1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35 
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41 
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static const struct pci_device_id e1000_pci_tbl[] = {
50 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 	/* required last entry */
88 	{0,}
89 };
90 
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92 
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 				    struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 				    struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 				    struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 				    struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110 
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 int e1000_open(struct net_device *netdev);
118 int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 				struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 				struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 				    struct net_device *netdev);
134 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
135 static int e1000_set_mac(struct net_device *netdev, void *p);
136 static irqreturn_t e1000_intr(int irq, void *data);
137 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
138 			       struct e1000_tx_ring *tx_ring);
139 static int e1000_clean(struct napi_struct *napi, int budget);
140 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
141 			       struct e1000_rx_ring *rx_ring,
142 			       int *work_done, int work_to_do);
143 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
144 				     struct e1000_rx_ring *rx_ring,
145 				     int *work_done, int work_to_do);
146 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
147 					 struct e1000_rx_ring *rx_ring,
148 					 int cleaned_count)
149 {
150 }
151 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
152 				   struct e1000_rx_ring *rx_ring,
153 				   int cleaned_count);
154 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
155 					 struct e1000_rx_ring *rx_ring,
156 					 int cleaned_count);
157 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
158 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
159 			   int cmd);
160 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
161 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
162 static void e1000_tx_timeout(struct net_device *dev);
163 static void e1000_reset_task(struct work_struct *work);
164 static void e1000_smartspeed(struct e1000_adapter *adapter);
165 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
166 				       struct sk_buff *skb);
167 
168 static bool e1000_vlan_used(struct e1000_adapter *adapter);
169 static void e1000_vlan_mode(struct net_device *netdev,
170 			    netdev_features_t features);
171 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
172 				     bool filter_on);
173 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
174 				 __be16 proto, u16 vid);
175 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
176 				  __be16 proto, u16 vid);
177 static void e1000_restore_vlan(struct e1000_adapter *adapter);
178 
179 #ifdef CONFIG_PM
180 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
181 static int e1000_resume(struct pci_dev *pdev);
182 #endif
183 static void e1000_shutdown(struct pci_dev *pdev);
184 
185 #ifdef CONFIG_NET_POLL_CONTROLLER
186 /* for netdump / net console */
187 static void e1000_netpoll (struct net_device *netdev);
188 #endif
189 
190 #define COPYBREAK_DEFAULT 256
191 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
192 module_param(copybreak, uint, 0644);
193 MODULE_PARM_DESC(copybreak,
194 	"Maximum size of packet that is copied to a new buffer on receive");
195 
196 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
197 						pci_channel_state_t state);
198 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
199 static void e1000_io_resume(struct pci_dev *pdev);
200 
201 static const struct pci_error_handlers e1000_err_handler = {
202 	.error_detected = e1000_io_error_detected,
203 	.slot_reset = e1000_io_slot_reset,
204 	.resume = e1000_io_resume,
205 };
206 
207 static struct pci_driver e1000_driver = {
208 	.name     = e1000_driver_name,
209 	.id_table = e1000_pci_tbl,
210 	.probe    = e1000_probe,
211 	.remove   = e1000_remove,
212 #ifdef CONFIG_PM
213 	/* Power Management Hooks */
214 	.suspend  = e1000_suspend,
215 	.resume   = e1000_resume,
216 #endif
217 	.shutdown = e1000_shutdown,
218 	.err_handler = &e1000_err_handler
219 };
220 
221 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
222 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
223 MODULE_LICENSE("GPL");
224 MODULE_VERSION(DRV_VERSION);
225 
226 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
227 static int debug = -1;
228 module_param(debug, int, 0);
229 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
230 
231 /**
232  * e1000_get_hw_dev - return device
233  * used by hardware layer to print debugging information
234  *
235  **/
236 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
237 {
238 	struct e1000_adapter *adapter = hw->back;
239 	return adapter->netdev;
240 }
241 
242 /**
243  * e1000_init_module - Driver Registration Routine
244  *
245  * e1000_init_module is the first routine called when the driver is
246  * loaded. All it does is register with the PCI subsystem.
247  **/
248 static int __init e1000_init_module(void)
249 {
250 	int ret;
251 	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
252 
253 	pr_info("%s\n", e1000_copyright);
254 
255 	ret = pci_register_driver(&e1000_driver);
256 	if (copybreak != COPYBREAK_DEFAULT) {
257 		if (copybreak == 0)
258 			pr_info("copybreak disabled\n");
259 		else
260 			pr_info("copybreak enabled for "
261 				   "packets <= %u bytes\n", copybreak);
262 	}
263 	return ret;
264 }
265 
266 module_init(e1000_init_module);
267 
268 /**
269  * e1000_exit_module - Driver Exit Cleanup Routine
270  *
271  * e1000_exit_module is called just before the driver is removed
272  * from memory.
273  **/
274 static void __exit e1000_exit_module(void)
275 {
276 	pci_unregister_driver(&e1000_driver);
277 }
278 
279 module_exit(e1000_exit_module);
280 
281 static int e1000_request_irq(struct e1000_adapter *adapter)
282 {
283 	struct net_device *netdev = adapter->netdev;
284 	irq_handler_t handler = e1000_intr;
285 	int irq_flags = IRQF_SHARED;
286 	int err;
287 
288 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
289 			  netdev);
290 	if (err) {
291 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
292 	}
293 
294 	return err;
295 }
296 
297 static void e1000_free_irq(struct e1000_adapter *adapter)
298 {
299 	struct net_device *netdev = adapter->netdev;
300 
301 	free_irq(adapter->pdev->irq, netdev);
302 }
303 
304 /**
305  * e1000_irq_disable - Mask off interrupt generation on the NIC
306  * @adapter: board private structure
307  **/
308 static void e1000_irq_disable(struct e1000_adapter *adapter)
309 {
310 	struct e1000_hw *hw = &adapter->hw;
311 
312 	ew32(IMC, ~0);
313 	E1000_WRITE_FLUSH();
314 	synchronize_irq(adapter->pdev->irq);
315 }
316 
317 /**
318  * e1000_irq_enable - Enable default interrupt generation settings
319  * @adapter: board private structure
320  **/
321 static void e1000_irq_enable(struct e1000_adapter *adapter)
322 {
323 	struct e1000_hw *hw = &adapter->hw;
324 
325 	ew32(IMS, IMS_ENABLE_MASK);
326 	E1000_WRITE_FLUSH();
327 }
328 
329 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
330 {
331 	struct e1000_hw *hw = &adapter->hw;
332 	struct net_device *netdev = adapter->netdev;
333 	u16 vid = hw->mng_cookie.vlan_id;
334 	u16 old_vid = adapter->mng_vlan_id;
335 
336 	if (!e1000_vlan_used(adapter))
337 		return;
338 
339 	if (!test_bit(vid, adapter->active_vlans)) {
340 		if (hw->mng_cookie.status &
341 		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
342 			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
343 			adapter->mng_vlan_id = vid;
344 		} else {
345 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
346 		}
347 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
348 		    (vid != old_vid) &&
349 		    !test_bit(old_vid, adapter->active_vlans))
350 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
351 					       old_vid);
352 	} else {
353 		adapter->mng_vlan_id = vid;
354 	}
355 }
356 
357 static void e1000_init_manageability(struct e1000_adapter *adapter)
358 {
359 	struct e1000_hw *hw = &adapter->hw;
360 
361 	if (adapter->en_mng_pt) {
362 		u32 manc = er32(MANC);
363 
364 		/* disable hardware interception of ARP */
365 		manc &= ~(E1000_MANC_ARP_EN);
366 
367 		ew32(MANC, manc);
368 	}
369 }
370 
371 static void e1000_release_manageability(struct e1000_adapter *adapter)
372 {
373 	struct e1000_hw *hw = &adapter->hw;
374 
375 	if (adapter->en_mng_pt) {
376 		u32 manc = er32(MANC);
377 
378 		/* re-enable hardware interception of ARP */
379 		manc |= E1000_MANC_ARP_EN;
380 
381 		ew32(MANC, manc);
382 	}
383 }
384 
385 /**
386  * e1000_configure - configure the hardware for RX and TX
387  * @adapter = private board structure
388  **/
389 static void e1000_configure(struct e1000_adapter *adapter)
390 {
391 	struct net_device *netdev = adapter->netdev;
392 	int i;
393 
394 	e1000_set_rx_mode(netdev);
395 
396 	e1000_restore_vlan(adapter);
397 	e1000_init_manageability(adapter);
398 
399 	e1000_configure_tx(adapter);
400 	e1000_setup_rctl(adapter);
401 	e1000_configure_rx(adapter);
402 	/* call E1000_DESC_UNUSED which always leaves
403 	 * at least 1 descriptor unused to make sure
404 	 * next_to_use != next_to_clean
405 	 */
406 	for (i = 0; i < adapter->num_rx_queues; i++) {
407 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
408 		adapter->alloc_rx_buf(adapter, ring,
409 				      E1000_DESC_UNUSED(ring));
410 	}
411 }
412 
413 int e1000_up(struct e1000_adapter *adapter)
414 {
415 	struct e1000_hw *hw = &adapter->hw;
416 
417 	/* hardware has been reset, we need to reload some things */
418 	e1000_configure(adapter);
419 
420 	clear_bit(__E1000_DOWN, &adapter->flags);
421 
422 	napi_enable(&adapter->napi);
423 
424 	e1000_irq_enable(adapter);
425 
426 	netif_wake_queue(adapter->netdev);
427 
428 	/* fire a link change interrupt to start the watchdog */
429 	ew32(ICS, E1000_ICS_LSC);
430 	return 0;
431 }
432 
433 /**
434  * e1000_power_up_phy - restore link in case the phy was powered down
435  * @adapter: address of board private structure
436  *
437  * The phy may be powered down to save power and turn off link when the
438  * driver is unloaded and wake on lan is not enabled (among others)
439  * *** this routine MUST be followed by a call to e1000_reset ***
440  **/
441 void e1000_power_up_phy(struct e1000_adapter *adapter)
442 {
443 	struct e1000_hw *hw = &adapter->hw;
444 	u16 mii_reg = 0;
445 
446 	/* Just clear the power down bit to wake the phy back up */
447 	if (hw->media_type == e1000_media_type_copper) {
448 		/* according to the manual, the phy will retain its
449 		 * settings across a power-down/up cycle
450 		 */
451 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
452 		mii_reg &= ~MII_CR_POWER_DOWN;
453 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
454 	}
455 }
456 
457 static void e1000_power_down_phy(struct e1000_adapter *adapter)
458 {
459 	struct e1000_hw *hw = &adapter->hw;
460 
461 	/* Power down the PHY so no link is implied when interface is down *
462 	 * The PHY cannot be powered down if any of the following is true *
463 	 * (a) WoL is enabled
464 	 * (b) AMT is active
465 	 * (c) SoL/IDER session is active
466 	 */
467 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
468 	   hw->media_type == e1000_media_type_copper) {
469 		u16 mii_reg = 0;
470 
471 		switch (hw->mac_type) {
472 		case e1000_82540:
473 		case e1000_82545:
474 		case e1000_82545_rev_3:
475 		case e1000_82546:
476 		case e1000_ce4100:
477 		case e1000_82546_rev_3:
478 		case e1000_82541:
479 		case e1000_82541_rev_2:
480 		case e1000_82547:
481 		case e1000_82547_rev_2:
482 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
483 				goto out;
484 			break;
485 		default:
486 			goto out;
487 		}
488 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
489 		mii_reg |= MII_CR_POWER_DOWN;
490 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
491 		msleep(1);
492 	}
493 out:
494 	return;
495 }
496 
497 static void e1000_down_and_stop(struct e1000_adapter *adapter)
498 {
499 	set_bit(__E1000_DOWN, &adapter->flags);
500 
501 	cancel_delayed_work_sync(&adapter->watchdog_task);
502 
503 	/*
504 	 * Since the watchdog task can reschedule other tasks, we should cancel
505 	 * it first, otherwise we can run into the situation when a work is
506 	 * still running after the adapter has been turned down.
507 	 */
508 
509 	cancel_delayed_work_sync(&adapter->phy_info_task);
510 	cancel_delayed_work_sync(&adapter->fifo_stall_task);
511 
512 	/* Only kill reset task if adapter is not resetting */
513 	if (!test_bit(__E1000_RESETTING, &adapter->flags))
514 		cancel_work_sync(&adapter->reset_task);
515 }
516 
517 void e1000_down(struct e1000_adapter *adapter)
518 {
519 	struct e1000_hw *hw = &adapter->hw;
520 	struct net_device *netdev = adapter->netdev;
521 	u32 rctl, tctl;
522 
523 	netif_carrier_off(netdev);
524 
525 	/* disable receives in the hardware */
526 	rctl = er32(RCTL);
527 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
528 	/* flush and sleep below */
529 
530 	netif_tx_disable(netdev);
531 
532 	/* disable transmits in the hardware */
533 	tctl = er32(TCTL);
534 	tctl &= ~E1000_TCTL_EN;
535 	ew32(TCTL, tctl);
536 	/* flush both disables and wait for them to finish */
537 	E1000_WRITE_FLUSH();
538 	msleep(10);
539 
540 	napi_disable(&adapter->napi);
541 
542 	e1000_irq_disable(adapter);
543 
544 	/* Setting DOWN must be after irq_disable to prevent
545 	 * a screaming interrupt.  Setting DOWN also prevents
546 	 * tasks from rescheduling.
547 	 */
548 	e1000_down_and_stop(adapter);
549 
550 	adapter->link_speed = 0;
551 	adapter->link_duplex = 0;
552 
553 	e1000_reset(adapter);
554 	e1000_clean_all_tx_rings(adapter);
555 	e1000_clean_all_rx_rings(adapter);
556 }
557 
558 void e1000_reinit_locked(struct e1000_adapter *adapter)
559 {
560 	WARN_ON(in_interrupt());
561 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
562 		msleep(1);
563 	e1000_down(adapter);
564 	e1000_up(adapter);
565 	clear_bit(__E1000_RESETTING, &adapter->flags);
566 }
567 
568 void e1000_reset(struct e1000_adapter *adapter)
569 {
570 	struct e1000_hw *hw = &adapter->hw;
571 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
572 	bool legacy_pba_adjust = false;
573 	u16 hwm;
574 
575 	/* Repartition Pba for greater than 9k mtu
576 	 * To take effect CTRL.RST is required.
577 	 */
578 
579 	switch (hw->mac_type) {
580 	case e1000_82542_rev2_0:
581 	case e1000_82542_rev2_1:
582 	case e1000_82543:
583 	case e1000_82544:
584 	case e1000_82540:
585 	case e1000_82541:
586 	case e1000_82541_rev_2:
587 		legacy_pba_adjust = true;
588 		pba = E1000_PBA_48K;
589 		break;
590 	case e1000_82545:
591 	case e1000_82545_rev_3:
592 	case e1000_82546:
593 	case e1000_ce4100:
594 	case e1000_82546_rev_3:
595 		pba = E1000_PBA_48K;
596 		break;
597 	case e1000_82547:
598 	case e1000_82547_rev_2:
599 		legacy_pba_adjust = true;
600 		pba = E1000_PBA_30K;
601 		break;
602 	case e1000_undefined:
603 	case e1000_num_macs:
604 		break;
605 	}
606 
607 	if (legacy_pba_adjust) {
608 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
609 			pba -= 8; /* allocate more FIFO for Tx */
610 
611 		if (hw->mac_type == e1000_82547) {
612 			adapter->tx_fifo_head = 0;
613 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
614 			adapter->tx_fifo_size =
615 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
616 			atomic_set(&adapter->tx_fifo_stall, 0);
617 		}
618 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
619 		/* adjust PBA for jumbo frames */
620 		ew32(PBA, pba);
621 
622 		/* To maintain wire speed transmits, the Tx FIFO should be
623 		 * large enough to accommodate two full transmit packets,
624 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
625 		 * the Rx FIFO should be large enough to accommodate at least
626 		 * one full receive packet and is similarly rounded up and
627 		 * expressed in KB.
628 		 */
629 		pba = er32(PBA);
630 		/* upper 16 bits has Tx packet buffer allocation size in KB */
631 		tx_space = pba >> 16;
632 		/* lower 16 bits has Rx packet buffer allocation size in KB */
633 		pba &= 0xffff;
634 		/* the Tx fifo also stores 16 bytes of information about the Tx
635 		 * but don't include ethernet FCS because hardware appends it
636 		 */
637 		min_tx_space = (hw->max_frame_size +
638 				sizeof(struct e1000_tx_desc) -
639 				ETH_FCS_LEN) * 2;
640 		min_tx_space = ALIGN(min_tx_space, 1024);
641 		min_tx_space >>= 10;
642 		/* software strips receive CRC, so leave room for it */
643 		min_rx_space = hw->max_frame_size;
644 		min_rx_space = ALIGN(min_rx_space, 1024);
645 		min_rx_space >>= 10;
646 
647 		/* If current Tx allocation is less than the min Tx FIFO size,
648 		 * and the min Tx FIFO size is less than the current Rx FIFO
649 		 * allocation, take space away from current Rx allocation
650 		 */
651 		if (tx_space < min_tx_space &&
652 		    ((min_tx_space - tx_space) < pba)) {
653 			pba = pba - (min_tx_space - tx_space);
654 
655 			/* PCI/PCIx hardware has PBA alignment constraints */
656 			switch (hw->mac_type) {
657 			case e1000_82545 ... e1000_82546_rev_3:
658 				pba &= ~(E1000_PBA_8K - 1);
659 				break;
660 			default:
661 				break;
662 			}
663 
664 			/* if short on Rx space, Rx wins and must trump Tx
665 			 * adjustment or use Early Receive if available
666 			 */
667 			if (pba < min_rx_space)
668 				pba = min_rx_space;
669 		}
670 	}
671 
672 	ew32(PBA, pba);
673 
674 	/* flow control settings:
675 	 * The high water mark must be low enough to fit one full frame
676 	 * (or the size used for early receive) above it in the Rx FIFO.
677 	 * Set it to the lower of:
678 	 * - 90% of the Rx FIFO size, and
679 	 * - the full Rx FIFO size minus the early receive size (for parts
680 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
681 	 * - the full Rx FIFO size minus one full frame
682 	 */
683 	hwm = min(((pba << 10) * 9 / 10),
684 		  ((pba << 10) - hw->max_frame_size));
685 
686 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
687 	hw->fc_low_water = hw->fc_high_water - 8;
688 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
689 	hw->fc_send_xon = 1;
690 	hw->fc = hw->original_fc;
691 
692 	/* Allow time for pending master requests to run */
693 	e1000_reset_hw(hw);
694 	if (hw->mac_type >= e1000_82544)
695 		ew32(WUC, 0);
696 
697 	if (e1000_init_hw(hw))
698 		e_dev_err("Hardware Error\n");
699 	e1000_update_mng_vlan(adapter);
700 
701 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
702 	if (hw->mac_type >= e1000_82544 &&
703 	    hw->autoneg == 1 &&
704 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
705 		u32 ctrl = er32(CTRL);
706 		/* clear phy power management bit if we are in gig only mode,
707 		 * which if enabled will attempt negotiation to 100Mb, which
708 		 * can cause a loss of link at power off or driver unload
709 		 */
710 		ctrl &= ~E1000_CTRL_SWDPIN3;
711 		ew32(CTRL, ctrl);
712 	}
713 
714 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
715 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
716 
717 	e1000_reset_adaptive(hw);
718 	e1000_phy_get_info(hw, &adapter->phy_info);
719 
720 	e1000_release_manageability(adapter);
721 }
722 
723 /* Dump the eeprom for users having checksum issues */
724 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
725 {
726 	struct net_device *netdev = adapter->netdev;
727 	struct ethtool_eeprom eeprom;
728 	const struct ethtool_ops *ops = netdev->ethtool_ops;
729 	u8 *data;
730 	int i;
731 	u16 csum_old, csum_new = 0;
732 
733 	eeprom.len = ops->get_eeprom_len(netdev);
734 	eeprom.offset = 0;
735 
736 	data = kmalloc(eeprom.len, GFP_KERNEL);
737 	if (!data)
738 		return;
739 
740 	ops->get_eeprom(netdev, &eeprom, data);
741 
742 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
743 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
744 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
745 		csum_new += data[i] + (data[i + 1] << 8);
746 	csum_new = EEPROM_SUM - csum_new;
747 
748 	pr_err("/*********************/\n");
749 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
750 	pr_err("Calculated              : 0x%04x\n", csum_new);
751 
752 	pr_err("Offset    Values\n");
753 	pr_err("========  ======\n");
754 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
755 
756 	pr_err("Include this output when contacting your support provider.\n");
757 	pr_err("This is not a software error! Something bad happened to\n");
758 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
759 	pr_err("result in further problems, possibly loss of data,\n");
760 	pr_err("corruption or system hangs!\n");
761 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
762 	pr_err("which is invalid and requires you to set the proper MAC\n");
763 	pr_err("address manually before continuing to enable this network\n");
764 	pr_err("device. Please inspect the EEPROM dump and report the\n");
765 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
766 	pr_err("/*********************/\n");
767 
768 	kfree(data);
769 }
770 
771 /**
772  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
773  * @pdev: PCI device information struct
774  *
775  * Return true if an adapter needs ioport resources
776  **/
777 static int e1000_is_need_ioport(struct pci_dev *pdev)
778 {
779 	switch (pdev->device) {
780 	case E1000_DEV_ID_82540EM:
781 	case E1000_DEV_ID_82540EM_LOM:
782 	case E1000_DEV_ID_82540EP:
783 	case E1000_DEV_ID_82540EP_LOM:
784 	case E1000_DEV_ID_82540EP_LP:
785 	case E1000_DEV_ID_82541EI:
786 	case E1000_DEV_ID_82541EI_MOBILE:
787 	case E1000_DEV_ID_82541ER:
788 	case E1000_DEV_ID_82541ER_LOM:
789 	case E1000_DEV_ID_82541GI:
790 	case E1000_DEV_ID_82541GI_LF:
791 	case E1000_DEV_ID_82541GI_MOBILE:
792 	case E1000_DEV_ID_82544EI_COPPER:
793 	case E1000_DEV_ID_82544EI_FIBER:
794 	case E1000_DEV_ID_82544GC_COPPER:
795 	case E1000_DEV_ID_82544GC_LOM:
796 	case E1000_DEV_ID_82545EM_COPPER:
797 	case E1000_DEV_ID_82545EM_FIBER:
798 	case E1000_DEV_ID_82546EB_COPPER:
799 	case E1000_DEV_ID_82546EB_FIBER:
800 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
801 		return true;
802 	default:
803 		return false;
804 	}
805 }
806 
807 static netdev_features_t e1000_fix_features(struct net_device *netdev,
808 	netdev_features_t features)
809 {
810 	/* Since there is no support for separate Rx/Tx vlan accel
811 	 * enable/disable make sure Tx flag is always in same state as Rx.
812 	 */
813 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
814 		features |= NETIF_F_HW_VLAN_CTAG_TX;
815 	else
816 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
817 
818 	return features;
819 }
820 
821 static int e1000_set_features(struct net_device *netdev,
822 	netdev_features_t features)
823 {
824 	struct e1000_adapter *adapter = netdev_priv(netdev);
825 	netdev_features_t changed = features ^ netdev->features;
826 
827 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
828 		e1000_vlan_mode(netdev, features);
829 
830 	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
831 		return 0;
832 
833 	netdev->features = features;
834 	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
835 
836 	if (netif_running(netdev))
837 		e1000_reinit_locked(adapter);
838 	else
839 		e1000_reset(adapter);
840 
841 	return 0;
842 }
843 
844 static const struct net_device_ops e1000_netdev_ops = {
845 	.ndo_open		= e1000_open,
846 	.ndo_stop		= e1000_close,
847 	.ndo_start_xmit		= e1000_xmit_frame,
848 	.ndo_set_rx_mode	= e1000_set_rx_mode,
849 	.ndo_set_mac_address	= e1000_set_mac,
850 	.ndo_tx_timeout		= e1000_tx_timeout,
851 	.ndo_change_mtu		= e1000_change_mtu,
852 	.ndo_do_ioctl		= e1000_ioctl,
853 	.ndo_validate_addr	= eth_validate_addr,
854 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
855 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
856 #ifdef CONFIG_NET_POLL_CONTROLLER
857 	.ndo_poll_controller	= e1000_netpoll,
858 #endif
859 	.ndo_fix_features	= e1000_fix_features,
860 	.ndo_set_features	= e1000_set_features,
861 };
862 
863 /**
864  * e1000_init_hw_struct - initialize members of hw struct
865  * @adapter: board private struct
866  * @hw: structure used by e1000_hw.c
867  *
868  * Factors out initialization of the e1000_hw struct to its own function
869  * that can be called very early at init (just after struct allocation).
870  * Fields are initialized based on PCI device information and
871  * OS network device settings (MTU size).
872  * Returns negative error codes if MAC type setup fails.
873  */
874 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
875 				struct e1000_hw *hw)
876 {
877 	struct pci_dev *pdev = adapter->pdev;
878 
879 	/* PCI config space info */
880 	hw->vendor_id = pdev->vendor;
881 	hw->device_id = pdev->device;
882 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
883 	hw->subsystem_id = pdev->subsystem_device;
884 	hw->revision_id = pdev->revision;
885 
886 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
887 
888 	hw->max_frame_size = adapter->netdev->mtu +
889 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
890 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
891 
892 	/* identify the MAC */
893 	if (e1000_set_mac_type(hw)) {
894 		e_err(probe, "Unknown MAC Type\n");
895 		return -EIO;
896 	}
897 
898 	switch (hw->mac_type) {
899 	default:
900 		break;
901 	case e1000_82541:
902 	case e1000_82547:
903 	case e1000_82541_rev_2:
904 	case e1000_82547_rev_2:
905 		hw->phy_init_script = 1;
906 		break;
907 	}
908 
909 	e1000_set_media_type(hw);
910 	e1000_get_bus_info(hw);
911 
912 	hw->wait_autoneg_complete = false;
913 	hw->tbi_compatibility_en = true;
914 	hw->adaptive_ifs = true;
915 
916 	/* Copper options */
917 
918 	if (hw->media_type == e1000_media_type_copper) {
919 		hw->mdix = AUTO_ALL_MODES;
920 		hw->disable_polarity_correction = false;
921 		hw->master_slave = E1000_MASTER_SLAVE;
922 	}
923 
924 	return 0;
925 }
926 
927 /**
928  * e1000_probe - Device Initialization Routine
929  * @pdev: PCI device information struct
930  * @ent: entry in e1000_pci_tbl
931  *
932  * Returns 0 on success, negative on failure
933  *
934  * e1000_probe initializes an adapter identified by a pci_dev structure.
935  * The OS initialization, configuring of the adapter private structure,
936  * and a hardware reset occur.
937  **/
938 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
939 {
940 	struct net_device *netdev;
941 	struct e1000_adapter *adapter;
942 	struct e1000_hw *hw;
943 
944 	static int cards_found;
945 	static int global_quad_port_a; /* global ksp3 port a indication */
946 	int i, err, pci_using_dac;
947 	u16 eeprom_data = 0;
948 	u16 tmp = 0;
949 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
950 	int bars, need_ioport;
951 
952 	/* do not allocate ioport bars when not needed */
953 	need_ioport = e1000_is_need_ioport(pdev);
954 	if (need_ioport) {
955 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
956 		err = pci_enable_device(pdev);
957 	} else {
958 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
959 		err = pci_enable_device_mem(pdev);
960 	}
961 	if (err)
962 		return err;
963 
964 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
965 	if (err)
966 		goto err_pci_reg;
967 
968 	pci_set_master(pdev);
969 	err = pci_save_state(pdev);
970 	if (err)
971 		goto err_alloc_etherdev;
972 
973 	err = -ENOMEM;
974 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
975 	if (!netdev)
976 		goto err_alloc_etherdev;
977 
978 	SET_NETDEV_DEV(netdev, &pdev->dev);
979 
980 	pci_set_drvdata(pdev, netdev);
981 	adapter = netdev_priv(netdev);
982 	adapter->netdev = netdev;
983 	adapter->pdev = pdev;
984 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
985 	adapter->bars = bars;
986 	adapter->need_ioport = need_ioport;
987 
988 	hw = &adapter->hw;
989 	hw->back = adapter;
990 
991 	err = -EIO;
992 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
993 	if (!hw->hw_addr)
994 		goto err_ioremap;
995 
996 	if (adapter->need_ioport) {
997 		for (i = BAR_1; i <= BAR_5; i++) {
998 			if (pci_resource_len(pdev, i) == 0)
999 				continue;
1000 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1001 				hw->io_base = pci_resource_start(pdev, i);
1002 				break;
1003 			}
1004 		}
1005 	}
1006 
1007 	/* make ready for any if (hw->...) below */
1008 	err = e1000_init_hw_struct(adapter, hw);
1009 	if (err)
1010 		goto err_sw_init;
1011 
1012 	/* there is a workaround being applied below that limits
1013 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1014 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1015 	 */
1016 	pci_using_dac = 0;
1017 	if ((hw->bus_type == e1000_bus_type_pcix) &&
1018 	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1019 		pci_using_dac = 1;
1020 	} else {
1021 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1022 		if (err) {
1023 			pr_err("No usable DMA config, aborting\n");
1024 			goto err_dma;
1025 		}
1026 	}
1027 
1028 	netdev->netdev_ops = &e1000_netdev_ops;
1029 	e1000_set_ethtool_ops(netdev);
1030 	netdev->watchdog_timeo = 5 * HZ;
1031 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1032 
1033 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1034 
1035 	adapter->bd_number = cards_found;
1036 
1037 	/* setup the private structure */
1038 
1039 	err = e1000_sw_init(adapter);
1040 	if (err)
1041 		goto err_sw_init;
1042 
1043 	err = -EIO;
1044 	if (hw->mac_type == e1000_ce4100) {
1045 		hw->ce4100_gbe_mdio_base_virt =
1046 					ioremap(pci_resource_start(pdev, BAR_1),
1047 						pci_resource_len(pdev, BAR_1));
1048 
1049 		if (!hw->ce4100_gbe_mdio_base_virt)
1050 			goto err_mdio_ioremap;
1051 	}
1052 
1053 	if (hw->mac_type >= e1000_82543) {
1054 		netdev->hw_features = NETIF_F_SG |
1055 				   NETIF_F_HW_CSUM |
1056 				   NETIF_F_HW_VLAN_CTAG_RX;
1057 		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1058 				   NETIF_F_HW_VLAN_CTAG_FILTER;
1059 	}
1060 
1061 	if ((hw->mac_type >= e1000_82544) &&
1062 	   (hw->mac_type != e1000_82547))
1063 		netdev->hw_features |= NETIF_F_TSO;
1064 
1065 	netdev->priv_flags |= IFF_SUPP_NOFCS;
1066 
1067 	netdev->features |= netdev->hw_features;
1068 	netdev->hw_features |= (NETIF_F_RXCSUM |
1069 				NETIF_F_RXALL |
1070 				NETIF_F_RXFCS);
1071 
1072 	if (pci_using_dac) {
1073 		netdev->features |= NETIF_F_HIGHDMA;
1074 		netdev->vlan_features |= NETIF_F_HIGHDMA;
1075 	}
1076 
1077 	netdev->vlan_features |= (NETIF_F_TSO |
1078 				  NETIF_F_HW_CSUM |
1079 				  NETIF_F_SG);
1080 
1081 	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1082 	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1083 	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1084 		netdev->priv_flags |= IFF_UNICAST_FLT;
1085 
1086 	/* MTU range: 46 - 16110 */
1087 	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1088 	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1089 
1090 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1091 
1092 	/* initialize eeprom parameters */
1093 	if (e1000_init_eeprom_params(hw)) {
1094 		e_err(probe, "EEPROM initialization failed\n");
1095 		goto err_eeprom;
1096 	}
1097 
1098 	/* before reading the EEPROM, reset the controller to
1099 	 * put the device in a known good starting state
1100 	 */
1101 
1102 	e1000_reset_hw(hw);
1103 
1104 	/* make sure the EEPROM is good */
1105 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1106 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1107 		e1000_dump_eeprom(adapter);
1108 		/* set MAC address to all zeroes to invalidate and temporary
1109 		 * disable this device for the user. This blocks regular
1110 		 * traffic while still permitting ethtool ioctls from reaching
1111 		 * the hardware as well as allowing the user to run the
1112 		 * interface after manually setting a hw addr using
1113 		 * `ip set address`
1114 		 */
1115 		memset(hw->mac_addr, 0, netdev->addr_len);
1116 	} else {
1117 		/* copy the MAC address out of the EEPROM */
1118 		if (e1000_read_mac_addr(hw))
1119 			e_err(probe, "EEPROM Read Error\n");
1120 	}
1121 	/* don't block initialization here due to bad MAC address */
1122 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1123 
1124 	if (!is_valid_ether_addr(netdev->dev_addr))
1125 		e_err(probe, "Invalid MAC Address\n");
1126 
1127 
1128 	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1129 	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1130 			  e1000_82547_tx_fifo_stall_task);
1131 	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1132 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1133 
1134 	e1000_check_options(adapter);
1135 
1136 	/* Initial Wake on LAN setting
1137 	 * If APM wake is enabled in the EEPROM,
1138 	 * enable the ACPI Magic Packet filter
1139 	 */
1140 
1141 	switch (hw->mac_type) {
1142 	case e1000_82542_rev2_0:
1143 	case e1000_82542_rev2_1:
1144 	case e1000_82543:
1145 		break;
1146 	case e1000_82544:
1147 		e1000_read_eeprom(hw,
1148 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1149 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1150 		break;
1151 	case e1000_82546:
1152 	case e1000_82546_rev_3:
1153 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1154 			e1000_read_eeprom(hw,
1155 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1156 			break;
1157 		}
1158 		/* Fall Through */
1159 	default:
1160 		e1000_read_eeprom(hw,
1161 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1162 		break;
1163 	}
1164 	if (eeprom_data & eeprom_apme_mask)
1165 		adapter->eeprom_wol |= E1000_WUFC_MAG;
1166 
1167 	/* now that we have the eeprom settings, apply the special cases
1168 	 * where the eeprom may be wrong or the board simply won't support
1169 	 * wake on lan on a particular port
1170 	 */
1171 	switch (pdev->device) {
1172 	case E1000_DEV_ID_82546GB_PCIE:
1173 		adapter->eeprom_wol = 0;
1174 		break;
1175 	case E1000_DEV_ID_82546EB_FIBER:
1176 	case E1000_DEV_ID_82546GB_FIBER:
1177 		/* Wake events only supported on port A for dual fiber
1178 		 * regardless of eeprom setting
1179 		 */
1180 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1181 			adapter->eeprom_wol = 0;
1182 		break;
1183 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1184 		/* if quad port adapter, disable WoL on all but port A */
1185 		if (global_quad_port_a != 0)
1186 			adapter->eeprom_wol = 0;
1187 		else
1188 			adapter->quad_port_a = true;
1189 		/* Reset for multiple quad port adapters */
1190 		if (++global_quad_port_a == 4)
1191 			global_quad_port_a = 0;
1192 		break;
1193 	}
1194 
1195 	/* initialize the wol settings based on the eeprom settings */
1196 	adapter->wol = adapter->eeprom_wol;
1197 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1198 
1199 	/* Auto detect PHY address */
1200 	if (hw->mac_type == e1000_ce4100) {
1201 		for (i = 0; i < 32; i++) {
1202 			hw->phy_addr = i;
1203 			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1204 
1205 			if (tmp != 0 && tmp != 0xFF)
1206 				break;
1207 		}
1208 
1209 		if (i >= 32)
1210 			goto err_eeprom;
1211 	}
1212 
1213 	/* reset the hardware with the new settings */
1214 	e1000_reset(adapter);
1215 
1216 	strcpy(netdev->name, "eth%d");
1217 	err = register_netdev(netdev);
1218 	if (err)
1219 		goto err_register;
1220 
1221 	e1000_vlan_filter_on_off(adapter, false);
1222 
1223 	/* print bus type/speed/width info */
1224 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1225 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1226 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1227 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1228 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1229 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1230 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1231 	       netdev->dev_addr);
1232 
1233 	/* carrier off reporting is important to ethtool even BEFORE open */
1234 	netif_carrier_off(netdev);
1235 
1236 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1237 
1238 	cards_found++;
1239 	return 0;
1240 
1241 err_register:
1242 err_eeprom:
1243 	e1000_phy_hw_reset(hw);
1244 
1245 	if (hw->flash_address)
1246 		iounmap(hw->flash_address);
1247 	kfree(adapter->tx_ring);
1248 	kfree(adapter->rx_ring);
1249 err_dma:
1250 err_sw_init:
1251 err_mdio_ioremap:
1252 	iounmap(hw->ce4100_gbe_mdio_base_virt);
1253 	iounmap(hw->hw_addr);
1254 err_ioremap:
1255 	free_netdev(netdev);
1256 err_alloc_etherdev:
1257 	pci_release_selected_regions(pdev, bars);
1258 err_pci_reg:
1259 	pci_disable_device(pdev);
1260 	return err;
1261 }
1262 
1263 /**
1264  * e1000_remove - Device Removal Routine
1265  * @pdev: PCI device information struct
1266  *
1267  * e1000_remove is called by the PCI subsystem to alert the driver
1268  * that it should release a PCI device. That could be caused by a
1269  * Hot-Plug event, or because the driver is going to be removed from
1270  * memory.
1271  **/
1272 static void e1000_remove(struct pci_dev *pdev)
1273 {
1274 	struct net_device *netdev = pci_get_drvdata(pdev);
1275 	struct e1000_adapter *adapter = netdev_priv(netdev);
1276 	struct e1000_hw *hw = &adapter->hw;
1277 
1278 	e1000_down_and_stop(adapter);
1279 	e1000_release_manageability(adapter);
1280 
1281 	unregister_netdev(netdev);
1282 
1283 	e1000_phy_hw_reset(hw);
1284 
1285 	kfree(adapter->tx_ring);
1286 	kfree(adapter->rx_ring);
1287 
1288 	if (hw->mac_type == e1000_ce4100)
1289 		iounmap(hw->ce4100_gbe_mdio_base_virt);
1290 	iounmap(hw->hw_addr);
1291 	if (hw->flash_address)
1292 		iounmap(hw->flash_address);
1293 	pci_release_selected_regions(pdev, adapter->bars);
1294 
1295 	free_netdev(netdev);
1296 
1297 	pci_disable_device(pdev);
1298 }
1299 
1300 /**
1301  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1302  * @adapter: board private structure to initialize
1303  *
1304  * e1000_sw_init initializes the Adapter private data structure.
1305  * e1000_init_hw_struct MUST be called before this function
1306  **/
1307 static int e1000_sw_init(struct e1000_adapter *adapter)
1308 {
1309 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1310 
1311 	adapter->num_tx_queues = 1;
1312 	adapter->num_rx_queues = 1;
1313 
1314 	if (e1000_alloc_queues(adapter)) {
1315 		e_err(probe, "Unable to allocate memory for queues\n");
1316 		return -ENOMEM;
1317 	}
1318 
1319 	/* Explicitly disable IRQ since the NIC can be in any state. */
1320 	e1000_irq_disable(adapter);
1321 
1322 	spin_lock_init(&adapter->stats_lock);
1323 
1324 	set_bit(__E1000_DOWN, &adapter->flags);
1325 
1326 	return 0;
1327 }
1328 
1329 /**
1330  * e1000_alloc_queues - Allocate memory for all rings
1331  * @adapter: board private structure to initialize
1332  *
1333  * We allocate one ring per queue at run-time since we don't know the
1334  * number of queues at compile-time.
1335  **/
1336 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1337 {
1338 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1339 				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1340 	if (!adapter->tx_ring)
1341 		return -ENOMEM;
1342 
1343 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1344 				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1345 	if (!adapter->rx_ring) {
1346 		kfree(adapter->tx_ring);
1347 		return -ENOMEM;
1348 	}
1349 
1350 	return E1000_SUCCESS;
1351 }
1352 
1353 /**
1354  * e1000_open - Called when a network interface is made active
1355  * @netdev: network interface device structure
1356  *
1357  * Returns 0 on success, negative value on failure
1358  *
1359  * The open entry point is called when a network interface is made
1360  * active by the system (IFF_UP).  At this point all resources needed
1361  * for transmit and receive operations are allocated, the interrupt
1362  * handler is registered with the OS, the watchdog task is started,
1363  * and the stack is notified that the interface is ready.
1364  **/
1365 int e1000_open(struct net_device *netdev)
1366 {
1367 	struct e1000_adapter *adapter = netdev_priv(netdev);
1368 	struct e1000_hw *hw = &adapter->hw;
1369 	int err;
1370 
1371 	/* disallow open during test */
1372 	if (test_bit(__E1000_TESTING, &adapter->flags))
1373 		return -EBUSY;
1374 
1375 	netif_carrier_off(netdev);
1376 
1377 	/* allocate transmit descriptors */
1378 	err = e1000_setup_all_tx_resources(adapter);
1379 	if (err)
1380 		goto err_setup_tx;
1381 
1382 	/* allocate receive descriptors */
1383 	err = e1000_setup_all_rx_resources(adapter);
1384 	if (err)
1385 		goto err_setup_rx;
1386 
1387 	e1000_power_up_phy(adapter);
1388 
1389 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1390 	if ((hw->mng_cookie.status &
1391 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1392 		e1000_update_mng_vlan(adapter);
1393 	}
1394 
1395 	/* before we allocate an interrupt, we must be ready to handle it.
1396 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1397 	 * as soon as we call pci_request_irq, so we have to setup our
1398 	 * clean_rx handler before we do so.
1399 	 */
1400 	e1000_configure(adapter);
1401 
1402 	err = e1000_request_irq(adapter);
1403 	if (err)
1404 		goto err_req_irq;
1405 
1406 	/* From here on the code is the same as e1000_up() */
1407 	clear_bit(__E1000_DOWN, &adapter->flags);
1408 
1409 	napi_enable(&adapter->napi);
1410 
1411 	e1000_irq_enable(adapter);
1412 
1413 	netif_start_queue(netdev);
1414 
1415 	/* fire a link status change interrupt to start the watchdog */
1416 	ew32(ICS, E1000_ICS_LSC);
1417 
1418 	return E1000_SUCCESS;
1419 
1420 err_req_irq:
1421 	e1000_power_down_phy(adapter);
1422 	e1000_free_all_rx_resources(adapter);
1423 err_setup_rx:
1424 	e1000_free_all_tx_resources(adapter);
1425 err_setup_tx:
1426 	e1000_reset(adapter);
1427 
1428 	return err;
1429 }
1430 
1431 /**
1432  * e1000_close - Disables a network interface
1433  * @netdev: network interface device structure
1434  *
1435  * Returns 0, this is not allowed to fail
1436  *
1437  * The close entry point is called when an interface is de-activated
1438  * by the OS.  The hardware is still under the drivers control, but
1439  * needs to be disabled.  A global MAC reset is issued to stop the
1440  * hardware, and all transmit and receive resources are freed.
1441  **/
1442 int e1000_close(struct net_device *netdev)
1443 {
1444 	struct e1000_adapter *adapter = netdev_priv(netdev);
1445 	struct e1000_hw *hw = &adapter->hw;
1446 	int count = E1000_CHECK_RESET_COUNT;
1447 
1448 	while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1449 		usleep_range(10000, 20000);
1450 
1451 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1452 	e1000_down(adapter);
1453 	e1000_power_down_phy(adapter);
1454 	e1000_free_irq(adapter);
1455 
1456 	e1000_free_all_tx_resources(adapter);
1457 	e1000_free_all_rx_resources(adapter);
1458 
1459 	/* kill manageability vlan ID if supported, but not if a vlan with
1460 	 * the same ID is registered on the host OS (let 8021q kill it)
1461 	 */
1462 	if ((hw->mng_cookie.status &
1463 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1464 	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1465 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1466 				       adapter->mng_vlan_id);
1467 	}
1468 
1469 	return 0;
1470 }
1471 
1472 /**
1473  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1474  * @adapter: address of board private structure
1475  * @start: address of beginning of memory
1476  * @len: length of memory
1477  **/
1478 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1479 				  unsigned long len)
1480 {
1481 	struct e1000_hw *hw = &adapter->hw;
1482 	unsigned long begin = (unsigned long)start;
1483 	unsigned long end = begin + len;
1484 
1485 	/* First rev 82545 and 82546 need to not allow any memory
1486 	 * write location to cross 64k boundary due to errata 23
1487 	 */
1488 	if (hw->mac_type == e1000_82545 ||
1489 	    hw->mac_type == e1000_ce4100 ||
1490 	    hw->mac_type == e1000_82546) {
1491 		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1492 	}
1493 
1494 	return true;
1495 }
1496 
1497 /**
1498  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1499  * @adapter: board private structure
1500  * @txdr:    tx descriptor ring (for a specific queue) to setup
1501  *
1502  * Return 0 on success, negative on failure
1503  **/
1504 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1505 				    struct e1000_tx_ring *txdr)
1506 {
1507 	struct pci_dev *pdev = adapter->pdev;
1508 	int size;
1509 
1510 	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1511 	txdr->buffer_info = vzalloc(size);
1512 	if (!txdr->buffer_info)
1513 		return -ENOMEM;
1514 
1515 	/* round up to nearest 4K */
1516 
1517 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1518 	txdr->size = ALIGN(txdr->size, 4096);
1519 
1520 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1521 					GFP_KERNEL);
1522 	if (!txdr->desc) {
1523 setup_tx_desc_die:
1524 		vfree(txdr->buffer_info);
1525 		return -ENOMEM;
1526 	}
1527 
1528 	/* Fix for errata 23, can't cross 64kB boundary */
1529 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1530 		void *olddesc = txdr->desc;
1531 		dma_addr_t olddma = txdr->dma;
1532 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1533 		      txdr->size, txdr->desc);
1534 		/* Try again, without freeing the previous */
1535 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1536 						&txdr->dma, GFP_KERNEL);
1537 		/* Failed allocation, critical failure */
1538 		if (!txdr->desc) {
1539 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1540 					  olddma);
1541 			goto setup_tx_desc_die;
1542 		}
1543 
1544 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1545 			/* give up */
1546 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1547 					  txdr->dma);
1548 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1549 					  olddma);
1550 			e_err(probe, "Unable to allocate aligned memory "
1551 			      "for the transmit descriptor ring\n");
1552 			vfree(txdr->buffer_info);
1553 			return -ENOMEM;
1554 		} else {
1555 			/* Free old allocation, new allocation was successful */
1556 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1557 					  olddma);
1558 		}
1559 	}
1560 	memset(txdr->desc, 0, txdr->size);
1561 
1562 	txdr->next_to_use = 0;
1563 	txdr->next_to_clean = 0;
1564 
1565 	return 0;
1566 }
1567 
1568 /**
1569  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1570  * 				  (Descriptors) for all queues
1571  * @adapter: board private structure
1572  *
1573  * Return 0 on success, negative on failure
1574  **/
1575 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1576 {
1577 	int i, err = 0;
1578 
1579 	for (i = 0; i < adapter->num_tx_queues; i++) {
1580 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1581 		if (err) {
1582 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1583 			for (i-- ; i >= 0; i--)
1584 				e1000_free_tx_resources(adapter,
1585 							&adapter->tx_ring[i]);
1586 			break;
1587 		}
1588 	}
1589 
1590 	return err;
1591 }
1592 
1593 /**
1594  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1595  * @adapter: board private structure
1596  *
1597  * Configure the Tx unit of the MAC after a reset.
1598  **/
1599 static void e1000_configure_tx(struct e1000_adapter *adapter)
1600 {
1601 	u64 tdba;
1602 	struct e1000_hw *hw = &adapter->hw;
1603 	u32 tdlen, tctl, tipg;
1604 	u32 ipgr1, ipgr2;
1605 
1606 	/* Setup the HW Tx Head and Tail descriptor pointers */
1607 
1608 	switch (adapter->num_tx_queues) {
1609 	case 1:
1610 	default:
1611 		tdba = adapter->tx_ring[0].dma;
1612 		tdlen = adapter->tx_ring[0].count *
1613 			sizeof(struct e1000_tx_desc);
1614 		ew32(TDLEN, tdlen);
1615 		ew32(TDBAH, (tdba >> 32));
1616 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1617 		ew32(TDT, 0);
1618 		ew32(TDH, 0);
1619 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1620 					   E1000_TDH : E1000_82542_TDH);
1621 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1622 					   E1000_TDT : E1000_82542_TDT);
1623 		break;
1624 	}
1625 
1626 	/* Set the default values for the Tx Inter Packet Gap timer */
1627 	if ((hw->media_type == e1000_media_type_fiber ||
1628 	     hw->media_type == e1000_media_type_internal_serdes))
1629 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1630 	else
1631 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1632 
1633 	switch (hw->mac_type) {
1634 	case e1000_82542_rev2_0:
1635 	case e1000_82542_rev2_1:
1636 		tipg = DEFAULT_82542_TIPG_IPGT;
1637 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1638 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1639 		break;
1640 	default:
1641 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1642 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1643 		break;
1644 	}
1645 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1646 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1647 	ew32(TIPG, tipg);
1648 
1649 	/* Set the Tx Interrupt Delay register */
1650 
1651 	ew32(TIDV, adapter->tx_int_delay);
1652 	if (hw->mac_type >= e1000_82540)
1653 		ew32(TADV, adapter->tx_abs_int_delay);
1654 
1655 	/* Program the Transmit Control Register */
1656 
1657 	tctl = er32(TCTL);
1658 	tctl &= ~E1000_TCTL_CT;
1659 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1660 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1661 
1662 	e1000_config_collision_dist(hw);
1663 
1664 	/* Setup Transmit Descriptor Settings for eop descriptor */
1665 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1666 
1667 	/* only set IDE if we are delaying interrupts using the timers */
1668 	if (adapter->tx_int_delay)
1669 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1670 
1671 	if (hw->mac_type < e1000_82543)
1672 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1673 	else
1674 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1675 
1676 	/* Cache if we're 82544 running in PCI-X because we'll
1677 	 * need this to apply a workaround later in the send path.
1678 	 */
1679 	if (hw->mac_type == e1000_82544 &&
1680 	    hw->bus_type == e1000_bus_type_pcix)
1681 		adapter->pcix_82544 = true;
1682 
1683 	ew32(TCTL, tctl);
1684 
1685 }
1686 
1687 /**
1688  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1689  * @adapter: board private structure
1690  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1691  *
1692  * Returns 0 on success, negative on failure
1693  **/
1694 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1695 				    struct e1000_rx_ring *rxdr)
1696 {
1697 	struct pci_dev *pdev = adapter->pdev;
1698 	int size, desc_len;
1699 
1700 	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1701 	rxdr->buffer_info = vzalloc(size);
1702 	if (!rxdr->buffer_info)
1703 		return -ENOMEM;
1704 
1705 	desc_len = sizeof(struct e1000_rx_desc);
1706 
1707 	/* Round up to nearest 4K */
1708 
1709 	rxdr->size = rxdr->count * desc_len;
1710 	rxdr->size = ALIGN(rxdr->size, 4096);
1711 
1712 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1713 					GFP_KERNEL);
1714 	if (!rxdr->desc) {
1715 setup_rx_desc_die:
1716 		vfree(rxdr->buffer_info);
1717 		return -ENOMEM;
1718 	}
1719 
1720 	/* Fix for errata 23, can't cross 64kB boundary */
1721 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1722 		void *olddesc = rxdr->desc;
1723 		dma_addr_t olddma = rxdr->dma;
1724 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1725 		      rxdr->size, rxdr->desc);
1726 		/* Try again, without freeing the previous */
1727 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1728 						&rxdr->dma, GFP_KERNEL);
1729 		/* Failed allocation, critical failure */
1730 		if (!rxdr->desc) {
1731 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1732 					  olddma);
1733 			goto setup_rx_desc_die;
1734 		}
1735 
1736 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1737 			/* give up */
1738 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1739 					  rxdr->dma);
1740 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1741 					  olddma);
1742 			e_err(probe, "Unable to allocate aligned memory for "
1743 			      "the Rx descriptor ring\n");
1744 			goto setup_rx_desc_die;
1745 		} else {
1746 			/* Free old allocation, new allocation was successful */
1747 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1748 					  olddma);
1749 		}
1750 	}
1751 	memset(rxdr->desc, 0, rxdr->size);
1752 
1753 	rxdr->next_to_clean = 0;
1754 	rxdr->next_to_use = 0;
1755 	rxdr->rx_skb_top = NULL;
1756 
1757 	return 0;
1758 }
1759 
1760 /**
1761  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1762  * 				  (Descriptors) for all queues
1763  * @adapter: board private structure
1764  *
1765  * Return 0 on success, negative on failure
1766  **/
1767 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1768 {
1769 	int i, err = 0;
1770 
1771 	for (i = 0; i < adapter->num_rx_queues; i++) {
1772 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1773 		if (err) {
1774 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1775 			for (i-- ; i >= 0; i--)
1776 				e1000_free_rx_resources(adapter,
1777 							&adapter->rx_ring[i]);
1778 			break;
1779 		}
1780 	}
1781 
1782 	return err;
1783 }
1784 
1785 /**
1786  * e1000_setup_rctl - configure the receive control registers
1787  * @adapter: Board private structure
1788  **/
1789 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1790 {
1791 	struct e1000_hw *hw = &adapter->hw;
1792 	u32 rctl;
1793 
1794 	rctl = er32(RCTL);
1795 
1796 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1797 
1798 	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1799 		E1000_RCTL_RDMTS_HALF |
1800 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1801 
1802 	if (hw->tbi_compatibility_on == 1)
1803 		rctl |= E1000_RCTL_SBP;
1804 	else
1805 		rctl &= ~E1000_RCTL_SBP;
1806 
1807 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1808 		rctl &= ~E1000_RCTL_LPE;
1809 	else
1810 		rctl |= E1000_RCTL_LPE;
1811 
1812 	/* Setup buffer sizes */
1813 	rctl &= ~E1000_RCTL_SZ_4096;
1814 	rctl |= E1000_RCTL_BSEX;
1815 	switch (adapter->rx_buffer_len) {
1816 	case E1000_RXBUFFER_2048:
1817 	default:
1818 		rctl |= E1000_RCTL_SZ_2048;
1819 		rctl &= ~E1000_RCTL_BSEX;
1820 		break;
1821 	case E1000_RXBUFFER_4096:
1822 		rctl |= E1000_RCTL_SZ_4096;
1823 		break;
1824 	case E1000_RXBUFFER_8192:
1825 		rctl |= E1000_RCTL_SZ_8192;
1826 		break;
1827 	case E1000_RXBUFFER_16384:
1828 		rctl |= E1000_RCTL_SZ_16384;
1829 		break;
1830 	}
1831 
1832 	/* This is useful for sniffing bad packets. */
1833 	if (adapter->netdev->features & NETIF_F_RXALL) {
1834 		/* UPE and MPE will be handled by normal PROMISC logic
1835 		 * in e1000e_set_rx_mode
1836 		 */
1837 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1838 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1839 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1840 
1841 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1842 			  E1000_RCTL_DPF | /* Allow filtered pause */
1843 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1844 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1845 		 * and that breaks VLANs.
1846 		 */
1847 	}
1848 
1849 	ew32(RCTL, rctl);
1850 }
1851 
1852 /**
1853  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1854  * @adapter: board private structure
1855  *
1856  * Configure the Rx unit of the MAC after a reset.
1857  **/
1858 static void e1000_configure_rx(struct e1000_adapter *adapter)
1859 {
1860 	u64 rdba;
1861 	struct e1000_hw *hw = &adapter->hw;
1862 	u32 rdlen, rctl, rxcsum;
1863 
1864 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1865 		rdlen = adapter->rx_ring[0].count *
1866 			sizeof(struct e1000_rx_desc);
1867 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1868 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1869 	} else {
1870 		rdlen = adapter->rx_ring[0].count *
1871 			sizeof(struct e1000_rx_desc);
1872 		adapter->clean_rx = e1000_clean_rx_irq;
1873 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1874 	}
1875 
1876 	/* disable receives while setting up the descriptors */
1877 	rctl = er32(RCTL);
1878 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1879 
1880 	/* set the Receive Delay Timer Register */
1881 	ew32(RDTR, adapter->rx_int_delay);
1882 
1883 	if (hw->mac_type >= e1000_82540) {
1884 		ew32(RADV, adapter->rx_abs_int_delay);
1885 		if (adapter->itr_setting != 0)
1886 			ew32(ITR, 1000000000 / (adapter->itr * 256));
1887 	}
1888 
1889 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1890 	 * the Base and Length of the Rx Descriptor Ring
1891 	 */
1892 	switch (adapter->num_rx_queues) {
1893 	case 1:
1894 	default:
1895 		rdba = adapter->rx_ring[0].dma;
1896 		ew32(RDLEN, rdlen);
1897 		ew32(RDBAH, (rdba >> 32));
1898 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1899 		ew32(RDT, 0);
1900 		ew32(RDH, 0);
1901 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1902 					   E1000_RDH : E1000_82542_RDH);
1903 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1904 					   E1000_RDT : E1000_82542_RDT);
1905 		break;
1906 	}
1907 
1908 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1909 	if (hw->mac_type >= e1000_82543) {
1910 		rxcsum = er32(RXCSUM);
1911 		if (adapter->rx_csum)
1912 			rxcsum |= E1000_RXCSUM_TUOFL;
1913 		else
1914 			/* don't need to clear IPPCSE as it defaults to 0 */
1915 			rxcsum &= ~E1000_RXCSUM_TUOFL;
1916 		ew32(RXCSUM, rxcsum);
1917 	}
1918 
1919 	/* Enable Receives */
1920 	ew32(RCTL, rctl | E1000_RCTL_EN);
1921 }
1922 
1923 /**
1924  * e1000_free_tx_resources - Free Tx Resources per Queue
1925  * @adapter: board private structure
1926  * @tx_ring: Tx descriptor ring for a specific queue
1927  *
1928  * Free all transmit software resources
1929  **/
1930 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1931 				    struct e1000_tx_ring *tx_ring)
1932 {
1933 	struct pci_dev *pdev = adapter->pdev;
1934 
1935 	e1000_clean_tx_ring(adapter, tx_ring);
1936 
1937 	vfree(tx_ring->buffer_info);
1938 	tx_ring->buffer_info = NULL;
1939 
1940 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1941 			  tx_ring->dma);
1942 
1943 	tx_ring->desc = NULL;
1944 }
1945 
1946 /**
1947  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1948  * @adapter: board private structure
1949  *
1950  * Free all transmit software resources
1951  **/
1952 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1953 {
1954 	int i;
1955 
1956 	for (i = 0; i < adapter->num_tx_queues; i++)
1957 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1958 }
1959 
1960 static void
1961 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1962 				 struct e1000_tx_buffer *buffer_info)
1963 {
1964 	if (buffer_info->dma) {
1965 		if (buffer_info->mapped_as_page)
1966 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1967 				       buffer_info->length, DMA_TO_DEVICE);
1968 		else
1969 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1970 					 buffer_info->length,
1971 					 DMA_TO_DEVICE);
1972 		buffer_info->dma = 0;
1973 	}
1974 	if (buffer_info->skb) {
1975 		dev_kfree_skb_any(buffer_info->skb);
1976 		buffer_info->skb = NULL;
1977 	}
1978 	buffer_info->time_stamp = 0;
1979 	/* buffer_info must be completely set up in the transmit path */
1980 }
1981 
1982 /**
1983  * e1000_clean_tx_ring - Free Tx Buffers
1984  * @adapter: board private structure
1985  * @tx_ring: ring to be cleaned
1986  **/
1987 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1988 				struct e1000_tx_ring *tx_ring)
1989 {
1990 	struct e1000_hw *hw = &adapter->hw;
1991 	struct e1000_tx_buffer *buffer_info;
1992 	unsigned long size;
1993 	unsigned int i;
1994 
1995 	/* Free all the Tx ring sk_buffs */
1996 
1997 	for (i = 0; i < tx_ring->count; i++) {
1998 		buffer_info = &tx_ring->buffer_info[i];
1999 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2000 	}
2001 
2002 	netdev_reset_queue(adapter->netdev);
2003 	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2004 	memset(tx_ring->buffer_info, 0, size);
2005 
2006 	/* Zero out the descriptor ring */
2007 
2008 	memset(tx_ring->desc, 0, tx_ring->size);
2009 
2010 	tx_ring->next_to_use = 0;
2011 	tx_ring->next_to_clean = 0;
2012 	tx_ring->last_tx_tso = false;
2013 
2014 	writel(0, hw->hw_addr + tx_ring->tdh);
2015 	writel(0, hw->hw_addr + tx_ring->tdt);
2016 }
2017 
2018 /**
2019  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2020  * @adapter: board private structure
2021  **/
2022 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2023 {
2024 	int i;
2025 
2026 	for (i = 0; i < adapter->num_tx_queues; i++)
2027 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2028 }
2029 
2030 /**
2031  * e1000_free_rx_resources - Free Rx Resources
2032  * @adapter: board private structure
2033  * @rx_ring: ring to clean the resources from
2034  *
2035  * Free all receive software resources
2036  **/
2037 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2038 				    struct e1000_rx_ring *rx_ring)
2039 {
2040 	struct pci_dev *pdev = adapter->pdev;
2041 
2042 	e1000_clean_rx_ring(adapter, rx_ring);
2043 
2044 	vfree(rx_ring->buffer_info);
2045 	rx_ring->buffer_info = NULL;
2046 
2047 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2048 			  rx_ring->dma);
2049 
2050 	rx_ring->desc = NULL;
2051 }
2052 
2053 /**
2054  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2055  * @adapter: board private structure
2056  *
2057  * Free all receive software resources
2058  **/
2059 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2060 {
2061 	int i;
2062 
2063 	for (i = 0; i < adapter->num_rx_queues; i++)
2064 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2065 }
2066 
2067 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2068 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2069 {
2070 	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2071 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2072 }
2073 
2074 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2075 {
2076 	unsigned int len = e1000_frag_len(a);
2077 	u8 *data = netdev_alloc_frag(len);
2078 
2079 	if (likely(data))
2080 		data += E1000_HEADROOM;
2081 	return data;
2082 }
2083 
2084 /**
2085  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2086  * @adapter: board private structure
2087  * @rx_ring: ring to free buffers from
2088  **/
2089 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2090 				struct e1000_rx_ring *rx_ring)
2091 {
2092 	struct e1000_hw *hw = &adapter->hw;
2093 	struct e1000_rx_buffer *buffer_info;
2094 	struct pci_dev *pdev = adapter->pdev;
2095 	unsigned long size;
2096 	unsigned int i;
2097 
2098 	/* Free all the Rx netfrags */
2099 	for (i = 0; i < rx_ring->count; i++) {
2100 		buffer_info = &rx_ring->buffer_info[i];
2101 		if (adapter->clean_rx == e1000_clean_rx_irq) {
2102 			if (buffer_info->dma)
2103 				dma_unmap_single(&pdev->dev, buffer_info->dma,
2104 						 adapter->rx_buffer_len,
2105 						 DMA_FROM_DEVICE);
2106 			if (buffer_info->rxbuf.data) {
2107 				skb_free_frag(buffer_info->rxbuf.data);
2108 				buffer_info->rxbuf.data = NULL;
2109 			}
2110 		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2111 			if (buffer_info->dma)
2112 				dma_unmap_page(&pdev->dev, buffer_info->dma,
2113 					       adapter->rx_buffer_len,
2114 					       DMA_FROM_DEVICE);
2115 			if (buffer_info->rxbuf.page) {
2116 				put_page(buffer_info->rxbuf.page);
2117 				buffer_info->rxbuf.page = NULL;
2118 			}
2119 		}
2120 
2121 		buffer_info->dma = 0;
2122 	}
2123 
2124 	/* there also may be some cached data from a chained receive */
2125 	napi_free_frags(&adapter->napi);
2126 	rx_ring->rx_skb_top = NULL;
2127 
2128 	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2129 	memset(rx_ring->buffer_info, 0, size);
2130 
2131 	/* Zero out the descriptor ring */
2132 	memset(rx_ring->desc, 0, rx_ring->size);
2133 
2134 	rx_ring->next_to_clean = 0;
2135 	rx_ring->next_to_use = 0;
2136 
2137 	writel(0, hw->hw_addr + rx_ring->rdh);
2138 	writel(0, hw->hw_addr + rx_ring->rdt);
2139 }
2140 
2141 /**
2142  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2143  * @adapter: board private structure
2144  **/
2145 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2146 {
2147 	int i;
2148 
2149 	for (i = 0; i < adapter->num_rx_queues; i++)
2150 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2151 }
2152 
2153 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2154  * and memory write and invalidate disabled for certain operations
2155  */
2156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2157 {
2158 	struct e1000_hw *hw = &adapter->hw;
2159 	struct net_device *netdev = adapter->netdev;
2160 	u32 rctl;
2161 
2162 	e1000_pci_clear_mwi(hw);
2163 
2164 	rctl = er32(RCTL);
2165 	rctl |= E1000_RCTL_RST;
2166 	ew32(RCTL, rctl);
2167 	E1000_WRITE_FLUSH();
2168 	mdelay(5);
2169 
2170 	if (netif_running(netdev))
2171 		e1000_clean_all_rx_rings(adapter);
2172 }
2173 
2174 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2175 {
2176 	struct e1000_hw *hw = &adapter->hw;
2177 	struct net_device *netdev = adapter->netdev;
2178 	u32 rctl;
2179 
2180 	rctl = er32(RCTL);
2181 	rctl &= ~E1000_RCTL_RST;
2182 	ew32(RCTL, rctl);
2183 	E1000_WRITE_FLUSH();
2184 	mdelay(5);
2185 
2186 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2187 		e1000_pci_set_mwi(hw);
2188 
2189 	if (netif_running(netdev)) {
2190 		/* No need to loop, because 82542 supports only 1 queue */
2191 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2192 		e1000_configure_rx(adapter);
2193 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2194 	}
2195 }
2196 
2197 /**
2198  * e1000_set_mac - Change the Ethernet Address of the NIC
2199  * @netdev: network interface device structure
2200  * @p: pointer to an address structure
2201  *
2202  * Returns 0 on success, negative on failure
2203  **/
2204 static int e1000_set_mac(struct net_device *netdev, void *p)
2205 {
2206 	struct e1000_adapter *adapter = netdev_priv(netdev);
2207 	struct e1000_hw *hw = &adapter->hw;
2208 	struct sockaddr *addr = p;
2209 
2210 	if (!is_valid_ether_addr(addr->sa_data))
2211 		return -EADDRNOTAVAIL;
2212 
2213 	/* 82542 2.0 needs to be in reset to write receive address registers */
2214 
2215 	if (hw->mac_type == e1000_82542_rev2_0)
2216 		e1000_enter_82542_rst(adapter);
2217 
2218 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2219 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2220 
2221 	e1000_rar_set(hw, hw->mac_addr, 0);
2222 
2223 	if (hw->mac_type == e1000_82542_rev2_0)
2224 		e1000_leave_82542_rst(adapter);
2225 
2226 	return 0;
2227 }
2228 
2229 /**
2230  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2231  * @netdev: network interface device structure
2232  *
2233  * The set_rx_mode entry point is called whenever the unicast or multicast
2234  * address lists or the network interface flags are updated. This routine is
2235  * responsible for configuring the hardware for proper unicast, multicast,
2236  * promiscuous mode, and all-multi behavior.
2237  **/
2238 static void e1000_set_rx_mode(struct net_device *netdev)
2239 {
2240 	struct e1000_adapter *adapter = netdev_priv(netdev);
2241 	struct e1000_hw *hw = &adapter->hw;
2242 	struct netdev_hw_addr *ha;
2243 	bool use_uc = false;
2244 	u32 rctl;
2245 	u32 hash_value;
2246 	int i, rar_entries = E1000_RAR_ENTRIES;
2247 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2248 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2249 
2250 	if (!mcarray)
2251 		return;
2252 
2253 	/* Check for Promiscuous and All Multicast modes */
2254 
2255 	rctl = er32(RCTL);
2256 
2257 	if (netdev->flags & IFF_PROMISC) {
2258 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2259 		rctl &= ~E1000_RCTL_VFE;
2260 	} else {
2261 		if (netdev->flags & IFF_ALLMULTI)
2262 			rctl |= E1000_RCTL_MPE;
2263 		else
2264 			rctl &= ~E1000_RCTL_MPE;
2265 		/* Enable VLAN filter if there is a VLAN */
2266 		if (e1000_vlan_used(adapter))
2267 			rctl |= E1000_RCTL_VFE;
2268 	}
2269 
2270 	if (netdev_uc_count(netdev) > rar_entries - 1) {
2271 		rctl |= E1000_RCTL_UPE;
2272 	} else if (!(netdev->flags & IFF_PROMISC)) {
2273 		rctl &= ~E1000_RCTL_UPE;
2274 		use_uc = true;
2275 	}
2276 
2277 	ew32(RCTL, rctl);
2278 
2279 	/* 82542 2.0 needs to be in reset to write receive address registers */
2280 
2281 	if (hw->mac_type == e1000_82542_rev2_0)
2282 		e1000_enter_82542_rst(adapter);
2283 
2284 	/* load the first 14 addresses into the exact filters 1-14. Unicast
2285 	 * addresses take precedence to avoid disabling unicast filtering
2286 	 * when possible.
2287 	 *
2288 	 * RAR 0 is used for the station MAC address
2289 	 * if there are not 14 addresses, go ahead and clear the filters
2290 	 */
2291 	i = 1;
2292 	if (use_uc)
2293 		netdev_for_each_uc_addr(ha, netdev) {
2294 			if (i == rar_entries)
2295 				break;
2296 			e1000_rar_set(hw, ha->addr, i++);
2297 		}
2298 
2299 	netdev_for_each_mc_addr(ha, netdev) {
2300 		if (i == rar_entries) {
2301 			/* load any remaining addresses into the hash table */
2302 			u32 hash_reg, hash_bit, mta;
2303 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2304 			hash_reg = (hash_value >> 5) & 0x7F;
2305 			hash_bit = hash_value & 0x1F;
2306 			mta = (1 << hash_bit);
2307 			mcarray[hash_reg] |= mta;
2308 		} else {
2309 			e1000_rar_set(hw, ha->addr, i++);
2310 		}
2311 	}
2312 
2313 	for (; i < rar_entries; i++) {
2314 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2315 		E1000_WRITE_FLUSH();
2316 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2317 		E1000_WRITE_FLUSH();
2318 	}
2319 
2320 	/* write the hash table completely, write from bottom to avoid
2321 	 * both stupid write combining chipsets, and flushing each write
2322 	 */
2323 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2324 		/* If we are on an 82544 has an errata where writing odd
2325 		 * offsets overwrites the previous even offset, but writing
2326 		 * backwards over the range solves the issue by always
2327 		 * writing the odd offset first
2328 		 */
2329 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2330 	}
2331 	E1000_WRITE_FLUSH();
2332 
2333 	if (hw->mac_type == e1000_82542_rev2_0)
2334 		e1000_leave_82542_rst(adapter);
2335 
2336 	kfree(mcarray);
2337 }
2338 
2339 /**
2340  * e1000_update_phy_info_task - get phy info
2341  * @work: work struct contained inside adapter struct
2342  *
2343  * Need to wait a few seconds after link up to get diagnostic information from
2344  * the phy
2345  */
2346 static void e1000_update_phy_info_task(struct work_struct *work)
2347 {
2348 	struct e1000_adapter *adapter = container_of(work,
2349 						     struct e1000_adapter,
2350 						     phy_info_task.work);
2351 
2352 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2353 }
2354 
2355 /**
2356  * e1000_82547_tx_fifo_stall_task - task to complete work
2357  * @work: work struct contained inside adapter struct
2358  **/
2359 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2360 {
2361 	struct e1000_adapter *adapter = container_of(work,
2362 						     struct e1000_adapter,
2363 						     fifo_stall_task.work);
2364 	struct e1000_hw *hw = &adapter->hw;
2365 	struct net_device *netdev = adapter->netdev;
2366 	u32 tctl;
2367 
2368 	if (atomic_read(&adapter->tx_fifo_stall)) {
2369 		if ((er32(TDT) == er32(TDH)) &&
2370 		   (er32(TDFT) == er32(TDFH)) &&
2371 		   (er32(TDFTS) == er32(TDFHS))) {
2372 			tctl = er32(TCTL);
2373 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2374 			ew32(TDFT, adapter->tx_head_addr);
2375 			ew32(TDFH, adapter->tx_head_addr);
2376 			ew32(TDFTS, adapter->tx_head_addr);
2377 			ew32(TDFHS, adapter->tx_head_addr);
2378 			ew32(TCTL, tctl);
2379 			E1000_WRITE_FLUSH();
2380 
2381 			adapter->tx_fifo_head = 0;
2382 			atomic_set(&adapter->tx_fifo_stall, 0);
2383 			netif_wake_queue(netdev);
2384 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2385 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2386 		}
2387 	}
2388 }
2389 
2390 bool e1000_has_link(struct e1000_adapter *adapter)
2391 {
2392 	struct e1000_hw *hw = &adapter->hw;
2393 	bool link_active = false;
2394 
2395 	/* get_link_status is set on LSC (link status) interrupt or rx
2396 	 * sequence error interrupt (except on intel ce4100).
2397 	 * get_link_status will stay false until the
2398 	 * e1000_check_for_link establishes link for copper adapters
2399 	 * ONLY
2400 	 */
2401 	switch (hw->media_type) {
2402 	case e1000_media_type_copper:
2403 		if (hw->mac_type == e1000_ce4100)
2404 			hw->get_link_status = 1;
2405 		if (hw->get_link_status) {
2406 			e1000_check_for_link(hw);
2407 			link_active = !hw->get_link_status;
2408 		} else {
2409 			link_active = true;
2410 		}
2411 		break;
2412 	case e1000_media_type_fiber:
2413 		e1000_check_for_link(hw);
2414 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2415 		break;
2416 	case e1000_media_type_internal_serdes:
2417 		e1000_check_for_link(hw);
2418 		link_active = hw->serdes_has_link;
2419 		break;
2420 	default:
2421 		break;
2422 	}
2423 
2424 	return link_active;
2425 }
2426 
2427 /**
2428  * e1000_watchdog - work function
2429  * @work: work struct contained inside adapter struct
2430  **/
2431 static void e1000_watchdog(struct work_struct *work)
2432 {
2433 	struct e1000_adapter *adapter = container_of(work,
2434 						     struct e1000_adapter,
2435 						     watchdog_task.work);
2436 	struct e1000_hw *hw = &adapter->hw;
2437 	struct net_device *netdev = adapter->netdev;
2438 	struct e1000_tx_ring *txdr = adapter->tx_ring;
2439 	u32 link, tctl;
2440 
2441 	link = e1000_has_link(adapter);
2442 	if ((netif_carrier_ok(netdev)) && link)
2443 		goto link_up;
2444 
2445 	if (link) {
2446 		if (!netif_carrier_ok(netdev)) {
2447 			u32 ctrl;
2448 			bool txb2b = true;
2449 			/* update snapshot of PHY registers on LSC */
2450 			e1000_get_speed_and_duplex(hw,
2451 						   &adapter->link_speed,
2452 						   &adapter->link_duplex);
2453 
2454 			ctrl = er32(CTRL);
2455 			pr_info("%s NIC Link is Up %d Mbps %s, "
2456 				"Flow Control: %s\n",
2457 				netdev->name,
2458 				adapter->link_speed,
2459 				adapter->link_duplex == FULL_DUPLEX ?
2460 				"Full Duplex" : "Half Duplex",
2461 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2462 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2463 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2464 				E1000_CTRL_TFCE) ? "TX" : "None")));
2465 
2466 			/* adjust timeout factor according to speed/duplex */
2467 			adapter->tx_timeout_factor = 1;
2468 			switch (adapter->link_speed) {
2469 			case SPEED_10:
2470 				txb2b = false;
2471 				adapter->tx_timeout_factor = 16;
2472 				break;
2473 			case SPEED_100:
2474 				txb2b = false;
2475 				/* maybe add some timeout factor ? */
2476 				break;
2477 			}
2478 
2479 			/* enable transmits in the hardware */
2480 			tctl = er32(TCTL);
2481 			tctl |= E1000_TCTL_EN;
2482 			ew32(TCTL, tctl);
2483 
2484 			netif_carrier_on(netdev);
2485 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2486 				schedule_delayed_work(&adapter->phy_info_task,
2487 						      2 * HZ);
2488 			adapter->smartspeed = 0;
2489 		}
2490 	} else {
2491 		if (netif_carrier_ok(netdev)) {
2492 			adapter->link_speed = 0;
2493 			adapter->link_duplex = 0;
2494 			pr_info("%s NIC Link is Down\n",
2495 				netdev->name);
2496 			netif_carrier_off(netdev);
2497 
2498 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2499 				schedule_delayed_work(&adapter->phy_info_task,
2500 						      2 * HZ);
2501 		}
2502 
2503 		e1000_smartspeed(adapter);
2504 	}
2505 
2506 link_up:
2507 	e1000_update_stats(adapter);
2508 
2509 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2510 	adapter->tpt_old = adapter->stats.tpt;
2511 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2512 	adapter->colc_old = adapter->stats.colc;
2513 
2514 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2515 	adapter->gorcl_old = adapter->stats.gorcl;
2516 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2517 	adapter->gotcl_old = adapter->stats.gotcl;
2518 
2519 	e1000_update_adaptive(hw);
2520 
2521 	if (!netif_carrier_ok(netdev)) {
2522 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2523 			/* We've lost link, so the controller stops DMA,
2524 			 * but we've got queued Tx work that's never going
2525 			 * to get done, so reset controller to flush Tx.
2526 			 * (Do the reset outside of interrupt context).
2527 			 */
2528 			adapter->tx_timeout_count++;
2529 			schedule_work(&adapter->reset_task);
2530 			/* exit immediately since reset is imminent */
2531 			return;
2532 		}
2533 	}
2534 
2535 	/* Simple mode for Interrupt Throttle Rate (ITR) */
2536 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2537 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2538 		 * Total asymmetrical Tx or Rx gets ITR=8000;
2539 		 * everyone else is between 2000-8000.
2540 		 */
2541 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2542 		u32 dif = (adapter->gotcl > adapter->gorcl ?
2543 			    adapter->gotcl - adapter->gorcl :
2544 			    adapter->gorcl - adapter->gotcl) / 10000;
2545 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2546 
2547 		ew32(ITR, 1000000000 / (itr * 256));
2548 	}
2549 
2550 	/* Cause software interrupt to ensure rx ring is cleaned */
2551 	ew32(ICS, E1000_ICS_RXDMT0);
2552 
2553 	/* Force detection of hung controller every watchdog period */
2554 	adapter->detect_tx_hung = true;
2555 
2556 	/* Reschedule the task */
2557 	if (!test_bit(__E1000_DOWN, &adapter->flags))
2558 		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2559 }
2560 
2561 enum latency_range {
2562 	lowest_latency = 0,
2563 	low_latency = 1,
2564 	bulk_latency = 2,
2565 	latency_invalid = 255
2566 };
2567 
2568 /**
2569  * e1000_update_itr - update the dynamic ITR value based on statistics
2570  * @adapter: pointer to adapter
2571  * @itr_setting: current adapter->itr
2572  * @packets: the number of packets during this measurement interval
2573  * @bytes: the number of bytes during this measurement interval
2574  *
2575  *      Stores a new ITR value based on packets and byte
2576  *      counts during the last interrupt.  The advantage of per interrupt
2577  *      computation is faster updates and more accurate ITR for the current
2578  *      traffic pattern.  Constants in this function were computed
2579  *      based on theoretical maximum wire speed and thresholds were set based
2580  *      on testing data as well as attempting to minimize response time
2581  *      while increasing bulk throughput.
2582  *      this functionality is controlled by the InterruptThrottleRate module
2583  *      parameter (see e1000_param.c)
2584  **/
2585 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2586 				     u16 itr_setting, int packets, int bytes)
2587 {
2588 	unsigned int retval = itr_setting;
2589 	struct e1000_hw *hw = &adapter->hw;
2590 
2591 	if (unlikely(hw->mac_type < e1000_82540))
2592 		goto update_itr_done;
2593 
2594 	if (packets == 0)
2595 		goto update_itr_done;
2596 
2597 	switch (itr_setting) {
2598 	case lowest_latency:
2599 		/* jumbo frames get bulk treatment*/
2600 		if (bytes/packets > 8000)
2601 			retval = bulk_latency;
2602 		else if ((packets < 5) && (bytes > 512))
2603 			retval = low_latency;
2604 		break;
2605 	case low_latency:  /* 50 usec aka 20000 ints/s */
2606 		if (bytes > 10000) {
2607 			/* jumbo frames need bulk latency setting */
2608 			if (bytes/packets > 8000)
2609 				retval = bulk_latency;
2610 			else if ((packets < 10) || ((bytes/packets) > 1200))
2611 				retval = bulk_latency;
2612 			else if ((packets > 35))
2613 				retval = lowest_latency;
2614 		} else if (bytes/packets > 2000)
2615 			retval = bulk_latency;
2616 		else if (packets <= 2 && bytes < 512)
2617 			retval = lowest_latency;
2618 		break;
2619 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2620 		if (bytes > 25000) {
2621 			if (packets > 35)
2622 				retval = low_latency;
2623 		} else if (bytes < 6000) {
2624 			retval = low_latency;
2625 		}
2626 		break;
2627 	}
2628 
2629 update_itr_done:
2630 	return retval;
2631 }
2632 
2633 static void e1000_set_itr(struct e1000_adapter *adapter)
2634 {
2635 	struct e1000_hw *hw = &adapter->hw;
2636 	u16 current_itr;
2637 	u32 new_itr = adapter->itr;
2638 
2639 	if (unlikely(hw->mac_type < e1000_82540))
2640 		return;
2641 
2642 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2643 	if (unlikely(adapter->link_speed != SPEED_1000)) {
2644 		current_itr = 0;
2645 		new_itr = 4000;
2646 		goto set_itr_now;
2647 	}
2648 
2649 	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2650 					   adapter->total_tx_packets,
2651 					   adapter->total_tx_bytes);
2652 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2653 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2654 		adapter->tx_itr = low_latency;
2655 
2656 	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2657 					   adapter->total_rx_packets,
2658 					   adapter->total_rx_bytes);
2659 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2660 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2661 		adapter->rx_itr = low_latency;
2662 
2663 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2664 
2665 	switch (current_itr) {
2666 	/* counts and packets in update_itr are dependent on these numbers */
2667 	case lowest_latency:
2668 		new_itr = 70000;
2669 		break;
2670 	case low_latency:
2671 		new_itr = 20000; /* aka hwitr = ~200 */
2672 		break;
2673 	case bulk_latency:
2674 		new_itr = 4000;
2675 		break;
2676 	default:
2677 		break;
2678 	}
2679 
2680 set_itr_now:
2681 	if (new_itr != adapter->itr) {
2682 		/* this attempts to bias the interrupt rate towards Bulk
2683 		 * by adding intermediate steps when interrupt rate is
2684 		 * increasing
2685 		 */
2686 		new_itr = new_itr > adapter->itr ?
2687 			  min(adapter->itr + (new_itr >> 2), new_itr) :
2688 			  new_itr;
2689 		adapter->itr = new_itr;
2690 		ew32(ITR, 1000000000 / (new_itr * 256));
2691 	}
2692 }
2693 
2694 #define E1000_TX_FLAGS_CSUM		0x00000001
2695 #define E1000_TX_FLAGS_VLAN		0x00000002
2696 #define E1000_TX_FLAGS_TSO		0x00000004
2697 #define E1000_TX_FLAGS_IPV4		0x00000008
2698 #define E1000_TX_FLAGS_NO_FCS		0x00000010
2699 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2700 #define E1000_TX_FLAGS_VLAN_SHIFT	16
2701 
2702 static int e1000_tso(struct e1000_adapter *adapter,
2703 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2704 		     __be16 protocol)
2705 {
2706 	struct e1000_context_desc *context_desc;
2707 	struct e1000_tx_buffer *buffer_info;
2708 	unsigned int i;
2709 	u32 cmd_length = 0;
2710 	u16 ipcse = 0, tucse, mss;
2711 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2712 
2713 	if (skb_is_gso(skb)) {
2714 		int err;
2715 
2716 		err = skb_cow_head(skb, 0);
2717 		if (err < 0)
2718 			return err;
2719 
2720 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2721 		mss = skb_shinfo(skb)->gso_size;
2722 		if (protocol == htons(ETH_P_IP)) {
2723 			struct iphdr *iph = ip_hdr(skb);
2724 			iph->tot_len = 0;
2725 			iph->check = 0;
2726 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2727 								 iph->daddr, 0,
2728 								 IPPROTO_TCP,
2729 								 0);
2730 			cmd_length = E1000_TXD_CMD_IP;
2731 			ipcse = skb_transport_offset(skb) - 1;
2732 		} else if (skb_is_gso_v6(skb)) {
2733 			ipv6_hdr(skb)->payload_len = 0;
2734 			tcp_hdr(skb)->check =
2735 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2736 						 &ipv6_hdr(skb)->daddr,
2737 						 0, IPPROTO_TCP, 0);
2738 			ipcse = 0;
2739 		}
2740 		ipcss = skb_network_offset(skb);
2741 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2742 		tucss = skb_transport_offset(skb);
2743 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2744 		tucse = 0;
2745 
2746 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2747 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2748 
2749 		i = tx_ring->next_to_use;
2750 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2751 		buffer_info = &tx_ring->buffer_info[i];
2752 
2753 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2754 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2755 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2756 		context_desc->upper_setup.tcp_fields.tucss = tucss;
2757 		context_desc->upper_setup.tcp_fields.tucso = tucso;
2758 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2759 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2760 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2761 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2762 
2763 		buffer_info->time_stamp = jiffies;
2764 		buffer_info->next_to_watch = i;
2765 
2766 		if (++i == tx_ring->count)
2767 			i = 0;
2768 
2769 		tx_ring->next_to_use = i;
2770 
2771 		return true;
2772 	}
2773 	return false;
2774 }
2775 
2776 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2777 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2778 			  __be16 protocol)
2779 {
2780 	struct e1000_context_desc *context_desc;
2781 	struct e1000_tx_buffer *buffer_info;
2782 	unsigned int i;
2783 	u8 css;
2784 	u32 cmd_len = E1000_TXD_CMD_DEXT;
2785 
2786 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2787 		return false;
2788 
2789 	switch (protocol) {
2790 	case cpu_to_be16(ETH_P_IP):
2791 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2792 			cmd_len |= E1000_TXD_CMD_TCP;
2793 		break;
2794 	case cpu_to_be16(ETH_P_IPV6):
2795 		/* XXX not handling all IPV6 headers */
2796 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2797 			cmd_len |= E1000_TXD_CMD_TCP;
2798 		break;
2799 	default:
2800 		if (unlikely(net_ratelimit()))
2801 			e_warn(drv, "checksum_partial proto=%x!\n",
2802 			       skb->protocol);
2803 		break;
2804 	}
2805 
2806 	css = skb_checksum_start_offset(skb);
2807 
2808 	i = tx_ring->next_to_use;
2809 	buffer_info = &tx_ring->buffer_info[i];
2810 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2811 
2812 	context_desc->lower_setup.ip_config = 0;
2813 	context_desc->upper_setup.tcp_fields.tucss = css;
2814 	context_desc->upper_setup.tcp_fields.tucso =
2815 		css + skb->csum_offset;
2816 	context_desc->upper_setup.tcp_fields.tucse = 0;
2817 	context_desc->tcp_seg_setup.data = 0;
2818 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2819 
2820 	buffer_info->time_stamp = jiffies;
2821 	buffer_info->next_to_watch = i;
2822 
2823 	if (unlikely(++i == tx_ring->count))
2824 		i = 0;
2825 
2826 	tx_ring->next_to_use = i;
2827 
2828 	return true;
2829 }
2830 
2831 #define E1000_MAX_TXD_PWR	12
2832 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2833 
2834 static int e1000_tx_map(struct e1000_adapter *adapter,
2835 			struct e1000_tx_ring *tx_ring,
2836 			struct sk_buff *skb, unsigned int first,
2837 			unsigned int max_per_txd, unsigned int nr_frags,
2838 			unsigned int mss)
2839 {
2840 	struct e1000_hw *hw = &adapter->hw;
2841 	struct pci_dev *pdev = adapter->pdev;
2842 	struct e1000_tx_buffer *buffer_info;
2843 	unsigned int len = skb_headlen(skb);
2844 	unsigned int offset = 0, size, count = 0, i;
2845 	unsigned int f, bytecount, segs;
2846 
2847 	i = tx_ring->next_to_use;
2848 
2849 	while (len) {
2850 		buffer_info = &tx_ring->buffer_info[i];
2851 		size = min(len, max_per_txd);
2852 		/* Workaround for Controller erratum --
2853 		 * descriptor for non-tso packet in a linear SKB that follows a
2854 		 * tso gets written back prematurely before the data is fully
2855 		 * DMA'd to the controller
2856 		 */
2857 		if (!skb->data_len && tx_ring->last_tx_tso &&
2858 		    !skb_is_gso(skb)) {
2859 			tx_ring->last_tx_tso = false;
2860 			size -= 4;
2861 		}
2862 
2863 		/* Workaround for premature desc write-backs
2864 		 * in TSO mode.  Append 4-byte sentinel desc
2865 		 */
2866 		if (unlikely(mss && !nr_frags && size == len && size > 8))
2867 			size -= 4;
2868 		/* work-around for errata 10 and it applies
2869 		 * to all controllers in PCI-X mode
2870 		 * The fix is to make sure that the first descriptor of a
2871 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2872 		 */
2873 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2874 			     (size > 2015) && count == 0))
2875 			size = 2015;
2876 
2877 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2878 		 * terminating buffers within evenly-aligned dwords.
2879 		 */
2880 		if (unlikely(adapter->pcix_82544 &&
2881 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2882 		   size > 4))
2883 			size -= 4;
2884 
2885 		buffer_info->length = size;
2886 		/* set time_stamp *before* dma to help avoid a possible race */
2887 		buffer_info->time_stamp = jiffies;
2888 		buffer_info->mapped_as_page = false;
2889 		buffer_info->dma = dma_map_single(&pdev->dev,
2890 						  skb->data + offset,
2891 						  size, DMA_TO_DEVICE);
2892 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2893 			goto dma_error;
2894 		buffer_info->next_to_watch = i;
2895 
2896 		len -= size;
2897 		offset += size;
2898 		count++;
2899 		if (len) {
2900 			i++;
2901 			if (unlikely(i == tx_ring->count))
2902 				i = 0;
2903 		}
2904 	}
2905 
2906 	for (f = 0; f < nr_frags; f++) {
2907 		const struct skb_frag_struct *frag;
2908 
2909 		frag = &skb_shinfo(skb)->frags[f];
2910 		len = skb_frag_size(frag);
2911 		offset = 0;
2912 
2913 		while (len) {
2914 			unsigned long bufend;
2915 			i++;
2916 			if (unlikely(i == tx_ring->count))
2917 				i = 0;
2918 
2919 			buffer_info = &tx_ring->buffer_info[i];
2920 			size = min(len, max_per_txd);
2921 			/* Workaround for premature desc write-backs
2922 			 * in TSO mode.  Append 4-byte sentinel desc
2923 			 */
2924 			if (unlikely(mss && f == (nr_frags-1) &&
2925 			    size == len && size > 8))
2926 				size -= 4;
2927 			/* Workaround for potential 82544 hang in PCI-X.
2928 			 * Avoid terminating buffers within evenly-aligned
2929 			 * dwords.
2930 			 */
2931 			bufend = (unsigned long)
2932 				page_to_phys(skb_frag_page(frag));
2933 			bufend += offset + size - 1;
2934 			if (unlikely(adapter->pcix_82544 &&
2935 				     !(bufend & 4) &&
2936 				     size > 4))
2937 				size -= 4;
2938 
2939 			buffer_info->length = size;
2940 			buffer_info->time_stamp = jiffies;
2941 			buffer_info->mapped_as_page = true;
2942 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2943 						offset, size, DMA_TO_DEVICE);
2944 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2945 				goto dma_error;
2946 			buffer_info->next_to_watch = i;
2947 
2948 			len -= size;
2949 			offset += size;
2950 			count++;
2951 		}
2952 	}
2953 
2954 	segs = skb_shinfo(skb)->gso_segs ?: 1;
2955 	/* multiply data chunks by size of headers */
2956 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2957 
2958 	tx_ring->buffer_info[i].skb = skb;
2959 	tx_ring->buffer_info[i].segs = segs;
2960 	tx_ring->buffer_info[i].bytecount = bytecount;
2961 	tx_ring->buffer_info[first].next_to_watch = i;
2962 
2963 	return count;
2964 
2965 dma_error:
2966 	dev_err(&pdev->dev, "TX DMA map failed\n");
2967 	buffer_info->dma = 0;
2968 	if (count)
2969 		count--;
2970 
2971 	while (count--) {
2972 		if (i == 0)
2973 			i += tx_ring->count;
2974 		i--;
2975 		buffer_info = &tx_ring->buffer_info[i];
2976 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2977 	}
2978 
2979 	return 0;
2980 }
2981 
2982 static void e1000_tx_queue(struct e1000_adapter *adapter,
2983 			   struct e1000_tx_ring *tx_ring, int tx_flags,
2984 			   int count)
2985 {
2986 	struct e1000_tx_desc *tx_desc = NULL;
2987 	struct e1000_tx_buffer *buffer_info;
2988 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2989 	unsigned int i;
2990 
2991 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2992 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2993 			     E1000_TXD_CMD_TSE;
2994 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2995 
2996 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2997 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2998 	}
2999 
3000 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3001 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3002 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3003 	}
3004 
3005 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3006 		txd_lower |= E1000_TXD_CMD_VLE;
3007 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3008 	}
3009 
3010 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3011 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3012 
3013 	i = tx_ring->next_to_use;
3014 
3015 	while (count--) {
3016 		buffer_info = &tx_ring->buffer_info[i];
3017 		tx_desc = E1000_TX_DESC(*tx_ring, i);
3018 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3019 		tx_desc->lower.data =
3020 			cpu_to_le32(txd_lower | buffer_info->length);
3021 		tx_desc->upper.data = cpu_to_le32(txd_upper);
3022 		if (unlikely(++i == tx_ring->count))
3023 			i = 0;
3024 	}
3025 
3026 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3027 
3028 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3029 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3030 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3031 
3032 	/* Force memory writes to complete before letting h/w
3033 	 * know there are new descriptors to fetch.  (Only
3034 	 * applicable for weak-ordered memory model archs,
3035 	 * such as IA-64).
3036 	 */
3037 	wmb();
3038 
3039 	tx_ring->next_to_use = i;
3040 }
3041 
3042 /* 82547 workaround to avoid controller hang in half-duplex environment.
3043  * The workaround is to avoid queuing a large packet that would span
3044  * the internal Tx FIFO ring boundary by notifying the stack to resend
3045  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3046  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3047  * to the beginning of the Tx FIFO.
3048  */
3049 
3050 #define E1000_FIFO_HDR			0x10
3051 #define E1000_82547_PAD_LEN		0x3E0
3052 
3053 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3054 				       struct sk_buff *skb)
3055 {
3056 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3057 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3058 
3059 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3060 
3061 	if (adapter->link_duplex != HALF_DUPLEX)
3062 		goto no_fifo_stall_required;
3063 
3064 	if (atomic_read(&adapter->tx_fifo_stall))
3065 		return 1;
3066 
3067 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3068 		atomic_set(&adapter->tx_fifo_stall, 1);
3069 		return 1;
3070 	}
3071 
3072 no_fifo_stall_required:
3073 	adapter->tx_fifo_head += skb_fifo_len;
3074 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3075 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3076 	return 0;
3077 }
3078 
3079 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3080 {
3081 	struct e1000_adapter *adapter = netdev_priv(netdev);
3082 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3083 
3084 	netif_stop_queue(netdev);
3085 	/* Herbert's original patch had:
3086 	 *  smp_mb__after_netif_stop_queue();
3087 	 * but since that doesn't exist yet, just open code it.
3088 	 */
3089 	smp_mb();
3090 
3091 	/* We need to check again in a case another CPU has just
3092 	 * made room available.
3093 	 */
3094 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3095 		return -EBUSY;
3096 
3097 	/* A reprieve! */
3098 	netif_start_queue(netdev);
3099 	++adapter->restart_queue;
3100 	return 0;
3101 }
3102 
3103 static int e1000_maybe_stop_tx(struct net_device *netdev,
3104 			       struct e1000_tx_ring *tx_ring, int size)
3105 {
3106 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3107 		return 0;
3108 	return __e1000_maybe_stop_tx(netdev, size);
3109 }
3110 
3111 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3112 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3113 				    struct net_device *netdev)
3114 {
3115 	struct e1000_adapter *adapter = netdev_priv(netdev);
3116 	struct e1000_hw *hw = &adapter->hw;
3117 	struct e1000_tx_ring *tx_ring;
3118 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3119 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3120 	unsigned int tx_flags = 0;
3121 	unsigned int len = skb_headlen(skb);
3122 	unsigned int nr_frags;
3123 	unsigned int mss;
3124 	int count = 0;
3125 	int tso;
3126 	unsigned int f;
3127 	__be16 protocol = vlan_get_protocol(skb);
3128 
3129 	/* This goes back to the question of how to logically map a Tx queue
3130 	 * to a flow.  Right now, performance is impacted slightly negatively
3131 	 * if using multiple Tx queues.  If the stack breaks away from a
3132 	 * single qdisc implementation, we can look at this again.
3133 	 */
3134 	tx_ring = adapter->tx_ring;
3135 
3136 	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3137 	 * packets may get corrupted during padding by HW.
3138 	 * To WA this issue, pad all small packets manually.
3139 	 */
3140 	if (eth_skb_pad(skb))
3141 		return NETDEV_TX_OK;
3142 
3143 	mss = skb_shinfo(skb)->gso_size;
3144 	/* The controller does a simple calculation to
3145 	 * make sure there is enough room in the FIFO before
3146 	 * initiating the DMA for each buffer.  The calc is:
3147 	 * 4 = ceil(buffer len/mss).  To make sure we don't
3148 	 * overrun the FIFO, adjust the max buffer len if mss
3149 	 * drops.
3150 	 */
3151 	if (mss) {
3152 		u8 hdr_len;
3153 		max_per_txd = min(mss << 2, max_per_txd);
3154 		max_txd_pwr = fls(max_per_txd) - 1;
3155 
3156 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3157 		if (skb->data_len && hdr_len == len) {
3158 			switch (hw->mac_type) {
3159 				unsigned int pull_size;
3160 			case e1000_82544:
3161 				/* Make sure we have room to chop off 4 bytes,
3162 				 * and that the end alignment will work out to
3163 				 * this hardware's requirements
3164 				 * NOTE: this is a TSO only workaround
3165 				 * if end byte alignment not correct move us
3166 				 * into the next dword
3167 				 */
3168 				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3169 				    & 4)
3170 					break;
3171 				/* fall through */
3172 				pull_size = min((unsigned int)4, skb->data_len);
3173 				if (!__pskb_pull_tail(skb, pull_size)) {
3174 					e_err(drv, "__pskb_pull_tail "
3175 					      "failed.\n");
3176 					dev_kfree_skb_any(skb);
3177 					return NETDEV_TX_OK;
3178 				}
3179 				len = skb_headlen(skb);
3180 				break;
3181 			default:
3182 				/* do nothing */
3183 				break;
3184 			}
3185 		}
3186 	}
3187 
3188 	/* reserve a descriptor for the offload context */
3189 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3190 		count++;
3191 	count++;
3192 
3193 	/* Controller Erratum workaround */
3194 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3195 		count++;
3196 
3197 	count += TXD_USE_COUNT(len, max_txd_pwr);
3198 
3199 	if (adapter->pcix_82544)
3200 		count++;
3201 
3202 	/* work-around for errata 10 and it applies to all controllers
3203 	 * in PCI-X mode, so add one more descriptor to the count
3204 	 */
3205 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3206 			(len > 2015)))
3207 		count++;
3208 
3209 	nr_frags = skb_shinfo(skb)->nr_frags;
3210 	for (f = 0; f < nr_frags; f++)
3211 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3212 				       max_txd_pwr);
3213 	if (adapter->pcix_82544)
3214 		count += nr_frags;
3215 
3216 	/* need: count + 2 desc gap to keep tail from touching
3217 	 * head, otherwise try next time
3218 	 */
3219 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3220 		return NETDEV_TX_BUSY;
3221 
3222 	if (unlikely((hw->mac_type == e1000_82547) &&
3223 		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3224 		netif_stop_queue(netdev);
3225 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3226 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3227 		return NETDEV_TX_BUSY;
3228 	}
3229 
3230 	if (skb_vlan_tag_present(skb)) {
3231 		tx_flags |= E1000_TX_FLAGS_VLAN;
3232 		tx_flags |= (skb_vlan_tag_get(skb) <<
3233 			     E1000_TX_FLAGS_VLAN_SHIFT);
3234 	}
3235 
3236 	first = tx_ring->next_to_use;
3237 
3238 	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3239 	if (tso < 0) {
3240 		dev_kfree_skb_any(skb);
3241 		return NETDEV_TX_OK;
3242 	}
3243 
3244 	if (likely(tso)) {
3245 		if (likely(hw->mac_type != e1000_82544))
3246 			tx_ring->last_tx_tso = true;
3247 		tx_flags |= E1000_TX_FLAGS_TSO;
3248 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3249 		tx_flags |= E1000_TX_FLAGS_CSUM;
3250 
3251 	if (protocol == htons(ETH_P_IP))
3252 		tx_flags |= E1000_TX_FLAGS_IPV4;
3253 
3254 	if (unlikely(skb->no_fcs))
3255 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3256 
3257 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3258 			     nr_frags, mss);
3259 
3260 	if (count) {
3261 		/* The descriptors needed is higher than other Intel drivers
3262 		 * due to a number of workarounds.  The breakdown is below:
3263 		 * Data descriptors: MAX_SKB_FRAGS + 1
3264 		 * Context Descriptor: 1
3265 		 * Keep head from touching tail: 2
3266 		 * Workarounds: 3
3267 		 */
3268 		int desc_needed = MAX_SKB_FRAGS + 7;
3269 
3270 		netdev_sent_queue(netdev, skb->len);
3271 		skb_tx_timestamp(skb);
3272 
3273 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3274 
3275 		/* 82544 potentially requires twice as many data descriptors
3276 		 * in order to guarantee buffers don't end on evenly-aligned
3277 		 * dwords
3278 		 */
3279 		if (adapter->pcix_82544)
3280 			desc_needed += MAX_SKB_FRAGS + 1;
3281 
3282 		/* Make sure there is space in the ring for the next send. */
3283 		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3284 
3285 		if (!skb->xmit_more ||
3286 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3287 			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3288 			/* we need this if more than one processor can write to
3289 			 * our tail at a time, it synchronizes IO on IA64/Altix
3290 			 * systems
3291 			 */
3292 			mmiowb();
3293 		}
3294 	} else {
3295 		dev_kfree_skb_any(skb);
3296 		tx_ring->buffer_info[first].time_stamp = 0;
3297 		tx_ring->next_to_use = first;
3298 	}
3299 
3300 	return NETDEV_TX_OK;
3301 }
3302 
3303 #define NUM_REGS 38 /* 1 based count */
3304 static void e1000_regdump(struct e1000_adapter *adapter)
3305 {
3306 	struct e1000_hw *hw = &adapter->hw;
3307 	u32 regs[NUM_REGS];
3308 	u32 *regs_buff = regs;
3309 	int i = 0;
3310 
3311 	static const char * const reg_name[] = {
3312 		"CTRL",  "STATUS",
3313 		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3314 		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3315 		"TIDV", "TXDCTL", "TADV", "TARC0",
3316 		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3317 		"TXDCTL1", "TARC1",
3318 		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3319 		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3320 		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3321 	};
3322 
3323 	regs_buff[0]  = er32(CTRL);
3324 	regs_buff[1]  = er32(STATUS);
3325 
3326 	regs_buff[2]  = er32(RCTL);
3327 	regs_buff[3]  = er32(RDLEN);
3328 	regs_buff[4]  = er32(RDH);
3329 	regs_buff[5]  = er32(RDT);
3330 	regs_buff[6]  = er32(RDTR);
3331 
3332 	regs_buff[7]  = er32(TCTL);
3333 	regs_buff[8]  = er32(TDBAL);
3334 	regs_buff[9]  = er32(TDBAH);
3335 	regs_buff[10] = er32(TDLEN);
3336 	regs_buff[11] = er32(TDH);
3337 	regs_buff[12] = er32(TDT);
3338 	regs_buff[13] = er32(TIDV);
3339 	regs_buff[14] = er32(TXDCTL);
3340 	regs_buff[15] = er32(TADV);
3341 	regs_buff[16] = er32(TARC0);
3342 
3343 	regs_buff[17] = er32(TDBAL1);
3344 	regs_buff[18] = er32(TDBAH1);
3345 	regs_buff[19] = er32(TDLEN1);
3346 	regs_buff[20] = er32(TDH1);
3347 	regs_buff[21] = er32(TDT1);
3348 	regs_buff[22] = er32(TXDCTL1);
3349 	regs_buff[23] = er32(TARC1);
3350 	regs_buff[24] = er32(CTRL_EXT);
3351 	regs_buff[25] = er32(ERT);
3352 	regs_buff[26] = er32(RDBAL0);
3353 	regs_buff[27] = er32(RDBAH0);
3354 	regs_buff[28] = er32(TDFH);
3355 	regs_buff[29] = er32(TDFT);
3356 	regs_buff[30] = er32(TDFHS);
3357 	regs_buff[31] = er32(TDFTS);
3358 	regs_buff[32] = er32(TDFPC);
3359 	regs_buff[33] = er32(RDFH);
3360 	regs_buff[34] = er32(RDFT);
3361 	regs_buff[35] = er32(RDFHS);
3362 	regs_buff[36] = er32(RDFTS);
3363 	regs_buff[37] = er32(RDFPC);
3364 
3365 	pr_info("Register dump\n");
3366 	for (i = 0; i < NUM_REGS; i++)
3367 		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3368 }
3369 
3370 /*
3371  * e1000_dump: Print registers, tx ring and rx ring
3372  */
3373 static void e1000_dump(struct e1000_adapter *adapter)
3374 {
3375 	/* this code doesn't handle multiple rings */
3376 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3377 	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3378 	int i;
3379 
3380 	if (!netif_msg_hw(adapter))
3381 		return;
3382 
3383 	/* Print Registers */
3384 	e1000_regdump(adapter);
3385 
3386 	/* transmit dump */
3387 	pr_info("TX Desc ring0 dump\n");
3388 
3389 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3390 	 *
3391 	 * Legacy Transmit Descriptor
3392 	 *   +--------------------------------------------------------------+
3393 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3394 	 *   +--------------------------------------------------------------+
3395 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3396 	 *   +--------------------------------------------------------------+
3397 	 *   63       48 47        36 35    32 31     24 23    16 15        0
3398 	 *
3399 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3400 	 *   63      48 47    40 39       32 31             16 15    8 7      0
3401 	 *   +----------------------------------------------------------------+
3402 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3403 	 *   +----------------------------------------------------------------+
3404 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3405 	 *   +----------------------------------------------------------------+
3406 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3407 	 *
3408 	 * Extended Data Descriptor (DTYP=0x1)
3409 	 *   +----------------------------------------------------------------+
3410 	 * 0 |                     Buffer Address [63:0]                      |
3411 	 *   +----------------------------------------------------------------+
3412 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3413 	 *   +----------------------------------------------------------------+
3414 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3415 	 */
3416 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3417 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3418 
3419 	if (!netif_msg_tx_done(adapter))
3420 		goto rx_ring_summary;
3421 
3422 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3423 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3424 		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3425 		struct my_u { __le64 a; __le64 b; };
3426 		struct my_u *u = (struct my_u *)tx_desc;
3427 		const char *type;
3428 
3429 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3430 			type = "NTC/U";
3431 		else if (i == tx_ring->next_to_use)
3432 			type = "NTU";
3433 		else if (i == tx_ring->next_to_clean)
3434 			type = "NTC";
3435 		else
3436 			type = "";
3437 
3438 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3439 			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3440 			le64_to_cpu(u->a), le64_to_cpu(u->b),
3441 			(u64)buffer_info->dma, buffer_info->length,
3442 			buffer_info->next_to_watch,
3443 			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3444 	}
3445 
3446 rx_ring_summary:
3447 	/* receive dump */
3448 	pr_info("\nRX Desc ring dump\n");
3449 
3450 	/* Legacy Receive Descriptor Format
3451 	 *
3452 	 * +-----------------------------------------------------+
3453 	 * |                Buffer Address [63:0]                |
3454 	 * +-----------------------------------------------------+
3455 	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3456 	 * +-----------------------------------------------------+
3457 	 * 63       48 47    40 39      32 31         16 15      0
3458 	 */
3459 	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3460 
3461 	if (!netif_msg_rx_status(adapter))
3462 		goto exit;
3463 
3464 	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3465 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3466 		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3467 		struct my_u { __le64 a; __le64 b; };
3468 		struct my_u *u = (struct my_u *)rx_desc;
3469 		const char *type;
3470 
3471 		if (i == rx_ring->next_to_use)
3472 			type = "NTU";
3473 		else if (i == rx_ring->next_to_clean)
3474 			type = "NTC";
3475 		else
3476 			type = "";
3477 
3478 		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3479 			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3480 			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3481 	} /* for */
3482 
3483 	/* dump the descriptor caches */
3484 	/* rx */
3485 	pr_info("Rx descriptor cache in 64bit format\n");
3486 	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3487 		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3488 			i,
3489 			readl(adapter->hw.hw_addr + i+4),
3490 			readl(adapter->hw.hw_addr + i),
3491 			readl(adapter->hw.hw_addr + i+12),
3492 			readl(adapter->hw.hw_addr + i+8));
3493 	}
3494 	/* tx */
3495 	pr_info("Tx descriptor cache in 64bit format\n");
3496 	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3497 		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3498 			i,
3499 			readl(adapter->hw.hw_addr + i+4),
3500 			readl(adapter->hw.hw_addr + i),
3501 			readl(adapter->hw.hw_addr + i+12),
3502 			readl(adapter->hw.hw_addr + i+8));
3503 	}
3504 exit:
3505 	return;
3506 }
3507 
3508 /**
3509  * e1000_tx_timeout - Respond to a Tx Hang
3510  * @netdev: network interface device structure
3511  **/
3512 static void e1000_tx_timeout(struct net_device *netdev)
3513 {
3514 	struct e1000_adapter *adapter = netdev_priv(netdev);
3515 
3516 	/* Do the reset outside of interrupt context */
3517 	adapter->tx_timeout_count++;
3518 	schedule_work(&adapter->reset_task);
3519 }
3520 
3521 static void e1000_reset_task(struct work_struct *work)
3522 {
3523 	struct e1000_adapter *adapter =
3524 		container_of(work, struct e1000_adapter, reset_task);
3525 
3526 	e_err(drv, "Reset adapter\n");
3527 	e1000_reinit_locked(adapter);
3528 }
3529 
3530 /**
3531  * e1000_change_mtu - Change the Maximum Transfer Unit
3532  * @netdev: network interface device structure
3533  * @new_mtu: new value for maximum frame size
3534  *
3535  * Returns 0 on success, negative on failure
3536  **/
3537 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3538 {
3539 	struct e1000_adapter *adapter = netdev_priv(netdev);
3540 	struct e1000_hw *hw = &adapter->hw;
3541 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3542 
3543 	/* Adapter-specific max frame size limits. */
3544 	switch (hw->mac_type) {
3545 	case e1000_undefined ... e1000_82542_rev2_1:
3546 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3547 			e_err(probe, "Jumbo Frames not supported.\n");
3548 			return -EINVAL;
3549 		}
3550 		break;
3551 	default:
3552 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3553 		break;
3554 	}
3555 
3556 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3557 		msleep(1);
3558 	/* e1000_down has a dependency on max_frame_size */
3559 	hw->max_frame_size = max_frame;
3560 	if (netif_running(netdev)) {
3561 		/* prevent buffers from being reallocated */
3562 		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3563 		e1000_down(adapter);
3564 	}
3565 
3566 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3567 	 * means we reserve 2 more, this pushes us to allocate from the next
3568 	 * larger slab size.
3569 	 * i.e. RXBUFFER_2048 --> size-4096 slab
3570 	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3571 	 * fragmented skbs
3572 	 */
3573 
3574 	if (max_frame <= E1000_RXBUFFER_2048)
3575 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3576 	else
3577 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3578 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3579 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3580 		adapter->rx_buffer_len = PAGE_SIZE;
3581 #endif
3582 
3583 	/* adjust allocation if LPE protects us, and we aren't using SBP */
3584 	if (!hw->tbi_compatibility_on &&
3585 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3586 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3587 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3588 
3589 	pr_info("%s changing MTU from %d to %d\n",
3590 		netdev->name, netdev->mtu, new_mtu);
3591 	netdev->mtu = new_mtu;
3592 
3593 	if (netif_running(netdev))
3594 		e1000_up(adapter);
3595 	else
3596 		e1000_reset(adapter);
3597 
3598 	clear_bit(__E1000_RESETTING, &adapter->flags);
3599 
3600 	return 0;
3601 }
3602 
3603 /**
3604  * e1000_update_stats - Update the board statistics counters
3605  * @adapter: board private structure
3606  **/
3607 void e1000_update_stats(struct e1000_adapter *adapter)
3608 {
3609 	struct net_device *netdev = adapter->netdev;
3610 	struct e1000_hw *hw = &adapter->hw;
3611 	struct pci_dev *pdev = adapter->pdev;
3612 	unsigned long flags;
3613 	u16 phy_tmp;
3614 
3615 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3616 
3617 	/* Prevent stats update while adapter is being reset, or if the pci
3618 	 * connection is down.
3619 	 */
3620 	if (adapter->link_speed == 0)
3621 		return;
3622 	if (pci_channel_offline(pdev))
3623 		return;
3624 
3625 	spin_lock_irqsave(&adapter->stats_lock, flags);
3626 
3627 	/* these counters are modified from e1000_tbi_adjust_stats,
3628 	 * called from the interrupt context, so they must only
3629 	 * be written while holding adapter->stats_lock
3630 	 */
3631 
3632 	adapter->stats.crcerrs += er32(CRCERRS);
3633 	adapter->stats.gprc += er32(GPRC);
3634 	adapter->stats.gorcl += er32(GORCL);
3635 	adapter->stats.gorch += er32(GORCH);
3636 	adapter->stats.bprc += er32(BPRC);
3637 	adapter->stats.mprc += er32(MPRC);
3638 	adapter->stats.roc += er32(ROC);
3639 
3640 	adapter->stats.prc64 += er32(PRC64);
3641 	adapter->stats.prc127 += er32(PRC127);
3642 	adapter->stats.prc255 += er32(PRC255);
3643 	adapter->stats.prc511 += er32(PRC511);
3644 	adapter->stats.prc1023 += er32(PRC1023);
3645 	adapter->stats.prc1522 += er32(PRC1522);
3646 
3647 	adapter->stats.symerrs += er32(SYMERRS);
3648 	adapter->stats.mpc += er32(MPC);
3649 	adapter->stats.scc += er32(SCC);
3650 	adapter->stats.ecol += er32(ECOL);
3651 	adapter->stats.mcc += er32(MCC);
3652 	adapter->stats.latecol += er32(LATECOL);
3653 	adapter->stats.dc += er32(DC);
3654 	adapter->stats.sec += er32(SEC);
3655 	adapter->stats.rlec += er32(RLEC);
3656 	adapter->stats.xonrxc += er32(XONRXC);
3657 	adapter->stats.xontxc += er32(XONTXC);
3658 	adapter->stats.xoffrxc += er32(XOFFRXC);
3659 	adapter->stats.xofftxc += er32(XOFFTXC);
3660 	adapter->stats.fcruc += er32(FCRUC);
3661 	adapter->stats.gptc += er32(GPTC);
3662 	adapter->stats.gotcl += er32(GOTCL);
3663 	adapter->stats.gotch += er32(GOTCH);
3664 	adapter->stats.rnbc += er32(RNBC);
3665 	adapter->stats.ruc += er32(RUC);
3666 	adapter->stats.rfc += er32(RFC);
3667 	adapter->stats.rjc += er32(RJC);
3668 	adapter->stats.torl += er32(TORL);
3669 	adapter->stats.torh += er32(TORH);
3670 	adapter->stats.totl += er32(TOTL);
3671 	adapter->stats.toth += er32(TOTH);
3672 	adapter->stats.tpr += er32(TPR);
3673 
3674 	adapter->stats.ptc64 += er32(PTC64);
3675 	adapter->stats.ptc127 += er32(PTC127);
3676 	adapter->stats.ptc255 += er32(PTC255);
3677 	adapter->stats.ptc511 += er32(PTC511);
3678 	adapter->stats.ptc1023 += er32(PTC1023);
3679 	adapter->stats.ptc1522 += er32(PTC1522);
3680 
3681 	adapter->stats.mptc += er32(MPTC);
3682 	adapter->stats.bptc += er32(BPTC);
3683 
3684 	/* used for adaptive IFS */
3685 
3686 	hw->tx_packet_delta = er32(TPT);
3687 	adapter->stats.tpt += hw->tx_packet_delta;
3688 	hw->collision_delta = er32(COLC);
3689 	adapter->stats.colc += hw->collision_delta;
3690 
3691 	if (hw->mac_type >= e1000_82543) {
3692 		adapter->stats.algnerrc += er32(ALGNERRC);
3693 		adapter->stats.rxerrc += er32(RXERRC);
3694 		adapter->stats.tncrs += er32(TNCRS);
3695 		adapter->stats.cexterr += er32(CEXTERR);
3696 		adapter->stats.tsctc += er32(TSCTC);
3697 		adapter->stats.tsctfc += er32(TSCTFC);
3698 	}
3699 
3700 	/* Fill out the OS statistics structure */
3701 	netdev->stats.multicast = adapter->stats.mprc;
3702 	netdev->stats.collisions = adapter->stats.colc;
3703 
3704 	/* Rx Errors */
3705 
3706 	/* RLEC on some newer hardware can be incorrect so build
3707 	 * our own version based on RUC and ROC
3708 	 */
3709 	netdev->stats.rx_errors = adapter->stats.rxerrc +
3710 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3711 		adapter->stats.ruc + adapter->stats.roc +
3712 		adapter->stats.cexterr;
3713 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3714 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3715 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3716 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3717 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3718 
3719 	/* Tx Errors */
3720 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3721 	netdev->stats.tx_errors = adapter->stats.txerrc;
3722 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3723 	netdev->stats.tx_window_errors = adapter->stats.latecol;
3724 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3725 	if (hw->bad_tx_carr_stats_fd &&
3726 	    adapter->link_duplex == FULL_DUPLEX) {
3727 		netdev->stats.tx_carrier_errors = 0;
3728 		adapter->stats.tncrs = 0;
3729 	}
3730 
3731 	/* Tx Dropped needs to be maintained elsewhere */
3732 
3733 	/* Phy Stats */
3734 	if (hw->media_type == e1000_media_type_copper) {
3735 		if ((adapter->link_speed == SPEED_1000) &&
3736 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3737 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3738 			adapter->phy_stats.idle_errors += phy_tmp;
3739 		}
3740 
3741 		if ((hw->mac_type <= e1000_82546) &&
3742 		   (hw->phy_type == e1000_phy_m88) &&
3743 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3744 			adapter->phy_stats.receive_errors += phy_tmp;
3745 	}
3746 
3747 	/* Management Stats */
3748 	if (hw->has_smbus) {
3749 		adapter->stats.mgptc += er32(MGTPTC);
3750 		adapter->stats.mgprc += er32(MGTPRC);
3751 		adapter->stats.mgpdc += er32(MGTPDC);
3752 	}
3753 
3754 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3755 }
3756 
3757 /**
3758  * e1000_intr - Interrupt Handler
3759  * @irq: interrupt number
3760  * @data: pointer to a network interface device structure
3761  **/
3762 static irqreturn_t e1000_intr(int irq, void *data)
3763 {
3764 	struct net_device *netdev = data;
3765 	struct e1000_adapter *adapter = netdev_priv(netdev);
3766 	struct e1000_hw *hw = &adapter->hw;
3767 	u32 icr = er32(ICR);
3768 
3769 	if (unlikely((!icr)))
3770 		return IRQ_NONE;  /* Not our interrupt */
3771 
3772 	/* we might have caused the interrupt, but the above
3773 	 * read cleared it, and just in case the driver is
3774 	 * down there is nothing to do so return handled
3775 	 */
3776 	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3777 		return IRQ_HANDLED;
3778 
3779 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3780 		hw->get_link_status = 1;
3781 		/* guard against interrupt when we're going down */
3782 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3783 			schedule_delayed_work(&adapter->watchdog_task, 1);
3784 	}
3785 
3786 	/* disable interrupts, without the synchronize_irq bit */
3787 	ew32(IMC, ~0);
3788 	E1000_WRITE_FLUSH();
3789 
3790 	if (likely(napi_schedule_prep(&adapter->napi))) {
3791 		adapter->total_tx_bytes = 0;
3792 		adapter->total_tx_packets = 0;
3793 		adapter->total_rx_bytes = 0;
3794 		adapter->total_rx_packets = 0;
3795 		__napi_schedule(&adapter->napi);
3796 	} else {
3797 		/* this really should not happen! if it does it is basically a
3798 		 * bug, but not a hard error, so enable ints and continue
3799 		 */
3800 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3801 			e1000_irq_enable(adapter);
3802 	}
3803 
3804 	return IRQ_HANDLED;
3805 }
3806 
3807 /**
3808  * e1000_clean - NAPI Rx polling callback
3809  * @adapter: board private structure
3810  **/
3811 static int e1000_clean(struct napi_struct *napi, int budget)
3812 {
3813 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3814 						     napi);
3815 	int tx_clean_complete = 0, work_done = 0;
3816 
3817 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3818 
3819 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3820 
3821 	if (!tx_clean_complete)
3822 		work_done = budget;
3823 
3824 	/* If budget not fully consumed, exit the polling mode */
3825 	if (work_done < budget) {
3826 		if (likely(adapter->itr_setting & 3))
3827 			e1000_set_itr(adapter);
3828 		napi_complete_done(napi, work_done);
3829 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3830 			e1000_irq_enable(adapter);
3831 	}
3832 
3833 	return work_done;
3834 }
3835 
3836 /**
3837  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3838  * @adapter: board private structure
3839  **/
3840 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3841 			       struct e1000_tx_ring *tx_ring)
3842 {
3843 	struct e1000_hw *hw = &adapter->hw;
3844 	struct net_device *netdev = adapter->netdev;
3845 	struct e1000_tx_desc *tx_desc, *eop_desc;
3846 	struct e1000_tx_buffer *buffer_info;
3847 	unsigned int i, eop;
3848 	unsigned int count = 0;
3849 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3850 	unsigned int bytes_compl = 0, pkts_compl = 0;
3851 
3852 	i = tx_ring->next_to_clean;
3853 	eop = tx_ring->buffer_info[i].next_to_watch;
3854 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3855 
3856 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3857 	       (count < tx_ring->count)) {
3858 		bool cleaned = false;
3859 		dma_rmb();	/* read buffer_info after eop_desc */
3860 		for ( ; !cleaned; count++) {
3861 			tx_desc = E1000_TX_DESC(*tx_ring, i);
3862 			buffer_info = &tx_ring->buffer_info[i];
3863 			cleaned = (i == eop);
3864 
3865 			if (cleaned) {
3866 				total_tx_packets += buffer_info->segs;
3867 				total_tx_bytes += buffer_info->bytecount;
3868 				if (buffer_info->skb) {
3869 					bytes_compl += buffer_info->skb->len;
3870 					pkts_compl++;
3871 				}
3872 
3873 			}
3874 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3875 			tx_desc->upper.data = 0;
3876 
3877 			if (unlikely(++i == tx_ring->count))
3878 				i = 0;
3879 		}
3880 
3881 		eop = tx_ring->buffer_info[i].next_to_watch;
3882 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3883 	}
3884 
3885 	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3886 	 * which will reuse the cleaned buffers.
3887 	 */
3888 	smp_store_release(&tx_ring->next_to_clean, i);
3889 
3890 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3891 
3892 #define TX_WAKE_THRESHOLD 32
3893 	if (unlikely(count && netif_carrier_ok(netdev) &&
3894 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3895 		/* Make sure that anybody stopping the queue after this
3896 		 * sees the new next_to_clean.
3897 		 */
3898 		smp_mb();
3899 
3900 		if (netif_queue_stopped(netdev) &&
3901 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3902 			netif_wake_queue(netdev);
3903 			++adapter->restart_queue;
3904 		}
3905 	}
3906 
3907 	if (adapter->detect_tx_hung) {
3908 		/* Detect a transmit hang in hardware, this serializes the
3909 		 * check with the clearing of time_stamp and movement of i
3910 		 */
3911 		adapter->detect_tx_hung = false;
3912 		if (tx_ring->buffer_info[eop].time_stamp &&
3913 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3914 			       (adapter->tx_timeout_factor * HZ)) &&
3915 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3916 
3917 			/* detected Tx unit hang */
3918 			e_err(drv, "Detected Tx Unit Hang\n"
3919 			      "  Tx Queue             <%lu>\n"
3920 			      "  TDH                  <%x>\n"
3921 			      "  TDT                  <%x>\n"
3922 			      "  next_to_use          <%x>\n"
3923 			      "  next_to_clean        <%x>\n"
3924 			      "buffer_info[next_to_clean]\n"
3925 			      "  time_stamp           <%lx>\n"
3926 			      "  next_to_watch        <%x>\n"
3927 			      "  jiffies              <%lx>\n"
3928 			      "  next_to_watch.status <%x>\n",
3929 				(unsigned long)(tx_ring - adapter->tx_ring),
3930 				readl(hw->hw_addr + tx_ring->tdh),
3931 				readl(hw->hw_addr + tx_ring->tdt),
3932 				tx_ring->next_to_use,
3933 				tx_ring->next_to_clean,
3934 				tx_ring->buffer_info[eop].time_stamp,
3935 				eop,
3936 				jiffies,
3937 				eop_desc->upper.fields.status);
3938 			e1000_dump(adapter);
3939 			netif_stop_queue(netdev);
3940 		}
3941 	}
3942 	adapter->total_tx_bytes += total_tx_bytes;
3943 	adapter->total_tx_packets += total_tx_packets;
3944 	netdev->stats.tx_bytes += total_tx_bytes;
3945 	netdev->stats.tx_packets += total_tx_packets;
3946 	return count < tx_ring->count;
3947 }
3948 
3949 /**
3950  * e1000_rx_checksum - Receive Checksum Offload for 82543
3951  * @adapter:     board private structure
3952  * @status_err:  receive descriptor status and error fields
3953  * @csum:        receive descriptor csum field
3954  * @sk_buff:     socket buffer with received data
3955  **/
3956 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3957 			      u32 csum, struct sk_buff *skb)
3958 {
3959 	struct e1000_hw *hw = &adapter->hw;
3960 	u16 status = (u16)status_err;
3961 	u8 errors = (u8)(status_err >> 24);
3962 
3963 	skb_checksum_none_assert(skb);
3964 
3965 	/* 82543 or newer only */
3966 	if (unlikely(hw->mac_type < e1000_82543))
3967 		return;
3968 	/* Ignore Checksum bit is set */
3969 	if (unlikely(status & E1000_RXD_STAT_IXSM))
3970 		return;
3971 	/* TCP/UDP checksum error bit is set */
3972 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3973 		/* let the stack verify checksum errors */
3974 		adapter->hw_csum_err++;
3975 		return;
3976 	}
3977 	/* TCP/UDP Checksum has not been calculated */
3978 	if (!(status & E1000_RXD_STAT_TCPCS))
3979 		return;
3980 
3981 	/* It must be a TCP or UDP packet with a valid checksum */
3982 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3983 		/* TCP checksum is good */
3984 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3985 	}
3986 	adapter->hw_csum_good++;
3987 }
3988 
3989 /**
3990  * e1000_consume_page - helper function for jumbo Rx path
3991  **/
3992 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3993 			       u16 length)
3994 {
3995 	bi->rxbuf.page = NULL;
3996 	skb->len += length;
3997 	skb->data_len += length;
3998 	skb->truesize += PAGE_SIZE;
3999 }
4000 
4001 /**
4002  * e1000_receive_skb - helper function to handle rx indications
4003  * @adapter: board private structure
4004  * @status: descriptor status field as written by hardware
4005  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4006  * @skb: pointer to sk_buff to be indicated to stack
4007  */
4008 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4009 			      __le16 vlan, struct sk_buff *skb)
4010 {
4011 	skb->protocol = eth_type_trans(skb, adapter->netdev);
4012 
4013 	if (status & E1000_RXD_STAT_VP) {
4014 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4015 
4016 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4017 	}
4018 	napi_gro_receive(&adapter->napi, skb);
4019 }
4020 
4021 /**
4022  * e1000_tbi_adjust_stats
4023  * @hw: Struct containing variables accessed by shared code
4024  * @frame_len: The length of the frame in question
4025  * @mac_addr: The Ethernet destination address of the frame in question
4026  *
4027  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4028  */
4029 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4030 				   struct e1000_hw_stats *stats,
4031 				   u32 frame_len, const u8 *mac_addr)
4032 {
4033 	u64 carry_bit;
4034 
4035 	/* First adjust the frame length. */
4036 	frame_len--;
4037 	/* We need to adjust the statistics counters, since the hardware
4038 	 * counters overcount this packet as a CRC error and undercount
4039 	 * the packet as a good packet
4040 	 */
4041 	/* This packet should not be counted as a CRC error. */
4042 	stats->crcerrs--;
4043 	/* This packet does count as a Good Packet Received. */
4044 	stats->gprc++;
4045 
4046 	/* Adjust the Good Octets received counters */
4047 	carry_bit = 0x80000000 & stats->gorcl;
4048 	stats->gorcl += frame_len;
4049 	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4050 	 * Received Count) was one before the addition,
4051 	 * AND it is zero after, then we lost the carry out,
4052 	 * need to add one to Gorch (Good Octets Received Count High).
4053 	 * This could be simplified if all environments supported
4054 	 * 64-bit integers.
4055 	 */
4056 	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4057 		stats->gorch++;
4058 	/* Is this a broadcast or multicast?  Check broadcast first,
4059 	 * since the test for a multicast frame will test positive on
4060 	 * a broadcast frame.
4061 	 */
4062 	if (is_broadcast_ether_addr(mac_addr))
4063 		stats->bprc++;
4064 	else if (is_multicast_ether_addr(mac_addr))
4065 		stats->mprc++;
4066 
4067 	if (frame_len == hw->max_frame_size) {
4068 		/* In this case, the hardware has overcounted the number of
4069 		 * oversize frames.
4070 		 */
4071 		if (stats->roc > 0)
4072 			stats->roc--;
4073 	}
4074 
4075 	/* Adjust the bin counters when the extra byte put the frame in the
4076 	 * wrong bin. Remember that the frame_len was adjusted above.
4077 	 */
4078 	if (frame_len == 64) {
4079 		stats->prc64++;
4080 		stats->prc127--;
4081 	} else if (frame_len == 127) {
4082 		stats->prc127++;
4083 		stats->prc255--;
4084 	} else if (frame_len == 255) {
4085 		stats->prc255++;
4086 		stats->prc511--;
4087 	} else if (frame_len == 511) {
4088 		stats->prc511++;
4089 		stats->prc1023--;
4090 	} else if (frame_len == 1023) {
4091 		stats->prc1023++;
4092 		stats->prc1522--;
4093 	} else if (frame_len == 1522) {
4094 		stats->prc1522++;
4095 	}
4096 }
4097 
4098 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4099 				    u8 status, u8 errors,
4100 				    u32 length, const u8 *data)
4101 {
4102 	struct e1000_hw *hw = &adapter->hw;
4103 	u8 last_byte = *(data + length - 1);
4104 
4105 	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4106 		unsigned long irq_flags;
4107 
4108 		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4109 		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4110 		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4111 
4112 		return true;
4113 	}
4114 
4115 	return false;
4116 }
4117 
4118 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4119 					  unsigned int bufsz)
4120 {
4121 	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4122 
4123 	if (unlikely(!skb))
4124 		adapter->alloc_rx_buff_failed++;
4125 	return skb;
4126 }
4127 
4128 /**
4129  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4130  * @adapter: board private structure
4131  * @rx_ring: ring to clean
4132  * @work_done: amount of napi work completed this call
4133  * @work_to_do: max amount of work allowed for this call to do
4134  *
4135  * the return value indicates whether actual cleaning was done, there
4136  * is no guarantee that everything was cleaned
4137  */
4138 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4139 				     struct e1000_rx_ring *rx_ring,
4140 				     int *work_done, int work_to_do)
4141 {
4142 	struct net_device *netdev = adapter->netdev;
4143 	struct pci_dev *pdev = adapter->pdev;
4144 	struct e1000_rx_desc *rx_desc, *next_rxd;
4145 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4146 	u32 length;
4147 	unsigned int i;
4148 	int cleaned_count = 0;
4149 	bool cleaned = false;
4150 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4151 
4152 	i = rx_ring->next_to_clean;
4153 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4154 	buffer_info = &rx_ring->buffer_info[i];
4155 
4156 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4157 		struct sk_buff *skb;
4158 		u8 status;
4159 
4160 		if (*work_done >= work_to_do)
4161 			break;
4162 		(*work_done)++;
4163 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4164 
4165 		status = rx_desc->status;
4166 
4167 		if (++i == rx_ring->count)
4168 			i = 0;
4169 
4170 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4171 		prefetch(next_rxd);
4172 
4173 		next_buffer = &rx_ring->buffer_info[i];
4174 
4175 		cleaned = true;
4176 		cleaned_count++;
4177 		dma_unmap_page(&pdev->dev, buffer_info->dma,
4178 			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4179 		buffer_info->dma = 0;
4180 
4181 		length = le16_to_cpu(rx_desc->length);
4182 
4183 		/* errors is only valid for DD + EOP descriptors */
4184 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4185 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4186 			u8 *mapped = page_address(buffer_info->rxbuf.page);
4187 
4188 			if (e1000_tbi_should_accept(adapter, status,
4189 						    rx_desc->errors,
4190 						    length, mapped)) {
4191 				length--;
4192 			} else if (netdev->features & NETIF_F_RXALL) {
4193 				goto process_skb;
4194 			} else {
4195 				/* an error means any chain goes out the window
4196 				 * too
4197 				 */
4198 				if (rx_ring->rx_skb_top)
4199 					dev_kfree_skb(rx_ring->rx_skb_top);
4200 				rx_ring->rx_skb_top = NULL;
4201 				goto next_desc;
4202 			}
4203 		}
4204 
4205 #define rxtop rx_ring->rx_skb_top
4206 process_skb:
4207 		if (!(status & E1000_RXD_STAT_EOP)) {
4208 			/* this descriptor is only the beginning (or middle) */
4209 			if (!rxtop) {
4210 				/* this is the beginning of a chain */
4211 				rxtop = napi_get_frags(&adapter->napi);
4212 				if (!rxtop)
4213 					break;
4214 
4215 				skb_fill_page_desc(rxtop, 0,
4216 						   buffer_info->rxbuf.page,
4217 						   0, length);
4218 			} else {
4219 				/* this is the middle of a chain */
4220 				skb_fill_page_desc(rxtop,
4221 				    skb_shinfo(rxtop)->nr_frags,
4222 				    buffer_info->rxbuf.page, 0, length);
4223 			}
4224 			e1000_consume_page(buffer_info, rxtop, length);
4225 			goto next_desc;
4226 		} else {
4227 			if (rxtop) {
4228 				/* end of the chain */
4229 				skb_fill_page_desc(rxtop,
4230 				    skb_shinfo(rxtop)->nr_frags,
4231 				    buffer_info->rxbuf.page, 0, length);
4232 				skb = rxtop;
4233 				rxtop = NULL;
4234 				e1000_consume_page(buffer_info, skb, length);
4235 			} else {
4236 				struct page *p;
4237 				/* no chain, got EOP, this buf is the packet
4238 				 * copybreak to save the put_page/alloc_page
4239 				 */
4240 				p = buffer_info->rxbuf.page;
4241 				if (length <= copybreak) {
4242 					u8 *vaddr;
4243 
4244 					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4245 						length -= 4;
4246 					skb = e1000_alloc_rx_skb(adapter,
4247 								 length);
4248 					if (!skb)
4249 						break;
4250 
4251 					vaddr = kmap_atomic(p);
4252 					memcpy(skb_tail_pointer(skb), vaddr,
4253 					       length);
4254 					kunmap_atomic(vaddr);
4255 					/* re-use the page, so don't erase
4256 					 * buffer_info->rxbuf.page
4257 					 */
4258 					skb_put(skb, length);
4259 					e1000_rx_checksum(adapter,
4260 							  status | rx_desc->errors << 24,
4261 							  le16_to_cpu(rx_desc->csum), skb);
4262 
4263 					total_rx_bytes += skb->len;
4264 					total_rx_packets++;
4265 
4266 					e1000_receive_skb(adapter, status,
4267 							  rx_desc->special, skb);
4268 					goto next_desc;
4269 				} else {
4270 					skb = napi_get_frags(&adapter->napi);
4271 					if (!skb) {
4272 						adapter->alloc_rx_buff_failed++;
4273 						break;
4274 					}
4275 					skb_fill_page_desc(skb, 0, p, 0,
4276 							   length);
4277 					e1000_consume_page(buffer_info, skb,
4278 							   length);
4279 				}
4280 			}
4281 		}
4282 
4283 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4284 		e1000_rx_checksum(adapter,
4285 				  (u32)(status) |
4286 				  ((u32)(rx_desc->errors) << 24),
4287 				  le16_to_cpu(rx_desc->csum), skb);
4288 
4289 		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4290 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4291 			pskb_trim(skb, skb->len - 4);
4292 		total_rx_packets++;
4293 
4294 		if (status & E1000_RXD_STAT_VP) {
4295 			__le16 vlan = rx_desc->special;
4296 			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4297 
4298 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4299 		}
4300 
4301 		napi_gro_frags(&adapter->napi);
4302 
4303 next_desc:
4304 		rx_desc->status = 0;
4305 
4306 		/* return some buffers to hardware, one at a time is too slow */
4307 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4308 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4309 			cleaned_count = 0;
4310 		}
4311 
4312 		/* use prefetched values */
4313 		rx_desc = next_rxd;
4314 		buffer_info = next_buffer;
4315 	}
4316 	rx_ring->next_to_clean = i;
4317 
4318 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4319 	if (cleaned_count)
4320 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4321 
4322 	adapter->total_rx_packets += total_rx_packets;
4323 	adapter->total_rx_bytes += total_rx_bytes;
4324 	netdev->stats.rx_bytes += total_rx_bytes;
4325 	netdev->stats.rx_packets += total_rx_packets;
4326 	return cleaned;
4327 }
4328 
4329 /* this should improve performance for small packets with large amounts
4330  * of reassembly being done in the stack
4331  */
4332 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4333 				       struct e1000_rx_buffer *buffer_info,
4334 				       u32 length, const void *data)
4335 {
4336 	struct sk_buff *skb;
4337 
4338 	if (length > copybreak)
4339 		return NULL;
4340 
4341 	skb = e1000_alloc_rx_skb(adapter, length);
4342 	if (!skb)
4343 		return NULL;
4344 
4345 	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4346 				length, DMA_FROM_DEVICE);
4347 
4348 	skb_put_data(skb, data, length);
4349 
4350 	return skb;
4351 }
4352 
4353 /**
4354  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4355  * @adapter: board private structure
4356  * @rx_ring: ring to clean
4357  * @work_done: amount of napi work completed this call
4358  * @work_to_do: max amount of work allowed for this call to do
4359  */
4360 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4361 			       struct e1000_rx_ring *rx_ring,
4362 			       int *work_done, int work_to_do)
4363 {
4364 	struct net_device *netdev = adapter->netdev;
4365 	struct pci_dev *pdev = adapter->pdev;
4366 	struct e1000_rx_desc *rx_desc, *next_rxd;
4367 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4368 	u32 length;
4369 	unsigned int i;
4370 	int cleaned_count = 0;
4371 	bool cleaned = false;
4372 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4373 
4374 	i = rx_ring->next_to_clean;
4375 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4376 	buffer_info = &rx_ring->buffer_info[i];
4377 
4378 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4379 		struct sk_buff *skb;
4380 		u8 *data;
4381 		u8 status;
4382 
4383 		if (*work_done >= work_to_do)
4384 			break;
4385 		(*work_done)++;
4386 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4387 
4388 		status = rx_desc->status;
4389 		length = le16_to_cpu(rx_desc->length);
4390 
4391 		data = buffer_info->rxbuf.data;
4392 		prefetch(data);
4393 		skb = e1000_copybreak(adapter, buffer_info, length, data);
4394 		if (!skb) {
4395 			unsigned int frag_len = e1000_frag_len(adapter);
4396 
4397 			skb = build_skb(data - E1000_HEADROOM, frag_len);
4398 			if (!skb) {
4399 				adapter->alloc_rx_buff_failed++;
4400 				break;
4401 			}
4402 
4403 			skb_reserve(skb, E1000_HEADROOM);
4404 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4405 					 adapter->rx_buffer_len,
4406 					 DMA_FROM_DEVICE);
4407 			buffer_info->dma = 0;
4408 			buffer_info->rxbuf.data = NULL;
4409 		}
4410 
4411 		if (++i == rx_ring->count)
4412 			i = 0;
4413 
4414 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4415 		prefetch(next_rxd);
4416 
4417 		next_buffer = &rx_ring->buffer_info[i];
4418 
4419 		cleaned = true;
4420 		cleaned_count++;
4421 
4422 		/* !EOP means multiple descriptors were used to store a single
4423 		 * packet, if thats the case we need to toss it.  In fact, we
4424 		 * to toss every packet with the EOP bit clear and the next
4425 		 * frame that _does_ have the EOP bit set, as it is by
4426 		 * definition only a frame fragment
4427 		 */
4428 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4429 			adapter->discarding = true;
4430 
4431 		if (adapter->discarding) {
4432 			/* All receives must fit into a single buffer */
4433 			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4434 			dev_kfree_skb(skb);
4435 			if (status & E1000_RXD_STAT_EOP)
4436 				adapter->discarding = false;
4437 			goto next_desc;
4438 		}
4439 
4440 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4441 			if (e1000_tbi_should_accept(adapter, status,
4442 						    rx_desc->errors,
4443 						    length, data)) {
4444 				length--;
4445 			} else if (netdev->features & NETIF_F_RXALL) {
4446 				goto process_skb;
4447 			} else {
4448 				dev_kfree_skb(skb);
4449 				goto next_desc;
4450 			}
4451 		}
4452 
4453 process_skb:
4454 		total_rx_bytes += (length - 4); /* don't count FCS */
4455 		total_rx_packets++;
4456 
4457 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4458 			/* adjust length to remove Ethernet CRC, this must be
4459 			 * done after the TBI_ACCEPT workaround above
4460 			 */
4461 			length -= 4;
4462 
4463 		if (buffer_info->rxbuf.data == NULL)
4464 			skb_put(skb, length);
4465 		else /* copybreak skb */
4466 			skb_trim(skb, length);
4467 
4468 		/* Receive Checksum Offload */
4469 		e1000_rx_checksum(adapter,
4470 				  (u32)(status) |
4471 				  ((u32)(rx_desc->errors) << 24),
4472 				  le16_to_cpu(rx_desc->csum), skb);
4473 
4474 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4475 
4476 next_desc:
4477 		rx_desc->status = 0;
4478 
4479 		/* return some buffers to hardware, one at a time is too slow */
4480 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4481 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4482 			cleaned_count = 0;
4483 		}
4484 
4485 		/* use prefetched values */
4486 		rx_desc = next_rxd;
4487 		buffer_info = next_buffer;
4488 	}
4489 	rx_ring->next_to_clean = i;
4490 
4491 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4492 	if (cleaned_count)
4493 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4494 
4495 	adapter->total_rx_packets += total_rx_packets;
4496 	adapter->total_rx_bytes += total_rx_bytes;
4497 	netdev->stats.rx_bytes += total_rx_bytes;
4498 	netdev->stats.rx_packets += total_rx_packets;
4499 	return cleaned;
4500 }
4501 
4502 /**
4503  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4504  * @adapter: address of board private structure
4505  * @rx_ring: pointer to receive ring structure
4506  * @cleaned_count: number of buffers to allocate this pass
4507  **/
4508 static void
4509 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4510 			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4511 {
4512 	struct pci_dev *pdev = adapter->pdev;
4513 	struct e1000_rx_desc *rx_desc;
4514 	struct e1000_rx_buffer *buffer_info;
4515 	unsigned int i;
4516 
4517 	i = rx_ring->next_to_use;
4518 	buffer_info = &rx_ring->buffer_info[i];
4519 
4520 	while (cleaned_count--) {
4521 		/* allocate a new page if necessary */
4522 		if (!buffer_info->rxbuf.page) {
4523 			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4524 			if (unlikely(!buffer_info->rxbuf.page)) {
4525 				adapter->alloc_rx_buff_failed++;
4526 				break;
4527 			}
4528 		}
4529 
4530 		if (!buffer_info->dma) {
4531 			buffer_info->dma = dma_map_page(&pdev->dev,
4532 							buffer_info->rxbuf.page, 0,
4533 							adapter->rx_buffer_len,
4534 							DMA_FROM_DEVICE);
4535 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4536 				put_page(buffer_info->rxbuf.page);
4537 				buffer_info->rxbuf.page = NULL;
4538 				buffer_info->dma = 0;
4539 				adapter->alloc_rx_buff_failed++;
4540 				break;
4541 			}
4542 		}
4543 
4544 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4545 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4546 
4547 		if (unlikely(++i == rx_ring->count))
4548 			i = 0;
4549 		buffer_info = &rx_ring->buffer_info[i];
4550 	}
4551 
4552 	if (likely(rx_ring->next_to_use != i)) {
4553 		rx_ring->next_to_use = i;
4554 		if (unlikely(i-- == 0))
4555 			i = (rx_ring->count - 1);
4556 
4557 		/* Force memory writes to complete before letting h/w
4558 		 * know there are new descriptors to fetch.  (Only
4559 		 * applicable for weak-ordered memory model archs,
4560 		 * such as IA-64).
4561 		 */
4562 		wmb();
4563 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4564 	}
4565 }
4566 
4567 /**
4568  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4569  * @adapter: address of board private structure
4570  **/
4571 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4572 				   struct e1000_rx_ring *rx_ring,
4573 				   int cleaned_count)
4574 {
4575 	struct e1000_hw *hw = &adapter->hw;
4576 	struct pci_dev *pdev = adapter->pdev;
4577 	struct e1000_rx_desc *rx_desc;
4578 	struct e1000_rx_buffer *buffer_info;
4579 	unsigned int i;
4580 	unsigned int bufsz = adapter->rx_buffer_len;
4581 
4582 	i = rx_ring->next_to_use;
4583 	buffer_info = &rx_ring->buffer_info[i];
4584 
4585 	while (cleaned_count--) {
4586 		void *data;
4587 
4588 		if (buffer_info->rxbuf.data)
4589 			goto skip;
4590 
4591 		data = e1000_alloc_frag(adapter);
4592 		if (!data) {
4593 			/* Better luck next round */
4594 			adapter->alloc_rx_buff_failed++;
4595 			break;
4596 		}
4597 
4598 		/* Fix for errata 23, can't cross 64kB boundary */
4599 		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4600 			void *olddata = data;
4601 			e_err(rx_err, "skb align check failed: %u bytes at "
4602 			      "%p\n", bufsz, data);
4603 			/* Try again, without freeing the previous */
4604 			data = e1000_alloc_frag(adapter);
4605 			/* Failed allocation, critical failure */
4606 			if (!data) {
4607 				skb_free_frag(olddata);
4608 				adapter->alloc_rx_buff_failed++;
4609 				break;
4610 			}
4611 
4612 			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4613 				/* give up */
4614 				skb_free_frag(data);
4615 				skb_free_frag(olddata);
4616 				adapter->alloc_rx_buff_failed++;
4617 				break;
4618 			}
4619 
4620 			/* Use new allocation */
4621 			skb_free_frag(olddata);
4622 		}
4623 		buffer_info->dma = dma_map_single(&pdev->dev,
4624 						  data,
4625 						  adapter->rx_buffer_len,
4626 						  DMA_FROM_DEVICE);
4627 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4628 			skb_free_frag(data);
4629 			buffer_info->dma = 0;
4630 			adapter->alloc_rx_buff_failed++;
4631 			break;
4632 		}
4633 
4634 		/* XXX if it was allocated cleanly it will never map to a
4635 		 * boundary crossing
4636 		 */
4637 
4638 		/* Fix for errata 23, can't cross 64kB boundary */
4639 		if (!e1000_check_64k_bound(adapter,
4640 					(void *)(unsigned long)buffer_info->dma,
4641 					adapter->rx_buffer_len)) {
4642 			e_err(rx_err, "dma align check failed: %u bytes at "
4643 			      "%p\n", adapter->rx_buffer_len,
4644 			      (void *)(unsigned long)buffer_info->dma);
4645 
4646 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4647 					 adapter->rx_buffer_len,
4648 					 DMA_FROM_DEVICE);
4649 
4650 			skb_free_frag(data);
4651 			buffer_info->rxbuf.data = NULL;
4652 			buffer_info->dma = 0;
4653 
4654 			adapter->alloc_rx_buff_failed++;
4655 			break;
4656 		}
4657 		buffer_info->rxbuf.data = data;
4658  skip:
4659 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4660 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4661 
4662 		if (unlikely(++i == rx_ring->count))
4663 			i = 0;
4664 		buffer_info = &rx_ring->buffer_info[i];
4665 	}
4666 
4667 	if (likely(rx_ring->next_to_use != i)) {
4668 		rx_ring->next_to_use = i;
4669 		if (unlikely(i-- == 0))
4670 			i = (rx_ring->count - 1);
4671 
4672 		/* Force memory writes to complete before letting h/w
4673 		 * know there are new descriptors to fetch.  (Only
4674 		 * applicable for weak-ordered memory model archs,
4675 		 * such as IA-64).
4676 		 */
4677 		wmb();
4678 		writel(i, hw->hw_addr + rx_ring->rdt);
4679 	}
4680 }
4681 
4682 /**
4683  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4684  * @adapter:
4685  **/
4686 static void e1000_smartspeed(struct e1000_adapter *adapter)
4687 {
4688 	struct e1000_hw *hw = &adapter->hw;
4689 	u16 phy_status;
4690 	u16 phy_ctrl;
4691 
4692 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4693 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4694 		return;
4695 
4696 	if (adapter->smartspeed == 0) {
4697 		/* If Master/Slave config fault is asserted twice,
4698 		 * we assume back-to-back
4699 		 */
4700 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4701 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4702 			return;
4703 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4704 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4705 			return;
4706 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4707 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4708 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4709 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4710 					    phy_ctrl);
4711 			adapter->smartspeed++;
4712 			if (!e1000_phy_setup_autoneg(hw) &&
4713 			   !e1000_read_phy_reg(hw, PHY_CTRL,
4714 					       &phy_ctrl)) {
4715 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4716 					     MII_CR_RESTART_AUTO_NEG);
4717 				e1000_write_phy_reg(hw, PHY_CTRL,
4718 						    phy_ctrl);
4719 			}
4720 		}
4721 		return;
4722 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4723 		/* If still no link, perhaps using 2/3 pair cable */
4724 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4725 		phy_ctrl |= CR_1000T_MS_ENABLE;
4726 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4727 		if (!e1000_phy_setup_autoneg(hw) &&
4728 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4729 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4730 				     MII_CR_RESTART_AUTO_NEG);
4731 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4732 		}
4733 	}
4734 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4735 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4736 		adapter->smartspeed = 0;
4737 }
4738 
4739 /**
4740  * e1000_ioctl -
4741  * @netdev:
4742  * @ifreq:
4743  * @cmd:
4744  **/
4745 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4746 {
4747 	switch (cmd) {
4748 	case SIOCGMIIPHY:
4749 	case SIOCGMIIREG:
4750 	case SIOCSMIIREG:
4751 		return e1000_mii_ioctl(netdev, ifr, cmd);
4752 	default:
4753 		return -EOPNOTSUPP;
4754 	}
4755 }
4756 
4757 /**
4758  * e1000_mii_ioctl -
4759  * @netdev:
4760  * @ifreq:
4761  * @cmd:
4762  **/
4763 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4764 			   int cmd)
4765 {
4766 	struct e1000_adapter *adapter = netdev_priv(netdev);
4767 	struct e1000_hw *hw = &adapter->hw;
4768 	struct mii_ioctl_data *data = if_mii(ifr);
4769 	int retval;
4770 	u16 mii_reg;
4771 	unsigned long flags;
4772 
4773 	if (hw->media_type != e1000_media_type_copper)
4774 		return -EOPNOTSUPP;
4775 
4776 	switch (cmd) {
4777 	case SIOCGMIIPHY:
4778 		data->phy_id = hw->phy_addr;
4779 		break;
4780 	case SIOCGMIIREG:
4781 		spin_lock_irqsave(&adapter->stats_lock, flags);
4782 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4783 				   &data->val_out)) {
4784 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4785 			return -EIO;
4786 		}
4787 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4788 		break;
4789 	case SIOCSMIIREG:
4790 		if (data->reg_num & ~(0x1F))
4791 			return -EFAULT;
4792 		mii_reg = data->val_in;
4793 		spin_lock_irqsave(&adapter->stats_lock, flags);
4794 		if (e1000_write_phy_reg(hw, data->reg_num,
4795 					mii_reg)) {
4796 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4797 			return -EIO;
4798 		}
4799 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4800 		if (hw->media_type == e1000_media_type_copper) {
4801 			switch (data->reg_num) {
4802 			case PHY_CTRL:
4803 				if (mii_reg & MII_CR_POWER_DOWN)
4804 					break;
4805 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4806 					hw->autoneg = 1;
4807 					hw->autoneg_advertised = 0x2F;
4808 				} else {
4809 					u32 speed;
4810 					if (mii_reg & 0x40)
4811 						speed = SPEED_1000;
4812 					else if (mii_reg & 0x2000)
4813 						speed = SPEED_100;
4814 					else
4815 						speed = SPEED_10;
4816 					retval = e1000_set_spd_dplx(
4817 						adapter, speed,
4818 						((mii_reg & 0x100)
4819 						 ? DUPLEX_FULL :
4820 						 DUPLEX_HALF));
4821 					if (retval)
4822 						return retval;
4823 				}
4824 				if (netif_running(adapter->netdev))
4825 					e1000_reinit_locked(adapter);
4826 				else
4827 					e1000_reset(adapter);
4828 				break;
4829 			case M88E1000_PHY_SPEC_CTRL:
4830 			case M88E1000_EXT_PHY_SPEC_CTRL:
4831 				if (e1000_phy_reset(hw))
4832 					return -EIO;
4833 				break;
4834 			}
4835 		} else {
4836 			switch (data->reg_num) {
4837 			case PHY_CTRL:
4838 				if (mii_reg & MII_CR_POWER_DOWN)
4839 					break;
4840 				if (netif_running(adapter->netdev))
4841 					e1000_reinit_locked(adapter);
4842 				else
4843 					e1000_reset(adapter);
4844 				break;
4845 			}
4846 		}
4847 		break;
4848 	default:
4849 		return -EOPNOTSUPP;
4850 	}
4851 	return E1000_SUCCESS;
4852 }
4853 
4854 void e1000_pci_set_mwi(struct e1000_hw *hw)
4855 {
4856 	struct e1000_adapter *adapter = hw->back;
4857 	int ret_val = pci_set_mwi(adapter->pdev);
4858 
4859 	if (ret_val)
4860 		e_err(probe, "Error in setting MWI\n");
4861 }
4862 
4863 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4864 {
4865 	struct e1000_adapter *adapter = hw->back;
4866 
4867 	pci_clear_mwi(adapter->pdev);
4868 }
4869 
4870 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4871 {
4872 	struct e1000_adapter *adapter = hw->back;
4873 	return pcix_get_mmrbc(adapter->pdev);
4874 }
4875 
4876 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4877 {
4878 	struct e1000_adapter *adapter = hw->back;
4879 	pcix_set_mmrbc(adapter->pdev, mmrbc);
4880 }
4881 
4882 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4883 {
4884 	outl(value, port);
4885 }
4886 
4887 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4888 {
4889 	u16 vid;
4890 
4891 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4892 		return true;
4893 	return false;
4894 }
4895 
4896 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4897 			      netdev_features_t features)
4898 {
4899 	struct e1000_hw *hw = &adapter->hw;
4900 	u32 ctrl;
4901 
4902 	ctrl = er32(CTRL);
4903 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4904 		/* enable VLAN tag insert/strip */
4905 		ctrl |= E1000_CTRL_VME;
4906 	} else {
4907 		/* disable VLAN tag insert/strip */
4908 		ctrl &= ~E1000_CTRL_VME;
4909 	}
4910 	ew32(CTRL, ctrl);
4911 }
4912 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4913 				     bool filter_on)
4914 {
4915 	struct e1000_hw *hw = &adapter->hw;
4916 	u32 rctl;
4917 
4918 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4919 		e1000_irq_disable(adapter);
4920 
4921 	__e1000_vlan_mode(adapter, adapter->netdev->features);
4922 	if (filter_on) {
4923 		/* enable VLAN receive filtering */
4924 		rctl = er32(RCTL);
4925 		rctl &= ~E1000_RCTL_CFIEN;
4926 		if (!(adapter->netdev->flags & IFF_PROMISC))
4927 			rctl |= E1000_RCTL_VFE;
4928 		ew32(RCTL, rctl);
4929 		e1000_update_mng_vlan(adapter);
4930 	} else {
4931 		/* disable VLAN receive filtering */
4932 		rctl = er32(RCTL);
4933 		rctl &= ~E1000_RCTL_VFE;
4934 		ew32(RCTL, rctl);
4935 	}
4936 
4937 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4938 		e1000_irq_enable(adapter);
4939 }
4940 
4941 static void e1000_vlan_mode(struct net_device *netdev,
4942 			    netdev_features_t features)
4943 {
4944 	struct e1000_adapter *adapter = netdev_priv(netdev);
4945 
4946 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4947 		e1000_irq_disable(adapter);
4948 
4949 	__e1000_vlan_mode(adapter, features);
4950 
4951 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4952 		e1000_irq_enable(adapter);
4953 }
4954 
4955 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4956 				 __be16 proto, u16 vid)
4957 {
4958 	struct e1000_adapter *adapter = netdev_priv(netdev);
4959 	struct e1000_hw *hw = &adapter->hw;
4960 	u32 vfta, index;
4961 
4962 	if ((hw->mng_cookie.status &
4963 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4964 	    (vid == adapter->mng_vlan_id))
4965 		return 0;
4966 
4967 	if (!e1000_vlan_used(adapter))
4968 		e1000_vlan_filter_on_off(adapter, true);
4969 
4970 	/* add VID to filter table */
4971 	index = (vid >> 5) & 0x7F;
4972 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4973 	vfta |= (1 << (vid & 0x1F));
4974 	e1000_write_vfta(hw, index, vfta);
4975 
4976 	set_bit(vid, adapter->active_vlans);
4977 
4978 	return 0;
4979 }
4980 
4981 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4982 				  __be16 proto, u16 vid)
4983 {
4984 	struct e1000_adapter *adapter = netdev_priv(netdev);
4985 	struct e1000_hw *hw = &adapter->hw;
4986 	u32 vfta, index;
4987 
4988 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4989 		e1000_irq_disable(adapter);
4990 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4991 		e1000_irq_enable(adapter);
4992 
4993 	/* remove VID from filter table */
4994 	index = (vid >> 5) & 0x7F;
4995 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4996 	vfta &= ~(1 << (vid & 0x1F));
4997 	e1000_write_vfta(hw, index, vfta);
4998 
4999 	clear_bit(vid, adapter->active_vlans);
5000 
5001 	if (!e1000_vlan_used(adapter))
5002 		e1000_vlan_filter_on_off(adapter, false);
5003 
5004 	return 0;
5005 }
5006 
5007 static void e1000_restore_vlan(struct e1000_adapter *adapter)
5008 {
5009 	u16 vid;
5010 
5011 	if (!e1000_vlan_used(adapter))
5012 		return;
5013 
5014 	e1000_vlan_filter_on_off(adapter, true);
5015 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5016 		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5017 }
5018 
5019 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5020 {
5021 	struct e1000_hw *hw = &adapter->hw;
5022 
5023 	hw->autoneg = 0;
5024 
5025 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5026 	 * for the switch() below to work
5027 	 */
5028 	if ((spd & 1) || (dplx & ~1))
5029 		goto err_inval;
5030 
5031 	/* Fiber NICs only allow 1000 gbps Full duplex */
5032 	if ((hw->media_type == e1000_media_type_fiber) &&
5033 	    spd != SPEED_1000 &&
5034 	    dplx != DUPLEX_FULL)
5035 		goto err_inval;
5036 
5037 	switch (spd + dplx) {
5038 	case SPEED_10 + DUPLEX_HALF:
5039 		hw->forced_speed_duplex = e1000_10_half;
5040 		break;
5041 	case SPEED_10 + DUPLEX_FULL:
5042 		hw->forced_speed_duplex = e1000_10_full;
5043 		break;
5044 	case SPEED_100 + DUPLEX_HALF:
5045 		hw->forced_speed_duplex = e1000_100_half;
5046 		break;
5047 	case SPEED_100 + DUPLEX_FULL:
5048 		hw->forced_speed_duplex = e1000_100_full;
5049 		break;
5050 	case SPEED_1000 + DUPLEX_FULL:
5051 		hw->autoneg = 1;
5052 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5053 		break;
5054 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5055 	default:
5056 		goto err_inval;
5057 	}
5058 
5059 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5060 	hw->mdix = AUTO_ALL_MODES;
5061 
5062 	return 0;
5063 
5064 err_inval:
5065 	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5066 	return -EINVAL;
5067 }
5068 
5069 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5070 {
5071 	struct net_device *netdev = pci_get_drvdata(pdev);
5072 	struct e1000_adapter *adapter = netdev_priv(netdev);
5073 	struct e1000_hw *hw = &adapter->hw;
5074 	u32 ctrl, ctrl_ext, rctl, status;
5075 	u32 wufc = adapter->wol;
5076 #ifdef CONFIG_PM
5077 	int retval = 0;
5078 #endif
5079 
5080 	netif_device_detach(netdev);
5081 
5082 	if (netif_running(netdev)) {
5083 		int count = E1000_CHECK_RESET_COUNT;
5084 
5085 		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5086 			usleep_range(10000, 20000);
5087 
5088 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5089 		e1000_down(adapter);
5090 	}
5091 
5092 #ifdef CONFIG_PM
5093 	retval = pci_save_state(pdev);
5094 	if (retval)
5095 		return retval;
5096 #endif
5097 
5098 	status = er32(STATUS);
5099 	if (status & E1000_STATUS_LU)
5100 		wufc &= ~E1000_WUFC_LNKC;
5101 
5102 	if (wufc) {
5103 		e1000_setup_rctl(adapter);
5104 		e1000_set_rx_mode(netdev);
5105 
5106 		rctl = er32(RCTL);
5107 
5108 		/* turn on all-multi mode if wake on multicast is enabled */
5109 		if (wufc & E1000_WUFC_MC)
5110 			rctl |= E1000_RCTL_MPE;
5111 
5112 		/* enable receives in the hardware */
5113 		ew32(RCTL, rctl | E1000_RCTL_EN);
5114 
5115 		if (hw->mac_type >= e1000_82540) {
5116 			ctrl = er32(CTRL);
5117 			/* advertise wake from D3Cold */
5118 			#define E1000_CTRL_ADVD3WUC 0x00100000
5119 			/* phy power management enable */
5120 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5121 			ctrl |= E1000_CTRL_ADVD3WUC |
5122 				E1000_CTRL_EN_PHY_PWR_MGMT;
5123 			ew32(CTRL, ctrl);
5124 		}
5125 
5126 		if (hw->media_type == e1000_media_type_fiber ||
5127 		    hw->media_type == e1000_media_type_internal_serdes) {
5128 			/* keep the laser running in D3 */
5129 			ctrl_ext = er32(CTRL_EXT);
5130 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5131 			ew32(CTRL_EXT, ctrl_ext);
5132 		}
5133 
5134 		ew32(WUC, E1000_WUC_PME_EN);
5135 		ew32(WUFC, wufc);
5136 	} else {
5137 		ew32(WUC, 0);
5138 		ew32(WUFC, 0);
5139 	}
5140 
5141 	e1000_release_manageability(adapter);
5142 
5143 	*enable_wake = !!wufc;
5144 
5145 	/* make sure adapter isn't asleep if manageability is enabled */
5146 	if (adapter->en_mng_pt)
5147 		*enable_wake = true;
5148 
5149 	if (netif_running(netdev))
5150 		e1000_free_irq(adapter);
5151 
5152 	pci_disable_device(pdev);
5153 
5154 	return 0;
5155 }
5156 
5157 #ifdef CONFIG_PM
5158 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5159 {
5160 	int retval;
5161 	bool wake;
5162 
5163 	retval = __e1000_shutdown(pdev, &wake);
5164 	if (retval)
5165 		return retval;
5166 
5167 	if (wake) {
5168 		pci_prepare_to_sleep(pdev);
5169 	} else {
5170 		pci_wake_from_d3(pdev, false);
5171 		pci_set_power_state(pdev, PCI_D3hot);
5172 	}
5173 
5174 	return 0;
5175 }
5176 
5177 static int e1000_resume(struct pci_dev *pdev)
5178 {
5179 	struct net_device *netdev = pci_get_drvdata(pdev);
5180 	struct e1000_adapter *adapter = netdev_priv(netdev);
5181 	struct e1000_hw *hw = &adapter->hw;
5182 	u32 err;
5183 
5184 	pci_set_power_state(pdev, PCI_D0);
5185 	pci_restore_state(pdev);
5186 	pci_save_state(pdev);
5187 
5188 	if (adapter->need_ioport)
5189 		err = pci_enable_device(pdev);
5190 	else
5191 		err = pci_enable_device_mem(pdev);
5192 	if (err) {
5193 		pr_err("Cannot enable PCI device from suspend\n");
5194 		return err;
5195 	}
5196 	pci_set_master(pdev);
5197 
5198 	pci_enable_wake(pdev, PCI_D3hot, 0);
5199 	pci_enable_wake(pdev, PCI_D3cold, 0);
5200 
5201 	if (netif_running(netdev)) {
5202 		err = e1000_request_irq(adapter);
5203 		if (err)
5204 			return err;
5205 	}
5206 
5207 	e1000_power_up_phy(adapter);
5208 	e1000_reset(adapter);
5209 	ew32(WUS, ~0);
5210 
5211 	e1000_init_manageability(adapter);
5212 
5213 	if (netif_running(netdev))
5214 		e1000_up(adapter);
5215 
5216 	netif_device_attach(netdev);
5217 
5218 	return 0;
5219 }
5220 #endif
5221 
5222 static void e1000_shutdown(struct pci_dev *pdev)
5223 {
5224 	bool wake;
5225 
5226 	__e1000_shutdown(pdev, &wake);
5227 
5228 	if (system_state == SYSTEM_POWER_OFF) {
5229 		pci_wake_from_d3(pdev, wake);
5230 		pci_set_power_state(pdev, PCI_D3hot);
5231 	}
5232 }
5233 
5234 #ifdef CONFIG_NET_POLL_CONTROLLER
5235 /* Polling 'interrupt' - used by things like netconsole to send skbs
5236  * without having to re-enable interrupts. It's not called while
5237  * the interrupt routine is executing.
5238  */
5239 static void e1000_netpoll(struct net_device *netdev)
5240 {
5241 	struct e1000_adapter *adapter = netdev_priv(netdev);
5242 
5243 	if (disable_hardirq(adapter->pdev->irq))
5244 		e1000_intr(adapter->pdev->irq, netdev);
5245 	enable_irq(adapter->pdev->irq);
5246 }
5247 #endif
5248 
5249 /**
5250  * e1000_io_error_detected - called when PCI error is detected
5251  * @pdev: Pointer to PCI device
5252  * @state: The current pci connection state
5253  *
5254  * This function is called after a PCI bus error affecting
5255  * this device has been detected.
5256  */
5257 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5258 						pci_channel_state_t state)
5259 {
5260 	struct net_device *netdev = pci_get_drvdata(pdev);
5261 	struct e1000_adapter *adapter = netdev_priv(netdev);
5262 
5263 	netif_device_detach(netdev);
5264 
5265 	if (state == pci_channel_io_perm_failure)
5266 		return PCI_ERS_RESULT_DISCONNECT;
5267 
5268 	if (netif_running(netdev))
5269 		e1000_down(adapter);
5270 	pci_disable_device(pdev);
5271 
5272 	/* Request a slot slot reset. */
5273 	return PCI_ERS_RESULT_NEED_RESET;
5274 }
5275 
5276 /**
5277  * e1000_io_slot_reset - called after the pci bus has been reset.
5278  * @pdev: Pointer to PCI device
5279  *
5280  * Restart the card from scratch, as if from a cold-boot. Implementation
5281  * resembles the first-half of the e1000_resume routine.
5282  */
5283 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5284 {
5285 	struct net_device *netdev = pci_get_drvdata(pdev);
5286 	struct e1000_adapter *adapter = netdev_priv(netdev);
5287 	struct e1000_hw *hw = &adapter->hw;
5288 	int err;
5289 
5290 	if (adapter->need_ioport)
5291 		err = pci_enable_device(pdev);
5292 	else
5293 		err = pci_enable_device_mem(pdev);
5294 	if (err) {
5295 		pr_err("Cannot re-enable PCI device after reset.\n");
5296 		return PCI_ERS_RESULT_DISCONNECT;
5297 	}
5298 	pci_set_master(pdev);
5299 
5300 	pci_enable_wake(pdev, PCI_D3hot, 0);
5301 	pci_enable_wake(pdev, PCI_D3cold, 0);
5302 
5303 	e1000_reset(adapter);
5304 	ew32(WUS, ~0);
5305 
5306 	return PCI_ERS_RESULT_RECOVERED;
5307 }
5308 
5309 /**
5310  * e1000_io_resume - called when traffic can start flowing again.
5311  * @pdev: Pointer to PCI device
5312  *
5313  * This callback is called when the error recovery driver tells us that
5314  * its OK to resume normal operation. Implementation resembles the
5315  * second-half of the e1000_resume routine.
5316  */
5317 static void e1000_io_resume(struct pci_dev *pdev)
5318 {
5319 	struct net_device *netdev = pci_get_drvdata(pdev);
5320 	struct e1000_adapter *adapter = netdev_priv(netdev);
5321 
5322 	e1000_init_manageability(adapter);
5323 
5324 	if (netif_running(netdev)) {
5325 		if (e1000_up(adapter)) {
5326 			pr_info("can't bring device back up after reset\n");
5327 			return;
5328 		}
5329 	}
5330 
5331 	netif_device_attach(netdev);
5332 }
5333 
5334 /* e1000_main.c */
5335