1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2006 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 #include "e1000.h" 30 #include <net/ip6_checksum.h> 31 #include <linux/io.h> 32 #include <linux/prefetch.h> 33 #include <linux/bitops.h> 34 #include <linux/if_vlan.h> 35 36 char e1000_driver_name[] = "e1000"; 37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; 38 #define DRV_VERSION "7.3.21-k8-NAPI" 39 const char e1000_driver_version[] = DRV_VERSION; 40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; 41 42 /* e1000_pci_tbl - PCI Device ID Table 43 * 44 * Last entry must be all 0s 45 * 46 * Macro expands to... 47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} 48 */ 49 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = { 50 INTEL_E1000_ETHERNET_DEVICE(0x1000), 51 INTEL_E1000_ETHERNET_DEVICE(0x1001), 52 INTEL_E1000_ETHERNET_DEVICE(0x1004), 53 INTEL_E1000_ETHERNET_DEVICE(0x1008), 54 INTEL_E1000_ETHERNET_DEVICE(0x1009), 55 INTEL_E1000_ETHERNET_DEVICE(0x100C), 56 INTEL_E1000_ETHERNET_DEVICE(0x100D), 57 INTEL_E1000_ETHERNET_DEVICE(0x100E), 58 INTEL_E1000_ETHERNET_DEVICE(0x100F), 59 INTEL_E1000_ETHERNET_DEVICE(0x1010), 60 INTEL_E1000_ETHERNET_DEVICE(0x1011), 61 INTEL_E1000_ETHERNET_DEVICE(0x1012), 62 INTEL_E1000_ETHERNET_DEVICE(0x1013), 63 INTEL_E1000_ETHERNET_DEVICE(0x1014), 64 INTEL_E1000_ETHERNET_DEVICE(0x1015), 65 INTEL_E1000_ETHERNET_DEVICE(0x1016), 66 INTEL_E1000_ETHERNET_DEVICE(0x1017), 67 INTEL_E1000_ETHERNET_DEVICE(0x1018), 68 INTEL_E1000_ETHERNET_DEVICE(0x1019), 69 INTEL_E1000_ETHERNET_DEVICE(0x101A), 70 INTEL_E1000_ETHERNET_DEVICE(0x101D), 71 INTEL_E1000_ETHERNET_DEVICE(0x101E), 72 INTEL_E1000_ETHERNET_DEVICE(0x1026), 73 INTEL_E1000_ETHERNET_DEVICE(0x1027), 74 INTEL_E1000_ETHERNET_DEVICE(0x1028), 75 INTEL_E1000_ETHERNET_DEVICE(0x1075), 76 INTEL_E1000_ETHERNET_DEVICE(0x1076), 77 INTEL_E1000_ETHERNET_DEVICE(0x1077), 78 INTEL_E1000_ETHERNET_DEVICE(0x1078), 79 INTEL_E1000_ETHERNET_DEVICE(0x1079), 80 INTEL_E1000_ETHERNET_DEVICE(0x107A), 81 INTEL_E1000_ETHERNET_DEVICE(0x107B), 82 INTEL_E1000_ETHERNET_DEVICE(0x107C), 83 INTEL_E1000_ETHERNET_DEVICE(0x108A), 84 INTEL_E1000_ETHERNET_DEVICE(0x1099), 85 INTEL_E1000_ETHERNET_DEVICE(0x10B5), 86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E), 87 /* required last entry */ 88 {0,} 89 }; 90 91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 92 93 int e1000_up(struct e1000_adapter *adapter); 94 void e1000_down(struct e1000_adapter *adapter); 95 void e1000_reinit_locked(struct e1000_adapter *adapter); 96 void e1000_reset(struct e1000_adapter *adapter); 97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); 98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); 99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter); 100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter); 101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 102 struct e1000_tx_ring *txdr); 103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 104 struct e1000_rx_ring *rxdr); 105 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 106 struct e1000_tx_ring *tx_ring); 107 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 108 struct e1000_rx_ring *rx_ring); 109 void e1000_update_stats(struct e1000_adapter *adapter); 110 111 static int e1000_init_module(void); 112 static void e1000_exit_module(void); 113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); 114 static void e1000_remove(struct pci_dev *pdev); 115 static int e1000_alloc_queues(struct e1000_adapter *adapter); 116 static int e1000_sw_init(struct e1000_adapter *adapter); 117 static int e1000_open(struct net_device *netdev); 118 static int e1000_close(struct net_device *netdev); 119 static void e1000_configure_tx(struct e1000_adapter *adapter); 120 static void e1000_configure_rx(struct e1000_adapter *adapter); 121 static void e1000_setup_rctl(struct e1000_adapter *adapter); 122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); 123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); 124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 125 struct e1000_tx_ring *tx_ring); 126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 127 struct e1000_rx_ring *rx_ring); 128 static void e1000_set_rx_mode(struct net_device *netdev); 129 static void e1000_update_phy_info_task(struct work_struct *work); 130 static void e1000_watchdog(struct work_struct *work); 131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work); 132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 133 struct net_device *netdev); 134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev); 135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu); 136 static int e1000_set_mac(struct net_device *netdev, void *p); 137 static irqreturn_t e1000_intr(int irq, void *data); 138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 139 struct e1000_tx_ring *tx_ring); 140 static int e1000_clean(struct napi_struct *napi, int budget); 141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 142 struct e1000_rx_ring *rx_ring, 143 int *work_done, int work_to_do); 144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 145 struct e1000_rx_ring *rx_ring, 146 int *work_done, int work_to_do); 147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 148 struct e1000_rx_ring *rx_ring, 149 int cleaned_count); 150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 151 struct e1000_rx_ring *rx_ring, 152 int cleaned_count); 153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); 154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 155 int cmd); 156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter); 157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter); 158 static void e1000_tx_timeout(struct net_device *dev); 159 static void e1000_reset_task(struct work_struct *work); 160 static void e1000_smartspeed(struct e1000_adapter *adapter); 161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 162 struct sk_buff *skb); 163 164 static bool e1000_vlan_used(struct e1000_adapter *adapter); 165 static void e1000_vlan_mode(struct net_device *netdev, 166 netdev_features_t features); 167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 168 bool filter_on); 169 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 170 __be16 proto, u16 vid); 171 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 172 __be16 proto, u16 vid); 173 static void e1000_restore_vlan(struct e1000_adapter *adapter); 174 175 #ifdef CONFIG_PM 176 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); 177 static int e1000_resume(struct pci_dev *pdev); 178 #endif 179 static void e1000_shutdown(struct pci_dev *pdev); 180 181 #ifdef CONFIG_NET_POLL_CONTROLLER 182 /* for netdump / net console */ 183 static void e1000_netpoll (struct net_device *netdev); 184 #endif 185 186 #define COPYBREAK_DEFAULT 256 187 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; 188 module_param(copybreak, uint, 0644); 189 MODULE_PARM_DESC(copybreak, 190 "Maximum size of packet that is copied to a new buffer on receive"); 191 192 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 193 pci_channel_state_t state); 194 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); 195 static void e1000_io_resume(struct pci_dev *pdev); 196 197 static const struct pci_error_handlers e1000_err_handler = { 198 .error_detected = e1000_io_error_detected, 199 .slot_reset = e1000_io_slot_reset, 200 .resume = e1000_io_resume, 201 }; 202 203 static struct pci_driver e1000_driver = { 204 .name = e1000_driver_name, 205 .id_table = e1000_pci_tbl, 206 .probe = e1000_probe, 207 .remove = e1000_remove, 208 #ifdef CONFIG_PM 209 /* Power Management Hooks */ 210 .suspend = e1000_suspend, 211 .resume = e1000_resume, 212 #endif 213 .shutdown = e1000_shutdown, 214 .err_handler = &e1000_err_handler 215 }; 216 217 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 218 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 219 MODULE_LICENSE("GPL"); 220 MODULE_VERSION(DRV_VERSION); 221 222 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 223 static int debug = -1; 224 module_param(debug, int, 0); 225 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 226 227 /** 228 * e1000_get_hw_dev - return device 229 * used by hardware layer to print debugging information 230 * 231 **/ 232 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) 233 { 234 struct e1000_adapter *adapter = hw->back; 235 return adapter->netdev; 236 } 237 238 /** 239 * e1000_init_module - Driver Registration Routine 240 * 241 * e1000_init_module is the first routine called when the driver is 242 * loaded. All it does is register with the PCI subsystem. 243 **/ 244 static int __init e1000_init_module(void) 245 { 246 int ret; 247 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version); 248 249 pr_info("%s\n", e1000_copyright); 250 251 ret = pci_register_driver(&e1000_driver); 252 if (copybreak != COPYBREAK_DEFAULT) { 253 if (copybreak == 0) 254 pr_info("copybreak disabled\n"); 255 else 256 pr_info("copybreak enabled for " 257 "packets <= %u bytes\n", copybreak); 258 } 259 return ret; 260 } 261 262 module_init(e1000_init_module); 263 264 /** 265 * e1000_exit_module - Driver Exit Cleanup Routine 266 * 267 * e1000_exit_module is called just before the driver is removed 268 * from memory. 269 **/ 270 static void __exit e1000_exit_module(void) 271 { 272 pci_unregister_driver(&e1000_driver); 273 } 274 275 module_exit(e1000_exit_module); 276 277 static int e1000_request_irq(struct e1000_adapter *adapter) 278 { 279 struct net_device *netdev = adapter->netdev; 280 irq_handler_t handler = e1000_intr; 281 int irq_flags = IRQF_SHARED; 282 int err; 283 284 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, 285 netdev); 286 if (err) { 287 e_err(probe, "Unable to allocate interrupt Error: %d\n", err); 288 } 289 290 return err; 291 } 292 293 static void e1000_free_irq(struct e1000_adapter *adapter) 294 { 295 struct net_device *netdev = adapter->netdev; 296 297 free_irq(adapter->pdev->irq, netdev); 298 } 299 300 /** 301 * e1000_irq_disable - Mask off interrupt generation on the NIC 302 * @adapter: board private structure 303 **/ 304 static void e1000_irq_disable(struct e1000_adapter *adapter) 305 { 306 struct e1000_hw *hw = &adapter->hw; 307 308 ew32(IMC, ~0); 309 E1000_WRITE_FLUSH(); 310 synchronize_irq(adapter->pdev->irq); 311 } 312 313 /** 314 * e1000_irq_enable - Enable default interrupt generation settings 315 * @adapter: board private structure 316 **/ 317 static void e1000_irq_enable(struct e1000_adapter *adapter) 318 { 319 struct e1000_hw *hw = &adapter->hw; 320 321 ew32(IMS, IMS_ENABLE_MASK); 322 E1000_WRITE_FLUSH(); 323 } 324 325 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 326 { 327 struct e1000_hw *hw = &adapter->hw; 328 struct net_device *netdev = adapter->netdev; 329 u16 vid = hw->mng_cookie.vlan_id; 330 u16 old_vid = adapter->mng_vlan_id; 331 332 if (!e1000_vlan_used(adapter)) 333 return; 334 335 if (!test_bit(vid, adapter->active_vlans)) { 336 if (hw->mng_cookie.status & 337 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { 338 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); 339 adapter->mng_vlan_id = vid; 340 } else { 341 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 342 } 343 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && 344 (vid != old_vid) && 345 !test_bit(old_vid, adapter->active_vlans)) 346 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 347 old_vid); 348 } else { 349 adapter->mng_vlan_id = vid; 350 } 351 } 352 353 static void e1000_init_manageability(struct e1000_adapter *adapter) 354 { 355 struct e1000_hw *hw = &adapter->hw; 356 357 if (adapter->en_mng_pt) { 358 u32 manc = er32(MANC); 359 360 /* disable hardware interception of ARP */ 361 manc &= ~(E1000_MANC_ARP_EN); 362 363 ew32(MANC, manc); 364 } 365 } 366 367 static void e1000_release_manageability(struct e1000_adapter *adapter) 368 { 369 struct e1000_hw *hw = &adapter->hw; 370 371 if (adapter->en_mng_pt) { 372 u32 manc = er32(MANC); 373 374 /* re-enable hardware interception of ARP */ 375 manc |= E1000_MANC_ARP_EN; 376 377 ew32(MANC, manc); 378 } 379 } 380 381 /** 382 * e1000_configure - configure the hardware for RX and TX 383 * @adapter = private board structure 384 **/ 385 static void e1000_configure(struct e1000_adapter *adapter) 386 { 387 struct net_device *netdev = adapter->netdev; 388 int i; 389 390 e1000_set_rx_mode(netdev); 391 392 e1000_restore_vlan(adapter); 393 e1000_init_manageability(adapter); 394 395 e1000_configure_tx(adapter); 396 e1000_setup_rctl(adapter); 397 e1000_configure_rx(adapter); 398 /* call E1000_DESC_UNUSED which always leaves 399 * at least 1 descriptor unused to make sure 400 * next_to_use != next_to_clean 401 */ 402 for (i = 0; i < adapter->num_rx_queues; i++) { 403 struct e1000_rx_ring *ring = &adapter->rx_ring[i]; 404 adapter->alloc_rx_buf(adapter, ring, 405 E1000_DESC_UNUSED(ring)); 406 } 407 } 408 409 int e1000_up(struct e1000_adapter *adapter) 410 { 411 struct e1000_hw *hw = &adapter->hw; 412 413 /* hardware has been reset, we need to reload some things */ 414 e1000_configure(adapter); 415 416 clear_bit(__E1000_DOWN, &adapter->flags); 417 418 napi_enable(&adapter->napi); 419 420 e1000_irq_enable(adapter); 421 422 netif_wake_queue(adapter->netdev); 423 424 /* fire a link change interrupt to start the watchdog */ 425 ew32(ICS, E1000_ICS_LSC); 426 return 0; 427 } 428 429 /** 430 * e1000_power_up_phy - restore link in case the phy was powered down 431 * @adapter: address of board private structure 432 * 433 * The phy may be powered down to save power and turn off link when the 434 * driver is unloaded and wake on lan is not enabled (among others) 435 * *** this routine MUST be followed by a call to e1000_reset *** 436 **/ 437 void e1000_power_up_phy(struct e1000_adapter *adapter) 438 { 439 struct e1000_hw *hw = &adapter->hw; 440 u16 mii_reg = 0; 441 442 /* Just clear the power down bit to wake the phy back up */ 443 if (hw->media_type == e1000_media_type_copper) { 444 /* according to the manual, the phy will retain its 445 * settings across a power-down/up cycle 446 */ 447 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 448 mii_reg &= ~MII_CR_POWER_DOWN; 449 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 450 } 451 } 452 453 static void e1000_power_down_phy(struct e1000_adapter *adapter) 454 { 455 struct e1000_hw *hw = &adapter->hw; 456 457 /* Power down the PHY so no link is implied when interface is down * 458 * The PHY cannot be powered down if any of the following is true * 459 * (a) WoL is enabled 460 * (b) AMT is active 461 * (c) SoL/IDER session is active 462 */ 463 if (!adapter->wol && hw->mac_type >= e1000_82540 && 464 hw->media_type == e1000_media_type_copper) { 465 u16 mii_reg = 0; 466 467 switch (hw->mac_type) { 468 case e1000_82540: 469 case e1000_82545: 470 case e1000_82545_rev_3: 471 case e1000_82546: 472 case e1000_ce4100: 473 case e1000_82546_rev_3: 474 case e1000_82541: 475 case e1000_82541_rev_2: 476 case e1000_82547: 477 case e1000_82547_rev_2: 478 if (er32(MANC) & E1000_MANC_SMBUS_EN) 479 goto out; 480 break; 481 default: 482 goto out; 483 } 484 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 485 mii_reg |= MII_CR_POWER_DOWN; 486 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 487 msleep(1); 488 } 489 out: 490 return; 491 } 492 493 static void e1000_down_and_stop(struct e1000_adapter *adapter) 494 { 495 set_bit(__E1000_DOWN, &adapter->flags); 496 497 cancel_delayed_work_sync(&adapter->watchdog_task); 498 499 /* 500 * Since the watchdog task can reschedule other tasks, we should cancel 501 * it first, otherwise we can run into the situation when a work is 502 * still running after the adapter has been turned down. 503 */ 504 505 cancel_delayed_work_sync(&adapter->phy_info_task); 506 cancel_delayed_work_sync(&adapter->fifo_stall_task); 507 508 /* Only kill reset task if adapter is not resetting */ 509 if (!test_bit(__E1000_RESETTING, &adapter->flags)) 510 cancel_work_sync(&adapter->reset_task); 511 } 512 513 void e1000_down(struct e1000_adapter *adapter) 514 { 515 struct e1000_hw *hw = &adapter->hw; 516 struct net_device *netdev = adapter->netdev; 517 u32 rctl, tctl; 518 519 520 /* disable receives in the hardware */ 521 rctl = er32(RCTL); 522 ew32(RCTL, rctl & ~E1000_RCTL_EN); 523 /* flush and sleep below */ 524 525 netif_tx_disable(netdev); 526 527 /* disable transmits in the hardware */ 528 tctl = er32(TCTL); 529 tctl &= ~E1000_TCTL_EN; 530 ew32(TCTL, tctl); 531 /* flush both disables and wait for them to finish */ 532 E1000_WRITE_FLUSH(); 533 msleep(10); 534 535 napi_disable(&adapter->napi); 536 537 e1000_irq_disable(adapter); 538 539 /* Setting DOWN must be after irq_disable to prevent 540 * a screaming interrupt. Setting DOWN also prevents 541 * tasks from rescheduling. 542 */ 543 e1000_down_and_stop(adapter); 544 545 adapter->link_speed = 0; 546 adapter->link_duplex = 0; 547 netif_carrier_off(netdev); 548 549 e1000_reset(adapter); 550 e1000_clean_all_tx_rings(adapter); 551 e1000_clean_all_rx_rings(adapter); 552 } 553 554 void e1000_reinit_locked(struct e1000_adapter *adapter) 555 { 556 WARN_ON(in_interrupt()); 557 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 558 msleep(1); 559 e1000_down(adapter); 560 e1000_up(adapter); 561 clear_bit(__E1000_RESETTING, &adapter->flags); 562 } 563 564 void e1000_reset(struct e1000_adapter *adapter) 565 { 566 struct e1000_hw *hw = &adapter->hw; 567 u32 pba = 0, tx_space, min_tx_space, min_rx_space; 568 bool legacy_pba_adjust = false; 569 u16 hwm; 570 571 /* Repartition Pba for greater than 9k mtu 572 * To take effect CTRL.RST is required. 573 */ 574 575 switch (hw->mac_type) { 576 case e1000_82542_rev2_0: 577 case e1000_82542_rev2_1: 578 case e1000_82543: 579 case e1000_82544: 580 case e1000_82540: 581 case e1000_82541: 582 case e1000_82541_rev_2: 583 legacy_pba_adjust = true; 584 pba = E1000_PBA_48K; 585 break; 586 case e1000_82545: 587 case e1000_82545_rev_3: 588 case e1000_82546: 589 case e1000_ce4100: 590 case e1000_82546_rev_3: 591 pba = E1000_PBA_48K; 592 break; 593 case e1000_82547: 594 case e1000_82547_rev_2: 595 legacy_pba_adjust = true; 596 pba = E1000_PBA_30K; 597 break; 598 case e1000_undefined: 599 case e1000_num_macs: 600 break; 601 } 602 603 if (legacy_pba_adjust) { 604 if (hw->max_frame_size > E1000_RXBUFFER_8192) 605 pba -= 8; /* allocate more FIFO for Tx */ 606 607 if (hw->mac_type == e1000_82547) { 608 adapter->tx_fifo_head = 0; 609 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; 610 adapter->tx_fifo_size = 611 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; 612 atomic_set(&adapter->tx_fifo_stall, 0); 613 } 614 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { 615 /* adjust PBA for jumbo frames */ 616 ew32(PBA, pba); 617 618 /* To maintain wire speed transmits, the Tx FIFO should be 619 * large enough to accommodate two full transmit packets, 620 * rounded up to the next 1KB and expressed in KB. Likewise, 621 * the Rx FIFO should be large enough to accommodate at least 622 * one full receive packet and is similarly rounded up and 623 * expressed in KB. 624 */ 625 pba = er32(PBA); 626 /* upper 16 bits has Tx packet buffer allocation size in KB */ 627 tx_space = pba >> 16; 628 /* lower 16 bits has Rx packet buffer allocation size in KB */ 629 pba &= 0xffff; 630 /* the Tx fifo also stores 16 bytes of information about the Tx 631 * but don't include ethernet FCS because hardware appends it 632 */ 633 min_tx_space = (hw->max_frame_size + 634 sizeof(struct e1000_tx_desc) - 635 ETH_FCS_LEN) * 2; 636 min_tx_space = ALIGN(min_tx_space, 1024); 637 min_tx_space >>= 10; 638 /* software strips receive CRC, so leave room for it */ 639 min_rx_space = hw->max_frame_size; 640 min_rx_space = ALIGN(min_rx_space, 1024); 641 min_rx_space >>= 10; 642 643 /* If current Tx allocation is less than the min Tx FIFO size, 644 * and the min Tx FIFO size is less than the current Rx FIFO 645 * allocation, take space away from current Rx allocation 646 */ 647 if (tx_space < min_tx_space && 648 ((min_tx_space - tx_space) < pba)) { 649 pba = pba - (min_tx_space - tx_space); 650 651 /* PCI/PCIx hardware has PBA alignment constraints */ 652 switch (hw->mac_type) { 653 case e1000_82545 ... e1000_82546_rev_3: 654 pba &= ~(E1000_PBA_8K - 1); 655 break; 656 default: 657 break; 658 } 659 660 /* if short on Rx space, Rx wins and must trump Tx 661 * adjustment or use Early Receive if available 662 */ 663 if (pba < min_rx_space) 664 pba = min_rx_space; 665 } 666 } 667 668 ew32(PBA, pba); 669 670 /* flow control settings: 671 * The high water mark must be low enough to fit one full frame 672 * (or the size used for early receive) above it in the Rx FIFO. 673 * Set it to the lower of: 674 * - 90% of the Rx FIFO size, and 675 * - the full Rx FIFO size minus the early receive size (for parts 676 * with ERT support assuming ERT set to E1000_ERT_2048), or 677 * - the full Rx FIFO size minus one full frame 678 */ 679 hwm = min(((pba << 10) * 9 / 10), 680 ((pba << 10) - hw->max_frame_size)); 681 682 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ 683 hw->fc_low_water = hw->fc_high_water - 8; 684 hw->fc_pause_time = E1000_FC_PAUSE_TIME; 685 hw->fc_send_xon = 1; 686 hw->fc = hw->original_fc; 687 688 /* Allow time for pending master requests to run */ 689 e1000_reset_hw(hw); 690 if (hw->mac_type >= e1000_82544) 691 ew32(WUC, 0); 692 693 if (e1000_init_hw(hw)) 694 e_dev_err("Hardware Error\n"); 695 e1000_update_mng_vlan(adapter); 696 697 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ 698 if (hw->mac_type >= e1000_82544 && 699 hw->autoneg == 1 && 700 hw->autoneg_advertised == ADVERTISE_1000_FULL) { 701 u32 ctrl = er32(CTRL); 702 /* clear phy power management bit if we are in gig only mode, 703 * which if enabled will attempt negotiation to 100Mb, which 704 * can cause a loss of link at power off or driver unload 705 */ 706 ctrl &= ~E1000_CTRL_SWDPIN3; 707 ew32(CTRL, ctrl); 708 } 709 710 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 711 ew32(VET, ETHERNET_IEEE_VLAN_TYPE); 712 713 e1000_reset_adaptive(hw); 714 e1000_phy_get_info(hw, &adapter->phy_info); 715 716 e1000_release_manageability(adapter); 717 } 718 719 /* Dump the eeprom for users having checksum issues */ 720 static void e1000_dump_eeprom(struct e1000_adapter *adapter) 721 { 722 struct net_device *netdev = adapter->netdev; 723 struct ethtool_eeprom eeprom; 724 const struct ethtool_ops *ops = netdev->ethtool_ops; 725 u8 *data; 726 int i; 727 u16 csum_old, csum_new = 0; 728 729 eeprom.len = ops->get_eeprom_len(netdev); 730 eeprom.offset = 0; 731 732 data = kmalloc(eeprom.len, GFP_KERNEL); 733 if (!data) 734 return; 735 736 ops->get_eeprom(netdev, &eeprom, data); 737 738 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + 739 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); 740 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) 741 csum_new += data[i] + (data[i + 1] << 8); 742 csum_new = EEPROM_SUM - csum_new; 743 744 pr_err("/*********************/\n"); 745 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); 746 pr_err("Calculated : 0x%04x\n", csum_new); 747 748 pr_err("Offset Values\n"); 749 pr_err("======== ======\n"); 750 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); 751 752 pr_err("Include this output when contacting your support provider.\n"); 753 pr_err("This is not a software error! Something bad happened to\n"); 754 pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); 755 pr_err("result in further problems, possibly loss of data,\n"); 756 pr_err("corruption or system hangs!\n"); 757 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); 758 pr_err("which is invalid and requires you to set the proper MAC\n"); 759 pr_err("address manually before continuing to enable this network\n"); 760 pr_err("device. Please inspect the EEPROM dump and report the\n"); 761 pr_err("issue to your hardware vendor or Intel Customer Support.\n"); 762 pr_err("/*********************/\n"); 763 764 kfree(data); 765 } 766 767 /** 768 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not 769 * @pdev: PCI device information struct 770 * 771 * Return true if an adapter needs ioport resources 772 **/ 773 static int e1000_is_need_ioport(struct pci_dev *pdev) 774 { 775 switch (pdev->device) { 776 case E1000_DEV_ID_82540EM: 777 case E1000_DEV_ID_82540EM_LOM: 778 case E1000_DEV_ID_82540EP: 779 case E1000_DEV_ID_82540EP_LOM: 780 case E1000_DEV_ID_82540EP_LP: 781 case E1000_DEV_ID_82541EI: 782 case E1000_DEV_ID_82541EI_MOBILE: 783 case E1000_DEV_ID_82541ER: 784 case E1000_DEV_ID_82541ER_LOM: 785 case E1000_DEV_ID_82541GI: 786 case E1000_DEV_ID_82541GI_LF: 787 case E1000_DEV_ID_82541GI_MOBILE: 788 case E1000_DEV_ID_82544EI_COPPER: 789 case E1000_DEV_ID_82544EI_FIBER: 790 case E1000_DEV_ID_82544GC_COPPER: 791 case E1000_DEV_ID_82544GC_LOM: 792 case E1000_DEV_ID_82545EM_COPPER: 793 case E1000_DEV_ID_82545EM_FIBER: 794 case E1000_DEV_ID_82546EB_COPPER: 795 case E1000_DEV_ID_82546EB_FIBER: 796 case E1000_DEV_ID_82546EB_QUAD_COPPER: 797 return true; 798 default: 799 return false; 800 } 801 } 802 803 static netdev_features_t e1000_fix_features(struct net_device *netdev, 804 netdev_features_t features) 805 { 806 /* Since there is no support for separate Rx/Tx vlan accel 807 * enable/disable make sure Tx flag is always in same state as Rx. 808 */ 809 if (features & NETIF_F_HW_VLAN_CTAG_RX) 810 features |= NETIF_F_HW_VLAN_CTAG_TX; 811 else 812 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 813 814 return features; 815 } 816 817 static int e1000_set_features(struct net_device *netdev, 818 netdev_features_t features) 819 { 820 struct e1000_adapter *adapter = netdev_priv(netdev); 821 netdev_features_t changed = features ^ netdev->features; 822 823 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 824 e1000_vlan_mode(netdev, features); 825 826 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL))) 827 return 0; 828 829 netdev->features = features; 830 adapter->rx_csum = !!(features & NETIF_F_RXCSUM); 831 832 if (netif_running(netdev)) 833 e1000_reinit_locked(adapter); 834 else 835 e1000_reset(adapter); 836 837 return 0; 838 } 839 840 static const struct net_device_ops e1000_netdev_ops = { 841 .ndo_open = e1000_open, 842 .ndo_stop = e1000_close, 843 .ndo_start_xmit = e1000_xmit_frame, 844 .ndo_get_stats = e1000_get_stats, 845 .ndo_set_rx_mode = e1000_set_rx_mode, 846 .ndo_set_mac_address = e1000_set_mac, 847 .ndo_tx_timeout = e1000_tx_timeout, 848 .ndo_change_mtu = e1000_change_mtu, 849 .ndo_do_ioctl = e1000_ioctl, 850 .ndo_validate_addr = eth_validate_addr, 851 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, 852 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, 853 #ifdef CONFIG_NET_POLL_CONTROLLER 854 .ndo_poll_controller = e1000_netpoll, 855 #endif 856 .ndo_fix_features = e1000_fix_features, 857 .ndo_set_features = e1000_set_features, 858 }; 859 860 /** 861 * e1000_init_hw_struct - initialize members of hw struct 862 * @adapter: board private struct 863 * @hw: structure used by e1000_hw.c 864 * 865 * Factors out initialization of the e1000_hw struct to its own function 866 * that can be called very early at init (just after struct allocation). 867 * Fields are initialized based on PCI device information and 868 * OS network device settings (MTU size). 869 * Returns negative error codes if MAC type setup fails. 870 */ 871 static int e1000_init_hw_struct(struct e1000_adapter *adapter, 872 struct e1000_hw *hw) 873 { 874 struct pci_dev *pdev = adapter->pdev; 875 876 /* PCI config space info */ 877 hw->vendor_id = pdev->vendor; 878 hw->device_id = pdev->device; 879 hw->subsystem_vendor_id = pdev->subsystem_vendor; 880 hw->subsystem_id = pdev->subsystem_device; 881 hw->revision_id = pdev->revision; 882 883 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); 884 885 hw->max_frame_size = adapter->netdev->mtu + 886 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; 887 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; 888 889 /* identify the MAC */ 890 if (e1000_set_mac_type(hw)) { 891 e_err(probe, "Unknown MAC Type\n"); 892 return -EIO; 893 } 894 895 switch (hw->mac_type) { 896 default: 897 break; 898 case e1000_82541: 899 case e1000_82547: 900 case e1000_82541_rev_2: 901 case e1000_82547_rev_2: 902 hw->phy_init_script = 1; 903 break; 904 } 905 906 e1000_set_media_type(hw); 907 e1000_get_bus_info(hw); 908 909 hw->wait_autoneg_complete = false; 910 hw->tbi_compatibility_en = true; 911 hw->adaptive_ifs = true; 912 913 /* Copper options */ 914 915 if (hw->media_type == e1000_media_type_copper) { 916 hw->mdix = AUTO_ALL_MODES; 917 hw->disable_polarity_correction = false; 918 hw->master_slave = E1000_MASTER_SLAVE; 919 } 920 921 return 0; 922 } 923 924 /** 925 * e1000_probe - Device Initialization Routine 926 * @pdev: PCI device information struct 927 * @ent: entry in e1000_pci_tbl 928 * 929 * Returns 0 on success, negative on failure 930 * 931 * e1000_probe initializes an adapter identified by a pci_dev structure. 932 * The OS initialization, configuring of the adapter private structure, 933 * and a hardware reset occur. 934 **/ 935 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 936 { 937 struct net_device *netdev; 938 struct e1000_adapter *adapter; 939 struct e1000_hw *hw; 940 941 static int cards_found = 0; 942 static int global_quad_port_a = 0; /* global ksp3 port a indication */ 943 int i, err, pci_using_dac; 944 u16 eeprom_data = 0; 945 u16 tmp = 0; 946 u16 eeprom_apme_mask = E1000_EEPROM_APME; 947 int bars, need_ioport; 948 949 /* do not allocate ioport bars when not needed */ 950 need_ioport = e1000_is_need_ioport(pdev); 951 if (need_ioport) { 952 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); 953 err = pci_enable_device(pdev); 954 } else { 955 bars = pci_select_bars(pdev, IORESOURCE_MEM); 956 err = pci_enable_device_mem(pdev); 957 } 958 if (err) 959 return err; 960 961 err = pci_request_selected_regions(pdev, bars, e1000_driver_name); 962 if (err) 963 goto err_pci_reg; 964 965 pci_set_master(pdev); 966 err = pci_save_state(pdev); 967 if (err) 968 goto err_alloc_etherdev; 969 970 err = -ENOMEM; 971 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 972 if (!netdev) 973 goto err_alloc_etherdev; 974 975 SET_NETDEV_DEV(netdev, &pdev->dev); 976 977 pci_set_drvdata(pdev, netdev); 978 adapter = netdev_priv(netdev); 979 adapter->netdev = netdev; 980 adapter->pdev = pdev; 981 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 982 adapter->bars = bars; 983 adapter->need_ioport = need_ioport; 984 985 hw = &adapter->hw; 986 hw->back = adapter; 987 988 err = -EIO; 989 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); 990 if (!hw->hw_addr) 991 goto err_ioremap; 992 993 if (adapter->need_ioport) { 994 for (i = BAR_1; i <= BAR_5; i++) { 995 if (pci_resource_len(pdev, i) == 0) 996 continue; 997 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 998 hw->io_base = pci_resource_start(pdev, i); 999 break; 1000 } 1001 } 1002 } 1003 1004 /* make ready for any if (hw->...) below */ 1005 err = e1000_init_hw_struct(adapter, hw); 1006 if (err) 1007 goto err_sw_init; 1008 1009 /* there is a workaround being applied below that limits 1010 * 64-bit DMA addresses to 64-bit hardware. There are some 1011 * 32-bit adapters that Tx hang when given 64-bit DMA addresses 1012 */ 1013 pci_using_dac = 0; 1014 if ((hw->bus_type == e1000_bus_type_pcix) && 1015 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 1016 pci_using_dac = 1; 1017 } else { 1018 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1019 if (err) { 1020 pr_err("No usable DMA config, aborting\n"); 1021 goto err_dma; 1022 } 1023 } 1024 1025 netdev->netdev_ops = &e1000_netdev_ops; 1026 e1000_set_ethtool_ops(netdev); 1027 netdev->watchdog_timeo = 5 * HZ; 1028 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); 1029 1030 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 1031 1032 adapter->bd_number = cards_found; 1033 1034 /* setup the private structure */ 1035 1036 err = e1000_sw_init(adapter); 1037 if (err) 1038 goto err_sw_init; 1039 1040 err = -EIO; 1041 if (hw->mac_type == e1000_ce4100) { 1042 hw->ce4100_gbe_mdio_base_virt = 1043 ioremap(pci_resource_start(pdev, BAR_1), 1044 pci_resource_len(pdev, BAR_1)); 1045 1046 if (!hw->ce4100_gbe_mdio_base_virt) 1047 goto err_mdio_ioremap; 1048 } 1049 1050 if (hw->mac_type >= e1000_82543) { 1051 netdev->hw_features = NETIF_F_SG | 1052 NETIF_F_HW_CSUM | 1053 NETIF_F_HW_VLAN_CTAG_RX; 1054 netdev->features = NETIF_F_HW_VLAN_CTAG_TX | 1055 NETIF_F_HW_VLAN_CTAG_FILTER; 1056 } 1057 1058 if ((hw->mac_type >= e1000_82544) && 1059 (hw->mac_type != e1000_82547)) 1060 netdev->hw_features |= NETIF_F_TSO; 1061 1062 netdev->priv_flags |= IFF_SUPP_NOFCS; 1063 1064 netdev->features |= netdev->hw_features; 1065 netdev->hw_features |= (NETIF_F_RXCSUM | 1066 NETIF_F_RXALL | 1067 NETIF_F_RXFCS); 1068 1069 if (pci_using_dac) { 1070 netdev->features |= NETIF_F_HIGHDMA; 1071 netdev->vlan_features |= NETIF_F_HIGHDMA; 1072 } 1073 1074 netdev->vlan_features |= (NETIF_F_TSO | 1075 NETIF_F_HW_CSUM | 1076 NETIF_F_SG); 1077 1078 netdev->priv_flags |= IFF_UNICAST_FLT; 1079 1080 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); 1081 1082 /* initialize eeprom parameters */ 1083 if (e1000_init_eeprom_params(hw)) { 1084 e_err(probe, "EEPROM initialization failed\n"); 1085 goto err_eeprom; 1086 } 1087 1088 /* before reading the EEPROM, reset the controller to 1089 * put the device in a known good starting state 1090 */ 1091 1092 e1000_reset_hw(hw); 1093 1094 /* make sure the EEPROM is good */ 1095 if (e1000_validate_eeprom_checksum(hw) < 0) { 1096 e_err(probe, "The EEPROM Checksum Is Not Valid\n"); 1097 e1000_dump_eeprom(adapter); 1098 /* set MAC address to all zeroes to invalidate and temporary 1099 * disable this device for the user. This blocks regular 1100 * traffic while still permitting ethtool ioctls from reaching 1101 * the hardware as well as allowing the user to run the 1102 * interface after manually setting a hw addr using 1103 * `ip set address` 1104 */ 1105 memset(hw->mac_addr, 0, netdev->addr_len); 1106 } else { 1107 /* copy the MAC address out of the EEPROM */ 1108 if (e1000_read_mac_addr(hw)) 1109 e_err(probe, "EEPROM Read Error\n"); 1110 } 1111 /* don't block initalization here due to bad MAC address */ 1112 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); 1113 1114 if (!is_valid_ether_addr(netdev->dev_addr)) 1115 e_err(probe, "Invalid MAC Address\n"); 1116 1117 1118 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog); 1119 INIT_DELAYED_WORK(&adapter->fifo_stall_task, 1120 e1000_82547_tx_fifo_stall_task); 1121 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task); 1122 INIT_WORK(&adapter->reset_task, e1000_reset_task); 1123 1124 e1000_check_options(adapter); 1125 1126 /* Initial Wake on LAN setting 1127 * If APM wake is enabled in the EEPROM, 1128 * enable the ACPI Magic Packet filter 1129 */ 1130 1131 switch (hw->mac_type) { 1132 case e1000_82542_rev2_0: 1133 case e1000_82542_rev2_1: 1134 case e1000_82543: 1135 break; 1136 case e1000_82544: 1137 e1000_read_eeprom(hw, 1138 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); 1139 eeprom_apme_mask = E1000_EEPROM_82544_APM; 1140 break; 1141 case e1000_82546: 1142 case e1000_82546_rev_3: 1143 if (er32(STATUS) & E1000_STATUS_FUNC_1){ 1144 e1000_read_eeprom(hw, 1145 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 1146 break; 1147 } 1148 /* Fall Through */ 1149 default: 1150 e1000_read_eeprom(hw, 1151 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 1152 break; 1153 } 1154 if (eeprom_data & eeprom_apme_mask) 1155 adapter->eeprom_wol |= E1000_WUFC_MAG; 1156 1157 /* now that we have the eeprom settings, apply the special cases 1158 * where the eeprom may be wrong or the board simply won't support 1159 * wake on lan on a particular port 1160 */ 1161 switch (pdev->device) { 1162 case E1000_DEV_ID_82546GB_PCIE: 1163 adapter->eeprom_wol = 0; 1164 break; 1165 case E1000_DEV_ID_82546EB_FIBER: 1166 case E1000_DEV_ID_82546GB_FIBER: 1167 /* Wake events only supported on port A for dual fiber 1168 * regardless of eeprom setting 1169 */ 1170 if (er32(STATUS) & E1000_STATUS_FUNC_1) 1171 adapter->eeprom_wol = 0; 1172 break; 1173 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1174 /* if quad port adapter, disable WoL on all but port A */ 1175 if (global_quad_port_a != 0) 1176 adapter->eeprom_wol = 0; 1177 else 1178 adapter->quad_port_a = true; 1179 /* Reset for multiple quad port adapters */ 1180 if (++global_quad_port_a == 4) 1181 global_quad_port_a = 0; 1182 break; 1183 } 1184 1185 /* initialize the wol settings based on the eeprom settings */ 1186 adapter->wol = adapter->eeprom_wol; 1187 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1188 1189 /* Auto detect PHY address */ 1190 if (hw->mac_type == e1000_ce4100) { 1191 for (i = 0; i < 32; i++) { 1192 hw->phy_addr = i; 1193 e1000_read_phy_reg(hw, PHY_ID2, &tmp); 1194 if (tmp == 0 || tmp == 0xFF) { 1195 if (i == 31) 1196 goto err_eeprom; 1197 continue; 1198 } else 1199 break; 1200 } 1201 } 1202 1203 /* reset the hardware with the new settings */ 1204 e1000_reset(adapter); 1205 1206 strcpy(netdev->name, "eth%d"); 1207 err = register_netdev(netdev); 1208 if (err) 1209 goto err_register; 1210 1211 e1000_vlan_filter_on_off(adapter, false); 1212 1213 /* print bus type/speed/width info */ 1214 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n", 1215 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), 1216 ((hw->bus_speed == e1000_bus_speed_133) ? 133 : 1217 (hw->bus_speed == e1000_bus_speed_120) ? 120 : 1218 (hw->bus_speed == e1000_bus_speed_100) ? 100 : 1219 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), 1220 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), 1221 netdev->dev_addr); 1222 1223 /* carrier off reporting is important to ethtool even BEFORE open */ 1224 netif_carrier_off(netdev); 1225 1226 e_info(probe, "Intel(R) PRO/1000 Network Connection\n"); 1227 1228 cards_found++; 1229 return 0; 1230 1231 err_register: 1232 err_eeprom: 1233 e1000_phy_hw_reset(hw); 1234 1235 if (hw->flash_address) 1236 iounmap(hw->flash_address); 1237 kfree(adapter->tx_ring); 1238 kfree(adapter->rx_ring); 1239 err_dma: 1240 err_sw_init: 1241 err_mdio_ioremap: 1242 iounmap(hw->ce4100_gbe_mdio_base_virt); 1243 iounmap(hw->hw_addr); 1244 err_ioremap: 1245 free_netdev(netdev); 1246 err_alloc_etherdev: 1247 pci_release_selected_regions(pdev, bars); 1248 err_pci_reg: 1249 pci_disable_device(pdev); 1250 return err; 1251 } 1252 1253 /** 1254 * e1000_remove - Device Removal Routine 1255 * @pdev: PCI device information struct 1256 * 1257 * e1000_remove is called by the PCI subsystem to alert the driver 1258 * that it should release a PCI device. The could be caused by a 1259 * Hot-Plug event, or because the driver is going to be removed from 1260 * memory. 1261 **/ 1262 static void e1000_remove(struct pci_dev *pdev) 1263 { 1264 struct net_device *netdev = pci_get_drvdata(pdev); 1265 struct e1000_adapter *adapter = netdev_priv(netdev); 1266 struct e1000_hw *hw = &adapter->hw; 1267 1268 e1000_down_and_stop(adapter); 1269 e1000_release_manageability(adapter); 1270 1271 unregister_netdev(netdev); 1272 1273 e1000_phy_hw_reset(hw); 1274 1275 kfree(adapter->tx_ring); 1276 kfree(adapter->rx_ring); 1277 1278 if (hw->mac_type == e1000_ce4100) 1279 iounmap(hw->ce4100_gbe_mdio_base_virt); 1280 iounmap(hw->hw_addr); 1281 if (hw->flash_address) 1282 iounmap(hw->flash_address); 1283 pci_release_selected_regions(pdev, adapter->bars); 1284 1285 free_netdev(netdev); 1286 1287 pci_disable_device(pdev); 1288 } 1289 1290 /** 1291 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 1292 * @adapter: board private structure to initialize 1293 * 1294 * e1000_sw_init initializes the Adapter private data structure. 1295 * e1000_init_hw_struct MUST be called before this function 1296 **/ 1297 static int e1000_sw_init(struct e1000_adapter *adapter) 1298 { 1299 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 1300 1301 adapter->num_tx_queues = 1; 1302 adapter->num_rx_queues = 1; 1303 1304 if (e1000_alloc_queues(adapter)) { 1305 e_err(probe, "Unable to allocate memory for queues\n"); 1306 return -ENOMEM; 1307 } 1308 1309 /* Explicitly disable IRQ since the NIC can be in any state. */ 1310 e1000_irq_disable(adapter); 1311 1312 spin_lock_init(&adapter->stats_lock); 1313 1314 set_bit(__E1000_DOWN, &adapter->flags); 1315 1316 return 0; 1317 } 1318 1319 /** 1320 * e1000_alloc_queues - Allocate memory for all rings 1321 * @adapter: board private structure to initialize 1322 * 1323 * We allocate one ring per queue at run-time since we don't know the 1324 * number of queues at compile-time. 1325 **/ 1326 static int e1000_alloc_queues(struct e1000_adapter *adapter) 1327 { 1328 adapter->tx_ring = kcalloc(adapter->num_tx_queues, 1329 sizeof(struct e1000_tx_ring), GFP_KERNEL); 1330 if (!adapter->tx_ring) 1331 return -ENOMEM; 1332 1333 adapter->rx_ring = kcalloc(adapter->num_rx_queues, 1334 sizeof(struct e1000_rx_ring), GFP_KERNEL); 1335 if (!adapter->rx_ring) { 1336 kfree(adapter->tx_ring); 1337 return -ENOMEM; 1338 } 1339 1340 return E1000_SUCCESS; 1341 } 1342 1343 /** 1344 * e1000_open - Called when a network interface is made active 1345 * @netdev: network interface device structure 1346 * 1347 * Returns 0 on success, negative value on failure 1348 * 1349 * The open entry point is called when a network interface is made 1350 * active by the system (IFF_UP). At this point all resources needed 1351 * for transmit and receive operations are allocated, the interrupt 1352 * handler is registered with the OS, the watchdog task is started, 1353 * and the stack is notified that the interface is ready. 1354 **/ 1355 static int e1000_open(struct net_device *netdev) 1356 { 1357 struct e1000_adapter *adapter = netdev_priv(netdev); 1358 struct e1000_hw *hw = &adapter->hw; 1359 int err; 1360 1361 /* disallow open during test */ 1362 if (test_bit(__E1000_TESTING, &adapter->flags)) 1363 return -EBUSY; 1364 1365 netif_carrier_off(netdev); 1366 1367 /* allocate transmit descriptors */ 1368 err = e1000_setup_all_tx_resources(adapter); 1369 if (err) 1370 goto err_setup_tx; 1371 1372 /* allocate receive descriptors */ 1373 err = e1000_setup_all_rx_resources(adapter); 1374 if (err) 1375 goto err_setup_rx; 1376 1377 e1000_power_up_phy(adapter); 1378 1379 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1380 if ((hw->mng_cookie.status & 1381 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { 1382 e1000_update_mng_vlan(adapter); 1383 } 1384 1385 /* before we allocate an interrupt, we must be ready to handle it. 1386 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1387 * as soon as we call pci_request_irq, so we have to setup our 1388 * clean_rx handler before we do so. 1389 */ 1390 e1000_configure(adapter); 1391 1392 err = e1000_request_irq(adapter); 1393 if (err) 1394 goto err_req_irq; 1395 1396 /* From here on the code is the same as e1000_up() */ 1397 clear_bit(__E1000_DOWN, &adapter->flags); 1398 1399 napi_enable(&adapter->napi); 1400 1401 e1000_irq_enable(adapter); 1402 1403 netif_start_queue(netdev); 1404 1405 /* fire a link status change interrupt to start the watchdog */ 1406 ew32(ICS, E1000_ICS_LSC); 1407 1408 return E1000_SUCCESS; 1409 1410 err_req_irq: 1411 e1000_power_down_phy(adapter); 1412 e1000_free_all_rx_resources(adapter); 1413 err_setup_rx: 1414 e1000_free_all_tx_resources(adapter); 1415 err_setup_tx: 1416 e1000_reset(adapter); 1417 1418 return err; 1419 } 1420 1421 /** 1422 * e1000_close - Disables a network interface 1423 * @netdev: network interface device structure 1424 * 1425 * Returns 0, this is not allowed to fail 1426 * 1427 * The close entry point is called when an interface is de-activated 1428 * by the OS. The hardware is still under the drivers control, but 1429 * needs to be disabled. A global MAC reset is issued to stop the 1430 * hardware, and all transmit and receive resources are freed. 1431 **/ 1432 static int e1000_close(struct net_device *netdev) 1433 { 1434 struct e1000_adapter *adapter = netdev_priv(netdev); 1435 struct e1000_hw *hw = &adapter->hw; 1436 int count = E1000_CHECK_RESET_COUNT; 1437 1438 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 1439 usleep_range(10000, 20000); 1440 1441 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 1442 e1000_down(adapter); 1443 e1000_power_down_phy(adapter); 1444 e1000_free_irq(adapter); 1445 1446 e1000_free_all_tx_resources(adapter); 1447 e1000_free_all_rx_resources(adapter); 1448 1449 /* kill manageability vlan ID if supported, but not if a vlan with 1450 * the same ID is registered on the host OS (let 8021q kill it) 1451 */ 1452 if ((hw->mng_cookie.status & 1453 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 1454 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { 1455 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 1456 adapter->mng_vlan_id); 1457 } 1458 1459 return 0; 1460 } 1461 1462 /** 1463 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary 1464 * @adapter: address of board private structure 1465 * @start: address of beginning of memory 1466 * @len: length of memory 1467 **/ 1468 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, 1469 unsigned long len) 1470 { 1471 struct e1000_hw *hw = &adapter->hw; 1472 unsigned long begin = (unsigned long)start; 1473 unsigned long end = begin + len; 1474 1475 /* First rev 82545 and 82546 need to not allow any memory 1476 * write location to cross 64k boundary due to errata 23 1477 */ 1478 if (hw->mac_type == e1000_82545 || 1479 hw->mac_type == e1000_ce4100 || 1480 hw->mac_type == e1000_82546) { 1481 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; 1482 } 1483 1484 return true; 1485 } 1486 1487 /** 1488 * e1000_setup_tx_resources - allocate Tx resources (Descriptors) 1489 * @adapter: board private structure 1490 * @txdr: tx descriptor ring (for a specific queue) to setup 1491 * 1492 * Return 0 on success, negative on failure 1493 **/ 1494 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 1495 struct e1000_tx_ring *txdr) 1496 { 1497 struct pci_dev *pdev = adapter->pdev; 1498 int size; 1499 1500 size = sizeof(struct e1000_buffer) * txdr->count; 1501 txdr->buffer_info = vzalloc(size); 1502 if (!txdr->buffer_info) 1503 return -ENOMEM; 1504 1505 /* round up to nearest 4K */ 1506 1507 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 1508 txdr->size = ALIGN(txdr->size, 4096); 1509 1510 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, 1511 GFP_KERNEL); 1512 if (!txdr->desc) { 1513 setup_tx_desc_die: 1514 vfree(txdr->buffer_info); 1515 return -ENOMEM; 1516 } 1517 1518 /* Fix for errata 23, can't cross 64kB boundary */ 1519 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1520 void *olddesc = txdr->desc; 1521 dma_addr_t olddma = txdr->dma; 1522 e_err(tx_err, "txdr align check failed: %u bytes at %p\n", 1523 txdr->size, txdr->desc); 1524 /* Try again, without freeing the previous */ 1525 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, 1526 &txdr->dma, GFP_KERNEL); 1527 /* Failed allocation, critical failure */ 1528 if (!txdr->desc) { 1529 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1530 olddma); 1531 goto setup_tx_desc_die; 1532 } 1533 1534 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1535 /* give up */ 1536 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, 1537 txdr->dma); 1538 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1539 olddma); 1540 e_err(probe, "Unable to allocate aligned memory " 1541 "for the transmit descriptor ring\n"); 1542 vfree(txdr->buffer_info); 1543 return -ENOMEM; 1544 } else { 1545 /* Free old allocation, new allocation was successful */ 1546 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1547 olddma); 1548 } 1549 } 1550 memset(txdr->desc, 0, txdr->size); 1551 1552 txdr->next_to_use = 0; 1553 txdr->next_to_clean = 0; 1554 1555 return 0; 1556 } 1557 1558 /** 1559 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources 1560 * (Descriptors) for all queues 1561 * @adapter: board private structure 1562 * 1563 * Return 0 on success, negative on failure 1564 **/ 1565 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) 1566 { 1567 int i, err = 0; 1568 1569 for (i = 0; i < adapter->num_tx_queues; i++) { 1570 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); 1571 if (err) { 1572 e_err(probe, "Allocation for Tx Queue %u failed\n", i); 1573 for (i-- ; i >= 0; i--) 1574 e1000_free_tx_resources(adapter, 1575 &adapter->tx_ring[i]); 1576 break; 1577 } 1578 } 1579 1580 return err; 1581 } 1582 1583 /** 1584 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset 1585 * @adapter: board private structure 1586 * 1587 * Configure the Tx unit of the MAC after a reset. 1588 **/ 1589 static void e1000_configure_tx(struct e1000_adapter *adapter) 1590 { 1591 u64 tdba; 1592 struct e1000_hw *hw = &adapter->hw; 1593 u32 tdlen, tctl, tipg; 1594 u32 ipgr1, ipgr2; 1595 1596 /* Setup the HW Tx Head and Tail descriptor pointers */ 1597 1598 switch (adapter->num_tx_queues) { 1599 case 1: 1600 default: 1601 tdba = adapter->tx_ring[0].dma; 1602 tdlen = adapter->tx_ring[0].count * 1603 sizeof(struct e1000_tx_desc); 1604 ew32(TDLEN, tdlen); 1605 ew32(TDBAH, (tdba >> 32)); 1606 ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); 1607 ew32(TDT, 0); 1608 ew32(TDH, 0); 1609 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? 1610 E1000_TDH : E1000_82542_TDH); 1611 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? 1612 E1000_TDT : E1000_82542_TDT); 1613 break; 1614 } 1615 1616 /* Set the default values for the Tx Inter Packet Gap timer */ 1617 if ((hw->media_type == e1000_media_type_fiber || 1618 hw->media_type == e1000_media_type_internal_serdes)) 1619 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 1620 else 1621 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 1622 1623 switch (hw->mac_type) { 1624 case e1000_82542_rev2_0: 1625 case e1000_82542_rev2_1: 1626 tipg = DEFAULT_82542_TIPG_IPGT; 1627 ipgr1 = DEFAULT_82542_TIPG_IPGR1; 1628 ipgr2 = DEFAULT_82542_TIPG_IPGR2; 1629 break; 1630 default: 1631 ipgr1 = DEFAULT_82543_TIPG_IPGR1; 1632 ipgr2 = DEFAULT_82543_TIPG_IPGR2; 1633 break; 1634 } 1635 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; 1636 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; 1637 ew32(TIPG, tipg); 1638 1639 /* Set the Tx Interrupt Delay register */ 1640 1641 ew32(TIDV, adapter->tx_int_delay); 1642 if (hw->mac_type >= e1000_82540) 1643 ew32(TADV, adapter->tx_abs_int_delay); 1644 1645 /* Program the Transmit Control Register */ 1646 1647 tctl = er32(TCTL); 1648 tctl &= ~E1000_TCTL_CT; 1649 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 1650 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 1651 1652 e1000_config_collision_dist(hw); 1653 1654 /* Setup Transmit Descriptor Settings for eop descriptor */ 1655 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 1656 1657 /* only set IDE if we are delaying interrupts using the timers */ 1658 if (adapter->tx_int_delay) 1659 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 1660 1661 if (hw->mac_type < e1000_82543) 1662 adapter->txd_cmd |= E1000_TXD_CMD_RPS; 1663 else 1664 adapter->txd_cmd |= E1000_TXD_CMD_RS; 1665 1666 /* Cache if we're 82544 running in PCI-X because we'll 1667 * need this to apply a workaround later in the send path. 1668 */ 1669 if (hw->mac_type == e1000_82544 && 1670 hw->bus_type == e1000_bus_type_pcix) 1671 adapter->pcix_82544 = true; 1672 1673 ew32(TCTL, tctl); 1674 1675 } 1676 1677 /** 1678 * e1000_setup_rx_resources - allocate Rx resources (Descriptors) 1679 * @adapter: board private structure 1680 * @rxdr: rx descriptor ring (for a specific queue) to setup 1681 * 1682 * Returns 0 on success, negative on failure 1683 **/ 1684 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 1685 struct e1000_rx_ring *rxdr) 1686 { 1687 struct pci_dev *pdev = adapter->pdev; 1688 int size, desc_len; 1689 1690 size = sizeof(struct e1000_buffer) * rxdr->count; 1691 rxdr->buffer_info = vzalloc(size); 1692 if (!rxdr->buffer_info) 1693 return -ENOMEM; 1694 1695 desc_len = sizeof(struct e1000_rx_desc); 1696 1697 /* Round up to nearest 4K */ 1698 1699 rxdr->size = rxdr->count * desc_len; 1700 rxdr->size = ALIGN(rxdr->size, 4096); 1701 1702 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, 1703 GFP_KERNEL); 1704 if (!rxdr->desc) { 1705 setup_rx_desc_die: 1706 vfree(rxdr->buffer_info); 1707 return -ENOMEM; 1708 } 1709 1710 /* Fix for errata 23, can't cross 64kB boundary */ 1711 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1712 void *olddesc = rxdr->desc; 1713 dma_addr_t olddma = rxdr->dma; 1714 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n", 1715 rxdr->size, rxdr->desc); 1716 /* Try again, without freeing the previous */ 1717 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, 1718 &rxdr->dma, GFP_KERNEL); 1719 /* Failed allocation, critical failure */ 1720 if (!rxdr->desc) { 1721 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1722 olddma); 1723 goto setup_rx_desc_die; 1724 } 1725 1726 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1727 /* give up */ 1728 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, 1729 rxdr->dma); 1730 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1731 olddma); 1732 e_err(probe, "Unable to allocate aligned memory for " 1733 "the Rx descriptor ring\n"); 1734 goto setup_rx_desc_die; 1735 } else { 1736 /* Free old allocation, new allocation was successful */ 1737 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1738 olddma); 1739 } 1740 } 1741 memset(rxdr->desc, 0, rxdr->size); 1742 1743 rxdr->next_to_clean = 0; 1744 rxdr->next_to_use = 0; 1745 rxdr->rx_skb_top = NULL; 1746 1747 return 0; 1748 } 1749 1750 /** 1751 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources 1752 * (Descriptors) for all queues 1753 * @adapter: board private structure 1754 * 1755 * Return 0 on success, negative on failure 1756 **/ 1757 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) 1758 { 1759 int i, err = 0; 1760 1761 for (i = 0; i < adapter->num_rx_queues; i++) { 1762 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); 1763 if (err) { 1764 e_err(probe, "Allocation for Rx Queue %u failed\n", i); 1765 for (i-- ; i >= 0; i--) 1766 e1000_free_rx_resources(adapter, 1767 &adapter->rx_ring[i]); 1768 break; 1769 } 1770 } 1771 1772 return err; 1773 } 1774 1775 /** 1776 * e1000_setup_rctl - configure the receive control registers 1777 * @adapter: Board private structure 1778 **/ 1779 static void e1000_setup_rctl(struct e1000_adapter *adapter) 1780 { 1781 struct e1000_hw *hw = &adapter->hw; 1782 u32 rctl; 1783 1784 rctl = er32(RCTL); 1785 1786 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 1787 1788 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO | 1789 E1000_RCTL_RDMTS_HALF | 1790 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); 1791 1792 if (hw->tbi_compatibility_on == 1) 1793 rctl |= E1000_RCTL_SBP; 1794 else 1795 rctl &= ~E1000_RCTL_SBP; 1796 1797 if (adapter->netdev->mtu <= ETH_DATA_LEN) 1798 rctl &= ~E1000_RCTL_LPE; 1799 else 1800 rctl |= E1000_RCTL_LPE; 1801 1802 /* Setup buffer sizes */ 1803 rctl &= ~E1000_RCTL_SZ_4096; 1804 rctl |= E1000_RCTL_BSEX; 1805 switch (adapter->rx_buffer_len) { 1806 case E1000_RXBUFFER_2048: 1807 default: 1808 rctl |= E1000_RCTL_SZ_2048; 1809 rctl &= ~E1000_RCTL_BSEX; 1810 break; 1811 case E1000_RXBUFFER_4096: 1812 rctl |= E1000_RCTL_SZ_4096; 1813 break; 1814 case E1000_RXBUFFER_8192: 1815 rctl |= E1000_RCTL_SZ_8192; 1816 break; 1817 case E1000_RXBUFFER_16384: 1818 rctl |= E1000_RCTL_SZ_16384; 1819 break; 1820 } 1821 1822 /* This is useful for sniffing bad packets. */ 1823 if (adapter->netdev->features & NETIF_F_RXALL) { 1824 /* UPE and MPE will be handled by normal PROMISC logic 1825 * in e1000e_set_rx_mode 1826 */ 1827 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 1828 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 1829 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 1830 1831 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 1832 E1000_RCTL_DPF | /* Allow filtered pause */ 1833 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 1834 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 1835 * and that breaks VLANs. 1836 */ 1837 } 1838 1839 ew32(RCTL, rctl); 1840 } 1841 1842 /** 1843 * e1000_configure_rx - Configure 8254x Receive Unit after Reset 1844 * @adapter: board private structure 1845 * 1846 * Configure the Rx unit of the MAC after a reset. 1847 **/ 1848 static void e1000_configure_rx(struct e1000_adapter *adapter) 1849 { 1850 u64 rdba; 1851 struct e1000_hw *hw = &adapter->hw; 1852 u32 rdlen, rctl, rxcsum; 1853 1854 if (adapter->netdev->mtu > ETH_DATA_LEN) { 1855 rdlen = adapter->rx_ring[0].count * 1856 sizeof(struct e1000_rx_desc); 1857 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 1858 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 1859 } else { 1860 rdlen = adapter->rx_ring[0].count * 1861 sizeof(struct e1000_rx_desc); 1862 adapter->clean_rx = e1000_clean_rx_irq; 1863 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 1864 } 1865 1866 /* disable receives while setting up the descriptors */ 1867 rctl = er32(RCTL); 1868 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1869 1870 /* set the Receive Delay Timer Register */ 1871 ew32(RDTR, adapter->rx_int_delay); 1872 1873 if (hw->mac_type >= e1000_82540) { 1874 ew32(RADV, adapter->rx_abs_int_delay); 1875 if (adapter->itr_setting != 0) 1876 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1877 } 1878 1879 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1880 * the Base and Length of the Rx Descriptor Ring 1881 */ 1882 switch (adapter->num_rx_queues) { 1883 case 1: 1884 default: 1885 rdba = adapter->rx_ring[0].dma; 1886 ew32(RDLEN, rdlen); 1887 ew32(RDBAH, (rdba >> 32)); 1888 ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); 1889 ew32(RDT, 0); 1890 ew32(RDH, 0); 1891 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? 1892 E1000_RDH : E1000_82542_RDH); 1893 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? 1894 E1000_RDT : E1000_82542_RDT); 1895 break; 1896 } 1897 1898 /* Enable 82543 Receive Checksum Offload for TCP and UDP */ 1899 if (hw->mac_type >= e1000_82543) { 1900 rxcsum = er32(RXCSUM); 1901 if (adapter->rx_csum) 1902 rxcsum |= E1000_RXCSUM_TUOFL; 1903 else 1904 /* don't need to clear IPPCSE as it defaults to 0 */ 1905 rxcsum &= ~E1000_RXCSUM_TUOFL; 1906 ew32(RXCSUM, rxcsum); 1907 } 1908 1909 /* Enable Receives */ 1910 ew32(RCTL, rctl | E1000_RCTL_EN); 1911 } 1912 1913 /** 1914 * e1000_free_tx_resources - Free Tx Resources per Queue 1915 * @adapter: board private structure 1916 * @tx_ring: Tx descriptor ring for a specific queue 1917 * 1918 * Free all transmit software resources 1919 **/ 1920 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 1921 struct e1000_tx_ring *tx_ring) 1922 { 1923 struct pci_dev *pdev = adapter->pdev; 1924 1925 e1000_clean_tx_ring(adapter, tx_ring); 1926 1927 vfree(tx_ring->buffer_info); 1928 tx_ring->buffer_info = NULL; 1929 1930 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1931 tx_ring->dma); 1932 1933 tx_ring->desc = NULL; 1934 } 1935 1936 /** 1937 * e1000_free_all_tx_resources - Free Tx Resources for All Queues 1938 * @adapter: board private structure 1939 * 1940 * Free all transmit software resources 1941 **/ 1942 void e1000_free_all_tx_resources(struct e1000_adapter *adapter) 1943 { 1944 int i; 1945 1946 for (i = 0; i < adapter->num_tx_queues; i++) 1947 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); 1948 } 1949 1950 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, 1951 struct e1000_buffer *buffer_info) 1952 { 1953 if (buffer_info->dma) { 1954 if (buffer_info->mapped_as_page) 1955 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, 1956 buffer_info->length, DMA_TO_DEVICE); 1957 else 1958 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1959 buffer_info->length, 1960 DMA_TO_DEVICE); 1961 buffer_info->dma = 0; 1962 } 1963 if (buffer_info->skb) { 1964 dev_kfree_skb_any(buffer_info->skb); 1965 buffer_info->skb = NULL; 1966 } 1967 buffer_info->time_stamp = 0; 1968 /* buffer_info must be completely set up in the transmit path */ 1969 } 1970 1971 /** 1972 * e1000_clean_tx_ring - Free Tx Buffers 1973 * @adapter: board private structure 1974 * @tx_ring: ring to be cleaned 1975 **/ 1976 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 1977 struct e1000_tx_ring *tx_ring) 1978 { 1979 struct e1000_hw *hw = &adapter->hw; 1980 struct e1000_buffer *buffer_info; 1981 unsigned long size; 1982 unsigned int i; 1983 1984 /* Free all the Tx ring sk_buffs */ 1985 1986 for (i = 0; i < tx_ring->count; i++) { 1987 buffer_info = &tx_ring->buffer_info[i]; 1988 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 1989 } 1990 1991 netdev_reset_queue(adapter->netdev); 1992 size = sizeof(struct e1000_buffer) * tx_ring->count; 1993 memset(tx_ring->buffer_info, 0, size); 1994 1995 /* Zero out the descriptor ring */ 1996 1997 memset(tx_ring->desc, 0, tx_ring->size); 1998 1999 tx_ring->next_to_use = 0; 2000 tx_ring->next_to_clean = 0; 2001 tx_ring->last_tx_tso = false; 2002 2003 writel(0, hw->hw_addr + tx_ring->tdh); 2004 writel(0, hw->hw_addr + tx_ring->tdt); 2005 } 2006 2007 /** 2008 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues 2009 * @adapter: board private structure 2010 **/ 2011 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) 2012 { 2013 int i; 2014 2015 for (i = 0; i < adapter->num_tx_queues; i++) 2016 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); 2017 } 2018 2019 /** 2020 * e1000_free_rx_resources - Free Rx Resources 2021 * @adapter: board private structure 2022 * @rx_ring: ring to clean the resources from 2023 * 2024 * Free all receive software resources 2025 **/ 2026 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 2027 struct e1000_rx_ring *rx_ring) 2028 { 2029 struct pci_dev *pdev = adapter->pdev; 2030 2031 e1000_clean_rx_ring(adapter, rx_ring); 2032 2033 vfree(rx_ring->buffer_info); 2034 rx_ring->buffer_info = NULL; 2035 2036 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 2037 rx_ring->dma); 2038 2039 rx_ring->desc = NULL; 2040 } 2041 2042 /** 2043 * e1000_free_all_rx_resources - Free Rx Resources for All Queues 2044 * @adapter: board private structure 2045 * 2046 * Free all receive software resources 2047 **/ 2048 void e1000_free_all_rx_resources(struct e1000_adapter *adapter) 2049 { 2050 int i; 2051 2052 for (i = 0; i < adapter->num_rx_queues; i++) 2053 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); 2054 } 2055 2056 /** 2057 * e1000_clean_rx_ring - Free Rx Buffers per Queue 2058 * @adapter: board private structure 2059 * @rx_ring: ring to free buffers from 2060 **/ 2061 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 2062 struct e1000_rx_ring *rx_ring) 2063 { 2064 struct e1000_hw *hw = &adapter->hw; 2065 struct e1000_buffer *buffer_info; 2066 struct pci_dev *pdev = adapter->pdev; 2067 unsigned long size; 2068 unsigned int i; 2069 2070 /* Free all the Rx ring sk_buffs */ 2071 for (i = 0; i < rx_ring->count; i++) { 2072 buffer_info = &rx_ring->buffer_info[i]; 2073 if (buffer_info->dma && 2074 adapter->clean_rx == e1000_clean_rx_irq) { 2075 dma_unmap_single(&pdev->dev, buffer_info->dma, 2076 buffer_info->length, 2077 DMA_FROM_DEVICE); 2078 } else if (buffer_info->dma && 2079 adapter->clean_rx == e1000_clean_jumbo_rx_irq) { 2080 dma_unmap_page(&pdev->dev, buffer_info->dma, 2081 buffer_info->length, 2082 DMA_FROM_DEVICE); 2083 } 2084 2085 buffer_info->dma = 0; 2086 if (buffer_info->page) { 2087 put_page(buffer_info->page); 2088 buffer_info->page = NULL; 2089 } 2090 if (buffer_info->skb) { 2091 dev_kfree_skb(buffer_info->skb); 2092 buffer_info->skb = NULL; 2093 } 2094 } 2095 2096 /* there also may be some cached data from a chained receive */ 2097 if (rx_ring->rx_skb_top) { 2098 dev_kfree_skb(rx_ring->rx_skb_top); 2099 rx_ring->rx_skb_top = NULL; 2100 } 2101 2102 size = sizeof(struct e1000_buffer) * rx_ring->count; 2103 memset(rx_ring->buffer_info, 0, size); 2104 2105 /* Zero out the descriptor ring */ 2106 memset(rx_ring->desc, 0, rx_ring->size); 2107 2108 rx_ring->next_to_clean = 0; 2109 rx_ring->next_to_use = 0; 2110 2111 writel(0, hw->hw_addr + rx_ring->rdh); 2112 writel(0, hw->hw_addr + rx_ring->rdt); 2113 } 2114 2115 /** 2116 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues 2117 * @adapter: board private structure 2118 **/ 2119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) 2120 { 2121 int i; 2122 2123 for (i = 0; i < adapter->num_rx_queues; i++) 2124 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); 2125 } 2126 2127 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset 2128 * and memory write and invalidate disabled for certain operations 2129 */ 2130 static void e1000_enter_82542_rst(struct e1000_adapter *adapter) 2131 { 2132 struct e1000_hw *hw = &adapter->hw; 2133 struct net_device *netdev = adapter->netdev; 2134 u32 rctl; 2135 2136 e1000_pci_clear_mwi(hw); 2137 2138 rctl = er32(RCTL); 2139 rctl |= E1000_RCTL_RST; 2140 ew32(RCTL, rctl); 2141 E1000_WRITE_FLUSH(); 2142 mdelay(5); 2143 2144 if (netif_running(netdev)) 2145 e1000_clean_all_rx_rings(adapter); 2146 } 2147 2148 static void e1000_leave_82542_rst(struct e1000_adapter *adapter) 2149 { 2150 struct e1000_hw *hw = &adapter->hw; 2151 struct net_device *netdev = adapter->netdev; 2152 u32 rctl; 2153 2154 rctl = er32(RCTL); 2155 rctl &= ~E1000_RCTL_RST; 2156 ew32(RCTL, rctl); 2157 E1000_WRITE_FLUSH(); 2158 mdelay(5); 2159 2160 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) 2161 e1000_pci_set_mwi(hw); 2162 2163 if (netif_running(netdev)) { 2164 /* No need to loop, because 82542 supports only 1 queue */ 2165 struct e1000_rx_ring *ring = &adapter->rx_ring[0]; 2166 e1000_configure_rx(adapter); 2167 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); 2168 } 2169 } 2170 2171 /** 2172 * e1000_set_mac - Change the Ethernet Address of the NIC 2173 * @netdev: network interface device structure 2174 * @p: pointer to an address structure 2175 * 2176 * Returns 0 on success, negative on failure 2177 **/ 2178 static int e1000_set_mac(struct net_device *netdev, void *p) 2179 { 2180 struct e1000_adapter *adapter = netdev_priv(netdev); 2181 struct e1000_hw *hw = &adapter->hw; 2182 struct sockaddr *addr = p; 2183 2184 if (!is_valid_ether_addr(addr->sa_data)) 2185 return -EADDRNOTAVAIL; 2186 2187 /* 82542 2.0 needs to be in reset to write receive address registers */ 2188 2189 if (hw->mac_type == e1000_82542_rev2_0) 2190 e1000_enter_82542_rst(adapter); 2191 2192 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2193 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); 2194 2195 e1000_rar_set(hw, hw->mac_addr, 0); 2196 2197 if (hw->mac_type == e1000_82542_rev2_0) 2198 e1000_leave_82542_rst(adapter); 2199 2200 return 0; 2201 } 2202 2203 /** 2204 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 2205 * @netdev: network interface device structure 2206 * 2207 * The set_rx_mode entry point is called whenever the unicast or multicast 2208 * address lists or the network interface flags are updated. This routine is 2209 * responsible for configuring the hardware for proper unicast, multicast, 2210 * promiscuous mode, and all-multi behavior. 2211 **/ 2212 static void e1000_set_rx_mode(struct net_device *netdev) 2213 { 2214 struct e1000_adapter *adapter = netdev_priv(netdev); 2215 struct e1000_hw *hw = &adapter->hw; 2216 struct netdev_hw_addr *ha; 2217 bool use_uc = false; 2218 u32 rctl; 2219 u32 hash_value; 2220 int i, rar_entries = E1000_RAR_ENTRIES; 2221 int mta_reg_count = E1000_NUM_MTA_REGISTERS; 2222 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); 2223 2224 if (!mcarray) 2225 return; 2226 2227 /* Check for Promiscuous and All Multicast modes */ 2228 2229 rctl = er32(RCTL); 2230 2231 if (netdev->flags & IFF_PROMISC) { 2232 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 2233 rctl &= ~E1000_RCTL_VFE; 2234 } else { 2235 if (netdev->flags & IFF_ALLMULTI) 2236 rctl |= E1000_RCTL_MPE; 2237 else 2238 rctl &= ~E1000_RCTL_MPE; 2239 /* Enable VLAN filter if there is a VLAN */ 2240 if (e1000_vlan_used(adapter)) 2241 rctl |= E1000_RCTL_VFE; 2242 } 2243 2244 if (netdev_uc_count(netdev) > rar_entries - 1) { 2245 rctl |= E1000_RCTL_UPE; 2246 } else if (!(netdev->flags & IFF_PROMISC)) { 2247 rctl &= ~E1000_RCTL_UPE; 2248 use_uc = true; 2249 } 2250 2251 ew32(RCTL, rctl); 2252 2253 /* 82542 2.0 needs to be in reset to write receive address registers */ 2254 2255 if (hw->mac_type == e1000_82542_rev2_0) 2256 e1000_enter_82542_rst(adapter); 2257 2258 /* load the first 14 addresses into the exact filters 1-14. Unicast 2259 * addresses take precedence to avoid disabling unicast filtering 2260 * when possible. 2261 * 2262 * RAR 0 is used for the station MAC address 2263 * if there are not 14 addresses, go ahead and clear the filters 2264 */ 2265 i = 1; 2266 if (use_uc) 2267 netdev_for_each_uc_addr(ha, netdev) { 2268 if (i == rar_entries) 2269 break; 2270 e1000_rar_set(hw, ha->addr, i++); 2271 } 2272 2273 netdev_for_each_mc_addr(ha, netdev) { 2274 if (i == rar_entries) { 2275 /* load any remaining addresses into the hash table */ 2276 u32 hash_reg, hash_bit, mta; 2277 hash_value = e1000_hash_mc_addr(hw, ha->addr); 2278 hash_reg = (hash_value >> 5) & 0x7F; 2279 hash_bit = hash_value & 0x1F; 2280 mta = (1 << hash_bit); 2281 mcarray[hash_reg] |= mta; 2282 } else { 2283 e1000_rar_set(hw, ha->addr, i++); 2284 } 2285 } 2286 2287 for (; i < rar_entries; i++) { 2288 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); 2289 E1000_WRITE_FLUSH(); 2290 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); 2291 E1000_WRITE_FLUSH(); 2292 } 2293 2294 /* write the hash table completely, write from bottom to avoid 2295 * both stupid write combining chipsets, and flushing each write 2296 */ 2297 for (i = mta_reg_count - 1; i >= 0 ; i--) { 2298 /* If we are on an 82544 has an errata where writing odd 2299 * offsets overwrites the previous even offset, but writing 2300 * backwards over the range solves the issue by always 2301 * writing the odd offset first 2302 */ 2303 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); 2304 } 2305 E1000_WRITE_FLUSH(); 2306 2307 if (hw->mac_type == e1000_82542_rev2_0) 2308 e1000_leave_82542_rst(adapter); 2309 2310 kfree(mcarray); 2311 } 2312 2313 /** 2314 * e1000_update_phy_info_task - get phy info 2315 * @work: work struct contained inside adapter struct 2316 * 2317 * Need to wait a few seconds after link up to get diagnostic information from 2318 * the phy 2319 */ 2320 static void e1000_update_phy_info_task(struct work_struct *work) 2321 { 2322 struct e1000_adapter *adapter = container_of(work, 2323 struct e1000_adapter, 2324 phy_info_task.work); 2325 2326 e1000_phy_get_info(&adapter->hw, &adapter->phy_info); 2327 } 2328 2329 /** 2330 * e1000_82547_tx_fifo_stall_task - task to complete work 2331 * @work: work struct contained inside adapter struct 2332 **/ 2333 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work) 2334 { 2335 struct e1000_adapter *adapter = container_of(work, 2336 struct e1000_adapter, 2337 fifo_stall_task.work); 2338 struct e1000_hw *hw = &adapter->hw; 2339 struct net_device *netdev = adapter->netdev; 2340 u32 tctl; 2341 2342 if (atomic_read(&adapter->tx_fifo_stall)) { 2343 if ((er32(TDT) == er32(TDH)) && 2344 (er32(TDFT) == er32(TDFH)) && 2345 (er32(TDFTS) == er32(TDFHS))) { 2346 tctl = er32(TCTL); 2347 ew32(TCTL, tctl & ~E1000_TCTL_EN); 2348 ew32(TDFT, adapter->tx_head_addr); 2349 ew32(TDFH, adapter->tx_head_addr); 2350 ew32(TDFTS, adapter->tx_head_addr); 2351 ew32(TDFHS, adapter->tx_head_addr); 2352 ew32(TCTL, tctl); 2353 E1000_WRITE_FLUSH(); 2354 2355 adapter->tx_fifo_head = 0; 2356 atomic_set(&adapter->tx_fifo_stall, 0); 2357 netif_wake_queue(netdev); 2358 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { 2359 schedule_delayed_work(&adapter->fifo_stall_task, 1); 2360 } 2361 } 2362 } 2363 2364 bool e1000_has_link(struct e1000_adapter *adapter) 2365 { 2366 struct e1000_hw *hw = &adapter->hw; 2367 bool link_active = false; 2368 2369 /* get_link_status is set on LSC (link status) interrupt or rx 2370 * sequence error interrupt (except on intel ce4100). 2371 * get_link_status will stay false until the 2372 * e1000_check_for_link establishes link for copper adapters 2373 * ONLY 2374 */ 2375 switch (hw->media_type) { 2376 case e1000_media_type_copper: 2377 if (hw->mac_type == e1000_ce4100) 2378 hw->get_link_status = 1; 2379 if (hw->get_link_status) { 2380 e1000_check_for_link(hw); 2381 link_active = !hw->get_link_status; 2382 } else { 2383 link_active = true; 2384 } 2385 break; 2386 case e1000_media_type_fiber: 2387 e1000_check_for_link(hw); 2388 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 2389 break; 2390 case e1000_media_type_internal_serdes: 2391 e1000_check_for_link(hw); 2392 link_active = hw->serdes_has_link; 2393 break; 2394 default: 2395 break; 2396 } 2397 2398 return link_active; 2399 } 2400 2401 /** 2402 * e1000_watchdog - work function 2403 * @work: work struct contained inside adapter struct 2404 **/ 2405 static void e1000_watchdog(struct work_struct *work) 2406 { 2407 struct e1000_adapter *adapter = container_of(work, 2408 struct e1000_adapter, 2409 watchdog_task.work); 2410 struct e1000_hw *hw = &adapter->hw; 2411 struct net_device *netdev = adapter->netdev; 2412 struct e1000_tx_ring *txdr = adapter->tx_ring; 2413 u32 link, tctl; 2414 2415 link = e1000_has_link(adapter); 2416 if ((netif_carrier_ok(netdev)) && link) 2417 goto link_up; 2418 2419 if (link) { 2420 if (!netif_carrier_ok(netdev)) { 2421 u32 ctrl; 2422 bool txb2b = true; 2423 /* update snapshot of PHY registers on LSC */ 2424 e1000_get_speed_and_duplex(hw, 2425 &adapter->link_speed, 2426 &adapter->link_duplex); 2427 2428 ctrl = er32(CTRL); 2429 pr_info("%s NIC Link is Up %d Mbps %s, " 2430 "Flow Control: %s\n", 2431 netdev->name, 2432 adapter->link_speed, 2433 adapter->link_duplex == FULL_DUPLEX ? 2434 "Full Duplex" : "Half Duplex", 2435 ((ctrl & E1000_CTRL_TFCE) && (ctrl & 2436 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & 2437 E1000_CTRL_RFCE) ? "RX" : ((ctrl & 2438 E1000_CTRL_TFCE) ? "TX" : "None"))); 2439 2440 /* adjust timeout factor according to speed/duplex */ 2441 adapter->tx_timeout_factor = 1; 2442 switch (adapter->link_speed) { 2443 case SPEED_10: 2444 txb2b = false; 2445 adapter->tx_timeout_factor = 16; 2446 break; 2447 case SPEED_100: 2448 txb2b = false; 2449 /* maybe add some timeout factor ? */ 2450 break; 2451 } 2452 2453 /* enable transmits in the hardware */ 2454 tctl = er32(TCTL); 2455 tctl |= E1000_TCTL_EN; 2456 ew32(TCTL, tctl); 2457 2458 netif_carrier_on(netdev); 2459 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2460 schedule_delayed_work(&adapter->phy_info_task, 2461 2 * HZ); 2462 adapter->smartspeed = 0; 2463 } 2464 } else { 2465 if (netif_carrier_ok(netdev)) { 2466 adapter->link_speed = 0; 2467 adapter->link_duplex = 0; 2468 pr_info("%s NIC Link is Down\n", 2469 netdev->name); 2470 netif_carrier_off(netdev); 2471 2472 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2473 schedule_delayed_work(&adapter->phy_info_task, 2474 2 * HZ); 2475 } 2476 2477 e1000_smartspeed(adapter); 2478 } 2479 2480 link_up: 2481 e1000_update_stats(adapter); 2482 2483 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 2484 adapter->tpt_old = adapter->stats.tpt; 2485 hw->collision_delta = adapter->stats.colc - adapter->colc_old; 2486 adapter->colc_old = adapter->stats.colc; 2487 2488 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; 2489 adapter->gorcl_old = adapter->stats.gorcl; 2490 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; 2491 adapter->gotcl_old = adapter->stats.gotcl; 2492 2493 e1000_update_adaptive(hw); 2494 2495 if (!netif_carrier_ok(netdev)) { 2496 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { 2497 /* We've lost link, so the controller stops DMA, 2498 * but we've got queued Tx work that's never going 2499 * to get done, so reset controller to flush Tx. 2500 * (Do the reset outside of interrupt context). 2501 */ 2502 adapter->tx_timeout_count++; 2503 schedule_work(&adapter->reset_task); 2504 /* exit immediately since reset is imminent */ 2505 return; 2506 } 2507 } 2508 2509 /* Simple mode for Interrupt Throttle Rate (ITR) */ 2510 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { 2511 /* Symmetric Tx/Rx gets a reduced ITR=2000; 2512 * Total asymmetrical Tx or Rx gets ITR=8000; 2513 * everyone else is between 2000-8000. 2514 */ 2515 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; 2516 u32 dif = (adapter->gotcl > adapter->gorcl ? 2517 adapter->gotcl - adapter->gorcl : 2518 adapter->gorcl - adapter->gotcl) / 10000; 2519 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; 2520 2521 ew32(ITR, 1000000000 / (itr * 256)); 2522 } 2523 2524 /* Cause software interrupt to ensure rx ring is cleaned */ 2525 ew32(ICS, E1000_ICS_RXDMT0); 2526 2527 /* Force detection of hung controller every watchdog period */ 2528 adapter->detect_tx_hung = true; 2529 2530 /* Reschedule the task */ 2531 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2532 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ); 2533 } 2534 2535 enum latency_range { 2536 lowest_latency = 0, 2537 low_latency = 1, 2538 bulk_latency = 2, 2539 latency_invalid = 255 2540 }; 2541 2542 /** 2543 * e1000_update_itr - update the dynamic ITR value based on statistics 2544 * @adapter: pointer to adapter 2545 * @itr_setting: current adapter->itr 2546 * @packets: the number of packets during this measurement interval 2547 * @bytes: the number of bytes during this measurement interval 2548 * 2549 * Stores a new ITR value based on packets and byte 2550 * counts during the last interrupt. The advantage of per interrupt 2551 * computation is faster updates and more accurate ITR for the current 2552 * traffic pattern. Constants in this function were computed 2553 * based on theoretical maximum wire speed and thresholds were set based 2554 * on testing data as well as attempting to minimize response time 2555 * while increasing bulk throughput. 2556 * this functionality is controlled by the InterruptThrottleRate module 2557 * parameter (see e1000_param.c) 2558 **/ 2559 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, 2560 u16 itr_setting, int packets, int bytes) 2561 { 2562 unsigned int retval = itr_setting; 2563 struct e1000_hw *hw = &adapter->hw; 2564 2565 if (unlikely(hw->mac_type < e1000_82540)) 2566 goto update_itr_done; 2567 2568 if (packets == 0) 2569 goto update_itr_done; 2570 2571 switch (itr_setting) { 2572 case lowest_latency: 2573 /* jumbo frames get bulk treatment*/ 2574 if (bytes/packets > 8000) 2575 retval = bulk_latency; 2576 else if ((packets < 5) && (bytes > 512)) 2577 retval = low_latency; 2578 break; 2579 case low_latency: /* 50 usec aka 20000 ints/s */ 2580 if (bytes > 10000) { 2581 /* jumbo frames need bulk latency setting */ 2582 if (bytes/packets > 8000) 2583 retval = bulk_latency; 2584 else if ((packets < 10) || ((bytes/packets) > 1200)) 2585 retval = bulk_latency; 2586 else if ((packets > 35)) 2587 retval = lowest_latency; 2588 } else if (bytes/packets > 2000) 2589 retval = bulk_latency; 2590 else if (packets <= 2 && bytes < 512) 2591 retval = lowest_latency; 2592 break; 2593 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2594 if (bytes > 25000) { 2595 if (packets > 35) 2596 retval = low_latency; 2597 } else if (bytes < 6000) { 2598 retval = low_latency; 2599 } 2600 break; 2601 } 2602 2603 update_itr_done: 2604 return retval; 2605 } 2606 2607 static void e1000_set_itr(struct e1000_adapter *adapter) 2608 { 2609 struct e1000_hw *hw = &adapter->hw; 2610 u16 current_itr; 2611 u32 new_itr = adapter->itr; 2612 2613 if (unlikely(hw->mac_type < e1000_82540)) 2614 return; 2615 2616 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2617 if (unlikely(adapter->link_speed != SPEED_1000)) { 2618 current_itr = 0; 2619 new_itr = 4000; 2620 goto set_itr_now; 2621 } 2622 2623 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr, 2624 adapter->total_tx_packets, 2625 adapter->total_tx_bytes); 2626 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2627 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 2628 adapter->tx_itr = low_latency; 2629 2630 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr, 2631 adapter->total_rx_packets, 2632 adapter->total_rx_bytes); 2633 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2634 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 2635 adapter->rx_itr = low_latency; 2636 2637 current_itr = max(adapter->rx_itr, adapter->tx_itr); 2638 2639 switch (current_itr) { 2640 /* counts and packets in update_itr are dependent on these numbers */ 2641 case lowest_latency: 2642 new_itr = 70000; 2643 break; 2644 case low_latency: 2645 new_itr = 20000; /* aka hwitr = ~200 */ 2646 break; 2647 case bulk_latency: 2648 new_itr = 4000; 2649 break; 2650 default: 2651 break; 2652 } 2653 2654 set_itr_now: 2655 if (new_itr != adapter->itr) { 2656 /* this attempts to bias the interrupt rate towards Bulk 2657 * by adding intermediate steps when interrupt rate is 2658 * increasing 2659 */ 2660 new_itr = new_itr > adapter->itr ? 2661 min(adapter->itr + (new_itr >> 2), new_itr) : 2662 new_itr; 2663 adapter->itr = new_itr; 2664 ew32(ITR, 1000000000 / (new_itr * 256)); 2665 } 2666 } 2667 2668 #define E1000_TX_FLAGS_CSUM 0x00000001 2669 #define E1000_TX_FLAGS_VLAN 0x00000002 2670 #define E1000_TX_FLAGS_TSO 0x00000004 2671 #define E1000_TX_FLAGS_IPV4 0x00000008 2672 #define E1000_TX_FLAGS_NO_FCS 0x00000010 2673 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 2674 #define E1000_TX_FLAGS_VLAN_SHIFT 16 2675 2676 static int e1000_tso(struct e1000_adapter *adapter, 2677 struct e1000_tx_ring *tx_ring, struct sk_buff *skb) 2678 { 2679 struct e1000_context_desc *context_desc; 2680 struct e1000_buffer *buffer_info; 2681 unsigned int i; 2682 u32 cmd_length = 0; 2683 u16 ipcse = 0, tucse, mss; 2684 u8 ipcss, ipcso, tucss, tucso, hdr_len; 2685 2686 if (skb_is_gso(skb)) { 2687 int err; 2688 2689 err = skb_cow_head(skb, 0); 2690 if (err < 0) 2691 return err; 2692 2693 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2694 mss = skb_shinfo(skb)->gso_size; 2695 if (skb->protocol == htons(ETH_P_IP)) { 2696 struct iphdr *iph = ip_hdr(skb); 2697 iph->tot_len = 0; 2698 iph->check = 0; 2699 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 2700 iph->daddr, 0, 2701 IPPROTO_TCP, 2702 0); 2703 cmd_length = E1000_TXD_CMD_IP; 2704 ipcse = skb_transport_offset(skb) - 1; 2705 } else if (skb->protocol == htons(ETH_P_IPV6)) { 2706 ipv6_hdr(skb)->payload_len = 0; 2707 tcp_hdr(skb)->check = 2708 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 2709 &ipv6_hdr(skb)->daddr, 2710 0, IPPROTO_TCP, 0); 2711 ipcse = 0; 2712 } 2713 ipcss = skb_network_offset(skb); 2714 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 2715 tucss = skb_transport_offset(skb); 2716 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 2717 tucse = 0; 2718 2719 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 2720 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 2721 2722 i = tx_ring->next_to_use; 2723 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2724 buffer_info = &tx_ring->buffer_info[i]; 2725 2726 context_desc->lower_setup.ip_fields.ipcss = ipcss; 2727 context_desc->lower_setup.ip_fields.ipcso = ipcso; 2728 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 2729 context_desc->upper_setup.tcp_fields.tucss = tucss; 2730 context_desc->upper_setup.tcp_fields.tucso = tucso; 2731 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); 2732 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 2733 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 2734 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 2735 2736 buffer_info->time_stamp = jiffies; 2737 buffer_info->next_to_watch = i; 2738 2739 if (++i == tx_ring->count) i = 0; 2740 tx_ring->next_to_use = i; 2741 2742 return true; 2743 } 2744 return false; 2745 } 2746 2747 static bool e1000_tx_csum(struct e1000_adapter *adapter, 2748 struct e1000_tx_ring *tx_ring, struct sk_buff *skb) 2749 { 2750 struct e1000_context_desc *context_desc; 2751 struct e1000_buffer *buffer_info; 2752 unsigned int i; 2753 u8 css; 2754 u32 cmd_len = E1000_TXD_CMD_DEXT; 2755 2756 if (skb->ip_summed != CHECKSUM_PARTIAL) 2757 return false; 2758 2759 switch (skb->protocol) { 2760 case cpu_to_be16(ETH_P_IP): 2761 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 2762 cmd_len |= E1000_TXD_CMD_TCP; 2763 break; 2764 case cpu_to_be16(ETH_P_IPV6): 2765 /* XXX not handling all IPV6 headers */ 2766 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 2767 cmd_len |= E1000_TXD_CMD_TCP; 2768 break; 2769 default: 2770 if (unlikely(net_ratelimit())) 2771 e_warn(drv, "checksum_partial proto=%x!\n", 2772 skb->protocol); 2773 break; 2774 } 2775 2776 css = skb_checksum_start_offset(skb); 2777 2778 i = tx_ring->next_to_use; 2779 buffer_info = &tx_ring->buffer_info[i]; 2780 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2781 2782 context_desc->lower_setup.ip_config = 0; 2783 context_desc->upper_setup.tcp_fields.tucss = css; 2784 context_desc->upper_setup.tcp_fields.tucso = 2785 css + skb->csum_offset; 2786 context_desc->upper_setup.tcp_fields.tucse = 0; 2787 context_desc->tcp_seg_setup.data = 0; 2788 context_desc->cmd_and_length = cpu_to_le32(cmd_len); 2789 2790 buffer_info->time_stamp = jiffies; 2791 buffer_info->next_to_watch = i; 2792 2793 if (unlikely(++i == tx_ring->count)) i = 0; 2794 tx_ring->next_to_use = i; 2795 2796 return true; 2797 } 2798 2799 #define E1000_MAX_TXD_PWR 12 2800 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) 2801 2802 static int e1000_tx_map(struct e1000_adapter *adapter, 2803 struct e1000_tx_ring *tx_ring, 2804 struct sk_buff *skb, unsigned int first, 2805 unsigned int max_per_txd, unsigned int nr_frags, 2806 unsigned int mss) 2807 { 2808 struct e1000_hw *hw = &adapter->hw; 2809 struct pci_dev *pdev = adapter->pdev; 2810 struct e1000_buffer *buffer_info; 2811 unsigned int len = skb_headlen(skb); 2812 unsigned int offset = 0, size, count = 0, i; 2813 unsigned int f, bytecount, segs; 2814 2815 i = tx_ring->next_to_use; 2816 2817 while (len) { 2818 buffer_info = &tx_ring->buffer_info[i]; 2819 size = min(len, max_per_txd); 2820 /* Workaround for Controller erratum -- 2821 * descriptor for non-tso packet in a linear SKB that follows a 2822 * tso gets written back prematurely before the data is fully 2823 * DMA'd to the controller 2824 */ 2825 if (!skb->data_len && tx_ring->last_tx_tso && 2826 !skb_is_gso(skb)) { 2827 tx_ring->last_tx_tso = false; 2828 size -= 4; 2829 } 2830 2831 /* Workaround for premature desc write-backs 2832 * in TSO mode. Append 4-byte sentinel desc 2833 */ 2834 if (unlikely(mss && !nr_frags && size == len && size > 8)) 2835 size -= 4; 2836 /* work-around for errata 10 and it applies 2837 * to all controllers in PCI-X mode 2838 * The fix is to make sure that the first descriptor of a 2839 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes 2840 */ 2841 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 2842 (size > 2015) && count == 0)) 2843 size = 2015; 2844 2845 /* Workaround for potential 82544 hang in PCI-X. Avoid 2846 * terminating buffers within evenly-aligned dwords. 2847 */ 2848 if (unlikely(adapter->pcix_82544 && 2849 !((unsigned long)(skb->data + offset + size - 1) & 4) && 2850 size > 4)) 2851 size -= 4; 2852 2853 buffer_info->length = size; 2854 /* set time_stamp *before* dma to help avoid a possible race */ 2855 buffer_info->time_stamp = jiffies; 2856 buffer_info->mapped_as_page = false; 2857 buffer_info->dma = dma_map_single(&pdev->dev, 2858 skb->data + offset, 2859 size, DMA_TO_DEVICE); 2860 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2861 goto dma_error; 2862 buffer_info->next_to_watch = i; 2863 2864 len -= size; 2865 offset += size; 2866 count++; 2867 if (len) { 2868 i++; 2869 if (unlikely(i == tx_ring->count)) 2870 i = 0; 2871 } 2872 } 2873 2874 for (f = 0; f < nr_frags; f++) { 2875 const struct skb_frag_struct *frag; 2876 2877 frag = &skb_shinfo(skb)->frags[f]; 2878 len = skb_frag_size(frag); 2879 offset = 0; 2880 2881 while (len) { 2882 unsigned long bufend; 2883 i++; 2884 if (unlikely(i == tx_ring->count)) 2885 i = 0; 2886 2887 buffer_info = &tx_ring->buffer_info[i]; 2888 size = min(len, max_per_txd); 2889 /* Workaround for premature desc write-backs 2890 * in TSO mode. Append 4-byte sentinel desc 2891 */ 2892 if (unlikely(mss && f == (nr_frags-1) && 2893 size == len && size > 8)) 2894 size -= 4; 2895 /* Workaround for potential 82544 hang in PCI-X. 2896 * Avoid terminating buffers within evenly-aligned 2897 * dwords. 2898 */ 2899 bufend = (unsigned long) 2900 page_to_phys(skb_frag_page(frag)); 2901 bufend += offset + size - 1; 2902 if (unlikely(adapter->pcix_82544 && 2903 !(bufend & 4) && 2904 size > 4)) 2905 size -= 4; 2906 2907 buffer_info->length = size; 2908 buffer_info->time_stamp = jiffies; 2909 buffer_info->mapped_as_page = true; 2910 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 2911 offset, size, DMA_TO_DEVICE); 2912 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2913 goto dma_error; 2914 buffer_info->next_to_watch = i; 2915 2916 len -= size; 2917 offset += size; 2918 count++; 2919 } 2920 } 2921 2922 segs = skb_shinfo(skb)->gso_segs ?: 1; 2923 /* multiply data chunks by size of headers */ 2924 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; 2925 2926 tx_ring->buffer_info[i].skb = skb; 2927 tx_ring->buffer_info[i].segs = segs; 2928 tx_ring->buffer_info[i].bytecount = bytecount; 2929 tx_ring->buffer_info[first].next_to_watch = i; 2930 2931 return count; 2932 2933 dma_error: 2934 dev_err(&pdev->dev, "TX DMA map failed\n"); 2935 buffer_info->dma = 0; 2936 if (count) 2937 count--; 2938 2939 while (count--) { 2940 if (i==0) 2941 i += tx_ring->count; 2942 i--; 2943 buffer_info = &tx_ring->buffer_info[i]; 2944 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 2945 } 2946 2947 return 0; 2948 } 2949 2950 static void e1000_tx_queue(struct e1000_adapter *adapter, 2951 struct e1000_tx_ring *tx_ring, int tx_flags, 2952 int count) 2953 { 2954 struct e1000_hw *hw = &adapter->hw; 2955 struct e1000_tx_desc *tx_desc = NULL; 2956 struct e1000_buffer *buffer_info; 2957 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 2958 unsigned int i; 2959 2960 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { 2961 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 2962 E1000_TXD_CMD_TSE; 2963 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2964 2965 if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) 2966 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 2967 } 2968 2969 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { 2970 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 2971 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2972 } 2973 2974 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { 2975 txd_lower |= E1000_TXD_CMD_VLE; 2976 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 2977 } 2978 2979 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 2980 txd_lower &= ~(E1000_TXD_CMD_IFCS); 2981 2982 i = tx_ring->next_to_use; 2983 2984 while (count--) { 2985 buffer_info = &tx_ring->buffer_info[i]; 2986 tx_desc = E1000_TX_DESC(*tx_ring, i); 2987 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 2988 tx_desc->lower.data = 2989 cpu_to_le32(txd_lower | buffer_info->length); 2990 tx_desc->upper.data = cpu_to_le32(txd_upper); 2991 if (unlikely(++i == tx_ring->count)) i = 0; 2992 } 2993 2994 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 2995 2996 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ 2997 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 2998 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); 2999 3000 /* Force memory writes to complete before letting h/w 3001 * know there are new descriptors to fetch. (Only 3002 * applicable for weak-ordered memory model archs, 3003 * such as IA-64). 3004 */ 3005 wmb(); 3006 3007 tx_ring->next_to_use = i; 3008 writel(i, hw->hw_addr + tx_ring->tdt); 3009 /* we need this if more than one processor can write to our tail 3010 * at a time, it synchronizes IO on IA64/Altix systems 3011 */ 3012 mmiowb(); 3013 } 3014 3015 /* 82547 workaround to avoid controller hang in half-duplex environment. 3016 * The workaround is to avoid queuing a large packet that would span 3017 * the internal Tx FIFO ring boundary by notifying the stack to resend 3018 * the packet at a later time. This gives the Tx FIFO an opportunity to 3019 * flush all packets. When that occurs, we reset the Tx FIFO pointers 3020 * to the beginning of the Tx FIFO. 3021 */ 3022 3023 #define E1000_FIFO_HDR 0x10 3024 #define E1000_82547_PAD_LEN 0x3E0 3025 3026 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 3027 struct sk_buff *skb) 3028 { 3029 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; 3030 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; 3031 3032 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); 3033 3034 if (adapter->link_duplex != HALF_DUPLEX) 3035 goto no_fifo_stall_required; 3036 3037 if (atomic_read(&adapter->tx_fifo_stall)) 3038 return 1; 3039 3040 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { 3041 atomic_set(&adapter->tx_fifo_stall, 1); 3042 return 1; 3043 } 3044 3045 no_fifo_stall_required: 3046 adapter->tx_fifo_head += skb_fifo_len; 3047 if (adapter->tx_fifo_head >= adapter->tx_fifo_size) 3048 adapter->tx_fifo_head -= adapter->tx_fifo_size; 3049 return 0; 3050 } 3051 3052 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) 3053 { 3054 struct e1000_adapter *adapter = netdev_priv(netdev); 3055 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3056 3057 netif_stop_queue(netdev); 3058 /* Herbert's original patch had: 3059 * smp_mb__after_netif_stop_queue(); 3060 * but since that doesn't exist yet, just open code it. 3061 */ 3062 smp_mb(); 3063 3064 /* We need to check again in a case another CPU has just 3065 * made room available. 3066 */ 3067 if (likely(E1000_DESC_UNUSED(tx_ring) < size)) 3068 return -EBUSY; 3069 3070 /* A reprieve! */ 3071 netif_start_queue(netdev); 3072 ++adapter->restart_queue; 3073 return 0; 3074 } 3075 3076 static int e1000_maybe_stop_tx(struct net_device *netdev, 3077 struct e1000_tx_ring *tx_ring, int size) 3078 { 3079 if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) 3080 return 0; 3081 return __e1000_maybe_stop_tx(netdev, size); 3082 } 3083 3084 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) 3085 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 3086 struct net_device *netdev) 3087 { 3088 struct e1000_adapter *adapter = netdev_priv(netdev); 3089 struct e1000_hw *hw = &adapter->hw; 3090 struct e1000_tx_ring *tx_ring; 3091 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; 3092 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; 3093 unsigned int tx_flags = 0; 3094 unsigned int len = skb_headlen(skb); 3095 unsigned int nr_frags; 3096 unsigned int mss; 3097 int count = 0; 3098 int tso; 3099 unsigned int f; 3100 3101 /* This goes back to the question of how to logically map a Tx queue 3102 * to a flow. Right now, performance is impacted slightly negatively 3103 * if using multiple Tx queues. If the stack breaks away from a 3104 * single qdisc implementation, we can look at this again. 3105 */ 3106 tx_ring = adapter->tx_ring; 3107 3108 if (unlikely(skb->len <= 0)) { 3109 dev_kfree_skb_any(skb); 3110 return NETDEV_TX_OK; 3111 } 3112 3113 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN, 3114 * packets may get corrupted during padding by HW. 3115 * To WA this issue, pad all small packets manually. 3116 */ 3117 if (skb->len < ETH_ZLEN) { 3118 if (skb_pad(skb, ETH_ZLEN - skb->len)) 3119 return NETDEV_TX_OK; 3120 skb->len = ETH_ZLEN; 3121 skb_set_tail_pointer(skb, ETH_ZLEN); 3122 } 3123 3124 mss = skb_shinfo(skb)->gso_size; 3125 /* The controller does a simple calculation to 3126 * make sure there is enough room in the FIFO before 3127 * initiating the DMA for each buffer. The calc is: 3128 * 4 = ceil(buffer len/mss). To make sure we don't 3129 * overrun the FIFO, adjust the max buffer len if mss 3130 * drops. 3131 */ 3132 if (mss) { 3133 u8 hdr_len; 3134 max_per_txd = min(mss << 2, max_per_txd); 3135 max_txd_pwr = fls(max_per_txd) - 1; 3136 3137 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3138 if (skb->data_len && hdr_len == len) { 3139 switch (hw->mac_type) { 3140 unsigned int pull_size; 3141 case e1000_82544: 3142 /* Make sure we have room to chop off 4 bytes, 3143 * and that the end alignment will work out to 3144 * this hardware's requirements 3145 * NOTE: this is a TSO only workaround 3146 * if end byte alignment not correct move us 3147 * into the next dword 3148 */ 3149 if ((unsigned long)(skb_tail_pointer(skb) - 1) 3150 & 4) 3151 break; 3152 /* fall through */ 3153 pull_size = min((unsigned int)4, skb->data_len); 3154 if (!__pskb_pull_tail(skb, pull_size)) { 3155 e_err(drv, "__pskb_pull_tail " 3156 "failed.\n"); 3157 dev_kfree_skb_any(skb); 3158 return NETDEV_TX_OK; 3159 } 3160 len = skb_headlen(skb); 3161 break; 3162 default: 3163 /* do nothing */ 3164 break; 3165 } 3166 } 3167 } 3168 3169 /* reserve a descriptor for the offload context */ 3170 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 3171 count++; 3172 count++; 3173 3174 /* Controller Erratum workaround */ 3175 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) 3176 count++; 3177 3178 count += TXD_USE_COUNT(len, max_txd_pwr); 3179 3180 if (adapter->pcix_82544) 3181 count++; 3182 3183 /* work-around for errata 10 and it applies to all controllers 3184 * in PCI-X mode, so add one more descriptor to the count 3185 */ 3186 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 3187 (len > 2015))) 3188 count++; 3189 3190 nr_frags = skb_shinfo(skb)->nr_frags; 3191 for (f = 0; f < nr_frags; f++) 3192 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]), 3193 max_txd_pwr); 3194 if (adapter->pcix_82544) 3195 count += nr_frags; 3196 3197 /* need: count + 2 desc gap to keep tail from touching 3198 * head, otherwise try next time 3199 */ 3200 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) 3201 return NETDEV_TX_BUSY; 3202 3203 if (unlikely((hw->mac_type == e1000_82547) && 3204 (e1000_82547_fifo_workaround(adapter, skb)))) { 3205 netif_stop_queue(netdev); 3206 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3207 schedule_delayed_work(&adapter->fifo_stall_task, 1); 3208 return NETDEV_TX_BUSY; 3209 } 3210 3211 if (vlan_tx_tag_present(skb)) { 3212 tx_flags |= E1000_TX_FLAGS_VLAN; 3213 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); 3214 } 3215 3216 first = tx_ring->next_to_use; 3217 3218 tso = e1000_tso(adapter, tx_ring, skb); 3219 if (tso < 0) { 3220 dev_kfree_skb_any(skb); 3221 return NETDEV_TX_OK; 3222 } 3223 3224 if (likely(tso)) { 3225 if (likely(hw->mac_type != e1000_82544)) 3226 tx_ring->last_tx_tso = true; 3227 tx_flags |= E1000_TX_FLAGS_TSO; 3228 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb))) 3229 tx_flags |= E1000_TX_FLAGS_CSUM; 3230 3231 if (likely(skb->protocol == htons(ETH_P_IP))) 3232 tx_flags |= E1000_TX_FLAGS_IPV4; 3233 3234 if (unlikely(skb->no_fcs)) 3235 tx_flags |= E1000_TX_FLAGS_NO_FCS; 3236 3237 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, 3238 nr_frags, mss); 3239 3240 if (count) { 3241 netdev_sent_queue(netdev, skb->len); 3242 skb_tx_timestamp(skb); 3243 3244 e1000_tx_queue(adapter, tx_ring, tx_flags, count); 3245 /* Make sure there is space in the ring for the next send. */ 3246 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2); 3247 3248 } else { 3249 dev_kfree_skb_any(skb); 3250 tx_ring->buffer_info[first].time_stamp = 0; 3251 tx_ring->next_to_use = first; 3252 } 3253 3254 return NETDEV_TX_OK; 3255 } 3256 3257 #define NUM_REGS 38 /* 1 based count */ 3258 static void e1000_regdump(struct e1000_adapter *adapter) 3259 { 3260 struct e1000_hw *hw = &adapter->hw; 3261 u32 regs[NUM_REGS]; 3262 u32 *regs_buff = regs; 3263 int i = 0; 3264 3265 static const char * const reg_name[] = { 3266 "CTRL", "STATUS", 3267 "RCTL", "RDLEN", "RDH", "RDT", "RDTR", 3268 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT", 3269 "TIDV", "TXDCTL", "TADV", "TARC0", 3270 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1", 3271 "TXDCTL1", "TARC1", 3272 "CTRL_EXT", "ERT", "RDBAL", "RDBAH", 3273 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC", 3274 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC" 3275 }; 3276 3277 regs_buff[0] = er32(CTRL); 3278 regs_buff[1] = er32(STATUS); 3279 3280 regs_buff[2] = er32(RCTL); 3281 regs_buff[3] = er32(RDLEN); 3282 regs_buff[4] = er32(RDH); 3283 regs_buff[5] = er32(RDT); 3284 regs_buff[6] = er32(RDTR); 3285 3286 regs_buff[7] = er32(TCTL); 3287 regs_buff[8] = er32(TDBAL); 3288 regs_buff[9] = er32(TDBAH); 3289 regs_buff[10] = er32(TDLEN); 3290 regs_buff[11] = er32(TDH); 3291 regs_buff[12] = er32(TDT); 3292 regs_buff[13] = er32(TIDV); 3293 regs_buff[14] = er32(TXDCTL); 3294 regs_buff[15] = er32(TADV); 3295 regs_buff[16] = er32(TARC0); 3296 3297 regs_buff[17] = er32(TDBAL1); 3298 regs_buff[18] = er32(TDBAH1); 3299 regs_buff[19] = er32(TDLEN1); 3300 regs_buff[20] = er32(TDH1); 3301 regs_buff[21] = er32(TDT1); 3302 regs_buff[22] = er32(TXDCTL1); 3303 regs_buff[23] = er32(TARC1); 3304 regs_buff[24] = er32(CTRL_EXT); 3305 regs_buff[25] = er32(ERT); 3306 regs_buff[26] = er32(RDBAL0); 3307 regs_buff[27] = er32(RDBAH0); 3308 regs_buff[28] = er32(TDFH); 3309 regs_buff[29] = er32(TDFT); 3310 regs_buff[30] = er32(TDFHS); 3311 regs_buff[31] = er32(TDFTS); 3312 regs_buff[32] = er32(TDFPC); 3313 regs_buff[33] = er32(RDFH); 3314 regs_buff[34] = er32(RDFT); 3315 regs_buff[35] = er32(RDFHS); 3316 regs_buff[36] = er32(RDFTS); 3317 regs_buff[37] = er32(RDFPC); 3318 3319 pr_info("Register dump\n"); 3320 for (i = 0; i < NUM_REGS; i++) 3321 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]); 3322 } 3323 3324 /* 3325 * e1000_dump: Print registers, tx ring and rx ring 3326 */ 3327 static void e1000_dump(struct e1000_adapter *adapter) 3328 { 3329 /* this code doesn't handle multiple rings */ 3330 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3331 struct e1000_rx_ring *rx_ring = adapter->rx_ring; 3332 int i; 3333 3334 if (!netif_msg_hw(adapter)) 3335 return; 3336 3337 /* Print Registers */ 3338 e1000_regdump(adapter); 3339 3340 /* transmit dump */ 3341 pr_info("TX Desc ring0 dump\n"); 3342 3343 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) 3344 * 3345 * Legacy Transmit Descriptor 3346 * +--------------------------------------------------------------+ 3347 * 0 | Buffer Address [63:0] (Reserved on Write Back) | 3348 * +--------------------------------------------------------------+ 3349 * 8 | Special | CSS | Status | CMD | CSO | Length | 3350 * +--------------------------------------------------------------+ 3351 * 63 48 47 36 35 32 31 24 23 16 15 0 3352 * 3353 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload 3354 * 63 48 47 40 39 32 31 16 15 8 7 0 3355 * +----------------------------------------------------------------+ 3356 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | 3357 * +----------------------------------------------------------------+ 3358 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | 3359 * +----------------------------------------------------------------+ 3360 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3361 * 3362 * Extended Data Descriptor (DTYP=0x1) 3363 * +----------------------------------------------------------------+ 3364 * 0 | Buffer Address [63:0] | 3365 * +----------------------------------------------------------------+ 3366 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | 3367 * +----------------------------------------------------------------+ 3368 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3369 */ 3370 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3371 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3372 3373 if (!netif_msg_tx_done(adapter)) 3374 goto rx_ring_summary; 3375 3376 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 3377 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 3378 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i]; 3379 struct my_u { __le64 a; __le64 b; }; 3380 struct my_u *u = (struct my_u *)tx_desc; 3381 const char *type; 3382 3383 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) 3384 type = "NTC/U"; 3385 else if (i == tx_ring->next_to_use) 3386 type = "NTU"; 3387 else if (i == tx_ring->next_to_clean) 3388 type = "NTC"; 3389 else 3390 type = ""; 3391 3392 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n", 3393 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i, 3394 le64_to_cpu(u->a), le64_to_cpu(u->b), 3395 (u64)buffer_info->dma, buffer_info->length, 3396 buffer_info->next_to_watch, 3397 (u64)buffer_info->time_stamp, buffer_info->skb, type); 3398 } 3399 3400 rx_ring_summary: 3401 /* receive dump */ 3402 pr_info("\nRX Desc ring dump\n"); 3403 3404 /* Legacy Receive Descriptor Format 3405 * 3406 * +-----------------------------------------------------+ 3407 * | Buffer Address [63:0] | 3408 * +-----------------------------------------------------+ 3409 * | VLAN Tag | Errors | Status 0 | Packet csum | Length | 3410 * +-----------------------------------------------------+ 3411 * 63 48 47 40 39 32 31 16 15 0 3412 */ 3413 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n"); 3414 3415 if (!netif_msg_rx_status(adapter)) 3416 goto exit; 3417 3418 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { 3419 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); 3420 struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i]; 3421 struct my_u { __le64 a; __le64 b; }; 3422 struct my_u *u = (struct my_u *)rx_desc; 3423 const char *type; 3424 3425 if (i == rx_ring->next_to_use) 3426 type = "NTU"; 3427 else if (i == rx_ring->next_to_clean) 3428 type = "NTC"; 3429 else 3430 type = ""; 3431 3432 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n", 3433 i, le64_to_cpu(u->a), le64_to_cpu(u->b), 3434 (u64)buffer_info->dma, buffer_info->skb, type); 3435 } /* for */ 3436 3437 /* dump the descriptor caches */ 3438 /* rx */ 3439 pr_info("Rx descriptor cache in 64bit format\n"); 3440 for (i = 0x6000; i <= 0x63FF ; i += 0x10) { 3441 pr_info("R%04X: %08X|%08X %08X|%08X\n", 3442 i, 3443 readl(adapter->hw.hw_addr + i+4), 3444 readl(adapter->hw.hw_addr + i), 3445 readl(adapter->hw.hw_addr + i+12), 3446 readl(adapter->hw.hw_addr + i+8)); 3447 } 3448 /* tx */ 3449 pr_info("Tx descriptor cache in 64bit format\n"); 3450 for (i = 0x7000; i <= 0x73FF ; i += 0x10) { 3451 pr_info("T%04X: %08X|%08X %08X|%08X\n", 3452 i, 3453 readl(adapter->hw.hw_addr + i+4), 3454 readl(adapter->hw.hw_addr + i), 3455 readl(adapter->hw.hw_addr + i+12), 3456 readl(adapter->hw.hw_addr + i+8)); 3457 } 3458 exit: 3459 return; 3460 } 3461 3462 /** 3463 * e1000_tx_timeout - Respond to a Tx Hang 3464 * @netdev: network interface device structure 3465 **/ 3466 static void e1000_tx_timeout(struct net_device *netdev) 3467 { 3468 struct e1000_adapter *adapter = netdev_priv(netdev); 3469 3470 /* Do the reset outside of interrupt context */ 3471 adapter->tx_timeout_count++; 3472 schedule_work(&adapter->reset_task); 3473 } 3474 3475 static void e1000_reset_task(struct work_struct *work) 3476 { 3477 struct e1000_adapter *adapter = 3478 container_of(work, struct e1000_adapter, reset_task); 3479 3480 e_err(drv, "Reset adapter\n"); 3481 e1000_reinit_locked(adapter); 3482 } 3483 3484 /** 3485 * e1000_get_stats - Get System Network Statistics 3486 * @netdev: network interface device structure 3487 * 3488 * Returns the address of the device statistics structure. 3489 * The statistics are actually updated from the watchdog. 3490 **/ 3491 static struct net_device_stats *e1000_get_stats(struct net_device *netdev) 3492 { 3493 /* only return the current stats */ 3494 return &netdev->stats; 3495 } 3496 3497 /** 3498 * e1000_change_mtu - Change the Maximum Transfer Unit 3499 * @netdev: network interface device structure 3500 * @new_mtu: new value for maximum frame size 3501 * 3502 * Returns 0 on success, negative on failure 3503 **/ 3504 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 3505 { 3506 struct e1000_adapter *adapter = netdev_priv(netdev); 3507 struct e1000_hw *hw = &adapter->hw; 3508 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; 3509 3510 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || 3511 (max_frame > MAX_JUMBO_FRAME_SIZE)) { 3512 e_err(probe, "Invalid MTU setting\n"); 3513 return -EINVAL; 3514 } 3515 3516 /* Adapter-specific max frame size limits. */ 3517 switch (hw->mac_type) { 3518 case e1000_undefined ... e1000_82542_rev2_1: 3519 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { 3520 e_err(probe, "Jumbo Frames not supported.\n"); 3521 return -EINVAL; 3522 } 3523 break; 3524 default: 3525 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ 3526 break; 3527 } 3528 3529 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 3530 msleep(1); 3531 /* e1000_down has a dependency on max_frame_size */ 3532 hw->max_frame_size = max_frame; 3533 if (netif_running(netdev)) 3534 e1000_down(adapter); 3535 3536 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 3537 * means we reserve 2 more, this pushes us to allocate from the next 3538 * larger slab size. 3539 * i.e. RXBUFFER_2048 --> size-4096 slab 3540 * however with the new *_jumbo_rx* routines, jumbo receives will use 3541 * fragmented skbs 3542 */ 3543 3544 if (max_frame <= E1000_RXBUFFER_2048) 3545 adapter->rx_buffer_len = E1000_RXBUFFER_2048; 3546 else 3547 #if (PAGE_SIZE >= E1000_RXBUFFER_16384) 3548 adapter->rx_buffer_len = E1000_RXBUFFER_16384; 3549 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096) 3550 adapter->rx_buffer_len = PAGE_SIZE; 3551 #endif 3552 3553 /* adjust allocation if LPE protects us, and we aren't using SBP */ 3554 if (!hw->tbi_compatibility_on && 3555 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || 3556 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) 3557 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 3558 3559 pr_info("%s changing MTU from %d to %d\n", 3560 netdev->name, netdev->mtu, new_mtu); 3561 netdev->mtu = new_mtu; 3562 3563 if (netif_running(netdev)) 3564 e1000_up(adapter); 3565 else 3566 e1000_reset(adapter); 3567 3568 clear_bit(__E1000_RESETTING, &adapter->flags); 3569 3570 return 0; 3571 } 3572 3573 /** 3574 * e1000_update_stats - Update the board statistics counters 3575 * @adapter: board private structure 3576 **/ 3577 void e1000_update_stats(struct e1000_adapter *adapter) 3578 { 3579 struct net_device *netdev = adapter->netdev; 3580 struct e1000_hw *hw = &adapter->hw; 3581 struct pci_dev *pdev = adapter->pdev; 3582 unsigned long flags; 3583 u16 phy_tmp; 3584 3585 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 3586 3587 /* Prevent stats update while adapter is being reset, or if the pci 3588 * connection is down. 3589 */ 3590 if (adapter->link_speed == 0) 3591 return; 3592 if (pci_channel_offline(pdev)) 3593 return; 3594 3595 spin_lock_irqsave(&adapter->stats_lock, flags); 3596 3597 /* these counters are modified from e1000_tbi_adjust_stats, 3598 * called from the interrupt context, so they must only 3599 * be written while holding adapter->stats_lock 3600 */ 3601 3602 adapter->stats.crcerrs += er32(CRCERRS); 3603 adapter->stats.gprc += er32(GPRC); 3604 adapter->stats.gorcl += er32(GORCL); 3605 adapter->stats.gorch += er32(GORCH); 3606 adapter->stats.bprc += er32(BPRC); 3607 adapter->stats.mprc += er32(MPRC); 3608 adapter->stats.roc += er32(ROC); 3609 3610 adapter->stats.prc64 += er32(PRC64); 3611 adapter->stats.prc127 += er32(PRC127); 3612 adapter->stats.prc255 += er32(PRC255); 3613 adapter->stats.prc511 += er32(PRC511); 3614 adapter->stats.prc1023 += er32(PRC1023); 3615 adapter->stats.prc1522 += er32(PRC1522); 3616 3617 adapter->stats.symerrs += er32(SYMERRS); 3618 adapter->stats.mpc += er32(MPC); 3619 adapter->stats.scc += er32(SCC); 3620 adapter->stats.ecol += er32(ECOL); 3621 adapter->stats.mcc += er32(MCC); 3622 adapter->stats.latecol += er32(LATECOL); 3623 adapter->stats.dc += er32(DC); 3624 adapter->stats.sec += er32(SEC); 3625 adapter->stats.rlec += er32(RLEC); 3626 adapter->stats.xonrxc += er32(XONRXC); 3627 adapter->stats.xontxc += er32(XONTXC); 3628 adapter->stats.xoffrxc += er32(XOFFRXC); 3629 adapter->stats.xofftxc += er32(XOFFTXC); 3630 adapter->stats.fcruc += er32(FCRUC); 3631 adapter->stats.gptc += er32(GPTC); 3632 adapter->stats.gotcl += er32(GOTCL); 3633 adapter->stats.gotch += er32(GOTCH); 3634 adapter->stats.rnbc += er32(RNBC); 3635 adapter->stats.ruc += er32(RUC); 3636 adapter->stats.rfc += er32(RFC); 3637 adapter->stats.rjc += er32(RJC); 3638 adapter->stats.torl += er32(TORL); 3639 adapter->stats.torh += er32(TORH); 3640 adapter->stats.totl += er32(TOTL); 3641 adapter->stats.toth += er32(TOTH); 3642 adapter->stats.tpr += er32(TPR); 3643 3644 adapter->stats.ptc64 += er32(PTC64); 3645 adapter->stats.ptc127 += er32(PTC127); 3646 adapter->stats.ptc255 += er32(PTC255); 3647 adapter->stats.ptc511 += er32(PTC511); 3648 adapter->stats.ptc1023 += er32(PTC1023); 3649 adapter->stats.ptc1522 += er32(PTC1522); 3650 3651 adapter->stats.mptc += er32(MPTC); 3652 adapter->stats.bptc += er32(BPTC); 3653 3654 /* used for adaptive IFS */ 3655 3656 hw->tx_packet_delta = er32(TPT); 3657 adapter->stats.tpt += hw->tx_packet_delta; 3658 hw->collision_delta = er32(COLC); 3659 adapter->stats.colc += hw->collision_delta; 3660 3661 if (hw->mac_type >= e1000_82543) { 3662 adapter->stats.algnerrc += er32(ALGNERRC); 3663 adapter->stats.rxerrc += er32(RXERRC); 3664 adapter->stats.tncrs += er32(TNCRS); 3665 adapter->stats.cexterr += er32(CEXTERR); 3666 adapter->stats.tsctc += er32(TSCTC); 3667 adapter->stats.tsctfc += er32(TSCTFC); 3668 } 3669 3670 /* Fill out the OS statistics structure */ 3671 netdev->stats.multicast = adapter->stats.mprc; 3672 netdev->stats.collisions = adapter->stats.colc; 3673 3674 /* Rx Errors */ 3675 3676 /* RLEC on some newer hardware can be incorrect so build 3677 * our own version based on RUC and ROC 3678 */ 3679 netdev->stats.rx_errors = adapter->stats.rxerrc + 3680 adapter->stats.crcerrs + adapter->stats.algnerrc + 3681 adapter->stats.ruc + adapter->stats.roc + 3682 adapter->stats.cexterr; 3683 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; 3684 netdev->stats.rx_length_errors = adapter->stats.rlerrc; 3685 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; 3686 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; 3687 netdev->stats.rx_missed_errors = adapter->stats.mpc; 3688 3689 /* Tx Errors */ 3690 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; 3691 netdev->stats.tx_errors = adapter->stats.txerrc; 3692 netdev->stats.tx_aborted_errors = adapter->stats.ecol; 3693 netdev->stats.tx_window_errors = adapter->stats.latecol; 3694 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; 3695 if (hw->bad_tx_carr_stats_fd && 3696 adapter->link_duplex == FULL_DUPLEX) { 3697 netdev->stats.tx_carrier_errors = 0; 3698 adapter->stats.tncrs = 0; 3699 } 3700 3701 /* Tx Dropped needs to be maintained elsewhere */ 3702 3703 /* Phy Stats */ 3704 if (hw->media_type == e1000_media_type_copper) { 3705 if ((adapter->link_speed == SPEED_1000) && 3706 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { 3707 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 3708 adapter->phy_stats.idle_errors += phy_tmp; 3709 } 3710 3711 if ((hw->mac_type <= e1000_82546) && 3712 (hw->phy_type == e1000_phy_m88) && 3713 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) 3714 adapter->phy_stats.receive_errors += phy_tmp; 3715 } 3716 3717 /* Management Stats */ 3718 if (hw->has_smbus) { 3719 adapter->stats.mgptc += er32(MGTPTC); 3720 adapter->stats.mgprc += er32(MGTPRC); 3721 adapter->stats.mgpdc += er32(MGTPDC); 3722 } 3723 3724 spin_unlock_irqrestore(&adapter->stats_lock, flags); 3725 } 3726 3727 /** 3728 * e1000_intr - Interrupt Handler 3729 * @irq: interrupt number 3730 * @data: pointer to a network interface device structure 3731 **/ 3732 static irqreturn_t e1000_intr(int irq, void *data) 3733 { 3734 struct net_device *netdev = data; 3735 struct e1000_adapter *adapter = netdev_priv(netdev); 3736 struct e1000_hw *hw = &adapter->hw; 3737 u32 icr = er32(ICR); 3738 3739 if (unlikely((!icr))) 3740 return IRQ_NONE; /* Not our interrupt */ 3741 3742 /* we might have caused the interrupt, but the above 3743 * read cleared it, and just in case the driver is 3744 * down there is nothing to do so return handled 3745 */ 3746 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags))) 3747 return IRQ_HANDLED; 3748 3749 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { 3750 hw->get_link_status = 1; 3751 /* guard against interrupt when we're going down */ 3752 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3753 schedule_delayed_work(&adapter->watchdog_task, 1); 3754 } 3755 3756 /* disable interrupts, without the synchronize_irq bit */ 3757 ew32(IMC, ~0); 3758 E1000_WRITE_FLUSH(); 3759 3760 if (likely(napi_schedule_prep(&adapter->napi))) { 3761 adapter->total_tx_bytes = 0; 3762 adapter->total_tx_packets = 0; 3763 adapter->total_rx_bytes = 0; 3764 adapter->total_rx_packets = 0; 3765 __napi_schedule(&adapter->napi); 3766 } else { 3767 /* this really should not happen! if it does it is basically a 3768 * bug, but not a hard error, so enable ints and continue 3769 */ 3770 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3771 e1000_irq_enable(adapter); 3772 } 3773 3774 return IRQ_HANDLED; 3775 } 3776 3777 /** 3778 * e1000_clean - NAPI Rx polling callback 3779 * @adapter: board private structure 3780 **/ 3781 static int e1000_clean(struct napi_struct *napi, int budget) 3782 { 3783 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, 3784 napi); 3785 int tx_clean_complete = 0, work_done = 0; 3786 3787 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); 3788 3789 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); 3790 3791 if (!tx_clean_complete) 3792 work_done = budget; 3793 3794 /* If budget not fully consumed, exit the polling mode */ 3795 if (work_done < budget) { 3796 if (likely(adapter->itr_setting & 3)) 3797 e1000_set_itr(adapter); 3798 napi_complete(napi); 3799 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3800 e1000_irq_enable(adapter); 3801 } 3802 3803 return work_done; 3804 } 3805 3806 /** 3807 * e1000_clean_tx_irq - Reclaim resources after transmit completes 3808 * @adapter: board private structure 3809 **/ 3810 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 3811 struct e1000_tx_ring *tx_ring) 3812 { 3813 struct e1000_hw *hw = &adapter->hw; 3814 struct net_device *netdev = adapter->netdev; 3815 struct e1000_tx_desc *tx_desc, *eop_desc; 3816 struct e1000_buffer *buffer_info; 3817 unsigned int i, eop; 3818 unsigned int count = 0; 3819 unsigned int total_tx_bytes=0, total_tx_packets=0; 3820 unsigned int bytes_compl = 0, pkts_compl = 0; 3821 3822 i = tx_ring->next_to_clean; 3823 eop = tx_ring->buffer_info[i].next_to_watch; 3824 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3825 3826 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && 3827 (count < tx_ring->count)) { 3828 bool cleaned = false; 3829 rmb(); /* read buffer_info after eop_desc */ 3830 for ( ; !cleaned; count++) { 3831 tx_desc = E1000_TX_DESC(*tx_ring, i); 3832 buffer_info = &tx_ring->buffer_info[i]; 3833 cleaned = (i == eop); 3834 3835 if (cleaned) { 3836 total_tx_packets += buffer_info->segs; 3837 total_tx_bytes += buffer_info->bytecount; 3838 if (buffer_info->skb) { 3839 bytes_compl += buffer_info->skb->len; 3840 pkts_compl++; 3841 } 3842 3843 } 3844 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 3845 tx_desc->upper.data = 0; 3846 3847 if (unlikely(++i == tx_ring->count)) i = 0; 3848 } 3849 3850 eop = tx_ring->buffer_info[i].next_to_watch; 3851 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3852 } 3853 3854 tx_ring->next_to_clean = i; 3855 3856 netdev_completed_queue(netdev, pkts_compl, bytes_compl); 3857 3858 #define TX_WAKE_THRESHOLD 32 3859 if (unlikely(count && netif_carrier_ok(netdev) && 3860 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { 3861 /* Make sure that anybody stopping the queue after this 3862 * sees the new next_to_clean. 3863 */ 3864 smp_mb(); 3865 3866 if (netif_queue_stopped(netdev) && 3867 !(test_bit(__E1000_DOWN, &adapter->flags))) { 3868 netif_wake_queue(netdev); 3869 ++adapter->restart_queue; 3870 } 3871 } 3872 3873 if (adapter->detect_tx_hung) { 3874 /* Detect a transmit hang in hardware, this serializes the 3875 * check with the clearing of time_stamp and movement of i 3876 */ 3877 adapter->detect_tx_hung = false; 3878 if (tx_ring->buffer_info[eop].time_stamp && 3879 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + 3880 (adapter->tx_timeout_factor * HZ)) && 3881 !(er32(STATUS) & E1000_STATUS_TXOFF)) { 3882 3883 /* detected Tx unit hang */ 3884 e_err(drv, "Detected Tx Unit Hang\n" 3885 " Tx Queue <%lu>\n" 3886 " TDH <%x>\n" 3887 " TDT <%x>\n" 3888 " next_to_use <%x>\n" 3889 " next_to_clean <%x>\n" 3890 "buffer_info[next_to_clean]\n" 3891 " time_stamp <%lx>\n" 3892 " next_to_watch <%x>\n" 3893 " jiffies <%lx>\n" 3894 " next_to_watch.status <%x>\n", 3895 (unsigned long)(tx_ring - adapter->tx_ring), 3896 readl(hw->hw_addr + tx_ring->tdh), 3897 readl(hw->hw_addr + tx_ring->tdt), 3898 tx_ring->next_to_use, 3899 tx_ring->next_to_clean, 3900 tx_ring->buffer_info[eop].time_stamp, 3901 eop, 3902 jiffies, 3903 eop_desc->upper.fields.status); 3904 e1000_dump(adapter); 3905 netif_stop_queue(netdev); 3906 } 3907 } 3908 adapter->total_tx_bytes += total_tx_bytes; 3909 adapter->total_tx_packets += total_tx_packets; 3910 netdev->stats.tx_bytes += total_tx_bytes; 3911 netdev->stats.tx_packets += total_tx_packets; 3912 return count < tx_ring->count; 3913 } 3914 3915 /** 3916 * e1000_rx_checksum - Receive Checksum Offload for 82543 3917 * @adapter: board private structure 3918 * @status_err: receive descriptor status and error fields 3919 * @csum: receive descriptor csum field 3920 * @sk_buff: socket buffer with received data 3921 **/ 3922 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 3923 u32 csum, struct sk_buff *skb) 3924 { 3925 struct e1000_hw *hw = &adapter->hw; 3926 u16 status = (u16)status_err; 3927 u8 errors = (u8)(status_err >> 24); 3928 3929 skb_checksum_none_assert(skb); 3930 3931 /* 82543 or newer only */ 3932 if (unlikely(hw->mac_type < e1000_82543)) return; 3933 /* Ignore Checksum bit is set */ 3934 if (unlikely(status & E1000_RXD_STAT_IXSM)) return; 3935 /* TCP/UDP checksum error bit is set */ 3936 if (unlikely(errors & E1000_RXD_ERR_TCPE)) { 3937 /* let the stack verify checksum errors */ 3938 adapter->hw_csum_err++; 3939 return; 3940 } 3941 /* TCP/UDP Checksum has not been calculated */ 3942 if (!(status & E1000_RXD_STAT_TCPCS)) 3943 return; 3944 3945 /* It must be a TCP or UDP packet with a valid checksum */ 3946 if (likely(status & E1000_RXD_STAT_TCPCS)) { 3947 /* TCP checksum is good */ 3948 skb->ip_summed = CHECKSUM_UNNECESSARY; 3949 } 3950 adapter->hw_csum_good++; 3951 } 3952 3953 /** 3954 * e1000_consume_page - helper function 3955 **/ 3956 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, 3957 u16 length) 3958 { 3959 bi->page = NULL; 3960 skb->len += length; 3961 skb->data_len += length; 3962 skb->truesize += PAGE_SIZE; 3963 } 3964 3965 /** 3966 * e1000_receive_skb - helper function to handle rx indications 3967 * @adapter: board private structure 3968 * @status: descriptor status field as written by hardware 3969 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 3970 * @skb: pointer to sk_buff to be indicated to stack 3971 */ 3972 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, 3973 __le16 vlan, struct sk_buff *skb) 3974 { 3975 skb->protocol = eth_type_trans(skb, adapter->netdev); 3976 3977 if (status & E1000_RXD_STAT_VP) { 3978 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 3979 3980 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 3981 } 3982 napi_gro_receive(&adapter->napi, skb); 3983 } 3984 3985 /** 3986 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 3987 * @adapter: board private structure 3988 * @rx_ring: ring to clean 3989 * @work_done: amount of napi work completed this call 3990 * @work_to_do: max amount of work allowed for this call to do 3991 * 3992 * the return value indicates whether actual cleaning was done, there 3993 * is no guarantee that everything was cleaned 3994 */ 3995 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 3996 struct e1000_rx_ring *rx_ring, 3997 int *work_done, int work_to_do) 3998 { 3999 struct e1000_hw *hw = &adapter->hw; 4000 struct net_device *netdev = adapter->netdev; 4001 struct pci_dev *pdev = adapter->pdev; 4002 struct e1000_rx_desc *rx_desc, *next_rxd; 4003 struct e1000_buffer *buffer_info, *next_buffer; 4004 unsigned long irq_flags; 4005 u32 length; 4006 unsigned int i; 4007 int cleaned_count = 0; 4008 bool cleaned = false; 4009 unsigned int total_rx_bytes=0, total_rx_packets=0; 4010 4011 i = rx_ring->next_to_clean; 4012 rx_desc = E1000_RX_DESC(*rx_ring, i); 4013 buffer_info = &rx_ring->buffer_info[i]; 4014 4015 while (rx_desc->status & E1000_RXD_STAT_DD) { 4016 struct sk_buff *skb; 4017 u8 status; 4018 4019 if (*work_done >= work_to_do) 4020 break; 4021 (*work_done)++; 4022 rmb(); /* read descriptor and rx_buffer_info after status DD */ 4023 4024 status = rx_desc->status; 4025 skb = buffer_info->skb; 4026 buffer_info->skb = NULL; 4027 4028 if (++i == rx_ring->count) i = 0; 4029 next_rxd = E1000_RX_DESC(*rx_ring, i); 4030 prefetch(next_rxd); 4031 4032 next_buffer = &rx_ring->buffer_info[i]; 4033 4034 cleaned = true; 4035 cleaned_count++; 4036 dma_unmap_page(&pdev->dev, buffer_info->dma, 4037 buffer_info->length, DMA_FROM_DEVICE); 4038 buffer_info->dma = 0; 4039 4040 length = le16_to_cpu(rx_desc->length); 4041 4042 /* errors is only valid for DD + EOP descriptors */ 4043 if (unlikely((status & E1000_RXD_STAT_EOP) && 4044 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { 4045 u8 *mapped; 4046 u8 last_byte; 4047 4048 mapped = page_address(buffer_info->page); 4049 last_byte = *(mapped + length - 1); 4050 if (TBI_ACCEPT(hw, status, rx_desc->errors, length, 4051 last_byte)) { 4052 spin_lock_irqsave(&adapter->stats_lock, 4053 irq_flags); 4054 e1000_tbi_adjust_stats(hw, &adapter->stats, 4055 length, mapped); 4056 spin_unlock_irqrestore(&adapter->stats_lock, 4057 irq_flags); 4058 length--; 4059 } else { 4060 if (netdev->features & NETIF_F_RXALL) 4061 goto process_skb; 4062 /* recycle both page and skb */ 4063 buffer_info->skb = skb; 4064 /* an error means any chain goes out the window 4065 * too 4066 */ 4067 if (rx_ring->rx_skb_top) 4068 dev_kfree_skb(rx_ring->rx_skb_top); 4069 rx_ring->rx_skb_top = NULL; 4070 goto next_desc; 4071 } 4072 } 4073 4074 #define rxtop rx_ring->rx_skb_top 4075 process_skb: 4076 if (!(status & E1000_RXD_STAT_EOP)) { 4077 /* this descriptor is only the beginning (or middle) */ 4078 if (!rxtop) { 4079 /* this is the beginning of a chain */ 4080 rxtop = skb; 4081 skb_fill_page_desc(rxtop, 0, buffer_info->page, 4082 0, length); 4083 } else { 4084 /* this is the middle of a chain */ 4085 skb_fill_page_desc(rxtop, 4086 skb_shinfo(rxtop)->nr_frags, 4087 buffer_info->page, 0, length); 4088 /* re-use the skb, only consumed the page */ 4089 buffer_info->skb = skb; 4090 } 4091 e1000_consume_page(buffer_info, rxtop, length); 4092 goto next_desc; 4093 } else { 4094 if (rxtop) { 4095 /* end of the chain */ 4096 skb_fill_page_desc(rxtop, 4097 skb_shinfo(rxtop)->nr_frags, 4098 buffer_info->page, 0, length); 4099 /* re-use the current skb, we only consumed the 4100 * page 4101 */ 4102 buffer_info->skb = skb; 4103 skb = rxtop; 4104 rxtop = NULL; 4105 e1000_consume_page(buffer_info, skb, length); 4106 } else { 4107 /* no chain, got EOP, this buf is the packet 4108 * copybreak to save the put_page/alloc_page 4109 */ 4110 if (length <= copybreak && 4111 skb_tailroom(skb) >= length) { 4112 u8 *vaddr; 4113 vaddr = kmap_atomic(buffer_info->page); 4114 memcpy(skb_tail_pointer(skb), vaddr, 4115 length); 4116 kunmap_atomic(vaddr); 4117 /* re-use the page, so don't erase 4118 * buffer_info->page 4119 */ 4120 skb_put(skb, length); 4121 } else { 4122 skb_fill_page_desc(skb, 0, 4123 buffer_info->page, 0, 4124 length); 4125 e1000_consume_page(buffer_info, skb, 4126 length); 4127 } 4128 } 4129 } 4130 4131 /* Receive Checksum Offload XXX recompute due to CRC strip? */ 4132 e1000_rx_checksum(adapter, 4133 (u32)(status) | 4134 ((u32)(rx_desc->errors) << 24), 4135 le16_to_cpu(rx_desc->csum), skb); 4136 4137 total_rx_bytes += (skb->len - 4); /* don't count FCS */ 4138 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4139 pskb_trim(skb, skb->len - 4); 4140 total_rx_packets++; 4141 4142 /* eth type trans needs skb->data to point to something */ 4143 if (!pskb_may_pull(skb, ETH_HLEN)) { 4144 e_err(drv, "pskb_may_pull failed.\n"); 4145 dev_kfree_skb(skb); 4146 goto next_desc; 4147 } 4148 4149 e1000_receive_skb(adapter, status, rx_desc->special, skb); 4150 4151 next_desc: 4152 rx_desc->status = 0; 4153 4154 /* return some buffers to hardware, one at a time is too slow */ 4155 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4156 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4157 cleaned_count = 0; 4158 } 4159 4160 /* use prefetched values */ 4161 rx_desc = next_rxd; 4162 buffer_info = next_buffer; 4163 } 4164 rx_ring->next_to_clean = i; 4165 4166 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4167 if (cleaned_count) 4168 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4169 4170 adapter->total_rx_packets += total_rx_packets; 4171 adapter->total_rx_bytes += total_rx_bytes; 4172 netdev->stats.rx_bytes += total_rx_bytes; 4173 netdev->stats.rx_packets += total_rx_packets; 4174 return cleaned; 4175 } 4176 4177 /* this should improve performance for small packets with large amounts 4178 * of reassembly being done in the stack 4179 */ 4180 static void e1000_check_copybreak(struct net_device *netdev, 4181 struct e1000_buffer *buffer_info, 4182 u32 length, struct sk_buff **skb) 4183 { 4184 struct sk_buff *new_skb; 4185 4186 if (length > copybreak) 4187 return; 4188 4189 new_skb = netdev_alloc_skb_ip_align(netdev, length); 4190 if (!new_skb) 4191 return; 4192 4193 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN, 4194 (*skb)->data - NET_IP_ALIGN, 4195 length + NET_IP_ALIGN); 4196 /* save the skb in buffer_info as good */ 4197 buffer_info->skb = *skb; 4198 *skb = new_skb; 4199 } 4200 4201 /** 4202 * e1000_clean_rx_irq - Send received data up the network stack; legacy 4203 * @adapter: board private structure 4204 * @rx_ring: ring to clean 4205 * @work_done: amount of napi work completed this call 4206 * @work_to_do: max amount of work allowed for this call to do 4207 */ 4208 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 4209 struct e1000_rx_ring *rx_ring, 4210 int *work_done, int work_to_do) 4211 { 4212 struct e1000_hw *hw = &adapter->hw; 4213 struct net_device *netdev = adapter->netdev; 4214 struct pci_dev *pdev = adapter->pdev; 4215 struct e1000_rx_desc *rx_desc, *next_rxd; 4216 struct e1000_buffer *buffer_info, *next_buffer; 4217 unsigned long flags; 4218 u32 length; 4219 unsigned int i; 4220 int cleaned_count = 0; 4221 bool cleaned = false; 4222 unsigned int total_rx_bytes=0, total_rx_packets=0; 4223 4224 i = rx_ring->next_to_clean; 4225 rx_desc = E1000_RX_DESC(*rx_ring, i); 4226 buffer_info = &rx_ring->buffer_info[i]; 4227 4228 while (rx_desc->status & E1000_RXD_STAT_DD) { 4229 struct sk_buff *skb; 4230 u8 status; 4231 4232 if (*work_done >= work_to_do) 4233 break; 4234 (*work_done)++; 4235 rmb(); /* read descriptor and rx_buffer_info after status DD */ 4236 4237 status = rx_desc->status; 4238 skb = buffer_info->skb; 4239 buffer_info->skb = NULL; 4240 4241 prefetch(skb->data - NET_IP_ALIGN); 4242 4243 if (++i == rx_ring->count) i = 0; 4244 next_rxd = E1000_RX_DESC(*rx_ring, i); 4245 prefetch(next_rxd); 4246 4247 next_buffer = &rx_ring->buffer_info[i]; 4248 4249 cleaned = true; 4250 cleaned_count++; 4251 dma_unmap_single(&pdev->dev, buffer_info->dma, 4252 buffer_info->length, DMA_FROM_DEVICE); 4253 buffer_info->dma = 0; 4254 4255 length = le16_to_cpu(rx_desc->length); 4256 /* !EOP means multiple descriptors were used to store a single 4257 * packet, if thats the case we need to toss it. In fact, we 4258 * to toss every packet with the EOP bit clear and the next 4259 * frame that _does_ have the EOP bit set, as it is by 4260 * definition only a frame fragment 4261 */ 4262 if (unlikely(!(status & E1000_RXD_STAT_EOP))) 4263 adapter->discarding = true; 4264 4265 if (adapter->discarding) { 4266 /* All receives must fit into a single buffer */ 4267 e_dbg("Receive packet consumed multiple buffers\n"); 4268 /* recycle */ 4269 buffer_info->skb = skb; 4270 if (status & E1000_RXD_STAT_EOP) 4271 adapter->discarding = false; 4272 goto next_desc; 4273 } 4274 4275 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { 4276 u8 last_byte = *(skb->data + length - 1); 4277 if (TBI_ACCEPT(hw, status, rx_desc->errors, length, 4278 last_byte)) { 4279 spin_lock_irqsave(&adapter->stats_lock, flags); 4280 e1000_tbi_adjust_stats(hw, &adapter->stats, 4281 length, skb->data); 4282 spin_unlock_irqrestore(&adapter->stats_lock, 4283 flags); 4284 length--; 4285 } else { 4286 if (netdev->features & NETIF_F_RXALL) 4287 goto process_skb; 4288 /* recycle */ 4289 buffer_info->skb = skb; 4290 goto next_desc; 4291 } 4292 } 4293 4294 process_skb: 4295 total_rx_bytes += (length - 4); /* don't count FCS */ 4296 total_rx_packets++; 4297 4298 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4299 /* adjust length to remove Ethernet CRC, this must be 4300 * done after the TBI_ACCEPT workaround above 4301 */ 4302 length -= 4; 4303 4304 e1000_check_copybreak(netdev, buffer_info, length, &skb); 4305 4306 skb_put(skb, length); 4307 4308 /* Receive Checksum Offload */ 4309 e1000_rx_checksum(adapter, 4310 (u32)(status) | 4311 ((u32)(rx_desc->errors) << 24), 4312 le16_to_cpu(rx_desc->csum), skb); 4313 4314 e1000_receive_skb(adapter, status, rx_desc->special, skb); 4315 4316 next_desc: 4317 rx_desc->status = 0; 4318 4319 /* return some buffers to hardware, one at a time is too slow */ 4320 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4321 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4322 cleaned_count = 0; 4323 } 4324 4325 /* use prefetched values */ 4326 rx_desc = next_rxd; 4327 buffer_info = next_buffer; 4328 } 4329 rx_ring->next_to_clean = i; 4330 4331 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4332 if (cleaned_count) 4333 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4334 4335 adapter->total_rx_packets += total_rx_packets; 4336 adapter->total_rx_bytes += total_rx_bytes; 4337 netdev->stats.rx_bytes += total_rx_bytes; 4338 netdev->stats.rx_packets += total_rx_packets; 4339 return cleaned; 4340 } 4341 4342 /** 4343 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 4344 * @adapter: address of board private structure 4345 * @rx_ring: pointer to receive ring structure 4346 * @cleaned_count: number of buffers to allocate this pass 4347 **/ 4348 static void 4349 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 4350 struct e1000_rx_ring *rx_ring, int cleaned_count) 4351 { 4352 struct net_device *netdev = adapter->netdev; 4353 struct pci_dev *pdev = adapter->pdev; 4354 struct e1000_rx_desc *rx_desc; 4355 struct e1000_buffer *buffer_info; 4356 struct sk_buff *skb; 4357 unsigned int i; 4358 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ; 4359 4360 i = rx_ring->next_to_use; 4361 buffer_info = &rx_ring->buffer_info[i]; 4362 4363 while (cleaned_count--) { 4364 skb = buffer_info->skb; 4365 if (skb) { 4366 skb_trim(skb, 0); 4367 goto check_page; 4368 } 4369 4370 skb = netdev_alloc_skb_ip_align(netdev, bufsz); 4371 if (unlikely(!skb)) { 4372 /* Better luck next round */ 4373 adapter->alloc_rx_buff_failed++; 4374 break; 4375 } 4376 4377 buffer_info->skb = skb; 4378 buffer_info->length = adapter->rx_buffer_len; 4379 check_page: 4380 /* allocate a new page if necessary */ 4381 if (!buffer_info->page) { 4382 buffer_info->page = alloc_page(GFP_ATOMIC); 4383 if (unlikely(!buffer_info->page)) { 4384 adapter->alloc_rx_buff_failed++; 4385 break; 4386 } 4387 } 4388 4389 if (!buffer_info->dma) { 4390 buffer_info->dma = dma_map_page(&pdev->dev, 4391 buffer_info->page, 0, 4392 buffer_info->length, 4393 DMA_FROM_DEVICE); 4394 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4395 put_page(buffer_info->page); 4396 dev_kfree_skb(skb); 4397 buffer_info->page = NULL; 4398 buffer_info->skb = NULL; 4399 buffer_info->dma = 0; 4400 adapter->alloc_rx_buff_failed++; 4401 break; /* while !buffer_info->skb */ 4402 } 4403 } 4404 4405 rx_desc = E1000_RX_DESC(*rx_ring, i); 4406 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4407 4408 if (unlikely(++i == rx_ring->count)) 4409 i = 0; 4410 buffer_info = &rx_ring->buffer_info[i]; 4411 } 4412 4413 if (likely(rx_ring->next_to_use != i)) { 4414 rx_ring->next_to_use = i; 4415 if (unlikely(i-- == 0)) 4416 i = (rx_ring->count - 1); 4417 4418 /* Force memory writes to complete before letting h/w 4419 * know there are new descriptors to fetch. (Only 4420 * applicable for weak-ordered memory model archs, 4421 * such as IA-64). 4422 */ 4423 wmb(); 4424 writel(i, adapter->hw.hw_addr + rx_ring->rdt); 4425 } 4426 } 4427 4428 /** 4429 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended 4430 * @adapter: address of board private structure 4431 **/ 4432 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 4433 struct e1000_rx_ring *rx_ring, 4434 int cleaned_count) 4435 { 4436 struct e1000_hw *hw = &adapter->hw; 4437 struct net_device *netdev = adapter->netdev; 4438 struct pci_dev *pdev = adapter->pdev; 4439 struct e1000_rx_desc *rx_desc; 4440 struct e1000_buffer *buffer_info; 4441 struct sk_buff *skb; 4442 unsigned int i; 4443 unsigned int bufsz = adapter->rx_buffer_len; 4444 4445 i = rx_ring->next_to_use; 4446 buffer_info = &rx_ring->buffer_info[i]; 4447 4448 while (cleaned_count--) { 4449 skb = buffer_info->skb; 4450 if (skb) { 4451 skb_trim(skb, 0); 4452 goto map_skb; 4453 } 4454 4455 skb = netdev_alloc_skb_ip_align(netdev, bufsz); 4456 if (unlikely(!skb)) { 4457 /* Better luck next round */ 4458 adapter->alloc_rx_buff_failed++; 4459 break; 4460 } 4461 4462 /* Fix for errata 23, can't cross 64kB boundary */ 4463 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { 4464 struct sk_buff *oldskb = skb; 4465 e_err(rx_err, "skb align check failed: %u bytes at " 4466 "%p\n", bufsz, skb->data); 4467 /* Try again, without freeing the previous */ 4468 skb = netdev_alloc_skb_ip_align(netdev, bufsz); 4469 /* Failed allocation, critical failure */ 4470 if (!skb) { 4471 dev_kfree_skb(oldskb); 4472 adapter->alloc_rx_buff_failed++; 4473 break; 4474 } 4475 4476 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { 4477 /* give up */ 4478 dev_kfree_skb(skb); 4479 dev_kfree_skb(oldskb); 4480 adapter->alloc_rx_buff_failed++; 4481 break; /* while !buffer_info->skb */ 4482 } 4483 4484 /* Use new allocation */ 4485 dev_kfree_skb(oldskb); 4486 } 4487 buffer_info->skb = skb; 4488 buffer_info->length = adapter->rx_buffer_len; 4489 map_skb: 4490 buffer_info->dma = dma_map_single(&pdev->dev, 4491 skb->data, 4492 buffer_info->length, 4493 DMA_FROM_DEVICE); 4494 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4495 dev_kfree_skb(skb); 4496 buffer_info->skb = NULL; 4497 buffer_info->dma = 0; 4498 adapter->alloc_rx_buff_failed++; 4499 break; /* while !buffer_info->skb */ 4500 } 4501 4502 /* XXX if it was allocated cleanly it will never map to a 4503 * boundary crossing 4504 */ 4505 4506 /* Fix for errata 23, can't cross 64kB boundary */ 4507 if (!e1000_check_64k_bound(adapter, 4508 (void *)(unsigned long)buffer_info->dma, 4509 adapter->rx_buffer_len)) { 4510 e_err(rx_err, "dma align check failed: %u bytes at " 4511 "%p\n", adapter->rx_buffer_len, 4512 (void *)(unsigned long)buffer_info->dma); 4513 dev_kfree_skb(skb); 4514 buffer_info->skb = NULL; 4515 4516 dma_unmap_single(&pdev->dev, buffer_info->dma, 4517 adapter->rx_buffer_len, 4518 DMA_FROM_DEVICE); 4519 buffer_info->dma = 0; 4520 4521 adapter->alloc_rx_buff_failed++; 4522 break; /* while !buffer_info->skb */ 4523 } 4524 rx_desc = E1000_RX_DESC(*rx_ring, i); 4525 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4526 4527 if (unlikely(++i == rx_ring->count)) 4528 i = 0; 4529 buffer_info = &rx_ring->buffer_info[i]; 4530 } 4531 4532 if (likely(rx_ring->next_to_use != i)) { 4533 rx_ring->next_to_use = i; 4534 if (unlikely(i-- == 0)) 4535 i = (rx_ring->count - 1); 4536 4537 /* Force memory writes to complete before letting h/w 4538 * know there are new descriptors to fetch. (Only 4539 * applicable for weak-ordered memory model archs, 4540 * such as IA-64). 4541 */ 4542 wmb(); 4543 writel(i, hw->hw_addr + rx_ring->rdt); 4544 } 4545 } 4546 4547 /** 4548 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. 4549 * @adapter: 4550 **/ 4551 static void e1000_smartspeed(struct e1000_adapter *adapter) 4552 { 4553 struct e1000_hw *hw = &adapter->hw; 4554 u16 phy_status; 4555 u16 phy_ctrl; 4556 4557 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || 4558 !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) 4559 return; 4560 4561 if (adapter->smartspeed == 0) { 4562 /* If Master/Slave config fault is asserted twice, 4563 * we assume back-to-back 4564 */ 4565 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4566 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; 4567 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4568 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; 4569 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4570 if (phy_ctrl & CR_1000T_MS_ENABLE) { 4571 phy_ctrl &= ~CR_1000T_MS_ENABLE; 4572 e1000_write_phy_reg(hw, PHY_1000T_CTRL, 4573 phy_ctrl); 4574 adapter->smartspeed++; 4575 if (!e1000_phy_setup_autoneg(hw) && 4576 !e1000_read_phy_reg(hw, PHY_CTRL, 4577 &phy_ctrl)) { 4578 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4579 MII_CR_RESTART_AUTO_NEG); 4580 e1000_write_phy_reg(hw, PHY_CTRL, 4581 phy_ctrl); 4582 } 4583 } 4584 return; 4585 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { 4586 /* If still no link, perhaps using 2/3 pair cable */ 4587 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4588 phy_ctrl |= CR_1000T_MS_ENABLE; 4589 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); 4590 if (!e1000_phy_setup_autoneg(hw) && 4591 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { 4592 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4593 MII_CR_RESTART_AUTO_NEG); 4594 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); 4595 } 4596 } 4597 /* Restart process after E1000_SMARTSPEED_MAX iterations */ 4598 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) 4599 adapter->smartspeed = 0; 4600 } 4601 4602 /** 4603 * e1000_ioctl - 4604 * @netdev: 4605 * @ifreq: 4606 * @cmd: 4607 **/ 4608 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 4609 { 4610 switch (cmd) { 4611 case SIOCGMIIPHY: 4612 case SIOCGMIIREG: 4613 case SIOCSMIIREG: 4614 return e1000_mii_ioctl(netdev, ifr, cmd); 4615 default: 4616 return -EOPNOTSUPP; 4617 } 4618 } 4619 4620 /** 4621 * e1000_mii_ioctl - 4622 * @netdev: 4623 * @ifreq: 4624 * @cmd: 4625 **/ 4626 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 4627 int cmd) 4628 { 4629 struct e1000_adapter *adapter = netdev_priv(netdev); 4630 struct e1000_hw *hw = &adapter->hw; 4631 struct mii_ioctl_data *data = if_mii(ifr); 4632 int retval; 4633 u16 mii_reg; 4634 unsigned long flags; 4635 4636 if (hw->media_type != e1000_media_type_copper) 4637 return -EOPNOTSUPP; 4638 4639 switch (cmd) { 4640 case SIOCGMIIPHY: 4641 data->phy_id = hw->phy_addr; 4642 break; 4643 case SIOCGMIIREG: 4644 spin_lock_irqsave(&adapter->stats_lock, flags); 4645 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, 4646 &data->val_out)) { 4647 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4648 return -EIO; 4649 } 4650 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4651 break; 4652 case SIOCSMIIREG: 4653 if (data->reg_num & ~(0x1F)) 4654 return -EFAULT; 4655 mii_reg = data->val_in; 4656 spin_lock_irqsave(&adapter->stats_lock, flags); 4657 if (e1000_write_phy_reg(hw, data->reg_num, 4658 mii_reg)) { 4659 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4660 return -EIO; 4661 } 4662 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4663 if (hw->media_type == e1000_media_type_copper) { 4664 switch (data->reg_num) { 4665 case PHY_CTRL: 4666 if (mii_reg & MII_CR_POWER_DOWN) 4667 break; 4668 if (mii_reg & MII_CR_AUTO_NEG_EN) { 4669 hw->autoneg = 1; 4670 hw->autoneg_advertised = 0x2F; 4671 } else { 4672 u32 speed; 4673 if (mii_reg & 0x40) 4674 speed = SPEED_1000; 4675 else if (mii_reg & 0x2000) 4676 speed = SPEED_100; 4677 else 4678 speed = SPEED_10; 4679 retval = e1000_set_spd_dplx( 4680 adapter, speed, 4681 ((mii_reg & 0x100) 4682 ? DUPLEX_FULL : 4683 DUPLEX_HALF)); 4684 if (retval) 4685 return retval; 4686 } 4687 if (netif_running(adapter->netdev)) 4688 e1000_reinit_locked(adapter); 4689 else 4690 e1000_reset(adapter); 4691 break; 4692 case M88E1000_PHY_SPEC_CTRL: 4693 case M88E1000_EXT_PHY_SPEC_CTRL: 4694 if (e1000_phy_reset(hw)) 4695 return -EIO; 4696 break; 4697 } 4698 } else { 4699 switch (data->reg_num) { 4700 case PHY_CTRL: 4701 if (mii_reg & MII_CR_POWER_DOWN) 4702 break; 4703 if (netif_running(adapter->netdev)) 4704 e1000_reinit_locked(adapter); 4705 else 4706 e1000_reset(adapter); 4707 break; 4708 } 4709 } 4710 break; 4711 default: 4712 return -EOPNOTSUPP; 4713 } 4714 return E1000_SUCCESS; 4715 } 4716 4717 void e1000_pci_set_mwi(struct e1000_hw *hw) 4718 { 4719 struct e1000_adapter *adapter = hw->back; 4720 int ret_val = pci_set_mwi(adapter->pdev); 4721 4722 if (ret_val) 4723 e_err(probe, "Error in setting MWI\n"); 4724 } 4725 4726 void e1000_pci_clear_mwi(struct e1000_hw *hw) 4727 { 4728 struct e1000_adapter *adapter = hw->back; 4729 4730 pci_clear_mwi(adapter->pdev); 4731 } 4732 4733 int e1000_pcix_get_mmrbc(struct e1000_hw *hw) 4734 { 4735 struct e1000_adapter *adapter = hw->back; 4736 return pcix_get_mmrbc(adapter->pdev); 4737 } 4738 4739 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) 4740 { 4741 struct e1000_adapter *adapter = hw->back; 4742 pcix_set_mmrbc(adapter->pdev, mmrbc); 4743 } 4744 4745 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) 4746 { 4747 outl(value, port); 4748 } 4749 4750 static bool e1000_vlan_used(struct e1000_adapter *adapter) 4751 { 4752 u16 vid; 4753 4754 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 4755 return true; 4756 return false; 4757 } 4758 4759 static void __e1000_vlan_mode(struct e1000_adapter *adapter, 4760 netdev_features_t features) 4761 { 4762 struct e1000_hw *hw = &adapter->hw; 4763 u32 ctrl; 4764 4765 ctrl = er32(CTRL); 4766 if (features & NETIF_F_HW_VLAN_CTAG_RX) { 4767 /* enable VLAN tag insert/strip */ 4768 ctrl |= E1000_CTRL_VME; 4769 } else { 4770 /* disable VLAN tag insert/strip */ 4771 ctrl &= ~E1000_CTRL_VME; 4772 } 4773 ew32(CTRL, ctrl); 4774 } 4775 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 4776 bool filter_on) 4777 { 4778 struct e1000_hw *hw = &adapter->hw; 4779 u32 rctl; 4780 4781 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4782 e1000_irq_disable(adapter); 4783 4784 __e1000_vlan_mode(adapter, adapter->netdev->features); 4785 if (filter_on) { 4786 /* enable VLAN receive filtering */ 4787 rctl = er32(RCTL); 4788 rctl &= ~E1000_RCTL_CFIEN; 4789 if (!(adapter->netdev->flags & IFF_PROMISC)) 4790 rctl |= E1000_RCTL_VFE; 4791 ew32(RCTL, rctl); 4792 e1000_update_mng_vlan(adapter); 4793 } else { 4794 /* disable VLAN receive filtering */ 4795 rctl = er32(RCTL); 4796 rctl &= ~E1000_RCTL_VFE; 4797 ew32(RCTL, rctl); 4798 } 4799 4800 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4801 e1000_irq_enable(adapter); 4802 } 4803 4804 static void e1000_vlan_mode(struct net_device *netdev, 4805 netdev_features_t features) 4806 { 4807 struct e1000_adapter *adapter = netdev_priv(netdev); 4808 4809 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4810 e1000_irq_disable(adapter); 4811 4812 __e1000_vlan_mode(adapter, features); 4813 4814 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4815 e1000_irq_enable(adapter); 4816 } 4817 4818 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 4819 __be16 proto, u16 vid) 4820 { 4821 struct e1000_adapter *adapter = netdev_priv(netdev); 4822 struct e1000_hw *hw = &adapter->hw; 4823 u32 vfta, index; 4824 4825 if ((hw->mng_cookie.status & 4826 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 4827 (vid == adapter->mng_vlan_id)) 4828 return 0; 4829 4830 if (!e1000_vlan_used(adapter)) 4831 e1000_vlan_filter_on_off(adapter, true); 4832 4833 /* add VID to filter table */ 4834 index = (vid >> 5) & 0x7F; 4835 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4836 vfta |= (1 << (vid & 0x1F)); 4837 e1000_write_vfta(hw, index, vfta); 4838 4839 set_bit(vid, adapter->active_vlans); 4840 4841 return 0; 4842 } 4843 4844 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 4845 __be16 proto, u16 vid) 4846 { 4847 struct e1000_adapter *adapter = netdev_priv(netdev); 4848 struct e1000_hw *hw = &adapter->hw; 4849 u32 vfta, index; 4850 4851 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4852 e1000_irq_disable(adapter); 4853 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4854 e1000_irq_enable(adapter); 4855 4856 /* remove VID from filter table */ 4857 index = (vid >> 5) & 0x7F; 4858 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4859 vfta &= ~(1 << (vid & 0x1F)); 4860 e1000_write_vfta(hw, index, vfta); 4861 4862 clear_bit(vid, adapter->active_vlans); 4863 4864 if (!e1000_vlan_used(adapter)) 4865 e1000_vlan_filter_on_off(adapter, false); 4866 4867 return 0; 4868 } 4869 4870 static void e1000_restore_vlan(struct e1000_adapter *adapter) 4871 { 4872 u16 vid; 4873 4874 if (!e1000_vlan_used(adapter)) 4875 return; 4876 4877 e1000_vlan_filter_on_off(adapter, true); 4878 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 4879 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 4880 } 4881 4882 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 4883 { 4884 struct e1000_hw *hw = &adapter->hw; 4885 4886 hw->autoneg = 0; 4887 4888 /* Make sure dplx is at most 1 bit and lsb of speed is not set 4889 * for the switch() below to work 4890 */ 4891 if ((spd & 1) || (dplx & ~1)) 4892 goto err_inval; 4893 4894 /* Fiber NICs only allow 1000 gbps Full duplex */ 4895 if ((hw->media_type == e1000_media_type_fiber) && 4896 spd != SPEED_1000 && 4897 dplx != DUPLEX_FULL) 4898 goto err_inval; 4899 4900 switch (spd + dplx) { 4901 case SPEED_10 + DUPLEX_HALF: 4902 hw->forced_speed_duplex = e1000_10_half; 4903 break; 4904 case SPEED_10 + DUPLEX_FULL: 4905 hw->forced_speed_duplex = e1000_10_full; 4906 break; 4907 case SPEED_100 + DUPLEX_HALF: 4908 hw->forced_speed_duplex = e1000_100_half; 4909 break; 4910 case SPEED_100 + DUPLEX_FULL: 4911 hw->forced_speed_duplex = e1000_100_full; 4912 break; 4913 case SPEED_1000 + DUPLEX_FULL: 4914 hw->autoneg = 1; 4915 hw->autoneg_advertised = ADVERTISE_1000_FULL; 4916 break; 4917 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 4918 default: 4919 goto err_inval; 4920 } 4921 4922 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 4923 hw->mdix = AUTO_ALL_MODES; 4924 4925 return 0; 4926 4927 err_inval: 4928 e_err(probe, "Unsupported Speed/Duplex configuration\n"); 4929 return -EINVAL; 4930 } 4931 4932 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) 4933 { 4934 struct net_device *netdev = pci_get_drvdata(pdev); 4935 struct e1000_adapter *adapter = netdev_priv(netdev); 4936 struct e1000_hw *hw = &adapter->hw; 4937 u32 ctrl, ctrl_ext, rctl, status; 4938 u32 wufc = adapter->wol; 4939 #ifdef CONFIG_PM 4940 int retval = 0; 4941 #endif 4942 4943 netif_device_detach(netdev); 4944 4945 if (netif_running(netdev)) { 4946 int count = E1000_CHECK_RESET_COUNT; 4947 4948 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 4949 usleep_range(10000, 20000); 4950 4951 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 4952 e1000_down(adapter); 4953 } 4954 4955 #ifdef CONFIG_PM 4956 retval = pci_save_state(pdev); 4957 if (retval) 4958 return retval; 4959 #endif 4960 4961 status = er32(STATUS); 4962 if (status & E1000_STATUS_LU) 4963 wufc &= ~E1000_WUFC_LNKC; 4964 4965 if (wufc) { 4966 e1000_setup_rctl(adapter); 4967 e1000_set_rx_mode(netdev); 4968 4969 rctl = er32(RCTL); 4970 4971 /* turn on all-multi mode if wake on multicast is enabled */ 4972 if (wufc & E1000_WUFC_MC) 4973 rctl |= E1000_RCTL_MPE; 4974 4975 /* enable receives in the hardware */ 4976 ew32(RCTL, rctl | E1000_RCTL_EN); 4977 4978 if (hw->mac_type >= e1000_82540) { 4979 ctrl = er32(CTRL); 4980 /* advertise wake from D3Cold */ 4981 #define E1000_CTRL_ADVD3WUC 0x00100000 4982 /* phy power management enable */ 4983 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 4984 ctrl |= E1000_CTRL_ADVD3WUC | 4985 E1000_CTRL_EN_PHY_PWR_MGMT; 4986 ew32(CTRL, ctrl); 4987 } 4988 4989 if (hw->media_type == e1000_media_type_fiber || 4990 hw->media_type == e1000_media_type_internal_serdes) { 4991 /* keep the laser running in D3 */ 4992 ctrl_ext = er32(CTRL_EXT); 4993 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; 4994 ew32(CTRL_EXT, ctrl_ext); 4995 } 4996 4997 ew32(WUC, E1000_WUC_PME_EN); 4998 ew32(WUFC, wufc); 4999 } else { 5000 ew32(WUC, 0); 5001 ew32(WUFC, 0); 5002 } 5003 5004 e1000_release_manageability(adapter); 5005 5006 *enable_wake = !!wufc; 5007 5008 /* make sure adapter isn't asleep if manageability is enabled */ 5009 if (adapter->en_mng_pt) 5010 *enable_wake = true; 5011 5012 if (netif_running(netdev)) 5013 e1000_free_irq(adapter); 5014 5015 pci_disable_device(pdev); 5016 5017 return 0; 5018 } 5019 5020 #ifdef CONFIG_PM 5021 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) 5022 { 5023 int retval; 5024 bool wake; 5025 5026 retval = __e1000_shutdown(pdev, &wake); 5027 if (retval) 5028 return retval; 5029 5030 if (wake) { 5031 pci_prepare_to_sleep(pdev); 5032 } else { 5033 pci_wake_from_d3(pdev, false); 5034 pci_set_power_state(pdev, PCI_D3hot); 5035 } 5036 5037 return 0; 5038 } 5039 5040 static int e1000_resume(struct pci_dev *pdev) 5041 { 5042 struct net_device *netdev = pci_get_drvdata(pdev); 5043 struct e1000_adapter *adapter = netdev_priv(netdev); 5044 struct e1000_hw *hw = &adapter->hw; 5045 u32 err; 5046 5047 pci_set_power_state(pdev, PCI_D0); 5048 pci_restore_state(pdev); 5049 pci_save_state(pdev); 5050 5051 if (adapter->need_ioport) 5052 err = pci_enable_device(pdev); 5053 else 5054 err = pci_enable_device_mem(pdev); 5055 if (err) { 5056 pr_err("Cannot enable PCI device from suspend\n"); 5057 return err; 5058 } 5059 pci_set_master(pdev); 5060 5061 pci_enable_wake(pdev, PCI_D3hot, 0); 5062 pci_enable_wake(pdev, PCI_D3cold, 0); 5063 5064 if (netif_running(netdev)) { 5065 err = e1000_request_irq(adapter); 5066 if (err) 5067 return err; 5068 } 5069 5070 e1000_power_up_phy(adapter); 5071 e1000_reset(adapter); 5072 ew32(WUS, ~0); 5073 5074 e1000_init_manageability(adapter); 5075 5076 if (netif_running(netdev)) 5077 e1000_up(adapter); 5078 5079 netif_device_attach(netdev); 5080 5081 return 0; 5082 } 5083 #endif 5084 5085 static void e1000_shutdown(struct pci_dev *pdev) 5086 { 5087 bool wake; 5088 5089 __e1000_shutdown(pdev, &wake); 5090 5091 if (system_state == SYSTEM_POWER_OFF) { 5092 pci_wake_from_d3(pdev, wake); 5093 pci_set_power_state(pdev, PCI_D3hot); 5094 } 5095 } 5096 5097 #ifdef CONFIG_NET_POLL_CONTROLLER 5098 /* Polling 'interrupt' - used by things like netconsole to send skbs 5099 * without having to re-enable interrupts. It's not called while 5100 * the interrupt routine is executing. 5101 */ 5102 static void e1000_netpoll(struct net_device *netdev) 5103 { 5104 struct e1000_adapter *adapter = netdev_priv(netdev); 5105 5106 disable_irq(adapter->pdev->irq); 5107 e1000_intr(adapter->pdev->irq, netdev); 5108 enable_irq(adapter->pdev->irq); 5109 } 5110 #endif 5111 5112 /** 5113 * e1000_io_error_detected - called when PCI error is detected 5114 * @pdev: Pointer to PCI device 5115 * @state: The current pci connection state 5116 * 5117 * This function is called after a PCI bus error affecting 5118 * this device has been detected. 5119 */ 5120 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 5121 pci_channel_state_t state) 5122 { 5123 struct net_device *netdev = pci_get_drvdata(pdev); 5124 struct e1000_adapter *adapter = netdev_priv(netdev); 5125 5126 netif_device_detach(netdev); 5127 5128 if (state == pci_channel_io_perm_failure) 5129 return PCI_ERS_RESULT_DISCONNECT; 5130 5131 if (netif_running(netdev)) 5132 e1000_down(adapter); 5133 pci_disable_device(pdev); 5134 5135 /* Request a slot slot reset. */ 5136 return PCI_ERS_RESULT_NEED_RESET; 5137 } 5138 5139 /** 5140 * e1000_io_slot_reset - called after the pci bus has been reset. 5141 * @pdev: Pointer to PCI device 5142 * 5143 * Restart the card from scratch, as if from a cold-boot. Implementation 5144 * resembles the first-half of the e1000_resume routine. 5145 */ 5146 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 5147 { 5148 struct net_device *netdev = pci_get_drvdata(pdev); 5149 struct e1000_adapter *adapter = netdev_priv(netdev); 5150 struct e1000_hw *hw = &adapter->hw; 5151 int err; 5152 5153 if (adapter->need_ioport) 5154 err = pci_enable_device(pdev); 5155 else 5156 err = pci_enable_device_mem(pdev); 5157 if (err) { 5158 pr_err("Cannot re-enable PCI device after reset.\n"); 5159 return PCI_ERS_RESULT_DISCONNECT; 5160 } 5161 pci_set_master(pdev); 5162 5163 pci_enable_wake(pdev, PCI_D3hot, 0); 5164 pci_enable_wake(pdev, PCI_D3cold, 0); 5165 5166 e1000_reset(adapter); 5167 ew32(WUS, ~0); 5168 5169 return PCI_ERS_RESULT_RECOVERED; 5170 } 5171 5172 /** 5173 * e1000_io_resume - called when traffic can start flowing again. 5174 * @pdev: Pointer to PCI device 5175 * 5176 * This callback is called when the error recovery driver tells us that 5177 * its OK to resume normal operation. Implementation resembles the 5178 * second-half of the e1000_resume routine. 5179 */ 5180 static void e1000_io_resume(struct pci_dev *pdev) 5181 { 5182 struct net_device *netdev = pci_get_drvdata(pdev); 5183 struct e1000_adapter *adapter = netdev_priv(netdev); 5184 5185 e1000_init_manageability(adapter); 5186 5187 if (netif_running(netdev)) { 5188 if (e1000_up(adapter)) { 5189 pr_info("can't bring device back up after reset\n"); 5190 return; 5191 } 5192 } 5193 5194 netif_device_attach(netdev); 5195 } 5196 5197 /* e1000_main.c */ 5198