1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2006 Intel Corporation. */ 3 4 #include "e1000.h" 5 #include <net/ip6_checksum.h> 6 #include <linux/io.h> 7 #include <linux/prefetch.h> 8 #include <linux/bitops.h> 9 #include <linux/if_vlan.h> 10 11 char e1000_driver_name[] = "e1000"; 12 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; 13 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; 14 15 /* e1000_pci_tbl - PCI Device ID Table 16 * 17 * Last entry must be all 0s 18 * 19 * Macro expands to... 20 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} 21 */ 22 static const struct pci_device_id e1000_pci_tbl[] = { 23 INTEL_E1000_ETHERNET_DEVICE(0x1000), 24 INTEL_E1000_ETHERNET_DEVICE(0x1001), 25 INTEL_E1000_ETHERNET_DEVICE(0x1004), 26 INTEL_E1000_ETHERNET_DEVICE(0x1008), 27 INTEL_E1000_ETHERNET_DEVICE(0x1009), 28 INTEL_E1000_ETHERNET_DEVICE(0x100C), 29 INTEL_E1000_ETHERNET_DEVICE(0x100D), 30 INTEL_E1000_ETHERNET_DEVICE(0x100E), 31 INTEL_E1000_ETHERNET_DEVICE(0x100F), 32 INTEL_E1000_ETHERNET_DEVICE(0x1010), 33 INTEL_E1000_ETHERNET_DEVICE(0x1011), 34 INTEL_E1000_ETHERNET_DEVICE(0x1012), 35 INTEL_E1000_ETHERNET_DEVICE(0x1013), 36 INTEL_E1000_ETHERNET_DEVICE(0x1014), 37 INTEL_E1000_ETHERNET_DEVICE(0x1015), 38 INTEL_E1000_ETHERNET_DEVICE(0x1016), 39 INTEL_E1000_ETHERNET_DEVICE(0x1017), 40 INTEL_E1000_ETHERNET_DEVICE(0x1018), 41 INTEL_E1000_ETHERNET_DEVICE(0x1019), 42 INTEL_E1000_ETHERNET_DEVICE(0x101A), 43 INTEL_E1000_ETHERNET_DEVICE(0x101D), 44 INTEL_E1000_ETHERNET_DEVICE(0x101E), 45 INTEL_E1000_ETHERNET_DEVICE(0x1026), 46 INTEL_E1000_ETHERNET_DEVICE(0x1027), 47 INTEL_E1000_ETHERNET_DEVICE(0x1028), 48 INTEL_E1000_ETHERNET_DEVICE(0x1075), 49 INTEL_E1000_ETHERNET_DEVICE(0x1076), 50 INTEL_E1000_ETHERNET_DEVICE(0x1077), 51 INTEL_E1000_ETHERNET_DEVICE(0x1078), 52 INTEL_E1000_ETHERNET_DEVICE(0x1079), 53 INTEL_E1000_ETHERNET_DEVICE(0x107A), 54 INTEL_E1000_ETHERNET_DEVICE(0x107B), 55 INTEL_E1000_ETHERNET_DEVICE(0x107C), 56 INTEL_E1000_ETHERNET_DEVICE(0x108A), 57 INTEL_E1000_ETHERNET_DEVICE(0x1099), 58 INTEL_E1000_ETHERNET_DEVICE(0x10B5), 59 INTEL_E1000_ETHERNET_DEVICE(0x2E6E), 60 /* required last entry */ 61 {0,} 62 }; 63 64 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 65 66 int e1000_up(struct e1000_adapter *adapter); 67 void e1000_down(struct e1000_adapter *adapter); 68 void e1000_reinit_locked(struct e1000_adapter *adapter); 69 void e1000_reset(struct e1000_adapter *adapter); 70 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); 71 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); 72 void e1000_free_all_tx_resources(struct e1000_adapter *adapter); 73 void e1000_free_all_rx_resources(struct e1000_adapter *adapter); 74 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 75 struct e1000_tx_ring *txdr); 76 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 77 struct e1000_rx_ring *rxdr); 78 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 79 struct e1000_tx_ring *tx_ring); 80 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 81 struct e1000_rx_ring *rx_ring); 82 void e1000_update_stats(struct e1000_adapter *adapter); 83 84 static int e1000_init_module(void); 85 static void e1000_exit_module(void); 86 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); 87 static void e1000_remove(struct pci_dev *pdev); 88 static int e1000_alloc_queues(struct e1000_adapter *adapter); 89 static int e1000_sw_init(struct e1000_adapter *adapter); 90 int e1000_open(struct net_device *netdev); 91 int e1000_close(struct net_device *netdev); 92 static void e1000_configure_tx(struct e1000_adapter *adapter); 93 static void e1000_configure_rx(struct e1000_adapter *adapter); 94 static void e1000_setup_rctl(struct e1000_adapter *adapter); 95 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); 96 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); 97 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 98 struct e1000_tx_ring *tx_ring); 99 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 100 struct e1000_rx_ring *rx_ring); 101 static void e1000_set_rx_mode(struct net_device *netdev); 102 static void e1000_update_phy_info_task(struct work_struct *work); 103 static void e1000_watchdog(struct work_struct *work); 104 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work); 105 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 106 struct net_device *netdev); 107 static int e1000_change_mtu(struct net_device *netdev, int new_mtu); 108 static int e1000_set_mac(struct net_device *netdev, void *p); 109 static irqreturn_t e1000_intr(int irq, void *data); 110 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 111 struct e1000_tx_ring *tx_ring); 112 static int e1000_clean(struct napi_struct *napi, int budget); 113 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 114 struct e1000_rx_ring *rx_ring, 115 int *work_done, int work_to_do); 116 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 117 struct e1000_rx_ring *rx_ring, 118 int *work_done, int work_to_do); 119 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter, 120 struct e1000_rx_ring *rx_ring, 121 int cleaned_count) 122 { 123 } 124 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 125 struct e1000_rx_ring *rx_ring, 126 int cleaned_count); 127 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 128 struct e1000_rx_ring *rx_ring, 129 int cleaned_count); 130 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); 131 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 132 int cmd); 133 static void e1000_enter_82542_rst(struct e1000_adapter *adapter); 134 static void e1000_leave_82542_rst(struct e1000_adapter *adapter); 135 static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue); 136 static void e1000_reset_task(struct work_struct *work); 137 static void e1000_smartspeed(struct e1000_adapter *adapter); 138 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 139 struct sk_buff *skb); 140 141 static bool e1000_vlan_used(struct e1000_adapter *adapter); 142 static void e1000_vlan_mode(struct net_device *netdev, 143 netdev_features_t features); 144 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 145 bool filter_on); 146 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 147 __be16 proto, u16 vid); 148 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 149 __be16 proto, u16 vid); 150 static void e1000_restore_vlan(struct e1000_adapter *adapter); 151 152 static int __maybe_unused e1000_suspend(struct device *dev); 153 static int __maybe_unused e1000_resume(struct device *dev); 154 static void e1000_shutdown(struct pci_dev *pdev); 155 156 #ifdef CONFIG_NET_POLL_CONTROLLER 157 /* for netdump / net console */ 158 static void e1000_netpoll (struct net_device *netdev); 159 #endif 160 161 #define COPYBREAK_DEFAULT 256 162 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; 163 module_param(copybreak, uint, 0644); 164 MODULE_PARM_DESC(copybreak, 165 "Maximum size of packet that is copied to a new buffer on receive"); 166 167 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 168 pci_channel_state_t state); 169 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); 170 static void e1000_io_resume(struct pci_dev *pdev); 171 172 static const struct pci_error_handlers e1000_err_handler = { 173 .error_detected = e1000_io_error_detected, 174 .slot_reset = e1000_io_slot_reset, 175 .resume = e1000_io_resume, 176 }; 177 178 static SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume); 179 180 static struct pci_driver e1000_driver = { 181 .name = e1000_driver_name, 182 .id_table = e1000_pci_tbl, 183 .probe = e1000_probe, 184 .remove = e1000_remove, 185 .driver = { 186 .pm = &e1000_pm_ops, 187 }, 188 .shutdown = e1000_shutdown, 189 .err_handler = &e1000_err_handler 190 }; 191 192 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 193 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 194 MODULE_LICENSE("GPL v2"); 195 196 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 197 static int debug = -1; 198 module_param(debug, int, 0); 199 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 200 201 /** 202 * e1000_get_hw_dev - helper function for getting netdev 203 * @hw: pointer to HW struct 204 * 205 * return device used by hardware layer to print debugging information 206 * 207 **/ 208 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) 209 { 210 struct e1000_adapter *adapter = hw->back; 211 return adapter->netdev; 212 } 213 214 /** 215 * e1000_init_module - Driver Registration Routine 216 * 217 * e1000_init_module is the first routine called when the driver is 218 * loaded. All it does is register with the PCI subsystem. 219 **/ 220 static int __init e1000_init_module(void) 221 { 222 int ret; 223 pr_info("%s\n", e1000_driver_string); 224 225 pr_info("%s\n", e1000_copyright); 226 227 ret = pci_register_driver(&e1000_driver); 228 if (copybreak != COPYBREAK_DEFAULT) { 229 if (copybreak == 0) 230 pr_info("copybreak disabled\n"); 231 else 232 pr_info("copybreak enabled for " 233 "packets <= %u bytes\n", copybreak); 234 } 235 return ret; 236 } 237 238 module_init(e1000_init_module); 239 240 /** 241 * e1000_exit_module - Driver Exit Cleanup Routine 242 * 243 * e1000_exit_module is called just before the driver is removed 244 * from memory. 245 **/ 246 static void __exit e1000_exit_module(void) 247 { 248 pci_unregister_driver(&e1000_driver); 249 } 250 251 module_exit(e1000_exit_module); 252 253 static int e1000_request_irq(struct e1000_adapter *adapter) 254 { 255 struct net_device *netdev = adapter->netdev; 256 irq_handler_t handler = e1000_intr; 257 int irq_flags = IRQF_SHARED; 258 int err; 259 260 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, 261 netdev); 262 if (err) { 263 e_err(probe, "Unable to allocate interrupt Error: %d\n", err); 264 } 265 266 return err; 267 } 268 269 static void e1000_free_irq(struct e1000_adapter *adapter) 270 { 271 struct net_device *netdev = adapter->netdev; 272 273 free_irq(adapter->pdev->irq, netdev); 274 } 275 276 /** 277 * e1000_irq_disable - Mask off interrupt generation on the NIC 278 * @adapter: board private structure 279 **/ 280 static void e1000_irq_disable(struct e1000_adapter *adapter) 281 { 282 struct e1000_hw *hw = &adapter->hw; 283 284 ew32(IMC, ~0); 285 E1000_WRITE_FLUSH(); 286 synchronize_irq(adapter->pdev->irq); 287 } 288 289 /** 290 * e1000_irq_enable - Enable default interrupt generation settings 291 * @adapter: board private structure 292 **/ 293 static void e1000_irq_enable(struct e1000_adapter *adapter) 294 { 295 struct e1000_hw *hw = &adapter->hw; 296 297 ew32(IMS, IMS_ENABLE_MASK); 298 E1000_WRITE_FLUSH(); 299 } 300 301 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 302 { 303 struct e1000_hw *hw = &adapter->hw; 304 struct net_device *netdev = adapter->netdev; 305 u16 vid = hw->mng_cookie.vlan_id; 306 u16 old_vid = adapter->mng_vlan_id; 307 308 if (!e1000_vlan_used(adapter)) 309 return; 310 311 if (!test_bit(vid, adapter->active_vlans)) { 312 if (hw->mng_cookie.status & 313 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { 314 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); 315 adapter->mng_vlan_id = vid; 316 } else { 317 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 318 } 319 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && 320 (vid != old_vid) && 321 !test_bit(old_vid, adapter->active_vlans)) 322 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 323 old_vid); 324 } else { 325 adapter->mng_vlan_id = vid; 326 } 327 } 328 329 static void e1000_init_manageability(struct e1000_adapter *adapter) 330 { 331 struct e1000_hw *hw = &adapter->hw; 332 333 if (adapter->en_mng_pt) { 334 u32 manc = er32(MANC); 335 336 /* disable hardware interception of ARP */ 337 manc &= ~(E1000_MANC_ARP_EN); 338 339 ew32(MANC, manc); 340 } 341 } 342 343 static void e1000_release_manageability(struct e1000_adapter *adapter) 344 { 345 struct e1000_hw *hw = &adapter->hw; 346 347 if (adapter->en_mng_pt) { 348 u32 manc = er32(MANC); 349 350 /* re-enable hardware interception of ARP */ 351 manc |= E1000_MANC_ARP_EN; 352 353 ew32(MANC, manc); 354 } 355 } 356 357 /** 358 * e1000_configure - configure the hardware for RX and TX 359 * @adapter: private board structure 360 **/ 361 static void e1000_configure(struct e1000_adapter *adapter) 362 { 363 struct net_device *netdev = adapter->netdev; 364 int i; 365 366 e1000_set_rx_mode(netdev); 367 368 e1000_restore_vlan(adapter); 369 e1000_init_manageability(adapter); 370 371 e1000_configure_tx(adapter); 372 e1000_setup_rctl(adapter); 373 e1000_configure_rx(adapter); 374 /* call E1000_DESC_UNUSED which always leaves 375 * at least 1 descriptor unused to make sure 376 * next_to_use != next_to_clean 377 */ 378 for (i = 0; i < adapter->num_rx_queues; i++) { 379 struct e1000_rx_ring *ring = &adapter->rx_ring[i]; 380 adapter->alloc_rx_buf(adapter, ring, 381 E1000_DESC_UNUSED(ring)); 382 } 383 } 384 385 int e1000_up(struct e1000_adapter *adapter) 386 { 387 struct e1000_hw *hw = &adapter->hw; 388 389 /* hardware has been reset, we need to reload some things */ 390 e1000_configure(adapter); 391 392 clear_bit(__E1000_DOWN, &adapter->flags); 393 394 napi_enable(&adapter->napi); 395 396 e1000_irq_enable(adapter); 397 398 netif_wake_queue(adapter->netdev); 399 400 /* fire a link change interrupt to start the watchdog */ 401 ew32(ICS, E1000_ICS_LSC); 402 return 0; 403 } 404 405 /** 406 * e1000_power_up_phy - restore link in case the phy was powered down 407 * @adapter: address of board private structure 408 * 409 * The phy may be powered down to save power and turn off link when the 410 * driver is unloaded and wake on lan is not enabled (among others) 411 * *** this routine MUST be followed by a call to e1000_reset *** 412 **/ 413 void e1000_power_up_phy(struct e1000_adapter *adapter) 414 { 415 struct e1000_hw *hw = &adapter->hw; 416 u16 mii_reg = 0; 417 418 /* Just clear the power down bit to wake the phy back up */ 419 if (hw->media_type == e1000_media_type_copper) { 420 /* according to the manual, the phy will retain its 421 * settings across a power-down/up cycle 422 */ 423 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 424 mii_reg &= ~MII_CR_POWER_DOWN; 425 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 426 } 427 } 428 429 static void e1000_power_down_phy(struct e1000_adapter *adapter) 430 { 431 struct e1000_hw *hw = &adapter->hw; 432 433 /* Power down the PHY so no link is implied when interface is down * 434 * The PHY cannot be powered down if any of the following is true * 435 * (a) WoL is enabled 436 * (b) AMT is active 437 * (c) SoL/IDER session is active 438 */ 439 if (!adapter->wol && hw->mac_type >= e1000_82540 && 440 hw->media_type == e1000_media_type_copper) { 441 u16 mii_reg = 0; 442 443 switch (hw->mac_type) { 444 case e1000_82540: 445 case e1000_82545: 446 case e1000_82545_rev_3: 447 case e1000_82546: 448 case e1000_ce4100: 449 case e1000_82546_rev_3: 450 case e1000_82541: 451 case e1000_82541_rev_2: 452 case e1000_82547: 453 case e1000_82547_rev_2: 454 if (er32(MANC) & E1000_MANC_SMBUS_EN) 455 goto out; 456 break; 457 default: 458 goto out; 459 } 460 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 461 mii_reg |= MII_CR_POWER_DOWN; 462 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 463 msleep(1); 464 } 465 out: 466 return; 467 } 468 469 static void e1000_down_and_stop(struct e1000_adapter *adapter) 470 { 471 set_bit(__E1000_DOWN, &adapter->flags); 472 473 cancel_delayed_work_sync(&adapter->watchdog_task); 474 475 /* 476 * Since the watchdog task can reschedule other tasks, we should cancel 477 * it first, otherwise we can run into the situation when a work is 478 * still running after the adapter has been turned down. 479 */ 480 481 cancel_delayed_work_sync(&adapter->phy_info_task); 482 cancel_delayed_work_sync(&adapter->fifo_stall_task); 483 484 /* Only kill reset task if adapter is not resetting */ 485 if (!test_bit(__E1000_RESETTING, &adapter->flags)) 486 cancel_work_sync(&adapter->reset_task); 487 } 488 489 void e1000_down(struct e1000_adapter *adapter) 490 { 491 struct e1000_hw *hw = &adapter->hw; 492 struct net_device *netdev = adapter->netdev; 493 u32 rctl, tctl; 494 495 /* disable receives in the hardware */ 496 rctl = er32(RCTL); 497 ew32(RCTL, rctl & ~E1000_RCTL_EN); 498 /* flush and sleep below */ 499 500 netif_tx_disable(netdev); 501 502 /* disable transmits in the hardware */ 503 tctl = er32(TCTL); 504 tctl &= ~E1000_TCTL_EN; 505 ew32(TCTL, tctl); 506 /* flush both disables and wait for them to finish */ 507 E1000_WRITE_FLUSH(); 508 msleep(10); 509 510 /* Set the carrier off after transmits have been disabled in the 511 * hardware, to avoid race conditions with e1000_watchdog() (which 512 * may be running concurrently to us, checking for the carrier 513 * bit to decide whether it should enable transmits again). Such 514 * a race condition would result into transmission being disabled 515 * in the hardware until the next IFF_DOWN+IFF_UP cycle. 516 */ 517 netif_carrier_off(netdev); 518 519 napi_disable(&adapter->napi); 520 521 e1000_irq_disable(adapter); 522 523 /* Setting DOWN must be after irq_disable to prevent 524 * a screaming interrupt. Setting DOWN also prevents 525 * tasks from rescheduling. 526 */ 527 e1000_down_and_stop(adapter); 528 529 adapter->link_speed = 0; 530 adapter->link_duplex = 0; 531 532 e1000_reset(adapter); 533 e1000_clean_all_tx_rings(adapter); 534 e1000_clean_all_rx_rings(adapter); 535 } 536 537 void e1000_reinit_locked(struct e1000_adapter *adapter) 538 { 539 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 540 msleep(1); 541 542 /* only run the task if not already down */ 543 if (!test_bit(__E1000_DOWN, &adapter->flags)) { 544 e1000_down(adapter); 545 e1000_up(adapter); 546 } 547 548 clear_bit(__E1000_RESETTING, &adapter->flags); 549 } 550 551 void e1000_reset(struct e1000_adapter *adapter) 552 { 553 struct e1000_hw *hw = &adapter->hw; 554 u32 pba = 0, tx_space, min_tx_space, min_rx_space; 555 bool legacy_pba_adjust = false; 556 u16 hwm; 557 558 /* Repartition Pba for greater than 9k mtu 559 * To take effect CTRL.RST is required. 560 */ 561 562 switch (hw->mac_type) { 563 case e1000_82542_rev2_0: 564 case e1000_82542_rev2_1: 565 case e1000_82543: 566 case e1000_82544: 567 case e1000_82540: 568 case e1000_82541: 569 case e1000_82541_rev_2: 570 legacy_pba_adjust = true; 571 pba = E1000_PBA_48K; 572 break; 573 case e1000_82545: 574 case e1000_82545_rev_3: 575 case e1000_82546: 576 case e1000_ce4100: 577 case e1000_82546_rev_3: 578 pba = E1000_PBA_48K; 579 break; 580 case e1000_82547: 581 case e1000_82547_rev_2: 582 legacy_pba_adjust = true; 583 pba = E1000_PBA_30K; 584 break; 585 case e1000_undefined: 586 case e1000_num_macs: 587 break; 588 } 589 590 if (legacy_pba_adjust) { 591 if (hw->max_frame_size > E1000_RXBUFFER_8192) 592 pba -= 8; /* allocate more FIFO for Tx */ 593 594 if (hw->mac_type == e1000_82547) { 595 adapter->tx_fifo_head = 0; 596 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; 597 adapter->tx_fifo_size = 598 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; 599 atomic_set(&adapter->tx_fifo_stall, 0); 600 } 601 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { 602 /* adjust PBA for jumbo frames */ 603 ew32(PBA, pba); 604 605 /* To maintain wire speed transmits, the Tx FIFO should be 606 * large enough to accommodate two full transmit packets, 607 * rounded up to the next 1KB and expressed in KB. Likewise, 608 * the Rx FIFO should be large enough to accommodate at least 609 * one full receive packet and is similarly rounded up and 610 * expressed in KB. 611 */ 612 pba = er32(PBA); 613 /* upper 16 bits has Tx packet buffer allocation size in KB */ 614 tx_space = pba >> 16; 615 /* lower 16 bits has Rx packet buffer allocation size in KB */ 616 pba &= 0xffff; 617 /* the Tx fifo also stores 16 bytes of information about the Tx 618 * but don't include ethernet FCS because hardware appends it 619 */ 620 min_tx_space = (hw->max_frame_size + 621 sizeof(struct e1000_tx_desc) - 622 ETH_FCS_LEN) * 2; 623 min_tx_space = ALIGN(min_tx_space, 1024); 624 min_tx_space >>= 10; 625 /* software strips receive CRC, so leave room for it */ 626 min_rx_space = hw->max_frame_size; 627 min_rx_space = ALIGN(min_rx_space, 1024); 628 min_rx_space >>= 10; 629 630 /* If current Tx allocation is less than the min Tx FIFO size, 631 * and the min Tx FIFO size is less than the current Rx FIFO 632 * allocation, take space away from current Rx allocation 633 */ 634 if (tx_space < min_tx_space && 635 ((min_tx_space - tx_space) < pba)) { 636 pba = pba - (min_tx_space - tx_space); 637 638 /* PCI/PCIx hardware has PBA alignment constraints */ 639 switch (hw->mac_type) { 640 case e1000_82545 ... e1000_82546_rev_3: 641 pba &= ~(E1000_PBA_8K - 1); 642 break; 643 default: 644 break; 645 } 646 647 /* if short on Rx space, Rx wins and must trump Tx 648 * adjustment or use Early Receive if available 649 */ 650 if (pba < min_rx_space) 651 pba = min_rx_space; 652 } 653 } 654 655 ew32(PBA, pba); 656 657 /* flow control settings: 658 * The high water mark must be low enough to fit one full frame 659 * (or the size used for early receive) above it in the Rx FIFO. 660 * Set it to the lower of: 661 * - 90% of the Rx FIFO size, and 662 * - the full Rx FIFO size minus the early receive size (for parts 663 * with ERT support assuming ERT set to E1000_ERT_2048), or 664 * - the full Rx FIFO size minus one full frame 665 */ 666 hwm = min(((pba << 10) * 9 / 10), 667 ((pba << 10) - hw->max_frame_size)); 668 669 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ 670 hw->fc_low_water = hw->fc_high_water - 8; 671 hw->fc_pause_time = E1000_FC_PAUSE_TIME; 672 hw->fc_send_xon = 1; 673 hw->fc = hw->original_fc; 674 675 /* Allow time for pending master requests to run */ 676 e1000_reset_hw(hw); 677 if (hw->mac_type >= e1000_82544) 678 ew32(WUC, 0); 679 680 if (e1000_init_hw(hw)) 681 e_dev_err("Hardware Error\n"); 682 e1000_update_mng_vlan(adapter); 683 684 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ 685 if (hw->mac_type >= e1000_82544 && 686 hw->autoneg == 1 && 687 hw->autoneg_advertised == ADVERTISE_1000_FULL) { 688 u32 ctrl = er32(CTRL); 689 /* clear phy power management bit if we are in gig only mode, 690 * which if enabled will attempt negotiation to 100Mb, which 691 * can cause a loss of link at power off or driver unload 692 */ 693 ctrl &= ~E1000_CTRL_SWDPIN3; 694 ew32(CTRL, ctrl); 695 } 696 697 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 698 ew32(VET, ETHERNET_IEEE_VLAN_TYPE); 699 700 e1000_reset_adaptive(hw); 701 e1000_phy_get_info(hw, &adapter->phy_info); 702 703 e1000_release_manageability(adapter); 704 } 705 706 /* Dump the eeprom for users having checksum issues */ 707 static void e1000_dump_eeprom(struct e1000_adapter *adapter) 708 { 709 struct net_device *netdev = adapter->netdev; 710 struct ethtool_eeprom eeprom; 711 const struct ethtool_ops *ops = netdev->ethtool_ops; 712 u8 *data; 713 int i; 714 u16 csum_old, csum_new = 0; 715 716 eeprom.len = ops->get_eeprom_len(netdev); 717 eeprom.offset = 0; 718 719 data = kmalloc(eeprom.len, GFP_KERNEL); 720 if (!data) 721 return; 722 723 ops->get_eeprom(netdev, &eeprom, data); 724 725 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + 726 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); 727 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) 728 csum_new += data[i] + (data[i + 1] << 8); 729 csum_new = EEPROM_SUM - csum_new; 730 731 pr_err("/*********************/\n"); 732 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); 733 pr_err("Calculated : 0x%04x\n", csum_new); 734 735 pr_err("Offset Values\n"); 736 pr_err("======== ======\n"); 737 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); 738 739 pr_err("Include this output when contacting your support provider.\n"); 740 pr_err("This is not a software error! Something bad happened to\n"); 741 pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); 742 pr_err("result in further problems, possibly loss of data,\n"); 743 pr_err("corruption or system hangs!\n"); 744 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); 745 pr_err("which is invalid and requires you to set the proper MAC\n"); 746 pr_err("address manually before continuing to enable this network\n"); 747 pr_err("device. Please inspect the EEPROM dump and report the\n"); 748 pr_err("issue to your hardware vendor or Intel Customer Support.\n"); 749 pr_err("/*********************/\n"); 750 751 kfree(data); 752 } 753 754 /** 755 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not 756 * @pdev: PCI device information struct 757 * 758 * Return true if an adapter needs ioport resources 759 **/ 760 static int e1000_is_need_ioport(struct pci_dev *pdev) 761 { 762 switch (pdev->device) { 763 case E1000_DEV_ID_82540EM: 764 case E1000_DEV_ID_82540EM_LOM: 765 case E1000_DEV_ID_82540EP: 766 case E1000_DEV_ID_82540EP_LOM: 767 case E1000_DEV_ID_82540EP_LP: 768 case E1000_DEV_ID_82541EI: 769 case E1000_DEV_ID_82541EI_MOBILE: 770 case E1000_DEV_ID_82541ER: 771 case E1000_DEV_ID_82541ER_LOM: 772 case E1000_DEV_ID_82541GI: 773 case E1000_DEV_ID_82541GI_LF: 774 case E1000_DEV_ID_82541GI_MOBILE: 775 case E1000_DEV_ID_82544EI_COPPER: 776 case E1000_DEV_ID_82544EI_FIBER: 777 case E1000_DEV_ID_82544GC_COPPER: 778 case E1000_DEV_ID_82544GC_LOM: 779 case E1000_DEV_ID_82545EM_COPPER: 780 case E1000_DEV_ID_82545EM_FIBER: 781 case E1000_DEV_ID_82546EB_COPPER: 782 case E1000_DEV_ID_82546EB_FIBER: 783 case E1000_DEV_ID_82546EB_QUAD_COPPER: 784 return true; 785 default: 786 return false; 787 } 788 } 789 790 static netdev_features_t e1000_fix_features(struct net_device *netdev, 791 netdev_features_t features) 792 { 793 /* Since there is no support for separate Rx/Tx vlan accel 794 * enable/disable make sure Tx flag is always in same state as Rx. 795 */ 796 if (features & NETIF_F_HW_VLAN_CTAG_RX) 797 features |= NETIF_F_HW_VLAN_CTAG_TX; 798 else 799 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 800 801 return features; 802 } 803 804 static int e1000_set_features(struct net_device *netdev, 805 netdev_features_t features) 806 { 807 struct e1000_adapter *adapter = netdev_priv(netdev); 808 netdev_features_t changed = features ^ netdev->features; 809 810 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 811 e1000_vlan_mode(netdev, features); 812 813 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL))) 814 return 0; 815 816 netdev->features = features; 817 adapter->rx_csum = !!(features & NETIF_F_RXCSUM); 818 819 if (netif_running(netdev)) 820 e1000_reinit_locked(adapter); 821 else 822 e1000_reset(adapter); 823 824 return 1; 825 } 826 827 static const struct net_device_ops e1000_netdev_ops = { 828 .ndo_open = e1000_open, 829 .ndo_stop = e1000_close, 830 .ndo_start_xmit = e1000_xmit_frame, 831 .ndo_set_rx_mode = e1000_set_rx_mode, 832 .ndo_set_mac_address = e1000_set_mac, 833 .ndo_tx_timeout = e1000_tx_timeout, 834 .ndo_change_mtu = e1000_change_mtu, 835 .ndo_eth_ioctl = e1000_ioctl, 836 .ndo_validate_addr = eth_validate_addr, 837 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, 838 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, 839 #ifdef CONFIG_NET_POLL_CONTROLLER 840 .ndo_poll_controller = e1000_netpoll, 841 #endif 842 .ndo_fix_features = e1000_fix_features, 843 .ndo_set_features = e1000_set_features, 844 }; 845 846 /** 847 * e1000_init_hw_struct - initialize members of hw struct 848 * @adapter: board private struct 849 * @hw: structure used by e1000_hw.c 850 * 851 * Factors out initialization of the e1000_hw struct to its own function 852 * that can be called very early at init (just after struct allocation). 853 * Fields are initialized based on PCI device information and 854 * OS network device settings (MTU size). 855 * Returns negative error codes if MAC type setup fails. 856 */ 857 static int e1000_init_hw_struct(struct e1000_adapter *adapter, 858 struct e1000_hw *hw) 859 { 860 struct pci_dev *pdev = adapter->pdev; 861 862 /* PCI config space info */ 863 hw->vendor_id = pdev->vendor; 864 hw->device_id = pdev->device; 865 hw->subsystem_vendor_id = pdev->subsystem_vendor; 866 hw->subsystem_id = pdev->subsystem_device; 867 hw->revision_id = pdev->revision; 868 869 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); 870 871 hw->max_frame_size = adapter->netdev->mtu + 872 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; 873 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; 874 875 /* identify the MAC */ 876 if (e1000_set_mac_type(hw)) { 877 e_err(probe, "Unknown MAC Type\n"); 878 return -EIO; 879 } 880 881 switch (hw->mac_type) { 882 default: 883 break; 884 case e1000_82541: 885 case e1000_82547: 886 case e1000_82541_rev_2: 887 case e1000_82547_rev_2: 888 hw->phy_init_script = 1; 889 break; 890 } 891 892 e1000_set_media_type(hw); 893 e1000_get_bus_info(hw); 894 895 hw->wait_autoneg_complete = false; 896 hw->tbi_compatibility_en = true; 897 hw->adaptive_ifs = true; 898 899 /* Copper options */ 900 901 if (hw->media_type == e1000_media_type_copper) { 902 hw->mdix = AUTO_ALL_MODES; 903 hw->disable_polarity_correction = false; 904 hw->master_slave = E1000_MASTER_SLAVE; 905 } 906 907 return 0; 908 } 909 910 /** 911 * e1000_probe - Device Initialization Routine 912 * @pdev: PCI device information struct 913 * @ent: entry in e1000_pci_tbl 914 * 915 * Returns 0 on success, negative on failure 916 * 917 * e1000_probe initializes an adapter identified by a pci_dev structure. 918 * The OS initialization, configuring of the adapter private structure, 919 * and a hardware reset occur. 920 **/ 921 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 922 { 923 struct net_device *netdev; 924 struct e1000_adapter *adapter = NULL; 925 struct e1000_hw *hw; 926 927 static int cards_found; 928 static int global_quad_port_a; /* global ksp3 port a indication */ 929 int i, err, pci_using_dac; 930 u16 eeprom_data = 0; 931 u16 tmp = 0; 932 u16 eeprom_apme_mask = E1000_EEPROM_APME; 933 int bars, need_ioport; 934 bool disable_dev = false; 935 936 /* do not allocate ioport bars when not needed */ 937 need_ioport = e1000_is_need_ioport(pdev); 938 if (need_ioport) { 939 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); 940 err = pci_enable_device(pdev); 941 } else { 942 bars = pci_select_bars(pdev, IORESOURCE_MEM); 943 err = pci_enable_device_mem(pdev); 944 } 945 if (err) 946 return err; 947 948 err = pci_request_selected_regions(pdev, bars, e1000_driver_name); 949 if (err) 950 goto err_pci_reg; 951 952 pci_set_master(pdev); 953 err = pci_save_state(pdev); 954 if (err) 955 goto err_alloc_etherdev; 956 957 err = -ENOMEM; 958 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 959 if (!netdev) 960 goto err_alloc_etherdev; 961 962 SET_NETDEV_DEV(netdev, &pdev->dev); 963 964 pci_set_drvdata(pdev, netdev); 965 adapter = netdev_priv(netdev); 966 adapter->netdev = netdev; 967 adapter->pdev = pdev; 968 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 969 adapter->bars = bars; 970 adapter->need_ioport = need_ioport; 971 972 hw = &adapter->hw; 973 hw->back = adapter; 974 975 err = -EIO; 976 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); 977 if (!hw->hw_addr) 978 goto err_ioremap; 979 980 if (adapter->need_ioport) { 981 for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) { 982 if (pci_resource_len(pdev, i) == 0) 983 continue; 984 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 985 hw->io_base = pci_resource_start(pdev, i); 986 break; 987 } 988 } 989 } 990 991 /* make ready for any if (hw->...) below */ 992 err = e1000_init_hw_struct(adapter, hw); 993 if (err) 994 goto err_sw_init; 995 996 /* there is a workaround being applied below that limits 997 * 64-bit DMA addresses to 64-bit hardware. There are some 998 * 32-bit adapters that Tx hang when given 64-bit DMA addresses 999 */ 1000 pci_using_dac = 0; 1001 if ((hw->bus_type == e1000_bus_type_pcix) && 1002 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 1003 pci_using_dac = 1; 1004 } else { 1005 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1006 if (err) { 1007 pr_err("No usable DMA config, aborting\n"); 1008 goto err_dma; 1009 } 1010 } 1011 1012 netdev->netdev_ops = &e1000_netdev_ops; 1013 e1000_set_ethtool_ops(netdev); 1014 netdev->watchdog_timeo = 5 * HZ; 1015 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); 1016 1017 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 1018 1019 adapter->bd_number = cards_found; 1020 1021 /* setup the private structure */ 1022 1023 err = e1000_sw_init(adapter); 1024 if (err) 1025 goto err_sw_init; 1026 1027 err = -EIO; 1028 if (hw->mac_type == e1000_ce4100) { 1029 hw->ce4100_gbe_mdio_base_virt = 1030 ioremap(pci_resource_start(pdev, BAR_1), 1031 pci_resource_len(pdev, BAR_1)); 1032 1033 if (!hw->ce4100_gbe_mdio_base_virt) 1034 goto err_mdio_ioremap; 1035 } 1036 1037 if (hw->mac_type >= e1000_82543) { 1038 netdev->hw_features = NETIF_F_SG | 1039 NETIF_F_HW_CSUM | 1040 NETIF_F_HW_VLAN_CTAG_RX; 1041 netdev->features = NETIF_F_HW_VLAN_CTAG_TX | 1042 NETIF_F_HW_VLAN_CTAG_FILTER; 1043 } 1044 1045 if ((hw->mac_type >= e1000_82544) && 1046 (hw->mac_type != e1000_82547)) 1047 netdev->hw_features |= NETIF_F_TSO; 1048 1049 netdev->priv_flags |= IFF_SUPP_NOFCS; 1050 1051 netdev->features |= netdev->hw_features; 1052 netdev->hw_features |= (NETIF_F_RXCSUM | 1053 NETIF_F_RXALL | 1054 NETIF_F_RXFCS); 1055 1056 if (pci_using_dac) { 1057 netdev->features |= NETIF_F_HIGHDMA; 1058 netdev->vlan_features |= NETIF_F_HIGHDMA; 1059 } 1060 1061 netdev->vlan_features |= (NETIF_F_TSO | 1062 NETIF_F_HW_CSUM | 1063 NETIF_F_SG); 1064 1065 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */ 1066 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER || 1067 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE) 1068 netdev->priv_flags |= IFF_UNICAST_FLT; 1069 1070 /* MTU range: 46 - 16110 */ 1071 netdev->min_mtu = ETH_ZLEN - ETH_HLEN; 1072 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN); 1073 1074 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); 1075 1076 /* initialize eeprom parameters */ 1077 if (e1000_init_eeprom_params(hw)) { 1078 e_err(probe, "EEPROM initialization failed\n"); 1079 goto err_eeprom; 1080 } 1081 1082 /* before reading the EEPROM, reset the controller to 1083 * put the device in a known good starting state 1084 */ 1085 1086 e1000_reset_hw(hw); 1087 1088 /* make sure the EEPROM is good */ 1089 if (e1000_validate_eeprom_checksum(hw) < 0) { 1090 e_err(probe, "The EEPROM Checksum Is Not Valid\n"); 1091 e1000_dump_eeprom(adapter); 1092 /* set MAC address to all zeroes to invalidate and temporary 1093 * disable this device for the user. This blocks regular 1094 * traffic while still permitting ethtool ioctls from reaching 1095 * the hardware as well as allowing the user to run the 1096 * interface after manually setting a hw addr using 1097 * `ip set address` 1098 */ 1099 memset(hw->mac_addr, 0, netdev->addr_len); 1100 } else { 1101 /* copy the MAC address out of the EEPROM */ 1102 if (e1000_read_mac_addr(hw)) 1103 e_err(probe, "EEPROM Read Error\n"); 1104 } 1105 /* don't block initialization here due to bad MAC address */ 1106 eth_hw_addr_set(netdev, hw->mac_addr); 1107 1108 if (!is_valid_ether_addr(netdev->dev_addr)) 1109 e_err(probe, "Invalid MAC Address\n"); 1110 1111 1112 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog); 1113 INIT_DELAYED_WORK(&adapter->fifo_stall_task, 1114 e1000_82547_tx_fifo_stall_task); 1115 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task); 1116 INIT_WORK(&adapter->reset_task, e1000_reset_task); 1117 1118 e1000_check_options(adapter); 1119 1120 /* Initial Wake on LAN setting 1121 * If APM wake is enabled in the EEPROM, 1122 * enable the ACPI Magic Packet filter 1123 */ 1124 1125 switch (hw->mac_type) { 1126 case e1000_82542_rev2_0: 1127 case e1000_82542_rev2_1: 1128 case e1000_82543: 1129 break; 1130 case e1000_82544: 1131 e1000_read_eeprom(hw, 1132 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); 1133 eeprom_apme_mask = E1000_EEPROM_82544_APM; 1134 break; 1135 case e1000_82546: 1136 case e1000_82546_rev_3: 1137 if (er32(STATUS) & E1000_STATUS_FUNC_1) { 1138 e1000_read_eeprom(hw, 1139 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 1140 break; 1141 } 1142 fallthrough; 1143 default: 1144 e1000_read_eeprom(hw, 1145 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 1146 break; 1147 } 1148 if (eeprom_data & eeprom_apme_mask) 1149 adapter->eeprom_wol |= E1000_WUFC_MAG; 1150 1151 /* now that we have the eeprom settings, apply the special cases 1152 * where the eeprom may be wrong or the board simply won't support 1153 * wake on lan on a particular port 1154 */ 1155 switch (pdev->device) { 1156 case E1000_DEV_ID_82546GB_PCIE: 1157 adapter->eeprom_wol = 0; 1158 break; 1159 case E1000_DEV_ID_82546EB_FIBER: 1160 case E1000_DEV_ID_82546GB_FIBER: 1161 /* Wake events only supported on port A for dual fiber 1162 * regardless of eeprom setting 1163 */ 1164 if (er32(STATUS) & E1000_STATUS_FUNC_1) 1165 adapter->eeprom_wol = 0; 1166 break; 1167 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1168 /* if quad port adapter, disable WoL on all but port A */ 1169 if (global_quad_port_a != 0) 1170 adapter->eeprom_wol = 0; 1171 else 1172 adapter->quad_port_a = true; 1173 /* Reset for multiple quad port adapters */ 1174 if (++global_quad_port_a == 4) 1175 global_quad_port_a = 0; 1176 break; 1177 } 1178 1179 /* initialize the wol settings based on the eeprom settings */ 1180 adapter->wol = adapter->eeprom_wol; 1181 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1182 1183 /* Auto detect PHY address */ 1184 if (hw->mac_type == e1000_ce4100) { 1185 for (i = 0; i < 32; i++) { 1186 hw->phy_addr = i; 1187 e1000_read_phy_reg(hw, PHY_ID2, &tmp); 1188 1189 if (tmp != 0 && tmp != 0xFF) 1190 break; 1191 } 1192 1193 if (i >= 32) 1194 goto err_eeprom; 1195 } 1196 1197 /* reset the hardware with the new settings */ 1198 e1000_reset(adapter); 1199 1200 strcpy(netdev->name, "eth%d"); 1201 err = register_netdev(netdev); 1202 if (err) 1203 goto err_register; 1204 1205 e1000_vlan_filter_on_off(adapter, false); 1206 1207 /* print bus type/speed/width info */ 1208 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n", 1209 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), 1210 ((hw->bus_speed == e1000_bus_speed_133) ? 133 : 1211 (hw->bus_speed == e1000_bus_speed_120) ? 120 : 1212 (hw->bus_speed == e1000_bus_speed_100) ? 100 : 1213 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), 1214 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), 1215 netdev->dev_addr); 1216 1217 /* carrier off reporting is important to ethtool even BEFORE open */ 1218 netif_carrier_off(netdev); 1219 1220 e_info(probe, "Intel(R) PRO/1000 Network Connection\n"); 1221 1222 cards_found++; 1223 return 0; 1224 1225 err_register: 1226 err_eeprom: 1227 e1000_phy_hw_reset(hw); 1228 1229 if (hw->flash_address) 1230 iounmap(hw->flash_address); 1231 kfree(adapter->tx_ring); 1232 kfree(adapter->rx_ring); 1233 err_dma: 1234 err_sw_init: 1235 err_mdio_ioremap: 1236 iounmap(hw->ce4100_gbe_mdio_base_virt); 1237 iounmap(hw->hw_addr); 1238 err_ioremap: 1239 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags); 1240 free_netdev(netdev); 1241 err_alloc_etherdev: 1242 pci_release_selected_regions(pdev, bars); 1243 err_pci_reg: 1244 if (!adapter || disable_dev) 1245 pci_disable_device(pdev); 1246 return err; 1247 } 1248 1249 /** 1250 * e1000_remove - Device Removal Routine 1251 * @pdev: PCI device information struct 1252 * 1253 * e1000_remove is called by the PCI subsystem to alert the driver 1254 * that it should release a PCI device. That could be caused by a 1255 * Hot-Plug event, or because the driver is going to be removed from 1256 * memory. 1257 **/ 1258 static void e1000_remove(struct pci_dev *pdev) 1259 { 1260 struct net_device *netdev = pci_get_drvdata(pdev); 1261 struct e1000_adapter *adapter = netdev_priv(netdev); 1262 struct e1000_hw *hw = &adapter->hw; 1263 bool disable_dev; 1264 1265 e1000_down_and_stop(adapter); 1266 e1000_release_manageability(adapter); 1267 1268 unregister_netdev(netdev); 1269 1270 e1000_phy_hw_reset(hw); 1271 1272 kfree(adapter->tx_ring); 1273 kfree(adapter->rx_ring); 1274 1275 if (hw->mac_type == e1000_ce4100) 1276 iounmap(hw->ce4100_gbe_mdio_base_virt); 1277 iounmap(hw->hw_addr); 1278 if (hw->flash_address) 1279 iounmap(hw->flash_address); 1280 pci_release_selected_regions(pdev, adapter->bars); 1281 1282 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags); 1283 free_netdev(netdev); 1284 1285 if (disable_dev) 1286 pci_disable_device(pdev); 1287 } 1288 1289 /** 1290 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 1291 * @adapter: board private structure to initialize 1292 * 1293 * e1000_sw_init initializes the Adapter private data structure. 1294 * e1000_init_hw_struct MUST be called before this function 1295 **/ 1296 static int e1000_sw_init(struct e1000_adapter *adapter) 1297 { 1298 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 1299 1300 adapter->num_tx_queues = 1; 1301 adapter->num_rx_queues = 1; 1302 1303 if (e1000_alloc_queues(adapter)) { 1304 e_err(probe, "Unable to allocate memory for queues\n"); 1305 return -ENOMEM; 1306 } 1307 1308 /* Explicitly disable IRQ since the NIC can be in any state. */ 1309 e1000_irq_disable(adapter); 1310 1311 spin_lock_init(&adapter->stats_lock); 1312 1313 set_bit(__E1000_DOWN, &adapter->flags); 1314 1315 return 0; 1316 } 1317 1318 /** 1319 * e1000_alloc_queues - Allocate memory for all rings 1320 * @adapter: board private structure to initialize 1321 * 1322 * We allocate one ring per queue at run-time since we don't know the 1323 * number of queues at compile-time. 1324 **/ 1325 static int e1000_alloc_queues(struct e1000_adapter *adapter) 1326 { 1327 adapter->tx_ring = kcalloc(adapter->num_tx_queues, 1328 sizeof(struct e1000_tx_ring), GFP_KERNEL); 1329 if (!adapter->tx_ring) 1330 return -ENOMEM; 1331 1332 adapter->rx_ring = kcalloc(adapter->num_rx_queues, 1333 sizeof(struct e1000_rx_ring), GFP_KERNEL); 1334 if (!adapter->rx_ring) { 1335 kfree(adapter->tx_ring); 1336 return -ENOMEM; 1337 } 1338 1339 return E1000_SUCCESS; 1340 } 1341 1342 /** 1343 * e1000_open - Called when a network interface is made active 1344 * @netdev: network interface device structure 1345 * 1346 * Returns 0 on success, negative value on failure 1347 * 1348 * The open entry point is called when a network interface is made 1349 * active by the system (IFF_UP). At this point all resources needed 1350 * for transmit and receive operations are allocated, the interrupt 1351 * handler is registered with the OS, the watchdog task is started, 1352 * and the stack is notified that the interface is ready. 1353 **/ 1354 int e1000_open(struct net_device *netdev) 1355 { 1356 struct e1000_adapter *adapter = netdev_priv(netdev); 1357 struct e1000_hw *hw = &adapter->hw; 1358 int err; 1359 1360 /* disallow open during test */ 1361 if (test_bit(__E1000_TESTING, &adapter->flags)) 1362 return -EBUSY; 1363 1364 netif_carrier_off(netdev); 1365 1366 /* allocate transmit descriptors */ 1367 err = e1000_setup_all_tx_resources(adapter); 1368 if (err) 1369 goto err_setup_tx; 1370 1371 /* allocate receive descriptors */ 1372 err = e1000_setup_all_rx_resources(adapter); 1373 if (err) 1374 goto err_setup_rx; 1375 1376 e1000_power_up_phy(adapter); 1377 1378 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1379 if ((hw->mng_cookie.status & 1380 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { 1381 e1000_update_mng_vlan(adapter); 1382 } 1383 1384 /* before we allocate an interrupt, we must be ready to handle it. 1385 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1386 * as soon as we call pci_request_irq, so we have to setup our 1387 * clean_rx handler before we do so. 1388 */ 1389 e1000_configure(adapter); 1390 1391 err = e1000_request_irq(adapter); 1392 if (err) 1393 goto err_req_irq; 1394 1395 /* From here on the code is the same as e1000_up() */ 1396 clear_bit(__E1000_DOWN, &adapter->flags); 1397 1398 napi_enable(&adapter->napi); 1399 1400 e1000_irq_enable(adapter); 1401 1402 netif_start_queue(netdev); 1403 1404 /* fire a link status change interrupt to start the watchdog */ 1405 ew32(ICS, E1000_ICS_LSC); 1406 1407 return E1000_SUCCESS; 1408 1409 err_req_irq: 1410 e1000_power_down_phy(adapter); 1411 e1000_free_all_rx_resources(adapter); 1412 err_setup_rx: 1413 e1000_free_all_tx_resources(adapter); 1414 err_setup_tx: 1415 e1000_reset(adapter); 1416 1417 return err; 1418 } 1419 1420 /** 1421 * e1000_close - Disables a network interface 1422 * @netdev: network interface device structure 1423 * 1424 * Returns 0, this is not allowed to fail 1425 * 1426 * The close entry point is called when an interface is de-activated 1427 * by the OS. The hardware is still under the drivers control, but 1428 * needs to be disabled. A global MAC reset is issued to stop the 1429 * hardware, and all transmit and receive resources are freed. 1430 **/ 1431 int e1000_close(struct net_device *netdev) 1432 { 1433 struct e1000_adapter *adapter = netdev_priv(netdev); 1434 struct e1000_hw *hw = &adapter->hw; 1435 int count = E1000_CHECK_RESET_COUNT; 1436 1437 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--) 1438 usleep_range(10000, 20000); 1439 1440 WARN_ON(count < 0); 1441 1442 /* signal that we're down so that the reset task will no longer run */ 1443 set_bit(__E1000_DOWN, &adapter->flags); 1444 clear_bit(__E1000_RESETTING, &adapter->flags); 1445 1446 e1000_down(adapter); 1447 e1000_power_down_phy(adapter); 1448 e1000_free_irq(adapter); 1449 1450 e1000_free_all_tx_resources(adapter); 1451 e1000_free_all_rx_resources(adapter); 1452 1453 /* kill manageability vlan ID if supported, but not if a vlan with 1454 * the same ID is registered on the host OS (let 8021q kill it) 1455 */ 1456 if ((hw->mng_cookie.status & 1457 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 1458 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { 1459 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 1460 adapter->mng_vlan_id); 1461 } 1462 1463 return 0; 1464 } 1465 1466 /** 1467 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary 1468 * @adapter: address of board private structure 1469 * @start: address of beginning of memory 1470 * @len: length of memory 1471 **/ 1472 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, 1473 unsigned long len) 1474 { 1475 struct e1000_hw *hw = &adapter->hw; 1476 unsigned long begin = (unsigned long)start; 1477 unsigned long end = begin + len; 1478 1479 /* First rev 82545 and 82546 need to not allow any memory 1480 * write location to cross 64k boundary due to errata 23 1481 */ 1482 if (hw->mac_type == e1000_82545 || 1483 hw->mac_type == e1000_ce4100 || 1484 hw->mac_type == e1000_82546) { 1485 return ((begin ^ (end - 1)) >> 16) == 0; 1486 } 1487 1488 return true; 1489 } 1490 1491 /** 1492 * e1000_setup_tx_resources - allocate Tx resources (Descriptors) 1493 * @adapter: board private structure 1494 * @txdr: tx descriptor ring (for a specific queue) to setup 1495 * 1496 * Return 0 on success, negative on failure 1497 **/ 1498 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 1499 struct e1000_tx_ring *txdr) 1500 { 1501 struct pci_dev *pdev = adapter->pdev; 1502 int size; 1503 1504 size = sizeof(struct e1000_tx_buffer) * txdr->count; 1505 txdr->buffer_info = vzalloc(size); 1506 if (!txdr->buffer_info) 1507 return -ENOMEM; 1508 1509 /* round up to nearest 4K */ 1510 1511 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 1512 txdr->size = ALIGN(txdr->size, 4096); 1513 1514 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, 1515 GFP_KERNEL); 1516 if (!txdr->desc) { 1517 setup_tx_desc_die: 1518 vfree(txdr->buffer_info); 1519 return -ENOMEM; 1520 } 1521 1522 /* Fix for errata 23, can't cross 64kB boundary */ 1523 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1524 void *olddesc = txdr->desc; 1525 dma_addr_t olddma = txdr->dma; 1526 e_err(tx_err, "txdr align check failed: %u bytes at %p\n", 1527 txdr->size, txdr->desc); 1528 /* Try again, without freeing the previous */ 1529 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, 1530 &txdr->dma, GFP_KERNEL); 1531 /* Failed allocation, critical failure */ 1532 if (!txdr->desc) { 1533 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1534 olddma); 1535 goto setup_tx_desc_die; 1536 } 1537 1538 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1539 /* give up */ 1540 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, 1541 txdr->dma); 1542 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1543 olddma); 1544 e_err(probe, "Unable to allocate aligned memory " 1545 "for the transmit descriptor ring\n"); 1546 vfree(txdr->buffer_info); 1547 return -ENOMEM; 1548 } else { 1549 /* Free old allocation, new allocation was successful */ 1550 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1551 olddma); 1552 } 1553 } 1554 memset(txdr->desc, 0, txdr->size); 1555 1556 txdr->next_to_use = 0; 1557 txdr->next_to_clean = 0; 1558 1559 return 0; 1560 } 1561 1562 /** 1563 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources 1564 * (Descriptors) for all queues 1565 * @adapter: board private structure 1566 * 1567 * Return 0 on success, negative on failure 1568 **/ 1569 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) 1570 { 1571 int i, err = 0; 1572 1573 for (i = 0; i < adapter->num_tx_queues; i++) { 1574 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); 1575 if (err) { 1576 e_err(probe, "Allocation for Tx Queue %u failed\n", i); 1577 for (i-- ; i >= 0; i--) 1578 e1000_free_tx_resources(adapter, 1579 &adapter->tx_ring[i]); 1580 break; 1581 } 1582 } 1583 1584 return err; 1585 } 1586 1587 /** 1588 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset 1589 * @adapter: board private structure 1590 * 1591 * Configure the Tx unit of the MAC after a reset. 1592 **/ 1593 static void e1000_configure_tx(struct e1000_adapter *adapter) 1594 { 1595 u64 tdba; 1596 struct e1000_hw *hw = &adapter->hw; 1597 u32 tdlen, tctl, tipg; 1598 u32 ipgr1, ipgr2; 1599 1600 /* Setup the HW Tx Head and Tail descriptor pointers */ 1601 1602 switch (adapter->num_tx_queues) { 1603 case 1: 1604 default: 1605 tdba = adapter->tx_ring[0].dma; 1606 tdlen = adapter->tx_ring[0].count * 1607 sizeof(struct e1000_tx_desc); 1608 ew32(TDLEN, tdlen); 1609 ew32(TDBAH, (tdba >> 32)); 1610 ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); 1611 ew32(TDT, 0); 1612 ew32(TDH, 0); 1613 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? 1614 E1000_TDH : E1000_82542_TDH); 1615 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? 1616 E1000_TDT : E1000_82542_TDT); 1617 break; 1618 } 1619 1620 /* Set the default values for the Tx Inter Packet Gap timer */ 1621 if ((hw->media_type == e1000_media_type_fiber || 1622 hw->media_type == e1000_media_type_internal_serdes)) 1623 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 1624 else 1625 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 1626 1627 switch (hw->mac_type) { 1628 case e1000_82542_rev2_0: 1629 case e1000_82542_rev2_1: 1630 tipg = DEFAULT_82542_TIPG_IPGT; 1631 ipgr1 = DEFAULT_82542_TIPG_IPGR1; 1632 ipgr2 = DEFAULT_82542_TIPG_IPGR2; 1633 break; 1634 default: 1635 ipgr1 = DEFAULT_82543_TIPG_IPGR1; 1636 ipgr2 = DEFAULT_82543_TIPG_IPGR2; 1637 break; 1638 } 1639 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; 1640 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; 1641 ew32(TIPG, tipg); 1642 1643 /* Set the Tx Interrupt Delay register */ 1644 1645 ew32(TIDV, adapter->tx_int_delay); 1646 if (hw->mac_type >= e1000_82540) 1647 ew32(TADV, adapter->tx_abs_int_delay); 1648 1649 /* Program the Transmit Control Register */ 1650 1651 tctl = er32(TCTL); 1652 tctl &= ~E1000_TCTL_CT; 1653 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 1654 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 1655 1656 e1000_config_collision_dist(hw); 1657 1658 /* Setup Transmit Descriptor Settings for eop descriptor */ 1659 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 1660 1661 /* only set IDE if we are delaying interrupts using the timers */ 1662 if (adapter->tx_int_delay) 1663 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 1664 1665 if (hw->mac_type < e1000_82543) 1666 adapter->txd_cmd |= E1000_TXD_CMD_RPS; 1667 else 1668 adapter->txd_cmd |= E1000_TXD_CMD_RS; 1669 1670 /* Cache if we're 82544 running in PCI-X because we'll 1671 * need this to apply a workaround later in the send path. 1672 */ 1673 if (hw->mac_type == e1000_82544 && 1674 hw->bus_type == e1000_bus_type_pcix) 1675 adapter->pcix_82544 = true; 1676 1677 ew32(TCTL, tctl); 1678 1679 } 1680 1681 /** 1682 * e1000_setup_rx_resources - allocate Rx resources (Descriptors) 1683 * @adapter: board private structure 1684 * @rxdr: rx descriptor ring (for a specific queue) to setup 1685 * 1686 * Returns 0 on success, negative on failure 1687 **/ 1688 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 1689 struct e1000_rx_ring *rxdr) 1690 { 1691 struct pci_dev *pdev = adapter->pdev; 1692 int size, desc_len; 1693 1694 size = sizeof(struct e1000_rx_buffer) * rxdr->count; 1695 rxdr->buffer_info = vzalloc(size); 1696 if (!rxdr->buffer_info) 1697 return -ENOMEM; 1698 1699 desc_len = sizeof(struct e1000_rx_desc); 1700 1701 /* Round up to nearest 4K */ 1702 1703 rxdr->size = rxdr->count * desc_len; 1704 rxdr->size = ALIGN(rxdr->size, 4096); 1705 1706 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, 1707 GFP_KERNEL); 1708 if (!rxdr->desc) { 1709 setup_rx_desc_die: 1710 vfree(rxdr->buffer_info); 1711 return -ENOMEM; 1712 } 1713 1714 /* Fix for errata 23, can't cross 64kB boundary */ 1715 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1716 void *olddesc = rxdr->desc; 1717 dma_addr_t olddma = rxdr->dma; 1718 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n", 1719 rxdr->size, rxdr->desc); 1720 /* Try again, without freeing the previous */ 1721 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, 1722 &rxdr->dma, GFP_KERNEL); 1723 /* Failed allocation, critical failure */ 1724 if (!rxdr->desc) { 1725 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1726 olddma); 1727 goto setup_rx_desc_die; 1728 } 1729 1730 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1731 /* give up */ 1732 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, 1733 rxdr->dma); 1734 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1735 olddma); 1736 e_err(probe, "Unable to allocate aligned memory for " 1737 "the Rx descriptor ring\n"); 1738 goto setup_rx_desc_die; 1739 } else { 1740 /* Free old allocation, new allocation was successful */ 1741 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1742 olddma); 1743 } 1744 } 1745 memset(rxdr->desc, 0, rxdr->size); 1746 1747 rxdr->next_to_clean = 0; 1748 rxdr->next_to_use = 0; 1749 rxdr->rx_skb_top = NULL; 1750 1751 return 0; 1752 } 1753 1754 /** 1755 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources 1756 * (Descriptors) for all queues 1757 * @adapter: board private structure 1758 * 1759 * Return 0 on success, negative on failure 1760 **/ 1761 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) 1762 { 1763 int i, err = 0; 1764 1765 for (i = 0; i < adapter->num_rx_queues; i++) { 1766 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); 1767 if (err) { 1768 e_err(probe, "Allocation for Rx Queue %u failed\n", i); 1769 for (i-- ; i >= 0; i--) 1770 e1000_free_rx_resources(adapter, 1771 &adapter->rx_ring[i]); 1772 break; 1773 } 1774 } 1775 1776 return err; 1777 } 1778 1779 /** 1780 * e1000_setup_rctl - configure the receive control registers 1781 * @adapter: Board private structure 1782 **/ 1783 static void e1000_setup_rctl(struct e1000_adapter *adapter) 1784 { 1785 struct e1000_hw *hw = &adapter->hw; 1786 u32 rctl; 1787 1788 rctl = er32(RCTL); 1789 1790 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 1791 1792 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO | 1793 E1000_RCTL_RDMTS_HALF | 1794 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); 1795 1796 if (hw->tbi_compatibility_on == 1) 1797 rctl |= E1000_RCTL_SBP; 1798 else 1799 rctl &= ~E1000_RCTL_SBP; 1800 1801 if (adapter->netdev->mtu <= ETH_DATA_LEN) 1802 rctl &= ~E1000_RCTL_LPE; 1803 else 1804 rctl |= E1000_RCTL_LPE; 1805 1806 /* Setup buffer sizes */ 1807 rctl &= ~E1000_RCTL_SZ_4096; 1808 rctl |= E1000_RCTL_BSEX; 1809 switch (adapter->rx_buffer_len) { 1810 case E1000_RXBUFFER_2048: 1811 default: 1812 rctl |= E1000_RCTL_SZ_2048; 1813 rctl &= ~E1000_RCTL_BSEX; 1814 break; 1815 case E1000_RXBUFFER_4096: 1816 rctl |= E1000_RCTL_SZ_4096; 1817 break; 1818 case E1000_RXBUFFER_8192: 1819 rctl |= E1000_RCTL_SZ_8192; 1820 break; 1821 case E1000_RXBUFFER_16384: 1822 rctl |= E1000_RCTL_SZ_16384; 1823 break; 1824 } 1825 1826 /* This is useful for sniffing bad packets. */ 1827 if (adapter->netdev->features & NETIF_F_RXALL) { 1828 /* UPE and MPE will be handled by normal PROMISC logic 1829 * in e1000e_set_rx_mode 1830 */ 1831 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 1832 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 1833 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 1834 1835 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 1836 E1000_RCTL_DPF | /* Allow filtered pause */ 1837 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 1838 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 1839 * and that breaks VLANs. 1840 */ 1841 } 1842 1843 ew32(RCTL, rctl); 1844 } 1845 1846 /** 1847 * e1000_configure_rx - Configure 8254x Receive Unit after Reset 1848 * @adapter: board private structure 1849 * 1850 * Configure the Rx unit of the MAC after a reset. 1851 **/ 1852 static void e1000_configure_rx(struct e1000_adapter *adapter) 1853 { 1854 u64 rdba; 1855 struct e1000_hw *hw = &adapter->hw; 1856 u32 rdlen, rctl, rxcsum; 1857 1858 if (adapter->netdev->mtu > ETH_DATA_LEN) { 1859 rdlen = adapter->rx_ring[0].count * 1860 sizeof(struct e1000_rx_desc); 1861 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 1862 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 1863 } else { 1864 rdlen = adapter->rx_ring[0].count * 1865 sizeof(struct e1000_rx_desc); 1866 adapter->clean_rx = e1000_clean_rx_irq; 1867 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 1868 } 1869 1870 /* disable receives while setting up the descriptors */ 1871 rctl = er32(RCTL); 1872 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1873 1874 /* set the Receive Delay Timer Register */ 1875 ew32(RDTR, adapter->rx_int_delay); 1876 1877 if (hw->mac_type >= e1000_82540) { 1878 ew32(RADV, adapter->rx_abs_int_delay); 1879 if (adapter->itr_setting != 0) 1880 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1881 } 1882 1883 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1884 * the Base and Length of the Rx Descriptor Ring 1885 */ 1886 switch (adapter->num_rx_queues) { 1887 case 1: 1888 default: 1889 rdba = adapter->rx_ring[0].dma; 1890 ew32(RDLEN, rdlen); 1891 ew32(RDBAH, (rdba >> 32)); 1892 ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); 1893 ew32(RDT, 0); 1894 ew32(RDH, 0); 1895 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? 1896 E1000_RDH : E1000_82542_RDH); 1897 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? 1898 E1000_RDT : E1000_82542_RDT); 1899 break; 1900 } 1901 1902 /* Enable 82543 Receive Checksum Offload for TCP and UDP */ 1903 if (hw->mac_type >= e1000_82543) { 1904 rxcsum = er32(RXCSUM); 1905 if (adapter->rx_csum) 1906 rxcsum |= E1000_RXCSUM_TUOFL; 1907 else 1908 /* don't need to clear IPPCSE as it defaults to 0 */ 1909 rxcsum &= ~E1000_RXCSUM_TUOFL; 1910 ew32(RXCSUM, rxcsum); 1911 } 1912 1913 /* Enable Receives */ 1914 ew32(RCTL, rctl | E1000_RCTL_EN); 1915 } 1916 1917 /** 1918 * e1000_free_tx_resources - Free Tx Resources per Queue 1919 * @adapter: board private structure 1920 * @tx_ring: Tx descriptor ring for a specific queue 1921 * 1922 * Free all transmit software resources 1923 **/ 1924 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 1925 struct e1000_tx_ring *tx_ring) 1926 { 1927 struct pci_dev *pdev = adapter->pdev; 1928 1929 e1000_clean_tx_ring(adapter, tx_ring); 1930 1931 vfree(tx_ring->buffer_info); 1932 tx_ring->buffer_info = NULL; 1933 1934 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1935 tx_ring->dma); 1936 1937 tx_ring->desc = NULL; 1938 } 1939 1940 /** 1941 * e1000_free_all_tx_resources - Free Tx Resources for All Queues 1942 * @adapter: board private structure 1943 * 1944 * Free all transmit software resources 1945 **/ 1946 void e1000_free_all_tx_resources(struct e1000_adapter *adapter) 1947 { 1948 int i; 1949 1950 for (i = 0; i < adapter->num_tx_queues; i++) 1951 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); 1952 } 1953 1954 static void 1955 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, 1956 struct e1000_tx_buffer *buffer_info) 1957 { 1958 if (buffer_info->dma) { 1959 if (buffer_info->mapped_as_page) 1960 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, 1961 buffer_info->length, DMA_TO_DEVICE); 1962 else 1963 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1964 buffer_info->length, 1965 DMA_TO_DEVICE); 1966 buffer_info->dma = 0; 1967 } 1968 if (buffer_info->skb) { 1969 dev_kfree_skb_any(buffer_info->skb); 1970 buffer_info->skb = NULL; 1971 } 1972 buffer_info->time_stamp = 0; 1973 /* buffer_info must be completely set up in the transmit path */ 1974 } 1975 1976 /** 1977 * e1000_clean_tx_ring - Free Tx Buffers 1978 * @adapter: board private structure 1979 * @tx_ring: ring to be cleaned 1980 **/ 1981 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 1982 struct e1000_tx_ring *tx_ring) 1983 { 1984 struct e1000_hw *hw = &adapter->hw; 1985 struct e1000_tx_buffer *buffer_info; 1986 unsigned long size; 1987 unsigned int i; 1988 1989 /* Free all the Tx ring sk_buffs */ 1990 1991 for (i = 0; i < tx_ring->count; i++) { 1992 buffer_info = &tx_ring->buffer_info[i]; 1993 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 1994 } 1995 1996 netdev_reset_queue(adapter->netdev); 1997 size = sizeof(struct e1000_tx_buffer) * tx_ring->count; 1998 memset(tx_ring->buffer_info, 0, size); 1999 2000 /* Zero out the descriptor ring */ 2001 2002 memset(tx_ring->desc, 0, tx_ring->size); 2003 2004 tx_ring->next_to_use = 0; 2005 tx_ring->next_to_clean = 0; 2006 tx_ring->last_tx_tso = false; 2007 2008 writel(0, hw->hw_addr + tx_ring->tdh); 2009 writel(0, hw->hw_addr + tx_ring->tdt); 2010 } 2011 2012 /** 2013 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues 2014 * @adapter: board private structure 2015 **/ 2016 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) 2017 { 2018 int i; 2019 2020 for (i = 0; i < adapter->num_tx_queues; i++) 2021 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); 2022 } 2023 2024 /** 2025 * e1000_free_rx_resources - Free Rx Resources 2026 * @adapter: board private structure 2027 * @rx_ring: ring to clean the resources from 2028 * 2029 * Free all receive software resources 2030 **/ 2031 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 2032 struct e1000_rx_ring *rx_ring) 2033 { 2034 struct pci_dev *pdev = adapter->pdev; 2035 2036 e1000_clean_rx_ring(adapter, rx_ring); 2037 2038 vfree(rx_ring->buffer_info); 2039 rx_ring->buffer_info = NULL; 2040 2041 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 2042 rx_ring->dma); 2043 2044 rx_ring->desc = NULL; 2045 } 2046 2047 /** 2048 * e1000_free_all_rx_resources - Free Rx Resources for All Queues 2049 * @adapter: board private structure 2050 * 2051 * Free all receive software resources 2052 **/ 2053 void e1000_free_all_rx_resources(struct e1000_adapter *adapter) 2054 { 2055 int i; 2056 2057 for (i = 0; i < adapter->num_rx_queues; i++) 2058 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); 2059 } 2060 2061 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN) 2062 static unsigned int e1000_frag_len(const struct e1000_adapter *a) 2063 { 2064 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) + 2065 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2066 } 2067 2068 static void *e1000_alloc_frag(const struct e1000_adapter *a) 2069 { 2070 unsigned int len = e1000_frag_len(a); 2071 u8 *data = netdev_alloc_frag(len); 2072 2073 if (likely(data)) 2074 data += E1000_HEADROOM; 2075 return data; 2076 } 2077 2078 /** 2079 * e1000_clean_rx_ring - Free Rx Buffers per Queue 2080 * @adapter: board private structure 2081 * @rx_ring: ring to free buffers from 2082 **/ 2083 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 2084 struct e1000_rx_ring *rx_ring) 2085 { 2086 struct e1000_hw *hw = &adapter->hw; 2087 struct e1000_rx_buffer *buffer_info; 2088 struct pci_dev *pdev = adapter->pdev; 2089 unsigned long size; 2090 unsigned int i; 2091 2092 /* Free all the Rx netfrags */ 2093 for (i = 0; i < rx_ring->count; i++) { 2094 buffer_info = &rx_ring->buffer_info[i]; 2095 if (adapter->clean_rx == e1000_clean_rx_irq) { 2096 if (buffer_info->dma) 2097 dma_unmap_single(&pdev->dev, buffer_info->dma, 2098 adapter->rx_buffer_len, 2099 DMA_FROM_DEVICE); 2100 if (buffer_info->rxbuf.data) { 2101 skb_free_frag(buffer_info->rxbuf.data); 2102 buffer_info->rxbuf.data = NULL; 2103 } 2104 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) { 2105 if (buffer_info->dma) 2106 dma_unmap_page(&pdev->dev, buffer_info->dma, 2107 adapter->rx_buffer_len, 2108 DMA_FROM_DEVICE); 2109 if (buffer_info->rxbuf.page) { 2110 put_page(buffer_info->rxbuf.page); 2111 buffer_info->rxbuf.page = NULL; 2112 } 2113 } 2114 2115 buffer_info->dma = 0; 2116 } 2117 2118 /* there also may be some cached data from a chained receive */ 2119 napi_free_frags(&adapter->napi); 2120 rx_ring->rx_skb_top = NULL; 2121 2122 size = sizeof(struct e1000_rx_buffer) * rx_ring->count; 2123 memset(rx_ring->buffer_info, 0, size); 2124 2125 /* Zero out the descriptor ring */ 2126 memset(rx_ring->desc, 0, rx_ring->size); 2127 2128 rx_ring->next_to_clean = 0; 2129 rx_ring->next_to_use = 0; 2130 2131 writel(0, hw->hw_addr + rx_ring->rdh); 2132 writel(0, hw->hw_addr + rx_ring->rdt); 2133 } 2134 2135 /** 2136 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues 2137 * @adapter: board private structure 2138 **/ 2139 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) 2140 { 2141 int i; 2142 2143 for (i = 0; i < adapter->num_rx_queues; i++) 2144 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); 2145 } 2146 2147 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset 2148 * and memory write and invalidate disabled for certain operations 2149 */ 2150 static void e1000_enter_82542_rst(struct e1000_adapter *adapter) 2151 { 2152 struct e1000_hw *hw = &adapter->hw; 2153 struct net_device *netdev = adapter->netdev; 2154 u32 rctl; 2155 2156 e1000_pci_clear_mwi(hw); 2157 2158 rctl = er32(RCTL); 2159 rctl |= E1000_RCTL_RST; 2160 ew32(RCTL, rctl); 2161 E1000_WRITE_FLUSH(); 2162 mdelay(5); 2163 2164 if (netif_running(netdev)) 2165 e1000_clean_all_rx_rings(adapter); 2166 } 2167 2168 static void e1000_leave_82542_rst(struct e1000_adapter *adapter) 2169 { 2170 struct e1000_hw *hw = &adapter->hw; 2171 struct net_device *netdev = adapter->netdev; 2172 u32 rctl; 2173 2174 rctl = er32(RCTL); 2175 rctl &= ~E1000_RCTL_RST; 2176 ew32(RCTL, rctl); 2177 E1000_WRITE_FLUSH(); 2178 mdelay(5); 2179 2180 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) 2181 e1000_pci_set_mwi(hw); 2182 2183 if (netif_running(netdev)) { 2184 /* No need to loop, because 82542 supports only 1 queue */ 2185 struct e1000_rx_ring *ring = &adapter->rx_ring[0]; 2186 e1000_configure_rx(adapter); 2187 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); 2188 } 2189 } 2190 2191 /** 2192 * e1000_set_mac - Change the Ethernet Address of the NIC 2193 * @netdev: network interface device structure 2194 * @p: pointer to an address structure 2195 * 2196 * Returns 0 on success, negative on failure 2197 **/ 2198 static int e1000_set_mac(struct net_device *netdev, void *p) 2199 { 2200 struct e1000_adapter *adapter = netdev_priv(netdev); 2201 struct e1000_hw *hw = &adapter->hw; 2202 struct sockaddr *addr = p; 2203 2204 if (!is_valid_ether_addr(addr->sa_data)) 2205 return -EADDRNOTAVAIL; 2206 2207 /* 82542 2.0 needs to be in reset to write receive address registers */ 2208 2209 if (hw->mac_type == e1000_82542_rev2_0) 2210 e1000_enter_82542_rst(adapter); 2211 2212 eth_hw_addr_set(netdev, addr->sa_data); 2213 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); 2214 2215 e1000_rar_set(hw, hw->mac_addr, 0); 2216 2217 if (hw->mac_type == e1000_82542_rev2_0) 2218 e1000_leave_82542_rst(adapter); 2219 2220 return 0; 2221 } 2222 2223 /** 2224 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 2225 * @netdev: network interface device structure 2226 * 2227 * The set_rx_mode entry point is called whenever the unicast or multicast 2228 * address lists or the network interface flags are updated. This routine is 2229 * responsible for configuring the hardware for proper unicast, multicast, 2230 * promiscuous mode, and all-multi behavior. 2231 **/ 2232 static void e1000_set_rx_mode(struct net_device *netdev) 2233 { 2234 struct e1000_adapter *adapter = netdev_priv(netdev); 2235 struct e1000_hw *hw = &adapter->hw; 2236 struct netdev_hw_addr *ha; 2237 bool use_uc = false; 2238 u32 rctl; 2239 u32 hash_value; 2240 int i, rar_entries = E1000_RAR_ENTRIES; 2241 int mta_reg_count = E1000_NUM_MTA_REGISTERS; 2242 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); 2243 2244 if (!mcarray) 2245 return; 2246 2247 /* Check for Promiscuous and All Multicast modes */ 2248 2249 rctl = er32(RCTL); 2250 2251 if (netdev->flags & IFF_PROMISC) { 2252 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 2253 rctl &= ~E1000_RCTL_VFE; 2254 } else { 2255 if (netdev->flags & IFF_ALLMULTI) 2256 rctl |= E1000_RCTL_MPE; 2257 else 2258 rctl &= ~E1000_RCTL_MPE; 2259 /* Enable VLAN filter if there is a VLAN */ 2260 if (e1000_vlan_used(adapter)) 2261 rctl |= E1000_RCTL_VFE; 2262 } 2263 2264 if (netdev_uc_count(netdev) > rar_entries - 1) { 2265 rctl |= E1000_RCTL_UPE; 2266 } else if (!(netdev->flags & IFF_PROMISC)) { 2267 rctl &= ~E1000_RCTL_UPE; 2268 use_uc = true; 2269 } 2270 2271 ew32(RCTL, rctl); 2272 2273 /* 82542 2.0 needs to be in reset to write receive address registers */ 2274 2275 if (hw->mac_type == e1000_82542_rev2_0) 2276 e1000_enter_82542_rst(adapter); 2277 2278 /* load the first 14 addresses into the exact filters 1-14. Unicast 2279 * addresses take precedence to avoid disabling unicast filtering 2280 * when possible. 2281 * 2282 * RAR 0 is used for the station MAC address 2283 * if there are not 14 addresses, go ahead and clear the filters 2284 */ 2285 i = 1; 2286 if (use_uc) 2287 netdev_for_each_uc_addr(ha, netdev) { 2288 if (i == rar_entries) 2289 break; 2290 e1000_rar_set(hw, ha->addr, i++); 2291 } 2292 2293 netdev_for_each_mc_addr(ha, netdev) { 2294 if (i == rar_entries) { 2295 /* load any remaining addresses into the hash table */ 2296 u32 hash_reg, hash_bit, mta; 2297 hash_value = e1000_hash_mc_addr(hw, ha->addr); 2298 hash_reg = (hash_value >> 5) & 0x7F; 2299 hash_bit = hash_value & 0x1F; 2300 mta = (1 << hash_bit); 2301 mcarray[hash_reg] |= mta; 2302 } else { 2303 e1000_rar_set(hw, ha->addr, i++); 2304 } 2305 } 2306 2307 for (; i < rar_entries; i++) { 2308 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); 2309 E1000_WRITE_FLUSH(); 2310 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); 2311 E1000_WRITE_FLUSH(); 2312 } 2313 2314 /* write the hash table completely, write from bottom to avoid 2315 * both stupid write combining chipsets, and flushing each write 2316 */ 2317 for (i = mta_reg_count - 1; i >= 0 ; i--) { 2318 /* If we are on an 82544 has an errata where writing odd 2319 * offsets overwrites the previous even offset, but writing 2320 * backwards over the range solves the issue by always 2321 * writing the odd offset first 2322 */ 2323 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); 2324 } 2325 E1000_WRITE_FLUSH(); 2326 2327 if (hw->mac_type == e1000_82542_rev2_0) 2328 e1000_leave_82542_rst(adapter); 2329 2330 kfree(mcarray); 2331 } 2332 2333 /** 2334 * e1000_update_phy_info_task - get phy info 2335 * @work: work struct contained inside adapter struct 2336 * 2337 * Need to wait a few seconds after link up to get diagnostic information from 2338 * the phy 2339 */ 2340 static void e1000_update_phy_info_task(struct work_struct *work) 2341 { 2342 struct e1000_adapter *adapter = container_of(work, 2343 struct e1000_adapter, 2344 phy_info_task.work); 2345 2346 e1000_phy_get_info(&adapter->hw, &adapter->phy_info); 2347 } 2348 2349 /** 2350 * e1000_82547_tx_fifo_stall_task - task to complete work 2351 * @work: work struct contained inside adapter struct 2352 **/ 2353 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work) 2354 { 2355 struct e1000_adapter *adapter = container_of(work, 2356 struct e1000_adapter, 2357 fifo_stall_task.work); 2358 struct e1000_hw *hw = &adapter->hw; 2359 struct net_device *netdev = adapter->netdev; 2360 u32 tctl; 2361 2362 if (atomic_read(&adapter->tx_fifo_stall)) { 2363 if ((er32(TDT) == er32(TDH)) && 2364 (er32(TDFT) == er32(TDFH)) && 2365 (er32(TDFTS) == er32(TDFHS))) { 2366 tctl = er32(TCTL); 2367 ew32(TCTL, tctl & ~E1000_TCTL_EN); 2368 ew32(TDFT, adapter->tx_head_addr); 2369 ew32(TDFH, adapter->tx_head_addr); 2370 ew32(TDFTS, adapter->tx_head_addr); 2371 ew32(TDFHS, adapter->tx_head_addr); 2372 ew32(TCTL, tctl); 2373 E1000_WRITE_FLUSH(); 2374 2375 adapter->tx_fifo_head = 0; 2376 atomic_set(&adapter->tx_fifo_stall, 0); 2377 netif_wake_queue(netdev); 2378 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { 2379 schedule_delayed_work(&adapter->fifo_stall_task, 1); 2380 } 2381 } 2382 } 2383 2384 bool e1000_has_link(struct e1000_adapter *adapter) 2385 { 2386 struct e1000_hw *hw = &adapter->hw; 2387 bool link_active = false; 2388 2389 /* get_link_status is set on LSC (link status) interrupt or rx 2390 * sequence error interrupt (except on intel ce4100). 2391 * get_link_status will stay false until the 2392 * e1000_check_for_link establishes link for copper adapters 2393 * ONLY 2394 */ 2395 switch (hw->media_type) { 2396 case e1000_media_type_copper: 2397 if (hw->mac_type == e1000_ce4100) 2398 hw->get_link_status = 1; 2399 if (hw->get_link_status) { 2400 e1000_check_for_link(hw); 2401 link_active = !hw->get_link_status; 2402 } else { 2403 link_active = true; 2404 } 2405 break; 2406 case e1000_media_type_fiber: 2407 e1000_check_for_link(hw); 2408 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 2409 break; 2410 case e1000_media_type_internal_serdes: 2411 e1000_check_for_link(hw); 2412 link_active = hw->serdes_has_link; 2413 break; 2414 default: 2415 break; 2416 } 2417 2418 return link_active; 2419 } 2420 2421 /** 2422 * e1000_watchdog - work function 2423 * @work: work struct contained inside adapter struct 2424 **/ 2425 static void e1000_watchdog(struct work_struct *work) 2426 { 2427 struct e1000_adapter *adapter = container_of(work, 2428 struct e1000_adapter, 2429 watchdog_task.work); 2430 struct e1000_hw *hw = &adapter->hw; 2431 struct net_device *netdev = adapter->netdev; 2432 struct e1000_tx_ring *txdr = adapter->tx_ring; 2433 u32 link, tctl; 2434 2435 link = e1000_has_link(adapter); 2436 if ((netif_carrier_ok(netdev)) && link) 2437 goto link_up; 2438 2439 if (link) { 2440 if (!netif_carrier_ok(netdev)) { 2441 u32 ctrl; 2442 /* update snapshot of PHY registers on LSC */ 2443 e1000_get_speed_and_duplex(hw, 2444 &adapter->link_speed, 2445 &adapter->link_duplex); 2446 2447 ctrl = er32(CTRL); 2448 pr_info("%s NIC Link is Up %d Mbps %s, " 2449 "Flow Control: %s\n", 2450 netdev->name, 2451 adapter->link_speed, 2452 adapter->link_duplex == FULL_DUPLEX ? 2453 "Full Duplex" : "Half Duplex", 2454 ((ctrl & E1000_CTRL_TFCE) && (ctrl & 2455 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & 2456 E1000_CTRL_RFCE) ? "RX" : ((ctrl & 2457 E1000_CTRL_TFCE) ? "TX" : "None"))); 2458 2459 /* adjust timeout factor according to speed/duplex */ 2460 adapter->tx_timeout_factor = 1; 2461 switch (adapter->link_speed) { 2462 case SPEED_10: 2463 adapter->tx_timeout_factor = 16; 2464 break; 2465 case SPEED_100: 2466 /* maybe add some timeout factor ? */ 2467 break; 2468 } 2469 2470 /* enable transmits in the hardware */ 2471 tctl = er32(TCTL); 2472 tctl |= E1000_TCTL_EN; 2473 ew32(TCTL, tctl); 2474 2475 netif_carrier_on(netdev); 2476 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2477 schedule_delayed_work(&adapter->phy_info_task, 2478 2 * HZ); 2479 adapter->smartspeed = 0; 2480 } 2481 } else { 2482 if (netif_carrier_ok(netdev)) { 2483 adapter->link_speed = 0; 2484 adapter->link_duplex = 0; 2485 pr_info("%s NIC Link is Down\n", 2486 netdev->name); 2487 netif_carrier_off(netdev); 2488 2489 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2490 schedule_delayed_work(&adapter->phy_info_task, 2491 2 * HZ); 2492 } 2493 2494 e1000_smartspeed(adapter); 2495 } 2496 2497 link_up: 2498 e1000_update_stats(adapter); 2499 2500 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 2501 adapter->tpt_old = adapter->stats.tpt; 2502 hw->collision_delta = adapter->stats.colc - adapter->colc_old; 2503 adapter->colc_old = adapter->stats.colc; 2504 2505 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; 2506 adapter->gorcl_old = adapter->stats.gorcl; 2507 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; 2508 adapter->gotcl_old = adapter->stats.gotcl; 2509 2510 e1000_update_adaptive(hw); 2511 2512 if (!netif_carrier_ok(netdev)) { 2513 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { 2514 /* We've lost link, so the controller stops DMA, 2515 * but we've got queued Tx work that's never going 2516 * to get done, so reset controller to flush Tx. 2517 * (Do the reset outside of interrupt context). 2518 */ 2519 adapter->tx_timeout_count++; 2520 schedule_work(&adapter->reset_task); 2521 /* exit immediately since reset is imminent */ 2522 return; 2523 } 2524 } 2525 2526 /* Simple mode for Interrupt Throttle Rate (ITR) */ 2527 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { 2528 /* Symmetric Tx/Rx gets a reduced ITR=2000; 2529 * Total asymmetrical Tx or Rx gets ITR=8000; 2530 * everyone else is between 2000-8000. 2531 */ 2532 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; 2533 u32 dif = (adapter->gotcl > adapter->gorcl ? 2534 adapter->gotcl - adapter->gorcl : 2535 adapter->gorcl - adapter->gotcl) / 10000; 2536 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; 2537 2538 ew32(ITR, 1000000000 / (itr * 256)); 2539 } 2540 2541 /* Cause software interrupt to ensure rx ring is cleaned */ 2542 ew32(ICS, E1000_ICS_RXDMT0); 2543 2544 /* Force detection of hung controller every watchdog period */ 2545 adapter->detect_tx_hung = true; 2546 2547 /* Reschedule the task */ 2548 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2549 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ); 2550 } 2551 2552 enum latency_range { 2553 lowest_latency = 0, 2554 low_latency = 1, 2555 bulk_latency = 2, 2556 latency_invalid = 255 2557 }; 2558 2559 /** 2560 * e1000_update_itr - update the dynamic ITR value based on statistics 2561 * @adapter: pointer to adapter 2562 * @itr_setting: current adapter->itr 2563 * @packets: the number of packets during this measurement interval 2564 * @bytes: the number of bytes during this measurement interval 2565 * 2566 * Stores a new ITR value based on packets and byte 2567 * counts during the last interrupt. The advantage of per interrupt 2568 * computation is faster updates and more accurate ITR for the current 2569 * traffic pattern. Constants in this function were computed 2570 * based on theoretical maximum wire speed and thresholds were set based 2571 * on testing data as well as attempting to minimize response time 2572 * while increasing bulk throughput. 2573 * this functionality is controlled by the InterruptThrottleRate module 2574 * parameter (see e1000_param.c) 2575 **/ 2576 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, 2577 u16 itr_setting, int packets, int bytes) 2578 { 2579 unsigned int retval = itr_setting; 2580 struct e1000_hw *hw = &adapter->hw; 2581 2582 if (unlikely(hw->mac_type < e1000_82540)) 2583 goto update_itr_done; 2584 2585 if (packets == 0) 2586 goto update_itr_done; 2587 2588 switch (itr_setting) { 2589 case lowest_latency: 2590 /* jumbo frames get bulk treatment*/ 2591 if (bytes/packets > 8000) 2592 retval = bulk_latency; 2593 else if ((packets < 5) && (bytes > 512)) 2594 retval = low_latency; 2595 break; 2596 case low_latency: /* 50 usec aka 20000 ints/s */ 2597 if (bytes > 10000) { 2598 /* jumbo frames need bulk latency setting */ 2599 if (bytes/packets > 8000) 2600 retval = bulk_latency; 2601 else if ((packets < 10) || ((bytes/packets) > 1200)) 2602 retval = bulk_latency; 2603 else if ((packets > 35)) 2604 retval = lowest_latency; 2605 } else if (bytes/packets > 2000) 2606 retval = bulk_latency; 2607 else if (packets <= 2 && bytes < 512) 2608 retval = lowest_latency; 2609 break; 2610 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2611 if (bytes > 25000) { 2612 if (packets > 35) 2613 retval = low_latency; 2614 } else if (bytes < 6000) { 2615 retval = low_latency; 2616 } 2617 break; 2618 } 2619 2620 update_itr_done: 2621 return retval; 2622 } 2623 2624 static void e1000_set_itr(struct e1000_adapter *adapter) 2625 { 2626 struct e1000_hw *hw = &adapter->hw; 2627 u16 current_itr; 2628 u32 new_itr = adapter->itr; 2629 2630 if (unlikely(hw->mac_type < e1000_82540)) 2631 return; 2632 2633 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2634 if (unlikely(adapter->link_speed != SPEED_1000)) { 2635 new_itr = 4000; 2636 goto set_itr_now; 2637 } 2638 2639 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr, 2640 adapter->total_tx_packets, 2641 adapter->total_tx_bytes); 2642 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2643 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 2644 adapter->tx_itr = low_latency; 2645 2646 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr, 2647 adapter->total_rx_packets, 2648 adapter->total_rx_bytes); 2649 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2650 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 2651 adapter->rx_itr = low_latency; 2652 2653 current_itr = max(adapter->rx_itr, adapter->tx_itr); 2654 2655 switch (current_itr) { 2656 /* counts and packets in update_itr are dependent on these numbers */ 2657 case lowest_latency: 2658 new_itr = 70000; 2659 break; 2660 case low_latency: 2661 new_itr = 20000; /* aka hwitr = ~200 */ 2662 break; 2663 case bulk_latency: 2664 new_itr = 4000; 2665 break; 2666 default: 2667 break; 2668 } 2669 2670 set_itr_now: 2671 if (new_itr != adapter->itr) { 2672 /* this attempts to bias the interrupt rate towards Bulk 2673 * by adding intermediate steps when interrupt rate is 2674 * increasing 2675 */ 2676 new_itr = new_itr > adapter->itr ? 2677 min(adapter->itr + (new_itr >> 2), new_itr) : 2678 new_itr; 2679 adapter->itr = new_itr; 2680 ew32(ITR, 1000000000 / (new_itr * 256)); 2681 } 2682 } 2683 2684 #define E1000_TX_FLAGS_CSUM 0x00000001 2685 #define E1000_TX_FLAGS_VLAN 0x00000002 2686 #define E1000_TX_FLAGS_TSO 0x00000004 2687 #define E1000_TX_FLAGS_IPV4 0x00000008 2688 #define E1000_TX_FLAGS_NO_FCS 0x00000010 2689 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 2690 #define E1000_TX_FLAGS_VLAN_SHIFT 16 2691 2692 static int e1000_tso(struct e1000_adapter *adapter, 2693 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2694 __be16 protocol) 2695 { 2696 struct e1000_context_desc *context_desc; 2697 struct e1000_tx_buffer *buffer_info; 2698 unsigned int i; 2699 u32 cmd_length = 0; 2700 u16 ipcse = 0, tucse, mss; 2701 u8 ipcss, ipcso, tucss, tucso, hdr_len; 2702 2703 if (skb_is_gso(skb)) { 2704 int err; 2705 2706 err = skb_cow_head(skb, 0); 2707 if (err < 0) 2708 return err; 2709 2710 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2711 mss = skb_shinfo(skb)->gso_size; 2712 if (protocol == htons(ETH_P_IP)) { 2713 struct iphdr *iph = ip_hdr(skb); 2714 iph->tot_len = 0; 2715 iph->check = 0; 2716 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 2717 iph->daddr, 0, 2718 IPPROTO_TCP, 2719 0); 2720 cmd_length = E1000_TXD_CMD_IP; 2721 ipcse = skb_transport_offset(skb) - 1; 2722 } else if (skb_is_gso_v6(skb)) { 2723 tcp_v6_gso_csum_prep(skb); 2724 ipcse = 0; 2725 } 2726 ipcss = skb_network_offset(skb); 2727 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 2728 tucss = skb_transport_offset(skb); 2729 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 2730 tucse = 0; 2731 2732 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 2733 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 2734 2735 i = tx_ring->next_to_use; 2736 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2737 buffer_info = &tx_ring->buffer_info[i]; 2738 2739 context_desc->lower_setup.ip_fields.ipcss = ipcss; 2740 context_desc->lower_setup.ip_fields.ipcso = ipcso; 2741 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 2742 context_desc->upper_setup.tcp_fields.tucss = tucss; 2743 context_desc->upper_setup.tcp_fields.tucso = tucso; 2744 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); 2745 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 2746 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 2747 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 2748 2749 buffer_info->time_stamp = jiffies; 2750 buffer_info->next_to_watch = i; 2751 2752 if (++i == tx_ring->count) 2753 i = 0; 2754 2755 tx_ring->next_to_use = i; 2756 2757 return true; 2758 } 2759 return false; 2760 } 2761 2762 static bool e1000_tx_csum(struct e1000_adapter *adapter, 2763 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2764 __be16 protocol) 2765 { 2766 struct e1000_context_desc *context_desc; 2767 struct e1000_tx_buffer *buffer_info; 2768 unsigned int i; 2769 u8 css; 2770 u32 cmd_len = E1000_TXD_CMD_DEXT; 2771 2772 if (skb->ip_summed != CHECKSUM_PARTIAL) 2773 return false; 2774 2775 switch (protocol) { 2776 case cpu_to_be16(ETH_P_IP): 2777 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 2778 cmd_len |= E1000_TXD_CMD_TCP; 2779 break; 2780 case cpu_to_be16(ETH_P_IPV6): 2781 /* XXX not handling all IPV6 headers */ 2782 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 2783 cmd_len |= E1000_TXD_CMD_TCP; 2784 break; 2785 default: 2786 if (unlikely(net_ratelimit())) 2787 e_warn(drv, "checksum_partial proto=%x!\n", 2788 skb->protocol); 2789 break; 2790 } 2791 2792 css = skb_checksum_start_offset(skb); 2793 2794 i = tx_ring->next_to_use; 2795 buffer_info = &tx_ring->buffer_info[i]; 2796 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2797 2798 context_desc->lower_setup.ip_config = 0; 2799 context_desc->upper_setup.tcp_fields.tucss = css; 2800 context_desc->upper_setup.tcp_fields.tucso = 2801 css + skb->csum_offset; 2802 context_desc->upper_setup.tcp_fields.tucse = 0; 2803 context_desc->tcp_seg_setup.data = 0; 2804 context_desc->cmd_and_length = cpu_to_le32(cmd_len); 2805 2806 buffer_info->time_stamp = jiffies; 2807 buffer_info->next_to_watch = i; 2808 2809 if (unlikely(++i == tx_ring->count)) 2810 i = 0; 2811 2812 tx_ring->next_to_use = i; 2813 2814 return true; 2815 } 2816 2817 #define E1000_MAX_TXD_PWR 12 2818 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) 2819 2820 static int e1000_tx_map(struct e1000_adapter *adapter, 2821 struct e1000_tx_ring *tx_ring, 2822 struct sk_buff *skb, unsigned int first, 2823 unsigned int max_per_txd, unsigned int nr_frags, 2824 unsigned int mss) 2825 { 2826 struct e1000_hw *hw = &adapter->hw; 2827 struct pci_dev *pdev = adapter->pdev; 2828 struct e1000_tx_buffer *buffer_info; 2829 unsigned int len = skb_headlen(skb); 2830 unsigned int offset = 0, size, count = 0, i; 2831 unsigned int f, bytecount, segs; 2832 2833 i = tx_ring->next_to_use; 2834 2835 while (len) { 2836 buffer_info = &tx_ring->buffer_info[i]; 2837 size = min(len, max_per_txd); 2838 /* Workaround for Controller erratum -- 2839 * descriptor for non-tso packet in a linear SKB that follows a 2840 * tso gets written back prematurely before the data is fully 2841 * DMA'd to the controller 2842 */ 2843 if (!skb->data_len && tx_ring->last_tx_tso && 2844 !skb_is_gso(skb)) { 2845 tx_ring->last_tx_tso = false; 2846 size -= 4; 2847 } 2848 2849 /* Workaround for premature desc write-backs 2850 * in TSO mode. Append 4-byte sentinel desc 2851 */ 2852 if (unlikely(mss && !nr_frags && size == len && size > 8)) 2853 size -= 4; 2854 /* work-around for errata 10 and it applies 2855 * to all controllers in PCI-X mode 2856 * The fix is to make sure that the first descriptor of a 2857 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes 2858 */ 2859 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 2860 (size > 2015) && count == 0)) 2861 size = 2015; 2862 2863 /* Workaround for potential 82544 hang in PCI-X. Avoid 2864 * terminating buffers within evenly-aligned dwords. 2865 */ 2866 if (unlikely(adapter->pcix_82544 && 2867 !((unsigned long)(skb->data + offset + size - 1) & 4) && 2868 size > 4)) 2869 size -= 4; 2870 2871 buffer_info->length = size; 2872 /* set time_stamp *before* dma to help avoid a possible race */ 2873 buffer_info->time_stamp = jiffies; 2874 buffer_info->mapped_as_page = false; 2875 buffer_info->dma = dma_map_single(&pdev->dev, 2876 skb->data + offset, 2877 size, DMA_TO_DEVICE); 2878 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2879 goto dma_error; 2880 buffer_info->next_to_watch = i; 2881 2882 len -= size; 2883 offset += size; 2884 count++; 2885 if (len) { 2886 i++; 2887 if (unlikely(i == tx_ring->count)) 2888 i = 0; 2889 } 2890 } 2891 2892 for (f = 0; f < nr_frags; f++) { 2893 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 2894 2895 len = skb_frag_size(frag); 2896 offset = 0; 2897 2898 while (len) { 2899 unsigned long bufend; 2900 i++; 2901 if (unlikely(i == tx_ring->count)) 2902 i = 0; 2903 2904 buffer_info = &tx_ring->buffer_info[i]; 2905 size = min(len, max_per_txd); 2906 /* Workaround for premature desc write-backs 2907 * in TSO mode. Append 4-byte sentinel desc 2908 */ 2909 if (unlikely(mss && f == (nr_frags-1) && 2910 size == len && size > 8)) 2911 size -= 4; 2912 /* Workaround for potential 82544 hang in PCI-X. 2913 * Avoid terminating buffers within evenly-aligned 2914 * dwords. 2915 */ 2916 bufend = (unsigned long) 2917 page_to_phys(skb_frag_page(frag)); 2918 bufend += offset + size - 1; 2919 if (unlikely(adapter->pcix_82544 && 2920 !(bufend & 4) && 2921 size > 4)) 2922 size -= 4; 2923 2924 buffer_info->length = size; 2925 buffer_info->time_stamp = jiffies; 2926 buffer_info->mapped_as_page = true; 2927 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 2928 offset, size, DMA_TO_DEVICE); 2929 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2930 goto dma_error; 2931 buffer_info->next_to_watch = i; 2932 2933 len -= size; 2934 offset += size; 2935 count++; 2936 } 2937 } 2938 2939 segs = skb_shinfo(skb)->gso_segs ?: 1; 2940 /* multiply data chunks by size of headers */ 2941 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; 2942 2943 tx_ring->buffer_info[i].skb = skb; 2944 tx_ring->buffer_info[i].segs = segs; 2945 tx_ring->buffer_info[i].bytecount = bytecount; 2946 tx_ring->buffer_info[first].next_to_watch = i; 2947 2948 return count; 2949 2950 dma_error: 2951 dev_err(&pdev->dev, "TX DMA map failed\n"); 2952 buffer_info->dma = 0; 2953 if (count) 2954 count--; 2955 2956 while (count--) { 2957 if (i == 0) 2958 i += tx_ring->count; 2959 i--; 2960 buffer_info = &tx_ring->buffer_info[i]; 2961 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 2962 } 2963 2964 return 0; 2965 } 2966 2967 static void e1000_tx_queue(struct e1000_adapter *adapter, 2968 struct e1000_tx_ring *tx_ring, int tx_flags, 2969 int count) 2970 { 2971 struct e1000_tx_desc *tx_desc = NULL; 2972 struct e1000_tx_buffer *buffer_info; 2973 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 2974 unsigned int i; 2975 2976 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { 2977 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 2978 E1000_TXD_CMD_TSE; 2979 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2980 2981 if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) 2982 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 2983 } 2984 2985 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { 2986 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 2987 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2988 } 2989 2990 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { 2991 txd_lower |= E1000_TXD_CMD_VLE; 2992 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 2993 } 2994 2995 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 2996 txd_lower &= ~(E1000_TXD_CMD_IFCS); 2997 2998 i = tx_ring->next_to_use; 2999 3000 while (count--) { 3001 buffer_info = &tx_ring->buffer_info[i]; 3002 tx_desc = E1000_TX_DESC(*tx_ring, i); 3003 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 3004 tx_desc->lower.data = 3005 cpu_to_le32(txd_lower | buffer_info->length); 3006 tx_desc->upper.data = cpu_to_le32(txd_upper); 3007 if (unlikely(++i == tx_ring->count)) 3008 i = 0; 3009 } 3010 3011 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 3012 3013 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ 3014 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 3015 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); 3016 3017 /* Force memory writes to complete before letting h/w 3018 * know there are new descriptors to fetch. (Only 3019 * applicable for weak-ordered memory model archs, 3020 * such as IA-64). 3021 */ 3022 dma_wmb(); 3023 3024 tx_ring->next_to_use = i; 3025 } 3026 3027 /* 82547 workaround to avoid controller hang in half-duplex environment. 3028 * The workaround is to avoid queuing a large packet that would span 3029 * the internal Tx FIFO ring boundary by notifying the stack to resend 3030 * the packet at a later time. This gives the Tx FIFO an opportunity to 3031 * flush all packets. When that occurs, we reset the Tx FIFO pointers 3032 * to the beginning of the Tx FIFO. 3033 */ 3034 3035 #define E1000_FIFO_HDR 0x10 3036 #define E1000_82547_PAD_LEN 0x3E0 3037 3038 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 3039 struct sk_buff *skb) 3040 { 3041 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; 3042 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; 3043 3044 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); 3045 3046 if (adapter->link_duplex != HALF_DUPLEX) 3047 goto no_fifo_stall_required; 3048 3049 if (atomic_read(&adapter->tx_fifo_stall)) 3050 return 1; 3051 3052 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { 3053 atomic_set(&adapter->tx_fifo_stall, 1); 3054 return 1; 3055 } 3056 3057 no_fifo_stall_required: 3058 adapter->tx_fifo_head += skb_fifo_len; 3059 if (adapter->tx_fifo_head >= adapter->tx_fifo_size) 3060 adapter->tx_fifo_head -= adapter->tx_fifo_size; 3061 return 0; 3062 } 3063 3064 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) 3065 { 3066 struct e1000_adapter *adapter = netdev_priv(netdev); 3067 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3068 3069 netif_stop_queue(netdev); 3070 /* Herbert's original patch had: 3071 * smp_mb__after_netif_stop_queue(); 3072 * but since that doesn't exist yet, just open code it. 3073 */ 3074 smp_mb(); 3075 3076 /* We need to check again in a case another CPU has just 3077 * made room available. 3078 */ 3079 if (likely(E1000_DESC_UNUSED(tx_ring) < size)) 3080 return -EBUSY; 3081 3082 /* A reprieve! */ 3083 netif_start_queue(netdev); 3084 ++adapter->restart_queue; 3085 return 0; 3086 } 3087 3088 static int e1000_maybe_stop_tx(struct net_device *netdev, 3089 struct e1000_tx_ring *tx_ring, int size) 3090 { 3091 if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) 3092 return 0; 3093 return __e1000_maybe_stop_tx(netdev, size); 3094 } 3095 3096 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X)) 3097 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 3098 struct net_device *netdev) 3099 { 3100 struct e1000_adapter *adapter = netdev_priv(netdev); 3101 struct e1000_hw *hw = &adapter->hw; 3102 struct e1000_tx_ring *tx_ring; 3103 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; 3104 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; 3105 unsigned int tx_flags = 0; 3106 unsigned int len = skb_headlen(skb); 3107 unsigned int nr_frags; 3108 unsigned int mss; 3109 int count = 0; 3110 int tso; 3111 unsigned int f; 3112 __be16 protocol = vlan_get_protocol(skb); 3113 3114 /* This goes back to the question of how to logically map a Tx queue 3115 * to a flow. Right now, performance is impacted slightly negatively 3116 * if using multiple Tx queues. If the stack breaks away from a 3117 * single qdisc implementation, we can look at this again. 3118 */ 3119 tx_ring = adapter->tx_ring; 3120 3121 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN, 3122 * packets may get corrupted during padding by HW. 3123 * To WA this issue, pad all small packets manually. 3124 */ 3125 if (eth_skb_pad(skb)) 3126 return NETDEV_TX_OK; 3127 3128 mss = skb_shinfo(skb)->gso_size; 3129 /* The controller does a simple calculation to 3130 * make sure there is enough room in the FIFO before 3131 * initiating the DMA for each buffer. The calc is: 3132 * 4 = ceil(buffer len/mss). To make sure we don't 3133 * overrun the FIFO, adjust the max buffer len if mss 3134 * drops. 3135 */ 3136 if (mss) { 3137 u8 hdr_len; 3138 max_per_txd = min(mss << 2, max_per_txd); 3139 max_txd_pwr = fls(max_per_txd) - 1; 3140 3141 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3142 if (skb->data_len && hdr_len == len) { 3143 switch (hw->mac_type) { 3144 case e1000_82544: { 3145 unsigned int pull_size; 3146 3147 /* Make sure we have room to chop off 4 bytes, 3148 * and that the end alignment will work out to 3149 * this hardware's requirements 3150 * NOTE: this is a TSO only workaround 3151 * if end byte alignment not correct move us 3152 * into the next dword 3153 */ 3154 if ((unsigned long)(skb_tail_pointer(skb) - 1) 3155 & 4) 3156 break; 3157 pull_size = min((unsigned int)4, skb->data_len); 3158 if (!__pskb_pull_tail(skb, pull_size)) { 3159 e_err(drv, "__pskb_pull_tail " 3160 "failed.\n"); 3161 dev_kfree_skb_any(skb); 3162 return NETDEV_TX_OK; 3163 } 3164 len = skb_headlen(skb); 3165 break; 3166 } 3167 default: 3168 /* do nothing */ 3169 break; 3170 } 3171 } 3172 } 3173 3174 /* reserve a descriptor for the offload context */ 3175 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 3176 count++; 3177 count++; 3178 3179 /* Controller Erratum workaround */ 3180 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) 3181 count++; 3182 3183 count += TXD_USE_COUNT(len, max_txd_pwr); 3184 3185 if (adapter->pcix_82544) 3186 count++; 3187 3188 /* work-around for errata 10 and it applies to all controllers 3189 * in PCI-X mode, so add one more descriptor to the count 3190 */ 3191 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 3192 (len > 2015))) 3193 count++; 3194 3195 nr_frags = skb_shinfo(skb)->nr_frags; 3196 for (f = 0; f < nr_frags; f++) 3197 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]), 3198 max_txd_pwr); 3199 if (adapter->pcix_82544) 3200 count += nr_frags; 3201 3202 /* need: count + 2 desc gap to keep tail from touching 3203 * head, otherwise try next time 3204 */ 3205 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) 3206 return NETDEV_TX_BUSY; 3207 3208 if (unlikely((hw->mac_type == e1000_82547) && 3209 (e1000_82547_fifo_workaround(adapter, skb)))) { 3210 netif_stop_queue(netdev); 3211 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3212 schedule_delayed_work(&adapter->fifo_stall_task, 1); 3213 return NETDEV_TX_BUSY; 3214 } 3215 3216 if (skb_vlan_tag_present(skb)) { 3217 tx_flags |= E1000_TX_FLAGS_VLAN; 3218 tx_flags |= (skb_vlan_tag_get(skb) << 3219 E1000_TX_FLAGS_VLAN_SHIFT); 3220 } 3221 3222 first = tx_ring->next_to_use; 3223 3224 tso = e1000_tso(adapter, tx_ring, skb, protocol); 3225 if (tso < 0) { 3226 dev_kfree_skb_any(skb); 3227 return NETDEV_TX_OK; 3228 } 3229 3230 if (likely(tso)) { 3231 if (likely(hw->mac_type != e1000_82544)) 3232 tx_ring->last_tx_tso = true; 3233 tx_flags |= E1000_TX_FLAGS_TSO; 3234 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol))) 3235 tx_flags |= E1000_TX_FLAGS_CSUM; 3236 3237 if (protocol == htons(ETH_P_IP)) 3238 tx_flags |= E1000_TX_FLAGS_IPV4; 3239 3240 if (unlikely(skb->no_fcs)) 3241 tx_flags |= E1000_TX_FLAGS_NO_FCS; 3242 3243 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, 3244 nr_frags, mss); 3245 3246 if (count) { 3247 /* The descriptors needed is higher than other Intel drivers 3248 * due to a number of workarounds. The breakdown is below: 3249 * Data descriptors: MAX_SKB_FRAGS + 1 3250 * Context Descriptor: 1 3251 * Keep head from touching tail: 2 3252 * Workarounds: 3 3253 */ 3254 int desc_needed = MAX_SKB_FRAGS + 7; 3255 3256 netdev_sent_queue(netdev, skb->len); 3257 skb_tx_timestamp(skb); 3258 3259 e1000_tx_queue(adapter, tx_ring, tx_flags, count); 3260 3261 /* 82544 potentially requires twice as many data descriptors 3262 * in order to guarantee buffers don't end on evenly-aligned 3263 * dwords 3264 */ 3265 if (adapter->pcix_82544) 3266 desc_needed += MAX_SKB_FRAGS + 1; 3267 3268 /* Make sure there is space in the ring for the next send. */ 3269 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed); 3270 3271 if (!netdev_xmit_more() || 3272 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) { 3273 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt); 3274 } 3275 } else { 3276 dev_kfree_skb_any(skb); 3277 tx_ring->buffer_info[first].time_stamp = 0; 3278 tx_ring->next_to_use = first; 3279 } 3280 3281 return NETDEV_TX_OK; 3282 } 3283 3284 #define NUM_REGS 38 /* 1 based count */ 3285 static void e1000_regdump(struct e1000_adapter *adapter) 3286 { 3287 struct e1000_hw *hw = &adapter->hw; 3288 u32 regs[NUM_REGS]; 3289 u32 *regs_buff = regs; 3290 int i = 0; 3291 3292 static const char * const reg_name[] = { 3293 "CTRL", "STATUS", 3294 "RCTL", "RDLEN", "RDH", "RDT", "RDTR", 3295 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT", 3296 "TIDV", "TXDCTL", "TADV", "TARC0", 3297 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1", 3298 "TXDCTL1", "TARC1", 3299 "CTRL_EXT", "ERT", "RDBAL", "RDBAH", 3300 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC", 3301 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC" 3302 }; 3303 3304 regs_buff[0] = er32(CTRL); 3305 regs_buff[1] = er32(STATUS); 3306 3307 regs_buff[2] = er32(RCTL); 3308 regs_buff[3] = er32(RDLEN); 3309 regs_buff[4] = er32(RDH); 3310 regs_buff[5] = er32(RDT); 3311 regs_buff[6] = er32(RDTR); 3312 3313 regs_buff[7] = er32(TCTL); 3314 regs_buff[8] = er32(TDBAL); 3315 regs_buff[9] = er32(TDBAH); 3316 regs_buff[10] = er32(TDLEN); 3317 regs_buff[11] = er32(TDH); 3318 regs_buff[12] = er32(TDT); 3319 regs_buff[13] = er32(TIDV); 3320 regs_buff[14] = er32(TXDCTL); 3321 regs_buff[15] = er32(TADV); 3322 regs_buff[16] = er32(TARC0); 3323 3324 regs_buff[17] = er32(TDBAL1); 3325 regs_buff[18] = er32(TDBAH1); 3326 regs_buff[19] = er32(TDLEN1); 3327 regs_buff[20] = er32(TDH1); 3328 regs_buff[21] = er32(TDT1); 3329 regs_buff[22] = er32(TXDCTL1); 3330 regs_buff[23] = er32(TARC1); 3331 regs_buff[24] = er32(CTRL_EXT); 3332 regs_buff[25] = er32(ERT); 3333 regs_buff[26] = er32(RDBAL0); 3334 regs_buff[27] = er32(RDBAH0); 3335 regs_buff[28] = er32(TDFH); 3336 regs_buff[29] = er32(TDFT); 3337 regs_buff[30] = er32(TDFHS); 3338 regs_buff[31] = er32(TDFTS); 3339 regs_buff[32] = er32(TDFPC); 3340 regs_buff[33] = er32(RDFH); 3341 regs_buff[34] = er32(RDFT); 3342 regs_buff[35] = er32(RDFHS); 3343 regs_buff[36] = er32(RDFTS); 3344 regs_buff[37] = er32(RDFPC); 3345 3346 pr_info("Register dump\n"); 3347 for (i = 0; i < NUM_REGS; i++) 3348 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]); 3349 } 3350 3351 /* 3352 * e1000_dump: Print registers, tx ring and rx ring 3353 */ 3354 static void e1000_dump(struct e1000_adapter *adapter) 3355 { 3356 /* this code doesn't handle multiple rings */ 3357 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3358 struct e1000_rx_ring *rx_ring = adapter->rx_ring; 3359 int i; 3360 3361 if (!netif_msg_hw(adapter)) 3362 return; 3363 3364 /* Print Registers */ 3365 e1000_regdump(adapter); 3366 3367 /* transmit dump */ 3368 pr_info("TX Desc ring0 dump\n"); 3369 3370 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) 3371 * 3372 * Legacy Transmit Descriptor 3373 * +--------------------------------------------------------------+ 3374 * 0 | Buffer Address [63:0] (Reserved on Write Back) | 3375 * +--------------------------------------------------------------+ 3376 * 8 | Special | CSS | Status | CMD | CSO | Length | 3377 * +--------------------------------------------------------------+ 3378 * 63 48 47 36 35 32 31 24 23 16 15 0 3379 * 3380 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload 3381 * 63 48 47 40 39 32 31 16 15 8 7 0 3382 * +----------------------------------------------------------------+ 3383 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | 3384 * +----------------------------------------------------------------+ 3385 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | 3386 * +----------------------------------------------------------------+ 3387 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3388 * 3389 * Extended Data Descriptor (DTYP=0x1) 3390 * +----------------------------------------------------------------+ 3391 * 0 | Buffer Address [63:0] | 3392 * +----------------------------------------------------------------+ 3393 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | 3394 * +----------------------------------------------------------------+ 3395 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3396 */ 3397 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3398 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3399 3400 if (!netif_msg_tx_done(adapter)) 3401 goto rx_ring_summary; 3402 3403 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 3404 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 3405 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i]; 3406 struct my_u { __le64 a; __le64 b; }; 3407 struct my_u *u = (struct my_u *)tx_desc; 3408 const char *type; 3409 3410 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) 3411 type = "NTC/U"; 3412 else if (i == tx_ring->next_to_use) 3413 type = "NTU"; 3414 else if (i == tx_ring->next_to_clean) 3415 type = "NTC"; 3416 else 3417 type = ""; 3418 3419 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n", 3420 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i, 3421 le64_to_cpu(u->a), le64_to_cpu(u->b), 3422 (u64)buffer_info->dma, buffer_info->length, 3423 buffer_info->next_to_watch, 3424 (u64)buffer_info->time_stamp, buffer_info->skb, type); 3425 } 3426 3427 rx_ring_summary: 3428 /* receive dump */ 3429 pr_info("\nRX Desc ring dump\n"); 3430 3431 /* Legacy Receive Descriptor Format 3432 * 3433 * +-----------------------------------------------------+ 3434 * | Buffer Address [63:0] | 3435 * +-----------------------------------------------------+ 3436 * | VLAN Tag | Errors | Status 0 | Packet csum | Length | 3437 * +-----------------------------------------------------+ 3438 * 63 48 47 40 39 32 31 16 15 0 3439 */ 3440 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n"); 3441 3442 if (!netif_msg_rx_status(adapter)) 3443 goto exit; 3444 3445 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { 3446 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); 3447 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i]; 3448 struct my_u { __le64 a; __le64 b; }; 3449 struct my_u *u = (struct my_u *)rx_desc; 3450 const char *type; 3451 3452 if (i == rx_ring->next_to_use) 3453 type = "NTU"; 3454 else if (i == rx_ring->next_to_clean) 3455 type = "NTC"; 3456 else 3457 type = ""; 3458 3459 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n", 3460 i, le64_to_cpu(u->a), le64_to_cpu(u->b), 3461 (u64)buffer_info->dma, buffer_info->rxbuf.data, type); 3462 } /* for */ 3463 3464 /* dump the descriptor caches */ 3465 /* rx */ 3466 pr_info("Rx descriptor cache in 64bit format\n"); 3467 for (i = 0x6000; i <= 0x63FF ; i += 0x10) { 3468 pr_info("R%04X: %08X|%08X %08X|%08X\n", 3469 i, 3470 readl(adapter->hw.hw_addr + i+4), 3471 readl(adapter->hw.hw_addr + i), 3472 readl(adapter->hw.hw_addr + i+12), 3473 readl(adapter->hw.hw_addr + i+8)); 3474 } 3475 /* tx */ 3476 pr_info("Tx descriptor cache in 64bit format\n"); 3477 for (i = 0x7000; i <= 0x73FF ; i += 0x10) { 3478 pr_info("T%04X: %08X|%08X %08X|%08X\n", 3479 i, 3480 readl(adapter->hw.hw_addr + i+4), 3481 readl(adapter->hw.hw_addr + i), 3482 readl(adapter->hw.hw_addr + i+12), 3483 readl(adapter->hw.hw_addr + i+8)); 3484 } 3485 exit: 3486 return; 3487 } 3488 3489 /** 3490 * e1000_tx_timeout - Respond to a Tx Hang 3491 * @netdev: network interface device structure 3492 * @txqueue: number of the Tx queue that hung (unused) 3493 **/ 3494 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue) 3495 { 3496 struct e1000_adapter *adapter = netdev_priv(netdev); 3497 3498 /* Do the reset outside of interrupt context */ 3499 adapter->tx_timeout_count++; 3500 schedule_work(&adapter->reset_task); 3501 } 3502 3503 static void e1000_reset_task(struct work_struct *work) 3504 { 3505 struct e1000_adapter *adapter = 3506 container_of(work, struct e1000_adapter, reset_task); 3507 3508 e_err(drv, "Reset adapter\n"); 3509 e1000_reinit_locked(adapter); 3510 } 3511 3512 /** 3513 * e1000_change_mtu - Change the Maximum Transfer Unit 3514 * @netdev: network interface device structure 3515 * @new_mtu: new value for maximum frame size 3516 * 3517 * Returns 0 on success, negative on failure 3518 **/ 3519 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 3520 { 3521 struct e1000_adapter *adapter = netdev_priv(netdev); 3522 struct e1000_hw *hw = &adapter->hw; 3523 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 3524 3525 /* Adapter-specific max frame size limits. */ 3526 switch (hw->mac_type) { 3527 case e1000_undefined ... e1000_82542_rev2_1: 3528 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { 3529 e_err(probe, "Jumbo Frames not supported.\n"); 3530 return -EINVAL; 3531 } 3532 break; 3533 default: 3534 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ 3535 break; 3536 } 3537 3538 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 3539 msleep(1); 3540 /* e1000_down has a dependency on max_frame_size */ 3541 hw->max_frame_size = max_frame; 3542 if (netif_running(netdev)) { 3543 /* prevent buffers from being reallocated */ 3544 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers; 3545 e1000_down(adapter); 3546 } 3547 3548 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 3549 * means we reserve 2 more, this pushes us to allocate from the next 3550 * larger slab size. 3551 * i.e. RXBUFFER_2048 --> size-4096 slab 3552 * however with the new *_jumbo_rx* routines, jumbo receives will use 3553 * fragmented skbs 3554 */ 3555 3556 if (max_frame <= E1000_RXBUFFER_2048) 3557 adapter->rx_buffer_len = E1000_RXBUFFER_2048; 3558 else 3559 #if (PAGE_SIZE >= E1000_RXBUFFER_16384) 3560 adapter->rx_buffer_len = E1000_RXBUFFER_16384; 3561 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096) 3562 adapter->rx_buffer_len = PAGE_SIZE; 3563 #endif 3564 3565 /* adjust allocation if LPE protects us, and we aren't using SBP */ 3566 if (!hw->tbi_compatibility_on && 3567 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || 3568 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) 3569 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 3570 3571 netdev_dbg(netdev, "changing MTU from %d to %d\n", 3572 netdev->mtu, new_mtu); 3573 netdev->mtu = new_mtu; 3574 3575 if (netif_running(netdev)) 3576 e1000_up(adapter); 3577 else 3578 e1000_reset(adapter); 3579 3580 clear_bit(__E1000_RESETTING, &adapter->flags); 3581 3582 return 0; 3583 } 3584 3585 /** 3586 * e1000_update_stats - Update the board statistics counters 3587 * @adapter: board private structure 3588 **/ 3589 void e1000_update_stats(struct e1000_adapter *adapter) 3590 { 3591 struct net_device *netdev = adapter->netdev; 3592 struct e1000_hw *hw = &adapter->hw; 3593 struct pci_dev *pdev = adapter->pdev; 3594 unsigned long flags; 3595 u16 phy_tmp; 3596 3597 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 3598 3599 /* Prevent stats update while adapter is being reset, or if the pci 3600 * connection is down. 3601 */ 3602 if (adapter->link_speed == 0) 3603 return; 3604 if (pci_channel_offline(pdev)) 3605 return; 3606 3607 spin_lock_irqsave(&adapter->stats_lock, flags); 3608 3609 /* these counters are modified from e1000_tbi_adjust_stats, 3610 * called from the interrupt context, so they must only 3611 * be written while holding adapter->stats_lock 3612 */ 3613 3614 adapter->stats.crcerrs += er32(CRCERRS); 3615 adapter->stats.gprc += er32(GPRC); 3616 adapter->stats.gorcl += er32(GORCL); 3617 adapter->stats.gorch += er32(GORCH); 3618 adapter->stats.bprc += er32(BPRC); 3619 adapter->stats.mprc += er32(MPRC); 3620 adapter->stats.roc += er32(ROC); 3621 3622 adapter->stats.prc64 += er32(PRC64); 3623 adapter->stats.prc127 += er32(PRC127); 3624 adapter->stats.prc255 += er32(PRC255); 3625 adapter->stats.prc511 += er32(PRC511); 3626 adapter->stats.prc1023 += er32(PRC1023); 3627 adapter->stats.prc1522 += er32(PRC1522); 3628 3629 adapter->stats.symerrs += er32(SYMERRS); 3630 adapter->stats.mpc += er32(MPC); 3631 adapter->stats.scc += er32(SCC); 3632 adapter->stats.ecol += er32(ECOL); 3633 adapter->stats.mcc += er32(MCC); 3634 adapter->stats.latecol += er32(LATECOL); 3635 adapter->stats.dc += er32(DC); 3636 adapter->stats.sec += er32(SEC); 3637 adapter->stats.rlec += er32(RLEC); 3638 adapter->stats.xonrxc += er32(XONRXC); 3639 adapter->stats.xontxc += er32(XONTXC); 3640 adapter->stats.xoffrxc += er32(XOFFRXC); 3641 adapter->stats.xofftxc += er32(XOFFTXC); 3642 adapter->stats.fcruc += er32(FCRUC); 3643 adapter->stats.gptc += er32(GPTC); 3644 adapter->stats.gotcl += er32(GOTCL); 3645 adapter->stats.gotch += er32(GOTCH); 3646 adapter->stats.rnbc += er32(RNBC); 3647 adapter->stats.ruc += er32(RUC); 3648 adapter->stats.rfc += er32(RFC); 3649 adapter->stats.rjc += er32(RJC); 3650 adapter->stats.torl += er32(TORL); 3651 adapter->stats.torh += er32(TORH); 3652 adapter->stats.totl += er32(TOTL); 3653 adapter->stats.toth += er32(TOTH); 3654 adapter->stats.tpr += er32(TPR); 3655 3656 adapter->stats.ptc64 += er32(PTC64); 3657 adapter->stats.ptc127 += er32(PTC127); 3658 adapter->stats.ptc255 += er32(PTC255); 3659 adapter->stats.ptc511 += er32(PTC511); 3660 adapter->stats.ptc1023 += er32(PTC1023); 3661 adapter->stats.ptc1522 += er32(PTC1522); 3662 3663 adapter->stats.mptc += er32(MPTC); 3664 adapter->stats.bptc += er32(BPTC); 3665 3666 /* used for adaptive IFS */ 3667 3668 hw->tx_packet_delta = er32(TPT); 3669 adapter->stats.tpt += hw->tx_packet_delta; 3670 hw->collision_delta = er32(COLC); 3671 adapter->stats.colc += hw->collision_delta; 3672 3673 if (hw->mac_type >= e1000_82543) { 3674 adapter->stats.algnerrc += er32(ALGNERRC); 3675 adapter->stats.rxerrc += er32(RXERRC); 3676 adapter->stats.tncrs += er32(TNCRS); 3677 adapter->stats.cexterr += er32(CEXTERR); 3678 adapter->stats.tsctc += er32(TSCTC); 3679 adapter->stats.tsctfc += er32(TSCTFC); 3680 } 3681 3682 /* Fill out the OS statistics structure */ 3683 netdev->stats.multicast = adapter->stats.mprc; 3684 netdev->stats.collisions = adapter->stats.colc; 3685 3686 /* Rx Errors */ 3687 3688 /* RLEC on some newer hardware can be incorrect so build 3689 * our own version based on RUC and ROC 3690 */ 3691 netdev->stats.rx_errors = adapter->stats.rxerrc + 3692 adapter->stats.crcerrs + adapter->stats.algnerrc + 3693 adapter->stats.ruc + adapter->stats.roc + 3694 adapter->stats.cexterr; 3695 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; 3696 netdev->stats.rx_length_errors = adapter->stats.rlerrc; 3697 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; 3698 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; 3699 netdev->stats.rx_missed_errors = adapter->stats.mpc; 3700 3701 /* Tx Errors */ 3702 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; 3703 netdev->stats.tx_errors = adapter->stats.txerrc; 3704 netdev->stats.tx_aborted_errors = adapter->stats.ecol; 3705 netdev->stats.tx_window_errors = adapter->stats.latecol; 3706 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; 3707 if (hw->bad_tx_carr_stats_fd && 3708 adapter->link_duplex == FULL_DUPLEX) { 3709 netdev->stats.tx_carrier_errors = 0; 3710 adapter->stats.tncrs = 0; 3711 } 3712 3713 /* Tx Dropped needs to be maintained elsewhere */ 3714 3715 /* Phy Stats */ 3716 if (hw->media_type == e1000_media_type_copper) { 3717 if ((adapter->link_speed == SPEED_1000) && 3718 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { 3719 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 3720 adapter->phy_stats.idle_errors += phy_tmp; 3721 } 3722 3723 if ((hw->mac_type <= e1000_82546) && 3724 (hw->phy_type == e1000_phy_m88) && 3725 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) 3726 adapter->phy_stats.receive_errors += phy_tmp; 3727 } 3728 3729 /* Management Stats */ 3730 if (hw->has_smbus) { 3731 adapter->stats.mgptc += er32(MGTPTC); 3732 adapter->stats.mgprc += er32(MGTPRC); 3733 adapter->stats.mgpdc += er32(MGTPDC); 3734 } 3735 3736 spin_unlock_irqrestore(&adapter->stats_lock, flags); 3737 } 3738 3739 /** 3740 * e1000_intr - Interrupt Handler 3741 * @irq: interrupt number 3742 * @data: pointer to a network interface device structure 3743 **/ 3744 static irqreturn_t e1000_intr(int irq, void *data) 3745 { 3746 struct net_device *netdev = data; 3747 struct e1000_adapter *adapter = netdev_priv(netdev); 3748 struct e1000_hw *hw = &adapter->hw; 3749 u32 icr = er32(ICR); 3750 3751 if (unlikely((!icr))) 3752 return IRQ_NONE; /* Not our interrupt */ 3753 3754 /* we might have caused the interrupt, but the above 3755 * read cleared it, and just in case the driver is 3756 * down there is nothing to do so return handled 3757 */ 3758 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags))) 3759 return IRQ_HANDLED; 3760 3761 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { 3762 hw->get_link_status = 1; 3763 /* guard against interrupt when we're going down */ 3764 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3765 schedule_delayed_work(&adapter->watchdog_task, 1); 3766 } 3767 3768 /* disable interrupts, without the synchronize_irq bit */ 3769 ew32(IMC, ~0); 3770 E1000_WRITE_FLUSH(); 3771 3772 if (likely(napi_schedule_prep(&adapter->napi))) { 3773 adapter->total_tx_bytes = 0; 3774 adapter->total_tx_packets = 0; 3775 adapter->total_rx_bytes = 0; 3776 adapter->total_rx_packets = 0; 3777 __napi_schedule(&adapter->napi); 3778 } else { 3779 /* this really should not happen! if it does it is basically a 3780 * bug, but not a hard error, so enable ints and continue 3781 */ 3782 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3783 e1000_irq_enable(adapter); 3784 } 3785 3786 return IRQ_HANDLED; 3787 } 3788 3789 /** 3790 * e1000_clean - NAPI Rx polling callback 3791 * @napi: napi struct containing references to driver info 3792 * @budget: budget given to driver for receive packets 3793 **/ 3794 static int e1000_clean(struct napi_struct *napi, int budget) 3795 { 3796 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, 3797 napi); 3798 int tx_clean_complete = 0, work_done = 0; 3799 3800 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); 3801 3802 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); 3803 3804 if (!tx_clean_complete || work_done == budget) 3805 return budget; 3806 3807 /* Exit the polling mode, but don't re-enable interrupts if stack might 3808 * poll us due to busy-polling 3809 */ 3810 if (likely(napi_complete_done(napi, work_done))) { 3811 if (likely(adapter->itr_setting & 3)) 3812 e1000_set_itr(adapter); 3813 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3814 e1000_irq_enable(adapter); 3815 } 3816 3817 return work_done; 3818 } 3819 3820 /** 3821 * e1000_clean_tx_irq - Reclaim resources after transmit completes 3822 * @adapter: board private structure 3823 * @tx_ring: ring to clean 3824 **/ 3825 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 3826 struct e1000_tx_ring *tx_ring) 3827 { 3828 struct e1000_hw *hw = &adapter->hw; 3829 struct net_device *netdev = adapter->netdev; 3830 struct e1000_tx_desc *tx_desc, *eop_desc; 3831 struct e1000_tx_buffer *buffer_info; 3832 unsigned int i, eop; 3833 unsigned int count = 0; 3834 unsigned int total_tx_bytes = 0, total_tx_packets = 0; 3835 unsigned int bytes_compl = 0, pkts_compl = 0; 3836 3837 i = tx_ring->next_to_clean; 3838 eop = tx_ring->buffer_info[i].next_to_watch; 3839 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3840 3841 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && 3842 (count < tx_ring->count)) { 3843 bool cleaned = false; 3844 dma_rmb(); /* read buffer_info after eop_desc */ 3845 for ( ; !cleaned; count++) { 3846 tx_desc = E1000_TX_DESC(*tx_ring, i); 3847 buffer_info = &tx_ring->buffer_info[i]; 3848 cleaned = (i == eop); 3849 3850 if (cleaned) { 3851 total_tx_packets += buffer_info->segs; 3852 total_tx_bytes += buffer_info->bytecount; 3853 if (buffer_info->skb) { 3854 bytes_compl += buffer_info->skb->len; 3855 pkts_compl++; 3856 } 3857 3858 } 3859 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 3860 tx_desc->upper.data = 0; 3861 3862 if (unlikely(++i == tx_ring->count)) 3863 i = 0; 3864 } 3865 3866 eop = tx_ring->buffer_info[i].next_to_watch; 3867 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3868 } 3869 3870 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame, 3871 * which will reuse the cleaned buffers. 3872 */ 3873 smp_store_release(&tx_ring->next_to_clean, i); 3874 3875 netdev_completed_queue(netdev, pkts_compl, bytes_compl); 3876 3877 #define TX_WAKE_THRESHOLD 32 3878 if (unlikely(count && netif_carrier_ok(netdev) && 3879 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { 3880 /* Make sure that anybody stopping the queue after this 3881 * sees the new next_to_clean. 3882 */ 3883 smp_mb(); 3884 3885 if (netif_queue_stopped(netdev) && 3886 !(test_bit(__E1000_DOWN, &adapter->flags))) { 3887 netif_wake_queue(netdev); 3888 ++adapter->restart_queue; 3889 } 3890 } 3891 3892 if (adapter->detect_tx_hung) { 3893 /* Detect a transmit hang in hardware, this serializes the 3894 * check with the clearing of time_stamp and movement of i 3895 */ 3896 adapter->detect_tx_hung = false; 3897 if (tx_ring->buffer_info[eop].time_stamp && 3898 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + 3899 (adapter->tx_timeout_factor * HZ)) && 3900 !(er32(STATUS) & E1000_STATUS_TXOFF)) { 3901 3902 /* detected Tx unit hang */ 3903 e_err(drv, "Detected Tx Unit Hang\n" 3904 " Tx Queue <%lu>\n" 3905 " TDH <%x>\n" 3906 " TDT <%x>\n" 3907 " next_to_use <%x>\n" 3908 " next_to_clean <%x>\n" 3909 "buffer_info[next_to_clean]\n" 3910 " time_stamp <%lx>\n" 3911 " next_to_watch <%x>\n" 3912 " jiffies <%lx>\n" 3913 " next_to_watch.status <%x>\n", 3914 (unsigned long)(tx_ring - adapter->tx_ring), 3915 readl(hw->hw_addr + tx_ring->tdh), 3916 readl(hw->hw_addr + tx_ring->tdt), 3917 tx_ring->next_to_use, 3918 tx_ring->next_to_clean, 3919 tx_ring->buffer_info[eop].time_stamp, 3920 eop, 3921 jiffies, 3922 eop_desc->upper.fields.status); 3923 e1000_dump(adapter); 3924 netif_stop_queue(netdev); 3925 } 3926 } 3927 adapter->total_tx_bytes += total_tx_bytes; 3928 adapter->total_tx_packets += total_tx_packets; 3929 netdev->stats.tx_bytes += total_tx_bytes; 3930 netdev->stats.tx_packets += total_tx_packets; 3931 return count < tx_ring->count; 3932 } 3933 3934 /** 3935 * e1000_rx_checksum - Receive Checksum Offload for 82543 3936 * @adapter: board private structure 3937 * @status_err: receive descriptor status and error fields 3938 * @csum: receive descriptor csum field 3939 * @skb: socket buffer with received data 3940 **/ 3941 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 3942 u32 csum, struct sk_buff *skb) 3943 { 3944 struct e1000_hw *hw = &adapter->hw; 3945 u16 status = (u16)status_err; 3946 u8 errors = (u8)(status_err >> 24); 3947 3948 skb_checksum_none_assert(skb); 3949 3950 /* 82543 or newer only */ 3951 if (unlikely(hw->mac_type < e1000_82543)) 3952 return; 3953 /* Ignore Checksum bit is set */ 3954 if (unlikely(status & E1000_RXD_STAT_IXSM)) 3955 return; 3956 /* TCP/UDP checksum error bit is set */ 3957 if (unlikely(errors & E1000_RXD_ERR_TCPE)) { 3958 /* let the stack verify checksum errors */ 3959 adapter->hw_csum_err++; 3960 return; 3961 } 3962 /* TCP/UDP Checksum has not been calculated */ 3963 if (!(status & E1000_RXD_STAT_TCPCS)) 3964 return; 3965 3966 /* It must be a TCP or UDP packet with a valid checksum */ 3967 if (likely(status & E1000_RXD_STAT_TCPCS)) { 3968 /* TCP checksum is good */ 3969 skb->ip_summed = CHECKSUM_UNNECESSARY; 3970 } 3971 adapter->hw_csum_good++; 3972 } 3973 3974 /** 3975 * e1000_consume_page - helper function for jumbo Rx path 3976 * @bi: software descriptor shadow data 3977 * @skb: skb being modified 3978 * @length: length of data being added 3979 **/ 3980 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb, 3981 u16 length) 3982 { 3983 bi->rxbuf.page = NULL; 3984 skb->len += length; 3985 skb->data_len += length; 3986 skb->truesize += PAGE_SIZE; 3987 } 3988 3989 /** 3990 * e1000_receive_skb - helper function to handle rx indications 3991 * @adapter: board private structure 3992 * @status: descriptor status field as written by hardware 3993 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 3994 * @skb: pointer to sk_buff to be indicated to stack 3995 */ 3996 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, 3997 __le16 vlan, struct sk_buff *skb) 3998 { 3999 skb->protocol = eth_type_trans(skb, adapter->netdev); 4000 4001 if (status & E1000_RXD_STAT_VP) { 4002 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 4003 4004 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 4005 } 4006 napi_gro_receive(&adapter->napi, skb); 4007 } 4008 4009 /** 4010 * e1000_tbi_adjust_stats 4011 * @hw: Struct containing variables accessed by shared code 4012 * @stats: point to stats struct 4013 * @frame_len: The length of the frame in question 4014 * @mac_addr: The Ethernet destination address of the frame in question 4015 * 4016 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT 4017 */ 4018 static void e1000_tbi_adjust_stats(struct e1000_hw *hw, 4019 struct e1000_hw_stats *stats, 4020 u32 frame_len, const u8 *mac_addr) 4021 { 4022 u64 carry_bit; 4023 4024 /* First adjust the frame length. */ 4025 frame_len--; 4026 /* We need to adjust the statistics counters, since the hardware 4027 * counters overcount this packet as a CRC error and undercount 4028 * the packet as a good packet 4029 */ 4030 /* This packet should not be counted as a CRC error. */ 4031 stats->crcerrs--; 4032 /* This packet does count as a Good Packet Received. */ 4033 stats->gprc++; 4034 4035 /* Adjust the Good Octets received counters */ 4036 carry_bit = 0x80000000 & stats->gorcl; 4037 stats->gorcl += frame_len; 4038 /* If the high bit of Gorcl (the low 32 bits of the Good Octets 4039 * Received Count) was one before the addition, 4040 * AND it is zero after, then we lost the carry out, 4041 * need to add one to Gorch (Good Octets Received Count High). 4042 * This could be simplified if all environments supported 4043 * 64-bit integers. 4044 */ 4045 if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) 4046 stats->gorch++; 4047 /* Is this a broadcast or multicast? Check broadcast first, 4048 * since the test for a multicast frame will test positive on 4049 * a broadcast frame. 4050 */ 4051 if (is_broadcast_ether_addr(mac_addr)) 4052 stats->bprc++; 4053 else if (is_multicast_ether_addr(mac_addr)) 4054 stats->mprc++; 4055 4056 if (frame_len == hw->max_frame_size) { 4057 /* In this case, the hardware has overcounted the number of 4058 * oversize frames. 4059 */ 4060 if (stats->roc > 0) 4061 stats->roc--; 4062 } 4063 4064 /* Adjust the bin counters when the extra byte put the frame in the 4065 * wrong bin. Remember that the frame_len was adjusted above. 4066 */ 4067 if (frame_len == 64) { 4068 stats->prc64++; 4069 stats->prc127--; 4070 } else if (frame_len == 127) { 4071 stats->prc127++; 4072 stats->prc255--; 4073 } else if (frame_len == 255) { 4074 stats->prc255++; 4075 stats->prc511--; 4076 } else if (frame_len == 511) { 4077 stats->prc511++; 4078 stats->prc1023--; 4079 } else if (frame_len == 1023) { 4080 stats->prc1023++; 4081 stats->prc1522--; 4082 } else if (frame_len == 1522) { 4083 stats->prc1522++; 4084 } 4085 } 4086 4087 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter, 4088 u8 status, u8 errors, 4089 u32 length, const u8 *data) 4090 { 4091 struct e1000_hw *hw = &adapter->hw; 4092 u8 last_byte = *(data + length - 1); 4093 4094 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) { 4095 unsigned long irq_flags; 4096 4097 spin_lock_irqsave(&adapter->stats_lock, irq_flags); 4098 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data); 4099 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); 4100 4101 return true; 4102 } 4103 4104 return false; 4105 } 4106 4107 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter, 4108 unsigned int bufsz) 4109 { 4110 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz); 4111 4112 if (unlikely(!skb)) 4113 adapter->alloc_rx_buff_failed++; 4114 return skb; 4115 } 4116 4117 /** 4118 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 4119 * @adapter: board private structure 4120 * @rx_ring: ring to clean 4121 * @work_done: amount of napi work completed this call 4122 * @work_to_do: max amount of work allowed for this call to do 4123 * 4124 * the return value indicates whether actual cleaning was done, there 4125 * is no guarantee that everything was cleaned 4126 */ 4127 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 4128 struct e1000_rx_ring *rx_ring, 4129 int *work_done, int work_to_do) 4130 { 4131 struct net_device *netdev = adapter->netdev; 4132 struct pci_dev *pdev = adapter->pdev; 4133 struct e1000_rx_desc *rx_desc, *next_rxd; 4134 struct e1000_rx_buffer *buffer_info, *next_buffer; 4135 u32 length; 4136 unsigned int i; 4137 int cleaned_count = 0; 4138 bool cleaned = false; 4139 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 4140 4141 i = rx_ring->next_to_clean; 4142 rx_desc = E1000_RX_DESC(*rx_ring, i); 4143 buffer_info = &rx_ring->buffer_info[i]; 4144 4145 while (rx_desc->status & E1000_RXD_STAT_DD) { 4146 struct sk_buff *skb; 4147 u8 status; 4148 4149 if (*work_done >= work_to_do) 4150 break; 4151 (*work_done)++; 4152 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 4153 4154 status = rx_desc->status; 4155 4156 if (++i == rx_ring->count) 4157 i = 0; 4158 4159 next_rxd = E1000_RX_DESC(*rx_ring, i); 4160 prefetch(next_rxd); 4161 4162 next_buffer = &rx_ring->buffer_info[i]; 4163 4164 cleaned = true; 4165 cleaned_count++; 4166 dma_unmap_page(&pdev->dev, buffer_info->dma, 4167 adapter->rx_buffer_len, DMA_FROM_DEVICE); 4168 buffer_info->dma = 0; 4169 4170 length = le16_to_cpu(rx_desc->length); 4171 4172 /* errors is only valid for DD + EOP descriptors */ 4173 if (unlikely((status & E1000_RXD_STAT_EOP) && 4174 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { 4175 u8 *mapped = page_address(buffer_info->rxbuf.page); 4176 4177 if (e1000_tbi_should_accept(adapter, status, 4178 rx_desc->errors, 4179 length, mapped)) { 4180 length--; 4181 } else if (netdev->features & NETIF_F_RXALL) { 4182 goto process_skb; 4183 } else { 4184 /* an error means any chain goes out the window 4185 * too 4186 */ 4187 dev_kfree_skb(rx_ring->rx_skb_top); 4188 rx_ring->rx_skb_top = NULL; 4189 goto next_desc; 4190 } 4191 } 4192 4193 #define rxtop rx_ring->rx_skb_top 4194 process_skb: 4195 if (!(status & E1000_RXD_STAT_EOP)) { 4196 /* this descriptor is only the beginning (or middle) */ 4197 if (!rxtop) { 4198 /* this is the beginning of a chain */ 4199 rxtop = napi_get_frags(&adapter->napi); 4200 if (!rxtop) 4201 break; 4202 4203 skb_fill_page_desc(rxtop, 0, 4204 buffer_info->rxbuf.page, 4205 0, length); 4206 } else { 4207 /* this is the middle of a chain */ 4208 skb_fill_page_desc(rxtop, 4209 skb_shinfo(rxtop)->nr_frags, 4210 buffer_info->rxbuf.page, 0, length); 4211 } 4212 e1000_consume_page(buffer_info, rxtop, length); 4213 goto next_desc; 4214 } else { 4215 if (rxtop) { 4216 /* end of the chain */ 4217 skb_fill_page_desc(rxtop, 4218 skb_shinfo(rxtop)->nr_frags, 4219 buffer_info->rxbuf.page, 0, length); 4220 skb = rxtop; 4221 rxtop = NULL; 4222 e1000_consume_page(buffer_info, skb, length); 4223 } else { 4224 struct page *p; 4225 /* no chain, got EOP, this buf is the packet 4226 * copybreak to save the put_page/alloc_page 4227 */ 4228 p = buffer_info->rxbuf.page; 4229 if (length <= copybreak) { 4230 u8 *vaddr; 4231 4232 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4233 length -= 4; 4234 skb = e1000_alloc_rx_skb(adapter, 4235 length); 4236 if (!skb) 4237 break; 4238 4239 vaddr = kmap_atomic(p); 4240 memcpy(skb_tail_pointer(skb), vaddr, 4241 length); 4242 kunmap_atomic(vaddr); 4243 /* re-use the page, so don't erase 4244 * buffer_info->rxbuf.page 4245 */ 4246 skb_put(skb, length); 4247 e1000_rx_checksum(adapter, 4248 status | rx_desc->errors << 24, 4249 le16_to_cpu(rx_desc->csum), skb); 4250 4251 total_rx_bytes += skb->len; 4252 total_rx_packets++; 4253 4254 e1000_receive_skb(adapter, status, 4255 rx_desc->special, skb); 4256 goto next_desc; 4257 } else { 4258 skb = napi_get_frags(&adapter->napi); 4259 if (!skb) { 4260 adapter->alloc_rx_buff_failed++; 4261 break; 4262 } 4263 skb_fill_page_desc(skb, 0, p, 0, 4264 length); 4265 e1000_consume_page(buffer_info, skb, 4266 length); 4267 } 4268 } 4269 } 4270 4271 /* Receive Checksum Offload XXX recompute due to CRC strip? */ 4272 e1000_rx_checksum(adapter, 4273 (u32)(status) | 4274 ((u32)(rx_desc->errors) << 24), 4275 le16_to_cpu(rx_desc->csum), skb); 4276 4277 total_rx_bytes += (skb->len - 4); /* don't count FCS */ 4278 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4279 pskb_trim(skb, skb->len - 4); 4280 total_rx_packets++; 4281 4282 if (status & E1000_RXD_STAT_VP) { 4283 __le16 vlan = rx_desc->special; 4284 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 4285 4286 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 4287 } 4288 4289 napi_gro_frags(&adapter->napi); 4290 4291 next_desc: 4292 rx_desc->status = 0; 4293 4294 /* return some buffers to hardware, one at a time is too slow */ 4295 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4296 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4297 cleaned_count = 0; 4298 } 4299 4300 /* use prefetched values */ 4301 rx_desc = next_rxd; 4302 buffer_info = next_buffer; 4303 } 4304 rx_ring->next_to_clean = i; 4305 4306 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4307 if (cleaned_count) 4308 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4309 4310 adapter->total_rx_packets += total_rx_packets; 4311 adapter->total_rx_bytes += total_rx_bytes; 4312 netdev->stats.rx_bytes += total_rx_bytes; 4313 netdev->stats.rx_packets += total_rx_packets; 4314 return cleaned; 4315 } 4316 4317 /* this should improve performance for small packets with large amounts 4318 * of reassembly being done in the stack 4319 */ 4320 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter, 4321 struct e1000_rx_buffer *buffer_info, 4322 u32 length, const void *data) 4323 { 4324 struct sk_buff *skb; 4325 4326 if (length > copybreak) 4327 return NULL; 4328 4329 skb = e1000_alloc_rx_skb(adapter, length); 4330 if (!skb) 4331 return NULL; 4332 4333 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma, 4334 length, DMA_FROM_DEVICE); 4335 4336 skb_put_data(skb, data, length); 4337 4338 return skb; 4339 } 4340 4341 /** 4342 * e1000_clean_rx_irq - Send received data up the network stack; legacy 4343 * @adapter: board private structure 4344 * @rx_ring: ring to clean 4345 * @work_done: amount of napi work completed this call 4346 * @work_to_do: max amount of work allowed for this call to do 4347 */ 4348 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 4349 struct e1000_rx_ring *rx_ring, 4350 int *work_done, int work_to_do) 4351 { 4352 struct net_device *netdev = adapter->netdev; 4353 struct pci_dev *pdev = adapter->pdev; 4354 struct e1000_rx_desc *rx_desc, *next_rxd; 4355 struct e1000_rx_buffer *buffer_info, *next_buffer; 4356 u32 length; 4357 unsigned int i; 4358 int cleaned_count = 0; 4359 bool cleaned = false; 4360 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 4361 4362 i = rx_ring->next_to_clean; 4363 rx_desc = E1000_RX_DESC(*rx_ring, i); 4364 buffer_info = &rx_ring->buffer_info[i]; 4365 4366 while (rx_desc->status & E1000_RXD_STAT_DD) { 4367 struct sk_buff *skb; 4368 u8 *data; 4369 u8 status; 4370 4371 if (*work_done >= work_to_do) 4372 break; 4373 (*work_done)++; 4374 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 4375 4376 status = rx_desc->status; 4377 length = le16_to_cpu(rx_desc->length); 4378 4379 data = buffer_info->rxbuf.data; 4380 prefetch(data); 4381 skb = e1000_copybreak(adapter, buffer_info, length, data); 4382 if (!skb) { 4383 unsigned int frag_len = e1000_frag_len(adapter); 4384 4385 skb = build_skb(data - E1000_HEADROOM, frag_len); 4386 if (!skb) { 4387 adapter->alloc_rx_buff_failed++; 4388 break; 4389 } 4390 4391 skb_reserve(skb, E1000_HEADROOM); 4392 dma_unmap_single(&pdev->dev, buffer_info->dma, 4393 adapter->rx_buffer_len, 4394 DMA_FROM_DEVICE); 4395 buffer_info->dma = 0; 4396 buffer_info->rxbuf.data = NULL; 4397 } 4398 4399 if (++i == rx_ring->count) 4400 i = 0; 4401 4402 next_rxd = E1000_RX_DESC(*rx_ring, i); 4403 prefetch(next_rxd); 4404 4405 next_buffer = &rx_ring->buffer_info[i]; 4406 4407 cleaned = true; 4408 cleaned_count++; 4409 4410 /* !EOP means multiple descriptors were used to store a single 4411 * packet, if thats the case we need to toss it. In fact, we 4412 * to toss every packet with the EOP bit clear and the next 4413 * frame that _does_ have the EOP bit set, as it is by 4414 * definition only a frame fragment 4415 */ 4416 if (unlikely(!(status & E1000_RXD_STAT_EOP))) 4417 adapter->discarding = true; 4418 4419 if (adapter->discarding) { 4420 /* All receives must fit into a single buffer */ 4421 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n"); 4422 dev_kfree_skb(skb); 4423 if (status & E1000_RXD_STAT_EOP) 4424 adapter->discarding = false; 4425 goto next_desc; 4426 } 4427 4428 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { 4429 if (e1000_tbi_should_accept(adapter, status, 4430 rx_desc->errors, 4431 length, data)) { 4432 length--; 4433 } else if (netdev->features & NETIF_F_RXALL) { 4434 goto process_skb; 4435 } else { 4436 dev_kfree_skb(skb); 4437 goto next_desc; 4438 } 4439 } 4440 4441 process_skb: 4442 total_rx_bytes += (length - 4); /* don't count FCS */ 4443 total_rx_packets++; 4444 4445 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4446 /* adjust length to remove Ethernet CRC, this must be 4447 * done after the TBI_ACCEPT workaround above 4448 */ 4449 length -= 4; 4450 4451 if (buffer_info->rxbuf.data == NULL) 4452 skb_put(skb, length); 4453 else /* copybreak skb */ 4454 skb_trim(skb, length); 4455 4456 /* Receive Checksum Offload */ 4457 e1000_rx_checksum(adapter, 4458 (u32)(status) | 4459 ((u32)(rx_desc->errors) << 24), 4460 le16_to_cpu(rx_desc->csum), skb); 4461 4462 e1000_receive_skb(adapter, status, rx_desc->special, skb); 4463 4464 next_desc: 4465 rx_desc->status = 0; 4466 4467 /* return some buffers to hardware, one at a time is too slow */ 4468 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4469 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4470 cleaned_count = 0; 4471 } 4472 4473 /* use prefetched values */ 4474 rx_desc = next_rxd; 4475 buffer_info = next_buffer; 4476 } 4477 rx_ring->next_to_clean = i; 4478 4479 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4480 if (cleaned_count) 4481 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4482 4483 adapter->total_rx_packets += total_rx_packets; 4484 adapter->total_rx_bytes += total_rx_bytes; 4485 netdev->stats.rx_bytes += total_rx_bytes; 4486 netdev->stats.rx_packets += total_rx_packets; 4487 return cleaned; 4488 } 4489 4490 /** 4491 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 4492 * @adapter: address of board private structure 4493 * @rx_ring: pointer to receive ring structure 4494 * @cleaned_count: number of buffers to allocate this pass 4495 **/ 4496 static void 4497 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 4498 struct e1000_rx_ring *rx_ring, int cleaned_count) 4499 { 4500 struct pci_dev *pdev = adapter->pdev; 4501 struct e1000_rx_desc *rx_desc; 4502 struct e1000_rx_buffer *buffer_info; 4503 unsigned int i; 4504 4505 i = rx_ring->next_to_use; 4506 buffer_info = &rx_ring->buffer_info[i]; 4507 4508 while (cleaned_count--) { 4509 /* allocate a new page if necessary */ 4510 if (!buffer_info->rxbuf.page) { 4511 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC); 4512 if (unlikely(!buffer_info->rxbuf.page)) { 4513 adapter->alloc_rx_buff_failed++; 4514 break; 4515 } 4516 } 4517 4518 if (!buffer_info->dma) { 4519 buffer_info->dma = dma_map_page(&pdev->dev, 4520 buffer_info->rxbuf.page, 0, 4521 adapter->rx_buffer_len, 4522 DMA_FROM_DEVICE); 4523 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4524 put_page(buffer_info->rxbuf.page); 4525 buffer_info->rxbuf.page = NULL; 4526 buffer_info->dma = 0; 4527 adapter->alloc_rx_buff_failed++; 4528 break; 4529 } 4530 } 4531 4532 rx_desc = E1000_RX_DESC(*rx_ring, i); 4533 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4534 4535 if (unlikely(++i == rx_ring->count)) 4536 i = 0; 4537 buffer_info = &rx_ring->buffer_info[i]; 4538 } 4539 4540 if (likely(rx_ring->next_to_use != i)) { 4541 rx_ring->next_to_use = i; 4542 if (unlikely(i-- == 0)) 4543 i = (rx_ring->count - 1); 4544 4545 /* Force memory writes to complete before letting h/w 4546 * know there are new descriptors to fetch. (Only 4547 * applicable for weak-ordered memory model archs, 4548 * such as IA-64). 4549 */ 4550 dma_wmb(); 4551 writel(i, adapter->hw.hw_addr + rx_ring->rdt); 4552 } 4553 } 4554 4555 /** 4556 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended 4557 * @adapter: address of board private structure 4558 * @rx_ring: pointer to ring struct 4559 * @cleaned_count: number of new Rx buffers to try to allocate 4560 **/ 4561 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 4562 struct e1000_rx_ring *rx_ring, 4563 int cleaned_count) 4564 { 4565 struct e1000_hw *hw = &adapter->hw; 4566 struct pci_dev *pdev = adapter->pdev; 4567 struct e1000_rx_desc *rx_desc; 4568 struct e1000_rx_buffer *buffer_info; 4569 unsigned int i; 4570 unsigned int bufsz = adapter->rx_buffer_len; 4571 4572 i = rx_ring->next_to_use; 4573 buffer_info = &rx_ring->buffer_info[i]; 4574 4575 while (cleaned_count--) { 4576 void *data; 4577 4578 if (buffer_info->rxbuf.data) 4579 goto skip; 4580 4581 data = e1000_alloc_frag(adapter); 4582 if (!data) { 4583 /* Better luck next round */ 4584 adapter->alloc_rx_buff_failed++; 4585 break; 4586 } 4587 4588 /* Fix for errata 23, can't cross 64kB boundary */ 4589 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4590 void *olddata = data; 4591 e_err(rx_err, "skb align check failed: %u bytes at " 4592 "%p\n", bufsz, data); 4593 /* Try again, without freeing the previous */ 4594 data = e1000_alloc_frag(adapter); 4595 /* Failed allocation, critical failure */ 4596 if (!data) { 4597 skb_free_frag(olddata); 4598 adapter->alloc_rx_buff_failed++; 4599 break; 4600 } 4601 4602 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4603 /* give up */ 4604 skb_free_frag(data); 4605 skb_free_frag(olddata); 4606 adapter->alloc_rx_buff_failed++; 4607 break; 4608 } 4609 4610 /* Use new allocation */ 4611 skb_free_frag(olddata); 4612 } 4613 buffer_info->dma = dma_map_single(&pdev->dev, 4614 data, 4615 adapter->rx_buffer_len, 4616 DMA_FROM_DEVICE); 4617 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4618 skb_free_frag(data); 4619 buffer_info->dma = 0; 4620 adapter->alloc_rx_buff_failed++; 4621 break; 4622 } 4623 4624 /* XXX if it was allocated cleanly it will never map to a 4625 * boundary crossing 4626 */ 4627 4628 /* Fix for errata 23, can't cross 64kB boundary */ 4629 if (!e1000_check_64k_bound(adapter, 4630 (void *)(unsigned long)buffer_info->dma, 4631 adapter->rx_buffer_len)) { 4632 e_err(rx_err, "dma align check failed: %u bytes at " 4633 "%p\n", adapter->rx_buffer_len, 4634 (void *)(unsigned long)buffer_info->dma); 4635 4636 dma_unmap_single(&pdev->dev, buffer_info->dma, 4637 adapter->rx_buffer_len, 4638 DMA_FROM_DEVICE); 4639 4640 skb_free_frag(data); 4641 buffer_info->rxbuf.data = NULL; 4642 buffer_info->dma = 0; 4643 4644 adapter->alloc_rx_buff_failed++; 4645 break; 4646 } 4647 buffer_info->rxbuf.data = data; 4648 skip: 4649 rx_desc = E1000_RX_DESC(*rx_ring, i); 4650 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4651 4652 if (unlikely(++i == rx_ring->count)) 4653 i = 0; 4654 buffer_info = &rx_ring->buffer_info[i]; 4655 } 4656 4657 if (likely(rx_ring->next_to_use != i)) { 4658 rx_ring->next_to_use = i; 4659 if (unlikely(i-- == 0)) 4660 i = (rx_ring->count - 1); 4661 4662 /* Force memory writes to complete before letting h/w 4663 * know there are new descriptors to fetch. (Only 4664 * applicable for weak-ordered memory model archs, 4665 * such as IA-64). 4666 */ 4667 dma_wmb(); 4668 writel(i, hw->hw_addr + rx_ring->rdt); 4669 } 4670 } 4671 4672 /** 4673 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. 4674 * @adapter: address of board private structure 4675 **/ 4676 static void e1000_smartspeed(struct e1000_adapter *adapter) 4677 { 4678 struct e1000_hw *hw = &adapter->hw; 4679 u16 phy_status; 4680 u16 phy_ctrl; 4681 4682 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || 4683 !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) 4684 return; 4685 4686 if (adapter->smartspeed == 0) { 4687 /* If Master/Slave config fault is asserted twice, 4688 * we assume back-to-back 4689 */ 4690 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4691 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) 4692 return; 4693 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4694 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) 4695 return; 4696 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4697 if (phy_ctrl & CR_1000T_MS_ENABLE) { 4698 phy_ctrl &= ~CR_1000T_MS_ENABLE; 4699 e1000_write_phy_reg(hw, PHY_1000T_CTRL, 4700 phy_ctrl); 4701 adapter->smartspeed++; 4702 if (!e1000_phy_setup_autoneg(hw) && 4703 !e1000_read_phy_reg(hw, PHY_CTRL, 4704 &phy_ctrl)) { 4705 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4706 MII_CR_RESTART_AUTO_NEG); 4707 e1000_write_phy_reg(hw, PHY_CTRL, 4708 phy_ctrl); 4709 } 4710 } 4711 return; 4712 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { 4713 /* If still no link, perhaps using 2/3 pair cable */ 4714 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4715 phy_ctrl |= CR_1000T_MS_ENABLE; 4716 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); 4717 if (!e1000_phy_setup_autoneg(hw) && 4718 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { 4719 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4720 MII_CR_RESTART_AUTO_NEG); 4721 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); 4722 } 4723 } 4724 /* Restart process after E1000_SMARTSPEED_MAX iterations */ 4725 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) 4726 adapter->smartspeed = 0; 4727 } 4728 4729 /** 4730 * e1000_ioctl - handle ioctl calls 4731 * @netdev: pointer to our netdev 4732 * @ifr: pointer to interface request structure 4733 * @cmd: ioctl data 4734 **/ 4735 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 4736 { 4737 switch (cmd) { 4738 case SIOCGMIIPHY: 4739 case SIOCGMIIREG: 4740 case SIOCSMIIREG: 4741 return e1000_mii_ioctl(netdev, ifr, cmd); 4742 default: 4743 return -EOPNOTSUPP; 4744 } 4745 } 4746 4747 /** 4748 * e1000_mii_ioctl - 4749 * @netdev: pointer to our netdev 4750 * @ifr: pointer to interface request structure 4751 * @cmd: ioctl data 4752 **/ 4753 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 4754 int cmd) 4755 { 4756 struct e1000_adapter *adapter = netdev_priv(netdev); 4757 struct e1000_hw *hw = &adapter->hw; 4758 struct mii_ioctl_data *data = if_mii(ifr); 4759 int retval; 4760 u16 mii_reg; 4761 unsigned long flags; 4762 4763 if (hw->media_type != e1000_media_type_copper) 4764 return -EOPNOTSUPP; 4765 4766 switch (cmd) { 4767 case SIOCGMIIPHY: 4768 data->phy_id = hw->phy_addr; 4769 break; 4770 case SIOCGMIIREG: 4771 spin_lock_irqsave(&adapter->stats_lock, flags); 4772 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, 4773 &data->val_out)) { 4774 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4775 return -EIO; 4776 } 4777 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4778 break; 4779 case SIOCSMIIREG: 4780 if (data->reg_num & ~(0x1F)) 4781 return -EFAULT; 4782 mii_reg = data->val_in; 4783 spin_lock_irqsave(&adapter->stats_lock, flags); 4784 if (e1000_write_phy_reg(hw, data->reg_num, 4785 mii_reg)) { 4786 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4787 return -EIO; 4788 } 4789 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4790 if (hw->media_type == e1000_media_type_copper) { 4791 switch (data->reg_num) { 4792 case PHY_CTRL: 4793 if (mii_reg & MII_CR_POWER_DOWN) 4794 break; 4795 if (mii_reg & MII_CR_AUTO_NEG_EN) { 4796 hw->autoneg = 1; 4797 hw->autoneg_advertised = 0x2F; 4798 } else { 4799 u32 speed; 4800 if (mii_reg & 0x40) 4801 speed = SPEED_1000; 4802 else if (mii_reg & 0x2000) 4803 speed = SPEED_100; 4804 else 4805 speed = SPEED_10; 4806 retval = e1000_set_spd_dplx( 4807 adapter, speed, 4808 ((mii_reg & 0x100) 4809 ? DUPLEX_FULL : 4810 DUPLEX_HALF)); 4811 if (retval) 4812 return retval; 4813 } 4814 if (netif_running(adapter->netdev)) 4815 e1000_reinit_locked(adapter); 4816 else 4817 e1000_reset(adapter); 4818 break; 4819 case M88E1000_PHY_SPEC_CTRL: 4820 case M88E1000_EXT_PHY_SPEC_CTRL: 4821 if (e1000_phy_reset(hw)) 4822 return -EIO; 4823 break; 4824 } 4825 } else { 4826 switch (data->reg_num) { 4827 case PHY_CTRL: 4828 if (mii_reg & MII_CR_POWER_DOWN) 4829 break; 4830 if (netif_running(adapter->netdev)) 4831 e1000_reinit_locked(adapter); 4832 else 4833 e1000_reset(adapter); 4834 break; 4835 } 4836 } 4837 break; 4838 default: 4839 return -EOPNOTSUPP; 4840 } 4841 return E1000_SUCCESS; 4842 } 4843 4844 void e1000_pci_set_mwi(struct e1000_hw *hw) 4845 { 4846 struct e1000_adapter *adapter = hw->back; 4847 int ret_val = pci_set_mwi(adapter->pdev); 4848 4849 if (ret_val) 4850 e_err(probe, "Error in setting MWI\n"); 4851 } 4852 4853 void e1000_pci_clear_mwi(struct e1000_hw *hw) 4854 { 4855 struct e1000_adapter *adapter = hw->back; 4856 4857 pci_clear_mwi(adapter->pdev); 4858 } 4859 4860 int e1000_pcix_get_mmrbc(struct e1000_hw *hw) 4861 { 4862 struct e1000_adapter *adapter = hw->back; 4863 return pcix_get_mmrbc(adapter->pdev); 4864 } 4865 4866 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) 4867 { 4868 struct e1000_adapter *adapter = hw->back; 4869 pcix_set_mmrbc(adapter->pdev, mmrbc); 4870 } 4871 4872 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) 4873 { 4874 outl(value, port); 4875 } 4876 4877 static bool e1000_vlan_used(struct e1000_adapter *adapter) 4878 { 4879 u16 vid; 4880 4881 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 4882 return true; 4883 return false; 4884 } 4885 4886 static void __e1000_vlan_mode(struct e1000_adapter *adapter, 4887 netdev_features_t features) 4888 { 4889 struct e1000_hw *hw = &adapter->hw; 4890 u32 ctrl; 4891 4892 ctrl = er32(CTRL); 4893 if (features & NETIF_F_HW_VLAN_CTAG_RX) { 4894 /* enable VLAN tag insert/strip */ 4895 ctrl |= E1000_CTRL_VME; 4896 } else { 4897 /* disable VLAN tag insert/strip */ 4898 ctrl &= ~E1000_CTRL_VME; 4899 } 4900 ew32(CTRL, ctrl); 4901 } 4902 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 4903 bool filter_on) 4904 { 4905 struct e1000_hw *hw = &adapter->hw; 4906 u32 rctl; 4907 4908 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4909 e1000_irq_disable(adapter); 4910 4911 __e1000_vlan_mode(adapter, adapter->netdev->features); 4912 if (filter_on) { 4913 /* enable VLAN receive filtering */ 4914 rctl = er32(RCTL); 4915 rctl &= ~E1000_RCTL_CFIEN; 4916 if (!(adapter->netdev->flags & IFF_PROMISC)) 4917 rctl |= E1000_RCTL_VFE; 4918 ew32(RCTL, rctl); 4919 e1000_update_mng_vlan(adapter); 4920 } else { 4921 /* disable VLAN receive filtering */ 4922 rctl = er32(RCTL); 4923 rctl &= ~E1000_RCTL_VFE; 4924 ew32(RCTL, rctl); 4925 } 4926 4927 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4928 e1000_irq_enable(adapter); 4929 } 4930 4931 static void e1000_vlan_mode(struct net_device *netdev, 4932 netdev_features_t features) 4933 { 4934 struct e1000_adapter *adapter = netdev_priv(netdev); 4935 4936 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4937 e1000_irq_disable(adapter); 4938 4939 __e1000_vlan_mode(adapter, features); 4940 4941 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4942 e1000_irq_enable(adapter); 4943 } 4944 4945 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 4946 __be16 proto, u16 vid) 4947 { 4948 struct e1000_adapter *adapter = netdev_priv(netdev); 4949 struct e1000_hw *hw = &adapter->hw; 4950 u32 vfta, index; 4951 4952 if ((hw->mng_cookie.status & 4953 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 4954 (vid == adapter->mng_vlan_id)) 4955 return 0; 4956 4957 if (!e1000_vlan_used(adapter)) 4958 e1000_vlan_filter_on_off(adapter, true); 4959 4960 /* add VID to filter table */ 4961 index = (vid >> 5) & 0x7F; 4962 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4963 vfta |= (1 << (vid & 0x1F)); 4964 e1000_write_vfta(hw, index, vfta); 4965 4966 set_bit(vid, adapter->active_vlans); 4967 4968 return 0; 4969 } 4970 4971 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 4972 __be16 proto, u16 vid) 4973 { 4974 struct e1000_adapter *adapter = netdev_priv(netdev); 4975 struct e1000_hw *hw = &adapter->hw; 4976 u32 vfta, index; 4977 4978 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4979 e1000_irq_disable(adapter); 4980 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4981 e1000_irq_enable(adapter); 4982 4983 /* remove VID from filter table */ 4984 index = (vid >> 5) & 0x7F; 4985 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4986 vfta &= ~(1 << (vid & 0x1F)); 4987 e1000_write_vfta(hw, index, vfta); 4988 4989 clear_bit(vid, adapter->active_vlans); 4990 4991 if (!e1000_vlan_used(adapter)) 4992 e1000_vlan_filter_on_off(adapter, false); 4993 4994 return 0; 4995 } 4996 4997 static void e1000_restore_vlan(struct e1000_adapter *adapter) 4998 { 4999 u16 vid; 5000 5001 if (!e1000_vlan_used(adapter)) 5002 return; 5003 5004 e1000_vlan_filter_on_off(adapter, true); 5005 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 5006 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 5007 } 5008 5009 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 5010 { 5011 struct e1000_hw *hw = &adapter->hw; 5012 5013 hw->autoneg = 0; 5014 5015 /* Make sure dplx is at most 1 bit and lsb of speed is not set 5016 * for the switch() below to work 5017 */ 5018 if ((spd & 1) || (dplx & ~1)) 5019 goto err_inval; 5020 5021 /* Fiber NICs only allow 1000 gbps Full duplex */ 5022 if ((hw->media_type == e1000_media_type_fiber) && 5023 spd != SPEED_1000 && 5024 dplx != DUPLEX_FULL) 5025 goto err_inval; 5026 5027 switch (spd + dplx) { 5028 case SPEED_10 + DUPLEX_HALF: 5029 hw->forced_speed_duplex = e1000_10_half; 5030 break; 5031 case SPEED_10 + DUPLEX_FULL: 5032 hw->forced_speed_duplex = e1000_10_full; 5033 break; 5034 case SPEED_100 + DUPLEX_HALF: 5035 hw->forced_speed_duplex = e1000_100_half; 5036 break; 5037 case SPEED_100 + DUPLEX_FULL: 5038 hw->forced_speed_duplex = e1000_100_full; 5039 break; 5040 case SPEED_1000 + DUPLEX_FULL: 5041 hw->autoneg = 1; 5042 hw->autoneg_advertised = ADVERTISE_1000_FULL; 5043 break; 5044 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 5045 default: 5046 goto err_inval; 5047 } 5048 5049 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 5050 hw->mdix = AUTO_ALL_MODES; 5051 5052 return 0; 5053 5054 err_inval: 5055 e_err(probe, "Unsupported Speed/Duplex configuration\n"); 5056 return -EINVAL; 5057 } 5058 5059 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) 5060 { 5061 struct net_device *netdev = pci_get_drvdata(pdev); 5062 struct e1000_adapter *adapter = netdev_priv(netdev); 5063 struct e1000_hw *hw = &adapter->hw; 5064 u32 ctrl, ctrl_ext, rctl, status; 5065 u32 wufc = adapter->wol; 5066 5067 netif_device_detach(netdev); 5068 5069 if (netif_running(netdev)) { 5070 int count = E1000_CHECK_RESET_COUNT; 5071 5072 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 5073 usleep_range(10000, 20000); 5074 5075 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 5076 e1000_down(adapter); 5077 } 5078 5079 status = er32(STATUS); 5080 if (status & E1000_STATUS_LU) 5081 wufc &= ~E1000_WUFC_LNKC; 5082 5083 if (wufc) { 5084 e1000_setup_rctl(adapter); 5085 e1000_set_rx_mode(netdev); 5086 5087 rctl = er32(RCTL); 5088 5089 /* turn on all-multi mode if wake on multicast is enabled */ 5090 if (wufc & E1000_WUFC_MC) 5091 rctl |= E1000_RCTL_MPE; 5092 5093 /* enable receives in the hardware */ 5094 ew32(RCTL, rctl | E1000_RCTL_EN); 5095 5096 if (hw->mac_type >= e1000_82540) { 5097 ctrl = er32(CTRL); 5098 /* advertise wake from D3Cold */ 5099 #define E1000_CTRL_ADVD3WUC 0x00100000 5100 /* phy power management enable */ 5101 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 5102 ctrl |= E1000_CTRL_ADVD3WUC | 5103 E1000_CTRL_EN_PHY_PWR_MGMT; 5104 ew32(CTRL, ctrl); 5105 } 5106 5107 if (hw->media_type == e1000_media_type_fiber || 5108 hw->media_type == e1000_media_type_internal_serdes) { 5109 /* keep the laser running in D3 */ 5110 ctrl_ext = er32(CTRL_EXT); 5111 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; 5112 ew32(CTRL_EXT, ctrl_ext); 5113 } 5114 5115 ew32(WUC, E1000_WUC_PME_EN); 5116 ew32(WUFC, wufc); 5117 } else { 5118 ew32(WUC, 0); 5119 ew32(WUFC, 0); 5120 } 5121 5122 e1000_release_manageability(adapter); 5123 5124 *enable_wake = !!wufc; 5125 5126 /* make sure adapter isn't asleep if manageability is enabled */ 5127 if (adapter->en_mng_pt) 5128 *enable_wake = true; 5129 5130 if (netif_running(netdev)) 5131 e1000_free_irq(adapter); 5132 5133 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags)) 5134 pci_disable_device(pdev); 5135 5136 return 0; 5137 } 5138 5139 static int __maybe_unused e1000_suspend(struct device *dev) 5140 { 5141 int retval; 5142 struct pci_dev *pdev = to_pci_dev(dev); 5143 bool wake; 5144 5145 retval = __e1000_shutdown(pdev, &wake); 5146 device_set_wakeup_enable(dev, wake); 5147 5148 return retval; 5149 } 5150 5151 static int __maybe_unused e1000_resume(struct device *dev) 5152 { 5153 struct pci_dev *pdev = to_pci_dev(dev); 5154 struct net_device *netdev = pci_get_drvdata(pdev); 5155 struct e1000_adapter *adapter = netdev_priv(netdev); 5156 struct e1000_hw *hw = &adapter->hw; 5157 u32 err; 5158 5159 if (adapter->need_ioport) 5160 err = pci_enable_device(pdev); 5161 else 5162 err = pci_enable_device_mem(pdev); 5163 if (err) { 5164 pr_err("Cannot enable PCI device from suspend\n"); 5165 return err; 5166 } 5167 5168 /* flush memory to make sure state is correct */ 5169 smp_mb__before_atomic(); 5170 clear_bit(__E1000_DISABLED, &adapter->flags); 5171 pci_set_master(pdev); 5172 5173 pci_enable_wake(pdev, PCI_D3hot, 0); 5174 pci_enable_wake(pdev, PCI_D3cold, 0); 5175 5176 if (netif_running(netdev)) { 5177 err = e1000_request_irq(adapter); 5178 if (err) 5179 return err; 5180 } 5181 5182 e1000_power_up_phy(adapter); 5183 e1000_reset(adapter); 5184 ew32(WUS, ~0); 5185 5186 e1000_init_manageability(adapter); 5187 5188 if (netif_running(netdev)) 5189 e1000_up(adapter); 5190 5191 netif_device_attach(netdev); 5192 5193 return 0; 5194 } 5195 5196 static void e1000_shutdown(struct pci_dev *pdev) 5197 { 5198 bool wake; 5199 5200 __e1000_shutdown(pdev, &wake); 5201 5202 if (system_state == SYSTEM_POWER_OFF) { 5203 pci_wake_from_d3(pdev, wake); 5204 pci_set_power_state(pdev, PCI_D3hot); 5205 } 5206 } 5207 5208 #ifdef CONFIG_NET_POLL_CONTROLLER 5209 /* Polling 'interrupt' - used by things like netconsole to send skbs 5210 * without having to re-enable interrupts. It's not called while 5211 * the interrupt routine is executing. 5212 */ 5213 static void e1000_netpoll(struct net_device *netdev) 5214 { 5215 struct e1000_adapter *adapter = netdev_priv(netdev); 5216 5217 if (disable_hardirq(adapter->pdev->irq)) 5218 e1000_intr(adapter->pdev->irq, netdev); 5219 enable_irq(adapter->pdev->irq); 5220 } 5221 #endif 5222 5223 /** 5224 * e1000_io_error_detected - called when PCI error is detected 5225 * @pdev: Pointer to PCI device 5226 * @state: The current pci connection state 5227 * 5228 * This function is called after a PCI bus error affecting 5229 * this device has been detected. 5230 */ 5231 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 5232 pci_channel_state_t state) 5233 { 5234 struct net_device *netdev = pci_get_drvdata(pdev); 5235 struct e1000_adapter *adapter = netdev_priv(netdev); 5236 5237 netif_device_detach(netdev); 5238 5239 if (state == pci_channel_io_perm_failure) 5240 return PCI_ERS_RESULT_DISCONNECT; 5241 5242 if (netif_running(netdev)) 5243 e1000_down(adapter); 5244 5245 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags)) 5246 pci_disable_device(pdev); 5247 5248 /* Request a slot reset. */ 5249 return PCI_ERS_RESULT_NEED_RESET; 5250 } 5251 5252 /** 5253 * e1000_io_slot_reset - called after the pci bus has been reset. 5254 * @pdev: Pointer to PCI device 5255 * 5256 * Restart the card from scratch, as if from a cold-boot. Implementation 5257 * resembles the first-half of the e1000_resume routine. 5258 */ 5259 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 5260 { 5261 struct net_device *netdev = pci_get_drvdata(pdev); 5262 struct e1000_adapter *adapter = netdev_priv(netdev); 5263 struct e1000_hw *hw = &adapter->hw; 5264 int err; 5265 5266 if (adapter->need_ioport) 5267 err = pci_enable_device(pdev); 5268 else 5269 err = pci_enable_device_mem(pdev); 5270 if (err) { 5271 pr_err("Cannot re-enable PCI device after reset.\n"); 5272 return PCI_ERS_RESULT_DISCONNECT; 5273 } 5274 5275 /* flush memory to make sure state is correct */ 5276 smp_mb__before_atomic(); 5277 clear_bit(__E1000_DISABLED, &adapter->flags); 5278 pci_set_master(pdev); 5279 5280 pci_enable_wake(pdev, PCI_D3hot, 0); 5281 pci_enable_wake(pdev, PCI_D3cold, 0); 5282 5283 e1000_reset(adapter); 5284 ew32(WUS, ~0); 5285 5286 return PCI_ERS_RESULT_RECOVERED; 5287 } 5288 5289 /** 5290 * e1000_io_resume - called when traffic can start flowing again. 5291 * @pdev: Pointer to PCI device 5292 * 5293 * This callback is called when the error recovery driver tells us that 5294 * its OK to resume normal operation. Implementation resembles the 5295 * second-half of the e1000_resume routine. 5296 */ 5297 static void e1000_io_resume(struct pci_dev *pdev) 5298 { 5299 struct net_device *netdev = pci_get_drvdata(pdev); 5300 struct e1000_adapter *adapter = netdev_priv(netdev); 5301 5302 e1000_init_manageability(adapter); 5303 5304 if (netif_running(netdev)) { 5305 if (e1000_up(adapter)) { 5306 pr_info("can't bring device back up after reset\n"); 5307 return; 5308 } 5309 } 5310 5311 netif_device_attach(netdev); 5312 } 5313 5314 /* e1000_main.c */ 5315