1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2006 Intel Corporation. */ 3 4 #include "e1000.h" 5 #include <net/ip6_checksum.h> 6 #include <linux/io.h> 7 #include <linux/prefetch.h> 8 #include <linux/bitops.h> 9 #include <linux/if_vlan.h> 10 11 char e1000_driver_name[] = "e1000"; 12 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; 13 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; 14 15 /* e1000_pci_tbl - PCI Device ID Table 16 * 17 * Last entry must be all 0s 18 * 19 * Macro expands to... 20 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} 21 */ 22 static const struct pci_device_id e1000_pci_tbl[] = { 23 INTEL_E1000_ETHERNET_DEVICE(0x1000), 24 INTEL_E1000_ETHERNET_DEVICE(0x1001), 25 INTEL_E1000_ETHERNET_DEVICE(0x1004), 26 INTEL_E1000_ETHERNET_DEVICE(0x1008), 27 INTEL_E1000_ETHERNET_DEVICE(0x1009), 28 INTEL_E1000_ETHERNET_DEVICE(0x100C), 29 INTEL_E1000_ETHERNET_DEVICE(0x100D), 30 INTEL_E1000_ETHERNET_DEVICE(0x100E), 31 INTEL_E1000_ETHERNET_DEVICE(0x100F), 32 INTEL_E1000_ETHERNET_DEVICE(0x1010), 33 INTEL_E1000_ETHERNET_DEVICE(0x1011), 34 INTEL_E1000_ETHERNET_DEVICE(0x1012), 35 INTEL_E1000_ETHERNET_DEVICE(0x1013), 36 INTEL_E1000_ETHERNET_DEVICE(0x1014), 37 INTEL_E1000_ETHERNET_DEVICE(0x1015), 38 INTEL_E1000_ETHERNET_DEVICE(0x1016), 39 INTEL_E1000_ETHERNET_DEVICE(0x1017), 40 INTEL_E1000_ETHERNET_DEVICE(0x1018), 41 INTEL_E1000_ETHERNET_DEVICE(0x1019), 42 INTEL_E1000_ETHERNET_DEVICE(0x101A), 43 INTEL_E1000_ETHERNET_DEVICE(0x101D), 44 INTEL_E1000_ETHERNET_DEVICE(0x101E), 45 INTEL_E1000_ETHERNET_DEVICE(0x1026), 46 INTEL_E1000_ETHERNET_DEVICE(0x1027), 47 INTEL_E1000_ETHERNET_DEVICE(0x1028), 48 INTEL_E1000_ETHERNET_DEVICE(0x1075), 49 INTEL_E1000_ETHERNET_DEVICE(0x1076), 50 INTEL_E1000_ETHERNET_DEVICE(0x1077), 51 INTEL_E1000_ETHERNET_DEVICE(0x1078), 52 INTEL_E1000_ETHERNET_DEVICE(0x1079), 53 INTEL_E1000_ETHERNET_DEVICE(0x107A), 54 INTEL_E1000_ETHERNET_DEVICE(0x107B), 55 INTEL_E1000_ETHERNET_DEVICE(0x107C), 56 INTEL_E1000_ETHERNET_DEVICE(0x108A), 57 INTEL_E1000_ETHERNET_DEVICE(0x1099), 58 INTEL_E1000_ETHERNET_DEVICE(0x10B5), 59 INTEL_E1000_ETHERNET_DEVICE(0x2E6E), 60 /* required last entry */ 61 {0,} 62 }; 63 64 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 65 66 int e1000_up(struct e1000_adapter *adapter); 67 void e1000_down(struct e1000_adapter *adapter); 68 void e1000_reinit_locked(struct e1000_adapter *adapter); 69 void e1000_reset(struct e1000_adapter *adapter); 70 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); 71 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); 72 void e1000_free_all_tx_resources(struct e1000_adapter *adapter); 73 void e1000_free_all_rx_resources(struct e1000_adapter *adapter); 74 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 75 struct e1000_tx_ring *txdr); 76 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 77 struct e1000_rx_ring *rxdr); 78 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 79 struct e1000_tx_ring *tx_ring); 80 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 81 struct e1000_rx_ring *rx_ring); 82 void e1000_update_stats(struct e1000_adapter *adapter); 83 84 static int e1000_init_module(void); 85 static void e1000_exit_module(void); 86 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); 87 static void e1000_remove(struct pci_dev *pdev); 88 static int e1000_alloc_queues(struct e1000_adapter *adapter); 89 static int e1000_sw_init(struct e1000_adapter *adapter); 90 int e1000_open(struct net_device *netdev); 91 int e1000_close(struct net_device *netdev); 92 static void e1000_configure_tx(struct e1000_adapter *adapter); 93 static void e1000_configure_rx(struct e1000_adapter *adapter); 94 static void e1000_setup_rctl(struct e1000_adapter *adapter); 95 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); 96 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); 97 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 98 struct e1000_tx_ring *tx_ring); 99 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 100 struct e1000_rx_ring *rx_ring); 101 static void e1000_set_rx_mode(struct net_device *netdev); 102 static void e1000_update_phy_info_task(struct work_struct *work); 103 static void e1000_watchdog(struct work_struct *work); 104 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work); 105 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 106 struct net_device *netdev); 107 static int e1000_change_mtu(struct net_device *netdev, int new_mtu); 108 static int e1000_set_mac(struct net_device *netdev, void *p); 109 static irqreturn_t e1000_intr(int irq, void *data); 110 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 111 struct e1000_tx_ring *tx_ring); 112 static int e1000_clean(struct napi_struct *napi, int budget); 113 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 114 struct e1000_rx_ring *rx_ring, 115 int *work_done, int work_to_do); 116 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 117 struct e1000_rx_ring *rx_ring, 118 int *work_done, int work_to_do); 119 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter, 120 struct e1000_rx_ring *rx_ring, 121 int cleaned_count) 122 { 123 } 124 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 125 struct e1000_rx_ring *rx_ring, 126 int cleaned_count); 127 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 128 struct e1000_rx_ring *rx_ring, 129 int cleaned_count); 130 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); 131 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 132 int cmd); 133 static void e1000_enter_82542_rst(struct e1000_adapter *adapter); 134 static void e1000_leave_82542_rst(struct e1000_adapter *adapter); 135 static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue); 136 static void e1000_reset_task(struct work_struct *work); 137 static void e1000_smartspeed(struct e1000_adapter *adapter); 138 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 139 struct sk_buff *skb); 140 141 static bool e1000_vlan_used(struct e1000_adapter *adapter); 142 static void e1000_vlan_mode(struct net_device *netdev, 143 netdev_features_t features); 144 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 145 bool filter_on); 146 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 147 __be16 proto, u16 vid); 148 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 149 __be16 proto, u16 vid); 150 static void e1000_restore_vlan(struct e1000_adapter *adapter); 151 152 static int __maybe_unused e1000_suspend(struct device *dev); 153 static int __maybe_unused e1000_resume(struct device *dev); 154 static void e1000_shutdown(struct pci_dev *pdev); 155 156 #ifdef CONFIG_NET_POLL_CONTROLLER 157 /* for netdump / net console */ 158 static void e1000_netpoll (struct net_device *netdev); 159 #endif 160 161 #define COPYBREAK_DEFAULT 256 162 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; 163 module_param(copybreak, uint, 0644); 164 MODULE_PARM_DESC(copybreak, 165 "Maximum size of packet that is copied to a new buffer on receive"); 166 167 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 168 pci_channel_state_t state); 169 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); 170 static void e1000_io_resume(struct pci_dev *pdev); 171 172 static const struct pci_error_handlers e1000_err_handler = { 173 .error_detected = e1000_io_error_detected, 174 .slot_reset = e1000_io_slot_reset, 175 .resume = e1000_io_resume, 176 }; 177 178 static SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume); 179 180 static struct pci_driver e1000_driver = { 181 .name = e1000_driver_name, 182 .id_table = e1000_pci_tbl, 183 .probe = e1000_probe, 184 .remove = e1000_remove, 185 .driver = { 186 .pm = &e1000_pm_ops, 187 }, 188 .shutdown = e1000_shutdown, 189 .err_handler = &e1000_err_handler 190 }; 191 192 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 193 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 194 MODULE_LICENSE("GPL v2"); 195 196 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 197 static int debug = -1; 198 module_param(debug, int, 0); 199 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 200 201 /** 202 * e1000_get_hw_dev - helper function for getting netdev 203 * @hw: pointer to HW struct 204 * 205 * return device used by hardware layer to print debugging information 206 * 207 **/ 208 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) 209 { 210 struct e1000_adapter *adapter = hw->back; 211 return adapter->netdev; 212 } 213 214 /** 215 * e1000_init_module - Driver Registration Routine 216 * 217 * e1000_init_module is the first routine called when the driver is 218 * loaded. All it does is register with the PCI subsystem. 219 **/ 220 static int __init e1000_init_module(void) 221 { 222 int ret; 223 pr_info("%s\n", e1000_driver_string); 224 225 pr_info("%s\n", e1000_copyright); 226 227 ret = pci_register_driver(&e1000_driver); 228 if (copybreak != COPYBREAK_DEFAULT) { 229 if (copybreak == 0) 230 pr_info("copybreak disabled\n"); 231 else 232 pr_info("copybreak enabled for " 233 "packets <= %u bytes\n", copybreak); 234 } 235 return ret; 236 } 237 238 module_init(e1000_init_module); 239 240 /** 241 * e1000_exit_module - Driver Exit Cleanup Routine 242 * 243 * e1000_exit_module is called just before the driver is removed 244 * from memory. 245 **/ 246 static void __exit e1000_exit_module(void) 247 { 248 pci_unregister_driver(&e1000_driver); 249 } 250 251 module_exit(e1000_exit_module); 252 253 static int e1000_request_irq(struct e1000_adapter *adapter) 254 { 255 struct net_device *netdev = adapter->netdev; 256 irq_handler_t handler = e1000_intr; 257 int irq_flags = IRQF_SHARED; 258 int err; 259 260 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, 261 netdev); 262 if (err) { 263 e_err(probe, "Unable to allocate interrupt Error: %d\n", err); 264 } 265 266 return err; 267 } 268 269 static void e1000_free_irq(struct e1000_adapter *adapter) 270 { 271 struct net_device *netdev = adapter->netdev; 272 273 free_irq(adapter->pdev->irq, netdev); 274 } 275 276 /** 277 * e1000_irq_disable - Mask off interrupt generation on the NIC 278 * @adapter: board private structure 279 **/ 280 static void e1000_irq_disable(struct e1000_adapter *adapter) 281 { 282 struct e1000_hw *hw = &adapter->hw; 283 284 ew32(IMC, ~0); 285 E1000_WRITE_FLUSH(); 286 synchronize_irq(adapter->pdev->irq); 287 } 288 289 /** 290 * e1000_irq_enable - Enable default interrupt generation settings 291 * @adapter: board private structure 292 **/ 293 static void e1000_irq_enable(struct e1000_adapter *adapter) 294 { 295 struct e1000_hw *hw = &adapter->hw; 296 297 ew32(IMS, IMS_ENABLE_MASK); 298 E1000_WRITE_FLUSH(); 299 } 300 301 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 302 { 303 struct e1000_hw *hw = &adapter->hw; 304 struct net_device *netdev = adapter->netdev; 305 u16 vid = hw->mng_cookie.vlan_id; 306 u16 old_vid = adapter->mng_vlan_id; 307 308 if (!e1000_vlan_used(adapter)) 309 return; 310 311 if (!test_bit(vid, adapter->active_vlans)) { 312 if (hw->mng_cookie.status & 313 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { 314 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); 315 adapter->mng_vlan_id = vid; 316 } else { 317 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 318 } 319 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && 320 (vid != old_vid) && 321 !test_bit(old_vid, adapter->active_vlans)) 322 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 323 old_vid); 324 } else { 325 adapter->mng_vlan_id = vid; 326 } 327 } 328 329 static void e1000_init_manageability(struct e1000_adapter *adapter) 330 { 331 struct e1000_hw *hw = &adapter->hw; 332 333 if (adapter->en_mng_pt) { 334 u32 manc = er32(MANC); 335 336 /* disable hardware interception of ARP */ 337 manc &= ~(E1000_MANC_ARP_EN); 338 339 ew32(MANC, manc); 340 } 341 } 342 343 static void e1000_release_manageability(struct e1000_adapter *adapter) 344 { 345 struct e1000_hw *hw = &adapter->hw; 346 347 if (adapter->en_mng_pt) { 348 u32 manc = er32(MANC); 349 350 /* re-enable hardware interception of ARP */ 351 manc |= E1000_MANC_ARP_EN; 352 353 ew32(MANC, manc); 354 } 355 } 356 357 /** 358 * e1000_configure - configure the hardware for RX and TX 359 * @adapter: private board structure 360 **/ 361 static void e1000_configure(struct e1000_adapter *adapter) 362 { 363 struct net_device *netdev = adapter->netdev; 364 int i; 365 366 e1000_set_rx_mode(netdev); 367 368 e1000_restore_vlan(adapter); 369 e1000_init_manageability(adapter); 370 371 e1000_configure_tx(adapter); 372 e1000_setup_rctl(adapter); 373 e1000_configure_rx(adapter); 374 /* call E1000_DESC_UNUSED which always leaves 375 * at least 1 descriptor unused to make sure 376 * next_to_use != next_to_clean 377 */ 378 for (i = 0; i < adapter->num_rx_queues; i++) { 379 struct e1000_rx_ring *ring = &adapter->rx_ring[i]; 380 adapter->alloc_rx_buf(adapter, ring, 381 E1000_DESC_UNUSED(ring)); 382 } 383 } 384 385 int e1000_up(struct e1000_adapter *adapter) 386 { 387 struct e1000_hw *hw = &adapter->hw; 388 389 /* hardware has been reset, we need to reload some things */ 390 e1000_configure(adapter); 391 392 clear_bit(__E1000_DOWN, &adapter->flags); 393 394 napi_enable(&adapter->napi); 395 396 e1000_irq_enable(adapter); 397 398 netif_wake_queue(adapter->netdev); 399 400 /* fire a link change interrupt to start the watchdog */ 401 ew32(ICS, E1000_ICS_LSC); 402 return 0; 403 } 404 405 /** 406 * e1000_power_up_phy - restore link in case the phy was powered down 407 * @adapter: address of board private structure 408 * 409 * The phy may be powered down to save power and turn off link when the 410 * driver is unloaded and wake on lan is not enabled (among others) 411 * *** this routine MUST be followed by a call to e1000_reset *** 412 **/ 413 void e1000_power_up_phy(struct e1000_adapter *adapter) 414 { 415 struct e1000_hw *hw = &adapter->hw; 416 u16 mii_reg = 0; 417 418 /* Just clear the power down bit to wake the phy back up */ 419 if (hw->media_type == e1000_media_type_copper) { 420 /* according to the manual, the phy will retain its 421 * settings across a power-down/up cycle 422 */ 423 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 424 mii_reg &= ~MII_CR_POWER_DOWN; 425 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 426 } 427 } 428 429 static void e1000_power_down_phy(struct e1000_adapter *adapter) 430 { 431 struct e1000_hw *hw = &adapter->hw; 432 433 /* Power down the PHY so no link is implied when interface is down * 434 * The PHY cannot be powered down if any of the following is true * 435 * (a) WoL is enabled 436 * (b) AMT is active 437 * (c) SoL/IDER session is active 438 */ 439 if (!adapter->wol && hw->mac_type >= e1000_82540 && 440 hw->media_type == e1000_media_type_copper) { 441 u16 mii_reg = 0; 442 443 switch (hw->mac_type) { 444 case e1000_82540: 445 case e1000_82545: 446 case e1000_82545_rev_3: 447 case e1000_82546: 448 case e1000_ce4100: 449 case e1000_82546_rev_3: 450 case e1000_82541: 451 case e1000_82541_rev_2: 452 case e1000_82547: 453 case e1000_82547_rev_2: 454 if (er32(MANC) & E1000_MANC_SMBUS_EN) 455 goto out; 456 break; 457 default: 458 goto out; 459 } 460 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 461 mii_reg |= MII_CR_POWER_DOWN; 462 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 463 msleep(1); 464 } 465 out: 466 return; 467 } 468 469 static void e1000_down_and_stop(struct e1000_adapter *adapter) 470 { 471 set_bit(__E1000_DOWN, &adapter->flags); 472 473 cancel_delayed_work_sync(&adapter->watchdog_task); 474 475 /* 476 * Since the watchdog task can reschedule other tasks, we should cancel 477 * it first, otherwise we can run into the situation when a work is 478 * still running after the adapter has been turned down. 479 */ 480 481 cancel_delayed_work_sync(&adapter->phy_info_task); 482 cancel_delayed_work_sync(&adapter->fifo_stall_task); 483 484 /* Only kill reset task if adapter is not resetting */ 485 if (!test_bit(__E1000_RESETTING, &adapter->flags)) 486 cancel_work_sync(&adapter->reset_task); 487 } 488 489 void e1000_down(struct e1000_adapter *adapter) 490 { 491 struct e1000_hw *hw = &adapter->hw; 492 struct net_device *netdev = adapter->netdev; 493 u32 rctl, tctl; 494 495 /* disable receives in the hardware */ 496 rctl = er32(RCTL); 497 ew32(RCTL, rctl & ~E1000_RCTL_EN); 498 /* flush and sleep below */ 499 500 netif_tx_disable(netdev); 501 502 /* disable transmits in the hardware */ 503 tctl = er32(TCTL); 504 tctl &= ~E1000_TCTL_EN; 505 ew32(TCTL, tctl); 506 /* flush both disables and wait for them to finish */ 507 E1000_WRITE_FLUSH(); 508 msleep(10); 509 510 /* Set the carrier off after transmits have been disabled in the 511 * hardware, to avoid race conditions with e1000_watchdog() (which 512 * may be running concurrently to us, checking for the carrier 513 * bit to decide whether it should enable transmits again). Such 514 * a race condition would result into transmission being disabled 515 * in the hardware until the next IFF_DOWN+IFF_UP cycle. 516 */ 517 netif_carrier_off(netdev); 518 519 napi_disable(&adapter->napi); 520 521 e1000_irq_disable(adapter); 522 523 /* Setting DOWN must be after irq_disable to prevent 524 * a screaming interrupt. Setting DOWN also prevents 525 * tasks from rescheduling. 526 */ 527 e1000_down_and_stop(adapter); 528 529 adapter->link_speed = 0; 530 adapter->link_duplex = 0; 531 532 e1000_reset(adapter); 533 e1000_clean_all_tx_rings(adapter); 534 e1000_clean_all_rx_rings(adapter); 535 } 536 537 void e1000_reinit_locked(struct e1000_adapter *adapter) 538 { 539 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 540 msleep(1); 541 542 /* only run the task if not already down */ 543 if (!test_bit(__E1000_DOWN, &adapter->flags)) { 544 e1000_down(adapter); 545 e1000_up(adapter); 546 } 547 548 clear_bit(__E1000_RESETTING, &adapter->flags); 549 } 550 551 void e1000_reset(struct e1000_adapter *adapter) 552 { 553 struct e1000_hw *hw = &adapter->hw; 554 u32 pba = 0, tx_space, min_tx_space, min_rx_space; 555 bool legacy_pba_adjust = false; 556 u16 hwm; 557 558 /* Repartition Pba for greater than 9k mtu 559 * To take effect CTRL.RST is required. 560 */ 561 562 switch (hw->mac_type) { 563 case e1000_82542_rev2_0: 564 case e1000_82542_rev2_1: 565 case e1000_82543: 566 case e1000_82544: 567 case e1000_82540: 568 case e1000_82541: 569 case e1000_82541_rev_2: 570 legacy_pba_adjust = true; 571 pba = E1000_PBA_48K; 572 break; 573 case e1000_82545: 574 case e1000_82545_rev_3: 575 case e1000_82546: 576 case e1000_ce4100: 577 case e1000_82546_rev_3: 578 pba = E1000_PBA_48K; 579 break; 580 case e1000_82547: 581 case e1000_82547_rev_2: 582 legacy_pba_adjust = true; 583 pba = E1000_PBA_30K; 584 break; 585 case e1000_undefined: 586 case e1000_num_macs: 587 break; 588 } 589 590 if (legacy_pba_adjust) { 591 if (hw->max_frame_size > E1000_RXBUFFER_8192) 592 pba -= 8; /* allocate more FIFO for Tx */ 593 594 if (hw->mac_type == e1000_82547) { 595 adapter->tx_fifo_head = 0; 596 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; 597 adapter->tx_fifo_size = 598 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; 599 atomic_set(&adapter->tx_fifo_stall, 0); 600 } 601 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { 602 /* adjust PBA for jumbo frames */ 603 ew32(PBA, pba); 604 605 /* To maintain wire speed transmits, the Tx FIFO should be 606 * large enough to accommodate two full transmit packets, 607 * rounded up to the next 1KB and expressed in KB. Likewise, 608 * the Rx FIFO should be large enough to accommodate at least 609 * one full receive packet and is similarly rounded up and 610 * expressed in KB. 611 */ 612 pba = er32(PBA); 613 /* upper 16 bits has Tx packet buffer allocation size in KB */ 614 tx_space = pba >> 16; 615 /* lower 16 bits has Rx packet buffer allocation size in KB */ 616 pba &= 0xffff; 617 /* the Tx fifo also stores 16 bytes of information about the Tx 618 * but don't include ethernet FCS because hardware appends it 619 */ 620 min_tx_space = (hw->max_frame_size + 621 sizeof(struct e1000_tx_desc) - 622 ETH_FCS_LEN) * 2; 623 min_tx_space = ALIGN(min_tx_space, 1024); 624 min_tx_space >>= 10; 625 /* software strips receive CRC, so leave room for it */ 626 min_rx_space = hw->max_frame_size; 627 min_rx_space = ALIGN(min_rx_space, 1024); 628 min_rx_space >>= 10; 629 630 /* If current Tx allocation is less than the min Tx FIFO size, 631 * and the min Tx FIFO size is less than the current Rx FIFO 632 * allocation, take space away from current Rx allocation 633 */ 634 if (tx_space < min_tx_space && 635 ((min_tx_space - tx_space) < pba)) { 636 pba = pba - (min_tx_space - tx_space); 637 638 /* PCI/PCIx hardware has PBA alignment constraints */ 639 switch (hw->mac_type) { 640 case e1000_82545 ... e1000_82546_rev_3: 641 pba &= ~(E1000_PBA_8K - 1); 642 break; 643 default: 644 break; 645 } 646 647 /* if short on Rx space, Rx wins and must trump Tx 648 * adjustment or use Early Receive if available 649 */ 650 if (pba < min_rx_space) 651 pba = min_rx_space; 652 } 653 } 654 655 ew32(PBA, pba); 656 657 /* flow control settings: 658 * The high water mark must be low enough to fit one full frame 659 * (or the size used for early receive) above it in the Rx FIFO. 660 * Set it to the lower of: 661 * - 90% of the Rx FIFO size, and 662 * - the full Rx FIFO size minus the early receive size (for parts 663 * with ERT support assuming ERT set to E1000_ERT_2048), or 664 * - the full Rx FIFO size minus one full frame 665 */ 666 hwm = min(((pba << 10) * 9 / 10), 667 ((pba << 10) - hw->max_frame_size)); 668 669 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ 670 hw->fc_low_water = hw->fc_high_water - 8; 671 hw->fc_pause_time = E1000_FC_PAUSE_TIME; 672 hw->fc_send_xon = 1; 673 hw->fc = hw->original_fc; 674 675 /* Allow time for pending master requests to run */ 676 e1000_reset_hw(hw); 677 if (hw->mac_type >= e1000_82544) 678 ew32(WUC, 0); 679 680 if (e1000_init_hw(hw)) 681 e_dev_err("Hardware Error\n"); 682 e1000_update_mng_vlan(adapter); 683 684 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ 685 if (hw->mac_type >= e1000_82544 && 686 hw->autoneg == 1 && 687 hw->autoneg_advertised == ADVERTISE_1000_FULL) { 688 u32 ctrl = er32(CTRL); 689 /* clear phy power management bit if we are in gig only mode, 690 * which if enabled will attempt negotiation to 100Mb, which 691 * can cause a loss of link at power off or driver unload 692 */ 693 ctrl &= ~E1000_CTRL_SWDPIN3; 694 ew32(CTRL, ctrl); 695 } 696 697 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 698 ew32(VET, ETHERNET_IEEE_VLAN_TYPE); 699 700 e1000_reset_adaptive(hw); 701 e1000_phy_get_info(hw, &adapter->phy_info); 702 703 e1000_release_manageability(adapter); 704 } 705 706 /* Dump the eeprom for users having checksum issues */ 707 static void e1000_dump_eeprom(struct e1000_adapter *adapter) 708 { 709 struct net_device *netdev = adapter->netdev; 710 struct ethtool_eeprom eeprom; 711 const struct ethtool_ops *ops = netdev->ethtool_ops; 712 u8 *data; 713 int i; 714 u16 csum_old, csum_new = 0; 715 716 eeprom.len = ops->get_eeprom_len(netdev); 717 eeprom.offset = 0; 718 719 data = kmalloc(eeprom.len, GFP_KERNEL); 720 if (!data) 721 return; 722 723 ops->get_eeprom(netdev, &eeprom, data); 724 725 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + 726 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); 727 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) 728 csum_new += data[i] + (data[i + 1] << 8); 729 csum_new = EEPROM_SUM - csum_new; 730 731 pr_err("/*********************/\n"); 732 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); 733 pr_err("Calculated : 0x%04x\n", csum_new); 734 735 pr_err("Offset Values\n"); 736 pr_err("======== ======\n"); 737 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); 738 739 pr_err("Include this output when contacting your support provider.\n"); 740 pr_err("This is not a software error! Something bad happened to\n"); 741 pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); 742 pr_err("result in further problems, possibly loss of data,\n"); 743 pr_err("corruption or system hangs!\n"); 744 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); 745 pr_err("which is invalid and requires you to set the proper MAC\n"); 746 pr_err("address manually before continuing to enable this network\n"); 747 pr_err("device. Please inspect the EEPROM dump and report the\n"); 748 pr_err("issue to your hardware vendor or Intel Customer Support.\n"); 749 pr_err("/*********************/\n"); 750 751 kfree(data); 752 } 753 754 /** 755 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not 756 * @pdev: PCI device information struct 757 * 758 * Return true if an adapter needs ioport resources 759 **/ 760 static int e1000_is_need_ioport(struct pci_dev *pdev) 761 { 762 switch (pdev->device) { 763 case E1000_DEV_ID_82540EM: 764 case E1000_DEV_ID_82540EM_LOM: 765 case E1000_DEV_ID_82540EP: 766 case E1000_DEV_ID_82540EP_LOM: 767 case E1000_DEV_ID_82540EP_LP: 768 case E1000_DEV_ID_82541EI: 769 case E1000_DEV_ID_82541EI_MOBILE: 770 case E1000_DEV_ID_82541ER: 771 case E1000_DEV_ID_82541ER_LOM: 772 case E1000_DEV_ID_82541GI: 773 case E1000_DEV_ID_82541GI_LF: 774 case E1000_DEV_ID_82541GI_MOBILE: 775 case E1000_DEV_ID_82544EI_COPPER: 776 case E1000_DEV_ID_82544EI_FIBER: 777 case E1000_DEV_ID_82544GC_COPPER: 778 case E1000_DEV_ID_82544GC_LOM: 779 case E1000_DEV_ID_82545EM_COPPER: 780 case E1000_DEV_ID_82545EM_FIBER: 781 case E1000_DEV_ID_82546EB_COPPER: 782 case E1000_DEV_ID_82546EB_FIBER: 783 case E1000_DEV_ID_82546EB_QUAD_COPPER: 784 return true; 785 default: 786 return false; 787 } 788 } 789 790 static netdev_features_t e1000_fix_features(struct net_device *netdev, 791 netdev_features_t features) 792 { 793 /* Since there is no support for separate Rx/Tx vlan accel 794 * enable/disable make sure Tx flag is always in same state as Rx. 795 */ 796 if (features & NETIF_F_HW_VLAN_CTAG_RX) 797 features |= NETIF_F_HW_VLAN_CTAG_TX; 798 else 799 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 800 801 return features; 802 } 803 804 static int e1000_set_features(struct net_device *netdev, 805 netdev_features_t features) 806 { 807 struct e1000_adapter *adapter = netdev_priv(netdev); 808 netdev_features_t changed = features ^ netdev->features; 809 810 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 811 e1000_vlan_mode(netdev, features); 812 813 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL))) 814 return 0; 815 816 netdev->features = features; 817 adapter->rx_csum = !!(features & NETIF_F_RXCSUM); 818 819 if (netif_running(netdev)) 820 e1000_reinit_locked(adapter); 821 else 822 e1000_reset(adapter); 823 824 return 1; 825 } 826 827 static const struct net_device_ops e1000_netdev_ops = { 828 .ndo_open = e1000_open, 829 .ndo_stop = e1000_close, 830 .ndo_start_xmit = e1000_xmit_frame, 831 .ndo_set_rx_mode = e1000_set_rx_mode, 832 .ndo_set_mac_address = e1000_set_mac, 833 .ndo_tx_timeout = e1000_tx_timeout, 834 .ndo_change_mtu = e1000_change_mtu, 835 .ndo_eth_ioctl = e1000_ioctl, 836 .ndo_validate_addr = eth_validate_addr, 837 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, 838 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, 839 #ifdef CONFIG_NET_POLL_CONTROLLER 840 .ndo_poll_controller = e1000_netpoll, 841 #endif 842 .ndo_fix_features = e1000_fix_features, 843 .ndo_set_features = e1000_set_features, 844 }; 845 846 /** 847 * e1000_init_hw_struct - initialize members of hw struct 848 * @adapter: board private struct 849 * @hw: structure used by e1000_hw.c 850 * 851 * Factors out initialization of the e1000_hw struct to its own function 852 * that can be called very early at init (just after struct allocation). 853 * Fields are initialized based on PCI device information and 854 * OS network device settings (MTU size). 855 * Returns negative error codes if MAC type setup fails. 856 */ 857 static int e1000_init_hw_struct(struct e1000_adapter *adapter, 858 struct e1000_hw *hw) 859 { 860 struct pci_dev *pdev = adapter->pdev; 861 862 /* PCI config space info */ 863 hw->vendor_id = pdev->vendor; 864 hw->device_id = pdev->device; 865 hw->subsystem_vendor_id = pdev->subsystem_vendor; 866 hw->subsystem_id = pdev->subsystem_device; 867 hw->revision_id = pdev->revision; 868 869 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); 870 871 hw->max_frame_size = adapter->netdev->mtu + 872 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; 873 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; 874 875 /* identify the MAC */ 876 if (e1000_set_mac_type(hw)) { 877 e_err(probe, "Unknown MAC Type\n"); 878 return -EIO; 879 } 880 881 switch (hw->mac_type) { 882 default: 883 break; 884 case e1000_82541: 885 case e1000_82547: 886 case e1000_82541_rev_2: 887 case e1000_82547_rev_2: 888 hw->phy_init_script = 1; 889 break; 890 } 891 892 e1000_set_media_type(hw); 893 e1000_get_bus_info(hw); 894 895 hw->wait_autoneg_complete = false; 896 hw->tbi_compatibility_en = true; 897 hw->adaptive_ifs = true; 898 899 /* Copper options */ 900 901 if (hw->media_type == e1000_media_type_copper) { 902 hw->mdix = AUTO_ALL_MODES; 903 hw->disable_polarity_correction = false; 904 hw->master_slave = E1000_MASTER_SLAVE; 905 } 906 907 return 0; 908 } 909 910 /** 911 * e1000_probe - Device Initialization Routine 912 * @pdev: PCI device information struct 913 * @ent: entry in e1000_pci_tbl 914 * 915 * Returns 0 on success, negative on failure 916 * 917 * e1000_probe initializes an adapter identified by a pci_dev structure. 918 * The OS initialization, configuring of the adapter private structure, 919 * and a hardware reset occur. 920 **/ 921 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 922 { 923 struct net_device *netdev; 924 struct e1000_adapter *adapter = NULL; 925 struct e1000_hw *hw; 926 927 static int cards_found; 928 static int global_quad_port_a; /* global ksp3 port a indication */ 929 int i, err, pci_using_dac; 930 u16 eeprom_data = 0; 931 u16 tmp = 0; 932 u16 eeprom_apme_mask = E1000_EEPROM_APME; 933 int bars, need_ioport; 934 bool disable_dev = false; 935 936 /* do not allocate ioport bars when not needed */ 937 need_ioport = e1000_is_need_ioport(pdev); 938 if (need_ioport) { 939 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); 940 err = pci_enable_device(pdev); 941 } else { 942 bars = pci_select_bars(pdev, IORESOURCE_MEM); 943 err = pci_enable_device_mem(pdev); 944 } 945 if (err) 946 return err; 947 948 err = pci_request_selected_regions(pdev, bars, e1000_driver_name); 949 if (err) 950 goto err_pci_reg; 951 952 pci_set_master(pdev); 953 err = pci_save_state(pdev); 954 if (err) 955 goto err_alloc_etherdev; 956 957 err = -ENOMEM; 958 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 959 if (!netdev) 960 goto err_alloc_etherdev; 961 962 SET_NETDEV_DEV(netdev, &pdev->dev); 963 964 pci_set_drvdata(pdev, netdev); 965 adapter = netdev_priv(netdev); 966 adapter->netdev = netdev; 967 adapter->pdev = pdev; 968 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 969 adapter->bars = bars; 970 adapter->need_ioport = need_ioport; 971 972 hw = &adapter->hw; 973 hw->back = adapter; 974 975 err = -EIO; 976 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); 977 if (!hw->hw_addr) 978 goto err_ioremap; 979 980 if (adapter->need_ioport) { 981 for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) { 982 if (pci_resource_len(pdev, i) == 0) 983 continue; 984 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 985 hw->io_base = pci_resource_start(pdev, i); 986 break; 987 } 988 } 989 } 990 991 /* make ready for any if (hw->...) below */ 992 err = e1000_init_hw_struct(adapter, hw); 993 if (err) 994 goto err_sw_init; 995 996 /* there is a workaround being applied below that limits 997 * 64-bit DMA addresses to 64-bit hardware. There are some 998 * 32-bit adapters that Tx hang when given 64-bit DMA addresses 999 */ 1000 pci_using_dac = 0; 1001 if ((hw->bus_type == e1000_bus_type_pcix) && 1002 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 1003 pci_using_dac = 1; 1004 } else { 1005 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1006 if (err) { 1007 pr_err("No usable DMA config, aborting\n"); 1008 goto err_dma; 1009 } 1010 } 1011 1012 netdev->netdev_ops = &e1000_netdev_ops; 1013 e1000_set_ethtool_ops(netdev); 1014 netdev->watchdog_timeo = 5 * HZ; 1015 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); 1016 1017 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 1018 1019 adapter->bd_number = cards_found; 1020 1021 /* setup the private structure */ 1022 1023 err = e1000_sw_init(adapter); 1024 if (err) 1025 goto err_sw_init; 1026 1027 err = -EIO; 1028 if (hw->mac_type == e1000_ce4100) { 1029 hw->ce4100_gbe_mdio_base_virt = 1030 ioremap(pci_resource_start(pdev, BAR_1), 1031 pci_resource_len(pdev, BAR_1)); 1032 1033 if (!hw->ce4100_gbe_mdio_base_virt) 1034 goto err_mdio_ioremap; 1035 } 1036 1037 if (hw->mac_type >= e1000_82543) { 1038 netdev->hw_features = NETIF_F_SG | 1039 NETIF_F_HW_CSUM | 1040 NETIF_F_HW_VLAN_CTAG_RX; 1041 netdev->features = NETIF_F_HW_VLAN_CTAG_TX | 1042 NETIF_F_HW_VLAN_CTAG_FILTER; 1043 } 1044 1045 if ((hw->mac_type >= e1000_82544) && 1046 (hw->mac_type != e1000_82547)) 1047 netdev->hw_features |= NETIF_F_TSO; 1048 1049 netdev->priv_flags |= IFF_SUPP_NOFCS; 1050 1051 netdev->features |= netdev->hw_features; 1052 netdev->hw_features |= (NETIF_F_RXCSUM | 1053 NETIF_F_RXALL | 1054 NETIF_F_RXFCS); 1055 1056 if (pci_using_dac) { 1057 netdev->features |= NETIF_F_HIGHDMA; 1058 netdev->vlan_features |= NETIF_F_HIGHDMA; 1059 } 1060 1061 netdev->vlan_features |= (NETIF_F_TSO | 1062 NETIF_F_HW_CSUM | 1063 NETIF_F_SG); 1064 1065 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */ 1066 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER || 1067 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE) 1068 netdev->priv_flags |= IFF_UNICAST_FLT; 1069 1070 /* MTU range: 46 - 16110 */ 1071 netdev->min_mtu = ETH_ZLEN - ETH_HLEN; 1072 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN); 1073 1074 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); 1075 1076 /* initialize eeprom parameters */ 1077 if (e1000_init_eeprom_params(hw)) { 1078 e_err(probe, "EEPROM initialization failed\n"); 1079 goto err_eeprom; 1080 } 1081 1082 /* before reading the EEPROM, reset the controller to 1083 * put the device in a known good starting state 1084 */ 1085 1086 e1000_reset_hw(hw); 1087 1088 /* make sure the EEPROM is good */ 1089 if (e1000_validate_eeprom_checksum(hw) < 0) { 1090 e_err(probe, "The EEPROM Checksum Is Not Valid\n"); 1091 e1000_dump_eeprom(adapter); 1092 /* set MAC address to all zeroes to invalidate and temporary 1093 * disable this device for the user. This blocks regular 1094 * traffic while still permitting ethtool ioctls from reaching 1095 * the hardware as well as allowing the user to run the 1096 * interface after manually setting a hw addr using 1097 * `ip set address` 1098 */ 1099 memset(hw->mac_addr, 0, netdev->addr_len); 1100 } else { 1101 /* copy the MAC address out of the EEPROM */ 1102 if (e1000_read_mac_addr(hw)) 1103 e_err(probe, "EEPROM Read Error\n"); 1104 } 1105 /* don't block initialization here due to bad MAC address */ 1106 eth_hw_addr_set(netdev, hw->mac_addr); 1107 1108 if (!is_valid_ether_addr(netdev->dev_addr)) 1109 e_err(probe, "Invalid MAC Address\n"); 1110 1111 1112 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog); 1113 INIT_DELAYED_WORK(&adapter->fifo_stall_task, 1114 e1000_82547_tx_fifo_stall_task); 1115 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task); 1116 INIT_WORK(&adapter->reset_task, e1000_reset_task); 1117 1118 e1000_check_options(adapter); 1119 1120 /* Initial Wake on LAN setting 1121 * If APM wake is enabled in the EEPROM, 1122 * enable the ACPI Magic Packet filter 1123 */ 1124 1125 switch (hw->mac_type) { 1126 case e1000_82542_rev2_0: 1127 case e1000_82542_rev2_1: 1128 case e1000_82543: 1129 break; 1130 case e1000_82544: 1131 e1000_read_eeprom(hw, 1132 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); 1133 eeprom_apme_mask = E1000_EEPROM_82544_APM; 1134 break; 1135 case e1000_82546: 1136 case e1000_82546_rev_3: 1137 if (er32(STATUS) & E1000_STATUS_FUNC_1) { 1138 e1000_read_eeprom(hw, 1139 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 1140 break; 1141 } 1142 fallthrough; 1143 default: 1144 e1000_read_eeprom(hw, 1145 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 1146 break; 1147 } 1148 if (eeprom_data & eeprom_apme_mask) 1149 adapter->eeprom_wol |= E1000_WUFC_MAG; 1150 1151 /* now that we have the eeprom settings, apply the special cases 1152 * where the eeprom may be wrong or the board simply won't support 1153 * wake on lan on a particular port 1154 */ 1155 switch (pdev->device) { 1156 case E1000_DEV_ID_82546GB_PCIE: 1157 adapter->eeprom_wol = 0; 1158 break; 1159 case E1000_DEV_ID_82546EB_FIBER: 1160 case E1000_DEV_ID_82546GB_FIBER: 1161 /* Wake events only supported on port A for dual fiber 1162 * regardless of eeprom setting 1163 */ 1164 if (er32(STATUS) & E1000_STATUS_FUNC_1) 1165 adapter->eeprom_wol = 0; 1166 break; 1167 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1168 /* if quad port adapter, disable WoL on all but port A */ 1169 if (global_quad_port_a != 0) 1170 adapter->eeprom_wol = 0; 1171 else 1172 adapter->quad_port_a = true; 1173 /* Reset for multiple quad port adapters */ 1174 if (++global_quad_port_a == 4) 1175 global_quad_port_a = 0; 1176 break; 1177 } 1178 1179 /* initialize the wol settings based on the eeprom settings */ 1180 adapter->wol = adapter->eeprom_wol; 1181 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1182 1183 /* Auto detect PHY address */ 1184 if (hw->mac_type == e1000_ce4100) { 1185 for (i = 0; i < 32; i++) { 1186 hw->phy_addr = i; 1187 e1000_read_phy_reg(hw, PHY_ID2, &tmp); 1188 1189 if (tmp != 0 && tmp != 0xFF) 1190 break; 1191 } 1192 1193 if (i >= 32) 1194 goto err_eeprom; 1195 } 1196 1197 /* reset the hardware with the new settings */ 1198 e1000_reset(adapter); 1199 1200 strcpy(netdev->name, "eth%d"); 1201 err = register_netdev(netdev); 1202 if (err) 1203 goto err_register; 1204 1205 e1000_vlan_filter_on_off(adapter, false); 1206 1207 /* print bus type/speed/width info */ 1208 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n", 1209 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), 1210 ((hw->bus_speed == e1000_bus_speed_133) ? 133 : 1211 (hw->bus_speed == e1000_bus_speed_120) ? 120 : 1212 (hw->bus_speed == e1000_bus_speed_100) ? 100 : 1213 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), 1214 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), 1215 netdev->dev_addr); 1216 1217 /* carrier off reporting is important to ethtool even BEFORE open */ 1218 netif_carrier_off(netdev); 1219 1220 e_info(probe, "Intel(R) PRO/1000 Network Connection\n"); 1221 1222 cards_found++; 1223 return 0; 1224 1225 err_register: 1226 err_eeprom: 1227 e1000_phy_hw_reset(hw); 1228 1229 if (hw->flash_address) 1230 iounmap(hw->flash_address); 1231 kfree(adapter->tx_ring); 1232 kfree(adapter->rx_ring); 1233 err_dma: 1234 err_sw_init: 1235 err_mdio_ioremap: 1236 iounmap(hw->ce4100_gbe_mdio_base_virt); 1237 iounmap(hw->hw_addr); 1238 err_ioremap: 1239 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags); 1240 free_netdev(netdev); 1241 err_alloc_etherdev: 1242 pci_release_selected_regions(pdev, bars); 1243 err_pci_reg: 1244 if (!adapter || disable_dev) 1245 pci_disable_device(pdev); 1246 return err; 1247 } 1248 1249 /** 1250 * e1000_remove - Device Removal Routine 1251 * @pdev: PCI device information struct 1252 * 1253 * e1000_remove is called by the PCI subsystem to alert the driver 1254 * that it should release a PCI device. That could be caused by a 1255 * Hot-Plug event, or because the driver is going to be removed from 1256 * memory. 1257 **/ 1258 static void e1000_remove(struct pci_dev *pdev) 1259 { 1260 struct net_device *netdev = pci_get_drvdata(pdev); 1261 struct e1000_adapter *adapter = netdev_priv(netdev); 1262 struct e1000_hw *hw = &adapter->hw; 1263 bool disable_dev; 1264 1265 e1000_down_and_stop(adapter); 1266 e1000_release_manageability(adapter); 1267 1268 unregister_netdev(netdev); 1269 1270 e1000_phy_hw_reset(hw); 1271 1272 kfree(adapter->tx_ring); 1273 kfree(adapter->rx_ring); 1274 1275 if (hw->mac_type == e1000_ce4100) 1276 iounmap(hw->ce4100_gbe_mdio_base_virt); 1277 iounmap(hw->hw_addr); 1278 if (hw->flash_address) 1279 iounmap(hw->flash_address); 1280 pci_release_selected_regions(pdev, adapter->bars); 1281 1282 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags); 1283 free_netdev(netdev); 1284 1285 if (disable_dev) 1286 pci_disable_device(pdev); 1287 } 1288 1289 /** 1290 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 1291 * @adapter: board private structure to initialize 1292 * 1293 * e1000_sw_init initializes the Adapter private data structure. 1294 * e1000_init_hw_struct MUST be called before this function 1295 **/ 1296 static int e1000_sw_init(struct e1000_adapter *adapter) 1297 { 1298 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 1299 1300 adapter->num_tx_queues = 1; 1301 adapter->num_rx_queues = 1; 1302 1303 if (e1000_alloc_queues(adapter)) { 1304 e_err(probe, "Unable to allocate memory for queues\n"); 1305 return -ENOMEM; 1306 } 1307 1308 /* Explicitly disable IRQ since the NIC can be in any state. */ 1309 e1000_irq_disable(adapter); 1310 1311 spin_lock_init(&adapter->stats_lock); 1312 1313 set_bit(__E1000_DOWN, &adapter->flags); 1314 1315 return 0; 1316 } 1317 1318 /** 1319 * e1000_alloc_queues - Allocate memory for all rings 1320 * @adapter: board private structure to initialize 1321 * 1322 * We allocate one ring per queue at run-time since we don't know the 1323 * number of queues at compile-time. 1324 **/ 1325 static int e1000_alloc_queues(struct e1000_adapter *adapter) 1326 { 1327 adapter->tx_ring = kcalloc(adapter->num_tx_queues, 1328 sizeof(struct e1000_tx_ring), GFP_KERNEL); 1329 if (!adapter->tx_ring) 1330 return -ENOMEM; 1331 1332 adapter->rx_ring = kcalloc(adapter->num_rx_queues, 1333 sizeof(struct e1000_rx_ring), GFP_KERNEL); 1334 if (!adapter->rx_ring) { 1335 kfree(adapter->tx_ring); 1336 return -ENOMEM; 1337 } 1338 1339 return E1000_SUCCESS; 1340 } 1341 1342 /** 1343 * e1000_open - Called when a network interface is made active 1344 * @netdev: network interface device structure 1345 * 1346 * Returns 0 on success, negative value on failure 1347 * 1348 * The open entry point is called when a network interface is made 1349 * active by the system (IFF_UP). At this point all resources needed 1350 * for transmit and receive operations are allocated, the interrupt 1351 * handler is registered with the OS, the watchdog task is started, 1352 * and the stack is notified that the interface is ready. 1353 **/ 1354 int e1000_open(struct net_device *netdev) 1355 { 1356 struct e1000_adapter *adapter = netdev_priv(netdev); 1357 struct e1000_hw *hw = &adapter->hw; 1358 int err; 1359 1360 /* disallow open during test */ 1361 if (test_bit(__E1000_TESTING, &adapter->flags)) 1362 return -EBUSY; 1363 1364 netif_carrier_off(netdev); 1365 1366 /* allocate transmit descriptors */ 1367 err = e1000_setup_all_tx_resources(adapter); 1368 if (err) 1369 goto err_setup_tx; 1370 1371 /* allocate receive descriptors */ 1372 err = e1000_setup_all_rx_resources(adapter); 1373 if (err) 1374 goto err_setup_rx; 1375 1376 e1000_power_up_phy(adapter); 1377 1378 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1379 if ((hw->mng_cookie.status & 1380 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { 1381 e1000_update_mng_vlan(adapter); 1382 } 1383 1384 /* before we allocate an interrupt, we must be ready to handle it. 1385 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1386 * as soon as we call pci_request_irq, so we have to setup our 1387 * clean_rx handler before we do so. 1388 */ 1389 e1000_configure(adapter); 1390 1391 err = e1000_request_irq(adapter); 1392 if (err) 1393 goto err_req_irq; 1394 1395 /* From here on the code is the same as e1000_up() */ 1396 clear_bit(__E1000_DOWN, &adapter->flags); 1397 1398 napi_enable(&adapter->napi); 1399 1400 e1000_irq_enable(adapter); 1401 1402 netif_start_queue(netdev); 1403 1404 /* fire a link status change interrupt to start the watchdog */ 1405 ew32(ICS, E1000_ICS_LSC); 1406 1407 return E1000_SUCCESS; 1408 1409 err_req_irq: 1410 e1000_power_down_phy(adapter); 1411 e1000_free_all_rx_resources(adapter); 1412 err_setup_rx: 1413 e1000_free_all_tx_resources(adapter); 1414 err_setup_tx: 1415 e1000_reset(adapter); 1416 1417 return err; 1418 } 1419 1420 /** 1421 * e1000_close - Disables a network interface 1422 * @netdev: network interface device structure 1423 * 1424 * Returns 0, this is not allowed to fail 1425 * 1426 * The close entry point is called when an interface is de-activated 1427 * by the OS. The hardware is still under the drivers control, but 1428 * needs to be disabled. A global MAC reset is issued to stop the 1429 * hardware, and all transmit and receive resources are freed. 1430 **/ 1431 int e1000_close(struct net_device *netdev) 1432 { 1433 struct e1000_adapter *adapter = netdev_priv(netdev); 1434 struct e1000_hw *hw = &adapter->hw; 1435 int count = E1000_CHECK_RESET_COUNT; 1436 1437 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--) 1438 usleep_range(10000, 20000); 1439 1440 WARN_ON(count < 0); 1441 1442 /* signal that we're down so that the reset task will no longer run */ 1443 set_bit(__E1000_DOWN, &adapter->flags); 1444 clear_bit(__E1000_RESETTING, &adapter->flags); 1445 1446 e1000_down(adapter); 1447 e1000_power_down_phy(adapter); 1448 e1000_free_irq(adapter); 1449 1450 e1000_free_all_tx_resources(adapter); 1451 e1000_free_all_rx_resources(adapter); 1452 1453 /* kill manageability vlan ID if supported, but not if a vlan with 1454 * the same ID is registered on the host OS (let 8021q kill it) 1455 */ 1456 if ((hw->mng_cookie.status & 1457 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 1458 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { 1459 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 1460 adapter->mng_vlan_id); 1461 } 1462 1463 return 0; 1464 } 1465 1466 /** 1467 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary 1468 * @adapter: address of board private structure 1469 * @start: address of beginning of memory 1470 * @len: length of memory 1471 **/ 1472 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, 1473 unsigned long len) 1474 { 1475 struct e1000_hw *hw = &adapter->hw; 1476 unsigned long begin = (unsigned long)start; 1477 unsigned long end = begin + len; 1478 1479 /* First rev 82545 and 82546 need to not allow any memory 1480 * write location to cross 64k boundary due to errata 23 1481 */ 1482 if (hw->mac_type == e1000_82545 || 1483 hw->mac_type == e1000_ce4100 || 1484 hw->mac_type == e1000_82546) { 1485 return ((begin ^ (end - 1)) >> 16) == 0; 1486 } 1487 1488 return true; 1489 } 1490 1491 /** 1492 * e1000_setup_tx_resources - allocate Tx resources (Descriptors) 1493 * @adapter: board private structure 1494 * @txdr: tx descriptor ring (for a specific queue) to setup 1495 * 1496 * Return 0 on success, negative on failure 1497 **/ 1498 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 1499 struct e1000_tx_ring *txdr) 1500 { 1501 struct pci_dev *pdev = adapter->pdev; 1502 int size; 1503 1504 size = sizeof(struct e1000_tx_buffer) * txdr->count; 1505 txdr->buffer_info = vzalloc(size); 1506 if (!txdr->buffer_info) 1507 return -ENOMEM; 1508 1509 /* round up to nearest 4K */ 1510 1511 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 1512 txdr->size = ALIGN(txdr->size, 4096); 1513 1514 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, 1515 GFP_KERNEL); 1516 if (!txdr->desc) { 1517 setup_tx_desc_die: 1518 vfree(txdr->buffer_info); 1519 return -ENOMEM; 1520 } 1521 1522 /* Fix for errata 23, can't cross 64kB boundary */ 1523 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1524 void *olddesc = txdr->desc; 1525 dma_addr_t olddma = txdr->dma; 1526 e_err(tx_err, "txdr align check failed: %u bytes at %p\n", 1527 txdr->size, txdr->desc); 1528 /* Try again, without freeing the previous */ 1529 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, 1530 &txdr->dma, GFP_KERNEL); 1531 /* Failed allocation, critical failure */ 1532 if (!txdr->desc) { 1533 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1534 olddma); 1535 goto setup_tx_desc_die; 1536 } 1537 1538 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1539 /* give up */ 1540 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, 1541 txdr->dma); 1542 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1543 olddma); 1544 e_err(probe, "Unable to allocate aligned memory " 1545 "for the transmit descriptor ring\n"); 1546 vfree(txdr->buffer_info); 1547 return -ENOMEM; 1548 } else { 1549 /* Free old allocation, new allocation was successful */ 1550 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1551 olddma); 1552 } 1553 } 1554 memset(txdr->desc, 0, txdr->size); 1555 1556 txdr->next_to_use = 0; 1557 txdr->next_to_clean = 0; 1558 1559 return 0; 1560 } 1561 1562 /** 1563 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources 1564 * (Descriptors) for all queues 1565 * @adapter: board private structure 1566 * 1567 * Return 0 on success, negative on failure 1568 **/ 1569 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) 1570 { 1571 int i, err = 0; 1572 1573 for (i = 0; i < adapter->num_tx_queues; i++) { 1574 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); 1575 if (err) { 1576 e_err(probe, "Allocation for Tx Queue %u failed\n", i); 1577 for (i-- ; i >= 0; i--) 1578 e1000_free_tx_resources(adapter, 1579 &adapter->tx_ring[i]); 1580 break; 1581 } 1582 } 1583 1584 return err; 1585 } 1586 1587 /** 1588 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset 1589 * @adapter: board private structure 1590 * 1591 * Configure the Tx unit of the MAC after a reset. 1592 **/ 1593 static void e1000_configure_tx(struct e1000_adapter *adapter) 1594 { 1595 u64 tdba; 1596 struct e1000_hw *hw = &adapter->hw; 1597 u32 tdlen, tctl, tipg; 1598 u32 ipgr1, ipgr2; 1599 1600 /* Setup the HW Tx Head and Tail descriptor pointers */ 1601 1602 switch (adapter->num_tx_queues) { 1603 case 1: 1604 default: 1605 tdba = adapter->tx_ring[0].dma; 1606 tdlen = adapter->tx_ring[0].count * 1607 sizeof(struct e1000_tx_desc); 1608 ew32(TDLEN, tdlen); 1609 ew32(TDBAH, (tdba >> 32)); 1610 ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); 1611 ew32(TDT, 0); 1612 ew32(TDH, 0); 1613 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? 1614 E1000_TDH : E1000_82542_TDH); 1615 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? 1616 E1000_TDT : E1000_82542_TDT); 1617 break; 1618 } 1619 1620 /* Set the default values for the Tx Inter Packet Gap timer */ 1621 if ((hw->media_type == e1000_media_type_fiber || 1622 hw->media_type == e1000_media_type_internal_serdes)) 1623 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 1624 else 1625 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 1626 1627 switch (hw->mac_type) { 1628 case e1000_82542_rev2_0: 1629 case e1000_82542_rev2_1: 1630 tipg = DEFAULT_82542_TIPG_IPGT; 1631 ipgr1 = DEFAULT_82542_TIPG_IPGR1; 1632 ipgr2 = DEFAULT_82542_TIPG_IPGR2; 1633 break; 1634 default: 1635 ipgr1 = DEFAULT_82543_TIPG_IPGR1; 1636 ipgr2 = DEFAULT_82543_TIPG_IPGR2; 1637 break; 1638 } 1639 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; 1640 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; 1641 ew32(TIPG, tipg); 1642 1643 /* Set the Tx Interrupt Delay register */ 1644 1645 ew32(TIDV, adapter->tx_int_delay); 1646 if (hw->mac_type >= e1000_82540) 1647 ew32(TADV, adapter->tx_abs_int_delay); 1648 1649 /* Program the Transmit Control Register */ 1650 1651 tctl = er32(TCTL); 1652 tctl &= ~E1000_TCTL_CT; 1653 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 1654 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 1655 1656 e1000_config_collision_dist(hw); 1657 1658 /* Setup Transmit Descriptor Settings for eop descriptor */ 1659 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 1660 1661 /* only set IDE if we are delaying interrupts using the timers */ 1662 if (adapter->tx_int_delay) 1663 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 1664 1665 if (hw->mac_type < e1000_82543) 1666 adapter->txd_cmd |= E1000_TXD_CMD_RPS; 1667 else 1668 adapter->txd_cmd |= E1000_TXD_CMD_RS; 1669 1670 /* Cache if we're 82544 running in PCI-X because we'll 1671 * need this to apply a workaround later in the send path. 1672 */ 1673 if (hw->mac_type == e1000_82544 && 1674 hw->bus_type == e1000_bus_type_pcix) 1675 adapter->pcix_82544 = true; 1676 1677 ew32(TCTL, tctl); 1678 1679 } 1680 1681 /** 1682 * e1000_setup_rx_resources - allocate Rx resources (Descriptors) 1683 * @adapter: board private structure 1684 * @rxdr: rx descriptor ring (for a specific queue) to setup 1685 * 1686 * Returns 0 on success, negative on failure 1687 **/ 1688 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 1689 struct e1000_rx_ring *rxdr) 1690 { 1691 struct pci_dev *pdev = adapter->pdev; 1692 int size, desc_len; 1693 1694 size = sizeof(struct e1000_rx_buffer) * rxdr->count; 1695 rxdr->buffer_info = vzalloc(size); 1696 if (!rxdr->buffer_info) 1697 return -ENOMEM; 1698 1699 desc_len = sizeof(struct e1000_rx_desc); 1700 1701 /* Round up to nearest 4K */ 1702 1703 rxdr->size = rxdr->count * desc_len; 1704 rxdr->size = ALIGN(rxdr->size, 4096); 1705 1706 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, 1707 GFP_KERNEL); 1708 if (!rxdr->desc) { 1709 setup_rx_desc_die: 1710 vfree(rxdr->buffer_info); 1711 return -ENOMEM; 1712 } 1713 1714 /* Fix for errata 23, can't cross 64kB boundary */ 1715 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1716 void *olddesc = rxdr->desc; 1717 dma_addr_t olddma = rxdr->dma; 1718 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n", 1719 rxdr->size, rxdr->desc); 1720 /* Try again, without freeing the previous */ 1721 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, 1722 &rxdr->dma, GFP_KERNEL); 1723 /* Failed allocation, critical failure */ 1724 if (!rxdr->desc) { 1725 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1726 olddma); 1727 goto setup_rx_desc_die; 1728 } 1729 1730 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1731 /* give up */ 1732 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, 1733 rxdr->dma); 1734 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1735 olddma); 1736 e_err(probe, "Unable to allocate aligned memory for " 1737 "the Rx descriptor ring\n"); 1738 goto setup_rx_desc_die; 1739 } else { 1740 /* Free old allocation, new allocation was successful */ 1741 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1742 olddma); 1743 } 1744 } 1745 memset(rxdr->desc, 0, rxdr->size); 1746 1747 rxdr->next_to_clean = 0; 1748 rxdr->next_to_use = 0; 1749 rxdr->rx_skb_top = NULL; 1750 1751 return 0; 1752 } 1753 1754 /** 1755 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources 1756 * (Descriptors) for all queues 1757 * @adapter: board private structure 1758 * 1759 * Return 0 on success, negative on failure 1760 **/ 1761 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) 1762 { 1763 int i, err = 0; 1764 1765 for (i = 0; i < adapter->num_rx_queues; i++) { 1766 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); 1767 if (err) { 1768 e_err(probe, "Allocation for Rx Queue %u failed\n", i); 1769 for (i-- ; i >= 0; i--) 1770 e1000_free_rx_resources(adapter, 1771 &adapter->rx_ring[i]); 1772 break; 1773 } 1774 } 1775 1776 return err; 1777 } 1778 1779 /** 1780 * e1000_setup_rctl - configure the receive control registers 1781 * @adapter: Board private structure 1782 **/ 1783 static void e1000_setup_rctl(struct e1000_adapter *adapter) 1784 { 1785 struct e1000_hw *hw = &adapter->hw; 1786 u32 rctl; 1787 1788 rctl = er32(RCTL); 1789 1790 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 1791 1792 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO | 1793 E1000_RCTL_RDMTS_HALF | 1794 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); 1795 1796 if (hw->tbi_compatibility_on == 1) 1797 rctl |= E1000_RCTL_SBP; 1798 else 1799 rctl &= ~E1000_RCTL_SBP; 1800 1801 if (adapter->netdev->mtu <= ETH_DATA_LEN) 1802 rctl &= ~E1000_RCTL_LPE; 1803 else 1804 rctl |= E1000_RCTL_LPE; 1805 1806 /* Setup buffer sizes */ 1807 rctl &= ~E1000_RCTL_SZ_4096; 1808 rctl |= E1000_RCTL_BSEX; 1809 switch (adapter->rx_buffer_len) { 1810 case E1000_RXBUFFER_2048: 1811 default: 1812 rctl |= E1000_RCTL_SZ_2048; 1813 rctl &= ~E1000_RCTL_BSEX; 1814 break; 1815 case E1000_RXBUFFER_4096: 1816 rctl |= E1000_RCTL_SZ_4096; 1817 break; 1818 case E1000_RXBUFFER_8192: 1819 rctl |= E1000_RCTL_SZ_8192; 1820 break; 1821 case E1000_RXBUFFER_16384: 1822 rctl |= E1000_RCTL_SZ_16384; 1823 break; 1824 } 1825 1826 /* This is useful for sniffing bad packets. */ 1827 if (adapter->netdev->features & NETIF_F_RXALL) { 1828 /* UPE and MPE will be handled by normal PROMISC logic 1829 * in e1000e_set_rx_mode 1830 */ 1831 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 1832 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 1833 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 1834 1835 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 1836 E1000_RCTL_DPF | /* Allow filtered pause */ 1837 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 1838 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 1839 * and that breaks VLANs. 1840 */ 1841 } 1842 1843 ew32(RCTL, rctl); 1844 } 1845 1846 /** 1847 * e1000_configure_rx - Configure 8254x Receive Unit after Reset 1848 * @adapter: board private structure 1849 * 1850 * Configure the Rx unit of the MAC after a reset. 1851 **/ 1852 static void e1000_configure_rx(struct e1000_adapter *adapter) 1853 { 1854 u64 rdba; 1855 struct e1000_hw *hw = &adapter->hw; 1856 u32 rdlen, rctl, rxcsum; 1857 1858 if (adapter->netdev->mtu > ETH_DATA_LEN) { 1859 rdlen = adapter->rx_ring[0].count * 1860 sizeof(struct e1000_rx_desc); 1861 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 1862 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 1863 } else { 1864 rdlen = adapter->rx_ring[0].count * 1865 sizeof(struct e1000_rx_desc); 1866 adapter->clean_rx = e1000_clean_rx_irq; 1867 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 1868 } 1869 1870 /* disable receives while setting up the descriptors */ 1871 rctl = er32(RCTL); 1872 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1873 1874 /* set the Receive Delay Timer Register */ 1875 ew32(RDTR, adapter->rx_int_delay); 1876 1877 if (hw->mac_type >= e1000_82540) { 1878 ew32(RADV, adapter->rx_abs_int_delay); 1879 if (adapter->itr_setting != 0) 1880 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1881 } 1882 1883 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1884 * the Base and Length of the Rx Descriptor Ring 1885 */ 1886 switch (adapter->num_rx_queues) { 1887 case 1: 1888 default: 1889 rdba = adapter->rx_ring[0].dma; 1890 ew32(RDLEN, rdlen); 1891 ew32(RDBAH, (rdba >> 32)); 1892 ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); 1893 ew32(RDT, 0); 1894 ew32(RDH, 0); 1895 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? 1896 E1000_RDH : E1000_82542_RDH); 1897 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? 1898 E1000_RDT : E1000_82542_RDT); 1899 break; 1900 } 1901 1902 /* Enable 82543 Receive Checksum Offload for TCP and UDP */ 1903 if (hw->mac_type >= e1000_82543) { 1904 rxcsum = er32(RXCSUM); 1905 if (adapter->rx_csum) 1906 rxcsum |= E1000_RXCSUM_TUOFL; 1907 else 1908 /* don't need to clear IPPCSE as it defaults to 0 */ 1909 rxcsum &= ~E1000_RXCSUM_TUOFL; 1910 ew32(RXCSUM, rxcsum); 1911 } 1912 1913 /* Enable Receives */ 1914 ew32(RCTL, rctl | E1000_RCTL_EN); 1915 } 1916 1917 /** 1918 * e1000_free_tx_resources - Free Tx Resources per Queue 1919 * @adapter: board private structure 1920 * @tx_ring: Tx descriptor ring for a specific queue 1921 * 1922 * Free all transmit software resources 1923 **/ 1924 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 1925 struct e1000_tx_ring *tx_ring) 1926 { 1927 struct pci_dev *pdev = adapter->pdev; 1928 1929 e1000_clean_tx_ring(adapter, tx_ring); 1930 1931 vfree(tx_ring->buffer_info); 1932 tx_ring->buffer_info = NULL; 1933 1934 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1935 tx_ring->dma); 1936 1937 tx_ring->desc = NULL; 1938 } 1939 1940 /** 1941 * e1000_free_all_tx_resources - Free Tx Resources for All Queues 1942 * @adapter: board private structure 1943 * 1944 * Free all transmit software resources 1945 **/ 1946 void e1000_free_all_tx_resources(struct e1000_adapter *adapter) 1947 { 1948 int i; 1949 1950 for (i = 0; i < adapter->num_tx_queues; i++) 1951 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); 1952 } 1953 1954 static void 1955 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, 1956 struct e1000_tx_buffer *buffer_info, 1957 int budget) 1958 { 1959 if (buffer_info->dma) { 1960 if (buffer_info->mapped_as_page) 1961 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, 1962 buffer_info->length, DMA_TO_DEVICE); 1963 else 1964 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1965 buffer_info->length, 1966 DMA_TO_DEVICE); 1967 buffer_info->dma = 0; 1968 } 1969 if (buffer_info->skb) { 1970 napi_consume_skb(buffer_info->skb, budget); 1971 buffer_info->skb = NULL; 1972 } 1973 buffer_info->time_stamp = 0; 1974 /* buffer_info must be completely set up in the transmit path */ 1975 } 1976 1977 /** 1978 * e1000_clean_tx_ring - Free Tx Buffers 1979 * @adapter: board private structure 1980 * @tx_ring: ring to be cleaned 1981 **/ 1982 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 1983 struct e1000_tx_ring *tx_ring) 1984 { 1985 struct e1000_hw *hw = &adapter->hw; 1986 struct e1000_tx_buffer *buffer_info; 1987 unsigned long size; 1988 unsigned int i; 1989 1990 /* Free all the Tx ring sk_buffs */ 1991 1992 for (i = 0; i < tx_ring->count; i++) { 1993 buffer_info = &tx_ring->buffer_info[i]; 1994 e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0); 1995 } 1996 1997 netdev_reset_queue(adapter->netdev); 1998 size = sizeof(struct e1000_tx_buffer) * tx_ring->count; 1999 memset(tx_ring->buffer_info, 0, size); 2000 2001 /* Zero out the descriptor ring */ 2002 2003 memset(tx_ring->desc, 0, tx_ring->size); 2004 2005 tx_ring->next_to_use = 0; 2006 tx_ring->next_to_clean = 0; 2007 tx_ring->last_tx_tso = false; 2008 2009 writel(0, hw->hw_addr + tx_ring->tdh); 2010 writel(0, hw->hw_addr + tx_ring->tdt); 2011 } 2012 2013 /** 2014 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues 2015 * @adapter: board private structure 2016 **/ 2017 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) 2018 { 2019 int i; 2020 2021 for (i = 0; i < adapter->num_tx_queues; i++) 2022 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); 2023 } 2024 2025 /** 2026 * e1000_free_rx_resources - Free Rx Resources 2027 * @adapter: board private structure 2028 * @rx_ring: ring to clean the resources from 2029 * 2030 * Free all receive software resources 2031 **/ 2032 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 2033 struct e1000_rx_ring *rx_ring) 2034 { 2035 struct pci_dev *pdev = adapter->pdev; 2036 2037 e1000_clean_rx_ring(adapter, rx_ring); 2038 2039 vfree(rx_ring->buffer_info); 2040 rx_ring->buffer_info = NULL; 2041 2042 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 2043 rx_ring->dma); 2044 2045 rx_ring->desc = NULL; 2046 } 2047 2048 /** 2049 * e1000_free_all_rx_resources - Free Rx Resources for All Queues 2050 * @adapter: board private structure 2051 * 2052 * Free all receive software resources 2053 **/ 2054 void e1000_free_all_rx_resources(struct e1000_adapter *adapter) 2055 { 2056 int i; 2057 2058 for (i = 0; i < adapter->num_rx_queues; i++) 2059 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); 2060 } 2061 2062 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN) 2063 static unsigned int e1000_frag_len(const struct e1000_adapter *a) 2064 { 2065 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) + 2066 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2067 } 2068 2069 static void *e1000_alloc_frag(const struct e1000_adapter *a) 2070 { 2071 unsigned int len = e1000_frag_len(a); 2072 u8 *data = netdev_alloc_frag(len); 2073 2074 if (likely(data)) 2075 data += E1000_HEADROOM; 2076 return data; 2077 } 2078 2079 /** 2080 * e1000_clean_rx_ring - Free Rx Buffers per Queue 2081 * @adapter: board private structure 2082 * @rx_ring: ring to free buffers from 2083 **/ 2084 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 2085 struct e1000_rx_ring *rx_ring) 2086 { 2087 struct e1000_hw *hw = &adapter->hw; 2088 struct e1000_rx_buffer *buffer_info; 2089 struct pci_dev *pdev = adapter->pdev; 2090 unsigned long size; 2091 unsigned int i; 2092 2093 /* Free all the Rx netfrags */ 2094 for (i = 0; i < rx_ring->count; i++) { 2095 buffer_info = &rx_ring->buffer_info[i]; 2096 if (adapter->clean_rx == e1000_clean_rx_irq) { 2097 if (buffer_info->dma) 2098 dma_unmap_single(&pdev->dev, buffer_info->dma, 2099 adapter->rx_buffer_len, 2100 DMA_FROM_DEVICE); 2101 if (buffer_info->rxbuf.data) { 2102 skb_free_frag(buffer_info->rxbuf.data); 2103 buffer_info->rxbuf.data = NULL; 2104 } 2105 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) { 2106 if (buffer_info->dma) 2107 dma_unmap_page(&pdev->dev, buffer_info->dma, 2108 adapter->rx_buffer_len, 2109 DMA_FROM_DEVICE); 2110 if (buffer_info->rxbuf.page) { 2111 put_page(buffer_info->rxbuf.page); 2112 buffer_info->rxbuf.page = NULL; 2113 } 2114 } 2115 2116 buffer_info->dma = 0; 2117 } 2118 2119 /* there also may be some cached data from a chained receive */ 2120 napi_free_frags(&adapter->napi); 2121 rx_ring->rx_skb_top = NULL; 2122 2123 size = sizeof(struct e1000_rx_buffer) * rx_ring->count; 2124 memset(rx_ring->buffer_info, 0, size); 2125 2126 /* Zero out the descriptor ring */ 2127 memset(rx_ring->desc, 0, rx_ring->size); 2128 2129 rx_ring->next_to_clean = 0; 2130 rx_ring->next_to_use = 0; 2131 2132 writel(0, hw->hw_addr + rx_ring->rdh); 2133 writel(0, hw->hw_addr + rx_ring->rdt); 2134 } 2135 2136 /** 2137 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues 2138 * @adapter: board private structure 2139 **/ 2140 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) 2141 { 2142 int i; 2143 2144 for (i = 0; i < adapter->num_rx_queues; i++) 2145 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); 2146 } 2147 2148 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset 2149 * and memory write and invalidate disabled for certain operations 2150 */ 2151 static void e1000_enter_82542_rst(struct e1000_adapter *adapter) 2152 { 2153 struct e1000_hw *hw = &adapter->hw; 2154 struct net_device *netdev = adapter->netdev; 2155 u32 rctl; 2156 2157 e1000_pci_clear_mwi(hw); 2158 2159 rctl = er32(RCTL); 2160 rctl |= E1000_RCTL_RST; 2161 ew32(RCTL, rctl); 2162 E1000_WRITE_FLUSH(); 2163 mdelay(5); 2164 2165 if (netif_running(netdev)) 2166 e1000_clean_all_rx_rings(adapter); 2167 } 2168 2169 static void e1000_leave_82542_rst(struct e1000_adapter *adapter) 2170 { 2171 struct e1000_hw *hw = &adapter->hw; 2172 struct net_device *netdev = adapter->netdev; 2173 u32 rctl; 2174 2175 rctl = er32(RCTL); 2176 rctl &= ~E1000_RCTL_RST; 2177 ew32(RCTL, rctl); 2178 E1000_WRITE_FLUSH(); 2179 mdelay(5); 2180 2181 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) 2182 e1000_pci_set_mwi(hw); 2183 2184 if (netif_running(netdev)) { 2185 /* No need to loop, because 82542 supports only 1 queue */ 2186 struct e1000_rx_ring *ring = &adapter->rx_ring[0]; 2187 e1000_configure_rx(adapter); 2188 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); 2189 } 2190 } 2191 2192 /** 2193 * e1000_set_mac - Change the Ethernet Address of the NIC 2194 * @netdev: network interface device structure 2195 * @p: pointer to an address structure 2196 * 2197 * Returns 0 on success, negative on failure 2198 **/ 2199 static int e1000_set_mac(struct net_device *netdev, void *p) 2200 { 2201 struct e1000_adapter *adapter = netdev_priv(netdev); 2202 struct e1000_hw *hw = &adapter->hw; 2203 struct sockaddr *addr = p; 2204 2205 if (!is_valid_ether_addr(addr->sa_data)) 2206 return -EADDRNOTAVAIL; 2207 2208 /* 82542 2.0 needs to be in reset to write receive address registers */ 2209 2210 if (hw->mac_type == e1000_82542_rev2_0) 2211 e1000_enter_82542_rst(adapter); 2212 2213 eth_hw_addr_set(netdev, addr->sa_data); 2214 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); 2215 2216 e1000_rar_set(hw, hw->mac_addr, 0); 2217 2218 if (hw->mac_type == e1000_82542_rev2_0) 2219 e1000_leave_82542_rst(adapter); 2220 2221 return 0; 2222 } 2223 2224 /** 2225 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 2226 * @netdev: network interface device structure 2227 * 2228 * The set_rx_mode entry point is called whenever the unicast or multicast 2229 * address lists or the network interface flags are updated. This routine is 2230 * responsible for configuring the hardware for proper unicast, multicast, 2231 * promiscuous mode, and all-multi behavior. 2232 **/ 2233 static void e1000_set_rx_mode(struct net_device *netdev) 2234 { 2235 struct e1000_adapter *adapter = netdev_priv(netdev); 2236 struct e1000_hw *hw = &adapter->hw; 2237 struct netdev_hw_addr *ha; 2238 bool use_uc = false; 2239 u32 rctl; 2240 u32 hash_value; 2241 int i, rar_entries = E1000_RAR_ENTRIES; 2242 int mta_reg_count = E1000_NUM_MTA_REGISTERS; 2243 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); 2244 2245 if (!mcarray) 2246 return; 2247 2248 /* Check for Promiscuous and All Multicast modes */ 2249 2250 rctl = er32(RCTL); 2251 2252 if (netdev->flags & IFF_PROMISC) { 2253 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 2254 rctl &= ~E1000_RCTL_VFE; 2255 } else { 2256 if (netdev->flags & IFF_ALLMULTI) 2257 rctl |= E1000_RCTL_MPE; 2258 else 2259 rctl &= ~E1000_RCTL_MPE; 2260 /* Enable VLAN filter if there is a VLAN */ 2261 if (e1000_vlan_used(adapter)) 2262 rctl |= E1000_RCTL_VFE; 2263 } 2264 2265 if (netdev_uc_count(netdev) > rar_entries - 1) { 2266 rctl |= E1000_RCTL_UPE; 2267 } else if (!(netdev->flags & IFF_PROMISC)) { 2268 rctl &= ~E1000_RCTL_UPE; 2269 use_uc = true; 2270 } 2271 2272 ew32(RCTL, rctl); 2273 2274 /* 82542 2.0 needs to be in reset to write receive address registers */ 2275 2276 if (hw->mac_type == e1000_82542_rev2_0) 2277 e1000_enter_82542_rst(adapter); 2278 2279 /* load the first 14 addresses into the exact filters 1-14. Unicast 2280 * addresses take precedence to avoid disabling unicast filtering 2281 * when possible. 2282 * 2283 * RAR 0 is used for the station MAC address 2284 * if there are not 14 addresses, go ahead and clear the filters 2285 */ 2286 i = 1; 2287 if (use_uc) 2288 netdev_for_each_uc_addr(ha, netdev) { 2289 if (i == rar_entries) 2290 break; 2291 e1000_rar_set(hw, ha->addr, i++); 2292 } 2293 2294 netdev_for_each_mc_addr(ha, netdev) { 2295 if (i == rar_entries) { 2296 /* load any remaining addresses into the hash table */ 2297 u32 hash_reg, hash_bit, mta; 2298 hash_value = e1000_hash_mc_addr(hw, ha->addr); 2299 hash_reg = (hash_value >> 5) & 0x7F; 2300 hash_bit = hash_value & 0x1F; 2301 mta = (1 << hash_bit); 2302 mcarray[hash_reg] |= mta; 2303 } else { 2304 e1000_rar_set(hw, ha->addr, i++); 2305 } 2306 } 2307 2308 for (; i < rar_entries; i++) { 2309 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); 2310 E1000_WRITE_FLUSH(); 2311 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); 2312 E1000_WRITE_FLUSH(); 2313 } 2314 2315 /* write the hash table completely, write from bottom to avoid 2316 * both stupid write combining chipsets, and flushing each write 2317 */ 2318 for (i = mta_reg_count - 1; i >= 0 ; i--) { 2319 /* If we are on an 82544 has an errata where writing odd 2320 * offsets overwrites the previous even offset, but writing 2321 * backwards over the range solves the issue by always 2322 * writing the odd offset first 2323 */ 2324 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); 2325 } 2326 E1000_WRITE_FLUSH(); 2327 2328 if (hw->mac_type == e1000_82542_rev2_0) 2329 e1000_leave_82542_rst(adapter); 2330 2331 kfree(mcarray); 2332 } 2333 2334 /** 2335 * e1000_update_phy_info_task - get phy info 2336 * @work: work struct contained inside adapter struct 2337 * 2338 * Need to wait a few seconds after link up to get diagnostic information from 2339 * the phy 2340 */ 2341 static void e1000_update_phy_info_task(struct work_struct *work) 2342 { 2343 struct e1000_adapter *adapter = container_of(work, 2344 struct e1000_adapter, 2345 phy_info_task.work); 2346 2347 e1000_phy_get_info(&adapter->hw, &adapter->phy_info); 2348 } 2349 2350 /** 2351 * e1000_82547_tx_fifo_stall_task - task to complete work 2352 * @work: work struct contained inside adapter struct 2353 **/ 2354 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work) 2355 { 2356 struct e1000_adapter *adapter = container_of(work, 2357 struct e1000_adapter, 2358 fifo_stall_task.work); 2359 struct e1000_hw *hw = &adapter->hw; 2360 struct net_device *netdev = adapter->netdev; 2361 u32 tctl; 2362 2363 if (atomic_read(&adapter->tx_fifo_stall)) { 2364 if ((er32(TDT) == er32(TDH)) && 2365 (er32(TDFT) == er32(TDFH)) && 2366 (er32(TDFTS) == er32(TDFHS))) { 2367 tctl = er32(TCTL); 2368 ew32(TCTL, tctl & ~E1000_TCTL_EN); 2369 ew32(TDFT, adapter->tx_head_addr); 2370 ew32(TDFH, adapter->tx_head_addr); 2371 ew32(TDFTS, adapter->tx_head_addr); 2372 ew32(TDFHS, adapter->tx_head_addr); 2373 ew32(TCTL, tctl); 2374 E1000_WRITE_FLUSH(); 2375 2376 adapter->tx_fifo_head = 0; 2377 atomic_set(&adapter->tx_fifo_stall, 0); 2378 netif_wake_queue(netdev); 2379 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { 2380 schedule_delayed_work(&adapter->fifo_stall_task, 1); 2381 } 2382 } 2383 } 2384 2385 bool e1000_has_link(struct e1000_adapter *adapter) 2386 { 2387 struct e1000_hw *hw = &adapter->hw; 2388 bool link_active = false; 2389 2390 /* get_link_status is set on LSC (link status) interrupt or rx 2391 * sequence error interrupt (except on intel ce4100). 2392 * get_link_status will stay false until the 2393 * e1000_check_for_link establishes link for copper adapters 2394 * ONLY 2395 */ 2396 switch (hw->media_type) { 2397 case e1000_media_type_copper: 2398 if (hw->mac_type == e1000_ce4100) 2399 hw->get_link_status = 1; 2400 if (hw->get_link_status) { 2401 e1000_check_for_link(hw); 2402 link_active = !hw->get_link_status; 2403 } else { 2404 link_active = true; 2405 } 2406 break; 2407 case e1000_media_type_fiber: 2408 e1000_check_for_link(hw); 2409 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 2410 break; 2411 case e1000_media_type_internal_serdes: 2412 e1000_check_for_link(hw); 2413 link_active = hw->serdes_has_link; 2414 break; 2415 default: 2416 break; 2417 } 2418 2419 return link_active; 2420 } 2421 2422 /** 2423 * e1000_watchdog - work function 2424 * @work: work struct contained inside adapter struct 2425 **/ 2426 static void e1000_watchdog(struct work_struct *work) 2427 { 2428 struct e1000_adapter *adapter = container_of(work, 2429 struct e1000_adapter, 2430 watchdog_task.work); 2431 struct e1000_hw *hw = &adapter->hw; 2432 struct net_device *netdev = adapter->netdev; 2433 struct e1000_tx_ring *txdr = adapter->tx_ring; 2434 u32 link, tctl; 2435 2436 link = e1000_has_link(adapter); 2437 if ((netif_carrier_ok(netdev)) && link) 2438 goto link_up; 2439 2440 if (link) { 2441 if (!netif_carrier_ok(netdev)) { 2442 u32 ctrl; 2443 /* update snapshot of PHY registers on LSC */ 2444 e1000_get_speed_and_duplex(hw, 2445 &adapter->link_speed, 2446 &adapter->link_duplex); 2447 2448 ctrl = er32(CTRL); 2449 pr_info("%s NIC Link is Up %d Mbps %s, " 2450 "Flow Control: %s\n", 2451 netdev->name, 2452 adapter->link_speed, 2453 adapter->link_duplex == FULL_DUPLEX ? 2454 "Full Duplex" : "Half Duplex", 2455 ((ctrl & E1000_CTRL_TFCE) && (ctrl & 2456 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & 2457 E1000_CTRL_RFCE) ? "RX" : ((ctrl & 2458 E1000_CTRL_TFCE) ? "TX" : "None"))); 2459 2460 /* adjust timeout factor according to speed/duplex */ 2461 adapter->tx_timeout_factor = 1; 2462 switch (adapter->link_speed) { 2463 case SPEED_10: 2464 adapter->tx_timeout_factor = 16; 2465 break; 2466 case SPEED_100: 2467 /* maybe add some timeout factor ? */ 2468 break; 2469 } 2470 2471 /* enable transmits in the hardware */ 2472 tctl = er32(TCTL); 2473 tctl |= E1000_TCTL_EN; 2474 ew32(TCTL, tctl); 2475 2476 netif_carrier_on(netdev); 2477 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2478 schedule_delayed_work(&adapter->phy_info_task, 2479 2 * HZ); 2480 adapter->smartspeed = 0; 2481 } 2482 } else { 2483 if (netif_carrier_ok(netdev)) { 2484 adapter->link_speed = 0; 2485 adapter->link_duplex = 0; 2486 pr_info("%s NIC Link is Down\n", 2487 netdev->name); 2488 netif_carrier_off(netdev); 2489 2490 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2491 schedule_delayed_work(&adapter->phy_info_task, 2492 2 * HZ); 2493 } 2494 2495 e1000_smartspeed(adapter); 2496 } 2497 2498 link_up: 2499 e1000_update_stats(adapter); 2500 2501 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 2502 adapter->tpt_old = adapter->stats.tpt; 2503 hw->collision_delta = adapter->stats.colc - adapter->colc_old; 2504 adapter->colc_old = adapter->stats.colc; 2505 2506 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; 2507 adapter->gorcl_old = adapter->stats.gorcl; 2508 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; 2509 adapter->gotcl_old = adapter->stats.gotcl; 2510 2511 e1000_update_adaptive(hw); 2512 2513 if (!netif_carrier_ok(netdev)) { 2514 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { 2515 /* We've lost link, so the controller stops DMA, 2516 * but we've got queued Tx work that's never going 2517 * to get done, so reset controller to flush Tx. 2518 * (Do the reset outside of interrupt context). 2519 */ 2520 adapter->tx_timeout_count++; 2521 schedule_work(&adapter->reset_task); 2522 /* exit immediately since reset is imminent */ 2523 return; 2524 } 2525 } 2526 2527 /* Simple mode for Interrupt Throttle Rate (ITR) */ 2528 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { 2529 /* Symmetric Tx/Rx gets a reduced ITR=2000; 2530 * Total asymmetrical Tx or Rx gets ITR=8000; 2531 * everyone else is between 2000-8000. 2532 */ 2533 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; 2534 u32 dif = (adapter->gotcl > adapter->gorcl ? 2535 adapter->gotcl - adapter->gorcl : 2536 adapter->gorcl - adapter->gotcl) / 10000; 2537 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; 2538 2539 ew32(ITR, 1000000000 / (itr * 256)); 2540 } 2541 2542 /* Cause software interrupt to ensure rx ring is cleaned */ 2543 ew32(ICS, E1000_ICS_RXDMT0); 2544 2545 /* Force detection of hung controller every watchdog period */ 2546 adapter->detect_tx_hung = true; 2547 2548 /* Reschedule the task */ 2549 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2550 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ); 2551 } 2552 2553 enum latency_range { 2554 lowest_latency = 0, 2555 low_latency = 1, 2556 bulk_latency = 2, 2557 latency_invalid = 255 2558 }; 2559 2560 /** 2561 * e1000_update_itr - update the dynamic ITR value based on statistics 2562 * @adapter: pointer to adapter 2563 * @itr_setting: current adapter->itr 2564 * @packets: the number of packets during this measurement interval 2565 * @bytes: the number of bytes during this measurement interval 2566 * 2567 * Stores a new ITR value based on packets and byte 2568 * counts during the last interrupt. The advantage of per interrupt 2569 * computation is faster updates and more accurate ITR for the current 2570 * traffic pattern. Constants in this function were computed 2571 * based on theoretical maximum wire speed and thresholds were set based 2572 * on testing data as well as attempting to minimize response time 2573 * while increasing bulk throughput. 2574 * this functionality is controlled by the InterruptThrottleRate module 2575 * parameter (see e1000_param.c) 2576 **/ 2577 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, 2578 u16 itr_setting, int packets, int bytes) 2579 { 2580 unsigned int retval = itr_setting; 2581 struct e1000_hw *hw = &adapter->hw; 2582 2583 if (unlikely(hw->mac_type < e1000_82540)) 2584 goto update_itr_done; 2585 2586 if (packets == 0) 2587 goto update_itr_done; 2588 2589 switch (itr_setting) { 2590 case lowest_latency: 2591 /* jumbo frames get bulk treatment*/ 2592 if (bytes/packets > 8000) 2593 retval = bulk_latency; 2594 else if ((packets < 5) && (bytes > 512)) 2595 retval = low_latency; 2596 break; 2597 case low_latency: /* 50 usec aka 20000 ints/s */ 2598 if (bytes > 10000) { 2599 /* jumbo frames need bulk latency setting */ 2600 if (bytes/packets > 8000) 2601 retval = bulk_latency; 2602 else if ((packets < 10) || ((bytes/packets) > 1200)) 2603 retval = bulk_latency; 2604 else if ((packets > 35)) 2605 retval = lowest_latency; 2606 } else if (bytes/packets > 2000) 2607 retval = bulk_latency; 2608 else if (packets <= 2 && bytes < 512) 2609 retval = lowest_latency; 2610 break; 2611 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2612 if (bytes > 25000) { 2613 if (packets > 35) 2614 retval = low_latency; 2615 } else if (bytes < 6000) { 2616 retval = low_latency; 2617 } 2618 break; 2619 } 2620 2621 update_itr_done: 2622 return retval; 2623 } 2624 2625 static void e1000_set_itr(struct e1000_adapter *adapter) 2626 { 2627 struct e1000_hw *hw = &adapter->hw; 2628 u16 current_itr; 2629 u32 new_itr = adapter->itr; 2630 2631 if (unlikely(hw->mac_type < e1000_82540)) 2632 return; 2633 2634 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2635 if (unlikely(adapter->link_speed != SPEED_1000)) { 2636 new_itr = 4000; 2637 goto set_itr_now; 2638 } 2639 2640 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr, 2641 adapter->total_tx_packets, 2642 adapter->total_tx_bytes); 2643 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2644 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 2645 adapter->tx_itr = low_latency; 2646 2647 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr, 2648 adapter->total_rx_packets, 2649 adapter->total_rx_bytes); 2650 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2651 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 2652 adapter->rx_itr = low_latency; 2653 2654 current_itr = max(adapter->rx_itr, adapter->tx_itr); 2655 2656 switch (current_itr) { 2657 /* counts and packets in update_itr are dependent on these numbers */ 2658 case lowest_latency: 2659 new_itr = 70000; 2660 break; 2661 case low_latency: 2662 new_itr = 20000; /* aka hwitr = ~200 */ 2663 break; 2664 case bulk_latency: 2665 new_itr = 4000; 2666 break; 2667 default: 2668 break; 2669 } 2670 2671 set_itr_now: 2672 if (new_itr != adapter->itr) { 2673 /* this attempts to bias the interrupt rate towards Bulk 2674 * by adding intermediate steps when interrupt rate is 2675 * increasing 2676 */ 2677 new_itr = new_itr > adapter->itr ? 2678 min(adapter->itr + (new_itr >> 2), new_itr) : 2679 new_itr; 2680 adapter->itr = new_itr; 2681 ew32(ITR, 1000000000 / (new_itr * 256)); 2682 } 2683 } 2684 2685 #define E1000_TX_FLAGS_CSUM 0x00000001 2686 #define E1000_TX_FLAGS_VLAN 0x00000002 2687 #define E1000_TX_FLAGS_TSO 0x00000004 2688 #define E1000_TX_FLAGS_IPV4 0x00000008 2689 #define E1000_TX_FLAGS_NO_FCS 0x00000010 2690 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 2691 #define E1000_TX_FLAGS_VLAN_SHIFT 16 2692 2693 static int e1000_tso(struct e1000_adapter *adapter, 2694 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2695 __be16 protocol) 2696 { 2697 struct e1000_context_desc *context_desc; 2698 struct e1000_tx_buffer *buffer_info; 2699 unsigned int i; 2700 u32 cmd_length = 0; 2701 u16 ipcse = 0, tucse, mss; 2702 u8 ipcss, ipcso, tucss, tucso, hdr_len; 2703 2704 if (skb_is_gso(skb)) { 2705 int err; 2706 2707 err = skb_cow_head(skb, 0); 2708 if (err < 0) 2709 return err; 2710 2711 hdr_len = skb_tcp_all_headers(skb); 2712 mss = skb_shinfo(skb)->gso_size; 2713 if (protocol == htons(ETH_P_IP)) { 2714 struct iphdr *iph = ip_hdr(skb); 2715 iph->tot_len = 0; 2716 iph->check = 0; 2717 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 2718 iph->daddr, 0, 2719 IPPROTO_TCP, 2720 0); 2721 cmd_length = E1000_TXD_CMD_IP; 2722 ipcse = skb_transport_offset(skb) - 1; 2723 } else if (skb_is_gso_v6(skb)) { 2724 tcp_v6_gso_csum_prep(skb); 2725 ipcse = 0; 2726 } 2727 ipcss = skb_network_offset(skb); 2728 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 2729 tucss = skb_transport_offset(skb); 2730 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 2731 tucse = 0; 2732 2733 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 2734 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 2735 2736 i = tx_ring->next_to_use; 2737 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2738 buffer_info = &tx_ring->buffer_info[i]; 2739 2740 context_desc->lower_setup.ip_fields.ipcss = ipcss; 2741 context_desc->lower_setup.ip_fields.ipcso = ipcso; 2742 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 2743 context_desc->upper_setup.tcp_fields.tucss = tucss; 2744 context_desc->upper_setup.tcp_fields.tucso = tucso; 2745 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); 2746 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 2747 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 2748 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 2749 2750 buffer_info->time_stamp = jiffies; 2751 buffer_info->next_to_watch = i; 2752 2753 if (++i == tx_ring->count) 2754 i = 0; 2755 2756 tx_ring->next_to_use = i; 2757 2758 return true; 2759 } 2760 return false; 2761 } 2762 2763 static bool e1000_tx_csum(struct e1000_adapter *adapter, 2764 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2765 __be16 protocol) 2766 { 2767 struct e1000_context_desc *context_desc; 2768 struct e1000_tx_buffer *buffer_info; 2769 unsigned int i; 2770 u8 css; 2771 u32 cmd_len = E1000_TXD_CMD_DEXT; 2772 2773 if (skb->ip_summed != CHECKSUM_PARTIAL) 2774 return false; 2775 2776 switch (protocol) { 2777 case cpu_to_be16(ETH_P_IP): 2778 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 2779 cmd_len |= E1000_TXD_CMD_TCP; 2780 break; 2781 case cpu_to_be16(ETH_P_IPV6): 2782 /* XXX not handling all IPV6 headers */ 2783 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 2784 cmd_len |= E1000_TXD_CMD_TCP; 2785 break; 2786 default: 2787 if (unlikely(net_ratelimit())) 2788 e_warn(drv, "checksum_partial proto=%x!\n", 2789 skb->protocol); 2790 break; 2791 } 2792 2793 css = skb_checksum_start_offset(skb); 2794 2795 i = tx_ring->next_to_use; 2796 buffer_info = &tx_ring->buffer_info[i]; 2797 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2798 2799 context_desc->lower_setup.ip_config = 0; 2800 context_desc->upper_setup.tcp_fields.tucss = css; 2801 context_desc->upper_setup.tcp_fields.tucso = 2802 css + skb->csum_offset; 2803 context_desc->upper_setup.tcp_fields.tucse = 0; 2804 context_desc->tcp_seg_setup.data = 0; 2805 context_desc->cmd_and_length = cpu_to_le32(cmd_len); 2806 2807 buffer_info->time_stamp = jiffies; 2808 buffer_info->next_to_watch = i; 2809 2810 if (unlikely(++i == tx_ring->count)) 2811 i = 0; 2812 2813 tx_ring->next_to_use = i; 2814 2815 return true; 2816 } 2817 2818 #define E1000_MAX_TXD_PWR 12 2819 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) 2820 2821 static int e1000_tx_map(struct e1000_adapter *adapter, 2822 struct e1000_tx_ring *tx_ring, 2823 struct sk_buff *skb, unsigned int first, 2824 unsigned int max_per_txd, unsigned int nr_frags, 2825 unsigned int mss) 2826 { 2827 struct e1000_hw *hw = &adapter->hw; 2828 struct pci_dev *pdev = adapter->pdev; 2829 struct e1000_tx_buffer *buffer_info; 2830 unsigned int len = skb_headlen(skb); 2831 unsigned int offset = 0, size, count = 0, i; 2832 unsigned int f, bytecount, segs; 2833 2834 i = tx_ring->next_to_use; 2835 2836 while (len) { 2837 buffer_info = &tx_ring->buffer_info[i]; 2838 size = min(len, max_per_txd); 2839 /* Workaround for Controller erratum -- 2840 * descriptor for non-tso packet in a linear SKB that follows a 2841 * tso gets written back prematurely before the data is fully 2842 * DMA'd to the controller 2843 */ 2844 if (!skb->data_len && tx_ring->last_tx_tso && 2845 !skb_is_gso(skb)) { 2846 tx_ring->last_tx_tso = false; 2847 size -= 4; 2848 } 2849 2850 /* Workaround for premature desc write-backs 2851 * in TSO mode. Append 4-byte sentinel desc 2852 */ 2853 if (unlikely(mss && !nr_frags && size == len && size > 8)) 2854 size -= 4; 2855 /* work-around for errata 10 and it applies 2856 * to all controllers in PCI-X mode 2857 * The fix is to make sure that the first descriptor of a 2858 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes 2859 */ 2860 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 2861 (size > 2015) && count == 0)) 2862 size = 2015; 2863 2864 /* Workaround for potential 82544 hang in PCI-X. Avoid 2865 * terminating buffers within evenly-aligned dwords. 2866 */ 2867 if (unlikely(adapter->pcix_82544 && 2868 !((unsigned long)(skb->data + offset + size - 1) & 4) && 2869 size > 4)) 2870 size -= 4; 2871 2872 buffer_info->length = size; 2873 /* set time_stamp *before* dma to help avoid a possible race */ 2874 buffer_info->time_stamp = jiffies; 2875 buffer_info->mapped_as_page = false; 2876 buffer_info->dma = dma_map_single(&pdev->dev, 2877 skb->data + offset, 2878 size, DMA_TO_DEVICE); 2879 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2880 goto dma_error; 2881 buffer_info->next_to_watch = i; 2882 2883 len -= size; 2884 offset += size; 2885 count++; 2886 if (len) { 2887 i++; 2888 if (unlikely(i == tx_ring->count)) 2889 i = 0; 2890 } 2891 } 2892 2893 for (f = 0; f < nr_frags; f++) { 2894 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 2895 2896 len = skb_frag_size(frag); 2897 offset = 0; 2898 2899 while (len) { 2900 unsigned long bufend; 2901 i++; 2902 if (unlikely(i == tx_ring->count)) 2903 i = 0; 2904 2905 buffer_info = &tx_ring->buffer_info[i]; 2906 size = min(len, max_per_txd); 2907 /* Workaround for premature desc write-backs 2908 * in TSO mode. Append 4-byte sentinel desc 2909 */ 2910 if (unlikely(mss && f == (nr_frags-1) && 2911 size == len && size > 8)) 2912 size -= 4; 2913 /* Workaround for potential 82544 hang in PCI-X. 2914 * Avoid terminating buffers within evenly-aligned 2915 * dwords. 2916 */ 2917 bufend = (unsigned long) 2918 page_to_phys(skb_frag_page(frag)); 2919 bufend += offset + size - 1; 2920 if (unlikely(adapter->pcix_82544 && 2921 !(bufend & 4) && 2922 size > 4)) 2923 size -= 4; 2924 2925 buffer_info->length = size; 2926 buffer_info->time_stamp = jiffies; 2927 buffer_info->mapped_as_page = true; 2928 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 2929 offset, size, DMA_TO_DEVICE); 2930 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2931 goto dma_error; 2932 buffer_info->next_to_watch = i; 2933 2934 len -= size; 2935 offset += size; 2936 count++; 2937 } 2938 } 2939 2940 segs = skb_shinfo(skb)->gso_segs ?: 1; 2941 /* multiply data chunks by size of headers */ 2942 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; 2943 2944 tx_ring->buffer_info[i].skb = skb; 2945 tx_ring->buffer_info[i].segs = segs; 2946 tx_ring->buffer_info[i].bytecount = bytecount; 2947 tx_ring->buffer_info[first].next_to_watch = i; 2948 2949 return count; 2950 2951 dma_error: 2952 dev_err(&pdev->dev, "TX DMA map failed\n"); 2953 buffer_info->dma = 0; 2954 if (count) 2955 count--; 2956 2957 while (count--) { 2958 if (i == 0) 2959 i += tx_ring->count; 2960 i--; 2961 buffer_info = &tx_ring->buffer_info[i]; 2962 e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0); 2963 } 2964 2965 return 0; 2966 } 2967 2968 static void e1000_tx_queue(struct e1000_adapter *adapter, 2969 struct e1000_tx_ring *tx_ring, int tx_flags, 2970 int count) 2971 { 2972 struct e1000_tx_desc *tx_desc = NULL; 2973 struct e1000_tx_buffer *buffer_info; 2974 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 2975 unsigned int i; 2976 2977 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { 2978 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 2979 E1000_TXD_CMD_TSE; 2980 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2981 2982 if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) 2983 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 2984 } 2985 2986 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { 2987 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 2988 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2989 } 2990 2991 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { 2992 txd_lower |= E1000_TXD_CMD_VLE; 2993 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 2994 } 2995 2996 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 2997 txd_lower &= ~(E1000_TXD_CMD_IFCS); 2998 2999 i = tx_ring->next_to_use; 3000 3001 while (count--) { 3002 buffer_info = &tx_ring->buffer_info[i]; 3003 tx_desc = E1000_TX_DESC(*tx_ring, i); 3004 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 3005 tx_desc->lower.data = 3006 cpu_to_le32(txd_lower | buffer_info->length); 3007 tx_desc->upper.data = cpu_to_le32(txd_upper); 3008 if (unlikely(++i == tx_ring->count)) 3009 i = 0; 3010 } 3011 3012 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 3013 3014 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ 3015 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 3016 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); 3017 3018 /* Force memory writes to complete before letting h/w 3019 * know there are new descriptors to fetch. (Only 3020 * applicable for weak-ordered memory model archs, 3021 * such as IA-64). 3022 */ 3023 dma_wmb(); 3024 3025 tx_ring->next_to_use = i; 3026 } 3027 3028 /* 82547 workaround to avoid controller hang in half-duplex environment. 3029 * The workaround is to avoid queuing a large packet that would span 3030 * the internal Tx FIFO ring boundary by notifying the stack to resend 3031 * the packet at a later time. This gives the Tx FIFO an opportunity to 3032 * flush all packets. When that occurs, we reset the Tx FIFO pointers 3033 * to the beginning of the Tx FIFO. 3034 */ 3035 3036 #define E1000_FIFO_HDR 0x10 3037 #define E1000_82547_PAD_LEN 0x3E0 3038 3039 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 3040 struct sk_buff *skb) 3041 { 3042 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; 3043 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; 3044 3045 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); 3046 3047 if (adapter->link_duplex != HALF_DUPLEX) 3048 goto no_fifo_stall_required; 3049 3050 if (atomic_read(&adapter->tx_fifo_stall)) 3051 return 1; 3052 3053 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { 3054 atomic_set(&adapter->tx_fifo_stall, 1); 3055 return 1; 3056 } 3057 3058 no_fifo_stall_required: 3059 adapter->tx_fifo_head += skb_fifo_len; 3060 if (adapter->tx_fifo_head >= adapter->tx_fifo_size) 3061 adapter->tx_fifo_head -= adapter->tx_fifo_size; 3062 return 0; 3063 } 3064 3065 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) 3066 { 3067 struct e1000_adapter *adapter = netdev_priv(netdev); 3068 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3069 3070 netif_stop_queue(netdev); 3071 /* Herbert's original patch had: 3072 * smp_mb__after_netif_stop_queue(); 3073 * but since that doesn't exist yet, just open code it. 3074 */ 3075 smp_mb(); 3076 3077 /* We need to check again in a case another CPU has just 3078 * made room available. 3079 */ 3080 if (likely(E1000_DESC_UNUSED(tx_ring) < size)) 3081 return -EBUSY; 3082 3083 /* A reprieve! */ 3084 netif_start_queue(netdev); 3085 ++adapter->restart_queue; 3086 return 0; 3087 } 3088 3089 static int e1000_maybe_stop_tx(struct net_device *netdev, 3090 struct e1000_tx_ring *tx_ring, int size) 3091 { 3092 if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) 3093 return 0; 3094 return __e1000_maybe_stop_tx(netdev, size); 3095 } 3096 3097 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X)) 3098 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 3099 struct net_device *netdev) 3100 { 3101 struct e1000_adapter *adapter = netdev_priv(netdev); 3102 struct e1000_hw *hw = &adapter->hw; 3103 struct e1000_tx_ring *tx_ring; 3104 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; 3105 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; 3106 unsigned int tx_flags = 0; 3107 unsigned int len = skb_headlen(skb); 3108 unsigned int nr_frags; 3109 unsigned int mss; 3110 int count = 0; 3111 int tso; 3112 unsigned int f; 3113 __be16 protocol = vlan_get_protocol(skb); 3114 3115 /* This goes back to the question of how to logically map a Tx queue 3116 * to a flow. Right now, performance is impacted slightly negatively 3117 * if using multiple Tx queues. If the stack breaks away from a 3118 * single qdisc implementation, we can look at this again. 3119 */ 3120 tx_ring = adapter->tx_ring; 3121 3122 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN, 3123 * packets may get corrupted during padding by HW. 3124 * To WA this issue, pad all small packets manually. 3125 */ 3126 if (eth_skb_pad(skb)) 3127 return NETDEV_TX_OK; 3128 3129 mss = skb_shinfo(skb)->gso_size; 3130 /* The controller does a simple calculation to 3131 * make sure there is enough room in the FIFO before 3132 * initiating the DMA for each buffer. The calc is: 3133 * 4 = ceil(buffer len/mss). To make sure we don't 3134 * overrun the FIFO, adjust the max buffer len if mss 3135 * drops. 3136 */ 3137 if (mss) { 3138 u8 hdr_len; 3139 max_per_txd = min(mss << 2, max_per_txd); 3140 max_txd_pwr = fls(max_per_txd) - 1; 3141 3142 hdr_len = skb_tcp_all_headers(skb); 3143 if (skb->data_len && hdr_len == len) { 3144 switch (hw->mac_type) { 3145 case e1000_82544: { 3146 unsigned int pull_size; 3147 3148 /* Make sure we have room to chop off 4 bytes, 3149 * and that the end alignment will work out to 3150 * this hardware's requirements 3151 * NOTE: this is a TSO only workaround 3152 * if end byte alignment not correct move us 3153 * into the next dword 3154 */ 3155 if ((unsigned long)(skb_tail_pointer(skb) - 1) 3156 & 4) 3157 break; 3158 pull_size = min((unsigned int)4, skb->data_len); 3159 if (!__pskb_pull_tail(skb, pull_size)) { 3160 e_err(drv, "__pskb_pull_tail " 3161 "failed.\n"); 3162 dev_kfree_skb_any(skb); 3163 return NETDEV_TX_OK; 3164 } 3165 len = skb_headlen(skb); 3166 break; 3167 } 3168 default: 3169 /* do nothing */ 3170 break; 3171 } 3172 } 3173 } 3174 3175 /* reserve a descriptor for the offload context */ 3176 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 3177 count++; 3178 count++; 3179 3180 /* Controller Erratum workaround */ 3181 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) 3182 count++; 3183 3184 count += TXD_USE_COUNT(len, max_txd_pwr); 3185 3186 if (adapter->pcix_82544) 3187 count++; 3188 3189 /* work-around for errata 10 and it applies to all controllers 3190 * in PCI-X mode, so add one more descriptor to the count 3191 */ 3192 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 3193 (len > 2015))) 3194 count++; 3195 3196 nr_frags = skb_shinfo(skb)->nr_frags; 3197 for (f = 0; f < nr_frags; f++) 3198 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]), 3199 max_txd_pwr); 3200 if (adapter->pcix_82544) 3201 count += nr_frags; 3202 3203 /* need: count + 2 desc gap to keep tail from touching 3204 * head, otherwise try next time 3205 */ 3206 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) 3207 return NETDEV_TX_BUSY; 3208 3209 if (unlikely((hw->mac_type == e1000_82547) && 3210 (e1000_82547_fifo_workaround(adapter, skb)))) { 3211 netif_stop_queue(netdev); 3212 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3213 schedule_delayed_work(&adapter->fifo_stall_task, 1); 3214 return NETDEV_TX_BUSY; 3215 } 3216 3217 if (skb_vlan_tag_present(skb)) { 3218 tx_flags |= E1000_TX_FLAGS_VLAN; 3219 tx_flags |= (skb_vlan_tag_get(skb) << 3220 E1000_TX_FLAGS_VLAN_SHIFT); 3221 } 3222 3223 first = tx_ring->next_to_use; 3224 3225 tso = e1000_tso(adapter, tx_ring, skb, protocol); 3226 if (tso < 0) { 3227 dev_kfree_skb_any(skb); 3228 return NETDEV_TX_OK; 3229 } 3230 3231 if (likely(tso)) { 3232 if (likely(hw->mac_type != e1000_82544)) 3233 tx_ring->last_tx_tso = true; 3234 tx_flags |= E1000_TX_FLAGS_TSO; 3235 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol))) 3236 tx_flags |= E1000_TX_FLAGS_CSUM; 3237 3238 if (protocol == htons(ETH_P_IP)) 3239 tx_flags |= E1000_TX_FLAGS_IPV4; 3240 3241 if (unlikely(skb->no_fcs)) 3242 tx_flags |= E1000_TX_FLAGS_NO_FCS; 3243 3244 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, 3245 nr_frags, mss); 3246 3247 if (count) { 3248 /* The descriptors needed is higher than other Intel drivers 3249 * due to a number of workarounds. The breakdown is below: 3250 * Data descriptors: MAX_SKB_FRAGS + 1 3251 * Context Descriptor: 1 3252 * Keep head from touching tail: 2 3253 * Workarounds: 3 3254 */ 3255 int desc_needed = MAX_SKB_FRAGS + 7; 3256 3257 netdev_sent_queue(netdev, skb->len); 3258 skb_tx_timestamp(skb); 3259 3260 e1000_tx_queue(adapter, tx_ring, tx_flags, count); 3261 3262 /* 82544 potentially requires twice as many data descriptors 3263 * in order to guarantee buffers don't end on evenly-aligned 3264 * dwords 3265 */ 3266 if (adapter->pcix_82544) 3267 desc_needed += MAX_SKB_FRAGS + 1; 3268 3269 /* Make sure there is space in the ring for the next send. */ 3270 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed); 3271 3272 if (!netdev_xmit_more() || 3273 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) { 3274 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt); 3275 } 3276 } else { 3277 dev_kfree_skb_any(skb); 3278 tx_ring->buffer_info[first].time_stamp = 0; 3279 tx_ring->next_to_use = first; 3280 } 3281 3282 return NETDEV_TX_OK; 3283 } 3284 3285 #define NUM_REGS 38 /* 1 based count */ 3286 static void e1000_regdump(struct e1000_adapter *adapter) 3287 { 3288 struct e1000_hw *hw = &adapter->hw; 3289 u32 regs[NUM_REGS]; 3290 u32 *regs_buff = regs; 3291 int i = 0; 3292 3293 static const char * const reg_name[] = { 3294 "CTRL", "STATUS", 3295 "RCTL", "RDLEN", "RDH", "RDT", "RDTR", 3296 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT", 3297 "TIDV", "TXDCTL", "TADV", "TARC0", 3298 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1", 3299 "TXDCTL1", "TARC1", 3300 "CTRL_EXT", "ERT", "RDBAL", "RDBAH", 3301 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC", 3302 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC" 3303 }; 3304 3305 regs_buff[0] = er32(CTRL); 3306 regs_buff[1] = er32(STATUS); 3307 3308 regs_buff[2] = er32(RCTL); 3309 regs_buff[3] = er32(RDLEN); 3310 regs_buff[4] = er32(RDH); 3311 regs_buff[5] = er32(RDT); 3312 regs_buff[6] = er32(RDTR); 3313 3314 regs_buff[7] = er32(TCTL); 3315 regs_buff[8] = er32(TDBAL); 3316 regs_buff[9] = er32(TDBAH); 3317 regs_buff[10] = er32(TDLEN); 3318 regs_buff[11] = er32(TDH); 3319 regs_buff[12] = er32(TDT); 3320 regs_buff[13] = er32(TIDV); 3321 regs_buff[14] = er32(TXDCTL); 3322 regs_buff[15] = er32(TADV); 3323 regs_buff[16] = er32(TARC0); 3324 3325 regs_buff[17] = er32(TDBAL1); 3326 regs_buff[18] = er32(TDBAH1); 3327 regs_buff[19] = er32(TDLEN1); 3328 regs_buff[20] = er32(TDH1); 3329 regs_buff[21] = er32(TDT1); 3330 regs_buff[22] = er32(TXDCTL1); 3331 regs_buff[23] = er32(TARC1); 3332 regs_buff[24] = er32(CTRL_EXT); 3333 regs_buff[25] = er32(ERT); 3334 regs_buff[26] = er32(RDBAL0); 3335 regs_buff[27] = er32(RDBAH0); 3336 regs_buff[28] = er32(TDFH); 3337 regs_buff[29] = er32(TDFT); 3338 regs_buff[30] = er32(TDFHS); 3339 regs_buff[31] = er32(TDFTS); 3340 regs_buff[32] = er32(TDFPC); 3341 regs_buff[33] = er32(RDFH); 3342 regs_buff[34] = er32(RDFT); 3343 regs_buff[35] = er32(RDFHS); 3344 regs_buff[36] = er32(RDFTS); 3345 regs_buff[37] = er32(RDFPC); 3346 3347 pr_info("Register dump\n"); 3348 for (i = 0; i < NUM_REGS; i++) 3349 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]); 3350 } 3351 3352 /* 3353 * e1000_dump: Print registers, tx ring and rx ring 3354 */ 3355 static void e1000_dump(struct e1000_adapter *adapter) 3356 { 3357 /* this code doesn't handle multiple rings */ 3358 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3359 struct e1000_rx_ring *rx_ring = adapter->rx_ring; 3360 int i; 3361 3362 if (!netif_msg_hw(adapter)) 3363 return; 3364 3365 /* Print Registers */ 3366 e1000_regdump(adapter); 3367 3368 /* transmit dump */ 3369 pr_info("TX Desc ring0 dump\n"); 3370 3371 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) 3372 * 3373 * Legacy Transmit Descriptor 3374 * +--------------------------------------------------------------+ 3375 * 0 | Buffer Address [63:0] (Reserved on Write Back) | 3376 * +--------------------------------------------------------------+ 3377 * 8 | Special | CSS | Status | CMD | CSO | Length | 3378 * +--------------------------------------------------------------+ 3379 * 63 48 47 36 35 32 31 24 23 16 15 0 3380 * 3381 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload 3382 * 63 48 47 40 39 32 31 16 15 8 7 0 3383 * +----------------------------------------------------------------+ 3384 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | 3385 * +----------------------------------------------------------------+ 3386 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | 3387 * +----------------------------------------------------------------+ 3388 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3389 * 3390 * Extended Data Descriptor (DTYP=0x1) 3391 * +----------------------------------------------------------------+ 3392 * 0 | Buffer Address [63:0] | 3393 * +----------------------------------------------------------------+ 3394 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | 3395 * +----------------------------------------------------------------+ 3396 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3397 */ 3398 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3399 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3400 3401 if (!netif_msg_tx_done(adapter)) 3402 goto rx_ring_summary; 3403 3404 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 3405 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 3406 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i]; 3407 struct my_u { __le64 a; __le64 b; }; 3408 struct my_u *u = (struct my_u *)tx_desc; 3409 const char *type; 3410 3411 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) 3412 type = "NTC/U"; 3413 else if (i == tx_ring->next_to_use) 3414 type = "NTU"; 3415 else if (i == tx_ring->next_to_clean) 3416 type = "NTC"; 3417 else 3418 type = ""; 3419 3420 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n", 3421 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i, 3422 le64_to_cpu(u->a), le64_to_cpu(u->b), 3423 (u64)buffer_info->dma, buffer_info->length, 3424 buffer_info->next_to_watch, 3425 (u64)buffer_info->time_stamp, buffer_info->skb, type); 3426 } 3427 3428 rx_ring_summary: 3429 /* receive dump */ 3430 pr_info("\nRX Desc ring dump\n"); 3431 3432 /* Legacy Receive Descriptor Format 3433 * 3434 * +-----------------------------------------------------+ 3435 * | Buffer Address [63:0] | 3436 * +-----------------------------------------------------+ 3437 * | VLAN Tag | Errors | Status 0 | Packet csum | Length | 3438 * +-----------------------------------------------------+ 3439 * 63 48 47 40 39 32 31 16 15 0 3440 */ 3441 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n"); 3442 3443 if (!netif_msg_rx_status(adapter)) 3444 goto exit; 3445 3446 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { 3447 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); 3448 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i]; 3449 struct my_u { __le64 a; __le64 b; }; 3450 struct my_u *u = (struct my_u *)rx_desc; 3451 const char *type; 3452 3453 if (i == rx_ring->next_to_use) 3454 type = "NTU"; 3455 else if (i == rx_ring->next_to_clean) 3456 type = "NTC"; 3457 else 3458 type = ""; 3459 3460 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n", 3461 i, le64_to_cpu(u->a), le64_to_cpu(u->b), 3462 (u64)buffer_info->dma, buffer_info->rxbuf.data, type); 3463 } /* for */ 3464 3465 /* dump the descriptor caches */ 3466 /* rx */ 3467 pr_info("Rx descriptor cache in 64bit format\n"); 3468 for (i = 0x6000; i <= 0x63FF ; i += 0x10) { 3469 pr_info("R%04X: %08X|%08X %08X|%08X\n", 3470 i, 3471 readl(adapter->hw.hw_addr + i+4), 3472 readl(adapter->hw.hw_addr + i), 3473 readl(adapter->hw.hw_addr + i+12), 3474 readl(adapter->hw.hw_addr + i+8)); 3475 } 3476 /* tx */ 3477 pr_info("Tx descriptor cache in 64bit format\n"); 3478 for (i = 0x7000; i <= 0x73FF ; i += 0x10) { 3479 pr_info("T%04X: %08X|%08X %08X|%08X\n", 3480 i, 3481 readl(adapter->hw.hw_addr + i+4), 3482 readl(adapter->hw.hw_addr + i), 3483 readl(adapter->hw.hw_addr + i+12), 3484 readl(adapter->hw.hw_addr + i+8)); 3485 } 3486 exit: 3487 return; 3488 } 3489 3490 /** 3491 * e1000_tx_timeout - Respond to a Tx Hang 3492 * @netdev: network interface device structure 3493 * @txqueue: number of the Tx queue that hung (unused) 3494 **/ 3495 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue) 3496 { 3497 struct e1000_adapter *adapter = netdev_priv(netdev); 3498 3499 /* Do the reset outside of interrupt context */ 3500 adapter->tx_timeout_count++; 3501 schedule_work(&adapter->reset_task); 3502 } 3503 3504 static void e1000_reset_task(struct work_struct *work) 3505 { 3506 struct e1000_adapter *adapter = 3507 container_of(work, struct e1000_adapter, reset_task); 3508 3509 e_err(drv, "Reset adapter\n"); 3510 e1000_reinit_locked(adapter); 3511 } 3512 3513 /** 3514 * e1000_change_mtu - Change the Maximum Transfer Unit 3515 * @netdev: network interface device structure 3516 * @new_mtu: new value for maximum frame size 3517 * 3518 * Returns 0 on success, negative on failure 3519 **/ 3520 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 3521 { 3522 struct e1000_adapter *adapter = netdev_priv(netdev); 3523 struct e1000_hw *hw = &adapter->hw; 3524 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 3525 3526 /* Adapter-specific max frame size limits. */ 3527 switch (hw->mac_type) { 3528 case e1000_undefined ... e1000_82542_rev2_1: 3529 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { 3530 e_err(probe, "Jumbo Frames not supported.\n"); 3531 return -EINVAL; 3532 } 3533 break; 3534 default: 3535 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ 3536 break; 3537 } 3538 3539 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 3540 msleep(1); 3541 /* e1000_down has a dependency on max_frame_size */ 3542 hw->max_frame_size = max_frame; 3543 if (netif_running(netdev)) { 3544 /* prevent buffers from being reallocated */ 3545 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers; 3546 e1000_down(adapter); 3547 } 3548 3549 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 3550 * means we reserve 2 more, this pushes us to allocate from the next 3551 * larger slab size. 3552 * i.e. RXBUFFER_2048 --> size-4096 slab 3553 * however with the new *_jumbo_rx* routines, jumbo receives will use 3554 * fragmented skbs 3555 */ 3556 3557 if (max_frame <= E1000_RXBUFFER_2048) 3558 adapter->rx_buffer_len = E1000_RXBUFFER_2048; 3559 else 3560 #if (PAGE_SIZE >= E1000_RXBUFFER_16384) 3561 adapter->rx_buffer_len = E1000_RXBUFFER_16384; 3562 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096) 3563 adapter->rx_buffer_len = PAGE_SIZE; 3564 #endif 3565 3566 /* adjust allocation if LPE protects us, and we aren't using SBP */ 3567 if (!hw->tbi_compatibility_on && 3568 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || 3569 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) 3570 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 3571 3572 netdev_dbg(netdev, "changing MTU from %d to %d\n", 3573 netdev->mtu, new_mtu); 3574 netdev->mtu = new_mtu; 3575 3576 if (netif_running(netdev)) 3577 e1000_up(adapter); 3578 else 3579 e1000_reset(adapter); 3580 3581 clear_bit(__E1000_RESETTING, &adapter->flags); 3582 3583 return 0; 3584 } 3585 3586 /** 3587 * e1000_update_stats - Update the board statistics counters 3588 * @adapter: board private structure 3589 **/ 3590 void e1000_update_stats(struct e1000_adapter *adapter) 3591 { 3592 struct net_device *netdev = adapter->netdev; 3593 struct e1000_hw *hw = &adapter->hw; 3594 struct pci_dev *pdev = adapter->pdev; 3595 unsigned long flags; 3596 u16 phy_tmp; 3597 3598 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 3599 3600 /* Prevent stats update while adapter is being reset, or if the pci 3601 * connection is down. 3602 */ 3603 if (adapter->link_speed == 0) 3604 return; 3605 if (pci_channel_offline(pdev)) 3606 return; 3607 3608 spin_lock_irqsave(&adapter->stats_lock, flags); 3609 3610 /* these counters are modified from e1000_tbi_adjust_stats, 3611 * called from the interrupt context, so they must only 3612 * be written while holding adapter->stats_lock 3613 */ 3614 3615 adapter->stats.crcerrs += er32(CRCERRS); 3616 adapter->stats.gprc += er32(GPRC); 3617 adapter->stats.gorcl += er32(GORCL); 3618 adapter->stats.gorch += er32(GORCH); 3619 adapter->stats.bprc += er32(BPRC); 3620 adapter->stats.mprc += er32(MPRC); 3621 adapter->stats.roc += er32(ROC); 3622 3623 adapter->stats.prc64 += er32(PRC64); 3624 adapter->stats.prc127 += er32(PRC127); 3625 adapter->stats.prc255 += er32(PRC255); 3626 adapter->stats.prc511 += er32(PRC511); 3627 adapter->stats.prc1023 += er32(PRC1023); 3628 adapter->stats.prc1522 += er32(PRC1522); 3629 3630 adapter->stats.symerrs += er32(SYMERRS); 3631 adapter->stats.mpc += er32(MPC); 3632 adapter->stats.scc += er32(SCC); 3633 adapter->stats.ecol += er32(ECOL); 3634 adapter->stats.mcc += er32(MCC); 3635 adapter->stats.latecol += er32(LATECOL); 3636 adapter->stats.dc += er32(DC); 3637 adapter->stats.sec += er32(SEC); 3638 adapter->stats.rlec += er32(RLEC); 3639 adapter->stats.xonrxc += er32(XONRXC); 3640 adapter->stats.xontxc += er32(XONTXC); 3641 adapter->stats.xoffrxc += er32(XOFFRXC); 3642 adapter->stats.xofftxc += er32(XOFFTXC); 3643 adapter->stats.fcruc += er32(FCRUC); 3644 adapter->stats.gptc += er32(GPTC); 3645 adapter->stats.gotcl += er32(GOTCL); 3646 adapter->stats.gotch += er32(GOTCH); 3647 adapter->stats.rnbc += er32(RNBC); 3648 adapter->stats.ruc += er32(RUC); 3649 adapter->stats.rfc += er32(RFC); 3650 adapter->stats.rjc += er32(RJC); 3651 adapter->stats.torl += er32(TORL); 3652 adapter->stats.torh += er32(TORH); 3653 adapter->stats.totl += er32(TOTL); 3654 adapter->stats.toth += er32(TOTH); 3655 adapter->stats.tpr += er32(TPR); 3656 3657 adapter->stats.ptc64 += er32(PTC64); 3658 adapter->stats.ptc127 += er32(PTC127); 3659 adapter->stats.ptc255 += er32(PTC255); 3660 adapter->stats.ptc511 += er32(PTC511); 3661 adapter->stats.ptc1023 += er32(PTC1023); 3662 adapter->stats.ptc1522 += er32(PTC1522); 3663 3664 adapter->stats.mptc += er32(MPTC); 3665 adapter->stats.bptc += er32(BPTC); 3666 3667 /* used for adaptive IFS */ 3668 3669 hw->tx_packet_delta = er32(TPT); 3670 adapter->stats.tpt += hw->tx_packet_delta; 3671 hw->collision_delta = er32(COLC); 3672 adapter->stats.colc += hw->collision_delta; 3673 3674 if (hw->mac_type >= e1000_82543) { 3675 adapter->stats.algnerrc += er32(ALGNERRC); 3676 adapter->stats.rxerrc += er32(RXERRC); 3677 adapter->stats.tncrs += er32(TNCRS); 3678 adapter->stats.cexterr += er32(CEXTERR); 3679 adapter->stats.tsctc += er32(TSCTC); 3680 adapter->stats.tsctfc += er32(TSCTFC); 3681 } 3682 3683 /* Fill out the OS statistics structure */ 3684 netdev->stats.multicast = adapter->stats.mprc; 3685 netdev->stats.collisions = adapter->stats.colc; 3686 3687 /* Rx Errors */ 3688 3689 /* RLEC on some newer hardware can be incorrect so build 3690 * our own version based on RUC and ROC 3691 */ 3692 netdev->stats.rx_errors = adapter->stats.rxerrc + 3693 adapter->stats.crcerrs + adapter->stats.algnerrc + 3694 adapter->stats.ruc + adapter->stats.roc + 3695 adapter->stats.cexterr; 3696 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; 3697 netdev->stats.rx_length_errors = adapter->stats.rlerrc; 3698 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; 3699 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; 3700 netdev->stats.rx_missed_errors = adapter->stats.mpc; 3701 3702 /* Tx Errors */ 3703 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; 3704 netdev->stats.tx_errors = adapter->stats.txerrc; 3705 netdev->stats.tx_aborted_errors = adapter->stats.ecol; 3706 netdev->stats.tx_window_errors = adapter->stats.latecol; 3707 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; 3708 if (hw->bad_tx_carr_stats_fd && 3709 adapter->link_duplex == FULL_DUPLEX) { 3710 netdev->stats.tx_carrier_errors = 0; 3711 adapter->stats.tncrs = 0; 3712 } 3713 3714 /* Tx Dropped needs to be maintained elsewhere */ 3715 3716 /* Phy Stats */ 3717 if (hw->media_type == e1000_media_type_copper) { 3718 if ((adapter->link_speed == SPEED_1000) && 3719 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { 3720 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 3721 adapter->phy_stats.idle_errors += phy_tmp; 3722 } 3723 3724 if ((hw->mac_type <= e1000_82546) && 3725 (hw->phy_type == e1000_phy_m88) && 3726 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) 3727 adapter->phy_stats.receive_errors += phy_tmp; 3728 } 3729 3730 /* Management Stats */ 3731 if (hw->has_smbus) { 3732 adapter->stats.mgptc += er32(MGTPTC); 3733 adapter->stats.mgprc += er32(MGTPRC); 3734 adapter->stats.mgpdc += er32(MGTPDC); 3735 } 3736 3737 spin_unlock_irqrestore(&adapter->stats_lock, flags); 3738 } 3739 3740 /** 3741 * e1000_intr - Interrupt Handler 3742 * @irq: interrupt number 3743 * @data: pointer to a network interface device structure 3744 **/ 3745 static irqreturn_t e1000_intr(int irq, void *data) 3746 { 3747 struct net_device *netdev = data; 3748 struct e1000_adapter *adapter = netdev_priv(netdev); 3749 struct e1000_hw *hw = &adapter->hw; 3750 u32 icr = er32(ICR); 3751 3752 if (unlikely((!icr))) 3753 return IRQ_NONE; /* Not our interrupt */ 3754 3755 /* we might have caused the interrupt, but the above 3756 * read cleared it, and just in case the driver is 3757 * down there is nothing to do so return handled 3758 */ 3759 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags))) 3760 return IRQ_HANDLED; 3761 3762 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { 3763 hw->get_link_status = 1; 3764 /* guard against interrupt when we're going down */ 3765 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3766 schedule_delayed_work(&adapter->watchdog_task, 1); 3767 } 3768 3769 /* disable interrupts, without the synchronize_irq bit */ 3770 ew32(IMC, ~0); 3771 E1000_WRITE_FLUSH(); 3772 3773 if (likely(napi_schedule_prep(&adapter->napi))) { 3774 adapter->total_tx_bytes = 0; 3775 adapter->total_tx_packets = 0; 3776 adapter->total_rx_bytes = 0; 3777 adapter->total_rx_packets = 0; 3778 __napi_schedule(&adapter->napi); 3779 } else { 3780 /* this really should not happen! if it does it is basically a 3781 * bug, but not a hard error, so enable ints and continue 3782 */ 3783 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3784 e1000_irq_enable(adapter); 3785 } 3786 3787 return IRQ_HANDLED; 3788 } 3789 3790 /** 3791 * e1000_clean - NAPI Rx polling callback 3792 * @napi: napi struct containing references to driver info 3793 * @budget: budget given to driver for receive packets 3794 **/ 3795 static int e1000_clean(struct napi_struct *napi, int budget) 3796 { 3797 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, 3798 napi); 3799 int tx_clean_complete = 0, work_done = 0; 3800 3801 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); 3802 3803 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); 3804 3805 if (!tx_clean_complete || work_done == budget) 3806 return budget; 3807 3808 /* Exit the polling mode, but don't re-enable interrupts if stack might 3809 * poll us due to busy-polling 3810 */ 3811 if (likely(napi_complete_done(napi, work_done))) { 3812 if (likely(adapter->itr_setting & 3)) 3813 e1000_set_itr(adapter); 3814 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3815 e1000_irq_enable(adapter); 3816 } 3817 3818 return work_done; 3819 } 3820 3821 /** 3822 * e1000_clean_tx_irq - Reclaim resources after transmit completes 3823 * @adapter: board private structure 3824 * @tx_ring: ring to clean 3825 **/ 3826 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 3827 struct e1000_tx_ring *tx_ring) 3828 { 3829 struct e1000_hw *hw = &adapter->hw; 3830 struct net_device *netdev = adapter->netdev; 3831 struct e1000_tx_desc *tx_desc, *eop_desc; 3832 struct e1000_tx_buffer *buffer_info; 3833 unsigned int i, eop; 3834 unsigned int count = 0; 3835 unsigned int total_tx_bytes = 0, total_tx_packets = 0; 3836 unsigned int bytes_compl = 0, pkts_compl = 0; 3837 3838 i = tx_ring->next_to_clean; 3839 eop = tx_ring->buffer_info[i].next_to_watch; 3840 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3841 3842 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && 3843 (count < tx_ring->count)) { 3844 bool cleaned = false; 3845 dma_rmb(); /* read buffer_info after eop_desc */ 3846 for ( ; !cleaned; count++) { 3847 tx_desc = E1000_TX_DESC(*tx_ring, i); 3848 buffer_info = &tx_ring->buffer_info[i]; 3849 cleaned = (i == eop); 3850 3851 if (cleaned) { 3852 total_tx_packets += buffer_info->segs; 3853 total_tx_bytes += buffer_info->bytecount; 3854 if (buffer_info->skb) { 3855 bytes_compl += buffer_info->skb->len; 3856 pkts_compl++; 3857 } 3858 3859 } 3860 e1000_unmap_and_free_tx_resource(adapter, buffer_info, 3861 64); 3862 tx_desc->upper.data = 0; 3863 3864 if (unlikely(++i == tx_ring->count)) 3865 i = 0; 3866 } 3867 3868 eop = tx_ring->buffer_info[i].next_to_watch; 3869 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3870 } 3871 3872 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame, 3873 * which will reuse the cleaned buffers. 3874 */ 3875 smp_store_release(&tx_ring->next_to_clean, i); 3876 3877 netdev_completed_queue(netdev, pkts_compl, bytes_compl); 3878 3879 #define TX_WAKE_THRESHOLD 32 3880 if (unlikely(count && netif_carrier_ok(netdev) && 3881 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { 3882 /* Make sure that anybody stopping the queue after this 3883 * sees the new next_to_clean. 3884 */ 3885 smp_mb(); 3886 3887 if (netif_queue_stopped(netdev) && 3888 !(test_bit(__E1000_DOWN, &adapter->flags))) { 3889 netif_wake_queue(netdev); 3890 ++adapter->restart_queue; 3891 } 3892 } 3893 3894 if (adapter->detect_tx_hung) { 3895 /* Detect a transmit hang in hardware, this serializes the 3896 * check with the clearing of time_stamp and movement of i 3897 */ 3898 adapter->detect_tx_hung = false; 3899 if (tx_ring->buffer_info[eop].time_stamp && 3900 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + 3901 (adapter->tx_timeout_factor * HZ)) && 3902 !(er32(STATUS) & E1000_STATUS_TXOFF)) { 3903 3904 /* detected Tx unit hang */ 3905 e_err(drv, "Detected Tx Unit Hang\n" 3906 " Tx Queue <%lu>\n" 3907 " TDH <%x>\n" 3908 " TDT <%x>\n" 3909 " next_to_use <%x>\n" 3910 " next_to_clean <%x>\n" 3911 "buffer_info[next_to_clean]\n" 3912 " time_stamp <%lx>\n" 3913 " next_to_watch <%x>\n" 3914 " jiffies <%lx>\n" 3915 " next_to_watch.status <%x>\n", 3916 (unsigned long)(tx_ring - adapter->tx_ring), 3917 readl(hw->hw_addr + tx_ring->tdh), 3918 readl(hw->hw_addr + tx_ring->tdt), 3919 tx_ring->next_to_use, 3920 tx_ring->next_to_clean, 3921 tx_ring->buffer_info[eop].time_stamp, 3922 eop, 3923 jiffies, 3924 eop_desc->upper.fields.status); 3925 e1000_dump(adapter); 3926 netif_stop_queue(netdev); 3927 } 3928 } 3929 adapter->total_tx_bytes += total_tx_bytes; 3930 adapter->total_tx_packets += total_tx_packets; 3931 netdev->stats.tx_bytes += total_tx_bytes; 3932 netdev->stats.tx_packets += total_tx_packets; 3933 return count < tx_ring->count; 3934 } 3935 3936 /** 3937 * e1000_rx_checksum - Receive Checksum Offload for 82543 3938 * @adapter: board private structure 3939 * @status_err: receive descriptor status and error fields 3940 * @csum: receive descriptor csum field 3941 * @skb: socket buffer with received data 3942 **/ 3943 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 3944 u32 csum, struct sk_buff *skb) 3945 { 3946 struct e1000_hw *hw = &adapter->hw; 3947 u16 status = (u16)status_err; 3948 u8 errors = (u8)(status_err >> 24); 3949 3950 skb_checksum_none_assert(skb); 3951 3952 /* 82543 or newer only */ 3953 if (unlikely(hw->mac_type < e1000_82543)) 3954 return; 3955 /* Ignore Checksum bit is set */ 3956 if (unlikely(status & E1000_RXD_STAT_IXSM)) 3957 return; 3958 /* TCP/UDP checksum error bit is set */ 3959 if (unlikely(errors & E1000_RXD_ERR_TCPE)) { 3960 /* let the stack verify checksum errors */ 3961 adapter->hw_csum_err++; 3962 return; 3963 } 3964 /* TCP/UDP Checksum has not been calculated */ 3965 if (!(status & E1000_RXD_STAT_TCPCS)) 3966 return; 3967 3968 /* It must be a TCP or UDP packet with a valid checksum */ 3969 if (likely(status & E1000_RXD_STAT_TCPCS)) { 3970 /* TCP checksum is good */ 3971 skb->ip_summed = CHECKSUM_UNNECESSARY; 3972 } 3973 adapter->hw_csum_good++; 3974 } 3975 3976 /** 3977 * e1000_consume_page - helper function for jumbo Rx path 3978 * @bi: software descriptor shadow data 3979 * @skb: skb being modified 3980 * @length: length of data being added 3981 **/ 3982 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb, 3983 u16 length) 3984 { 3985 bi->rxbuf.page = NULL; 3986 skb->len += length; 3987 skb->data_len += length; 3988 skb->truesize += PAGE_SIZE; 3989 } 3990 3991 /** 3992 * e1000_receive_skb - helper function to handle rx indications 3993 * @adapter: board private structure 3994 * @status: descriptor status field as written by hardware 3995 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 3996 * @skb: pointer to sk_buff to be indicated to stack 3997 */ 3998 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, 3999 __le16 vlan, struct sk_buff *skb) 4000 { 4001 skb->protocol = eth_type_trans(skb, adapter->netdev); 4002 4003 if (status & E1000_RXD_STAT_VP) { 4004 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 4005 4006 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 4007 } 4008 napi_gro_receive(&adapter->napi, skb); 4009 } 4010 4011 /** 4012 * e1000_tbi_adjust_stats 4013 * @hw: Struct containing variables accessed by shared code 4014 * @stats: point to stats struct 4015 * @frame_len: The length of the frame in question 4016 * @mac_addr: The Ethernet destination address of the frame in question 4017 * 4018 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT 4019 */ 4020 static void e1000_tbi_adjust_stats(struct e1000_hw *hw, 4021 struct e1000_hw_stats *stats, 4022 u32 frame_len, const u8 *mac_addr) 4023 { 4024 u64 carry_bit; 4025 4026 /* First adjust the frame length. */ 4027 frame_len--; 4028 /* We need to adjust the statistics counters, since the hardware 4029 * counters overcount this packet as a CRC error and undercount 4030 * the packet as a good packet 4031 */ 4032 /* This packet should not be counted as a CRC error. */ 4033 stats->crcerrs--; 4034 /* This packet does count as a Good Packet Received. */ 4035 stats->gprc++; 4036 4037 /* Adjust the Good Octets received counters */ 4038 carry_bit = 0x80000000 & stats->gorcl; 4039 stats->gorcl += frame_len; 4040 /* If the high bit of Gorcl (the low 32 bits of the Good Octets 4041 * Received Count) was one before the addition, 4042 * AND it is zero after, then we lost the carry out, 4043 * need to add one to Gorch (Good Octets Received Count High). 4044 * This could be simplified if all environments supported 4045 * 64-bit integers. 4046 */ 4047 if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) 4048 stats->gorch++; 4049 /* Is this a broadcast or multicast? Check broadcast first, 4050 * since the test for a multicast frame will test positive on 4051 * a broadcast frame. 4052 */ 4053 if (is_broadcast_ether_addr(mac_addr)) 4054 stats->bprc++; 4055 else if (is_multicast_ether_addr(mac_addr)) 4056 stats->mprc++; 4057 4058 if (frame_len == hw->max_frame_size) { 4059 /* In this case, the hardware has overcounted the number of 4060 * oversize frames. 4061 */ 4062 if (stats->roc > 0) 4063 stats->roc--; 4064 } 4065 4066 /* Adjust the bin counters when the extra byte put the frame in the 4067 * wrong bin. Remember that the frame_len was adjusted above. 4068 */ 4069 if (frame_len == 64) { 4070 stats->prc64++; 4071 stats->prc127--; 4072 } else if (frame_len == 127) { 4073 stats->prc127++; 4074 stats->prc255--; 4075 } else if (frame_len == 255) { 4076 stats->prc255++; 4077 stats->prc511--; 4078 } else if (frame_len == 511) { 4079 stats->prc511++; 4080 stats->prc1023--; 4081 } else if (frame_len == 1023) { 4082 stats->prc1023++; 4083 stats->prc1522--; 4084 } else if (frame_len == 1522) { 4085 stats->prc1522++; 4086 } 4087 } 4088 4089 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter, 4090 u8 status, u8 errors, 4091 u32 length, const u8 *data) 4092 { 4093 struct e1000_hw *hw = &adapter->hw; 4094 u8 last_byte = *(data + length - 1); 4095 4096 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) { 4097 unsigned long irq_flags; 4098 4099 spin_lock_irqsave(&adapter->stats_lock, irq_flags); 4100 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data); 4101 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); 4102 4103 return true; 4104 } 4105 4106 return false; 4107 } 4108 4109 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter, 4110 unsigned int bufsz) 4111 { 4112 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz); 4113 4114 if (unlikely(!skb)) 4115 adapter->alloc_rx_buff_failed++; 4116 return skb; 4117 } 4118 4119 /** 4120 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 4121 * @adapter: board private structure 4122 * @rx_ring: ring to clean 4123 * @work_done: amount of napi work completed this call 4124 * @work_to_do: max amount of work allowed for this call to do 4125 * 4126 * the return value indicates whether actual cleaning was done, there 4127 * is no guarantee that everything was cleaned 4128 */ 4129 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 4130 struct e1000_rx_ring *rx_ring, 4131 int *work_done, int work_to_do) 4132 { 4133 struct net_device *netdev = adapter->netdev; 4134 struct pci_dev *pdev = adapter->pdev; 4135 struct e1000_rx_desc *rx_desc, *next_rxd; 4136 struct e1000_rx_buffer *buffer_info, *next_buffer; 4137 u32 length; 4138 unsigned int i; 4139 int cleaned_count = 0; 4140 bool cleaned = false; 4141 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 4142 4143 i = rx_ring->next_to_clean; 4144 rx_desc = E1000_RX_DESC(*rx_ring, i); 4145 buffer_info = &rx_ring->buffer_info[i]; 4146 4147 while (rx_desc->status & E1000_RXD_STAT_DD) { 4148 struct sk_buff *skb; 4149 u8 status; 4150 4151 if (*work_done >= work_to_do) 4152 break; 4153 (*work_done)++; 4154 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 4155 4156 status = rx_desc->status; 4157 4158 if (++i == rx_ring->count) 4159 i = 0; 4160 4161 next_rxd = E1000_RX_DESC(*rx_ring, i); 4162 prefetch(next_rxd); 4163 4164 next_buffer = &rx_ring->buffer_info[i]; 4165 4166 cleaned = true; 4167 cleaned_count++; 4168 dma_unmap_page(&pdev->dev, buffer_info->dma, 4169 adapter->rx_buffer_len, DMA_FROM_DEVICE); 4170 buffer_info->dma = 0; 4171 4172 length = le16_to_cpu(rx_desc->length); 4173 4174 /* errors is only valid for DD + EOP descriptors */ 4175 if (unlikely((status & E1000_RXD_STAT_EOP) && 4176 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { 4177 u8 *mapped = page_address(buffer_info->rxbuf.page); 4178 4179 if (e1000_tbi_should_accept(adapter, status, 4180 rx_desc->errors, 4181 length, mapped)) { 4182 length--; 4183 } else if (netdev->features & NETIF_F_RXALL) { 4184 goto process_skb; 4185 } else { 4186 /* an error means any chain goes out the window 4187 * too 4188 */ 4189 dev_kfree_skb(rx_ring->rx_skb_top); 4190 rx_ring->rx_skb_top = NULL; 4191 goto next_desc; 4192 } 4193 } 4194 4195 #define rxtop rx_ring->rx_skb_top 4196 process_skb: 4197 if (!(status & E1000_RXD_STAT_EOP)) { 4198 /* this descriptor is only the beginning (or middle) */ 4199 if (!rxtop) { 4200 /* this is the beginning of a chain */ 4201 rxtop = napi_get_frags(&adapter->napi); 4202 if (!rxtop) 4203 break; 4204 4205 skb_fill_page_desc(rxtop, 0, 4206 buffer_info->rxbuf.page, 4207 0, length); 4208 } else { 4209 /* this is the middle of a chain */ 4210 skb_fill_page_desc(rxtop, 4211 skb_shinfo(rxtop)->nr_frags, 4212 buffer_info->rxbuf.page, 0, length); 4213 } 4214 e1000_consume_page(buffer_info, rxtop, length); 4215 goto next_desc; 4216 } else { 4217 if (rxtop) { 4218 /* end of the chain */ 4219 skb_fill_page_desc(rxtop, 4220 skb_shinfo(rxtop)->nr_frags, 4221 buffer_info->rxbuf.page, 0, length); 4222 skb = rxtop; 4223 rxtop = NULL; 4224 e1000_consume_page(buffer_info, skb, length); 4225 } else { 4226 struct page *p; 4227 /* no chain, got EOP, this buf is the packet 4228 * copybreak to save the put_page/alloc_page 4229 */ 4230 p = buffer_info->rxbuf.page; 4231 if (length <= copybreak) { 4232 u8 *vaddr; 4233 4234 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4235 length -= 4; 4236 skb = e1000_alloc_rx_skb(adapter, 4237 length); 4238 if (!skb) 4239 break; 4240 4241 vaddr = kmap_atomic(p); 4242 memcpy(skb_tail_pointer(skb), vaddr, 4243 length); 4244 kunmap_atomic(vaddr); 4245 /* re-use the page, so don't erase 4246 * buffer_info->rxbuf.page 4247 */ 4248 skb_put(skb, length); 4249 e1000_rx_checksum(adapter, 4250 status | rx_desc->errors << 24, 4251 le16_to_cpu(rx_desc->csum), skb); 4252 4253 total_rx_bytes += skb->len; 4254 total_rx_packets++; 4255 4256 e1000_receive_skb(adapter, status, 4257 rx_desc->special, skb); 4258 goto next_desc; 4259 } else { 4260 skb = napi_get_frags(&adapter->napi); 4261 if (!skb) { 4262 adapter->alloc_rx_buff_failed++; 4263 break; 4264 } 4265 skb_fill_page_desc(skb, 0, p, 0, 4266 length); 4267 e1000_consume_page(buffer_info, skb, 4268 length); 4269 } 4270 } 4271 } 4272 4273 /* Receive Checksum Offload XXX recompute due to CRC strip? */ 4274 e1000_rx_checksum(adapter, 4275 (u32)(status) | 4276 ((u32)(rx_desc->errors) << 24), 4277 le16_to_cpu(rx_desc->csum), skb); 4278 4279 total_rx_bytes += (skb->len - 4); /* don't count FCS */ 4280 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4281 pskb_trim(skb, skb->len - 4); 4282 total_rx_packets++; 4283 4284 if (status & E1000_RXD_STAT_VP) { 4285 __le16 vlan = rx_desc->special; 4286 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 4287 4288 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 4289 } 4290 4291 napi_gro_frags(&adapter->napi); 4292 4293 next_desc: 4294 rx_desc->status = 0; 4295 4296 /* return some buffers to hardware, one at a time is too slow */ 4297 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4298 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4299 cleaned_count = 0; 4300 } 4301 4302 /* use prefetched values */ 4303 rx_desc = next_rxd; 4304 buffer_info = next_buffer; 4305 } 4306 rx_ring->next_to_clean = i; 4307 4308 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4309 if (cleaned_count) 4310 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4311 4312 adapter->total_rx_packets += total_rx_packets; 4313 adapter->total_rx_bytes += total_rx_bytes; 4314 netdev->stats.rx_bytes += total_rx_bytes; 4315 netdev->stats.rx_packets += total_rx_packets; 4316 return cleaned; 4317 } 4318 4319 /* this should improve performance for small packets with large amounts 4320 * of reassembly being done in the stack 4321 */ 4322 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter, 4323 struct e1000_rx_buffer *buffer_info, 4324 u32 length, const void *data) 4325 { 4326 struct sk_buff *skb; 4327 4328 if (length > copybreak) 4329 return NULL; 4330 4331 skb = e1000_alloc_rx_skb(adapter, length); 4332 if (!skb) 4333 return NULL; 4334 4335 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma, 4336 length, DMA_FROM_DEVICE); 4337 4338 skb_put_data(skb, data, length); 4339 4340 return skb; 4341 } 4342 4343 /** 4344 * e1000_clean_rx_irq - Send received data up the network stack; legacy 4345 * @adapter: board private structure 4346 * @rx_ring: ring to clean 4347 * @work_done: amount of napi work completed this call 4348 * @work_to_do: max amount of work allowed for this call to do 4349 */ 4350 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 4351 struct e1000_rx_ring *rx_ring, 4352 int *work_done, int work_to_do) 4353 { 4354 struct net_device *netdev = adapter->netdev; 4355 struct pci_dev *pdev = adapter->pdev; 4356 struct e1000_rx_desc *rx_desc, *next_rxd; 4357 struct e1000_rx_buffer *buffer_info, *next_buffer; 4358 u32 length; 4359 unsigned int i; 4360 int cleaned_count = 0; 4361 bool cleaned = false; 4362 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 4363 4364 i = rx_ring->next_to_clean; 4365 rx_desc = E1000_RX_DESC(*rx_ring, i); 4366 buffer_info = &rx_ring->buffer_info[i]; 4367 4368 while (rx_desc->status & E1000_RXD_STAT_DD) { 4369 struct sk_buff *skb; 4370 u8 *data; 4371 u8 status; 4372 4373 if (*work_done >= work_to_do) 4374 break; 4375 (*work_done)++; 4376 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 4377 4378 status = rx_desc->status; 4379 length = le16_to_cpu(rx_desc->length); 4380 4381 data = buffer_info->rxbuf.data; 4382 prefetch(data); 4383 skb = e1000_copybreak(adapter, buffer_info, length, data); 4384 if (!skb) { 4385 unsigned int frag_len = e1000_frag_len(adapter); 4386 4387 skb = napi_build_skb(data - E1000_HEADROOM, frag_len); 4388 if (!skb) { 4389 adapter->alloc_rx_buff_failed++; 4390 break; 4391 } 4392 4393 skb_reserve(skb, E1000_HEADROOM); 4394 dma_unmap_single(&pdev->dev, buffer_info->dma, 4395 adapter->rx_buffer_len, 4396 DMA_FROM_DEVICE); 4397 buffer_info->dma = 0; 4398 buffer_info->rxbuf.data = NULL; 4399 } 4400 4401 if (++i == rx_ring->count) 4402 i = 0; 4403 4404 next_rxd = E1000_RX_DESC(*rx_ring, i); 4405 prefetch(next_rxd); 4406 4407 next_buffer = &rx_ring->buffer_info[i]; 4408 4409 cleaned = true; 4410 cleaned_count++; 4411 4412 /* !EOP means multiple descriptors were used to store a single 4413 * packet, if thats the case we need to toss it. In fact, we 4414 * to toss every packet with the EOP bit clear and the next 4415 * frame that _does_ have the EOP bit set, as it is by 4416 * definition only a frame fragment 4417 */ 4418 if (unlikely(!(status & E1000_RXD_STAT_EOP))) 4419 adapter->discarding = true; 4420 4421 if (adapter->discarding) { 4422 /* All receives must fit into a single buffer */ 4423 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n"); 4424 dev_kfree_skb(skb); 4425 if (status & E1000_RXD_STAT_EOP) 4426 adapter->discarding = false; 4427 goto next_desc; 4428 } 4429 4430 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { 4431 if (e1000_tbi_should_accept(adapter, status, 4432 rx_desc->errors, 4433 length, data)) { 4434 length--; 4435 } else if (netdev->features & NETIF_F_RXALL) { 4436 goto process_skb; 4437 } else { 4438 dev_kfree_skb(skb); 4439 goto next_desc; 4440 } 4441 } 4442 4443 process_skb: 4444 total_rx_bytes += (length - 4); /* don't count FCS */ 4445 total_rx_packets++; 4446 4447 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4448 /* adjust length to remove Ethernet CRC, this must be 4449 * done after the TBI_ACCEPT workaround above 4450 */ 4451 length -= 4; 4452 4453 if (buffer_info->rxbuf.data == NULL) 4454 skb_put(skb, length); 4455 else /* copybreak skb */ 4456 skb_trim(skb, length); 4457 4458 /* Receive Checksum Offload */ 4459 e1000_rx_checksum(adapter, 4460 (u32)(status) | 4461 ((u32)(rx_desc->errors) << 24), 4462 le16_to_cpu(rx_desc->csum), skb); 4463 4464 e1000_receive_skb(adapter, status, rx_desc->special, skb); 4465 4466 next_desc: 4467 rx_desc->status = 0; 4468 4469 /* return some buffers to hardware, one at a time is too slow */ 4470 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4471 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4472 cleaned_count = 0; 4473 } 4474 4475 /* use prefetched values */ 4476 rx_desc = next_rxd; 4477 buffer_info = next_buffer; 4478 } 4479 rx_ring->next_to_clean = i; 4480 4481 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4482 if (cleaned_count) 4483 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4484 4485 adapter->total_rx_packets += total_rx_packets; 4486 adapter->total_rx_bytes += total_rx_bytes; 4487 netdev->stats.rx_bytes += total_rx_bytes; 4488 netdev->stats.rx_packets += total_rx_packets; 4489 return cleaned; 4490 } 4491 4492 /** 4493 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 4494 * @adapter: address of board private structure 4495 * @rx_ring: pointer to receive ring structure 4496 * @cleaned_count: number of buffers to allocate this pass 4497 **/ 4498 static void 4499 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 4500 struct e1000_rx_ring *rx_ring, int cleaned_count) 4501 { 4502 struct pci_dev *pdev = adapter->pdev; 4503 struct e1000_rx_desc *rx_desc; 4504 struct e1000_rx_buffer *buffer_info; 4505 unsigned int i; 4506 4507 i = rx_ring->next_to_use; 4508 buffer_info = &rx_ring->buffer_info[i]; 4509 4510 while (cleaned_count--) { 4511 /* allocate a new page if necessary */ 4512 if (!buffer_info->rxbuf.page) { 4513 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC); 4514 if (unlikely(!buffer_info->rxbuf.page)) { 4515 adapter->alloc_rx_buff_failed++; 4516 break; 4517 } 4518 } 4519 4520 if (!buffer_info->dma) { 4521 buffer_info->dma = dma_map_page(&pdev->dev, 4522 buffer_info->rxbuf.page, 0, 4523 adapter->rx_buffer_len, 4524 DMA_FROM_DEVICE); 4525 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4526 put_page(buffer_info->rxbuf.page); 4527 buffer_info->rxbuf.page = NULL; 4528 buffer_info->dma = 0; 4529 adapter->alloc_rx_buff_failed++; 4530 break; 4531 } 4532 } 4533 4534 rx_desc = E1000_RX_DESC(*rx_ring, i); 4535 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4536 4537 if (unlikely(++i == rx_ring->count)) 4538 i = 0; 4539 buffer_info = &rx_ring->buffer_info[i]; 4540 } 4541 4542 if (likely(rx_ring->next_to_use != i)) { 4543 rx_ring->next_to_use = i; 4544 if (unlikely(i-- == 0)) 4545 i = (rx_ring->count - 1); 4546 4547 /* Force memory writes to complete before letting h/w 4548 * know there are new descriptors to fetch. (Only 4549 * applicable for weak-ordered memory model archs, 4550 * such as IA-64). 4551 */ 4552 dma_wmb(); 4553 writel(i, adapter->hw.hw_addr + rx_ring->rdt); 4554 } 4555 } 4556 4557 /** 4558 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended 4559 * @adapter: address of board private structure 4560 * @rx_ring: pointer to ring struct 4561 * @cleaned_count: number of new Rx buffers to try to allocate 4562 **/ 4563 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 4564 struct e1000_rx_ring *rx_ring, 4565 int cleaned_count) 4566 { 4567 struct e1000_hw *hw = &adapter->hw; 4568 struct pci_dev *pdev = adapter->pdev; 4569 struct e1000_rx_desc *rx_desc; 4570 struct e1000_rx_buffer *buffer_info; 4571 unsigned int i; 4572 unsigned int bufsz = adapter->rx_buffer_len; 4573 4574 i = rx_ring->next_to_use; 4575 buffer_info = &rx_ring->buffer_info[i]; 4576 4577 while (cleaned_count--) { 4578 void *data; 4579 4580 if (buffer_info->rxbuf.data) 4581 goto skip; 4582 4583 data = e1000_alloc_frag(adapter); 4584 if (!data) { 4585 /* Better luck next round */ 4586 adapter->alloc_rx_buff_failed++; 4587 break; 4588 } 4589 4590 /* Fix for errata 23, can't cross 64kB boundary */ 4591 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4592 void *olddata = data; 4593 e_err(rx_err, "skb align check failed: %u bytes at " 4594 "%p\n", bufsz, data); 4595 /* Try again, without freeing the previous */ 4596 data = e1000_alloc_frag(adapter); 4597 /* Failed allocation, critical failure */ 4598 if (!data) { 4599 skb_free_frag(olddata); 4600 adapter->alloc_rx_buff_failed++; 4601 break; 4602 } 4603 4604 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4605 /* give up */ 4606 skb_free_frag(data); 4607 skb_free_frag(olddata); 4608 adapter->alloc_rx_buff_failed++; 4609 break; 4610 } 4611 4612 /* Use new allocation */ 4613 skb_free_frag(olddata); 4614 } 4615 buffer_info->dma = dma_map_single(&pdev->dev, 4616 data, 4617 adapter->rx_buffer_len, 4618 DMA_FROM_DEVICE); 4619 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4620 skb_free_frag(data); 4621 buffer_info->dma = 0; 4622 adapter->alloc_rx_buff_failed++; 4623 break; 4624 } 4625 4626 /* XXX if it was allocated cleanly it will never map to a 4627 * boundary crossing 4628 */ 4629 4630 /* Fix for errata 23, can't cross 64kB boundary */ 4631 if (!e1000_check_64k_bound(adapter, 4632 (void *)(unsigned long)buffer_info->dma, 4633 adapter->rx_buffer_len)) { 4634 e_err(rx_err, "dma align check failed: %u bytes at " 4635 "%p\n", adapter->rx_buffer_len, 4636 (void *)(unsigned long)buffer_info->dma); 4637 4638 dma_unmap_single(&pdev->dev, buffer_info->dma, 4639 adapter->rx_buffer_len, 4640 DMA_FROM_DEVICE); 4641 4642 skb_free_frag(data); 4643 buffer_info->rxbuf.data = NULL; 4644 buffer_info->dma = 0; 4645 4646 adapter->alloc_rx_buff_failed++; 4647 break; 4648 } 4649 buffer_info->rxbuf.data = data; 4650 skip: 4651 rx_desc = E1000_RX_DESC(*rx_ring, i); 4652 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4653 4654 if (unlikely(++i == rx_ring->count)) 4655 i = 0; 4656 buffer_info = &rx_ring->buffer_info[i]; 4657 } 4658 4659 if (likely(rx_ring->next_to_use != i)) { 4660 rx_ring->next_to_use = i; 4661 if (unlikely(i-- == 0)) 4662 i = (rx_ring->count - 1); 4663 4664 /* Force memory writes to complete before letting h/w 4665 * know there are new descriptors to fetch. (Only 4666 * applicable for weak-ordered memory model archs, 4667 * such as IA-64). 4668 */ 4669 dma_wmb(); 4670 writel(i, hw->hw_addr + rx_ring->rdt); 4671 } 4672 } 4673 4674 /** 4675 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. 4676 * @adapter: address of board private structure 4677 **/ 4678 static void e1000_smartspeed(struct e1000_adapter *adapter) 4679 { 4680 struct e1000_hw *hw = &adapter->hw; 4681 u16 phy_status; 4682 u16 phy_ctrl; 4683 4684 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || 4685 !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) 4686 return; 4687 4688 if (adapter->smartspeed == 0) { 4689 /* If Master/Slave config fault is asserted twice, 4690 * we assume back-to-back 4691 */ 4692 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4693 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) 4694 return; 4695 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4696 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) 4697 return; 4698 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4699 if (phy_ctrl & CR_1000T_MS_ENABLE) { 4700 phy_ctrl &= ~CR_1000T_MS_ENABLE; 4701 e1000_write_phy_reg(hw, PHY_1000T_CTRL, 4702 phy_ctrl); 4703 adapter->smartspeed++; 4704 if (!e1000_phy_setup_autoneg(hw) && 4705 !e1000_read_phy_reg(hw, PHY_CTRL, 4706 &phy_ctrl)) { 4707 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4708 MII_CR_RESTART_AUTO_NEG); 4709 e1000_write_phy_reg(hw, PHY_CTRL, 4710 phy_ctrl); 4711 } 4712 } 4713 return; 4714 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { 4715 /* If still no link, perhaps using 2/3 pair cable */ 4716 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4717 phy_ctrl |= CR_1000T_MS_ENABLE; 4718 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); 4719 if (!e1000_phy_setup_autoneg(hw) && 4720 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { 4721 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4722 MII_CR_RESTART_AUTO_NEG); 4723 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); 4724 } 4725 } 4726 /* Restart process after E1000_SMARTSPEED_MAX iterations */ 4727 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) 4728 adapter->smartspeed = 0; 4729 } 4730 4731 /** 4732 * e1000_ioctl - handle ioctl calls 4733 * @netdev: pointer to our netdev 4734 * @ifr: pointer to interface request structure 4735 * @cmd: ioctl data 4736 **/ 4737 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 4738 { 4739 switch (cmd) { 4740 case SIOCGMIIPHY: 4741 case SIOCGMIIREG: 4742 case SIOCSMIIREG: 4743 return e1000_mii_ioctl(netdev, ifr, cmd); 4744 default: 4745 return -EOPNOTSUPP; 4746 } 4747 } 4748 4749 /** 4750 * e1000_mii_ioctl - 4751 * @netdev: pointer to our netdev 4752 * @ifr: pointer to interface request structure 4753 * @cmd: ioctl data 4754 **/ 4755 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 4756 int cmd) 4757 { 4758 struct e1000_adapter *adapter = netdev_priv(netdev); 4759 struct e1000_hw *hw = &adapter->hw; 4760 struct mii_ioctl_data *data = if_mii(ifr); 4761 int retval; 4762 u16 mii_reg; 4763 unsigned long flags; 4764 4765 if (hw->media_type != e1000_media_type_copper) 4766 return -EOPNOTSUPP; 4767 4768 switch (cmd) { 4769 case SIOCGMIIPHY: 4770 data->phy_id = hw->phy_addr; 4771 break; 4772 case SIOCGMIIREG: 4773 spin_lock_irqsave(&adapter->stats_lock, flags); 4774 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, 4775 &data->val_out)) { 4776 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4777 return -EIO; 4778 } 4779 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4780 break; 4781 case SIOCSMIIREG: 4782 if (data->reg_num & ~(0x1F)) 4783 return -EFAULT; 4784 mii_reg = data->val_in; 4785 spin_lock_irqsave(&adapter->stats_lock, flags); 4786 if (e1000_write_phy_reg(hw, data->reg_num, 4787 mii_reg)) { 4788 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4789 return -EIO; 4790 } 4791 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4792 if (hw->media_type == e1000_media_type_copper) { 4793 switch (data->reg_num) { 4794 case PHY_CTRL: 4795 if (mii_reg & MII_CR_POWER_DOWN) 4796 break; 4797 if (mii_reg & MII_CR_AUTO_NEG_EN) { 4798 hw->autoneg = 1; 4799 hw->autoneg_advertised = 0x2F; 4800 } else { 4801 u32 speed; 4802 if (mii_reg & 0x40) 4803 speed = SPEED_1000; 4804 else if (mii_reg & 0x2000) 4805 speed = SPEED_100; 4806 else 4807 speed = SPEED_10; 4808 retval = e1000_set_spd_dplx( 4809 adapter, speed, 4810 ((mii_reg & 0x100) 4811 ? DUPLEX_FULL : 4812 DUPLEX_HALF)); 4813 if (retval) 4814 return retval; 4815 } 4816 if (netif_running(adapter->netdev)) 4817 e1000_reinit_locked(adapter); 4818 else 4819 e1000_reset(adapter); 4820 break; 4821 case M88E1000_PHY_SPEC_CTRL: 4822 case M88E1000_EXT_PHY_SPEC_CTRL: 4823 if (e1000_phy_reset(hw)) 4824 return -EIO; 4825 break; 4826 } 4827 } else { 4828 switch (data->reg_num) { 4829 case PHY_CTRL: 4830 if (mii_reg & MII_CR_POWER_DOWN) 4831 break; 4832 if (netif_running(adapter->netdev)) 4833 e1000_reinit_locked(adapter); 4834 else 4835 e1000_reset(adapter); 4836 break; 4837 } 4838 } 4839 break; 4840 default: 4841 return -EOPNOTSUPP; 4842 } 4843 return E1000_SUCCESS; 4844 } 4845 4846 void e1000_pci_set_mwi(struct e1000_hw *hw) 4847 { 4848 struct e1000_adapter *adapter = hw->back; 4849 int ret_val = pci_set_mwi(adapter->pdev); 4850 4851 if (ret_val) 4852 e_err(probe, "Error in setting MWI\n"); 4853 } 4854 4855 void e1000_pci_clear_mwi(struct e1000_hw *hw) 4856 { 4857 struct e1000_adapter *adapter = hw->back; 4858 4859 pci_clear_mwi(adapter->pdev); 4860 } 4861 4862 int e1000_pcix_get_mmrbc(struct e1000_hw *hw) 4863 { 4864 struct e1000_adapter *adapter = hw->back; 4865 return pcix_get_mmrbc(adapter->pdev); 4866 } 4867 4868 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) 4869 { 4870 struct e1000_adapter *adapter = hw->back; 4871 pcix_set_mmrbc(adapter->pdev, mmrbc); 4872 } 4873 4874 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) 4875 { 4876 outl(value, port); 4877 } 4878 4879 static bool e1000_vlan_used(struct e1000_adapter *adapter) 4880 { 4881 u16 vid; 4882 4883 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 4884 return true; 4885 return false; 4886 } 4887 4888 static void __e1000_vlan_mode(struct e1000_adapter *adapter, 4889 netdev_features_t features) 4890 { 4891 struct e1000_hw *hw = &adapter->hw; 4892 u32 ctrl; 4893 4894 ctrl = er32(CTRL); 4895 if (features & NETIF_F_HW_VLAN_CTAG_RX) { 4896 /* enable VLAN tag insert/strip */ 4897 ctrl |= E1000_CTRL_VME; 4898 } else { 4899 /* disable VLAN tag insert/strip */ 4900 ctrl &= ~E1000_CTRL_VME; 4901 } 4902 ew32(CTRL, ctrl); 4903 } 4904 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 4905 bool filter_on) 4906 { 4907 struct e1000_hw *hw = &adapter->hw; 4908 u32 rctl; 4909 4910 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4911 e1000_irq_disable(adapter); 4912 4913 __e1000_vlan_mode(adapter, adapter->netdev->features); 4914 if (filter_on) { 4915 /* enable VLAN receive filtering */ 4916 rctl = er32(RCTL); 4917 rctl &= ~E1000_RCTL_CFIEN; 4918 if (!(adapter->netdev->flags & IFF_PROMISC)) 4919 rctl |= E1000_RCTL_VFE; 4920 ew32(RCTL, rctl); 4921 e1000_update_mng_vlan(adapter); 4922 } else { 4923 /* disable VLAN receive filtering */ 4924 rctl = er32(RCTL); 4925 rctl &= ~E1000_RCTL_VFE; 4926 ew32(RCTL, rctl); 4927 } 4928 4929 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4930 e1000_irq_enable(adapter); 4931 } 4932 4933 static void e1000_vlan_mode(struct net_device *netdev, 4934 netdev_features_t features) 4935 { 4936 struct e1000_adapter *adapter = netdev_priv(netdev); 4937 4938 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4939 e1000_irq_disable(adapter); 4940 4941 __e1000_vlan_mode(adapter, features); 4942 4943 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4944 e1000_irq_enable(adapter); 4945 } 4946 4947 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 4948 __be16 proto, u16 vid) 4949 { 4950 struct e1000_adapter *adapter = netdev_priv(netdev); 4951 struct e1000_hw *hw = &adapter->hw; 4952 u32 vfta, index; 4953 4954 if ((hw->mng_cookie.status & 4955 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 4956 (vid == adapter->mng_vlan_id)) 4957 return 0; 4958 4959 if (!e1000_vlan_used(adapter)) 4960 e1000_vlan_filter_on_off(adapter, true); 4961 4962 /* add VID to filter table */ 4963 index = (vid >> 5) & 0x7F; 4964 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4965 vfta |= (1 << (vid & 0x1F)); 4966 e1000_write_vfta(hw, index, vfta); 4967 4968 set_bit(vid, adapter->active_vlans); 4969 4970 return 0; 4971 } 4972 4973 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 4974 __be16 proto, u16 vid) 4975 { 4976 struct e1000_adapter *adapter = netdev_priv(netdev); 4977 struct e1000_hw *hw = &adapter->hw; 4978 u32 vfta, index; 4979 4980 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4981 e1000_irq_disable(adapter); 4982 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4983 e1000_irq_enable(adapter); 4984 4985 /* remove VID from filter table */ 4986 index = (vid >> 5) & 0x7F; 4987 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4988 vfta &= ~(1 << (vid & 0x1F)); 4989 e1000_write_vfta(hw, index, vfta); 4990 4991 clear_bit(vid, adapter->active_vlans); 4992 4993 if (!e1000_vlan_used(adapter)) 4994 e1000_vlan_filter_on_off(adapter, false); 4995 4996 return 0; 4997 } 4998 4999 static void e1000_restore_vlan(struct e1000_adapter *adapter) 5000 { 5001 u16 vid; 5002 5003 if (!e1000_vlan_used(adapter)) 5004 return; 5005 5006 e1000_vlan_filter_on_off(adapter, true); 5007 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 5008 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 5009 } 5010 5011 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 5012 { 5013 struct e1000_hw *hw = &adapter->hw; 5014 5015 hw->autoneg = 0; 5016 5017 /* Make sure dplx is at most 1 bit and lsb of speed is not set 5018 * for the switch() below to work 5019 */ 5020 if ((spd & 1) || (dplx & ~1)) 5021 goto err_inval; 5022 5023 /* Fiber NICs only allow 1000 gbps Full duplex */ 5024 if ((hw->media_type == e1000_media_type_fiber) && 5025 spd != SPEED_1000 && 5026 dplx != DUPLEX_FULL) 5027 goto err_inval; 5028 5029 switch (spd + dplx) { 5030 case SPEED_10 + DUPLEX_HALF: 5031 hw->forced_speed_duplex = e1000_10_half; 5032 break; 5033 case SPEED_10 + DUPLEX_FULL: 5034 hw->forced_speed_duplex = e1000_10_full; 5035 break; 5036 case SPEED_100 + DUPLEX_HALF: 5037 hw->forced_speed_duplex = e1000_100_half; 5038 break; 5039 case SPEED_100 + DUPLEX_FULL: 5040 hw->forced_speed_duplex = e1000_100_full; 5041 break; 5042 case SPEED_1000 + DUPLEX_FULL: 5043 hw->autoneg = 1; 5044 hw->autoneg_advertised = ADVERTISE_1000_FULL; 5045 break; 5046 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 5047 default: 5048 goto err_inval; 5049 } 5050 5051 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 5052 hw->mdix = AUTO_ALL_MODES; 5053 5054 return 0; 5055 5056 err_inval: 5057 e_err(probe, "Unsupported Speed/Duplex configuration\n"); 5058 return -EINVAL; 5059 } 5060 5061 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) 5062 { 5063 struct net_device *netdev = pci_get_drvdata(pdev); 5064 struct e1000_adapter *adapter = netdev_priv(netdev); 5065 struct e1000_hw *hw = &adapter->hw; 5066 u32 ctrl, ctrl_ext, rctl, status; 5067 u32 wufc = adapter->wol; 5068 5069 netif_device_detach(netdev); 5070 5071 if (netif_running(netdev)) { 5072 int count = E1000_CHECK_RESET_COUNT; 5073 5074 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 5075 usleep_range(10000, 20000); 5076 5077 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 5078 e1000_down(adapter); 5079 } 5080 5081 status = er32(STATUS); 5082 if (status & E1000_STATUS_LU) 5083 wufc &= ~E1000_WUFC_LNKC; 5084 5085 if (wufc) { 5086 e1000_setup_rctl(adapter); 5087 e1000_set_rx_mode(netdev); 5088 5089 rctl = er32(RCTL); 5090 5091 /* turn on all-multi mode if wake on multicast is enabled */ 5092 if (wufc & E1000_WUFC_MC) 5093 rctl |= E1000_RCTL_MPE; 5094 5095 /* enable receives in the hardware */ 5096 ew32(RCTL, rctl | E1000_RCTL_EN); 5097 5098 if (hw->mac_type >= e1000_82540) { 5099 ctrl = er32(CTRL); 5100 /* advertise wake from D3Cold */ 5101 #define E1000_CTRL_ADVD3WUC 0x00100000 5102 /* phy power management enable */ 5103 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 5104 ctrl |= E1000_CTRL_ADVD3WUC | 5105 E1000_CTRL_EN_PHY_PWR_MGMT; 5106 ew32(CTRL, ctrl); 5107 } 5108 5109 if (hw->media_type == e1000_media_type_fiber || 5110 hw->media_type == e1000_media_type_internal_serdes) { 5111 /* keep the laser running in D3 */ 5112 ctrl_ext = er32(CTRL_EXT); 5113 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; 5114 ew32(CTRL_EXT, ctrl_ext); 5115 } 5116 5117 ew32(WUC, E1000_WUC_PME_EN); 5118 ew32(WUFC, wufc); 5119 } else { 5120 ew32(WUC, 0); 5121 ew32(WUFC, 0); 5122 } 5123 5124 e1000_release_manageability(adapter); 5125 5126 *enable_wake = !!wufc; 5127 5128 /* make sure adapter isn't asleep if manageability is enabled */ 5129 if (adapter->en_mng_pt) 5130 *enable_wake = true; 5131 5132 if (netif_running(netdev)) 5133 e1000_free_irq(adapter); 5134 5135 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags)) 5136 pci_disable_device(pdev); 5137 5138 return 0; 5139 } 5140 5141 static int __maybe_unused e1000_suspend(struct device *dev) 5142 { 5143 int retval; 5144 struct pci_dev *pdev = to_pci_dev(dev); 5145 bool wake; 5146 5147 retval = __e1000_shutdown(pdev, &wake); 5148 device_set_wakeup_enable(dev, wake); 5149 5150 return retval; 5151 } 5152 5153 static int __maybe_unused e1000_resume(struct device *dev) 5154 { 5155 struct pci_dev *pdev = to_pci_dev(dev); 5156 struct net_device *netdev = pci_get_drvdata(pdev); 5157 struct e1000_adapter *adapter = netdev_priv(netdev); 5158 struct e1000_hw *hw = &adapter->hw; 5159 u32 err; 5160 5161 if (adapter->need_ioport) 5162 err = pci_enable_device(pdev); 5163 else 5164 err = pci_enable_device_mem(pdev); 5165 if (err) { 5166 pr_err("Cannot enable PCI device from suspend\n"); 5167 return err; 5168 } 5169 5170 /* flush memory to make sure state is correct */ 5171 smp_mb__before_atomic(); 5172 clear_bit(__E1000_DISABLED, &adapter->flags); 5173 pci_set_master(pdev); 5174 5175 pci_enable_wake(pdev, PCI_D3hot, 0); 5176 pci_enable_wake(pdev, PCI_D3cold, 0); 5177 5178 if (netif_running(netdev)) { 5179 err = e1000_request_irq(adapter); 5180 if (err) 5181 return err; 5182 } 5183 5184 e1000_power_up_phy(adapter); 5185 e1000_reset(adapter); 5186 ew32(WUS, ~0); 5187 5188 e1000_init_manageability(adapter); 5189 5190 if (netif_running(netdev)) 5191 e1000_up(adapter); 5192 5193 netif_device_attach(netdev); 5194 5195 return 0; 5196 } 5197 5198 static void e1000_shutdown(struct pci_dev *pdev) 5199 { 5200 bool wake; 5201 5202 __e1000_shutdown(pdev, &wake); 5203 5204 if (system_state == SYSTEM_POWER_OFF) { 5205 pci_wake_from_d3(pdev, wake); 5206 pci_set_power_state(pdev, PCI_D3hot); 5207 } 5208 } 5209 5210 #ifdef CONFIG_NET_POLL_CONTROLLER 5211 /* Polling 'interrupt' - used by things like netconsole to send skbs 5212 * without having to re-enable interrupts. It's not called while 5213 * the interrupt routine is executing. 5214 */ 5215 static void e1000_netpoll(struct net_device *netdev) 5216 { 5217 struct e1000_adapter *adapter = netdev_priv(netdev); 5218 5219 if (disable_hardirq(adapter->pdev->irq)) 5220 e1000_intr(adapter->pdev->irq, netdev); 5221 enable_irq(adapter->pdev->irq); 5222 } 5223 #endif 5224 5225 /** 5226 * e1000_io_error_detected - called when PCI error is detected 5227 * @pdev: Pointer to PCI device 5228 * @state: The current pci connection state 5229 * 5230 * This function is called after a PCI bus error affecting 5231 * this device has been detected. 5232 */ 5233 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 5234 pci_channel_state_t state) 5235 { 5236 struct net_device *netdev = pci_get_drvdata(pdev); 5237 struct e1000_adapter *adapter = netdev_priv(netdev); 5238 5239 netif_device_detach(netdev); 5240 5241 if (state == pci_channel_io_perm_failure) 5242 return PCI_ERS_RESULT_DISCONNECT; 5243 5244 if (netif_running(netdev)) 5245 e1000_down(adapter); 5246 5247 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags)) 5248 pci_disable_device(pdev); 5249 5250 /* Request a slot reset. */ 5251 return PCI_ERS_RESULT_NEED_RESET; 5252 } 5253 5254 /** 5255 * e1000_io_slot_reset - called after the pci bus has been reset. 5256 * @pdev: Pointer to PCI device 5257 * 5258 * Restart the card from scratch, as if from a cold-boot. Implementation 5259 * resembles the first-half of the e1000_resume routine. 5260 */ 5261 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 5262 { 5263 struct net_device *netdev = pci_get_drvdata(pdev); 5264 struct e1000_adapter *adapter = netdev_priv(netdev); 5265 struct e1000_hw *hw = &adapter->hw; 5266 int err; 5267 5268 if (adapter->need_ioport) 5269 err = pci_enable_device(pdev); 5270 else 5271 err = pci_enable_device_mem(pdev); 5272 if (err) { 5273 pr_err("Cannot re-enable PCI device after reset.\n"); 5274 return PCI_ERS_RESULT_DISCONNECT; 5275 } 5276 5277 /* flush memory to make sure state is correct */ 5278 smp_mb__before_atomic(); 5279 clear_bit(__E1000_DISABLED, &adapter->flags); 5280 pci_set_master(pdev); 5281 5282 pci_enable_wake(pdev, PCI_D3hot, 0); 5283 pci_enable_wake(pdev, PCI_D3cold, 0); 5284 5285 e1000_reset(adapter); 5286 ew32(WUS, ~0); 5287 5288 return PCI_ERS_RESULT_RECOVERED; 5289 } 5290 5291 /** 5292 * e1000_io_resume - called when traffic can start flowing again. 5293 * @pdev: Pointer to PCI device 5294 * 5295 * This callback is called when the error recovery driver tells us that 5296 * its OK to resume normal operation. Implementation resembles the 5297 * second-half of the e1000_resume routine. 5298 */ 5299 static void e1000_io_resume(struct pci_dev *pdev) 5300 { 5301 struct net_device *netdev = pci_get_drvdata(pdev); 5302 struct e1000_adapter *adapter = netdev_priv(netdev); 5303 5304 e1000_init_manageability(adapter); 5305 5306 if (netif_running(netdev)) { 5307 if (e1000_up(adapter)) { 5308 pr_info("can't bring device back up after reset\n"); 5309 return; 5310 } 5311 } 5312 5313 netif_device_attach(netdev); 5314 } 5315 5316 /* e1000_main.c */ 5317