144 			break;
4145 		(*work_done)++;
4146 		rmb(); /* read descriptor and rx_buffer_info after status DD */
4147 
4148 		status = rx_desc->status;
4149 
4150 		if (++i == rx_ring->count) i = 0;
4151 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4152 		prefetch(next_rxd);
4153 
4154 		next_buffer = &rx_ring->buffer_info[i];
4155 
4156 		cleaned = true;
4157 		cleaned_count++;
4158 		dma_unmap_page(&pdev->dev, buffer_info->dma,
4159 			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4160 		buffer_info->dma = 0;
4161 
4162 		length = le16_to_cpu(rx_desc->length);
4163 
4164 		/* errors is only valid for DD + EOP descriptors */
4165 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4166 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4167 			u8 *mapped = page_address(buffer_info->rxbuf.page);
4168 
4169 			if (e1000_tbi_should_accept(adapter, status,
4170 						    rx_desc->errors,
4171 						    length, mapped)) {
4172 				length--;
4173 			} else if (netdev->features & NETIF_F_RXALL) {
4174 				goto process_skb;
4175 			} else {
4176 				/* an error means any chain goes out the window
4177 				 * too
4178 				 */
4179 				if (rx_ring->rx_skb_top)
4180 					dev_kfree_skb(rx_ring->rx_skb_top);
4181 				rx_ring->rx_skb_top = NULL;
4182 				goto next_desc;
4183 			}
4184 		}
4185 
4186 #define rxtop rx_ring->rx_skb_top
4187 process_skb:
4188 		if (!(status & E1000_RXD_STAT_EOP)) {
4189 			/* this descriptor is only the beginning (or middle) */
4190 			if (!rxtop) {
4191 				/* this is the beginning of a chain */
4192 				rxtop = napi_get_frags(&adapter->napi);
4193 				if (!rxtop)
4194 					break;
4195 
4196 				skb_fill_page_desc(rxtop, 0,
4197 						   buffer_info->rxbuf.page,
4198 						   0, length);
4199 			} else {
4200 				/* this is the middle of a chain */
4201 				skb_fill_page_desc(rxtop,
4202 				    skb_shinfo(rxtop)->nr_frags,
4203 				    buffer_info->rxbuf.page, 0, length);
4204 			}
4205 			e1000_consume_page(buffer_info, rxtop, length);
4206 			goto next_desc;
4207 		} else {
4208 			if (rxtop) {
4209 				/* end of the chain */
4210 				skb_fill_page_desc(rxtop,
4211 				    skb_shinfo(rxtop)->nr_frags,
4212 				    buffer_info->rxbuf.page, 0, length);
4213 				skb = rxtop;
4214 				rxtop = NULL;
4215 				e1000_consume_page(buffer_info, skb, length);
4216 			} else {
4217 				struct page *p;
4218 				/* no chain, got EOP, this buf is the packet
4219 				 * copybreak to save the put_page/alloc_page
4220 				 */
4221 				p = buffer_info->rxbuf.page;
4222 				if (length <= copybreak) {
4223 					u8 *vaddr;
4224 
4225 					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4226 						length -= 4;
4227 					skb = e1000_alloc_rx_skb(adapter,
4228 								 length);
4229 					if (!skb)
4230 						break;
4231 
4232 					vaddr = kmap_atomic(p);
4233 					memcpy(skb_tail_pointer(skb), vaddr,
4234 					       length);
4235 					kunmap_atomic(vaddr);
4236 					/* re-use the page, so don't erase
4237 					 * buffer_info->rxbuf.page
4238 					 */
4239 					skb_put(skb, length);
4240 					e1000_rx_checksum(adapter,
4241 							  status | rx_desc->errors << 24,
4242 							  le16_to_cpu(rx_desc->csum), skb);
4243 
4244 					total_rx_bytes += skb->len;
4245 					total_rx_packets++;
4246 
4247 					e1000_receive_skb(adapter, status,
4248 							  rx_desc->special, skb);
4249 					goto next_desc;
4250 				} else {
4251 					skb = napi_get_frags(&adapter->napi);
4252 					if (!skb) {
4253 						adapter->alloc_rx_buff_failed++;
4254 						break;
4255 					}
4256 					skb_fill_page_desc(skb, 0, p, 0,
4257 							   length);
4258 					e1000_consume_page(buffer_info, skb,
4259 							   length);
4260 				}
4261 			}
4262 		}
4263 
4264 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4265 		e1000_rx_checksum(adapter,
4266 				  (u32)(status) |
4267 				  ((u32)(rx_desc->errors) << 24),
4268 				  le16_to_cpu(rx_desc->csum), skb);
4269 
4270 		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4271 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4272 			pskb_trim(skb, skb->len - 4);
4273 		total_rx_packets++;
4274 
4275 		if (status & E1000_RXD_STAT_VP) {
4276 			__le16 vlan = rx_desc->special;
4277 			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4278 
4279 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4280 		}
4281 
4282 		napi_gro_frags(&adapter->napi);
4283 
4284 next_desc:
4285 		rx_desc->status = 0;
4286 
4287 		/* return some buffers to hardware, one at a time is too slow */
4288 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4289 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4290 			cleaned_count = 0;
4291 		}
4292 
4293 		/* use prefetched values */
4294 		rx_desc = next_rxd;
4295 		buffer_info = next_buffer;
4296 	}
4297 	rx_ring->next_to_clean = i;
4298 
4299 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4300 	if (cleaned_count)
4301 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4302 
4303 	adapter->total_rx_packets += total_rx_packets;
4304 	adapter->total_rx_bytes += total_rx_bytes;
4305 	netdev->stats.rx_bytes += total_rx_bytes;
4306 	netdev->stats.rx_packets += total_rx_packets;
4307 	return cleaned;
4308 }
4309 
4310 /* this should improve performance for small packets with large amounts
4311  * of reassembly being done in the stack
4312  */
4313 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4314 				       struct e1000_rx_buffer *buffer_info,
4315 				       u32 length, const void *data)
4316 {
4317 	struct sk_buff *skb;
4318 
4319 	if (length > copybreak)
4320 		return NULL;
4321 
4322 	skb = e1000_alloc_rx_skb(adapter, length);
4323 	if (!skb)
4324 		return NULL;
4325 
4326 	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4327 				length, DMA_FROM_DEVICE);
4328 
4329 	memcpy(skb_put(skb, length), data, length);
4330 
4331 	return skb;
4332 }
4333 
4334 /**
4335  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4336  * @adapter: board private structure
4337  * @rx_ring: ring to clean
4338  * @work_done: amount of napi work completed this call
4339  * @work_to_do: max amount of work allowed for this call to do
4340  */
4341 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4342 			       struct e1000_rx_ring *rx_ring,
4343 			       int *work_done, int work_to_do)
4344 {
4345 	struct net_device *netdev = adapter->netdev;
4346 	struct pci_dev *pdev = adapter->pdev;
4347 	struct e1000_rx_desc *rx_desc, *next_rxd;
4348 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4349 	u32 length;
4350 	unsigned int i;
4351 	int cleaned_count = 0;
4352 	bool cleaned = false;
4353 	unsigned int total_rx_bytes=0, total_rx_packets=0;
4354 
4355 	i = rx_ring->next_to_clean;
4356 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4357 	buffer_info = &rx_ring->buffer_info[i];
4358 
4359 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4360 		struct sk_buff *skb;
4361 		u8 *data;
4362 		u8 status;
4363 
4364 		if (*work_done >= work_to_do)
4365 			break;
4366 		(*work_done)++;
4367 		rmb(); /* read descriptor and rx_buffer_info after status DD */
4368 
4369 		status = rx_desc->status;
4370 		length = le16_to_cpu(rx_desc->length);
4371 
4372 		data = buffer_info->rxbuf.data;
4373 		prefetch(data);
4374 		skb = e1000_copybreak(adapter, buffer_info, length, data);
4375 		if (!skb) {
4376 			unsigned int frag_len = e1000_frag_len(adapter);
4377 
4378 			skb = build_skb(data - E1000_HEADROOM, frag_len);
4379 			if (!skb) {
4380 				adapter->alloc_rx_buff_failed++;
4381 				break;
4382 			}
4383 
4384 			skb_reserve(skb, E1000_HEADROOM);
4385 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4386 					 adapter->rx_buffer_len,
4387 					 DMA_FROM_DEVICE);
4388 			buffer_info->dma = 0;
4389 			buffer_info->rxbuf.data = NULL;
4390 		}
4391 
4392 		if (++i == rx_ring->count) i = 0;
4393 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4394 		prefetch(next_rxd);
4395 
4396 		next_buffer = &rx_ring->buffer_info[i];
4397 
4398 		cleaned = true;
4399 		cleaned_count++;
4400 
4401 		/* !EOP means multiple descriptors were used to store a single
4402 		 * packet, if thats the case we need to toss it.  In fact, we
4403 		 * to toss every packet with the EOP bit clear and the next
4404 		 * frame that _does_ have the EOP bit set, as it is by
4405 		 * definition only a frame fragment
4406 		 */
4407 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4408 			adapter->discarding = true;
4409 
4410 		if (adapter->discarding) {
4411 			/* All receives must fit into a single buffer */
4412 			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4413 			dev_kfree_skb(skb);
4414 			if (status & E1000_RXD_STAT_EOP)
4415 				adapter->discarding = false;
4416 			goto next_desc;
4417 		}
4418 
4419 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4420 			if (e1000_tbi_should_accept(adapter, status,
4421 						    rx_desc->errors,
4422 						    length, data)) {
4423 				length--;
4424 			} else if (netdev->features & NETIF_F_RXALL) {
4425 				goto process_skb;
4426 			} else {
4427 				dev_kfree_skb(skb);
4428 				goto next_desc;
4429 			}
4430 		}
4431 
4432 process_skb:
4433 		total_rx_bytes += (length - 4); /* don't count FCS */
4434 		total_rx_packets++;
4435 
4436 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4437 			/* adjust length to remove Ethernet CRC, this must be
4438 			 * done after the TBI_ACCEPT workaround above
4439 			 */
4440 			length -= 4;
4441 
4442 		if (buffer_info->rxbuf.data == NULL)
4443 			skb_put(skb, length);
4444 		else /* copybreak skb */
4445 			skb_trim(skb, length);
4446 
4447 		/* Receive Checksum Offload */
4448 		e1000_rx_checksum(adapter,
4449 				  (u32)(status) |
4450 				  ((u32)(rx_desc->errors) << 24),
4451 				  le16_to_cpu(rx_desc->csum), skb);
4452 
4453 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4454 
4455 next_desc:
4456 		rx_desc->status = 0;
4457 
4458 		/* return some buffers to hardware, one at a time is too slow */
4459 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4460 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4461 			cleaned_count = 0;
4462 		}
4463 
4464 		/* use prefetched values */
4465 		rx_desc = next_rxd;
4466 		buffer_info = next_buffer;
4467 	}
4468 	rx_ring->next_to_clean = i;
4469 
4470 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4471 	if (cleaned_count)
4472 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4473 
4474 	adapter->total_rx_packets += total_rx_packets;
4475 	adapter->total_rx_bytes += total_rx_bytes;
4476 	netdev->stats.rx_bytes += total_rx_bytes;
4477 	netdev->stats.rx_packets += total_rx_packets;
4478 	return cleaned;
4479 }
4480 
4481 /**
4482  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4483  * @adapter: address of board private structure
4484  * @rx_ring: pointer to receive ring structure
4485  * @cleaned_count: number of buffers to allocate this pass
4486  **/
4487 static void
4488 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4489 			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4490 {
4491 	struct pci_dev *pdev = adapter->pdev;
4492 	struct e1000_rx_desc *rx_desc;
4493 	struct e1000_rx_buffer *buffer_info;
4494 	unsigned int i;
4495 
4496 	i = rx_ring->next_to_use;
4497 	buffer_info = &rx_ring->buffer_info[i];
4498 
4499 	while (cleaned_count--) {
4500 		/* allocate a new page if necessary */
4501 		if (!buffer_info->rxbuf.page) {
4502 			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4503 			if (unlikely(!buffer_info->rxbuf.page)) {
4504 				adapter->alloc_rx_buff_failed++;
4505 				break;
4506 			}
4507 		}
4508 
4509 		if (!buffer_info->dma) {
4510 			buffer_info->dma = dma_map_page(&pdev->dev,
4511 							buffer_info->rxbuf.page, 0,
4512 							adapter->rx_buffer_len,
4513 							DMA_FROM_DEVICE);
4514 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4515 				put_page(buffer_info->rxbuf.page);
4516 				buffer_info->rxbuf.page = NULL;
4517 				buffer_info->dma = 0;
4518 				adapter->alloc_rx_buff_failed++;
4519 				break;
4520 			}
4521 		}
4522 
4523 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4524 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4525 
4526 		if (unlikely(++i == rx_ring->count))
4527 			i = 0;
4528 		buffer_info = &rx_ring->buffer_info[i];
4529 	}
4530 
4531 	if (likely(rx_ring->next_to_use != i)) {
4532 		rx_ring->next_to_use = i;
4533 		if (unlikely(i-- == 0))
4534 			i = (rx_ring->count - 1);
4535 
4536 		/* Force memory writes to complete before letting h/w
4537 		 * know there are new descriptors to fetch.  (Only
4538 		 * applicable for weak-ordered memory model archs,
4539 		 * such as IA-64).
4540 		 */
4541 		wmb();
4542 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4543 	}
4544 }
4545 
4546 /**
4547  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4548  * @adapter: address of board private structure
4549  **/
4550 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4551 				   struct e1000_rx_ring *rx_ring,
4552 				   int cleaned_count)
4553 {
4554 	struct e1000_hw *hw = &adapter->hw;
4555 	struct pci_dev *pdev = adapter->pdev;
4556 	struct e1000_rx_desc *rx_desc;
4557 	struct e1000_rx_buffer *buffer_info;
4558 	unsigned int i;
4559 	unsigned int bufsz = adapter->rx_buffer_len;
4560 
4561 	i = rx_ring->next_to_use;
4562 	buffer_info = &rx_ring->buffer_info[i];
4563 
4564 	while (cleaned_count--) {
4565 		void *data;
4566 
4567 		if (buffer_info->rxbuf.data)
4568 			goto skip;
4569 
4570 		data = e1000_alloc_frag(adapter);
4571 		if (!data) {
4572 			/* Better luck next round */
4573 			adapter->alloc_rx_buff_failed++;
4574 			break;
4575 		}
4576 
4577 		/* Fix for errata 23, can't cross 64kB boundary */
4578 		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4579 			void *olddata = data;
4580 			e_err(rx_err, "skb align check failed: %u bytes at "
4581 			      "%p\n", bufsz, data);
4582 			/* Try again, without freeing the previous */
4583 			data = e1000_alloc_frag(adapter);
4584 			/* Failed allocation, critical failure */
4585 			if (!data) {
4586 				e1000_free_frag(olddata);
4587 				adapter->alloc_rx_buff_failed++;
4588 				break;
4589 			}
4590 
4591 			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4592 				/* give up */
4593 				e1000_free_frag(data);
4594 				e1000_free_frag(olddata);
4595 				adapter->alloc_rx_buff_failed++;
4596 				break;
4597 			}
4598 
4599 			/* Use new allocation */
4600 			e1000_free_frag(olddata);
4601 		}
4602 		buffer_info->dma = dma_map_single(&pdev->dev,
4603 						  data,
4604 						  adapter->rx_buffer_len,
4605 						  DMA_FROM_DEVICE);
4606 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4607 			e1000_free_frag(data);
4608 			buffer_info->dma = 0;
4609 			adapter->alloc_rx_buff_failed++;
4610 			break;
4611 		}
4612 
4613 		/* XXX if it was allocated cleanly it will never map to a
4614 		 * boundary crossing
4615 		 */
4616 
4617 		/* Fix for errata 23, can't cross 64kB boundary */
4618 		if (!e1000_check_64k_bound(adapter,
4619 					(void *)(unsigned long)buffer_info->dma,
4620 					adapter->rx_buffer_len)) {
4621 			e_err(rx_err, "dma align check failed: %u bytes at "
4622 			      "%p\n", adapter->rx_buffer_len,
4623 			      (void *)(unsigned long)buffer_info->dma);
4624 
4625 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4626 					 adapter->rx_buffer_len,
4627 					 DMA_FROM_DEVICE);
4628 
4629 			e1000_free_frag(data);
4630 			buffer_info->rxbuf.data = NULL;
4631 			buffer_info->dma = 0;
4632 
4633 			adapter->alloc_rx_buff_failed++;
4634 			break;
4635 		}
4636 		buffer_info->rxbuf.data = data;
4637  skip:
4638 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4639 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4640 
4641 		if (unlikely(++i == rx_ring->count))
4642 			i = 0;
4643 		buffer_info = &rx_ring->buffer_info[i];
4644 	}
4645 
4646 	if (likely(rx_ring->next_to_use != i)) {
4647 		rx_ring->next_to_use = i;
4648 		if (unlikely(i-- == 0))
4649 			i = (rx_ring->count - 1);
4650 
4651 		/* Force memory writes to complete before letting h/w
4652 		 * know there are new descriptors to fetch.  (Only
4653 		 * applicable for weak-ordered memory model archs,
4654 		 * such as IA-64).
4655 		 */
4656 		wmb();
4657 		writel(i, hw->hw_addr + rx_ring->rdt);
4658 	}
4659 }
4660 
4661 /**
4662  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4663  * @adapter:
4664  **/
4665 static void e1000_smartspeed(struct e1000_adapter *adapter)
4666 {
4667 	struct e1000_hw *hw = &adapter->hw;
4668 	u16 phy_status;
4669 	u16 phy_ctrl;
4670 
4671 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4672 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4673 		return;
4674 
4675 	if (adapter->smartspeed == 0) {
4676 		/* If Master/Slave config fault is asserted twice,
4677 		 * we assume back-to-back
4678 		 */
4679 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4680 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4681 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4682 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4683 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4684 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4685 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4686 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4687 					    phy_ctrl);
4688 			adapter->smartspeed++;
4689 			if (!e1000_phy_setup_autoneg(hw) &&
4690 			   !e1000_read_phy_reg(hw, PHY_CTRL,
4691 					       &phy_ctrl)) {
4692 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4693 					     MII_CR_RESTART_AUTO_NEG);
4694 				e1000_write_phy_reg(hw, PHY_CTRL,
4695 						    phy_ctrl);
4696 			}
4697 		}
4698 		return;
4699 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4700 		/* If still no link, perhaps using 2/3 pair cable */
4701 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4702 		phy_ctrl |= CR_1000T_MS_ENABLE;
4703 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4704 		if (!e1000_phy_setup_autoneg(hw) &&
4705 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4706 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4707 				     MII_CR_RESTART_AUTO_NEG);
4708 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4709 		}
4710 	}
4711 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4712 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4713 		adapter->smartspeed = 0;
4714 }
4715 
4716 /**
4717  * e1000_ioctl -
4718  * @netdev:
4719  * @ifreq:
4720  * @cmd:
4721  **/
4722 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4723 {
4724 	switch (cmd) {
4725 	case SIOCGMIIPHY:
4726 	case SIOCGMIIREG:
4727 	case SIOCSMIIREG:
4728 		return e1000_mii_ioctl(netdev, ifr, cmd);
4729 	default:
4730 		return -EOPNOTSUPP;
4731 	}
4732 }
4733 
4734 /**
4735  * e1000_mii_ioctl -
4736  * @netdev:
4737  * @ifreq:
4738  * @cmd:
4739  **/
4740 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4741 			   int cmd)
4742 {
4743 	struct e1000_adapter *adapter = netdev_priv(netdev);
4744 	struct e1000_hw *hw = &adapter->hw;
4745 	struct mii_ioctl_data *data = if_mii(ifr);
4746 	int retval;
4747 	u16 mii_reg;
4748 	unsigned long flags;
4749 
4750 	if (hw->media_type != e1000_media_type_copper)
4751 		return -EOPNOTSUPP;
4752 
4753 	switch (cmd) {
4754 	case SIOCGMIIPHY:
4755 		data->phy_id = hw->phy_addr;
4756 		break;
4757 	case SIOCGMIIREG:
4758 		spin_lock_irqsave(&adapter->stats_lock, flags);
4759 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4760 				   &data->val_out)) {
4761 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4762 			return -EIO;
4763 		}
4764 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4765 		break;
4766 	case SIOCSMIIREG:
4767 		if (data->reg_num & ~(0x1F))
4768 			return -EFAULT;
4769 		mii_reg = data->val_in;
4770 		spin_lock_irqsave(&adapter->stats_lock, flags);
4771 		if (e1000_write_phy_reg(hw, data->reg_num,
4772 					mii_reg)) {
4773 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4774 			return -EIO;
4775 		}
4776 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4777 		if (hw->media_type == e1000_media_type_copper) {
4778 			switch (data->reg_num) {
4779 			case PHY_CTRL:
4780 				if (mii_reg & MII_CR_POWER_DOWN)
4781 					break;
4782 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4783 					hw->autoneg = 1;
4784 					hw->autoneg_advertised = 0x2F;
4785 				} else {
4786 					u32 speed;
4787 					if (mii_reg & 0x40)
4788 						speed = SPEED_1000;
4789 					else if (mii_reg & 0x2000)
4790 						speed = SPEED_100;
4791 					else
4792 						speed = SPEED_10;
4793 					retval = e1000_set_spd_dplx(
4794 						adapter, speed,
4795 						((mii_reg & 0x100)
4796 						 ? DUPLEX_FULL :
4797 						 DUPLEX_HALF));
4798 					if (retval)
4799 						return retval;
4800 				}
4801 				if (netif_running(adapter->netdev))
4802 					e1000_reinit_locked(adapter);
4803 				else
4804 					e1000_reset(adapter);
4805 				break;
4806 			case M88E1000_PHY_SPEC_CTRL:
4807 			case M88E1000_EXT_PHY_SPEC_CTRL:
4808 				if (e1000_phy_reset(hw))
4809 					return -EIO;
4810 				break;
4811 			}
4812 		} else {
4813 			switch (data->reg_num) {
4814 			case PHY_CTRL:
4815 				if (mii_reg & MII_CR_POWER_DOWN)
4816 					break;
4817 				if (netif_running(adapter->netdev))
4818 					e1000_reinit_locked(adapter);
4819 				else
4820 					e1000_reset(adapter);
4821 				break;
4822 			}
4823 		}
4824 		break;
4825 	default:
4826 		return -EOPNOTSUPP;
4827 	}
4828 	return E1000_SUCCESS;
4829 }
4830 
4831 void e1000_pci_set_mwi(struct e1000_hw *hw)
4832 {
4833 	struct e1000_adapter *adapter = hw->back;
4834 	int ret_val = pci_set_mwi(adapter->pdev);
4835 
4836 	if (ret_val)
4837 		e_err(probe, "Error in setting MWI\n");
4838 }
4839 
4840 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4841 {
4842 	struct e1000_adapter *adapter = hw->back;
4843 
4844 	pci_clear_mwi(adapter->pdev);
4845 }
4846 
4847 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4848 {
4849 	struct e1000_adapter *adapter = hw->back;
4850 	return pcix_get_mmrbc(adapter->pdev);
4851 }
4852 
4853 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4854 {
4855 	struct e1000_adapter *adapter = hw->back;
4856 	pcix_set_mmrbc(adapter->pdev, mmrbc);
4857 }
4858 
4859 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4860 {
4861 	outl(value, port);
4862 }
4863 
4864 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4865 {
4866 	u16 vid;
4867 
4868 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4869 		return true;
4870 	return false;
4871 }
4872 
4873 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4874 			      netdev_features_t features)
4875 {
4876 	struct e1000_hw *hw = &adapter->hw;
4877 	u32 ctrl;
4878 
4879 	ctrl = er32(CTRL);
4880 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4881 		/* enable VLAN tag insert/strip */
4882 		ctrl |= E1000_CTRL_VME;
4883 	} else {
4884 		/* disable VLAN tag insert/strip */
4885 		ctrl &= ~E1000_CTRL_VME;
4886 	}
4887 	ew32(CTRL, ctrl);
4888 }
4889 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4890 				     bool filter_on)
4891 {
4892 	struct e1000_hw *hw = &adapter->hw;
4893 	u32 rctl;
4894 
4895 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4896 		e1000_irq_disable(adapter);
4897 
4898 	__e1000_vlan_mode(adapter, adapter->netdev->features);
4899 	if (filter_on) {
4900 		/* enable VLAN receive filtering */
4901 		rctl = er32(RCTL);
4902 		rctl &= ~E1000_RCTL_CFIEN;
4903 		if (!(adapter->netdev->flags & IFF_PROMISC))
4904 			rctl |= E1000_RCTL_VFE;
4905 		ew32(RCTL, rctl);
4906 		e1000_update_mng_vlan(adapter);
4907 	} else {
4908 		/* disable VLAN receive filtering */
4909 		rctl = er32(RCTL);
4910 		rctl &= ~E1000_RCTL_VFE;
4911 		ew32(RCTL, rctl);
4912 	}
4913 
4914 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4915 		e1000_irq_enable(adapter);
4916 }
4917 
4918 static void e1000_vlan_mode(struct net_device *netdev,
4919 			    netdev_features_t features)
4920 {
4921 	struct e1000_adapter *adapter = netdev_priv(netdev);
4922 
4923 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4924 		e1000_irq_disable(adapter);
4925 
4926 	__e1000_vlan_mode(adapter, features);
4927 
4928 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4929 		e1000_irq_enable(adapter);
4930 }
4931 
4932 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4933 				 __be16 proto, u16 vid)
4934 {
4935 	struct e1000_adapter *adapter = netdev_priv(netdev);
4936 	struct e1000_hw *hw = &adapter->hw;
4937 	u32 vfta, index;
4938 
4939 	if ((hw->mng_cookie.status &
4940 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4941 	    (vid == adapter->mng_vlan_id))
4942 		return 0;
4943 
4944 	if (!e1000_vlan_used(adapter))
4945 		e1000_vlan_filter_on_off(adapter, true);
4946 
4947 	/* add VID to filter table */
4948 	index = (vid >> 5) & 0x7F;
4949 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4950 	vfta |= (1 << (vid & 0x1F));
4951 	e1000_write_vfta(hw, index, vfta);
4952 
4953 	set_bit(vid, adapter->active_vlans);
4954 
4955 	return 0;
4956 }
4957 
4958 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4959 				  __be16 proto, u16 vid)
4960 {
4961 	struct e1000_adapter *adapter = netdev_priv(netdev);
4962 	struct e1000_hw *hw = &adapter->hw;
4963 	u32 vfta, index;
4964 
4965 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4966 		e1000_irq_disable(adapter);
4967 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4968 		e1000_irq_enable(adapter);
4969 
4970 	/* remove VID from filter table */
4971 	index = (vid >> 5) & 0x7F;
4972 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4973 	vfta &= ~(1 << (vid & 0x1F));
4974 	e1000_write_vfta(hw, index, vfta);
4975 
4976 	clear_bit(vid, adapter->active_vlans);
4977 
4978 	if (!e1000_vlan_used(adapter))
4979 		e1000_vlan_filter_on_off(adapter, false);
4980 
4981 	return 0;
4982 }
4983 
4984 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4985 {
4986 	u16 vid;
4987 
4988 	if (!e1000_vlan_used(adapter))
4989 		return;
4990 
4991 	e1000_vlan_filter_on_off(adapter, true);
4992 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4993 		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
4994 }
4995 
4996 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4997 {
4998 	struct e1000_hw *hw = &adapter->hw;
4999 
5000 	hw->autoneg = 0;
5001 
5002 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5003 	 * for the switch() below to work
5004 	 */
5005 	if ((spd & 1) || (dplx & ~1))
5006 		goto err_inval;
5007 
5008 	/* Fiber NICs only allow 1000 gbps Full duplex */
5009 	if ((hw->media_type == e1000_media_type_fiber) &&
5010 	    spd != SPEED_1000 &&
5011 	    dplx != DUPLEX_FULL)
5012 		goto err_inval;
5013 
5014 	switch (spd + dplx) {
5015 	case SPEED_10 + DUPLEX_HALF:
5016 		hw->forced_speed_duplex = e1000_10_half;
5017 		break;
5018 	case SPEED_10 + DUPLEX_FULL:
5019 		hw->forced_speed_duplex = e1000_10_full;
5020 		break;
5021 	case SPEED_100 + DUPLEX_HALF:
5022 		hw->forced_speed_duplex = e1000_100_half;
5023 		break;
5024 	case SPEED_100 + DUPLEX_FULL:
5025 		hw->forced_speed_duplex = e1000_100_full;
5026 		break;
5027 	case SPEED_1000 + DUPLEX_FULL:
5028 		hw->autoneg = 1;
5029 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5030 		break;
5031 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5032 	default:
5033 		goto err_inval;
5034 	}
5035 
5036 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5037 	hw->mdix = AUTO_ALL_MODES;
5038 
5039 	return 0;
5040 
5041 err_inval:
5042 	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5043 	return -EINVAL;
5044 }
5045 
5046 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5047 {
5048 	struct net_device *netdev = pci_get_drvdata(pdev);
5049 	struct e1000_adapter *adapter = netdev_priv(netdev);
5050 	struct e1000_hw *hw = &adapter->hw;
5051 	u32 ctrl, ctrl_ext, rctl, status;
5052 	u32 wufc = adapter->wol;
5053 #ifdef CONFIG_PM
5054 	int retval = 0;
5055 #endif
5056 
5057 	netif_device_detach(netdev);
5058 
5059 	if (netif_running(netdev)) {
5060 		int count = E1000_CHECK_RESET_COUNT;
5061 
5062 		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5063 			usleep_range(10000, 20000);
5064 
5065 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5066 		e1000_down(adapter);
5067 	}
5068 
5069 #ifdef CONFIG_PM
5070 	retval = pci_save_state(pdev);
5071 	if (retval)
5072 		return retval;
5073 #endif
5074 
5075 	status = er32(STATUS);
5076 	if (status & E1000_STATUS_LU)
5077 		wufc &= ~E1000_WUFC_LNKC;
5078 
5079 	if (wufc) {
5080 		e1000_setup_rctl(adapter);
5081 		e1000_set_rx_mode(netdev);
5082 
5083 		rctl = er32(RCTL);
5084 
5085 		/* turn on all-multi mode if wake on multicast is enabled */
5086 		if (wufc & E1000_WUFC_MC)
5087 			rctl |= E1000_RCTL_MPE;
5088 
5089 		/* enable receives in the hardware */
5090 		ew32(RCTL, rctl | E1000_RCTL_EN);
5091 
5092 		if (hw->mac_type >= e1000_82540) {
5093 			ctrl = er32(CTRL);
5094 			/* advertise wake from D3Cold */
5095 			#define E1000_CTRL_ADVD3WUC 0x00100000
5096 			/* phy power management enable */
5097 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5098 			ctrl |= E1000_CTRL_ADVD3WUC |
5099 				E1000_CTRL_EN_PHY_PWR_MGMT;
5100 			ew32(CTRL, ctrl);
5101 		}
5102 
5103 		if (hw->media_type == e1000_media_type_fiber ||
5104 		    hw->media_type == e1000_media_type_internal_serdes) {
5105 			/* keep the laser running in D3 */
5106 			ctrl_ext = er32(CTRL_EXT);
5107 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5108 			ew32(CTRL_EXT, ctrl_ext);
5109 		}
5110 
5111 		ew32(WUC, E1000_WUC_PME_EN);
5112 		ew32(WUFC, wufc);
5113 	} else {
5114 		ew32(WUC, 0);
5115 		ew32(WUFC, 0);
5116 	}
5117 
5118 	e1000_release_manageability(adapter);
5119 
5120 	*enable_wake = !!wufc;
5121 
5122 	/* make sure adapter isn't asleep if manageability is enabled */
5123 	if (adapter->en_mng_pt)
5124 		*enable_wake = true;
5125 
5126 	if (netif_running(netdev))
5127 		e1000_free_irq(adapter);
5128 
5129 	pci_disable_device(pdev);
5130 
5131 	return 0;
5132 }
5133 
5134 #ifdef CONFIG_PM
5135 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5136 {
5137 	int retval;
5138 	bool wake;
5139 
5140 	retval = __e1000_shutdown(pdev, &wake);
5141 	if (retval)
5142 		return retval;
5143 
5144 	if (wake) {
5145 		pci_prepare_to_sleep(pdev);
5146 	} else {
5147 		pci_wake_from_d3(pdev, false);
5148 		pci_set_power_state(pdev, PCI_D3hot);
5149 	}
5150 
5151 	return 0;
5152 }
5153 
5154 static int e1000_resume(struct pci_dev *pdev)
5155 {
5156 	struct net_device *netdev = pci_get_drvdata(pdev);
5157 	struct e1000_adapter *adapter = netdev_priv(netdev);
5158 	struct e1000_hw *hw = &adapter->hw;
5159 	u32 err;
5160 
5161 	pci_set_power_state(pdev, PCI_D0);
5162 	pci_restore_state(pdev);
5163 	pci_save_state(pdev);
5164 
5165 	if (adapter->need_ioport)
5166 		err = pci_enable_device(pdev);
5167 	else
5168 		err = pci_enable_device_mem(pdev);
5169 	if (err) {
5170 		pr_err("Cannot enable PCI device from suspend\n");
5171 		return err;
5172 	}
5173 	pci_set_master(pdev);
5174 
5175 	pci_enable_wake(pdev, PCI_D3hot, 0);
5176 	pci_enable_wake(pdev, PCI_D3cold, 0);
5177 
5178 	if (netif_running(netdev)) {
5179 		err = e1000_request_irq(adapter);
5180 		if (err)
5181 			return err;
5182 	}
5183 
5184 	e1000_power_up_phy(adapter);
5185 	e1000_reset(adapter);
5186 	ew32(WUS, ~0);
5187 
5188 	e1000_init_manageability(adapter);
5189 
5190 	if (netif_running(netdev))
5191 		e1000_up(adapter);
5192 
5193 	netif_device_attach(netdev);
5194 
5195 	return 0;
5196 }
5197 #endif
5198 
5199 static void e1000_shutdown(struct pci_dev *pdev)
5200 {
5201 	bool wake;
5202 
5203 	__e1000_shutdown(pdev, &wake);
5204 
5205 	if (system_state == SYSTEM_POWER_OFF) {
5206 		pci_wake_from_d3(pdev, wake);
5207 		pci_set_power_state(pdev, PCI_D3hot);
5208 	}
5209 }
5210 
5211 #ifdef CONFIG_NET_POLL_CONTROLLER
5212 /* Polling 'interrupt' - used by things like netconsole to send skbs
5213  * without having to re-enable interrupts. It's not called while
5214  * the interrupt routine is executing.
5215  */
5216 static void e1000_netpoll(struct net_device *netdev)
5217 {
5218 	struct e1000_adapter *adapter = netdev_priv(netdev);
5219 
5220 	disable_irq(adapter->pdev->irq);
5221 	e1000_intr(adapter->pdev->irq, netdev);
5222 	enable_irq(adapter->pdev->irq);
5223 }
5224 #endif
5225 
5226 /**
5227  * e1000_io_error_detected - called when PCI error is detected
5228  * @pdev: Pointer to PCI device
5229  * @state: The current pci connection state
5230  *
5231  * This function is called after a PCI bus error affecting
5232  * this device has been detected.
5233  */
5234 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5235 						pci_channel_state_t state)
5236 {
5237 	struct net_device *netdev = pci_get_drvdata(pdev);
5238 	struct e1000_adapter *adapter = netdev_priv(netdev);
5239 
5240 	netif_device_detach(netdev);
5241 
5242 	if (state == pci_channel_io_perm_failure)
5243 		return PCI_ERS_RESULT_DISCONNECT;
5244 
5245 	if (netif_running(netdev))
5246 		e1000_down(adapter);
5247 	pci_disable_device(pdev);
5248 
5249 	/* Request a slot slot reset. */
5250 	return PCI_ERS_RESULT_NEED_RESET;
5251 }
5252 
5253 /**
5254  * e1000_io_slot_reset - called after the pci bus has been reset.
5255  * @pdev: Pointer to PCI device
5256  *
5257  * Restart the card from scratch, as if from a cold-boot. Implementation
5258  * resembles the first-half of the e1000_resume routine.
5259  */
5260 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5261 {
5262 	struct net_device *netdev = pci_get_drvdata(pdev);
5263 	struct e1000_adapter *adapter = netdev_priv(netdev);
5264 	struct e1000_hw *hw = &adapter->hw;
5265 	int err;
5266 
5267 	if (adapter->need_ioport)
5268 		err = pci_enable_device(pdev);
5269 	else
5270 		err = pci_enable_device_mem(pdev);
5271 	if (err) {
5272 		pr_err("Cannot re-enable PCI device after reset.\n");
5273 		return PCI_ERS_RESULT_DISCONNECT;
5274 	}
5275 	pci_set_master(pdev);
5276 
5277 	pci_enable_wake(pdev, PCI_D3hot, 0);
5278 	pci_enable_wake(pdev, PCI_D3cold, 0);
5279 
5280 	e1000_reset(adapter);
5281 	ew32(WUS, ~0);
5282 
5283 	return PCI_ERS_RESULT_RECOVERED;
5284 }
5285 
5286 /**
5287  * e1000_io_resume - called when traffic can start flowing again.
5288  * @pdev: Pointer to PCI device
5289  *
5290  * This callback is called when the error recovery driver tells us that
5291  * its OK to resume normal operation. Implementation resembles the
5292  * second-half of the e1000_resume routine.
5293  */
5294 static void e1000_io_resume(struct pci_dev *pdev)
5295 {
5296 	struct net_device *netdev = pci_get_drvdata(pdev);
5297 	struct e1000_adapter *adapter = netdev_priv(netdev);
5298 
5299 	e1000_init_manageability(adapter);
5300 
5301 	if (netif_running(netdev)) {
5302 		if (e1000_up(adapter)) {
5303 			pr_info("can't bring device back up after reset\n");
5304 			return;
5305 		}
5306 	}
5307 
5308 	netif_device_attach(netdev);
5309 }
5310 
5311 /* e1000_main.c */
5312