1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2006 Intel Corporation. */ 3 4 #include "e1000.h" 5 #include <net/ip6_checksum.h> 6 #include <linux/io.h> 7 #include <linux/prefetch.h> 8 #include <linux/bitops.h> 9 #include <linux/if_vlan.h> 10 11 char e1000_driver_name[] = "e1000"; 12 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; 13 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; 14 15 /* e1000_pci_tbl - PCI Device ID Table 16 * 17 * Last entry must be all 0s 18 * 19 * Macro expands to... 20 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} 21 */ 22 static const struct pci_device_id e1000_pci_tbl[] = { 23 INTEL_E1000_ETHERNET_DEVICE(0x1000), 24 INTEL_E1000_ETHERNET_DEVICE(0x1001), 25 INTEL_E1000_ETHERNET_DEVICE(0x1004), 26 INTEL_E1000_ETHERNET_DEVICE(0x1008), 27 INTEL_E1000_ETHERNET_DEVICE(0x1009), 28 INTEL_E1000_ETHERNET_DEVICE(0x100C), 29 INTEL_E1000_ETHERNET_DEVICE(0x100D), 30 INTEL_E1000_ETHERNET_DEVICE(0x100E), 31 INTEL_E1000_ETHERNET_DEVICE(0x100F), 32 INTEL_E1000_ETHERNET_DEVICE(0x1010), 33 INTEL_E1000_ETHERNET_DEVICE(0x1011), 34 INTEL_E1000_ETHERNET_DEVICE(0x1012), 35 INTEL_E1000_ETHERNET_DEVICE(0x1013), 36 INTEL_E1000_ETHERNET_DEVICE(0x1014), 37 INTEL_E1000_ETHERNET_DEVICE(0x1015), 38 INTEL_E1000_ETHERNET_DEVICE(0x1016), 39 INTEL_E1000_ETHERNET_DEVICE(0x1017), 40 INTEL_E1000_ETHERNET_DEVICE(0x1018), 41 INTEL_E1000_ETHERNET_DEVICE(0x1019), 42 INTEL_E1000_ETHERNET_DEVICE(0x101A), 43 INTEL_E1000_ETHERNET_DEVICE(0x101D), 44 INTEL_E1000_ETHERNET_DEVICE(0x101E), 45 INTEL_E1000_ETHERNET_DEVICE(0x1026), 46 INTEL_E1000_ETHERNET_DEVICE(0x1027), 47 INTEL_E1000_ETHERNET_DEVICE(0x1028), 48 INTEL_E1000_ETHERNET_DEVICE(0x1075), 49 INTEL_E1000_ETHERNET_DEVICE(0x1076), 50 INTEL_E1000_ETHERNET_DEVICE(0x1077), 51 INTEL_E1000_ETHERNET_DEVICE(0x1078), 52 INTEL_E1000_ETHERNET_DEVICE(0x1079), 53 INTEL_E1000_ETHERNET_DEVICE(0x107A), 54 INTEL_E1000_ETHERNET_DEVICE(0x107B), 55 INTEL_E1000_ETHERNET_DEVICE(0x107C), 56 INTEL_E1000_ETHERNET_DEVICE(0x108A), 57 INTEL_E1000_ETHERNET_DEVICE(0x1099), 58 INTEL_E1000_ETHERNET_DEVICE(0x10B5), 59 INTEL_E1000_ETHERNET_DEVICE(0x2E6E), 60 /* required last entry */ 61 {0,} 62 }; 63 64 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 65 66 int e1000_up(struct e1000_adapter *adapter); 67 void e1000_down(struct e1000_adapter *adapter); 68 void e1000_reinit_locked(struct e1000_adapter *adapter); 69 void e1000_reset(struct e1000_adapter *adapter); 70 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); 71 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); 72 void e1000_free_all_tx_resources(struct e1000_adapter *adapter); 73 void e1000_free_all_rx_resources(struct e1000_adapter *adapter); 74 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 75 struct e1000_tx_ring *txdr); 76 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 77 struct e1000_rx_ring *rxdr); 78 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 79 struct e1000_tx_ring *tx_ring); 80 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 81 struct e1000_rx_ring *rx_ring); 82 void e1000_update_stats(struct e1000_adapter *adapter); 83 84 static int e1000_init_module(void); 85 static void e1000_exit_module(void); 86 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); 87 static void e1000_remove(struct pci_dev *pdev); 88 static int e1000_alloc_queues(struct e1000_adapter *adapter); 89 static int e1000_sw_init(struct e1000_adapter *adapter); 90 int e1000_open(struct net_device *netdev); 91 int e1000_close(struct net_device *netdev); 92 static void e1000_configure_tx(struct e1000_adapter *adapter); 93 static void e1000_configure_rx(struct e1000_adapter *adapter); 94 static void e1000_setup_rctl(struct e1000_adapter *adapter); 95 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); 96 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); 97 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 98 struct e1000_tx_ring *tx_ring); 99 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 100 struct e1000_rx_ring *rx_ring); 101 static void e1000_set_rx_mode(struct net_device *netdev); 102 static void e1000_update_phy_info_task(struct work_struct *work); 103 static void e1000_watchdog(struct work_struct *work); 104 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work); 105 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 106 struct net_device *netdev); 107 static int e1000_change_mtu(struct net_device *netdev, int new_mtu); 108 static int e1000_set_mac(struct net_device *netdev, void *p); 109 static irqreturn_t e1000_intr(int irq, void *data); 110 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 111 struct e1000_tx_ring *tx_ring); 112 static int e1000_clean(struct napi_struct *napi, int budget); 113 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 114 struct e1000_rx_ring *rx_ring, 115 int *work_done, int work_to_do); 116 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 117 struct e1000_rx_ring *rx_ring, 118 int *work_done, int work_to_do); 119 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter, 120 struct e1000_rx_ring *rx_ring, 121 int cleaned_count) 122 { 123 } 124 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 125 struct e1000_rx_ring *rx_ring, 126 int cleaned_count); 127 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 128 struct e1000_rx_ring *rx_ring, 129 int cleaned_count); 130 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); 131 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 132 int cmd); 133 static void e1000_enter_82542_rst(struct e1000_adapter *adapter); 134 static void e1000_leave_82542_rst(struct e1000_adapter *adapter); 135 static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue); 136 static void e1000_reset_task(struct work_struct *work); 137 static void e1000_smartspeed(struct e1000_adapter *adapter); 138 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 139 struct sk_buff *skb); 140 141 static bool e1000_vlan_used(struct e1000_adapter *adapter); 142 static void e1000_vlan_mode(struct net_device *netdev, 143 netdev_features_t features); 144 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 145 bool filter_on); 146 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 147 __be16 proto, u16 vid); 148 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 149 __be16 proto, u16 vid); 150 static void e1000_restore_vlan(struct e1000_adapter *adapter); 151 152 static int __maybe_unused e1000_suspend(struct device *dev); 153 static int __maybe_unused e1000_resume(struct device *dev); 154 static void e1000_shutdown(struct pci_dev *pdev); 155 156 #ifdef CONFIG_NET_POLL_CONTROLLER 157 /* for netdump / net console */ 158 static void e1000_netpoll (struct net_device *netdev); 159 #endif 160 161 #define COPYBREAK_DEFAULT 256 162 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; 163 module_param(copybreak, uint, 0644); 164 MODULE_PARM_DESC(copybreak, 165 "Maximum size of packet that is copied to a new buffer on receive"); 166 167 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 168 pci_channel_state_t state); 169 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); 170 static void e1000_io_resume(struct pci_dev *pdev); 171 172 static const struct pci_error_handlers e1000_err_handler = { 173 .error_detected = e1000_io_error_detected, 174 .slot_reset = e1000_io_slot_reset, 175 .resume = e1000_io_resume, 176 }; 177 178 static SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume); 179 180 static struct pci_driver e1000_driver = { 181 .name = e1000_driver_name, 182 .id_table = e1000_pci_tbl, 183 .probe = e1000_probe, 184 .remove = e1000_remove, 185 .driver = { 186 .pm = &e1000_pm_ops, 187 }, 188 .shutdown = e1000_shutdown, 189 .err_handler = &e1000_err_handler 190 }; 191 192 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 193 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 194 MODULE_LICENSE("GPL v2"); 195 196 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 197 static int debug = -1; 198 module_param(debug, int, 0); 199 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 200 201 /** 202 * e1000_get_hw_dev - return device 203 * used by hardware layer to print debugging information 204 * 205 **/ 206 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) 207 { 208 struct e1000_adapter *adapter = hw->back; 209 return adapter->netdev; 210 } 211 212 /** 213 * e1000_init_module - Driver Registration Routine 214 * 215 * e1000_init_module is the first routine called when the driver is 216 * loaded. All it does is register with the PCI subsystem. 217 **/ 218 static int __init e1000_init_module(void) 219 { 220 int ret; 221 pr_info("%s\n", e1000_driver_string); 222 223 pr_info("%s\n", e1000_copyright); 224 225 ret = pci_register_driver(&e1000_driver); 226 if (copybreak != COPYBREAK_DEFAULT) { 227 if (copybreak == 0) 228 pr_info("copybreak disabled\n"); 229 else 230 pr_info("copybreak enabled for " 231 "packets <= %u bytes\n", copybreak); 232 } 233 return ret; 234 } 235 236 module_init(e1000_init_module); 237 238 /** 239 * e1000_exit_module - Driver Exit Cleanup Routine 240 * 241 * e1000_exit_module is called just before the driver is removed 242 * from memory. 243 **/ 244 static void __exit e1000_exit_module(void) 245 { 246 pci_unregister_driver(&e1000_driver); 247 } 248 249 module_exit(e1000_exit_module); 250 251 static int e1000_request_irq(struct e1000_adapter *adapter) 252 { 253 struct net_device *netdev = adapter->netdev; 254 irq_handler_t handler = e1000_intr; 255 int irq_flags = IRQF_SHARED; 256 int err; 257 258 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, 259 netdev); 260 if (err) { 261 e_err(probe, "Unable to allocate interrupt Error: %d\n", err); 262 } 263 264 return err; 265 } 266 267 static void e1000_free_irq(struct e1000_adapter *adapter) 268 { 269 struct net_device *netdev = adapter->netdev; 270 271 free_irq(adapter->pdev->irq, netdev); 272 } 273 274 /** 275 * e1000_irq_disable - Mask off interrupt generation on the NIC 276 * @adapter: board private structure 277 **/ 278 static void e1000_irq_disable(struct e1000_adapter *adapter) 279 { 280 struct e1000_hw *hw = &adapter->hw; 281 282 ew32(IMC, ~0); 283 E1000_WRITE_FLUSH(); 284 synchronize_irq(adapter->pdev->irq); 285 } 286 287 /** 288 * e1000_irq_enable - Enable default interrupt generation settings 289 * @adapter: board private structure 290 **/ 291 static void e1000_irq_enable(struct e1000_adapter *adapter) 292 { 293 struct e1000_hw *hw = &adapter->hw; 294 295 ew32(IMS, IMS_ENABLE_MASK); 296 E1000_WRITE_FLUSH(); 297 } 298 299 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 300 { 301 struct e1000_hw *hw = &adapter->hw; 302 struct net_device *netdev = adapter->netdev; 303 u16 vid = hw->mng_cookie.vlan_id; 304 u16 old_vid = adapter->mng_vlan_id; 305 306 if (!e1000_vlan_used(adapter)) 307 return; 308 309 if (!test_bit(vid, adapter->active_vlans)) { 310 if (hw->mng_cookie.status & 311 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { 312 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); 313 adapter->mng_vlan_id = vid; 314 } else { 315 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 316 } 317 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && 318 (vid != old_vid) && 319 !test_bit(old_vid, adapter->active_vlans)) 320 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 321 old_vid); 322 } else { 323 adapter->mng_vlan_id = vid; 324 } 325 } 326 327 static void e1000_init_manageability(struct e1000_adapter *adapter) 328 { 329 struct e1000_hw *hw = &adapter->hw; 330 331 if (adapter->en_mng_pt) { 332 u32 manc = er32(MANC); 333 334 /* disable hardware interception of ARP */ 335 manc &= ~(E1000_MANC_ARP_EN); 336 337 ew32(MANC, manc); 338 } 339 } 340 341 static void e1000_release_manageability(struct e1000_adapter *adapter) 342 { 343 struct e1000_hw *hw = &adapter->hw; 344 345 if (adapter->en_mng_pt) { 346 u32 manc = er32(MANC); 347 348 /* re-enable hardware interception of ARP */ 349 manc |= E1000_MANC_ARP_EN; 350 351 ew32(MANC, manc); 352 } 353 } 354 355 /** 356 * e1000_configure - configure the hardware for RX and TX 357 * @adapter = private board structure 358 **/ 359 static void e1000_configure(struct e1000_adapter *adapter) 360 { 361 struct net_device *netdev = adapter->netdev; 362 int i; 363 364 e1000_set_rx_mode(netdev); 365 366 e1000_restore_vlan(adapter); 367 e1000_init_manageability(adapter); 368 369 e1000_configure_tx(adapter); 370 e1000_setup_rctl(adapter); 371 e1000_configure_rx(adapter); 372 /* call E1000_DESC_UNUSED which always leaves 373 * at least 1 descriptor unused to make sure 374 * next_to_use != next_to_clean 375 */ 376 for (i = 0; i < adapter->num_rx_queues; i++) { 377 struct e1000_rx_ring *ring = &adapter->rx_ring[i]; 378 adapter->alloc_rx_buf(adapter, ring, 379 E1000_DESC_UNUSED(ring)); 380 } 381 } 382 383 int e1000_up(struct e1000_adapter *adapter) 384 { 385 struct e1000_hw *hw = &adapter->hw; 386 387 /* hardware has been reset, we need to reload some things */ 388 e1000_configure(adapter); 389 390 clear_bit(__E1000_DOWN, &adapter->flags); 391 392 napi_enable(&adapter->napi); 393 394 e1000_irq_enable(adapter); 395 396 netif_wake_queue(adapter->netdev); 397 398 /* fire a link change interrupt to start the watchdog */ 399 ew32(ICS, E1000_ICS_LSC); 400 return 0; 401 } 402 403 /** 404 * e1000_power_up_phy - restore link in case the phy was powered down 405 * @adapter: address of board private structure 406 * 407 * The phy may be powered down to save power and turn off link when the 408 * driver is unloaded and wake on lan is not enabled (among others) 409 * *** this routine MUST be followed by a call to e1000_reset *** 410 **/ 411 void e1000_power_up_phy(struct e1000_adapter *adapter) 412 { 413 struct e1000_hw *hw = &adapter->hw; 414 u16 mii_reg = 0; 415 416 /* Just clear the power down bit to wake the phy back up */ 417 if (hw->media_type == e1000_media_type_copper) { 418 /* according to the manual, the phy will retain its 419 * settings across a power-down/up cycle 420 */ 421 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 422 mii_reg &= ~MII_CR_POWER_DOWN; 423 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 424 } 425 } 426 427 static void e1000_power_down_phy(struct e1000_adapter *adapter) 428 { 429 struct e1000_hw *hw = &adapter->hw; 430 431 /* Power down the PHY so no link is implied when interface is down * 432 * The PHY cannot be powered down if any of the following is true * 433 * (a) WoL is enabled 434 * (b) AMT is active 435 * (c) SoL/IDER session is active 436 */ 437 if (!adapter->wol && hw->mac_type >= e1000_82540 && 438 hw->media_type == e1000_media_type_copper) { 439 u16 mii_reg = 0; 440 441 switch (hw->mac_type) { 442 case e1000_82540: 443 case e1000_82545: 444 case e1000_82545_rev_3: 445 case e1000_82546: 446 case e1000_ce4100: 447 case e1000_82546_rev_3: 448 case e1000_82541: 449 case e1000_82541_rev_2: 450 case e1000_82547: 451 case e1000_82547_rev_2: 452 if (er32(MANC) & E1000_MANC_SMBUS_EN) 453 goto out; 454 break; 455 default: 456 goto out; 457 } 458 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 459 mii_reg |= MII_CR_POWER_DOWN; 460 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 461 msleep(1); 462 } 463 out: 464 return; 465 } 466 467 static void e1000_down_and_stop(struct e1000_adapter *adapter) 468 { 469 set_bit(__E1000_DOWN, &adapter->flags); 470 471 cancel_delayed_work_sync(&adapter->watchdog_task); 472 473 /* 474 * Since the watchdog task can reschedule other tasks, we should cancel 475 * it first, otherwise we can run into the situation when a work is 476 * still running after the adapter has been turned down. 477 */ 478 479 cancel_delayed_work_sync(&adapter->phy_info_task); 480 cancel_delayed_work_sync(&adapter->fifo_stall_task); 481 482 /* Only kill reset task if adapter is not resetting */ 483 if (!test_bit(__E1000_RESETTING, &adapter->flags)) 484 cancel_work_sync(&adapter->reset_task); 485 } 486 487 void e1000_down(struct e1000_adapter *adapter) 488 { 489 struct e1000_hw *hw = &adapter->hw; 490 struct net_device *netdev = adapter->netdev; 491 u32 rctl, tctl; 492 493 /* disable receives in the hardware */ 494 rctl = er32(RCTL); 495 ew32(RCTL, rctl & ~E1000_RCTL_EN); 496 /* flush and sleep below */ 497 498 netif_tx_disable(netdev); 499 500 /* disable transmits in the hardware */ 501 tctl = er32(TCTL); 502 tctl &= ~E1000_TCTL_EN; 503 ew32(TCTL, tctl); 504 /* flush both disables and wait for them to finish */ 505 E1000_WRITE_FLUSH(); 506 msleep(10); 507 508 /* Set the carrier off after transmits have been disabled in the 509 * hardware, to avoid race conditions with e1000_watchdog() (which 510 * may be running concurrently to us, checking for the carrier 511 * bit to decide whether it should enable transmits again). Such 512 * a race condition would result into transmission being disabled 513 * in the hardware until the next IFF_DOWN+IFF_UP cycle. 514 */ 515 netif_carrier_off(netdev); 516 517 napi_disable(&adapter->napi); 518 519 e1000_irq_disable(adapter); 520 521 /* Setting DOWN must be after irq_disable to prevent 522 * a screaming interrupt. Setting DOWN also prevents 523 * tasks from rescheduling. 524 */ 525 e1000_down_and_stop(adapter); 526 527 adapter->link_speed = 0; 528 adapter->link_duplex = 0; 529 530 e1000_reset(adapter); 531 e1000_clean_all_tx_rings(adapter); 532 e1000_clean_all_rx_rings(adapter); 533 } 534 535 void e1000_reinit_locked(struct e1000_adapter *adapter) 536 { 537 WARN_ON(in_interrupt()); 538 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 539 msleep(1); 540 541 /* only run the task if not already down */ 542 if (!test_bit(__E1000_DOWN, &adapter->flags)) { 543 e1000_down(adapter); 544 e1000_up(adapter); 545 } 546 547 clear_bit(__E1000_RESETTING, &adapter->flags); 548 } 549 550 void e1000_reset(struct e1000_adapter *adapter) 551 { 552 struct e1000_hw *hw = &adapter->hw; 553 u32 pba = 0, tx_space, min_tx_space, min_rx_space; 554 bool legacy_pba_adjust = false; 555 u16 hwm; 556 557 /* Repartition Pba for greater than 9k mtu 558 * To take effect CTRL.RST is required. 559 */ 560 561 switch (hw->mac_type) { 562 case e1000_82542_rev2_0: 563 case e1000_82542_rev2_1: 564 case e1000_82543: 565 case e1000_82544: 566 case e1000_82540: 567 case e1000_82541: 568 case e1000_82541_rev_2: 569 legacy_pba_adjust = true; 570 pba = E1000_PBA_48K; 571 break; 572 case e1000_82545: 573 case e1000_82545_rev_3: 574 case e1000_82546: 575 case e1000_ce4100: 576 case e1000_82546_rev_3: 577 pba = E1000_PBA_48K; 578 break; 579 case e1000_82547: 580 case e1000_82547_rev_2: 581 legacy_pba_adjust = true; 582 pba = E1000_PBA_30K; 583 break; 584 case e1000_undefined: 585 case e1000_num_macs: 586 break; 587 } 588 589 if (legacy_pba_adjust) { 590 if (hw->max_frame_size > E1000_RXBUFFER_8192) 591 pba -= 8; /* allocate more FIFO for Tx */ 592 593 if (hw->mac_type == e1000_82547) { 594 adapter->tx_fifo_head = 0; 595 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; 596 adapter->tx_fifo_size = 597 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; 598 atomic_set(&adapter->tx_fifo_stall, 0); 599 } 600 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { 601 /* adjust PBA for jumbo frames */ 602 ew32(PBA, pba); 603 604 /* To maintain wire speed transmits, the Tx FIFO should be 605 * large enough to accommodate two full transmit packets, 606 * rounded up to the next 1KB and expressed in KB. Likewise, 607 * the Rx FIFO should be large enough to accommodate at least 608 * one full receive packet and is similarly rounded up and 609 * expressed in KB. 610 */ 611 pba = er32(PBA); 612 /* upper 16 bits has Tx packet buffer allocation size in KB */ 613 tx_space = pba >> 16; 614 /* lower 16 bits has Rx packet buffer allocation size in KB */ 615 pba &= 0xffff; 616 /* the Tx fifo also stores 16 bytes of information about the Tx 617 * but don't include ethernet FCS because hardware appends it 618 */ 619 min_tx_space = (hw->max_frame_size + 620 sizeof(struct e1000_tx_desc) - 621 ETH_FCS_LEN) * 2; 622 min_tx_space = ALIGN(min_tx_space, 1024); 623 min_tx_space >>= 10; 624 /* software strips receive CRC, so leave room for it */ 625 min_rx_space = hw->max_frame_size; 626 min_rx_space = ALIGN(min_rx_space, 1024); 627 min_rx_space >>= 10; 628 629 /* If current Tx allocation is less than the min Tx FIFO size, 630 * and the min Tx FIFO size is less than the current Rx FIFO 631 * allocation, take space away from current Rx allocation 632 */ 633 if (tx_space < min_tx_space && 634 ((min_tx_space - tx_space) < pba)) { 635 pba = pba - (min_tx_space - tx_space); 636 637 /* PCI/PCIx hardware has PBA alignment constraints */ 638 switch (hw->mac_type) { 639 case e1000_82545 ... e1000_82546_rev_3: 640 pba &= ~(E1000_PBA_8K - 1); 641 break; 642 default: 643 break; 644 } 645 646 /* if short on Rx space, Rx wins and must trump Tx 647 * adjustment or use Early Receive if available 648 */ 649 if (pba < min_rx_space) 650 pba = min_rx_space; 651 } 652 } 653 654 ew32(PBA, pba); 655 656 /* flow control settings: 657 * The high water mark must be low enough to fit one full frame 658 * (or the size used for early receive) above it in the Rx FIFO. 659 * Set it to the lower of: 660 * - 90% of the Rx FIFO size, and 661 * - the full Rx FIFO size minus the early receive size (for parts 662 * with ERT support assuming ERT set to E1000_ERT_2048), or 663 * - the full Rx FIFO size minus one full frame 664 */ 665 hwm = min(((pba << 10) * 9 / 10), 666 ((pba << 10) - hw->max_frame_size)); 667 668 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ 669 hw->fc_low_water = hw->fc_high_water - 8; 670 hw->fc_pause_time = E1000_FC_PAUSE_TIME; 671 hw->fc_send_xon = 1; 672 hw->fc = hw->original_fc; 673 674 /* Allow time for pending master requests to run */ 675 e1000_reset_hw(hw); 676 if (hw->mac_type >= e1000_82544) 677 ew32(WUC, 0); 678 679 if (e1000_init_hw(hw)) 680 e_dev_err("Hardware Error\n"); 681 e1000_update_mng_vlan(adapter); 682 683 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ 684 if (hw->mac_type >= e1000_82544 && 685 hw->autoneg == 1 && 686 hw->autoneg_advertised == ADVERTISE_1000_FULL) { 687 u32 ctrl = er32(CTRL); 688 /* clear phy power management bit if we are in gig only mode, 689 * which if enabled will attempt negotiation to 100Mb, which 690 * can cause a loss of link at power off or driver unload 691 */ 692 ctrl &= ~E1000_CTRL_SWDPIN3; 693 ew32(CTRL, ctrl); 694 } 695 696 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 697 ew32(VET, ETHERNET_IEEE_VLAN_TYPE); 698 699 e1000_reset_adaptive(hw); 700 e1000_phy_get_info(hw, &adapter->phy_info); 701 702 e1000_release_manageability(adapter); 703 } 704 705 /* Dump the eeprom for users having checksum issues */ 706 static void e1000_dump_eeprom(struct e1000_adapter *adapter) 707 { 708 struct net_device *netdev = adapter->netdev; 709 struct ethtool_eeprom eeprom; 710 const struct ethtool_ops *ops = netdev->ethtool_ops; 711 u8 *data; 712 int i; 713 u16 csum_old, csum_new = 0; 714 715 eeprom.len = ops->get_eeprom_len(netdev); 716 eeprom.offset = 0; 717 718 data = kmalloc(eeprom.len, GFP_KERNEL); 719 if (!data) 720 return; 721 722 ops->get_eeprom(netdev, &eeprom, data); 723 724 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + 725 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); 726 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) 727 csum_new += data[i] + (data[i + 1] << 8); 728 csum_new = EEPROM_SUM - csum_new; 729 730 pr_err("/*********************/\n"); 731 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); 732 pr_err("Calculated : 0x%04x\n", csum_new); 733 734 pr_err("Offset Values\n"); 735 pr_err("======== ======\n"); 736 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); 737 738 pr_err("Include this output when contacting your support provider.\n"); 739 pr_err("This is not a software error! Something bad happened to\n"); 740 pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); 741 pr_err("result in further problems, possibly loss of data,\n"); 742 pr_err("corruption or system hangs!\n"); 743 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); 744 pr_err("which is invalid and requires you to set the proper MAC\n"); 745 pr_err("address manually before continuing to enable this network\n"); 746 pr_err("device. Please inspect the EEPROM dump and report the\n"); 747 pr_err("issue to your hardware vendor or Intel Customer Support.\n"); 748 pr_err("/*********************/\n"); 749 750 kfree(data); 751 } 752 753 /** 754 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not 755 * @pdev: PCI device information struct 756 * 757 * Return true if an adapter needs ioport resources 758 **/ 759 static int e1000_is_need_ioport(struct pci_dev *pdev) 760 { 761 switch (pdev->device) { 762 case E1000_DEV_ID_82540EM: 763 case E1000_DEV_ID_82540EM_LOM: 764 case E1000_DEV_ID_82540EP: 765 case E1000_DEV_ID_82540EP_LOM: 766 case E1000_DEV_ID_82540EP_LP: 767 case E1000_DEV_ID_82541EI: 768 case E1000_DEV_ID_82541EI_MOBILE: 769 case E1000_DEV_ID_82541ER: 770 case E1000_DEV_ID_82541ER_LOM: 771 case E1000_DEV_ID_82541GI: 772 case E1000_DEV_ID_82541GI_LF: 773 case E1000_DEV_ID_82541GI_MOBILE: 774 case E1000_DEV_ID_82544EI_COPPER: 775 case E1000_DEV_ID_82544EI_FIBER: 776 case E1000_DEV_ID_82544GC_COPPER: 777 case E1000_DEV_ID_82544GC_LOM: 778 case E1000_DEV_ID_82545EM_COPPER: 779 case E1000_DEV_ID_82545EM_FIBER: 780 case E1000_DEV_ID_82546EB_COPPER: 781 case E1000_DEV_ID_82546EB_FIBER: 782 case E1000_DEV_ID_82546EB_QUAD_COPPER: 783 return true; 784 default: 785 return false; 786 } 787 } 788 789 static netdev_features_t e1000_fix_features(struct net_device *netdev, 790 netdev_features_t features) 791 { 792 /* Since there is no support for separate Rx/Tx vlan accel 793 * enable/disable make sure Tx flag is always in same state as Rx. 794 */ 795 if (features & NETIF_F_HW_VLAN_CTAG_RX) 796 features |= NETIF_F_HW_VLAN_CTAG_TX; 797 else 798 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 799 800 return features; 801 } 802 803 static int e1000_set_features(struct net_device *netdev, 804 netdev_features_t features) 805 { 806 struct e1000_adapter *adapter = netdev_priv(netdev); 807 netdev_features_t changed = features ^ netdev->features; 808 809 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 810 e1000_vlan_mode(netdev, features); 811 812 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL))) 813 return 0; 814 815 netdev->features = features; 816 adapter->rx_csum = !!(features & NETIF_F_RXCSUM); 817 818 if (netif_running(netdev)) 819 e1000_reinit_locked(adapter); 820 else 821 e1000_reset(adapter); 822 823 return 1; 824 } 825 826 static const struct net_device_ops e1000_netdev_ops = { 827 .ndo_open = e1000_open, 828 .ndo_stop = e1000_close, 829 .ndo_start_xmit = e1000_xmit_frame, 830 .ndo_set_rx_mode = e1000_set_rx_mode, 831 .ndo_set_mac_address = e1000_set_mac, 832 .ndo_tx_timeout = e1000_tx_timeout, 833 .ndo_change_mtu = e1000_change_mtu, 834 .ndo_do_ioctl = e1000_ioctl, 835 .ndo_validate_addr = eth_validate_addr, 836 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, 837 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, 838 #ifdef CONFIG_NET_POLL_CONTROLLER 839 .ndo_poll_controller = e1000_netpoll, 840 #endif 841 .ndo_fix_features = e1000_fix_features, 842 .ndo_set_features = e1000_set_features, 843 }; 844 845 /** 846 * e1000_init_hw_struct - initialize members of hw struct 847 * @adapter: board private struct 848 * @hw: structure used by e1000_hw.c 849 * 850 * Factors out initialization of the e1000_hw struct to its own function 851 * that can be called very early at init (just after struct allocation). 852 * Fields are initialized based on PCI device information and 853 * OS network device settings (MTU size). 854 * Returns negative error codes if MAC type setup fails. 855 */ 856 static int e1000_init_hw_struct(struct e1000_adapter *adapter, 857 struct e1000_hw *hw) 858 { 859 struct pci_dev *pdev = adapter->pdev; 860 861 /* PCI config space info */ 862 hw->vendor_id = pdev->vendor; 863 hw->device_id = pdev->device; 864 hw->subsystem_vendor_id = pdev->subsystem_vendor; 865 hw->subsystem_id = pdev->subsystem_device; 866 hw->revision_id = pdev->revision; 867 868 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); 869 870 hw->max_frame_size = adapter->netdev->mtu + 871 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; 872 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; 873 874 /* identify the MAC */ 875 if (e1000_set_mac_type(hw)) { 876 e_err(probe, "Unknown MAC Type\n"); 877 return -EIO; 878 } 879 880 switch (hw->mac_type) { 881 default: 882 break; 883 case e1000_82541: 884 case e1000_82547: 885 case e1000_82541_rev_2: 886 case e1000_82547_rev_2: 887 hw->phy_init_script = 1; 888 break; 889 } 890 891 e1000_set_media_type(hw); 892 e1000_get_bus_info(hw); 893 894 hw->wait_autoneg_complete = false; 895 hw->tbi_compatibility_en = true; 896 hw->adaptive_ifs = true; 897 898 /* Copper options */ 899 900 if (hw->media_type == e1000_media_type_copper) { 901 hw->mdix = AUTO_ALL_MODES; 902 hw->disable_polarity_correction = false; 903 hw->master_slave = E1000_MASTER_SLAVE; 904 } 905 906 return 0; 907 } 908 909 /** 910 * e1000_probe - Device Initialization Routine 911 * @pdev: PCI device information struct 912 * @ent: entry in e1000_pci_tbl 913 * 914 * Returns 0 on success, negative on failure 915 * 916 * e1000_probe initializes an adapter identified by a pci_dev structure. 917 * The OS initialization, configuring of the adapter private structure, 918 * and a hardware reset occur. 919 **/ 920 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 921 { 922 struct net_device *netdev; 923 struct e1000_adapter *adapter = NULL; 924 struct e1000_hw *hw; 925 926 static int cards_found; 927 static int global_quad_port_a; /* global ksp3 port a indication */ 928 int i, err, pci_using_dac; 929 u16 eeprom_data = 0; 930 u16 tmp = 0; 931 u16 eeprom_apme_mask = E1000_EEPROM_APME; 932 int bars, need_ioport; 933 bool disable_dev = false; 934 935 /* do not allocate ioport bars when not needed */ 936 need_ioport = e1000_is_need_ioport(pdev); 937 if (need_ioport) { 938 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); 939 err = pci_enable_device(pdev); 940 } else { 941 bars = pci_select_bars(pdev, IORESOURCE_MEM); 942 err = pci_enable_device_mem(pdev); 943 } 944 if (err) 945 return err; 946 947 err = pci_request_selected_regions(pdev, bars, e1000_driver_name); 948 if (err) 949 goto err_pci_reg; 950 951 pci_set_master(pdev); 952 err = pci_save_state(pdev); 953 if (err) 954 goto err_alloc_etherdev; 955 956 err = -ENOMEM; 957 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 958 if (!netdev) 959 goto err_alloc_etherdev; 960 961 SET_NETDEV_DEV(netdev, &pdev->dev); 962 963 pci_set_drvdata(pdev, netdev); 964 adapter = netdev_priv(netdev); 965 adapter->netdev = netdev; 966 adapter->pdev = pdev; 967 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 968 adapter->bars = bars; 969 adapter->need_ioport = need_ioport; 970 971 hw = &adapter->hw; 972 hw->back = adapter; 973 974 err = -EIO; 975 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); 976 if (!hw->hw_addr) 977 goto err_ioremap; 978 979 if (adapter->need_ioport) { 980 for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) { 981 if (pci_resource_len(pdev, i) == 0) 982 continue; 983 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 984 hw->io_base = pci_resource_start(pdev, i); 985 break; 986 } 987 } 988 } 989 990 /* make ready for any if (hw->...) below */ 991 err = e1000_init_hw_struct(adapter, hw); 992 if (err) 993 goto err_sw_init; 994 995 /* there is a workaround being applied below that limits 996 * 64-bit DMA addresses to 64-bit hardware. There are some 997 * 32-bit adapters that Tx hang when given 64-bit DMA addresses 998 */ 999 pci_using_dac = 0; 1000 if ((hw->bus_type == e1000_bus_type_pcix) && 1001 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 1002 pci_using_dac = 1; 1003 } else { 1004 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1005 if (err) { 1006 pr_err("No usable DMA config, aborting\n"); 1007 goto err_dma; 1008 } 1009 } 1010 1011 netdev->netdev_ops = &e1000_netdev_ops; 1012 e1000_set_ethtool_ops(netdev); 1013 netdev->watchdog_timeo = 5 * HZ; 1014 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); 1015 1016 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 1017 1018 adapter->bd_number = cards_found; 1019 1020 /* setup the private structure */ 1021 1022 err = e1000_sw_init(adapter); 1023 if (err) 1024 goto err_sw_init; 1025 1026 err = -EIO; 1027 if (hw->mac_type == e1000_ce4100) { 1028 hw->ce4100_gbe_mdio_base_virt = 1029 ioremap(pci_resource_start(pdev, BAR_1), 1030 pci_resource_len(pdev, BAR_1)); 1031 1032 if (!hw->ce4100_gbe_mdio_base_virt) 1033 goto err_mdio_ioremap; 1034 } 1035 1036 if (hw->mac_type >= e1000_82543) { 1037 netdev->hw_features = NETIF_F_SG | 1038 NETIF_F_HW_CSUM | 1039 NETIF_F_HW_VLAN_CTAG_RX; 1040 netdev->features = NETIF_F_HW_VLAN_CTAG_TX | 1041 NETIF_F_HW_VLAN_CTAG_FILTER; 1042 } 1043 1044 if ((hw->mac_type >= e1000_82544) && 1045 (hw->mac_type != e1000_82547)) 1046 netdev->hw_features |= NETIF_F_TSO; 1047 1048 netdev->priv_flags |= IFF_SUPP_NOFCS; 1049 1050 netdev->features |= netdev->hw_features; 1051 netdev->hw_features |= (NETIF_F_RXCSUM | 1052 NETIF_F_RXALL | 1053 NETIF_F_RXFCS); 1054 1055 if (pci_using_dac) { 1056 netdev->features |= NETIF_F_HIGHDMA; 1057 netdev->vlan_features |= NETIF_F_HIGHDMA; 1058 } 1059 1060 netdev->vlan_features |= (NETIF_F_TSO | 1061 NETIF_F_HW_CSUM | 1062 NETIF_F_SG); 1063 1064 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */ 1065 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER || 1066 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE) 1067 netdev->priv_flags |= IFF_UNICAST_FLT; 1068 1069 /* MTU range: 46 - 16110 */ 1070 netdev->min_mtu = ETH_ZLEN - ETH_HLEN; 1071 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN); 1072 1073 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); 1074 1075 /* initialize eeprom parameters */ 1076 if (e1000_init_eeprom_params(hw)) { 1077 e_err(probe, "EEPROM initialization failed\n"); 1078 goto err_eeprom; 1079 } 1080 1081 /* before reading the EEPROM, reset the controller to 1082 * put the device in a known good starting state 1083 */ 1084 1085 e1000_reset_hw(hw); 1086 1087 /* make sure the EEPROM is good */ 1088 if (e1000_validate_eeprom_checksum(hw) < 0) { 1089 e_err(probe, "The EEPROM Checksum Is Not Valid\n"); 1090 e1000_dump_eeprom(adapter); 1091 /* set MAC address to all zeroes to invalidate and temporary 1092 * disable this device for the user. This blocks regular 1093 * traffic while still permitting ethtool ioctls from reaching 1094 * the hardware as well as allowing the user to run the 1095 * interface after manually setting a hw addr using 1096 * `ip set address` 1097 */ 1098 memset(hw->mac_addr, 0, netdev->addr_len); 1099 } else { 1100 /* copy the MAC address out of the EEPROM */ 1101 if (e1000_read_mac_addr(hw)) 1102 e_err(probe, "EEPROM Read Error\n"); 1103 } 1104 /* don't block initialization here due to bad MAC address */ 1105 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); 1106 1107 if (!is_valid_ether_addr(netdev->dev_addr)) 1108 e_err(probe, "Invalid MAC Address\n"); 1109 1110 1111 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog); 1112 INIT_DELAYED_WORK(&adapter->fifo_stall_task, 1113 e1000_82547_tx_fifo_stall_task); 1114 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task); 1115 INIT_WORK(&adapter->reset_task, e1000_reset_task); 1116 1117 e1000_check_options(adapter); 1118 1119 /* Initial Wake on LAN setting 1120 * If APM wake is enabled in the EEPROM, 1121 * enable the ACPI Magic Packet filter 1122 */ 1123 1124 switch (hw->mac_type) { 1125 case e1000_82542_rev2_0: 1126 case e1000_82542_rev2_1: 1127 case e1000_82543: 1128 break; 1129 case e1000_82544: 1130 e1000_read_eeprom(hw, 1131 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); 1132 eeprom_apme_mask = E1000_EEPROM_82544_APM; 1133 break; 1134 case e1000_82546: 1135 case e1000_82546_rev_3: 1136 if (er32(STATUS) & E1000_STATUS_FUNC_1) { 1137 e1000_read_eeprom(hw, 1138 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 1139 break; 1140 } 1141 fallthrough; 1142 default: 1143 e1000_read_eeprom(hw, 1144 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 1145 break; 1146 } 1147 if (eeprom_data & eeprom_apme_mask) 1148 adapter->eeprom_wol |= E1000_WUFC_MAG; 1149 1150 /* now that we have the eeprom settings, apply the special cases 1151 * where the eeprom may be wrong or the board simply won't support 1152 * wake on lan on a particular port 1153 */ 1154 switch (pdev->device) { 1155 case E1000_DEV_ID_82546GB_PCIE: 1156 adapter->eeprom_wol = 0; 1157 break; 1158 case E1000_DEV_ID_82546EB_FIBER: 1159 case E1000_DEV_ID_82546GB_FIBER: 1160 /* Wake events only supported on port A for dual fiber 1161 * regardless of eeprom setting 1162 */ 1163 if (er32(STATUS) & E1000_STATUS_FUNC_1) 1164 adapter->eeprom_wol = 0; 1165 break; 1166 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1167 /* if quad port adapter, disable WoL on all but port A */ 1168 if (global_quad_port_a != 0) 1169 adapter->eeprom_wol = 0; 1170 else 1171 adapter->quad_port_a = true; 1172 /* Reset for multiple quad port adapters */ 1173 if (++global_quad_port_a == 4) 1174 global_quad_port_a = 0; 1175 break; 1176 } 1177 1178 /* initialize the wol settings based on the eeprom settings */ 1179 adapter->wol = adapter->eeprom_wol; 1180 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1181 1182 /* Auto detect PHY address */ 1183 if (hw->mac_type == e1000_ce4100) { 1184 for (i = 0; i < 32; i++) { 1185 hw->phy_addr = i; 1186 e1000_read_phy_reg(hw, PHY_ID2, &tmp); 1187 1188 if (tmp != 0 && tmp != 0xFF) 1189 break; 1190 } 1191 1192 if (i >= 32) 1193 goto err_eeprom; 1194 } 1195 1196 /* reset the hardware with the new settings */ 1197 e1000_reset(adapter); 1198 1199 strcpy(netdev->name, "eth%d"); 1200 err = register_netdev(netdev); 1201 if (err) 1202 goto err_register; 1203 1204 e1000_vlan_filter_on_off(adapter, false); 1205 1206 /* print bus type/speed/width info */ 1207 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n", 1208 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), 1209 ((hw->bus_speed == e1000_bus_speed_133) ? 133 : 1210 (hw->bus_speed == e1000_bus_speed_120) ? 120 : 1211 (hw->bus_speed == e1000_bus_speed_100) ? 100 : 1212 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), 1213 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), 1214 netdev->dev_addr); 1215 1216 /* carrier off reporting is important to ethtool even BEFORE open */ 1217 netif_carrier_off(netdev); 1218 1219 e_info(probe, "Intel(R) PRO/1000 Network Connection\n"); 1220 1221 cards_found++; 1222 return 0; 1223 1224 err_register: 1225 err_eeprom: 1226 e1000_phy_hw_reset(hw); 1227 1228 if (hw->flash_address) 1229 iounmap(hw->flash_address); 1230 kfree(adapter->tx_ring); 1231 kfree(adapter->rx_ring); 1232 err_dma: 1233 err_sw_init: 1234 err_mdio_ioremap: 1235 iounmap(hw->ce4100_gbe_mdio_base_virt); 1236 iounmap(hw->hw_addr); 1237 err_ioremap: 1238 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags); 1239 free_netdev(netdev); 1240 err_alloc_etherdev: 1241 pci_release_selected_regions(pdev, bars); 1242 err_pci_reg: 1243 if (!adapter || disable_dev) 1244 pci_disable_device(pdev); 1245 return err; 1246 } 1247 1248 /** 1249 * e1000_remove - Device Removal Routine 1250 * @pdev: PCI device information struct 1251 * 1252 * e1000_remove is called by the PCI subsystem to alert the driver 1253 * that it should release a PCI device. That could be caused by a 1254 * Hot-Plug event, or because the driver is going to be removed from 1255 * memory. 1256 **/ 1257 static void e1000_remove(struct pci_dev *pdev) 1258 { 1259 struct net_device *netdev = pci_get_drvdata(pdev); 1260 struct e1000_adapter *adapter = netdev_priv(netdev); 1261 struct e1000_hw *hw = &adapter->hw; 1262 bool disable_dev; 1263 1264 e1000_down_and_stop(adapter); 1265 e1000_release_manageability(adapter); 1266 1267 unregister_netdev(netdev); 1268 1269 e1000_phy_hw_reset(hw); 1270 1271 kfree(adapter->tx_ring); 1272 kfree(adapter->rx_ring); 1273 1274 if (hw->mac_type == e1000_ce4100) 1275 iounmap(hw->ce4100_gbe_mdio_base_virt); 1276 iounmap(hw->hw_addr); 1277 if (hw->flash_address) 1278 iounmap(hw->flash_address); 1279 pci_release_selected_regions(pdev, adapter->bars); 1280 1281 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags); 1282 free_netdev(netdev); 1283 1284 if (disable_dev) 1285 pci_disable_device(pdev); 1286 } 1287 1288 /** 1289 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 1290 * @adapter: board private structure to initialize 1291 * 1292 * e1000_sw_init initializes the Adapter private data structure. 1293 * e1000_init_hw_struct MUST be called before this function 1294 **/ 1295 static int e1000_sw_init(struct e1000_adapter *adapter) 1296 { 1297 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 1298 1299 adapter->num_tx_queues = 1; 1300 adapter->num_rx_queues = 1; 1301 1302 if (e1000_alloc_queues(adapter)) { 1303 e_err(probe, "Unable to allocate memory for queues\n"); 1304 return -ENOMEM; 1305 } 1306 1307 /* Explicitly disable IRQ since the NIC can be in any state. */ 1308 e1000_irq_disable(adapter); 1309 1310 spin_lock_init(&adapter->stats_lock); 1311 1312 set_bit(__E1000_DOWN, &adapter->flags); 1313 1314 return 0; 1315 } 1316 1317 /** 1318 * e1000_alloc_queues - Allocate memory for all rings 1319 * @adapter: board private structure to initialize 1320 * 1321 * We allocate one ring per queue at run-time since we don't know the 1322 * number of queues at compile-time. 1323 **/ 1324 static int e1000_alloc_queues(struct e1000_adapter *adapter) 1325 { 1326 adapter->tx_ring = kcalloc(adapter->num_tx_queues, 1327 sizeof(struct e1000_tx_ring), GFP_KERNEL); 1328 if (!adapter->tx_ring) 1329 return -ENOMEM; 1330 1331 adapter->rx_ring = kcalloc(adapter->num_rx_queues, 1332 sizeof(struct e1000_rx_ring), GFP_KERNEL); 1333 if (!adapter->rx_ring) { 1334 kfree(adapter->tx_ring); 1335 return -ENOMEM; 1336 } 1337 1338 return E1000_SUCCESS; 1339 } 1340 1341 /** 1342 * e1000_open - Called when a network interface is made active 1343 * @netdev: network interface device structure 1344 * 1345 * Returns 0 on success, negative value on failure 1346 * 1347 * The open entry point is called when a network interface is made 1348 * active by the system (IFF_UP). At this point all resources needed 1349 * for transmit and receive operations are allocated, the interrupt 1350 * handler is registered with the OS, the watchdog task is started, 1351 * and the stack is notified that the interface is ready. 1352 **/ 1353 int e1000_open(struct net_device *netdev) 1354 { 1355 struct e1000_adapter *adapter = netdev_priv(netdev); 1356 struct e1000_hw *hw = &adapter->hw; 1357 int err; 1358 1359 /* disallow open during test */ 1360 if (test_bit(__E1000_TESTING, &adapter->flags)) 1361 return -EBUSY; 1362 1363 netif_carrier_off(netdev); 1364 1365 /* allocate transmit descriptors */ 1366 err = e1000_setup_all_tx_resources(adapter); 1367 if (err) 1368 goto err_setup_tx; 1369 1370 /* allocate receive descriptors */ 1371 err = e1000_setup_all_rx_resources(adapter); 1372 if (err) 1373 goto err_setup_rx; 1374 1375 e1000_power_up_phy(adapter); 1376 1377 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1378 if ((hw->mng_cookie.status & 1379 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { 1380 e1000_update_mng_vlan(adapter); 1381 } 1382 1383 /* before we allocate an interrupt, we must be ready to handle it. 1384 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1385 * as soon as we call pci_request_irq, so we have to setup our 1386 * clean_rx handler before we do so. 1387 */ 1388 e1000_configure(adapter); 1389 1390 err = e1000_request_irq(adapter); 1391 if (err) 1392 goto err_req_irq; 1393 1394 /* From here on the code is the same as e1000_up() */ 1395 clear_bit(__E1000_DOWN, &adapter->flags); 1396 1397 napi_enable(&adapter->napi); 1398 1399 e1000_irq_enable(adapter); 1400 1401 netif_start_queue(netdev); 1402 1403 /* fire a link status change interrupt to start the watchdog */ 1404 ew32(ICS, E1000_ICS_LSC); 1405 1406 return E1000_SUCCESS; 1407 1408 err_req_irq: 1409 e1000_power_down_phy(adapter); 1410 e1000_free_all_rx_resources(adapter); 1411 err_setup_rx: 1412 e1000_free_all_tx_resources(adapter); 1413 err_setup_tx: 1414 e1000_reset(adapter); 1415 1416 return err; 1417 } 1418 1419 /** 1420 * e1000_close - Disables a network interface 1421 * @netdev: network interface device structure 1422 * 1423 * Returns 0, this is not allowed to fail 1424 * 1425 * The close entry point is called when an interface is de-activated 1426 * by the OS. The hardware is still under the drivers control, but 1427 * needs to be disabled. A global MAC reset is issued to stop the 1428 * hardware, and all transmit and receive resources are freed. 1429 **/ 1430 int e1000_close(struct net_device *netdev) 1431 { 1432 struct e1000_adapter *adapter = netdev_priv(netdev); 1433 struct e1000_hw *hw = &adapter->hw; 1434 int count = E1000_CHECK_RESET_COUNT; 1435 1436 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--) 1437 usleep_range(10000, 20000); 1438 1439 WARN_ON(count < 0); 1440 1441 /* signal that we're down so that the reset task will no longer run */ 1442 set_bit(__E1000_DOWN, &adapter->flags); 1443 clear_bit(__E1000_RESETTING, &adapter->flags); 1444 1445 e1000_down(adapter); 1446 e1000_power_down_phy(adapter); 1447 e1000_free_irq(adapter); 1448 1449 e1000_free_all_tx_resources(adapter); 1450 e1000_free_all_rx_resources(adapter); 1451 1452 /* kill manageability vlan ID if supported, but not if a vlan with 1453 * the same ID is registered on the host OS (let 8021q kill it) 1454 */ 1455 if ((hw->mng_cookie.status & 1456 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 1457 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { 1458 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 1459 adapter->mng_vlan_id); 1460 } 1461 1462 return 0; 1463 } 1464 1465 /** 1466 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary 1467 * @adapter: address of board private structure 1468 * @start: address of beginning of memory 1469 * @len: length of memory 1470 **/ 1471 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, 1472 unsigned long len) 1473 { 1474 struct e1000_hw *hw = &adapter->hw; 1475 unsigned long begin = (unsigned long)start; 1476 unsigned long end = begin + len; 1477 1478 /* First rev 82545 and 82546 need to not allow any memory 1479 * write location to cross 64k boundary due to errata 23 1480 */ 1481 if (hw->mac_type == e1000_82545 || 1482 hw->mac_type == e1000_ce4100 || 1483 hw->mac_type == e1000_82546) { 1484 return ((begin ^ (end - 1)) >> 16) == 0; 1485 } 1486 1487 return true; 1488 } 1489 1490 /** 1491 * e1000_setup_tx_resources - allocate Tx resources (Descriptors) 1492 * @adapter: board private structure 1493 * @txdr: tx descriptor ring (for a specific queue) to setup 1494 * 1495 * Return 0 on success, negative on failure 1496 **/ 1497 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 1498 struct e1000_tx_ring *txdr) 1499 { 1500 struct pci_dev *pdev = adapter->pdev; 1501 int size; 1502 1503 size = sizeof(struct e1000_tx_buffer) * txdr->count; 1504 txdr->buffer_info = vzalloc(size); 1505 if (!txdr->buffer_info) 1506 return -ENOMEM; 1507 1508 /* round up to nearest 4K */ 1509 1510 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 1511 txdr->size = ALIGN(txdr->size, 4096); 1512 1513 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, 1514 GFP_KERNEL); 1515 if (!txdr->desc) { 1516 setup_tx_desc_die: 1517 vfree(txdr->buffer_info); 1518 return -ENOMEM; 1519 } 1520 1521 /* Fix for errata 23, can't cross 64kB boundary */ 1522 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1523 void *olddesc = txdr->desc; 1524 dma_addr_t olddma = txdr->dma; 1525 e_err(tx_err, "txdr align check failed: %u bytes at %p\n", 1526 txdr->size, txdr->desc); 1527 /* Try again, without freeing the previous */ 1528 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, 1529 &txdr->dma, GFP_KERNEL); 1530 /* Failed allocation, critical failure */ 1531 if (!txdr->desc) { 1532 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1533 olddma); 1534 goto setup_tx_desc_die; 1535 } 1536 1537 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1538 /* give up */ 1539 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, 1540 txdr->dma); 1541 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1542 olddma); 1543 e_err(probe, "Unable to allocate aligned memory " 1544 "for the transmit descriptor ring\n"); 1545 vfree(txdr->buffer_info); 1546 return -ENOMEM; 1547 } else { 1548 /* Free old allocation, new allocation was successful */ 1549 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1550 olddma); 1551 } 1552 } 1553 memset(txdr->desc, 0, txdr->size); 1554 1555 txdr->next_to_use = 0; 1556 txdr->next_to_clean = 0; 1557 1558 return 0; 1559 } 1560 1561 /** 1562 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources 1563 * (Descriptors) for all queues 1564 * @adapter: board private structure 1565 * 1566 * Return 0 on success, negative on failure 1567 **/ 1568 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) 1569 { 1570 int i, err = 0; 1571 1572 for (i = 0; i < adapter->num_tx_queues; i++) { 1573 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); 1574 if (err) { 1575 e_err(probe, "Allocation for Tx Queue %u failed\n", i); 1576 for (i-- ; i >= 0; i--) 1577 e1000_free_tx_resources(adapter, 1578 &adapter->tx_ring[i]); 1579 break; 1580 } 1581 } 1582 1583 return err; 1584 } 1585 1586 /** 1587 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset 1588 * @adapter: board private structure 1589 * 1590 * Configure the Tx unit of the MAC after a reset. 1591 **/ 1592 static void e1000_configure_tx(struct e1000_adapter *adapter) 1593 { 1594 u64 tdba; 1595 struct e1000_hw *hw = &adapter->hw; 1596 u32 tdlen, tctl, tipg; 1597 u32 ipgr1, ipgr2; 1598 1599 /* Setup the HW Tx Head and Tail descriptor pointers */ 1600 1601 switch (adapter->num_tx_queues) { 1602 case 1: 1603 default: 1604 tdba = adapter->tx_ring[0].dma; 1605 tdlen = adapter->tx_ring[0].count * 1606 sizeof(struct e1000_tx_desc); 1607 ew32(TDLEN, tdlen); 1608 ew32(TDBAH, (tdba >> 32)); 1609 ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); 1610 ew32(TDT, 0); 1611 ew32(TDH, 0); 1612 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? 1613 E1000_TDH : E1000_82542_TDH); 1614 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? 1615 E1000_TDT : E1000_82542_TDT); 1616 break; 1617 } 1618 1619 /* Set the default values for the Tx Inter Packet Gap timer */ 1620 if ((hw->media_type == e1000_media_type_fiber || 1621 hw->media_type == e1000_media_type_internal_serdes)) 1622 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 1623 else 1624 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 1625 1626 switch (hw->mac_type) { 1627 case e1000_82542_rev2_0: 1628 case e1000_82542_rev2_1: 1629 tipg = DEFAULT_82542_TIPG_IPGT; 1630 ipgr1 = DEFAULT_82542_TIPG_IPGR1; 1631 ipgr2 = DEFAULT_82542_TIPG_IPGR2; 1632 break; 1633 default: 1634 ipgr1 = DEFAULT_82543_TIPG_IPGR1; 1635 ipgr2 = DEFAULT_82543_TIPG_IPGR2; 1636 break; 1637 } 1638 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; 1639 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; 1640 ew32(TIPG, tipg); 1641 1642 /* Set the Tx Interrupt Delay register */ 1643 1644 ew32(TIDV, adapter->tx_int_delay); 1645 if (hw->mac_type >= e1000_82540) 1646 ew32(TADV, adapter->tx_abs_int_delay); 1647 1648 /* Program the Transmit Control Register */ 1649 1650 tctl = er32(TCTL); 1651 tctl &= ~E1000_TCTL_CT; 1652 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 1653 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 1654 1655 e1000_config_collision_dist(hw); 1656 1657 /* Setup Transmit Descriptor Settings for eop descriptor */ 1658 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 1659 1660 /* only set IDE if we are delaying interrupts using the timers */ 1661 if (adapter->tx_int_delay) 1662 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 1663 1664 if (hw->mac_type < e1000_82543) 1665 adapter->txd_cmd |= E1000_TXD_CMD_RPS; 1666 else 1667 adapter->txd_cmd |= E1000_TXD_CMD_RS; 1668 1669 /* Cache if we're 82544 running in PCI-X because we'll 1670 * need this to apply a workaround later in the send path. 1671 */ 1672 if (hw->mac_type == e1000_82544 && 1673 hw->bus_type == e1000_bus_type_pcix) 1674 adapter->pcix_82544 = true; 1675 1676 ew32(TCTL, tctl); 1677 1678 } 1679 1680 /** 1681 * e1000_setup_rx_resources - allocate Rx resources (Descriptors) 1682 * @adapter: board private structure 1683 * @rxdr: rx descriptor ring (for a specific queue) to setup 1684 * 1685 * Returns 0 on success, negative on failure 1686 **/ 1687 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 1688 struct e1000_rx_ring *rxdr) 1689 { 1690 struct pci_dev *pdev = adapter->pdev; 1691 int size, desc_len; 1692 1693 size = sizeof(struct e1000_rx_buffer) * rxdr->count; 1694 rxdr->buffer_info = vzalloc(size); 1695 if (!rxdr->buffer_info) 1696 return -ENOMEM; 1697 1698 desc_len = sizeof(struct e1000_rx_desc); 1699 1700 /* Round up to nearest 4K */ 1701 1702 rxdr->size = rxdr->count * desc_len; 1703 rxdr->size = ALIGN(rxdr->size, 4096); 1704 1705 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, 1706 GFP_KERNEL); 1707 if (!rxdr->desc) { 1708 setup_rx_desc_die: 1709 vfree(rxdr->buffer_info); 1710 return -ENOMEM; 1711 } 1712 1713 /* Fix for errata 23, can't cross 64kB boundary */ 1714 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1715 void *olddesc = rxdr->desc; 1716 dma_addr_t olddma = rxdr->dma; 1717 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n", 1718 rxdr->size, rxdr->desc); 1719 /* Try again, without freeing the previous */ 1720 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, 1721 &rxdr->dma, GFP_KERNEL); 1722 /* Failed allocation, critical failure */ 1723 if (!rxdr->desc) { 1724 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1725 olddma); 1726 goto setup_rx_desc_die; 1727 } 1728 1729 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1730 /* give up */ 1731 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, 1732 rxdr->dma); 1733 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1734 olddma); 1735 e_err(probe, "Unable to allocate aligned memory for " 1736 "the Rx descriptor ring\n"); 1737 goto setup_rx_desc_die; 1738 } else { 1739 /* Free old allocation, new allocation was successful */ 1740 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1741 olddma); 1742 } 1743 } 1744 memset(rxdr->desc, 0, rxdr->size); 1745 1746 rxdr->next_to_clean = 0; 1747 rxdr->next_to_use = 0; 1748 rxdr->rx_skb_top = NULL; 1749 1750 return 0; 1751 } 1752 1753 /** 1754 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources 1755 * (Descriptors) for all queues 1756 * @adapter: board private structure 1757 * 1758 * Return 0 on success, negative on failure 1759 **/ 1760 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) 1761 { 1762 int i, err = 0; 1763 1764 for (i = 0; i < adapter->num_rx_queues; i++) { 1765 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); 1766 if (err) { 1767 e_err(probe, "Allocation for Rx Queue %u failed\n", i); 1768 for (i-- ; i >= 0; i--) 1769 e1000_free_rx_resources(adapter, 1770 &adapter->rx_ring[i]); 1771 break; 1772 } 1773 } 1774 1775 return err; 1776 } 1777 1778 /** 1779 * e1000_setup_rctl - configure the receive control registers 1780 * @adapter: Board private structure 1781 **/ 1782 static void e1000_setup_rctl(struct e1000_adapter *adapter) 1783 { 1784 struct e1000_hw *hw = &adapter->hw; 1785 u32 rctl; 1786 1787 rctl = er32(RCTL); 1788 1789 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 1790 1791 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO | 1792 E1000_RCTL_RDMTS_HALF | 1793 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); 1794 1795 if (hw->tbi_compatibility_on == 1) 1796 rctl |= E1000_RCTL_SBP; 1797 else 1798 rctl &= ~E1000_RCTL_SBP; 1799 1800 if (adapter->netdev->mtu <= ETH_DATA_LEN) 1801 rctl &= ~E1000_RCTL_LPE; 1802 else 1803 rctl |= E1000_RCTL_LPE; 1804 1805 /* Setup buffer sizes */ 1806 rctl &= ~E1000_RCTL_SZ_4096; 1807 rctl |= E1000_RCTL_BSEX; 1808 switch (adapter->rx_buffer_len) { 1809 case E1000_RXBUFFER_2048: 1810 default: 1811 rctl |= E1000_RCTL_SZ_2048; 1812 rctl &= ~E1000_RCTL_BSEX; 1813 break; 1814 case E1000_RXBUFFER_4096: 1815 rctl |= E1000_RCTL_SZ_4096; 1816 break; 1817 case E1000_RXBUFFER_8192: 1818 rctl |= E1000_RCTL_SZ_8192; 1819 break; 1820 case E1000_RXBUFFER_16384: 1821 rctl |= E1000_RCTL_SZ_16384; 1822 break; 1823 } 1824 1825 /* This is useful for sniffing bad packets. */ 1826 if (adapter->netdev->features & NETIF_F_RXALL) { 1827 /* UPE and MPE will be handled by normal PROMISC logic 1828 * in e1000e_set_rx_mode 1829 */ 1830 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 1831 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 1832 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 1833 1834 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 1835 E1000_RCTL_DPF | /* Allow filtered pause */ 1836 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 1837 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 1838 * and that breaks VLANs. 1839 */ 1840 } 1841 1842 ew32(RCTL, rctl); 1843 } 1844 1845 /** 1846 * e1000_configure_rx - Configure 8254x Receive Unit after Reset 1847 * @adapter: board private structure 1848 * 1849 * Configure the Rx unit of the MAC after a reset. 1850 **/ 1851 static void e1000_configure_rx(struct e1000_adapter *adapter) 1852 { 1853 u64 rdba; 1854 struct e1000_hw *hw = &adapter->hw; 1855 u32 rdlen, rctl, rxcsum; 1856 1857 if (adapter->netdev->mtu > ETH_DATA_LEN) { 1858 rdlen = adapter->rx_ring[0].count * 1859 sizeof(struct e1000_rx_desc); 1860 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 1861 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 1862 } else { 1863 rdlen = adapter->rx_ring[0].count * 1864 sizeof(struct e1000_rx_desc); 1865 adapter->clean_rx = e1000_clean_rx_irq; 1866 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 1867 } 1868 1869 /* disable receives while setting up the descriptors */ 1870 rctl = er32(RCTL); 1871 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1872 1873 /* set the Receive Delay Timer Register */ 1874 ew32(RDTR, adapter->rx_int_delay); 1875 1876 if (hw->mac_type >= e1000_82540) { 1877 ew32(RADV, adapter->rx_abs_int_delay); 1878 if (adapter->itr_setting != 0) 1879 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1880 } 1881 1882 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1883 * the Base and Length of the Rx Descriptor Ring 1884 */ 1885 switch (adapter->num_rx_queues) { 1886 case 1: 1887 default: 1888 rdba = adapter->rx_ring[0].dma; 1889 ew32(RDLEN, rdlen); 1890 ew32(RDBAH, (rdba >> 32)); 1891 ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); 1892 ew32(RDT, 0); 1893 ew32(RDH, 0); 1894 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? 1895 E1000_RDH : E1000_82542_RDH); 1896 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? 1897 E1000_RDT : E1000_82542_RDT); 1898 break; 1899 } 1900 1901 /* Enable 82543 Receive Checksum Offload for TCP and UDP */ 1902 if (hw->mac_type >= e1000_82543) { 1903 rxcsum = er32(RXCSUM); 1904 if (adapter->rx_csum) 1905 rxcsum |= E1000_RXCSUM_TUOFL; 1906 else 1907 /* don't need to clear IPPCSE as it defaults to 0 */ 1908 rxcsum &= ~E1000_RXCSUM_TUOFL; 1909 ew32(RXCSUM, rxcsum); 1910 } 1911 1912 /* Enable Receives */ 1913 ew32(RCTL, rctl | E1000_RCTL_EN); 1914 } 1915 1916 /** 1917 * e1000_free_tx_resources - Free Tx Resources per Queue 1918 * @adapter: board private structure 1919 * @tx_ring: Tx descriptor ring for a specific queue 1920 * 1921 * Free all transmit software resources 1922 **/ 1923 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 1924 struct e1000_tx_ring *tx_ring) 1925 { 1926 struct pci_dev *pdev = adapter->pdev; 1927 1928 e1000_clean_tx_ring(adapter, tx_ring); 1929 1930 vfree(tx_ring->buffer_info); 1931 tx_ring->buffer_info = NULL; 1932 1933 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1934 tx_ring->dma); 1935 1936 tx_ring->desc = NULL; 1937 } 1938 1939 /** 1940 * e1000_free_all_tx_resources - Free Tx Resources for All Queues 1941 * @adapter: board private structure 1942 * 1943 * Free all transmit software resources 1944 **/ 1945 void e1000_free_all_tx_resources(struct e1000_adapter *adapter) 1946 { 1947 int i; 1948 1949 for (i = 0; i < adapter->num_tx_queues; i++) 1950 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); 1951 } 1952 1953 static void 1954 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, 1955 struct e1000_tx_buffer *buffer_info) 1956 { 1957 if (buffer_info->dma) { 1958 if (buffer_info->mapped_as_page) 1959 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, 1960 buffer_info->length, DMA_TO_DEVICE); 1961 else 1962 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1963 buffer_info->length, 1964 DMA_TO_DEVICE); 1965 buffer_info->dma = 0; 1966 } 1967 if (buffer_info->skb) { 1968 dev_kfree_skb_any(buffer_info->skb); 1969 buffer_info->skb = NULL; 1970 } 1971 buffer_info->time_stamp = 0; 1972 /* buffer_info must be completely set up in the transmit path */ 1973 } 1974 1975 /** 1976 * e1000_clean_tx_ring - Free Tx Buffers 1977 * @adapter: board private structure 1978 * @tx_ring: ring to be cleaned 1979 **/ 1980 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 1981 struct e1000_tx_ring *tx_ring) 1982 { 1983 struct e1000_hw *hw = &adapter->hw; 1984 struct e1000_tx_buffer *buffer_info; 1985 unsigned long size; 1986 unsigned int i; 1987 1988 /* Free all the Tx ring sk_buffs */ 1989 1990 for (i = 0; i < tx_ring->count; i++) { 1991 buffer_info = &tx_ring->buffer_info[i]; 1992 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 1993 } 1994 1995 netdev_reset_queue(adapter->netdev); 1996 size = sizeof(struct e1000_tx_buffer) * tx_ring->count; 1997 memset(tx_ring->buffer_info, 0, size); 1998 1999 /* Zero out the descriptor ring */ 2000 2001 memset(tx_ring->desc, 0, tx_ring->size); 2002 2003 tx_ring->next_to_use = 0; 2004 tx_ring->next_to_clean = 0; 2005 tx_ring->last_tx_tso = false; 2006 2007 writel(0, hw->hw_addr + tx_ring->tdh); 2008 writel(0, hw->hw_addr + tx_ring->tdt); 2009 } 2010 2011 /** 2012 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues 2013 * @adapter: board private structure 2014 **/ 2015 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) 2016 { 2017 int i; 2018 2019 for (i = 0; i < adapter->num_tx_queues; i++) 2020 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); 2021 } 2022 2023 /** 2024 * e1000_free_rx_resources - Free Rx Resources 2025 * @adapter: board private structure 2026 * @rx_ring: ring to clean the resources from 2027 * 2028 * Free all receive software resources 2029 **/ 2030 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 2031 struct e1000_rx_ring *rx_ring) 2032 { 2033 struct pci_dev *pdev = adapter->pdev; 2034 2035 e1000_clean_rx_ring(adapter, rx_ring); 2036 2037 vfree(rx_ring->buffer_info); 2038 rx_ring->buffer_info = NULL; 2039 2040 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 2041 rx_ring->dma); 2042 2043 rx_ring->desc = NULL; 2044 } 2045 2046 /** 2047 * e1000_free_all_rx_resources - Free Rx Resources for All Queues 2048 * @adapter: board private structure 2049 * 2050 * Free all receive software resources 2051 **/ 2052 void e1000_free_all_rx_resources(struct e1000_adapter *adapter) 2053 { 2054 int i; 2055 2056 for (i = 0; i < adapter->num_rx_queues; i++) 2057 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); 2058 } 2059 2060 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN) 2061 static unsigned int e1000_frag_len(const struct e1000_adapter *a) 2062 { 2063 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) + 2064 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2065 } 2066 2067 static void *e1000_alloc_frag(const struct e1000_adapter *a) 2068 { 2069 unsigned int len = e1000_frag_len(a); 2070 u8 *data = netdev_alloc_frag(len); 2071 2072 if (likely(data)) 2073 data += E1000_HEADROOM; 2074 return data; 2075 } 2076 2077 /** 2078 * e1000_clean_rx_ring - Free Rx Buffers per Queue 2079 * @adapter: board private structure 2080 * @rx_ring: ring to free buffers from 2081 **/ 2082 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 2083 struct e1000_rx_ring *rx_ring) 2084 { 2085 struct e1000_hw *hw = &adapter->hw; 2086 struct e1000_rx_buffer *buffer_info; 2087 struct pci_dev *pdev = adapter->pdev; 2088 unsigned long size; 2089 unsigned int i; 2090 2091 /* Free all the Rx netfrags */ 2092 for (i = 0; i < rx_ring->count; i++) { 2093 buffer_info = &rx_ring->buffer_info[i]; 2094 if (adapter->clean_rx == e1000_clean_rx_irq) { 2095 if (buffer_info->dma) 2096 dma_unmap_single(&pdev->dev, buffer_info->dma, 2097 adapter->rx_buffer_len, 2098 DMA_FROM_DEVICE); 2099 if (buffer_info->rxbuf.data) { 2100 skb_free_frag(buffer_info->rxbuf.data); 2101 buffer_info->rxbuf.data = NULL; 2102 } 2103 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) { 2104 if (buffer_info->dma) 2105 dma_unmap_page(&pdev->dev, buffer_info->dma, 2106 adapter->rx_buffer_len, 2107 DMA_FROM_DEVICE); 2108 if (buffer_info->rxbuf.page) { 2109 put_page(buffer_info->rxbuf.page); 2110 buffer_info->rxbuf.page = NULL; 2111 } 2112 } 2113 2114 buffer_info->dma = 0; 2115 } 2116 2117 /* there also may be some cached data from a chained receive */ 2118 napi_free_frags(&adapter->napi); 2119 rx_ring->rx_skb_top = NULL; 2120 2121 size = sizeof(struct e1000_rx_buffer) * rx_ring->count; 2122 memset(rx_ring->buffer_info, 0, size); 2123 2124 /* Zero out the descriptor ring */ 2125 memset(rx_ring->desc, 0, rx_ring->size); 2126 2127 rx_ring->next_to_clean = 0; 2128 rx_ring->next_to_use = 0; 2129 2130 writel(0, hw->hw_addr + rx_ring->rdh); 2131 writel(0, hw->hw_addr + rx_ring->rdt); 2132 } 2133 2134 /** 2135 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues 2136 * @adapter: board private structure 2137 **/ 2138 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) 2139 { 2140 int i; 2141 2142 for (i = 0; i < adapter->num_rx_queues; i++) 2143 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); 2144 } 2145 2146 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset 2147 * and memory write and invalidate disabled for certain operations 2148 */ 2149 static void e1000_enter_82542_rst(struct e1000_adapter *adapter) 2150 { 2151 struct e1000_hw *hw = &adapter->hw; 2152 struct net_device *netdev = adapter->netdev; 2153 u32 rctl; 2154 2155 e1000_pci_clear_mwi(hw); 2156 2157 rctl = er32(RCTL); 2158 rctl |= E1000_RCTL_RST; 2159 ew32(RCTL, rctl); 2160 E1000_WRITE_FLUSH(); 2161 mdelay(5); 2162 2163 if (netif_running(netdev)) 2164 e1000_clean_all_rx_rings(adapter); 2165 } 2166 2167 static void e1000_leave_82542_rst(struct e1000_adapter *adapter) 2168 { 2169 struct e1000_hw *hw = &adapter->hw; 2170 struct net_device *netdev = adapter->netdev; 2171 u32 rctl; 2172 2173 rctl = er32(RCTL); 2174 rctl &= ~E1000_RCTL_RST; 2175 ew32(RCTL, rctl); 2176 E1000_WRITE_FLUSH(); 2177 mdelay(5); 2178 2179 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) 2180 e1000_pci_set_mwi(hw); 2181 2182 if (netif_running(netdev)) { 2183 /* No need to loop, because 82542 supports only 1 queue */ 2184 struct e1000_rx_ring *ring = &adapter->rx_ring[0]; 2185 e1000_configure_rx(adapter); 2186 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); 2187 } 2188 } 2189 2190 /** 2191 * e1000_set_mac - Change the Ethernet Address of the NIC 2192 * @netdev: network interface device structure 2193 * @p: pointer to an address structure 2194 * 2195 * Returns 0 on success, negative on failure 2196 **/ 2197 static int e1000_set_mac(struct net_device *netdev, void *p) 2198 { 2199 struct e1000_adapter *adapter = netdev_priv(netdev); 2200 struct e1000_hw *hw = &adapter->hw; 2201 struct sockaddr *addr = p; 2202 2203 if (!is_valid_ether_addr(addr->sa_data)) 2204 return -EADDRNOTAVAIL; 2205 2206 /* 82542 2.0 needs to be in reset to write receive address registers */ 2207 2208 if (hw->mac_type == e1000_82542_rev2_0) 2209 e1000_enter_82542_rst(adapter); 2210 2211 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2212 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); 2213 2214 e1000_rar_set(hw, hw->mac_addr, 0); 2215 2216 if (hw->mac_type == e1000_82542_rev2_0) 2217 e1000_leave_82542_rst(adapter); 2218 2219 return 0; 2220 } 2221 2222 /** 2223 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 2224 * @netdev: network interface device structure 2225 * 2226 * The set_rx_mode entry point is called whenever the unicast or multicast 2227 * address lists or the network interface flags are updated. This routine is 2228 * responsible for configuring the hardware for proper unicast, multicast, 2229 * promiscuous mode, and all-multi behavior. 2230 **/ 2231 static void e1000_set_rx_mode(struct net_device *netdev) 2232 { 2233 struct e1000_adapter *adapter = netdev_priv(netdev); 2234 struct e1000_hw *hw = &adapter->hw; 2235 struct netdev_hw_addr *ha; 2236 bool use_uc = false; 2237 u32 rctl; 2238 u32 hash_value; 2239 int i, rar_entries = E1000_RAR_ENTRIES; 2240 int mta_reg_count = E1000_NUM_MTA_REGISTERS; 2241 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); 2242 2243 if (!mcarray) 2244 return; 2245 2246 /* Check for Promiscuous and All Multicast modes */ 2247 2248 rctl = er32(RCTL); 2249 2250 if (netdev->flags & IFF_PROMISC) { 2251 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 2252 rctl &= ~E1000_RCTL_VFE; 2253 } else { 2254 if (netdev->flags & IFF_ALLMULTI) 2255 rctl |= E1000_RCTL_MPE; 2256 else 2257 rctl &= ~E1000_RCTL_MPE; 2258 /* Enable VLAN filter if there is a VLAN */ 2259 if (e1000_vlan_used(adapter)) 2260 rctl |= E1000_RCTL_VFE; 2261 } 2262 2263 if (netdev_uc_count(netdev) > rar_entries - 1) { 2264 rctl |= E1000_RCTL_UPE; 2265 } else if (!(netdev->flags & IFF_PROMISC)) { 2266 rctl &= ~E1000_RCTL_UPE; 2267 use_uc = true; 2268 } 2269 2270 ew32(RCTL, rctl); 2271 2272 /* 82542 2.0 needs to be in reset to write receive address registers */ 2273 2274 if (hw->mac_type == e1000_82542_rev2_0) 2275 e1000_enter_82542_rst(adapter); 2276 2277 /* load the first 14 addresses into the exact filters 1-14. Unicast 2278 * addresses take precedence to avoid disabling unicast filtering 2279 * when possible. 2280 * 2281 * RAR 0 is used for the station MAC address 2282 * if there are not 14 addresses, go ahead and clear the filters 2283 */ 2284 i = 1; 2285 if (use_uc) 2286 netdev_for_each_uc_addr(ha, netdev) { 2287 if (i == rar_entries) 2288 break; 2289 e1000_rar_set(hw, ha->addr, i++); 2290 } 2291 2292 netdev_for_each_mc_addr(ha, netdev) { 2293 if (i == rar_entries) { 2294 /* load any remaining addresses into the hash table */ 2295 u32 hash_reg, hash_bit, mta; 2296 hash_value = e1000_hash_mc_addr(hw, ha->addr); 2297 hash_reg = (hash_value >> 5) & 0x7F; 2298 hash_bit = hash_value & 0x1F; 2299 mta = (1 << hash_bit); 2300 mcarray[hash_reg] |= mta; 2301 } else { 2302 e1000_rar_set(hw, ha->addr, i++); 2303 } 2304 } 2305 2306 for (; i < rar_entries; i++) { 2307 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); 2308 E1000_WRITE_FLUSH(); 2309 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); 2310 E1000_WRITE_FLUSH(); 2311 } 2312 2313 /* write the hash table completely, write from bottom to avoid 2314 * both stupid write combining chipsets, and flushing each write 2315 */ 2316 for (i = mta_reg_count - 1; i >= 0 ; i--) { 2317 /* If we are on an 82544 has an errata where writing odd 2318 * offsets overwrites the previous even offset, but writing 2319 * backwards over the range solves the issue by always 2320 * writing the odd offset first 2321 */ 2322 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); 2323 } 2324 E1000_WRITE_FLUSH(); 2325 2326 if (hw->mac_type == e1000_82542_rev2_0) 2327 e1000_leave_82542_rst(adapter); 2328 2329 kfree(mcarray); 2330 } 2331 2332 /** 2333 * e1000_update_phy_info_task - get phy info 2334 * @work: work struct contained inside adapter struct 2335 * 2336 * Need to wait a few seconds after link up to get diagnostic information from 2337 * the phy 2338 */ 2339 static void e1000_update_phy_info_task(struct work_struct *work) 2340 { 2341 struct e1000_adapter *adapter = container_of(work, 2342 struct e1000_adapter, 2343 phy_info_task.work); 2344 2345 e1000_phy_get_info(&adapter->hw, &adapter->phy_info); 2346 } 2347 2348 /** 2349 * e1000_82547_tx_fifo_stall_task - task to complete work 2350 * @work: work struct contained inside adapter struct 2351 **/ 2352 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work) 2353 { 2354 struct e1000_adapter *adapter = container_of(work, 2355 struct e1000_adapter, 2356 fifo_stall_task.work); 2357 struct e1000_hw *hw = &adapter->hw; 2358 struct net_device *netdev = adapter->netdev; 2359 u32 tctl; 2360 2361 if (atomic_read(&adapter->tx_fifo_stall)) { 2362 if ((er32(TDT) == er32(TDH)) && 2363 (er32(TDFT) == er32(TDFH)) && 2364 (er32(TDFTS) == er32(TDFHS))) { 2365 tctl = er32(TCTL); 2366 ew32(TCTL, tctl & ~E1000_TCTL_EN); 2367 ew32(TDFT, adapter->tx_head_addr); 2368 ew32(TDFH, adapter->tx_head_addr); 2369 ew32(TDFTS, adapter->tx_head_addr); 2370 ew32(TDFHS, adapter->tx_head_addr); 2371 ew32(TCTL, tctl); 2372 E1000_WRITE_FLUSH(); 2373 2374 adapter->tx_fifo_head = 0; 2375 atomic_set(&adapter->tx_fifo_stall, 0); 2376 netif_wake_queue(netdev); 2377 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { 2378 schedule_delayed_work(&adapter->fifo_stall_task, 1); 2379 } 2380 } 2381 } 2382 2383 bool e1000_has_link(struct e1000_adapter *adapter) 2384 { 2385 struct e1000_hw *hw = &adapter->hw; 2386 bool link_active = false; 2387 2388 /* get_link_status is set on LSC (link status) interrupt or rx 2389 * sequence error interrupt (except on intel ce4100). 2390 * get_link_status will stay false until the 2391 * e1000_check_for_link establishes link for copper adapters 2392 * ONLY 2393 */ 2394 switch (hw->media_type) { 2395 case e1000_media_type_copper: 2396 if (hw->mac_type == e1000_ce4100) 2397 hw->get_link_status = 1; 2398 if (hw->get_link_status) { 2399 e1000_check_for_link(hw); 2400 link_active = !hw->get_link_status; 2401 } else { 2402 link_active = true; 2403 } 2404 break; 2405 case e1000_media_type_fiber: 2406 e1000_check_for_link(hw); 2407 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 2408 break; 2409 case e1000_media_type_internal_serdes: 2410 e1000_check_for_link(hw); 2411 link_active = hw->serdes_has_link; 2412 break; 2413 default: 2414 break; 2415 } 2416 2417 return link_active; 2418 } 2419 2420 /** 2421 * e1000_watchdog - work function 2422 * @work: work struct contained inside adapter struct 2423 **/ 2424 static void e1000_watchdog(struct work_struct *work) 2425 { 2426 struct e1000_adapter *adapter = container_of(work, 2427 struct e1000_adapter, 2428 watchdog_task.work); 2429 struct e1000_hw *hw = &adapter->hw; 2430 struct net_device *netdev = adapter->netdev; 2431 struct e1000_tx_ring *txdr = adapter->tx_ring; 2432 u32 link, tctl; 2433 2434 link = e1000_has_link(adapter); 2435 if ((netif_carrier_ok(netdev)) && link) 2436 goto link_up; 2437 2438 if (link) { 2439 if (!netif_carrier_ok(netdev)) { 2440 u32 ctrl; 2441 /* update snapshot of PHY registers on LSC */ 2442 e1000_get_speed_and_duplex(hw, 2443 &adapter->link_speed, 2444 &adapter->link_duplex); 2445 2446 ctrl = er32(CTRL); 2447 pr_info("%s NIC Link is Up %d Mbps %s, " 2448 "Flow Control: %s\n", 2449 netdev->name, 2450 adapter->link_speed, 2451 adapter->link_duplex == FULL_DUPLEX ? 2452 "Full Duplex" : "Half Duplex", 2453 ((ctrl & E1000_CTRL_TFCE) && (ctrl & 2454 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & 2455 E1000_CTRL_RFCE) ? "RX" : ((ctrl & 2456 E1000_CTRL_TFCE) ? "TX" : "None"))); 2457 2458 /* adjust timeout factor according to speed/duplex */ 2459 adapter->tx_timeout_factor = 1; 2460 switch (adapter->link_speed) { 2461 case SPEED_10: 2462 adapter->tx_timeout_factor = 16; 2463 break; 2464 case SPEED_100: 2465 /* maybe add some timeout factor ? */ 2466 break; 2467 } 2468 2469 /* enable transmits in the hardware */ 2470 tctl = er32(TCTL); 2471 tctl |= E1000_TCTL_EN; 2472 ew32(TCTL, tctl); 2473 2474 netif_carrier_on(netdev); 2475 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2476 schedule_delayed_work(&adapter->phy_info_task, 2477 2 * HZ); 2478 adapter->smartspeed = 0; 2479 } 2480 } else { 2481 if (netif_carrier_ok(netdev)) { 2482 adapter->link_speed = 0; 2483 adapter->link_duplex = 0; 2484 pr_info("%s NIC Link is Down\n", 2485 netdev->name); 2486 netif_carrier_off(netdev); 2487 2488 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2489 schedule_delayed_work(&adapter->phy_info_task, 2490 2 * HZ); 2491 } 2492 2493 e1000_smartspeed(adapter); 2494 } 2495 2496 link_up: 2497 e1000_update_stats(adapter); 2498 2499 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 2500 adapter->tpt_old = adapter->stats.tpt; 2501 hw->collision_delta = adapter->stats.colc - adapter->colc_old; 2502 adapter->colc_old = adapter->stats.colc; 2503 2504 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; 2505 adapter->gorcl_old = adapter->stats.gorcl; 2506 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; 2507 adapter->gotcl_old = adapter->stats.gotcl; 2508 2509 e1000_update_adaptive(hw); 2510 2511 if (!netif_carrier_ok(netdev)) { 2512 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { 2513 /* We've lost link, so the controller stops DMA, 2514 * but we've got queued Tx work that's never going 2515 * to get done, so reset controller to flush Tx. 2516 * (Do the reset outside of interrupt context). 2517 */ 2518 adapter->tx_timeout_count++; 2519 schedule_work(&adapter->reset_task); 2520 /* exit immediately since reset is imminent */ 2521 return; 2522 } 2523 } 2524 2525 /* Simple mode for Interrupt Throttle Rate (ITR) */ 2526 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { 2527 /* Symmetric Tx/Rx gets a reduced ITR=2000; 2528 * Total asymmetrical Tx or Rx gets ITR=8000; 2529 * everyone else is between 2000-8000. 2530 */ 2531 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; 2532 u32 dif = (adapter->gotcl > adapter->gorcl ? 2533 adapter->gotcl - adapter->gorcl : 2534 adapter->gorcl - adapter->gotcl) / 10000; 2535 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; 2536 2537 ew32(ITR, 1000000000 / (itr * 256)); 2538 } 2539 2540 /* Cause software interrupt to ensure rx ring is cleaned */ 2541 ew32(ICS, E1000_ICS_RXDMT0); 2542 2543 /* Force detection of hung controller every watchdog period */ 2544 adapter->detect_tx_hung = true; 2545 2546 /* Reschedule the task */ 2547 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2548 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ); 2549 } 2550 2551 enum latency_range { 2552 lowest_latency = 0, 2553 low_latency = 1, 2554 bulk_latency = 2, 2555 latency_invalid = 255 2556 }; 2557 2558 /** 2559 * e1000_update_itr - update the dynamic ITR value based on statistics 2560 * @adapter: pointer to adapter 2561 * @itr_setting: current adapter->itr 2562 * @packets: the number of packets during this measurement interval 2563 * @bytes: the number of bytes during this measurement interval 2564 * 2565 * Stores a new ITR value based on packets and byte 2566 * counts during the last interrupt. The advantage of per interrupt 2567 * computation is faster updates and more accurate ITR for the current 2568 * traffic pattern. Constants in this function were computed 2569 * based on theoretical maximum wire speed and thresholds were set based 2570 * on testing data as well as attempting to minimize response time 2571 * while increasing bulk throughput. 2572 * this functionality is controlled by the InterruptThrottleRate module 2573 * parameter (see e1000_param.c) 2574 **/ 2575 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, 2576 u16 itr_setting, int packets, int bytes) 2577 { 2578 unsigned int retval = itr_setting; 2579 struct e1000_hw *hw = &adapter->hw; 2580 2581 if (unlikely(hw->mac_type < e1000_82540)) 2582 goto update_itr_done; 2583 2584 if (packets == 0) 2585 goto update_itr_done; 2586 2587 switch (itr_setting) { 2588 case lowest_latency: 2589 /* jumbo frames get bulk treatment*/ 2590 if (bytes/packets > 8000) 2591 retval = bulk_latency; 2592 else if ((packets < 5) && (bytes > 512)) 2593 retval = low_latency; 2594 break; 2595 case low_latency: /* 50 usec aka 20000 ints/s */ 2596 if (bytes > 10000) { 2597 /* jumbo frames need bulk latency setting */ 2598 if (bytes/packets > 8000) 2599 retval = bulk_latency; 2600 else if ((packets < 10) || ((bytes/packets) > 1200)) 2601 retval = bulk_latency; 2602 else if ((packets > 35)) 2603 retval = lowest_latency; 2604 } else if (bytes/packets > 2000) 2605 retval = bulk_latency; 2606 else if (packets <= 2 && bytes < 512) 2607 retval = lowest_latency; 2608 break; 2609 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2610 if (bytes > 25000) { 2611 if (packets > 35) 2612 retval = low_latency; 2613 } else if (bytes < 6000) { 2614 retval = low_latency; 2615 } 2616 break; 2617 } 2618 2619 update_itr_done: 2620 return retval; 2621 } 2622 2623 static void e1000_set_itr(struct e1000_adapter *adapter) 2624 { 2625 struct e1000_hw *hw = &adapter->hw; 2626 u16 current_itr; 2627 u32 new_itr = adapter->itr; 2628 2629 if (unlikely(hw->mac_type < e1000_82540)) 2630 return; 2631 2632 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2633 if (unlikely(adapter->link_speed != SPEED_1000)) { 2634 current_itr = 0; 2635 new_itr = 4000; 2636 goto set_itr_now; 2637 } 2638 2639 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr, 2640 adapter->total_tx_packets, 2641 adapter->total_tx_bytes); 2642 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2643 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 2644 adapter->tx_itr = low_latency; 2645 2646 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr, 2647 adapter->total_rx_packets, 2648 adapter->total_rx_bytes); 2649 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2650 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 2651 adapter->rx_itr = low_latency; 2652 2653 current_itr = max(adapter->rx_itr, adapter->tx_itr); 2654 2655 switch (current_itr) { 2656 /* counts and packets in update_itr are dependent on these numbers */ 2657 case lowest_latency: 2658 new_itr = 70000; 2659 break; 2660 case low_latency: 2661 new_itr = 20000; /* aka hwitr = ~200 */ 2662 break; 2663 case bulk_latency: 2664 new_itr = 4000; 2665 break; 2666 default: 2667 break; 2668 } 2669 2670 set_itr_now: 2671 if (new_itr != adapter->itr) { 2672 /* this attempts to bias the interrupt rate towards Bulk 2673 * by adding intermediate steps when interrupt rate is 2674 * increasing 2675 */ 2676 new_itr = new_itr > adapter->itr ? 2677 min(adapter->itr + (new_itr >> 2), new_itr) : 2678 new_itr; 2679 adapter->itr = new_itr; 2680 ew32(ITR, 1000000000 / (new_itr * 256)); 2681 } 2682 } 2683 2684 #define E1000_TX_FLAGS_CSUM 0x00000001 2685 #define E1000_TX_FLAGS_VLAN 0x00000002 2686 #define E1000_TX_FLAGS_TSO 0x00000004 2687 #define E1000_TX_FLAGS_IPV4 0x00000008 2688 #define E1000_TX_FLAGS_NO_FCS 0x00000010 2689 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 2690 #define E1000_TX_FLAGS_VLAN_SHIFT 16 2691 2692 static int e1000_tso(struct e1000_adapter *adapter, 2693 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2694 __be16 protocol) 2695 { 2696 struct e1000_context_desc *context_desc; 2697 struct e1000_tx_buffer *buffer_info; 2698 unsigned int i; 2699 u32 cmd_length = 0; 2700 u16 ipcse = 0, tucse, mss; 2701 u8 ipcss, ipcso, tucss, tucso, hdr_len; 2702 2703 if (skb_is_gso(skb)) { 2704 int err; 2705 2706 err = skb_cow_head(skb, 0); 2707 if (err < 0) 2708 return err; 2709 2710 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2711 mss = skb_shinfo(skb)->gso_size; 2712 if (protocol == htons(ETH_P_IP)) { 2713 struct iphdr *iph = ip_hdr(skb); 2714 iph->tot_len = 0; 2715 iph->check = 0; 2716 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 2717 iph->daddr, 0, 2718 IPPROTO_TCP, 2719 0); 2720 cmd_length = E1000_TXD_CMD_IP; 2721 ipcse = skb_transport_offset(skb) - 1; 2722 } else if (skb_is_gso_v6(skb)) { 2723 tcp_v6_gso_csum_prep(skb); 2724 ipcse = 0; 2725 } 2726 ipcss = skb_network_offset(skb); 2727 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 2728 tucss = skb_transport_offset(skb); 2729 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 2730 tucse = 0; 2731 2732 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 2733 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 2734 2735 i = tx_ring->next_to_use; 2736 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2737 buffer_info = &tx_ring->buffer_info[i]; 2738 2739 context_desc->lower_setup.ip_fields.ipcss = ipcss; 2740 context_desc->lower_setup.ip_fields.ipcso = ipcso; 2741 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 2742 context_desc->upper_setup.tcp_fields.tucss = tucss; 2743 context_desc->upper_setup.tcp_fields.tucso = tucso; 2744 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); 2745 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 2746 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 2747 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 2748 2749 buffer_info->time_stamp = jiffies; 2750 buffer_info->next_to_watch = i; 2751 2752 if (++i == tx_ring->count) 2753 i = 0; 2754 2755 tx_ring->next_to_use = i; 2756 2757 return true; 2758 } 2759 return false; 2760 } 2761 2762 static bool e1000_tx_csum(struct e1000_adapter *adapter, 2763 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2764 __be16 protocol) 2765 { 2766 struct e1000_context_desc *context_desc; 2767 struct e1000_tx_buffer *buffer_info; 2768 unsigned int i; 2769 u8 css; 2770 u32 cmd_len = E1000_TXD_CMD_DEXT; 2771 2772 if (skb->ip_summed != CHECKSUM_PARTIAL) 2773 return false; 2774 2775 switch (protocol) { 2776 case cpu_to_be16(ETH_P_IP): 2777 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 2778 cmd_len |= E1000_TXD_CMD_TCP; 2779 break; 2780 case cpu_to_be16(ETH_P_IPV6): 2781 /* XXX not handling all IPV6 headers */ 2782 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 2783 cmd_len |= E1000_TXD_CMD_TCP; 2784 break; 2785 default: 2786 if (unlikely(net_ratelimit())) 2787 e_warn(drv, "checksum_partial proto=%x!\n", 2788 skb->protocol); 2789 break; 2790 } 2791 2792 css = skb_checksum_start_offset(skb); 2793 2794 i = tx_ring->next_to_use; 2795 buffer_info = &tx_ring->buffer_info[i]; 2796 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2797 2798 context_desc->lower_setup.ip_config = 0; 2799 context_desc->upper_setup.tcp_fields.tucss = css; 2800 context_desc->upper_setup.tcp_fields.tucso = 2801 css + skb->csum_offset; 2802 context_desc->upper_setup.tcp_fields.tucse = 0; 2803 context_desc->tcp_seg_setup.data = 0; 2804 context_desc->cmd_and_length = cpu_to_le32(cmd_len); 2805 2806 buffer_info->time_stamp = jiffies; 2807 buffer_info->next_to_watch = i; 2808 2809 if (unlikely(++i == tx_ring->count)) 2810 i = 0; 2811 2812 tx_ring->next_to_use = i; 2813 2814 return true; 2815 } 2816 2817 #define E1000_MAX_TXD_PWR 12 2818 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) 2819 2820 static int e1000_tx_map(struct e1000_adapter *adapter, 2821 struct e1000_tx_ring *tx_ring, 2822 struct sk_buff *skb, unsigned int first, 2823 unsigned int max_per_txd, unsigned int nr_frags, 2824 unsigned int mss) 2825 { 2826 struct e1000_hw *hw = &adapter->hw; 2827 struct pci_dev *pdev = adapter->pdev; 2828 struct e1000_tx_buffer *buffer_info; 2829 unsigned int len = skb_headlen(skb); 2830 unsigned int offset = 0, size, count = 0, i; 2831 unsigned int f, bytecount, segs; 2832 2833 i = tx_ring->next_to_use; 2834 2835 while (len) { 2836 buffer_info = &tx_ring->buffer_info[i]; 2837 size = min(len, max_per_txd); 2838 /* Workaround for Controller erratum -- 2839 * descriptor for non-tso packet in a linear SKB that follows a 2840 * tso gets written back prematurely before the data is fully 2841 * DMA'd to the controller 2842 */ 2843 if (!skb->data_len && tx_ring->last_tx_tso && 2844 !skb_is_gso(skb)) { 2845 tx_ring->last_tx_tso = false; 2846 size -= 4; 2847 } 2848 2849 /* Workaround for premature desc write-backs 2850 * in TSO mode. Append 4-byte sentinel desc 2851 */ 2852 if (unlikely(mss && !nr_frags && size == len && size > 8)) 2853 size -= 4; 2854 /* work-around for errata 10 and it applies 2855 * to all controllers in PCI-X mode 2856 * The fix is to make sure that the first descriptor of a 2857 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes 2858 */ 2859 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 2860 (size > 2015) && count == 0)) 2861 size = 2015; 2862 2863 /* Workaround for potential 82544 hang in PCI-X. Avoid 2864 * terminating buffers within evenly-aligned dwords. 2865 */ 2866 if (unlikely(adapter->pcix_82544 && 2867 !((unsigned long)(skb->data + offset + size - 1) & 4) && 2868 size > 4)) 2869 size -= 4; 2870 2871 buffer_info->length = size; 2872 /* set time_stamp *before* dma to help avoid a possible race */ 2873 buffer_info->time_stamp = jiffies; 2874 buffer_info->mapped_as_page = false; 2875 buffer_info->dma = dma_map_single(&pdev->dev, 2876 skb->data + offset, 2877 size, DMA_TO_DEVICE); 2878 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2879 goto dma_error; 2880 buffer_info->next_to_watch = i; 2881 2882 len -= size; 2883 offset += size; 2884 count++; 2885 if (len) { 2886 i++; 2887 if (unlikely(i == tx_ring->count)) 2888 i = 0; 2889 } 2890 } 2891 2892 for (f = 0; f < nr_frags; f++) { 2893 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 2894 2895 len = skb_frag_size(frag); 2896 offset = 0; 2897 2898 while (len) { 2899 unsigned long bufend; 2900 i++; 2901 if (unlikely(i == tx_ring->count)) 2902 i = 0; 2903 2904 buffer_info = &tx_ring->buffer_info[i]; 2905 size = min(len, max_per_txd); 2906 /* Workaround for premature desc write-backs 2907 * in TSO mode. Append 4-byte sentinel desc 2908 */ 2909 if (unlikely(mss && f == (nr_frags-1) && 2910 size == len && size > 8)) 2911 size -= 4; 2912 /* Workaround for potential 82544 hang in PCI-X. 2913 * Avoid terminating buffers within evenly-aligned 2914 * dwords. 2915 */ 2916 bufend = (unsigned long) 2917 page_to_phys(skb_frag_page(frag)); 2918 bufend += offset + size - 1; 2919 if (unlikely(adapter->pcix_82544 && 2920 !(bufend & 4) && 2921 size > 4)) 2922 size -= 4; 2923 2924 buffer_info->length = size; 2925 buffer_info->time_stamp = jiffies; 2926 buffer_info->mapped_as_page = true; 2927 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 2928 offset, size, DMA_TO_DEVICE); 2929 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2930 goto dma_error; 2931 buffer_info->next_to_watch = i; 2932 2933 len -= size; 2934 offset += size; 2935 count++; 2936 } 2937 } 2938 2939 segs = skb_shinfo(skb)->gso_segs ?: 1; 2940 /* multiply data chunks by size of headers */ 2941 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; 2942 2943 tx_ring->buffer_info[i].skb = skb; 2944 tx_ring->buffer_info[i].segs = segs; 2945 tx_ring->buffer_info[i].bytecount = bytecount; 2946 tx_ring->buffer_info[first].next_to_watch = i; 2947 2948 return count; 2949 2950 dma_error: 2951 dev_err(&pdev->dev, "TX DMA map failed\n"); 2952 buffer_info->dma = 0; 2953 if (count) 2954 count--; 2955 2956 while (count--) { 2957 if (i == 0) 2958 i += tx_ring->count; 2959 i--; 2960 buffer_info = &tx_ring->buffer_info[i]; 2961 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 2962 } 2963 2964 return 0; 2965 } 2966 2967 static void e1000_tx_queue(struct e1000_adapter *adapter, 2968 struct e1000_tx_ring *tx_ring, int tx_flags, 2969 int count) 2970 { 2971 struct e1000_tx_desc *tx_desc = NULL; 2972 struct e1000_tx_buffer *buffer_info; 2973 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 2974 unsigned int i; 2975 2976 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { 2977 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 2978 E1000_TXD_CMD_TSE; 2979 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2980 2981 if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) 2982 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 2983 } 2984 2985 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { 2986 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 2987 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2988 } 2989 2990 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { 2991 txd_lower |= E1000_TXD_CMD_VLE; 2992 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 2993 } 2994 2995 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 2996 txd_lower &= ~(E1000_TXD_CMD_IFCS); 2997 2998 i = tx_ring->next_to_use; 2999 3000 while (count--) { 3001 buffer_info = &tx_ring->buffer_info[i]; 3002 tx_desc = E1000_TX_DESC(*tx_ring, i); 3003 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 3004 tx_desc->lower.data = 3005 cpu_to_le32(txd_lower | buffer_info->length); 3006 tx_desc->upper.data = cpu_to_le32(txd_upper); 3007 if (unlikely(++i == tx_ring->count)) 3008 i = 0; 3009 } 3010 3011 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 3012 3013 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ 3014 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 3015 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); 3016 3017 /* Force memory writes to complete before letting h/w 3018 * know there are new descriptors to fetch. (Only 3019 * applicable for weak-ordered memory model archs, 3020 * such as IA-64). 3021 */ 3022 dma_wmb(); 3023 3024 tx_ring->next_to_use = i; 3025 } 3026 3027 /* 82547 workaround to avoid controller hang in half-duplex environment. 3028 * The workaround is to avoid queuing a large packet that would span 3029 * the internal Tx FIFO ring boundary by notifying the stack to resend 3030 * the packet at a later time. This gives the Tx FIFO an opportunity to 3031 * flush all packets. When that occurs, we reset the Tx FIFO pointers 3032 * to the beginning of the Tx FIFO. 3033 */ 3034 3035 #define E1000_FIFO_HDR 0x10 3036 #define E1000_82547_PAD_LEN 0x3E0 3037 3038 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 3039 struct sk_buff *skb) 3040 { 3041 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; 3042 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; 3043 3044 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); 3045 3046 if (adapter->link_duplex != HALF_DUPLEX) 3047 goto no_fifo_stall_required; 3048 3049 if (atomic_read(&adapter->tx_fifo_stall)) 3050 return 1; 3051 3052 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { 3053 atomic_set(&adapter->tx_fifo_stall, 1); 3054 return 1; 3055 } 3056 3057 no_fifo_stall_required: 3058 adapter->tx_fifo_head += skb_fifo_len; 3059 if (adapter->tx_fifo_head >= adapter->tx_fifo_size) 3060 adapter->tx_fifo_head -= adapter->tx_fifo_size; 3061 return 0; 3062 } 3063 3064 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) 3065 { 3066 struct e1000_adapter *adapter = netdev_priv(netdev); 3067 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3068 3069 netif_stop_queue(netdev); 3070 /* Herbert's original patch had: 3071 * smp_mb__after_netif_stop_queue(); 3072 * but since that doesn't exist yet, just open code it. 3073 */ 3074 smp_mb(); 3075 3076 /* We need to check again in a case another CPU has just 3077 * made room available. 3078 */ 3079 if (likely(E1000_DESC_UNUSED(tx_ring) < size)) 3080 return -EBUSY; 3081 3082 /* A reprieve! */ 3083 netif_start_queue(netdev); 3084 ++adapter->restart_queue; 3085 return 0; 3086 } 3087 3088 static int e1000_maybe_stop_tx(struct net_device *netdev, 3089 struct e1000_tx_ring *tx_ring, int size) 3090 { 3091 if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) 3092 return 0; 3093 return __e1000_maybe_stop_tx(netdev, size); 3094 } 3095 3096 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X)) 3097 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 3098 struct net_device *netdev) 3099 { 3100 struct e1000_adapter *adapter = netdev_priv(netdev); 3101 struct e1000_hw *hw = &adapter->hw; 3102 struct e1000_tx_ring *tx_ring; 3103 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; 3104 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; 3105 unsigned int tx_flags = 0; 3106 unsigned int len = skb_headlen(skb); 3107 unsigned int nr_frags; 3108 unsigned int mss; 3109 int count = 0; 3110 int tso; 3111 unsigned int f; 3112 __be16 protocol = vlan_get_protocol(skb); 3113 3114 /* This goes back to the question of how to logically map a Tx queue 3115 * to a flow. Right now, performance is impacted slightly negatively 3116 * if using multiple Tx queues. If the stack breaks away from a 3117 * single qdisc implementation, we can look at this again. 3118 */ 3119 tx_ring = adapter->tx_ring; 3120 3121 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN, 3122 * packets may get corrupted during padding by HW. 3123 * To WA this issue, pad all small packets manually. 3124 */ 3125 if (eth_skb_pad(skb)) 3126 return NETDEV_TX_OK; 3127 3128 mss = skb_shinfo(skb)->gso_size; 3129 /* The controller does a simple calculation to 3130 * make sure there is enough room in the FIFO before 3131 * initiating the DMA for each buffer. The calc is: 3132 * 4 = ceil(buffer len/mss). To make sure we don't 3133 * overrun the FIFO, adjust the max buffer len if mss 3134 * drops. 3135 */ 3136 if (mss) { 3137 u8 hdr_len; 3138 max_per_txd = min(mss << 2, max_per_txd); 3139 max_txd_pwr = fls(max_per_txd) - 1; 3140 3141 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3142 if (skb->data_len && hdr_len == len) { 3143 switch (hw->mac_type) { 3144 case e1000_82544: { 3145 unsigned int pull_size; 3146 3147 /* Make sure we have room to chop off 4 bytes, 3148 * and that the end alignment will work out to 3149 * this hardware's requirements 3150 * NOTE: this is a TSO only workaround 3151 * if end byte alignment not correct move us 3152 * into the next dword 3153 */ 3154 if ((unsigned long)(skb_tail_pointer(skb) - 1) 3155 & 4) 3156 break; 3157 pull_size = min((unsigned int)4, skb->data_len); 3158 if (!__pskb_pull_tail(skb, pull_size)) { 3159 e_err(drv, "__pskb_pull_tail " 3160 "failed.\n"); 3161 dev_kfree_skb_any(skb); 3162 return NETDEV_TX_OK; 3163 } 3164 len = skb_headlen(skb); 3165 break; 3166 } 3167 default: 3168 /* do nothing */ 3169 break; 3170 } 3171 } 3172 } 3173 3174 /* reserve a descriptor for the offload context */ 3175 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 3176 count++; 3177 count++; 3178 3179 /* Controller Erratum workaround */ 3180 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) 3181 count++; 3182 3183 count += TXD_USE_COUNT(len, max_txd_pwr); 3184 3185 if (adapter->pcix_82544) 3186 count++; 3187 3188 /* work-around for errata 10 and it applies to all controllers 3189 * in PCI-X mode, so add one more descriptor to the count 3190 */ 3191 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 3192 (len > 2015))) 3193 count++; 3194 3195 nr_frags = skb_shinfo(skb)->nr_frags; 3196 for (f = 0; f < nr_frags; f++) 3197 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]), 3198 max_txd_pwr); 3199 if (adapter->pcix_82544) 3200 count += nr_frags; 3201 3202 /* need: count + 2 desc gap to keep tail from touching 3203 * head, otherwise try next time 3204 */ 3205 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) 3206 return NETDEV_TX_BUSY; 3207 3208 if (unlikely((hw->mac_type == e1000_82547) && 3209 (e1000_82547_fifo_workaround(adapter, skb)))) { 3210 netif_stop_queue(netdev); 3211 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3212 schedule_delayed_work(&adapter->fifo_stall_task, 1); 3213 return NETDEV_TX_BUSY; 3214 } 3215 3216 if (skb_vlan_tag_present(skb)) { 3217 tx_flags |= E1000_TX_FLAGS_VLAN; 3218 tx_flags |= (skb_vlan_tag_get(skb) << 3219 E1000_TX_FLAGS_VLAN_SHIFT); 3220 } 3221 3222 first = tx_ring->next_to_use; 3223 3224 tso = e1000_tso(adapter, tx_ring, skb, protocol); 3225 if (tso < 0) { 3226 dev_kfree_skb_any(skb); 3227 return NETDEV_TX_OK; 3228 } 3229 3230 if (likely(tso)) { 3231 if (likely(hw->mac_type != e1000_82544)) 3232 tx_ring->last_tx_tso = true; 3233 tx_flags |= E1000_TX_FLAGS_TSO; 3234 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol))) 3235 tx_flags |= E1000_TX_FLAGS_CSUM; 3236 3237 if (protocol == htons(ETH_P_IP)) 3238 tx_flags |= E1000_TX_FLAGS_IPV4; 3239 3240 if (unlikely(skb->no_fcs)) 3241 tx_flags |= E1000_TX_FLAGS_NO_FCS; 3242 3243 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, 3244 nr_frags, mss); 3245 3246 if (count) { 3247 /* The descriptors needed is higher than other Intel drivers 3248 * due to a number of workarounds. The breakdown is below: 3249 * Data descriptors: MAX_SKB_FRAGS + 1 3250 * Context Descriptor: 1 3251 * Keep head from touching tail: 2 3252 * Workarounds: 3 3253 */ 3254 int desc_needed = MAX_SKB_FRAGS + 7; 3255 3256 netdev_sent_queue(netdev, skb->len); 3257 skb_tx_timestamp(skb); 3258 3259 e1000_tx_queue(adapter, tx_ring, tx_flags, count); 3260 3261 /* 82544 potentially requires twice as many data descriptors 3262 * in order to guarantee buffers don't end on evenly-aligned 3263 * dwords 3264 */ 3265 if (adapter->pcix_82544) 3266 desc_needed += MAX_SKB_FRAGS + 1; 3267 3268 /* Make sure there is space in the ring for the next send. */ 3269 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed); 3270 3271 if (!netdev_xmit_more() || 3272 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) { 3273 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt); 3274 } 3275 } else { 3276 dev_kfree_skb_any(skb); 3277 tx_ring->buffer_info[first].time_stamp = 0; 3278 tx_ring->next_to_use = first; 3279 } 3280 3281 return NETDEV_TX_OK; 3282 } 3283 3284 #define NUM_REGS 38 /* 1 based count */ 3285 static void e1000_regdump(struct e1000_adapter *adapter) 3286 { 3287 struct e1000_hw *hw = &adapter->hw; 3288 u32 regs[NUM_REGS]; 3289 u32 *regs_buff = regs; 3290 int i = 0; 3291 3292 static const char * const reg_name[] = { 3293 "CTRL", "STATUS", 3294 "RCTL", "RDLEN", "RDH", "RDT", "RDTR", 3295 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT", 3296 "TIDV", "TXDCTL", "TADV", "TARC0", 3297 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1", 3298 "TXDCTL1", "TARC1", 3299 "CTRL_EXT", "ERT", "RDBAL", "RDBAH", 3300 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC", 3301 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC" 3302 }; 3303 3304 regs_buff[0] = er32(CTRL); 3305 regs_buff[1] = er32(STATUS); 3306 3307 regs_buff[2] = er32(RCTL); 3308 regs_buff[3] = er32(RDLEN); 3309 regs_buff[4] = er32(RDH); 3310 regs_buff[5] = er32(RDT); 3311 regs_buff[6] = er32(RDTR); 3312 3313 regs_buff[7] = er32(TCTL); 3314 regs_buff[8] = er32(TDBAL); 3315 regs_buff[9] = er32(TDBAH); 3316 regs_buff[10] = er32(TDLEN); 3317 regs_buff[11] = er32(TDH); 3318 regs_buff[12] = er32(TDT); 3319 regs_buff[13] = er32(TIDV); 3320 regs_buff[14] = er32(TXDCTL); 3321 regs_buff[15] = er32(TADV); 3322 regs_buff[16] = er32(TARC0); 3323 3324 regs_buff[17] = er32(TDBAL1); 3325 regs_buff[18] = er32(TDBAH1); 3326 regs_buff[19] = er32(TDLEN1); 3327 regs_buff[20] = er32(TDH1); 3328 regs_buff[21] = er32(TDT1); 3329 regs_buff[22] = er32(TXDCTL1); 3330 regs_buff[23] = er32(TARC1); 3331 regs_buff[24] = er32(CTRL_EXT); 3332 regs_buff[25] = er32(ERT); 3333 regs_buff[26] = er32(RDBAL0); 3334 regs_buff[27] = er32(RDBAH0); 3335 regs_buff[28] = er32(TDFH); 3336 regs_buff[29] = er32(TDFT); 3337 regs_buff[30] = er32(TDFHS); 3338 regs_buff[31] = er32(TDFTS); 3339 regs_buff[32] = er32(TDFPC); 3340 regs_buff[33] = er32(RDFH); 3341 regs_buff[34] = er32(RDFT); 3342 regs_buff[35] = er32(RDFHS); 3343 regs_buff[36] = er32(RDFTS); 3344 regs_buff[37] = er32(RDFPC); 3345 3346 pr_info("Register dump\n"); 3347 for (i = 0; i < NUM_REGS; i++) 3348 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]); 3349 } 3350 3351 /* 3352 * e1000_dump: Print registers, tx ring and rx ring 3353 */ 3354 static void e1000_dump(struct e1000_adapter *adapter) 3355 { 3356 /* this code doesn't handle multiple rings */ 3357 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3358 struct e1000_rx_ring *rx_ring = adapter->rx_ring; 3359 int i; 3360 3361 if (!netif_msg_hw(adapter)) 3362 return; 3363 3364 /* Print Registers */ 3365 e1000_regdump(adapter); 3366 3367 /* transmit dump */ 3368 pr_info("TX Desc ring0 dump\n"); 3369 3370 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) 3371 * 3372 * Legacy Transmit Descriptor 3373 * +--------------------------------------------------------------+ 3374 * 0 | Buffer Address [63:0] (Reserved on Write Back) | 3375 * +--------------------------------------------------------------+ 3376 * 8 | Special | CSS | Status | CMD | CSO | Length | 3377 * +--------------------------------------------------------------+ 3378 * 63 48 47 36 35 32 31 24 23 16 15 0 3379 * 3380 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload 3381 * 63 48 47 40 39 32 31 16 15 8 7 0 3382 * +----------------------------------------------------------------+ 3383 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | 3384 * +----------------------------------------------------------------+ 3385 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | 3386 * +----------------------------------------------------------------+ 3387 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3388 * 3389 * Extended Data Descriptor (DTYP=0x1) 3390 * +----------------------------------------------------------------+ 3391 * 0 | Buffer Address [63:0] | 3392 * +----------------------------------------------------------------+ 3393 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | 3394 * +----------------------------------------------------------------+ 3395 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3396 */ 3397 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3398 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3399 3400 if (!netif_msg_tx_done(adapter)) 3401 goto rx_ring_summary; 3402 3403 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 3404 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 3405 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i]; 3406 struct my_u { __le64 a; __le64 b; }; 3407 struct my_u *u = (struct my_u *)tx_desc; 3408 const char *type; 3409 3410 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) 3411 type = "NTC/U"; 3412 else if (i == tx_ring->next_to_use) 3413 type = "NTU"; 3414 else if (i == tx_ring->next_to_clean) 3415 type = "NTC"; 3416 else 3417 type = ""; 3418 3419 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n", 3420 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i, 3421 le64_to_cpu(u->a), le64_to_cpu(u->b), 3422 (u64)buffer_info->dma, buffer_info->length, 3423 buffer_info->next_to_watch, 3424 (u64)buffer_info->time_stamp, buffer_info->skb, type); 3425 } 3426 3427 rx_ring_summary: 3428 /* receive dump */ 3429 pr_info("\nRX Desc ring dump\n"); 3430 3431 /* Legacy Receive Descriptor Format 3432 * 3433 * +-----------------------------------------------------+ 3434 * | Buffer Address [63:0] | 3435 * +-----------------------------------------------------+ 3436 * | VLAN Tag | Errors | Status 0 | Packet csum | Length | 3437 * +-----------------------------------------------------+ 3438 * 63 48 47 40 39 32 31 16 15 0 3439 */ 3440 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n"); 3441 3442 if (!netif_msg_rx_status(adapter)) 3443 goto exit; 3444 3445 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { 3446 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); 3447 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i]; 3448 struct my_u { __le64 a; __le64 b; }; 3449 struct my_u *u = (struct my_u *)rx_desc; 3450 const char *type; 3451 3452 if (i == rx_ring->next_to_use) 3453 type = "NTU"; 3454 else if (i == rx_ring->next_to_clean) 3455 type = "NTC"; 3456 else 3457 type = ""; 3458 3459 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n", 3460 i, le64_to_cpu(u->a), le64_to_cpu(u->b), 3461 (u64)buffer_info->dma, buffer_info->rxbuf.data, type); 3462 } /* for */ 3463 3464 /* dump the descriptor caches */ 3465 /* rx */ 3466 pr_info("Rx descriptor cache in 64bit format\n"); 3467 for (i = 0x6000; i <= 0x63FF ; i += 0x10) { 3468 pr_info("R%04X: %08X|%08X %08X|%08X\n", 3469 i, 3470 readl(adapter->hw.hw_addr + i+4), 3471 readl(adapter->hw.hw_addr + i), 3472 readl(adapter->hw.hw_addr + i+12), 3473 readl(adapter->hw.hw_addr + i+8)); 3474 } 3475 /* tx */ 3476 pr_info("Tx descriptor cache in 64bit format\n"); 3477 for (i = 0x7000; i <= 0x73FF ; i += 0x10) { 3478 pr_info("T%04X: %08X|%08X %08X|%08X\n", 3479 i, 3480 readl(adapter->hw.hw_addr + i+4), 3481 readl(adapter->hw.hw_addr + i), 3482 readl(adapter->hw.hw_addr + i+12), 3483 readl(adapter->hw.hw_addr + i+8)); 3484 } 3485 exit: 3486 return; 3487 } 3488 3489 /** 3490 * e1000_tx_timeout - Respond to a Tx Hang 3491 * @netdev: network interface device structure 3492 **/ 3493 static void e1000_tx_timeout(struct net_device *netdev, unsigned int txqueue) 3494 { 3495 struct e1000_adapter *adapter = netdev_priv(netdev); 3496 3497 /* Do the reset outside of interrupt context */ 3498 adapter->tx_timeout_count++; 3499 schedule_work(&adapter->reset_task); 3500 } 3501 3502 static void e1000_reset_task(struct work_struct *work) 3503 { 3504 struct e1000_adapter *adapter = 3505 container_of(work, struct e1000_adapter, reset_task); 3506 3507 e_err(drv, "Reset adapter\n"); 3508 e1000_reinit_locked(adapter); 3509 } 3510 3511 /** 3512 * e1000_change_mtu - Change the Maximum Transfer Unit 3513 * @netdev: network interface device structure 3514 * @new_mtu: new value for maximum frame size 3515 * 3516 * Returns 0 on success, negative on failure 3517 **/ 3518 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 3519 { 3520 struct e1000_adapter *adapter = netdev_priv(netdev); 3521 struct e1000_hw *hw = &adapter->hw; 3522 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 3523 3524 /* Adapter-specific max frame size limits. */ 3525 switch (hw->mac_type) { 3526 case e1000_undefined ... e1000_82542_rev2_1: 3527 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { 3528 e_err(probe, "Jumbo Frames not supported.\n"); 3529 return -EINVAL; 3530 } 3531 break; 3532 default: 3533 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ 3534 break; 3535 } 3536 3537 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 3538 msleep(1); 3539 /* e1000_down has a dependency on max_frame_size */ 3540 hw->max_frame_size = max_frame; 3541 if (netif_running(netdev)) { 3542 /* prevent buffers from being reallocated */ 3543 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers; 3544 e1000_down(adapter); 3545 } 3546 3547 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 3548 * means we reserve 2 more, this pushes us to allocate from the next 3549 * larger slab size. 3550 * i.e. RXBUFFER_2048 --> size-4096 slab 3551 * however with the new *_jumbo_rx* routines, jumbo receives will use 3552 * fragmented skbs 3553 */ 3554 3555 if (max_frame <= E1000_RXBUFFER_2048) 3556 adapter->rx_buffer_len = E1000_RXBUFFER_2048; 3557 else 3558 #if (PAGE_SIZE >= E1000_RXBUFFER_16384) 3559 adapter->rx_buffer_len = E1000_RXBUFFER_16384; 3560 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096) 3561 adapter->rx_buffer_len = PAGE_SIZE; 3562 #endif 3563 3564 /* adjust allocation if LPE protects us, and we aren't using SBP */ 3565 if (!hw->tbi_compatibility_on && 3566 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || 3567 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) 3568 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 3569 3570 netdev_dbg(netdev, "changing MTU from %d to %d\n", 3571 netdev->mtu, new_mtu); 3572 netdev->mtu = new_mtu; 3573 3574 if (netif_running(netdev)) 3575 e1000_up(adapter); 3576 else 3577 e1000_reset(adapter); 3578 3579 clear_bit(__E1000_RESETTING, &adapter->flags); 3580 3581 return 0; 3582 } 3583 3584 /** 3585 * e1000_update_stats - Update the board statistics counters 3586 * @adapter: board private structure 3587 **/ 3588 void e1000_update_stats(struct e1000_adapter *adapter) 3589 { 3590 struct net_device *netdev = adapter->netdev; 3591 struct e1000_hw *hw = &adapter->hw; 3592 struct pci_dev *pdev = adapter->pdev; 3593 unsigned long flags; 3594 u16 phy_tmp; 3595 3596 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 3597 3598 /* Prevent stats update while adapter is being reset, or if the pci 3599 * connection is down. 3600 */ 3601 if (adapter->link_speed == 0) 3602 return; 3603 if (pci_channel_offline(pdev)) 3604 return; 3605 3606 spin_lock_irqsave(&adapter->stats_lock, flags); 3607 3608 /* these counters are modified from e1000_tbi_adjust_stats, 3609 * called from the interrupt context, so they must only 3610 * be written while holding adapter->stats_lock 3611 */ 3612 3613 adapter->stats.crcerrs += er32(CRCERRS); 3614 adapter->stats.gprc += er32(GPRC); 3615 adapter->stats.gorcl += er32(GORCL); 3616 adapter->stats.gorch += er32(GORCH); 3617 adapter->stats.bprc += er32(BPRC); 3618 adapter->stats.mprc += er32(MPRC); 3619 adapter->stats.roc += er32(ROC); 3620 3621 adapter->stats.prc64 += er32(PRC64); 3622 adapter->stats.prc127 += er32(PRC127); 3623 adapter->stats.prc255 += er32(PRC255); 3624 adapter->stats.prc511 += er32(PRC511); 3625 adapter->stats.prc1023 += er32(PRC1023); 3626 adapter->stats.prc1522 += er32(PRC1522); 3627 3628 adapter->stats.symerrs += er32(SYMERRS); 3629 adapter->stats.mpc += er32(MPC); 3630 adapter->stats.scc += er32(SCC); 3631 adapter->stats.ecol += er32(ECOL); 3632 adapter->stats.mcc += er32(MCC); 3633 adapter->stats.latecol += er32(LATECOL); 3634 adapter->stats.dc += er32(DC); 3635 adapter->stats.sec += er32(SEC); 3636 adapter->stats.rlec += er32(RLEC); 3637 adapter->stats.xonrxc += er32(XONRXC); 3638 adapter->stats.xontxc += er32(XONTXC); 3639 adapter->stats.xoffrxc += er32(XOFFRXC); 3640 adapter->stats.xofftxc += er32(XOFFTXC); 3641 adapter->stats.fcruc += er32(FCRUC); 3642 adapter->stats.gptc += er32(GPTC); 3643 adapter->stats.gotcl += er32(GOTCL); 3644 adapter->stats.gotch += er32(GOTCH); 3645 adapter->stats.rnbc += er32(RNBC); 3646 adapter->stats.ruc += er32(RUC); 3647 adapter->stats.rfc += er32(RFC); 3648 adapter->stats.rjc += er32(RJC); 3649 adapter->stats.torl += er32(TORL); 3650 adapter->stats.torh += er32(TORH); 3651 adapter->stats.totl += er32(TOTL); 3652 adapter->stats.toth += er32(TOTH); 3653 adapter->stats.tpr += er32(TPR); 3654 3655 adapter->stats.ptc64 += er32(PTC64); 3656 adapter->stats.ptc127 += er32(PTC127); 3657 adapter->stats.ptc255 += er32(PTC255); 3658 adapter->stats.ptc511 += er32(PTC511); 3659 adapter->stats.ptc1023 += er32(PTC1023); 3660 adapter->stats.ptc1522 += er32(PTC1522); 3661 3662 adapter->stats.mptc += er32(MPTC); 3663 adapter->stats.bptc += er32(BPTC); 3664 3665 /* used for adaptive IFS */ 3666 3667 hw->tx_packet_delta = er32(TPT); 3668 adapter->stats.tpt += hw->tx_packet_delta; 3669 hw->collision_delta = er32(COLC); 3670 adapter->stats.colc += hw->collision_delta; 3671 3672 if (hw->mac_type >= e1000_82543) { 3673 adapter->stats.algnerrc += er32(ALGNERRC); 3674 adapter->stats.rxerrc += er32(RXERRC); 3675 adapter->stats.tncrs += er32(TNCRS); 3676 adapter->stats.cexterr += er32(CEXTERR); 3677 adapter->stats.tsctc += er32(TSCTC); 3678 adapter->stats.tsctfc += er32(TSCTFC); 3679 } 3680 3681 /* Fill out the OS statistics structure */ 3682 netdev->stats.multicast = adapter->stats.mprc; 3683 netdev->stats.collisions = adapter->stats.colc; 3684 3685 /* Rx Errors */ 3686 3687 /* RLEC on some newer hardware can be incorrect so build 3688 * our own version based on RUC and ROC 3689 */ 3690 netdev->stats.rx_errors = adapter->stats.rxerrc + 3691 adapter->stats.crcerrs + adapter->stats.algnerrc + 3692 adapter->stats.ruc + adapter->stats.roc + 3693 adapter->stats.cexterr; 3694 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; 3695 netdev->stats.rx_length_errors = adapter->stats.rlerrc; 3696 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; 3697 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; 3698 netdev->stats.rx_missed_errors = adapter->stats.mpc; 3699 3700 /* Tx Errors */ 3701 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; 3702 netdev->stats.tx_errors = adapter->stats.txerrc; 3703 netdev->stats.tx_aborted_errors = adapter->stats.ecol; 3704 netdev->stats.tx_window_errors = adapter->stats.latecol; 3705 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; 3706 if (hw->bad_tx_carr_stats_fd && 3707 adapter->link_duplex == FULL_DUPLEX) { 3708 netdev->stats.tx_carrier_errors = 0; 3709 adapter->stats.tncrs = 0; 3710 } 3711 3712 /* Tx Dropped needs to be maintained elsewhere */ 3713 3714 /* Phy Stats */ 3715 if (hw->media_type == e1000_media_type_copper) { 3716 if ((adapter->link_speed == SPEED_1000) && 3717 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { 3718 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 3719 adapter->phy_stats.idle_errors += phy_tmp; 3720 } 3721 3722 if ((hw->mac_type <= e1000_82546) && 3723 (hw->phy_type == e1000_phy_m88) && 3724 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) 3725 adapter->phy_stats.receive_errors += phy_tmp; 3726 } 3727 3728 /* Management Stats */ 3729 if (hw->has_smbus) { 3730 adapter->stats.mgptc += er32(MGTPTC); 3731 adapter->stats.mgprc += er32(MGTPRC); 3732 adapter->stats.mgpdc += er32(MGTPDC); 3733 } 3734 3735 spin_unlock_irqrestore(&adapter->stats_lock, flags); 3736 } 3737 3738 /** 3739 * e1000_intr - Interrupt Handler 3740 * @irq: interrupt number 3741 * @data: pointer to a network interface device structure 3742 **/ 3743 static irqreturn_t e1000_intr(int irq, void *data) 3744 { 3745 struct net_device *netdev = data; 3746 struct e1000_adapter *adapter = netdev_priv(netdev); 3747 struct e1000_hw *hw = &adapter->hw; 3748 u32 icr = er32(ICR); 3749 3750 if (unlikely((!icr))) 3751 return IRQ_NONE; /* Not our interrupt */ 3752 3753 /* we might have caused the interrupt, but the above 3754 * read cleared it, and just in case the driver is 3755 * down there is nothing to do so return handled 3756 */ 3757 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags))) 3758 return IRQ_HANDLED; 3759 3760 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { 3761 hw->get_link_status = 1; 3762 /* guard against interrupt when we're going down */ 3763 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3764 schedule_delayed_work(&adapter->watchdog_task, 1); 3765 } 3766 3767 /* disable interrupts, without the synchronize_irq bit */ 3768 ew32(IMC, ~0); 3769 E1000_WRITE_FLUSH(); 3770 3771 if (likely(napi_schedule_prep(&adapter->napi))) { 3772 adapter->total_tx_bytes = 0; 3773 adapter->total_tx_packets = 0; 3774 adapter->total_rx_bytes = 0; 3775 adapter->total_rx_packets = 0; 3776 __napi_schedule(&adapter->napi); 3777 } else { 3778 /* this really should not happen! if it does it is basically a 3779 * bug, but not a hard error, so enable ints and continue 3780 */ 3781 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3782 e1000_irq_enable(adapter); 3783 } 3784 3785 return IRQ_HANDLED; 3786 } 3787 3788 /** 3789 * e1000_clean - NAPI Rx polling callback 3790 * @adapter: board private structure 3791 **/ 3792 static int e1000_clean(struct napi_struct *napi, int budget) 3793 { 3794 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, 3795 napi); 3796 int tx_clean_complete = 0, work_done = 0; 3797 3798 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); 3799 3800 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); 3801 3802 if (!tx_clean_complete || work_done == budget) 3803 return budget; 3804 3805 /* Exit the polling mode, but don't re-enable interrupts if stack might 3806 * poll us due to busy-polling 3807 */ 3808 if (likely(napi_complete_done(napi, work_done))) { 3809 if (likely(adapter->itr_setting & 3)) 3810 e1000_set_itr(adapter); 3811 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3812 e1000_irq_enable(adapter); 3813 } 3814 3815 return work_done; 3816 } 3817 3818 /** 3819 * e1000_clean_tx_irq - Reclaim resources after transmit completes 3820 * @adapter: board private structure 3821 **/ 3822 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 3823 struct e1000_tx_ring *tx_ring) 3824 { 3825 struct e1000_hw *hw = &adapter->hw; 3826 struct net_device *netdev = adapter->netdev; 3827 struct e1000_tx_desc *tx_desc, *eop_desc; 3828 struct e1000_tx_buffer *buffer_info; 3829 unsigned int i, eop; 3830 unsigned int count = 0; 3831 unsigned int total_tx_bytes = 0, total_tx_packets = 0; 3832 unsigned int bytes_compl = 0, pkts_compl = 0; 3833 3834 i = tx_ring->next_to_clean; 3835 eop = tx_ring->buffer_info[i].next_to_watch; 3836 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3837 3838 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && 3839 (count < tx_ring->count)) { 3840 bool cleaned = false; 3841 dma_rmb(); /* read buffer_info after eop_desc */ 3842 for ( ; !cleaned; count++) { 3843 tx_desc = E1000_TX_DESC(*tx_ring, i); 3844 buffer_info = &tx_ring->buffer_info[i]; 3845 cleaned = (i == eop); 3846 3847 if (cleaned) { 3848 total_tx_packets += buffer_info->segs; 3849 total_tx_bytes += buffer_info->bytecount; 3850 if (buffer_info->skb) { 3851 bytes_compl += buffer_info->skb->len; 3852 pkts_compl++; 3853 } 3854 3855 } 3856 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 3857 tx_desc->upper.data = 0; 3858 3859 if (unlikely(++i == tx_ring->count)) 3860 i = 0; 3861 } 3862 3863 eop = tx_ring->buffer_info[i].next_to_watch; 3864 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3865 } 3866 3867 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame, 3868 * which will reuse the cleaned buffers. 3869 */ 3870 smp_store_release(&tx_ring->next_to_clean, i); 3871 3872 netdev_completed_queue(netdev, pkts_compl, bytes_compl); 3873 3874 #define TX_WAKE_THRESHOLD 32 3875 if (unlikely(count && netif_carrier_ok(netdev) && 3876 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { 3877 /* Make sure that anybody stopping the queue after this 3878 * sees the new next_to_clean. 3879 */ 3880 smp_mb(); 3881 3882 if (netif_queue_stopped(netdev) && 3883 !(test_bit(__E1000_DOWN, &adapter->flags))) { 3884 netif_wake_queue(netdev); 3885 ++adapter->restart_queue; 3886 } 3887 } 3888 3889 if (adapter->detect_tx_hung) { 3890 /* Detect a transmit hang in hardware, this serializes the 3891 * check with the clearing of time_stamp and movement of i 3892 */ 3893 adapter->detect_tx_hung = false; 3894 if (tx_ring->buffer_info[eop].time_stamp && 3895 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + 3896 (adapter->tx_timeout_factor * HZ)) && 3897 !(er32(STATUS) & E1000_STATUS_TXOFF)) { 3898 3899 /* detected Tx unit hang */ 3900 e_err(drv, "Detected Tx Unit Hang\n" 3901 " Tx Queue <%lu>\n" 3902 " TDH <%x>\n" 3903 " TDT <%x>\n" 3904 " next_to_use <%x>\n" 3905 " next_to_clean <%x>\n" 3906 "buffer_info[next_to_clean]\n" 3907 " time_stamp <%lx>\n" 3908 " next_to_watch <%x>\n" 3909 " jiffies <%lx>\n" 3910 " next_to_watch.status <%x>\n", 3911 (unsigned long)(tx_ring - adapter->tx_ring), 3912 readl(hw->hw_addr + tx_ring->tdh), 3913 readl(hw->hw_addr + tx_ring->tdt), 3914 tx_ring->next_to_use, 3915 tx_ring->next_to_clean, 3916 tx_ring->buffer_info[eop].time_stamp, 3917 eop, 3918 jiffies, 3919 eop_desc->upper.fields.status); 3920 e1000_dump(adapter); 3921 netif_stop_queue(netdev); 3922 } 3923 } 3924 adapter->total_tx_bytes += total_tx_bytes; 3925 adapter->total_tx_packets += total_tx_packets; 3926 netdev->stats.tx_bytes += total_tx_bytes; 3927 netdev->stats.tx_packets += total_tx_packets; 3928 return count < tx_ring->count; 3929 } 3930 3931 /** 3932 * e1000_rx_checksum - Receive Checksum Offload for 82543 3933 * @adapter: board private structure 3934 * @status_err: receive descriptor status and error fields 3935 * @csum: receive descriptor csum field 3936 * @sk_buff: socket buffer with received data 3937 **/ 3938 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 3939 u32 csum, struct sk_buff *skb) 3940 { 3941 struct e1000_hw *hw = &adapter->hw; 3942 u16 status = (u16)status_err; 3943 u8 errors = (u8)(status_err >> 24); 3944 3945 skb_checksum_none_assert(skb); 3946 3947 /* 82543 or newer only */ 3948 if (unlikely(hw->mac_type < e1000_82543)) 3949 return; 3950 /* Ignore Checksum bit is set */ 3951 if (unlikely(status & E1000_RXD_STAT_IXSM)) 3952 return; 3953 /* TCP/UDP checksum error bit is set */ 3954 if (unlikely(errors & E1000_RXD_ERR_TCPE)) { 3955 /* let the stack verify checksum errors */ 3956 adapter->hw_csum_err++; 3957 return; 3958 } 3959 /* TCP/UDP Checksum has not been calculated */ 3960 if (!(status & E1000_RXD_STAT_TCPCS)) 3961 return; 3962 3963 /* It must be a TCP or UDP packet with a valid checksum */ 3964 if (likely(status & E1000_RXD_STAT_TCPCS)) { 3965 /* TCP checksum is good */ 3966 skb->ip_summed = CHECKSUM_UNNECESSARY; 3967 } 3968 adapter->hw_csum_good++; 3969 } 3970 3971 /** 3972 * e1000_consume_page - helper function for jumbo Rx path 3973 **/ 3974 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb, 3975 u16 length) 3976 { 3977 bi->rxbuf.page = NULL; 3978 skb->len += length; 3979 skb->data_len += length; 3980 skb->truesize += PAGE_SIZE; 3981 } 3982 3983 /** 3984 * e1000_receive_skb - helper function to handle rx indications 3985 * @adapter: board private structure 3986 * @status: descriptor status field as written by hardware 3987 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 3988 * @skb: pointer to sk_buff to be indicated to stack 3989 */ 3990 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, 3991 __le16 vlan, struct sk_buff *skb) 3992 { 3993 skb->protocol = eth_type_trans(skb, adapter->netdev); 3994 3995 if (status & E1000_RXD_STAT_VP) { 3996 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 3997 3998 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 3999 } 4000 napi_gro_receive(&adapter->napi, skb); 4001 } 4002 4003 /** 4004 * e1000_tbi_adjust_stats 4005 * @hw: Struct containing variables accessed by shared code 4006 * @frame_len: The length of the frame in question 4007 * @mac_addr: The Ethernet destination address of the frame in question 4008 * 4009 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT 4010 */ 4011 static void e1000_tbi_adjust_stats(struct e1000_hw *hw, 4012 struct e1000_hw_stats *stats, 4013 u32 frame_len, const u8 *mac_addr) 4014 { 4015 u64 carry_bit; 4016 4017 /* First adjust the frame length. */ 4018 frame_len--; 4019 /* We need to adjust the statistics counters, since the hardware 4020 * counters overcount this packet as a CRC error and undercount 4021 * the packet as a good packet 4022 */ 4023 /* This packet should not be counted as a CRC error. */ 4024 stats->crcerrs--; 4025 /* This packet does count as a Good Packet Received. */ 4026 stats->gprc++; 4027 4028 /* Adjust the Good Octets received counters */ 4029 carry_bit = 0x80000000 & stats->gorcl; 4030 stats->gorcl += frame_len; 4031 /* If the high bit of Gorcl (the low 32 bits of the Good Octets 4032 * Received Count) was one before the addition, 4033 * AND it is zero after, then we lost the carry out, 4034 * need to add one to Gorch (Good Octets Received Count High). 4035 * This could be simplified if all environments supported 4036 * 64-bit integers. 4037 */ 4038 if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) 4039 stats->gorch++; 4040 /* Is this a broadcast or multicast? Check broadcast first, 4041 * since the test for a multicast frame will test positive on 4042 * a broadcast frame. 4043 */ 4044 if (is_broadcast_ether_addr(mac_addr)) 4045 stats->bprc++; 4046 else if (is_multicast_ether_addr(mac_addr)) 4047 stats->mprc++; 4048 4049 if (frame_len == hw->max_frame_size) { 4050 /* In this case, the hardware has overcounted the number of 4051 * oversize frames. 4052 */ 4053 if (stats->roc > 0) 4054 stats->roc--; 4055 } 4056 4057 /* Adjust the bin counters when the extra byte put the frame in the 4058 * wrong bin. Remember that the frame_len was adjusted above. 4059 */ 4060 if (frame_len == 64) { 4061 stats->prc64++; 4062 stats->prc127--; 4063 } else if (frame_len == 127) { 4064 stats->prc127++; 4065 stats->prc255--; 4066 } else if (frame_len == 255) { 4067 stats->prc255++; 4068 stats->prc511--; 4069 } else if (frame_len == 511) { 4070 stats->prc511++; 4071 stats->prc1023--; 4072 } else if (frame_len == 1023) { 4073 stats->prc1023++; 4074 stats->prc1522--; 4075 } else if (frame_len == 1522) { 4076 stats->prc1522++; 4077 } 4078 } 4079 4080 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter, 4081 u8 status, u8 errors, 4082 u32 length, const u8 *data) 4083 { 4084 struct e1000_hw *hw = &adapter->hw; 4085 u8 last_byte = *(data + length - 1); 4086 4087 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) { 4088 unsigned long irq_flags; 4089 4090 spin_lock_irqsave(&adapter->stats_lock, irq_flags); 4091 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data); 4092 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); 4093 4094 return true; 4095 } 4096 4097 return false; 4098 } 4099 4100 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter, 4101 unsigned int bufsz) 4102 { 4103 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz); 4104 4105 if (unlikely(!skb)) 4106 adapter->alloc_rx_buff_failed++; 4107 return skb; 4108 } 4109 4110 /** 4111 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 4112 * @adapter: board private structure 4113 * @rx_ring: ring to clean 4114 * @work_done: amount of napi work completed this call 4115 * @work_to_do: max amount of work allowed for this call to do 4116 * 4117 * the return value indicates whether actual cleaning was done, there 4118 * is no guarantee that everything was cleaned 4119 */ 4120 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 4121 struct e1000_rx_ring *rx_ring, 4122 int *work_done, int work_to_do) 4123 { 4124 struct net_device *netdev = adapter->netdev; 4125 struct pci_dev *pdev = adapter->pdev; 4126 struct e1000_rx_desc *rx_desc, *next_rxd; 4127 struct e1000_rx_buffer *buffer_info, *next_buffer; 4128 u32 length; 4129 unsigned int i; 4130 int cleaned_count = 0; 4131 bool cleaned = false; 4132 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 4133 4134 i = rx_ring->next_to_clean; 4135 rx_desc = E1000_RX_DESC(*rx_ring, i); 4136 buffer_info = &rx_ring->buffer_info[i]; 4137 4138 while (rx_desc->status & E1000_RXD_STAT_DD) { 4139 struct sk_buff *skb; 4140 u8 status; 4141 4142 if (*work_done >= work_to_do) 4143 break; 4144 (*work_done)++; 4145 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 4146 4147 status = rx_desc->status; 4148 4149 if (++i == rx_ring->count) 4150 i = 0; 4151 4152 next_rxd = E1000_RX_DESC(*rx_ring, i); 4153 prefetch(next_rxd); 4154 4155 next_buffer = &rx_ring->buffer_info[i]; 4156 4157 cleaned = true; 4158 cleaned_count++; 4159 dma_unmap_page(&pdev->dev, buffer_info->dma, 4160 adapter->rx_buffer_len, DMA_FROM_DEVICE); 4161 buffer_info->dma = 0; 4162 4163 length = le16_to_cpu(rx_desc->length); 4164 4165 /* errors is only valid for DD + EOP descriptors */ 4166 if (unlikely((status & E1000_RXD_STAT_EOP) && 4167 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { 4168 u8 *mapped = page_address(buffer_info->rxbuf.page); 4169 4170 if (e1000_tbi_should_accept(adapter, status, 4171 rx_desc->errors, 4172 length, mapped)) { 4173 length--; 4174 } else if (netdev->features & NETIF_F_RXALL) { 4175 goto process_skb; 4176 } else { 4177 /* an error means any chain goes out the window 4178 * too 4179 */ 4180 dev_kfree_skb(rx_ring->rx_skb_top); 4181 rx_ring->rx_skb_top = NULL; 4182 goto next_desc; 4183 } 4184 } 4185 4186 #define rxtop rx_ring->rx_skb_top 4187 process_skb: 4188 if (!(status & E1000_RXD_STAT_EOP)) { 4189 /* this descriptor is only the beginning (or middle) */ 4190 if (!rxtop) { 4191 /* this is the beginning of a chain */ 4192 rxtop = napi_get_frags(&adapter->napi); 4193 if (!rxtop) 4194 break; 4195 4196 skb_fill_page_desc(rxtop, 0, 4197 buffer_info->rxbuf.page, 4198 0, length); 4199 } else { 4200 /* this is the middle of a chain */ 4201 skb_fill_page_desc(rxtop, 4202 skb_shinfo(rxtop)->nr_frags, 4203 buffer_info->rxbuf.page, 0, length); 4204 } 4205 e1000_consume_page(buffer_info, rxtop, length); 4206 goto next_desc; 4207 } else { 4208 if (rxtop) { 4209 /* end of the chain */ 4210 skb_fill_page_desc(rxtop, 4211 skb_shinfo(rxtop)->nr_frags, 4212 buffer_info->rxbuf.page, 0, length); 4213 skb = rxtop; 4214 rxtop = NULL; 4215 e1000_consume_page(buffer_info, skb, length); 4216 } else { 4217 struct page *p; 4218 /* no chain, got EOP, this buf is the packet 4219 * copybreak to save the put_page/alloc_page 4220 */ 4221 p = buffer_info->rxbuf.page; 4222 if (length <= copybreak) { 4223 u8 *vaddr; 4224 4225 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4226 length -= 4; 4227 skb = e1000_alloc_rx_skb(adapter, 4228 length); 4229 if (!skb) 4230 break; 4231 4232 vaddr = kmap_atomic(p); 4233 memcpy(skb_tail_pointer(skb), vaddr, 4234 length); 4235 kunmap_atomic(vaddr); 4236 /* re-use the page, so don't erase 4237 * buffer_info->rxbuf.page 4238 */ 4239 skb_put(skb, length); 4240 e1000_rx_checksum(adapter, 4241 status | rx_desc->errors << 24, 4242 le16_to_cpu(rx_desc->csum), skb); 4243 4244 total_rx_bytes += skb->len; 4245 total_rx_packets++; 4246 4247 e1000_receive_skb(adapter, status, 4248 rx_desc->special, skb); 4249 goto next_desc; 4250 } else { 4251 skb = napi_get_frags(&adapter->napi); 4252 if (!skb) { 4253 adapter->alloc_rx_buff_failed++; 4254 break; 4255 } 4256 skb_fill_page_desc(skb, 0, p, 0, 4257 length); 4258 e1000_consume_page(buffer_info, skb, 4259 length); 4260 } 4261 } 4262 } 4263 4264 /* Receive Checksum Offload XXX recompute due to CRC strip? */ 4265 e1000_rx_checksum(adapter, 4266 (u32)(status) | 4267 ((u32)(rx_desc->errors) << 24), 4268 le16_to_cpu(rx_desc->csum), skb); 4269 4270 total_rx_bytes += (skb->len - 4); /* don't count FCS */ 4271 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4272 pskb_trim(skb, skb->len - 4); 4273 total_rx_packets++; 4274 4275 if (status & E1000_RXD_STAT_VP) { 4276 __le16 vlan = rx_desc->special; 4277 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 4278 4279 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 4280 } 4281 4282 napi_gro_frags(&adapter->napi); 4283 4284 next_desc: 4285 rx_desc->status = 0; 4286 4287 /* return some buffers to hardware, one at a time is too slow */ 4288 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4289 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4290 cleaned_count = 0; 4291 } 4292 4293 /* use prefetched values */ 4294 rx_desc = next_rxd; 4295 buffer_info = next_buffer; 4296 } 4297 rx_ring->next_to_clean = i; 4298 4299 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4300 if (cleaned_count) 4301 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4302 4303 adapter->total_rx_packets += total_rx_packets; 4304 adapter->total_rx_bytes += total_rx_bytes; 4305 netdev->stats.rx_bytes += total_rx_bytes; 4306 netdev->stats.rx_packets += total_rx_packets; 4307 return cleaned; 4308 } 4309 4310 /* this should improve performance for small packets with large amounts 4311 * of reassembly being done in the stack 4312 */ 4313 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter, 4314 struct e1000_rx_buffer *buffer_info, 4315 u32 length, const void *data) 4316 { 4317 struct sk_buff *skb; 4318 4319 if (length > copybreak) 4320 return NULL; 4321 4322 skb = e1000_alloc_rx_skb(adapter, length); 4323 if (!skb) 4324 return NULL; 4325 4326 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma, 4327 length, DMA_FROM_DEVICE); 4328 4329 skb_put_data(skb, data, length); 4330 4331 return skb; 4332 } 4333 4334 /** 4335 * e1000_clean_rx_irq - Send received data up the network stack; legacy 4336 * @adapter: board private structure 4337 * @rx_ring: ring to clean 4338 * @work_done: amount of napi work completed this call 4339 * @work_to_do: max amount of work allowed for this call to do 4340 */ 4341 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 4342 struct e1000_rx_ring *rx_ring, 4343 int *work_done, int work_to_do) 4344 { 4345 struct net_device *netdev = adapter->netdev; 4346 struct pci_dev *pdev = adapter->pdev; 4347 struct e1000_rx_desc *rx_desc, *next_rxd; 4348 struct e1000_rx_buffer *buffer_info, *next_buffer; 4349 u32 length; 4350 unsigned int i; 4351 int cleaned_count = 0; 4352 bool cleaned = false; 4353 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 4354 4355 i = rx_ring->next_to_clean; 4356 rx_desc = E1000_RX_DESC(*rx_ring, i); 4357 buffer_info = &rx_ring->buffer_info[i]; 4358 4359 while (rx_desc->status & E1000_RXD_STAT_DD) { 4360 struct sk_buff *skb; 4361 u8 *data; 4362 u8 status; 4363 4364 if (*work_done >= work_to_do) 4365 break; 4366 (*work_done)++; 4367 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 4368 4369 status = rx_desc->status; 4370 length = le16_to_cpu(rx_desc->length); 4371 4372 data = buffer_info->rxbuf.data; 4373 prefetch(data); 4374 skb = e1000_copybreak(adapter, buffer_info, length, data); 4375 if (!skb) { 4376 unsigned int frag_len = e1000_frag_len(adapter); 4377 4378 skb = build_skb(data - E1000_HEADROOM, frag_len); 4379 if (!skb) { 4380 adapter->alloc_rx_buff_failed++; 4381 break; 4382 } 4383 4384 skb_reserve(skb, E1000_HEADROOM); 4385 dma_unmap_single(&pdev->dev, buffer_info->dma, 4386 adapter->rx_buffer_len, 4387 DMA_FROM_DEVICE); 4388 buffer_info->dma = 0; 4389 buffer_info->rxbuf.data = NULL; 4390 } 4391 4392 if (++i == rx_ring->count) 4393 i = 0; 4394 4395 next_rxd = E1000_RX_DESC(*rx_ring, i); 4396 prefetch(next_rxd); 4397 4398 next_buffer = &rx_ring->buffer_info[i]; 4399 4400 cleaned = true; 4401 cleaned_count++; 4402 4403 /* !EOP means multiple descriptors were used to store a single 4404 * packet, if thats the case we need to toss it. In fact, we 4405 * to toss every packet with the EOP bit clear and the next 4406 * frame that _does_ have the EOP bit set, as it is by 4407 * definition only a frame fragment 4408 */ 4409 if (unlikely(!(status & E1000_RXD_STAT_EOP))) 4410 adapter->discarding = true; 4411 4412 if (adapter->discarding) { 4413 /* All receives must fit into a single buffer */ 4414 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n"); 4415 dev_kfree_skb(skb); 4416 if (status & E1000_RXD_STAT_EOP) 4417 adapter->discarding = false; 4418 goto next_desc; 4419 } 4420 4421 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { 4422 if (e1000_tbi_should_accept(adapter, status, 4423 rx_desc->errors, 4424 length, data)) { 4425 length--; 4426 } else if (netdev->features & NETIF_F_RXALL) { 4427 goto process_skb; 4428 } else { 4429 dev_kfree_skb(skb); 4430 goto next_desc; 4431 } 4432 } 4433 4434 process_skb: 4435 total_rx_bytes += (length - 4); /* don't count FCS */ 4436 total_rx_packets++; 4437 4438 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4439 /* adjust length to remove Ethernet CRC, this must be 4440 * done after the TBI_ACCEPT workaround above 4441 */ 4442 length -= 4; 4443 4444 if (buffer_info->rxbuf.data == NULL) 4445 skb_put(skb, length); 4446 else /* copybreak skb */ 4447 skb_trim(skb, length); 4448 4449 /* Receive Checksum Offload */ 4450 e1000_rx_checksum(adapter, 4451 (u32)(status) | 4452 ((u32)(rx_desc->errors) << 24), 4453 le16_to_cpu(rx_desc->csum), skb); 4454 4455 e1000_receive_skb(adapter, status, rx_desc->special, skb); 4456 4457 next_desc: 4458 rx_desc->status = 0; 4459 4460 /* return some buffers to hardware, one at a time is too slow */ 4461 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4462 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4463 cleaned_count = 0; 4464 } 4465 4466 /* use prefetched values */ 4467 rx_desc = next_rxd; 4468 buffer_info = next_buffer; 4469 } 4470 rx_ring->next_to_clean = i; 4471 4472 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4473 if (cleaned_count) 4474 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4475 4476 adapter->total_rx_packets += total_rx_packets; 4477 adapter->total_rx_bytes += total_rx_bytes; 4478 netdev->stats.rx_bytes += total_rx_bytes; 4479 netdev->stats.rx_packets += total_rx_packets; 4480 return cleaned; 4481 } 4482 4483 /** 4484 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 4485 * @adapter: address of board private structure 4486 * @rx_ring: pointer to receive ring structure 4487 * @cleaned_count: number of buffers to allocate this pass 4488 **/ 4489 static void 4490 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 4491 struct e1000_rx_ring *rx_ring, int cleaned_count) 4492 { 4493 struct pci_dev *pdev = adapter->pdev; 4494 struct e1000_rx_desc *rx_desc; 4495 struct e1000_rx_buffer *buffer_info; 4496 unsigned int i; 4497 4498 i = rx_ring->next_to_use; 4499 buffer_info = &rx_ring->buffer_info[i]; 4500 4501 while (cleaned_count--) { 4502 /* allocate a new page if necessary */ 4503 if (!buffer_info->rxbuf.page) { 4504 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC); 4505 if (unlikely(!buffer_info->rxbuf.page)) { 4506 adapter->alloc_rx_buff_failed++; 4507 break; 4508 } 4509 } 4510 4511 if (!buffer_info->dma) { 4512 buffer_info->dma = dma_map_page(&pdev->dev, 4513 buffer_info->rxbuf.page, 0, 4514 adapter->rx_buffer_len, 4515 DMA_FROM_DEVICE); 4516 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4517 put_page(buffer_info->rxbuf.page); 4518 buffer_info->rxbuf.page = NULL; 4519 buffer_info->dma = 0; 4520 adapter->alloc_rx_buff_failed++; 4521 break; 4522 } 4523 } 4524 4525 rx_desc = E1000_RX_DESC(*rx_ring, i); 4526 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4527 4528 if (unlikely(++i == rx_ring->count)) 4529 i = 0; 4530 buffer_info = &rx_ring->buffer_info[i]; 4531 } 4532 4533 if (likely(rx_ring->next_to_use != i)) { 4534 rx_ring->next_to_use = i; 4535 if (unlikely(i-- == 0)) 4536 i = (rx_ring->count - 1); 4537 4538 /* Force memory writes to complete before letting h/w 4539 * know there are new descriptors to fetch. (Only 4540 * applicable for weak-ordered memory model archs, 4541 * such as IA-64). 4542 */ 4543 dma_wmb(); 4544 writel(i, adapter->hw.hw_addr + rx_ring->rdt); 4545 } 4546 } 4547 4548 /** 4549 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended 4550 * @adapter: address of board private structure 4551 **/ 4552 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 4553 struct e1000_rx_ring *rx_ring, 4554 int cleaned_count) 4555 { 4556 struct e1000_hw *hw = &adapter->hw; 4557 struct pci_dev *pdev = adapter->pdev; 4558 struct e1000_rx_desc *rx_desc; 4559 struct e1000_rx_buffer *buffer_info; 4560 unsigned int i; 4561 unsigned int bufsz = adapter->rx_buffer_len; 4562 4563 i = rx_ring->next_to_use; 4564 buffer_info = &rx_ring->buffer_info[i]; 4565 4566 while (cleaned_count--) { 4567 void *data; 4568 4569 if (buffer_info->rxbuf.data) 4570 goto skip; 4571 4572 data = e1000_alloc_frag(adapter); 4573 if (!data) { 4574 /* Better luck next round */ 4575 adapter->alloc_rx_buff_failed++; 4576 break; 4577 } 4578 4579 /* Fix for errata 23, can't cross 64kB boundary */ 4580 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4581 void *olddata = data; 4582 e_err(rx_err, "skb align check failed: %u bytes at " 4583 "%p\n", bufsz, data); 4584 /* Try again, without freeing the previous */ 4585 data = e1000_alloc_frag(adapter); 4586 /* Failed allocation, critical failure */ 4587 if (!data) { 4588 skb_free_frag(olddata); 4589 adapter->alloc_rx_buff_failed++; 4590 break; 4591 } 4592 4593 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4594 /* give up */ 4595 skb_free_frag(data); 4596 skb_free_frag(olddata); 4597 adapter->alloc_rx_buff_failed++; 4598 break; 4599 } 4600 4601 /* Use new allocation */ 4602 skb_free_frag(olddata); 4603 } 4604 buffer_info->dma = dma_map_single(&pdev->dev, 4605 data, 4606 adapter->rx_buffer_len, 4607 DMA_FROM_DEVICE); 4608 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4609 skb_free_frag(data); 4610 buffer_info->dma = 0; 4611 adapter->alloc_rx_buff_failed++; 4612 break; 4613 } 4614 4615 /* XXX if it was allocated cleanly it will never map to a 4616 * boundary crossing 4617 */ 4618 4619 /* Fix for errata 23, can't cross 64kB boundary */ 4620 if (!e1000_check_64k_bound(adapter, 4621 (void *)(unsigned long)buffer_info->dma, 4622 adapter->rx_buffer_len)) { 4623 e_err(rx_err, "dma align check failed: %u bytes at " 4624 "%p\n", adapter->rx_buffer_len, 4625 (void *)(unsigned long)buffer_info->dma); 4626 4627 dma_unmap_single(&pdev->dev, buffer_info->dma, 4628 adapter->rx_buffer_len, 4629 DMA_FROM_DEVICE); 4630 4631 skb_free_frag(data); 4632 buffer_info->rxbuf.data = NULL; 4633 buffer_info->dma = 0; 4634 4635 adapter->alloc_rx_buff_failed++; 4636 break; 4637 } 4638 buffer_info->rxbuf.data = data; 4639 skip: 4640 rx_desc = E1000_RX_DESC(*rx_ring, i); 4641 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4642 4643 if (unlikely(++i == rx_ring->count)) 4644 i = 0; 4645 buffer_info = &rx_ring->buffer_info[i]; 4646 } 4647 4648 if (likely(rx_ring->next_to_use != i)) { 4649 rx_ring->next_to_use = i; 4650 if (unlikely(i-- == 0)) 4651 i = (rx_ring->count - 1); 4652 4653 /* Force memory writes to complete before letting h/w 4654 * know there are new descriptors to fetch. (Only 4655 * applicable for weak-ordered memory model archs, 4656 * such as IA-64). 4657 */ 4658 dma_wmb(); 4659 writel(i, hw->hw_addr + rx_ring->rdt); 4660 } 4661 } 4662 4663 /** 4664 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. 4665 * @adapter: 4666 **/ 4667 static void e1000_smartspeed(struct e1000_adapter *adapter) 4668 { 4669 struct e1000_hw *hw = &adapter->hw; 4670 u16 phy_status; 4671 u16 phy_ctrl; 4672 4673 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || 4674 !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) 4675 return; 4676 4677 if (adapter->smartspeed == 0) { 4678 /* If Master/Slave config fault is asserted twice, 4679 * we assume back-to-back 4680 */ 4681 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4682 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) 4683 return; 4684 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4685 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) 4686 return; 4687 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4688 if (phy_ctrl & CR_1000T_MS_ENABLE) { 4689 phy_ctrl &= ~CR_1000T_MS_ENABLE; 4690 e1000_write_phy_reg(hw, PHY_1000T_CTRL, 4691 phy_ctrl); 4692 adapter->smartspeed++; 4693 if (!e1000_phy_setup_autoneg(hw) && 4694 !e1000_read_phy_reg(hw, PHY_CTRL, 4695 &phy_ctrl)) { 4696 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4697 MII_CR_RESTART_AUTO_NEG); 4698 e1000_write_phy_reg(hw, PHY_CTRL, 4699 phy_ctrl); 4700 } 4701 } 4702 return; 4703 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { 4704 /* If still no link, perhaps using 2/3 pair cable */ 4705 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4706 phy_ctrl |= CR_1000T_MS_ENABLE; 4707 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); 4708 if (!e1000_phy_setup_autoneg(hw) && 4709 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { 4710 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4711 MII_CR_RESTART_AUTO_NEG); 4712 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); 4713 } 4714 } 4715 /* Restart process after E1000_SMARTSPEED_MAX iterations */ 4716 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) 4717 adapter->smartspeed = 0; 4718 } 4719 4720 /** 4721 * e1000_ioctl - 4722 * @netdev: 4723 * @ifreq: 4724 * @cmd: 4725 **/ 4726 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 4727 { 4728 switch (cmd) { 4729 case SIOCGMIIPHY: 4730 case SIOCGMIIREG: 4731 case SIOCSMIIREG: 4732 return e1000_mii_ioctl(netdev, ifr, cmd); 4733 default: 4734 return -EOPNOTSUPP; 4735 } 4736 } 4737 4738 /** 4739 * e1000_mii_ioctl - 4740 * @netdev: 4741 * @ifreq: 4742 * @cmd: 4743 **/ 4744 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 4745 int cmd) 4746 { 4747 struct e1000_adapter *adapter = netdev_priv(netdev); 4748 struct e1000_hw *hw = &adapter->hw; 4749 struct mii_ioctl_data *data = if_mii(ifr); 4750 int retval; 4751 u16 mii_reg; 4752 unsigned long flags; 4753 4754 if (hw->media_type != e1000_media_type_copper) 4755 return -EOPNOTSUPP; 4756 4757 switch (cmd) { 4758 case SIOCGMIIPHY: 4759 data->phy_id = hw->phy_addr; 4760 break; 4761 case SIOCGMIIREG: 4762 spin_lock_irqsave(&adapter->stats_lock, flags); 4763 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, 4764 &data->val_out)) { 4765 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4766 return -EIO; 4767 } 4768 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4769 break; 4770 case SIOCSMIIREG: 4771 if (data->reg_num & ~(0x1F)) 4772 return -EFAULT; 4773 mii_reg = data->val_in; 4774 spin_lock_irqsave(&adapter->stats_lock, flags); 4775 if (e1000_write_phy_reg(hw, data->reg_num, 4776 mii_reg)) { 4777 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4778 return -EIO; 4779 } 4780 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4781 if (hw->media_type == e1000_media_type_copper) { 4782 switch (data->reg_num) { 4783 case PHY_CTRL: 4784 if (mii_reg & MII_CR_POWER_DOWN) 4785 break; 4786 if (mii_reg & MII_CR_AUTO_NEG_EN) { 4787 hw->autoneg = 1; 4788 hw->autoneg_advertised = 0x2F; 4789 } else { 4790 u32 speed; 4791 if (mii_reg & 0x40) 4792 speed = SPEED_1000; 4793 else if (mii_reg & 0x2000) 4794 speed = SPEED_100; 4795 else 4796 speed = SPEED_10; 4797 retval = e1000_set_spd_dplx( 4798 adapter, speed, 4799 ((mii_reg & 0x100) 4800 ? DUPLEX_FULL : 4801 DUPLEX_HALF)); 4802 if (retval) 4803 return retval; 4804 } 4805 if (netif_running(adapter->netdev)) 4806 e1000_reinit_locked(adapter); 4807 else 4808 e1000_reset(adapter); 4809 break; 4810 case M88E1000_PHY_SPEC_CTRL: 4811 case M88E1000_EXT_PHY_SPEC_CTRL: 4812 if (e1000_phy_reset(hw)) 4813 return -EIO; 4814 break; 4815 } 4816 } else { 4817 switch (data->reg_num) { 4818 case PHY_CTRL: 4819 if (mii_reg & MII_CR_POWER_DOWN) 4820 break; 4821 if (netif_running(adapter->netdev)) 4822 e1000_reinit_locked(adapter); 4823 else 4824 e1000_reset(adapter); 4825 break; 4826 } 4827 } 4828 break; 4829 default: 4830 return -EOPNOTSUPP; 4831 } 4832 return E1000_SUCCESS; 4833 } 4834 4835 void e1000_pci_set_mwi(struct e1000_hw *hw) 4836 { 4837 struct e1000_adapter *adapter = hw->back; 4838 int ret_val = pci_set_mwi(adapter->pdev); 4839 4840 if (ret_val) 4841 e_err(probe, "Error in setting MWI\n"); 4842 } 4843 4844 void e1000_pci_clear_mwi(struct e1000_hw *hw) 4845 { 4846 struct e1000_adapter *adapter = hw->back; 4847 4848 pci_clear_mwi(adapter->pdev); 4849 } 4850 4851 int e1000_pcix_get_mmrbc(struct e1000_hw *hw) 4852 { 4853 struct e1000_adapter *adapter = hw->back; 4854 return pcix_get_mmrbc(adapter->pdev); 4855 } 4856 4857 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) 4858 { 4859 struct e1000_adapter *adapter = hw->back; 4860 pcix_set_mmrbc(adapter->pdev, mmrbc); 4861 } 4862 4863 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) 4864 { 4865 outl(value, port); 4866 } 4867 4868 static bool e1000_vlan_used(struct e1000_adapter *adapter) 4869 { 4870 u16 vid; 4871 4872 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 4873 return true; 4874 return false; 4875 } 4876 4877 static void __e1000_vlan_mode(struct e1000_adapter *adapter, 4878 netdev_features_t features) 4879 { 4880 struct e1000_hw *hw = &adapter->hw; 4881 u32 ctrl; 4882 4883 ctrl = er32(CTRL); 4884 if (features & NETIF_F_HW_VLAN_CTAG_RX) { 4885 /* enable VLAN tag insert/strip */ 4886 ctrl |= E1000_CTRL_VME; 4887 } else { 4888 /* disable VLAN tag insert/strip */ 4889 ctrl &= ~E1000_CTRL_VME; 4890 } 4891 ew32(CTRL, ctrl); 4892 } 4893 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 4894 bool filter_on) 4895 { 4896 struct e1000_hw *hw = &adapter->hw; 4897 u32 rctl; 4898 4899 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4900 e1000_irq_disable(adapter); 4901 4902 __e1000_vlan_mode(adapter, adapter->netdev->features); 4903 if (filter_on) { 4904 /* enable VLAN receive filtering */ 4905 rctl = er32(RCTL); 4906 rctl &= ~E1000_RCTL_CFIEN; 4907 if (!(adapter->netdev->flags & IFF_PROMISC)) 4908 rctl |= E1000_RCTL_VFE; 4909 ew32(RCTL, rctl); 4910 e1000_update_mng_vlan(adapter); 4911 } else { 4912 /* disable VLAN receive filtering */ 4913 rctl = er32(RCTL); 4914 rctl &= ~E1000_RCTL_VFE; 4915 ew32(RCTL, rctl); 4916 } 4917 4918 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4919 e1000_irq_enable(adapter); 4920 } 4921 4922 static void e1000_vlan_mode(struct net_device *netdev, 4923 netdev_features_t features) 4924 { 4925 struct e1000_adapter *adapter = netdev_priv(netdev); 4926 4927 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4928 e1000_irq_disable(adapter); 4929 4930 __e1000_vlan_mode(adapter, features); 4931 4932 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4933 e1000_irq_enable(adapter); 4934 } 4935 4936 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 4937 __be16 proto, u16 vid) 4938 { 4939 struct e1000_adapter *adapter = netdev_priv(netdev); 4940 struct e1000_hw *hw = &adapter->hw; 4941 u32 vfta, index; 4942 4943 if ((hw->mng_cookie.status & 4944 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 4945 (vid == adapter->mng_vlan_id)) 4946 return 0; 4947 4948 if (!e1000_vlan_used(adapter)) 4949 e1000_vlan_filter_on_off(adapter, true); 4950 4951 /* add VID to filter table */ 4952 index = (vid >> 5) & 0x7F; 4953 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4954 vfta |= (1 << (vid & 0x1F)); 4955 e1000_write_vfta(hw, index, vfta); 4956 4957 set_bit(vid, adapter->active_vlans); 4958 4959 return 0; 4960 } 4961 4962 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 4963 __be16 proto, u16 vid) 4964 { 4965 struct e1000_adapter *adapter = netdev_priv(netdev); 4966 struct e1000_hw *hw = &adapter->hw; 4967 u32 vfta, index; 4968 4969 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4970 e1000_irq_disable(adapter); 4971 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4972 e1000_irq_enable(adapter); 4973 4974 /* remove VID from filter table */ 4975 index = (vid >> 5) & 0x7F; 4976 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4977 vfta &= ~(1 << (vid & 0x1F)); 4978 e1000_write_vfta(hw, index, vfta); 4979 4980 clear_bit(vid, adapter->active_vlans); 4981 4982 if (!e1000_vlan_used(adapter)) 4983 e1000_vlan_filter_on_off(adapter, false); 4984 4985 return 0; 4986 } 4987 4988 static void e1000_restore_vlan(struct e1000_adapter *adapter) 4989 { 4990 u16 vid; 4991 4992 if (!e1000_vlan_used(adapter)) 4993 return; 4994 4995 e1000_vlan_filter_on_off(adapter, true); 4996 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 4997 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 4998 } 4999 5000 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 5001 { 5002 struct e1000_hw *hw = &adapter->hw; 5003 5004 hw->autoneg = 0; 5005 5006 /* Make sure dplx is at most 1 bit and lsb of speed is not set 5007 * for the switch() below to work 5008 */ 5009 if ((spd & 1) || (dplx & ~1)) 5010 goto err_inval; 5011 5012 /* Fiber NICs only allow 1000 gbps Full duplex */ 5013 if ((hw->media_type == e1000_media_type_fiber) && 5014 spd != SPEED_1000 && 5015 dplx != DUPLEX_FULL) 5016 goto err_inval; 5017 5018 switch (spd + dplx) { 5019 case SPEED_10 + DUPLEX_HALF: 5020 hw->forced_speed_duplex = e1000_10_half; 5021 break; 5022 case SPEED_10 + DUPLEX_FULL: 5023 hw->forced_speed_duplex = e1000_10_full; 5024 break; 5025 case SPEED_100 + DUPLEX_HALF: 5026 hw->forced_speed_duplex = e1000_100_half; 5027 break; 5028 case SPEED_100 + DUPLEX_FULL: 5029 hw->forced_speed_duplex = e1000_100_full; 5030 break; 5031 case SPEED_1000 + DUPLEX_FULL: 5032 hw->autoneg = 1; 5033 hw->autoneg_advertised = ADVERTISE_1000_FULL; 5034 break; 5035 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 5036 default: 5037 goto err_inval; 5038 } 5039 5040 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 5041 hw->mdix = AUTO_ALL_MODES; 5042 5043 return 0; 5044 5045 err_inval: 5046 e_err(probe, "Unsupported Speed/Duplex configuration\n"); 5047 return -EINVAL; 5048 } 5049 5050 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) 5051 { 5052 struct net_device *netdev = pci_get_drvdata(pdev); 5053 struct e1000_adapter *adapter = netdev_priv(netdev); 5054 struct e1000_hw *hw = &adapter->hw; 5055 u32 ctrl, ctrl_ext, rctl, status; 5056 u32 wufc = adapter->wol; 5057 5058 netif_device_detach(netdev); 5059 5060 if (netif_running(netdev)) { 5061 int count = E1000_CHECK_RESET_COUNT; 5062 5063 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 5064 usleep_range(10000, 20000); 5065 5066 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 5067 e1000_down(adapter); 5068 } 5069 5070 status = er32(STATUS); 5071 if (status & E1000_STATUS_LU) 5072 wufc &= ~E1000_WUFC_LNKC; 5073 5074 if (wufc) { 5075 e1000_setup_rctl(adapter); 5076 e1000_set_rx_mode(netdev); 5077 5078 rctl = er32(RCTL); 5079 5080 /* turn on all-multi mode if wake on multicast is enabled */ 5081 if (wufc & E1000_WUFC_MC) 5082 rctl |= E1000_RCTL_MPE; 5083 5084 /* enable receives in the hardware */ 5085 ew32(RCTL, rctl | E1000_RCTL_EN); 5086 5087 if (hw->mac_type >= e1000_82540) { 5088 ctrl = er32(CTRL); 5089 /* advertise wake from D3Cold */ 5090 #define E1000_CTRL_ADVD3WUC 0x00100000 5091 /* phy power management enable */ 5092 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 5093 ctrl |= E1000_CTRL_ADVD3WUC | 5094 E1000_CTRL_EN_PHY_PWR_MGMT; 5095 ew32(CTRL, ctrl); 5096 } 5097 5098 if (hw->media_type == e1000_media_type_fiber || 5099 hw->media_type == e1000_media_type_internal_serdes) { 5100 /* keep the laser running in D3 */ 5101 ctrl_ext = er32(CTRL_EXT); 5102 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; 5103 ew32(CTRL_EXT, ctrl_ext); 5104 } 5105 5106 ew32(WUC, E1000_WUC_PME_EN); 5107 ew32(WUFC, wufc); 5108 } else { 5109 ew32(WUC, 0); 5110 ew32(WUFC, 0); 5111 } 5112 5113 e1000_release_manageability(adapter); 5114 5115 *enable_wake = !!wufc; 5116 5117 /* make sure adapter isn't asleep if manageability is enabled */ 5118 if (adapter->en_mng_pt) 5119 *enable_wake = true; 5120 5121 if (netif_running(netdev)) 5122 e1000_free_irq(adapter); 5123 5124 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags)) 5125 pci_disable_device(pdev); 5126 5127 return 0; 5128 } 5129 5130 static int __maybe_unused e1000_suspend(struct device *dev) 5131 { 5132 int retval; 5133 struct pci_dev *pdev = to_pci_dev(dev); 5134 bool wake; 5135 5136 retval = __e1000_shutdown(pdev, &wake); 5137 device_set_wakeup_enable(dev, wake); 5138 5139 return retval; 5140 } 5141 5142 static int __maybe_unused e1000_resume(struct device *dev) 5143 { 5144 struct pci_dev *pdev = to_pci_dev(dev); 5145 struct net_device *netdev = pci_get_drvdata(pdev); 5146 struct e1000_adapter *adapter = netdev_priv(netdev); 5147 struct e1000_hw *hw = &adapter->hw; 5148 u32 err; 5149 5150 if (adapter->need_ioport) 5151 err = pci_enable_device(pdev); 5152 else 5153 err = pci_enable_device_mem(pdev); 5154 if (err) { 5155 pr_err("Cannot enable PCI device from suspend\n"); 5156 return err; 5157 } 5158 5159 /* flush memory to make sure state is correct */ 5160 smp_mb__before_atomic(); 5161 clear_bit(__E1000_DISABLED, &adapter->flags); 5162 pci_set_master(pdev); 5163 5164 pci_enable_wake(pdev, PCI_D3hot, 0); 5165 pci_enable_wake(pdev, PCI_D3cold, 0); 5166 5167 if (netif_running(netdev)) { 5168 err = e1000_request_irq(adapter); 5169 if (err) 5170 return err; 5171 } 5172 5173 e1000_power_up_phy(adapter); 5174 e1000_reset(adapter); 5175 ew32(WUS, ~0); 5176 5177 e1000_init_manageability(adapter); 5178 5179 if (netif_running(netdev)) 5180 e1000_up(adapter); 5181 5182 netif_device_attach(netdev); 5183 5184 return 0; 5185 } 5186 5187 static void e1000_shutdown(struct pci_dev *pdev) 5188 { 5189 bool wake; 5190 5191 __e1000_shutdown(pdev, &wake); 5192 5193 if (system_state == SYSTEM_POWER_OFF) { 5194 pci_wake_from_d3(pdev, wake); 5195 pci_set_power_state(pdev, PCI_D3hot); 5196 } 5197 } 5198 5199 #ifdef CONFIG_NET_POLL_CONTROLLER 5200 /* Polling 'interrupt' - used by things like netconsole to send skbs 5201 * without having to re-enable interrupts. It's not called while 5202 * the interrupt routine is executing. 5203 */ 5204 static void e1000_netpoll(struct net_device *netdev) 5205 { 5206 struct e1000_adapter *adapter = netdev_priv(netdev); 5207 5208 if (disable_hardirq(adapter->pdev->irq)) 5209 e1000_intr(adapter->pdev->irq, netdev); 5210 enable_irq(adapter->pdev->irq); 5211 } 5212 #endif 5213 5214 /** 5215 * e1000_io_error_detected - called when PCI error is detected 5216 * @pdev: Pointer to PCI device 5217 * @state: The current pci connection state 5218 * 5219 * This function is called after a PCI bus error affecting 5220 * this device has been detected. 5221 */ 5222 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 5223 pci_channel_state_t state) 5224 { 5225 struct net_device *netdev = pci_get_drvdata(pdev); 5226 struct e1000_adapter *adapter = netdev_priv(netdev); 5227 5228 netif_device_detach(netdev); 5229 5230 if (state == pci_channel_io_perm_failure) 5231 return PCI_ERS_RESULT_DISCONNECT; 5232 5233 if (netif_running(netdev)) 5234 e1000_down(adapter); 5235 5236 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags)) 5237 pci_disable_device(pdev); 5238 5239 /* Request a slot slot reset. */ 5240 return PCI_ERS_RESULT_NEED_RESET; 5241 } 5242 5243 /** 5244 * e1000_io_slot_reset - called after the pci bus has been reset. 5245 * @pdev: Pointer to PCI device 5246 * 5247 * Restart the card from scratch, as if from a cold-boot. Implementation 5248 * resembles the first-half of the e1000_resume routine. 5249 */ 5250 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 5251 { 5252 struct net_device *netdev = pci_get_drvdata(pdev); 5253 struct e1000_adapter *adapter = netdev_priv(netdev); 5254 struct e1000_hw *hw = &adapter->hw; 5255 int err; 5256 5257 if (adapter->need_ioport) 5258 err = pci_enable_device(pdev); 5259 else 5260 err = pci_enable_device_mem(pdev); 5261 if (err) { 5262 pr_err("Cannot re-enable PCI device after reset.\n"); 5263 return PCI_ERS_RESULT_DISCONNECT; 5264 } 5265 5266 /* flush memory to make sure state is correct */ 5267 smp_mb__before_atomic(); 5268 clear_bit(__E1000_DISABLED, &adapter->flags); 5269 pci_set_master(pdev); 5270 5271 pci_enable_wake(pdev, PCI_D3hot, 0); 5272 pci_enable_wake(pdev, PCI_D3cold, 0); 5273 5274 e1000_reset(adapter); 5275 ew32(WUS, ~0); 5276 5277 return PCI_ERS_RESULT_RECOVERED; 5278 } 5279 5280 /** 5281 * e1000_io_resume - called when traffic can start flowing again. 5282 * @pdev: Pointer to PCI device 5283 * 5284 * This callback is called when the error recovery driver tells us that 5285 * its OK to resume normal operation. Implementation resembles the 5286 * second-half of the e1000_resume routine. 5287 */ 5288 static void e1000_io_resume(struct pci_dev *pdev) 5289 { 5290 struct net_device *netdev = pci_get_drvdata(pdev); 5291 struct e1000_adapter *adapter = netdev_priv(netdev); 5292 5293 e1000_init_manageability(adapter); 5294 5295 if (netif_running(netdev)) { 5296 if (e1000_up(adapter)) { 5297 pr_info("can't bring device back up after reset\n"); 5298 return; 5299 } 5300 } 5301 5302 netif_device_attach(netdev); 5303 } 5304 5305 /* e1000_main.c */ 5306