1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35 
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41 
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
50 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 	/* required last entry */
88 	{0,}
89 };
90 
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92 
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106                              struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108                              struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110 
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125                                 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127                                 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 				    struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 			       struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 			       struct e1000_rx_ring *rx_ring,
143 			       int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 				     struct e1000_rx_ring *rx_ring,
146 				     int *work_done, int work_to_do);
147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148 				   struct e1000_rx_ring *rx_ring,
149 				   int cleaned_count);
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151 					 struct e1000_rx_ring *rx_ring,
152 					 int cleaned_count);
153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155 			   int cmd);
156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158 static void e1000_tx_timeout(struct net_device *dev);
159 static void e1000_reset_task(struct work_struct *work);
160 static void e1000_smartspeed(struct e1000_adapter *adapter);
161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162                                        struct sk_buff *skb);
163 
164 static bool e1000_vlan_used(struct e1000_adapter *adapter);
165 static void e1000_vlan_mode(struct net_device *netdev,
166 			    netdev_features_t features);
167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168 				     bool filter_on);
169 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
170 				 __be16 proto, u16 vid);
171 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
172 				  __be16 proto, u16 vid);
173 static void e1000_restore_vlan(struct e1000_adapter *adapter);
174 
175 #ifdef CONFIG_PM
176 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
177 static int e1000_resume(struct pci_dev *pdev);
178 #endif
179 static void e1000_shutdown(struct pci_dev *pdev);
180 
181 #ifdef CONFIG_NET_POLL_CONTROLLER
182 /* for netdump / net console */
183 static void e1000_netpoll (struct net_device *netdev);
184 #endif
185 
186 #define COPYBREAK_DEFAULT 256
187 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
188 module_param(copybreak, uint, 0644);
189 MODULE_PARM_DESC(copybreak,
190 	"Maximum size of packet that is copied to a new buffer on receive");
191 
192 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
193                      pci_channel_state_t state);
194 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
195 static void e1000_io_resume(struct pci_dev *pdev);
196 
197 static const struct pci_error_handlers e1000_err_handler = {
198 	.error_detected = e1000_io_error_detected,
199 	.slot_reset = e1000_io_slot_reset,
200 	.resume = e1000_io_resume,
201 };
202 
203 static struct pci_driver e1000_driver = {
204 	.name     = e1000_driver_name,
205 	.id_table = e1000_pci_tbl,
206 	.probe    = e1000_probe,
207 	.remove   = e1000_remove,
208 #ifdef CONFIG_PM
209 	/* Power Management Hooks */
210 	.suspend  = e1000_suspend,
211 	.resume   = e1000_resume,
212 #endif
213 	.shutdown = e1000_shutdown,
214 	.err_handler = &e1000_err_handler
215 };
216 
217 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
218 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
219 MODULE_LICENSE("GPL");
220 MODULE_VERSION(DRV_VERSION);
221 
222 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
223 static int debug = -1;
224 module_param(debug, int, 0);
225 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
226 
227 /**
228  * e1000_get_hw_dev - return device
229  * used by hardware layer to print debugging information
230  *
231  **/
232 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
233 {
234 	struct e1000_adapter *adapter = hw->back;
235 	return adapter->netdev;
236 }
237 
238 /**
239  * e1000_init_module - Driver Registration Routine
240  *
241  * e1000_init_module is the first routine called when the driver is
242  * loaded. All it does is register with the PCI subsystem.
243  **/
244 static int __init e1000_init_module(void)
245 {
246 	int ret;
247 	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
248 
249 	pr_info("%s\n", e1000_copyright);
250 
251 	ret = pci_register_driver(&e1000_driver);
252 	if (copybreak != COPYBREAK_DEFAULT) {
253 		if (copybreak == 0)
254 			pr_info("copybreak disabled\n");
255 		else
256 			pr_info("copybreak enabled for "
257 				   "packets <= %u bytes\n", copybreak);
258 	}
259 	return ret;
260 }
261 
262 module_init(e1000_init_module);
263 
264 /**
265  * e1000_exit_module - Driver Exit Cleanup Routine
266  *
267  * e1000_exit_module is called just before the driver is removed
268  * from memory.
269  **/
270 static void __exit e1000_exit_module(void)
271 {
272 	pci_unregister_driver(&e1000_driver);
273 }
274 
275 module_exit(e1000_exit_module);
276 
277 static int e1000_request_irq(struct e1000_adapter *adapter)
278 {
279 	struct net_device *netdev = adapter->netdev;
280 	irq_handler_t handler = e1000_intr;
281 	int irq_flags = IRQF_SHARED;
282 	int err;
283 
284 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
285 	                  netdev);
286 	if (err) {
287 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
288 	}
289 
290 	return err;
291 }
292 
293 static void e1000_free_irq(struct e1000_adapter *adapter)
294 {
295 	struct net_device *netdev = adapter->netdev;
296 
297 	free_irq(adapter->pdev->irq, netdev);
298 }
299 
300 /**
301  * e1000_irq_disable - Mask off interrupt generation on the NIC
302  * @adapter: board private structure
303  **/
304 static void e1000_irq_disable(struct e1000_adapter *adapter)
305 {
306 	struct e1000_hw *hw = &adapter->hw;
307 
308 	ew32(IMC, ~0);
309 	E1000_WRITE_FLUSH();
310 	synchronize_irq(adapter->pdev->irq);
311 }
312 
313 /**
314  * e1000_irq_enable - Enable default interrupt generation settings
315  * @adapter: board private structure
316  **/
317 static void e1000_irq_enable(struct e1000_adapter *adapter)
318 {
319 	struct e1000_hw *hw = &adapter->hw;
320 
321 	ew32(IMS, IMS_ENABLE_MASK);
322 	E1000_WRITE_FLUSH();
323 }
324 
325 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
326 {
327 	struct e1000_hw *hw = &adapter->hw;
328 	struct net_device *netdev = adapter->netdev;
329 	u16 vid = hw->mng_cookie.vlan_id;
330 	u16 old_vid = adapter->mng_vlan_id;
331 
332 	if (!e1000_vlan_used(adapter))
333 		return;
334 
335 	if (!test_bit(vid, adapter->active_vlans)) {
336 		if (hw->mng_cookie.status &
337 		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
338 			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
339 			adapter->mng_vlan_id = vid;
340 		} else {
341 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
342 		}
343 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
344 		    (vid != old_vid) &&
345 		    !test_bit(old_vid, adapter->active_vlans))
346 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
347 					       old_vid);
348 	} else {
349 		adapter->mng_vlan_id = vid;
350 	}
351 }
352 
353 static void e1000_init_manageability(struct e1000_adapter *adapter)
354 {
355 	struct e1000_hw *hw = &adapter->hw;
356 
357 	if (adapter->en_mng_pt) {
358 		u32 manc = er32(MANC);
359 
360 		/* disable hardware interception of ARP */
361 		manc &= ~(E1000_MANC_ARP_EN);
362 
363 		ew32(MANC, manc);
364 	}
365 }
366 
367 static void e1000_release_manageability(struct e1000_adapter *adapter)
368 {
369 	struct e1000_hw *hw = &adapter->hw;
370 
371 	if (adapter->en_mng_pt) {
372 		u32 manc = er32(MANC);
373 
374 		/* re-enable hardware interception of ARP */
375 		manc |= E1000_MANC_ARP_EN;
376 
377 		ew32(MANC, manc);
378 	}
379 }
380 
381 /**
382  * e1000_configure - configure the hardware for RX and TX
383  * @adapter = private board structure
384  **/
385 static void e1000_configure(struct e1000_adapter *adapter)
386 {
387 	struct net_device *netdev = adapter->netdev;
388 	int i;
389 
390 	e1000_set_rx_mode(netdev);
391 
392 	e1000_restore_vlan(adapter);
393 	e1000_init_manageability(adapter);
394 
395 	e1000_configure_tx(adapter);
396 	e1000_setup_rctl(adapter);
397 	e1000_configure_rx(adapter);
398 	/* call E1000_DESC_UNUSED which always leaves
399 	 * at least 1 descriptor unused to make sure
400 	 * next_to_use != next_to_clean
401 	 */
402 	for (i = 0; i < adapter->num_rx_queues; i++) {
403 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
404 		adapter->alloc_rx_buf(adapter, ring,
405 				      E1000_DESC_UNUSED(ring));
406 	}
407 }
408 
409 int e1000_up(struct e1000_adapter *adapter)
410 {
411 	struct e1000_hw *hw = &adapter->hw;
412 
413 	/* hardware has been reset, we need to reload some things */
414 	e1000_configure(adapter);
415 
416 	clear_bit(__E1000_DOWN, &adapter->flags);
417 
418 	napi_enable(&adapter->napi);
419 
420 	e1000_irq_enable(adapter);
421 
422 	netif_wake_queue(adapter->netdev);
423 
424 	/* fire a link change interrupt to start the watchdog */
425 	ew32(ICS, E1000_ICS_LSC);
426 	return 0;
427 }
428 
429 /**
430  * e1000_power_up_phy - restore link in case the phy was powered down
431  * @adapter: address of board private structure
432  *
433  * The phy may be powered down to save power and turn off link when the
434  * driver is unloaded and wake on lan is not enabled (among others)
435  * *** this routine MUST be followed by a call to e1000_reset ***
436  **/
437 void e1000_power_up_phy(struct e1000_adapter *adapter)
438 {
439 	struct e1000_hw *hw = &adapter->hw;
440 	u16 mii_reg = 0;
441 
442 	/* Just clear the power down bit to wake the phy back up */
443 	if (hw->media_type == e1000_media_type_copper) {
444 		/* according to the manual, the phy will retain its
445 		 * settings across a power-down/up cycle
446 		 */
447 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
448 		mii_reg &= ~MII_CR_POWER_DOWN;
449 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
450 	}
451 }
452 
453 static void e1000_power_down_phy(struct e1000_adapter *adapter)
454 {
455 	struct e1000_hw *hw = &adapter->hw;
456 
457 	/* Power down the PHY so no link is implied when interface is down *
458 	 * The PHY cannot be powered down if any of the following is true *
459 	 * (a) WoL is enabled
460 	 * (b) AMT is active
461 	 * (c) SoL/IDER session is active
462 	 */
463 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
464 	   hw->media_type == e1000_media_type_copper) {
465 		u16 mii_reg = 0;
466 
467 		switch (hw->mac_type) {
468 		case e1000_82540:
469 		case e1000_82545:
470 		case e1000_82545_rev_3:
471 		case e1000_82546:
472 		case e1000_ce4100:
473 		case e1000_82546_rev_3:
474 		case e1000_82541:
475 		case e1000_82541_rev_2:
476 		case e1000_82547:
477 		case e1000_82547_rev_2:
478 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
479 				goto out;
480 			break;
481 		default:
482 			goto out;
483 		}
484 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
485 		mii_reg |= MII_CR_POWER_DOWN;
486 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
487 		msleep(1);
488 	}
489 out:
490 	return;
491 }
492 
493 static void e1000_down_and_stop(struct e1000_adapter *adapter)
494 {
495 	set_bit(__E1000_DOWN, &adapter->flags);
496 
497 	cancel_delayed_work_sync(&adapter->watchdog_task);
498 
499 	/*
500 	 * Since the watchdog task can reschedule other tasks, we should cancel
501 	 * it first, otherwise we can run into the situation when a work is
502 	 * still running after the adapter has been turned down.
503 	 */
504 
505 	cancel_delayed_work_sync(&adapter->phy_info_task);
506 	cancel_delayed_work_sync(&adapter->fifo_stall_task);
507 
508 	/* Only kill reset task if adapter is not resetting */
509 	if (!test_bit(__E1000_RESETTING, &adapter->flags))
510 		cancel_work_sync(&adapter->reset_task);
511 }
512 
513 void e1000_down(struct e1000_adapter *adapter)
514 {
515 	struct e1000_hw *hw = &adapter->hw;
516 	struct net_device *netdev = adapter->netdev;
517 	u32 rctl, tctl;
518 
519 
520 	/* disable receives in the hardware */
521 	rctl = er32(RCTL);
522 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
523 	/* flush and sleep below */
524 
525 	netif_tx_disable(netdev);
526 
527 	/* disable transmits in the hardware */
528 	tctl = er32(TCTL);
529 	tctl &= ~E1000_TCTL_EN;
530 	ew32(TCTL, tctl);
531 	/* flush both disables and wait for them to finish */
532 	E1000_WRITE_FLUSH();
533 	msleep(10);
534 
535 	napi_disable(&adapter->napi);
536 
537 	e1000_irq_disable(adapter);
538 
539 	/* Setting DOWN must be after irq_disable to prevent
540 	 * a screaming interrupt.  Setting DOWN also prevents
541 	 * tasks from rescheduling.
542 	 */
543 	e1000_down_and_stop(adapter);
544 
545 	adapter->link_speed = 0;
546 	adapter->link_duplex = 0;
547 	netif_carrier_off(netdev);
548 
549 	e1000_reset(adapter);
550 	e1000_clean_all_tx_rings(adapter);
551 	e1000_clean_all_rx_rings(adapter);
552 }
553 
554 void e1000_reinit_locked(struct e1000_adapter *adapter)
555 {
556 	WARN_ON(in_interrupt());
557 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
558 		msleep(1);
559 	e1000_down(adapter);
560 	e1000_up(adapter);
561 	clear_bit(__E1000_RESETTING, &adapter->flags);
562 }
563 
564 void e1000_reset(struct e1000_adapter *adapter)
565 {
566 	struct e1000_hw *hw = &adapter->hw;
567 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
568 	bool legacy_pba_adjust = false;
569 	u16 hwm;
570 
571 	/* Repartition Pba for greater than 9k mtu
572 	 * To take effect CTRL.RST is required.
573 	 */
574 
575 	switch (hw->mac_type) {
576 	case e1000_82542_rev2_0:
577 	case e1000_82542_rev2_1:
578 	case e1000_82543:
579 	case e1000_82544:
580 	case e1000_82540:
581 	case e1000_82541:
582 	case e1000_82541_rev_2:
583 		legacy_pba_adjust = true;
584 		pba = E1000_PBA_48K;
585 		break;
586 	case e1000_82545:
587 	case e1000_82545_rev_3:
588 	case e1000_82546:
589 	case e1000_ce4100:
590 	case e1000_82546_rev_3:
591 		pba = E1000_PBA_48K;
592 		break;
593 	case e1000_82547:
594 	case e1000_82547_rev_2:
595 		legacy_pba_adjust = true;
596 		pba = E1000_PBA_30K;
597 		break;
598 	case e1000_undefined:
599 	case e1000_num_macs:
600 		break;
601 	}
602 
603 	if (legacy_pba_adjust) {
604 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
605 			pba -= 8; /* allocate more FIFO for Tx */
606 
607 		if (hw->mac_type == e1000_82547) {
608 			adapter->tx_fifo_head = 0;
609 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
610 			adapter->tx_fifo_size =
611 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
612 			atomic_set(&adapter->tx_fifo_stall, 0);
613 		}
614 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
615 		/* adjust PBA for jumbo frames */
616 		ew32(PBA, pba);
617 
618 		/* To maintain wire speed transmits, the Tx FIFO should be
619 		 * large enough to accommodate two full transmit packets,
620 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
621 		 * the Rx FIFO should be large enough to accommodate at least
622 		 * one full receive packet and is similarly rounded up and
623 		 * expressed in KB.
624 		 */
625 		pba = er32(PBA);
626 		/* upper 16 bits has Tx packet buffer allocation size in KB */
627 		tx_space = pba >> 16;
628 		/* lower 16 bits has Rx packet buffer allocation size in KB */
629 		pba &= 0xffff;
630 		/* the Tx fifo also stores 16 bytes of information about the Tx
631 		 * but don't include ethernet FCS because hardware appends it
632 		 */
633 		min_tx_space = (hw->max_frame_size +
634 		                sizeof(struct e1000_tx_desc) -
635 		                ETH_FCS_LEN) * 2;
636 		min_tx_space = ALIGN(min_tx_space, 1024);
637 		min_tx_space >>= 10;
638 		/* software strips receive CRC, so leave room for it */
639 		min_rx_space = hw->max_frame_size;
640 		min_rx_space = ALIGN(min_rx_space, 1024);
641 		min_rx_space >>= 10;
642 
643 		/* If current Tx allocation is less than the min Tx FIFO size,
644 		 * and the min Tx FIFO size is less than the current Rx FIFO
645 		 * allocation, take space away from current Rx allocation
646 		 */
647 		if (tx_space < min_tx_space &&
648 		    ((min_tx_space - tx_space) < pba)) {
649 			pba = pba - (min_tx_space - tx_space);
650 
651 			/* PCI/PCIx hardware has PBA alignment constraints */
652 			switch (hw->mac_type) {
653 			case e1000_82545 ... e1000_82546_rev_3:
654 				pba &= ~(E1000_PBA_8K - 1);
655 				break;
656 			default:
657 				break;
658 			}
659 
660 			/* if short on Rx space, Rx wins and must trump Tx
661 			 * adjustment or use Early Receive if available
662 			 */
663 			if (pba < min_rx_space)
664 				pba = min_rx_space;
665 		}
666 	}
667 
668 	ew32(PBA, pba);
669 
670 	/* flow control settings:
671 	 * The high water mark must be low enough to fit one full frame
672 	 * (or the size used for early receive) above it in the Rx FIFO.
673 	 * Set it to the lower of:
674 	 * - 90% of the Rx FIFO size, and
675 	 * - the full Rx FIFO size minus the early receive size (for parts
676 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
677 	 * - the full Rx FIFO size minus one full frame
678 	 */
679 	hwm = min(((pba << 10) * 9 / 10),
680 		  ((pba << 10) - hw->max_frame_size));
681 
682 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
683 	hw->fc_low_water = hw->fc_high_water - 8;
684 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
685 	hw->fc_send_xon = 1;
686 	hw->fc = hw->original_fc;
687 
688 	/* Allow time for pending master requests to run */
689 	e1000_reset_hw(hw);
690 	if (hw->mac_type >= e1000_82544)
691 		ew32(WUC, 0);
692 
693 	if (e1000_init_hw(hw))
694 		e_dev_err("Hardware Error\n");
695 	e1000_update_mng_vlan(adapter);
696 
697 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
698 	if (hw->mac_type >= e1000_82544 &&
699 	    hw->autoneg == 1 &&
700 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
701 		u32 ctrl = er32(CTRL);
702 		/* clear phy power management bit if we are in gig only mode,
703 		 * which if enabled will attempt negotiation to 100Mb, which
704 		 * can cause a loss of link at power off or driver unload
705 		 */
706 		ctrl &= ~E1000_CTRL_SWDPIN3;
707 		ew32(CTRL, ctrl);
708 	}
709 
710 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
711 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
712 
713 	e1000_reset_adaptive(hw);
714 	e1000_phy_get_info(hw, &adapter->phy_info);
715 
716 	e1000_release_manageability(adapter);
717 }
718 
719 /* Dump the eeprom for users having checksum issues */
720 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
721 {
722 	struct net_device *netdev = adapter->netdev;
723 	struct ethtool_eeprom eeprom;
724 	const struct ethtool_ops *ops = netdev->ethtool_ops;
725 	u8 *data;
726 	int i;
727 	u16 csum_old, csum_new = 0;
728 
729 	eeprom.len = ops->get_eeprom_len(netdev);
730 	eeprom.offset = 0;
731 
732 	data = kmalloc(eeprom.len, GFP_KERNEL);
733 	if (!data)
734 		return;
735 
736 	ops->get_eeprom(netdev, &eeprom, data);
737 
738 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
739 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
740 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
741 		csum_new += data[i] + (data[i + 1] << 8);
742 	csum_new = EEPROM_SUM - csum_new;
743 
744 	pr_err("/*********************/\n");
745 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
746 	pr_err("Calculated              : 0x%04x\n", csum_new);
747 
748 	pr_err("Offset    Values\n");
749 	pr_err("========  ======\n");
750 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
751 
752 	pr_err("Include this output when contacting your support provider.\n");
753 	pr_err("This is not a software error! Something bad happened to\n");
754 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
755 	pr_err("result in further problems, possibly loss of data,\n");
756 	pr_err("corruption or system hangs!\n");
757 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
758 	pr_err("which is invalid and requires you to set the proper MAC\n");
759 	pr_err("address manually before continuing to enable this network\n");
760 	pr_err("device. Please inspect the EEPROM dump and report the\n");
761 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
762 	pr_err("/*********************/\n");
763 
764 	kfree(data);
765 }
766 
767 /**
768  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
769  * @pdev: PCI device information struct
770  *
771  * Return true if an adapter needs ioport resources
772  **/
773 static int e1000_is_need_ioport(struct pci_dev *pdev)
774 {
775 	switch (pdev->device) {
776 	case E1000_DEV_ID_82540EM:
777 	case E1000_DEV_ID_82540EM_LOM:
778 	case E1000_DEV_ID_82540EP:
779 	case E1000_DEV_ID_82540EP_LOM:
780 	case E1000_DEV_ID_82540EP_LP:
781 	case E1000_DEV_ID_82541EI:
782 	case E1000_DEV_ID_82541EI_MOBILE:
783 	case E1000_DEV_ID_82541ER:
784 	case E1000_DEV_ID_82541ER_LOM:
785 	case E1000_DEV_ID_82541GI:
786 	case E1000_DEV_ID_82541GI_LF:
787 	case E1000_DEV_ID_82541GI_MOBILE:
788 	case E1000_DEV_ID_82544EI_COPPER:
789 	case E1000_DEV_ID_82544EI_FIBER:
790 	case E1000_DEV_ID_82544GC_COPPER:
791 	case E1000_DEV_ID_82544GC_LOM:
792 	case E1000_DEV_ID_82545EM_COPPER:
793 	case E1000_DEV_ID_82545EM_FIBER:
794 	case E1000_DEV_ID_82546EB_COPPER:
795 	case E1000_DEV_ID_82546EB_FIBER:
796 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
797 		return true;
798 	default:
799 		return false;
800 	}
801 }
802 
803 static netdev_features_t e1000_fix_features(struct net_device *netdev,
804 	netdev_features_t features)
805 {
806 	/* Since there is no support for separate Rx/Tx vlan accel
807 	 * enable/disable make sure Tx flag is always in same state as Rx.
808 	 */
809 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
810 		features |= NETIF_F_HW_VLAN_CTAG_TX;
811 	else
812 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
813 
814 	return features;
815 }
816 
817 static int e1000_set_features(struct net_device *netdev,
818 	netdev_features_t features)
819 {
820 	struct e1000_adapter *adapter = netdev_priv(netdev);
821 	netdev_features_t changed = features ^ netdev->features;
822 
823 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
824 		e1000_vlan_mode(netdev, features);
825 
826 	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
827 		return 0;
828 
829 	netdev->features = features;
830 	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
831 
832 	if (netif_running(netdev))
833 		e1000_reinit_locked(adapter);
834 	else
835 		e1000_reset(adapter);
836 
837 	return 0;
838 }
839 
840 static const struct net_device_ops e1000_netdev_ops = {
841 	.ndo_open		= e1000_open,
842 	.ndo_stop		= e1000_close,
843 	.ndo_start_xmit		= e1000_xmit_frame,
844 	.ndo_get_stats		= e1000_get_stats,
845 	.ndo_set_rx_mode	= e1000_set_rx_mode,
846 	.ndo_set_mac_address	= e1000_set_mac,
847 	.ndo_tx_timeout		= e1000_tx_timeout,
848 	.ndo_change_mtu		= e1000_change_mtu,
849 	.ndo_do_ioctl		= e1000_ioctl,
850 	.ndo_validate_addr	= eth_validate_addr,
851 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
852 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
853 #ifdef CONFIG_NET_POLL_CONTROLLER
854 	.ndo_poll_controller	= e1000_netpoll,
855 #endif
856 	.ndo_fix_features	= e1000_fix_features,
857 	.ndo_set_features	= e1000_set_features,
858 };
859 
860 /**
861  * e1000_init_hw_struct - initialize members of hw struct
862  * @adapter: board private struct
863  * @hw: structure used by e1000_hw.c
864  *
865  * Factors out initialization of the e1000_hw struct to its own function
866  * that can be called very early at init (just after struct allocation).
867  * Fields are initialized based on PCI device information and
868  * OS network device settings (MTU size).
869  * Returns negative error codes if MAC type setup fails.
870  */
871 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
872 				struct e1000_hw *hw)
873 {
874 	struct pci_dev *pdev = adapter->pdev;
875 
876 	/* PCI config space info */
877 	hw->vendor_id = pdev->vendor;
878 	hw->device_id = pdev->device;
879 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
880 	hw->subsystem_id = pdev->subsystem_device;
881 	hw->revision_id = pdev->revision;
882 
883 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
884 
885 	hw->max_frame_size = adapter->netdev->mtu +
886 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
887 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
888 
889 	/* identify the MAC */
890 	if (e1000_set_mac_type(hw)) {
891 		e_err(probe, "Unknown MAC Type\n");
892 		return -EIO;
893 	}
894 
895 	switch (hw->mac_type) {
896 	default:
897 		break;
898 	case e1000_82541:
899 	case e1000_82547:
900 	case e1000_82541_rev_2:
901 	case e1000_82547_rev_2:
902 		hw->phy_init_script = 1;
903 		break;
904 	}
905 
906 	e1000_set_media_type(hw);
907 	e1000_get_bus_info(hw);
908 
909 	hw->wait_autoneg_complete = false;
910 	hw->tbi_compatibility_en = true;
911 	hw->adaptive_ifs = true;
912 
913 	/* Copper options */
914 
915 	if (hw->media_type == e1000_media_type_copper) {
916 		hw->mdix = AUTO_ALL_MODES;
917 		hw->disable_polarity_correction = false;
918 		hw->master_slave = E1000_MASTER_SLAVE;
919 	}
920 
921 	return 0;
922 }
923 
924 /**
925  * e1000_probe - Device Initialization Routine
926  * @pdev: PCI device information struct
927  * @ent: entry in e1000_pci_tbl
928  *
929  * Returns 0 on success, negative on failure
930  *
931  * e1000_probe initializes an adapter identified by a pci_dev structure.
932  * The OS initialization, configuring of the adapter private structure,
933  * and a hardware reset occur.
934  **/
935 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
936 {
937 	struct net_device *netdev;
938 	struct e1000_adapter *adapter;
939 	struct e1000_hw *hw;
940 
941 	static int cards_found = 0;
942 	static int global_quad_port_a = 0; /* global ksp3 port a indication */
943 	int i, err, pci_using_dac;
944 	u16 eeprom_data = 0;
945 	u16 tmp = 0;
946 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
947 	int bars, need_ioport;
948 
949 	/* do not allocate ioport bars when not needed */
950 	need_ioport = e1000_is_need_ioport(pdev);
951 	if (need_ioport) {
952 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
953 		err = pci_enable_device(pdev);
954 	} else {
955 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
956 		err = pci_enable_device_mem(pdev);
957 	}
958 	if (err)
959 		return err;
960 
961 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
962 	if (err)
963 		goto err_pci_reg;
964 
965 	pci_set_master(pdev);
966 	err = pci_save_state(pdev);
967 	if (err)
968 		goto err_alloc_etherdev;
969 
970 	err = -ENOMEM;
971 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
972 	if (!netdev)
973 		goto err_alloc_etherdev;
974 
975 	SET_NETDEV_DEV(netdev, &pdev->dev);
976 
977 	pci_set_drvdata(pdev, netdev);
978 	adapter = netdev_priv(netdev);
979 	adapter->netdev = netdev;
980 	adapter->pdev = pdev;
981 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
982 	adapter->bars = bars;
983 	adapter->need_ioport = need_ioport;
984 
985 	hw = &adapter->hw;
986 	hw->back = adapter;
987 
988 	err = -EIO;
989 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
990 	if (!hw->hw_addr)
991 		goto err_ioremap;
992 
993 	if (adapter->need_ioport) {
994 		for (i = BAR_1; i <= BAR_5; i++) {
995 			if (pci_resource_len(pdev, i) == 0)
996 				continue;
997 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
998 				hw->io_base = pci_resource_start(pdev, i);
999 				break;
1000 			}
1001 		}
1002 	}
1003 
1004 	/* make ready for any if (hw->...) below */
1005 	err = e1000_init_hw_struct(adapter, hw);
1006 	if (err)
1007 		goto err_sw_init;
1008 
1009 	/* there is a workaround being applied below that limits
1010 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1011 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1012 	 */
1013 	pci_using_dac = 0;
1014 	if ((hw->bus_type == e1000_bus_type_pcix) &&
1015 	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1016 		pci_using_dac = 1;
1017 	} else {
1018 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1019 		if (err) {
1020 			pr_err("No usable DMA config, aborting\n");
1021 			goto err_dma;
1022 		}
1023 	}
1024 
1025 	netdev->netdev_ops = &e1000_netdev_ops;
1026 	e1000_set_ethtool_ops(netdev);
1027 	netdev->watchdog_timeo = 5 * HZ;
1028 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1029 
1030 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1031 
1032 	adapter->bd_number = cards_found;
1033 
1034 	/* setup the private structure */
1035 
1036 	err = e1000_sw_init(adapter);
1037 	if (err)
1038 		goto err_sw_init;
1039 
1040 	err = -EIO;
1041 	if (hw->mac_type == e1000_ce4100) {
1042 		hw->ce4100_gbe_mdio_base_virt =
1043 					ioremap(pci_resource_start(pdev, BAR_1),
1044 		                                pci_resource_len(pdev, BAR_1));
1045 
1046 		if (!hw->ce4100_gbe_mdio_base_virt)
1047 			goto err_mdio_ioremap;
1048 	}
1049 
1050 	if (hw->mac_type >= e1000_82543) {
1051 		netdev->hw_features = NETIF_F_SG |
1052 				   NETIF_F_HW_CSUM |
1053 				   NETIF_F_HW_VLAN_CTAG_RX;
1054 		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1055 				   NETIF_F_HW_VLAN_CTAG_FILTER;
1056 	}
1057 
1058 	if ((hw->mac_type >= e1000_82544) &&
1059 	   (hw->mac_type != e1000_82547))
1060 		netdev->hw_features |= NETIF_F_TSO;
1061 
1062 	netdev->priv_flags |= IFF_SUPP_NOFCS;
1063 
1064 	netdev->features |= netdev->hw_features;
1065 	netdev->hw_features |= (NETIF_F_RXCSUM |
1066 				NETIF_F_RXALL |
1067 				NETIF_F_RXFCS);
1068 
1069 	if (pci_using_dac) {
1070 		netdev->features |= NETIF_F_HIGHDMA;
1071 		netdev->vlan_features |= NETIF_F_HIGHDMA;
1072 	}
1073 
1074 	netdev->vlan_features |= (NETIF_F_TSO |
1075 				  NETIF_F_HW_CSUM |
1076 				  NETIF_F_SG);
1077 
1078 	netdev->priv_flags |= IFF_UNICAST_FLT;
1079 
1080 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1081 
1082 	/* initialize eeprom parameters */
1083 	if (e1000_init_eeprom_params(hw)) {
1084 		e_err(probe, "EEPROM initialization failed\n");
1085 		goto err_eeprom;
1086 	}
1087 
1088 	/* before reading the EEPROM, reset the controller to
1089 	 * put the device in a known good starting state
1090 	 */
1091 
1092 	e1000_reset_hw(hw);
1093 
1094 	/* make sure the EEPROM is good */
1095 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1096 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1097 		e1000_dump_eeprom(adapter);
1098 		/* set MAC address to all zeroes to invalidate and temporary
1099 		 * disable this device for the user. This blocks regular
1100 		 * traffic while still permitting ethtool ioctls from reaching
1101 		 * the hardware as well as allowing the user to run the
1102 		 * interface after manually setting a hw addr using
1103 		 * `ip set address`
1104 		 */
1105 		memset(hw->mac_addr, 0, netdev->addr_len);
1106 	} else {
1107 		/* copy the MAC address out of the EEPROM */
1108 		if (e1000_read_mac_addr(hw))
1109 			e_err(probe, "EEPROM Read Error\n");
1110 	}
1111 	/* don't block initalization here due to bad MAC address */
1112 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1113 
1114 	if (!is_valid_ether_addr(netdev->dev_addr))
1115 		e_err(probe, "Invalid MAC Address\n");
1116 
1117 
1118 	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1119 	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1120 			  e1000_82547_tx_fifo_stall_task);
1121 	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1122 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1123 
1124 	e1000_check_options(adapter);
1125 
1126 	/* Initial Wake on LAN setting
1127 	 * If APM wake is enabled in the EEPROM,
1128 	 * enable the ACPI Magic Packet filter
1129 	 */
1130 
1131 	switch (hw->mac_type) {
1132 	case e1000_82542_rev2_0:
1133 	case e1000_82542_rev2_1:
1134 	case e1000_82543:
1135 		break;
1136 	case e1000_82544:
1137 		e1000_read_eeprom(hw,
1138 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1139 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1140 		break;
1141 	case e1000_82546:
1142 	case e1000_82546_rev_3:
1143 		if (er32(STATUS) & E1000_STATUS_FUNC_1){
1144 			e1000_read_eeprom(hw,
1145 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1146 			break;
1147 		}
1148 		/* Fall Through */
1149 	default:
1150 		e1000_read_eeprom(hw,
1151 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1152 		break;
1153 	}
1154 	if (eeprom_data & eeprom_apme_mask)
1155 		adapter->eeprom_wol |= E1000_WUFC_MAG;
1156 
1157 	/* now that we have the eeprom settings, apply the special cases
1158 	 * where the eeprom may be wrong or the board simply won't support
1159 	 * wake on lan on a particular port
1160 	 */
1161 	switch (pdev->device) {
1162 	case E1000_DEV_ID_82546GB_PCIE:
1163 		adapter->eeprom_wol = 0;
1164 		break;
1165 	case E1000_DEV_ID_82546EB_FIBER:
1166 	case E1000_DEV_ID_82546GB_FIBER:
1167 		/* Wake events only supported on port A for dual fiber
1168 		 * regardless of eeprom setting
1169 		 */
1170 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1171 			adapter->eeprom_wol = 0;
1172 		break;
1173 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1174 		/* if quad port adapter, disable WoL on all but port A */
1175 		if (global_quad_port_a != 0)
1176 			adapter->eeprom_wol = 0;
1177 		else
1178 			adapter->quad_port_a = true;
1179 		/* Reset for multiple quad port adapters */
1180 		if (++global_quad_port_a == 4)
1181 			global_quad_port_a = 0;
1182 		break;
1183 	}
1184 
1185 	/* initialize the wol settings based on the eeprom settings */
1186 	adapter->wol = adapter->eeprom_wol;
1187 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1188 
1189 	/* Auto detect PHY address */
1190 	if (hw->mac_type == e1000_ce4100) {
1191 		for (i = 0; i < 32; i++) {
1192 			hw->phy_addr = i;
1193 			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1194 			if (tmp == 0 || tmp == 0xFF) {
1195 				if (i == 31)
1196 					goto err_eeprom;
1197 				continue;
1198 			} else
1199 				break;
1200 		}
1201 	}
1202 
1203 	/* reset the hardware with the new settings */
1204 	e1000_reset(adapter);
1205 
1206 	strcpy(netdev->name, "eth%d");
1207 	err = register_netdev(netdev);
1208 	if (err)
1209 		goto err_register;
1210 
1211 	e1000_vlan_filter_on_off(adapter, false);
1212 
1213 	/* print bus type/speed/width info */
1214 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1215 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1216 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1217 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1218 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1219 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1220 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1221 	       netdev->dev_addr);
1222 
1223 	/* carrier off reporting is important to ethtool even BEFORE open */
1224 	netif_carrier_off(netdev);
1225 
1226 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1227 
1228 	cards_found++;
1229 	return 0;
1230 
1231 err_register:
1232 err_eeprom:
1233 	e1000_phy_hw_reset(hw);
1234 
1235 	if (hw->flash_address)
1236 		iounmap(hw->flash_address);
1237 	kfree(adapter->tx_ring);
1238 	kfree(adapter->rx_ring);
1239 err_dma:
1240 err_sw_init:
1241 err_mdio_ioremap:
1242 	iounmap(hw->ce4100_gbe_mdio_base_virt);
1243 	iounmap(hw->hw_addr);
1244 err_ioremap:
1245 	free_netdev(netdev);
1246 err_alloc_etherdev:
1247 	pci_release_selected_regions(pdev, bars);
1248 err_pci_reg:
1249 	pci_disable_device(pdev);
1250 	return err;
1251 }
1252 
1253 /**
1254  * e1000_remove - Device Removal Routine
1255  * @pdev: PCI device information struct
1256  *
1257  * e1000_remove is called by the PCI subsystem to alert the driver
1258  * that it should release a PCI device.  The could be caused by a
1259  * Hot-Plug event, or because the driver is going to be removed from
1260  * memory.
1261  **/
1262 static void e1000_remove(struct pci_dev *pdev)
1263 {
1264 	struct net_device *netdev = pci_get_drvdata(pdev);
1265 	struct e1000_adapter *adapter = netdev_priv(netdev);
1266 	struct e1000_hw *hw = &adapter->hw;
1267 
1268 	e1000_down_and_stop(adapter);
1269 	e1000_release_manageability(adapter);
1270 
1271 	unregister_netdev(netdev);
1272 
1273 	e1000_phy_hw_reset(hw);
1274 
1275 	kfree(adapter->tx_ring);
1276 	kfree(adapter->rx_ring);
1277 
1278 	if (hw->mac_type == e1000_ce4100)
1279 		iounmap(hw->ce4100_gbe_mdio_base_virt);
1280 	iounmap(hw->hw_addr);
1281 	if (hw->flash_address)
1282 		iounmap(hw->flash_address);
1283 	pci_release_selected_regions(pdev, adapter->bars);
1284 
1285 	free_netdev(netdev);
1286 
1287 	pci_disable_device(pdev);
1288 }
1289 
1290 /**
1291  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1292  * @adapter: board private structure to initialize
1293  *
1294  * e1000_sw_init initializes the Adapter private data structure.
1295  * e1000_init_hw_struct MUST be called before this function
1296  **/
1297 static int e1000_sw_init(struct e1000_adapter *adapter)
1298 {
1299 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1300 
1301 	adapter->num_tx_queues = 1;
1302 	adapter->num_rx_queues = 1;
1303 
1304 	if (e1000_alloc_queues(adapter)) {
1305 		e_err(probe, "Unable to allocate memory for queues\n");
1306 		return -ENOMEM;
1307 	}
1308 
1309 	/* Explicitly disable IRQ since the NIC can be in any state. */
1310 	e1000_irq_disable(adapter);
1311 
1312 	spin_lock_init(&adapter->stats_lock);
1313 
1314 	set_bit(__E1000_DOWN, &adapter->flags);
1315 
1316 	return 0;
1317 }
1318 
1319 /**
1320  * e1000_alloc_queues - Allocate memory for all rings
1321  * @adapter: board private structure to initialize
1322  *
1323  * We allocate one ring per queue at run-time since we don't know the
1324  * number of queues at compile-time.
1325  **/
1326 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1327 {
1328 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1329 	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
1330 	if (!adapter->tx_ring)
1331 		return -ENOMEM;
1332 
1333 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1334 	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
1335 	if (!adapter->rx_ring) {
1336 		kfree(adapter->tx_ring);
1337 		return -ENOMEM;
1338 	}
1339 
1340 	return E1000_SUCCESS;
1341 }
1342 
1343 /**
1344  * e1000_open - Called when a network interface is made active
1345  * @netdev: network interface device structure
1346  *
1347  * Returns 0 on success, negative value on failure
1348  *
1349  * The open entry point is called when a network interface is made
1350  * active by the system (IFF_UP).  At this point all resources needed
1351  * for transmit and receive operations are allocated, the interrupt
1352  * handler is registered with the OS, the watchdog task is started,
1353  * and the stack is notified that the interface is ready.
1354  **/
1355 static int e1000_open(struct net_device *netdev)
1356 {
1357 	struct e1000_adapter *adapter = netdev_priv(netdev);
1358 	struct e1000_hw *hw = &adapter->hw;
1359 	int err;
1360 
1361 	/* disallow open during test */
1362 	if (test_bit(__E1000_TESTING, &adapter->flags))
1363 		return -EBUSY;
1364 
1365 	netif_carrier_off(netdev);
1366 
1367 	/* allocate transmit descriptors */
1368 	err = e1000_setup_all_tx_resources(adapter);
1369 	if (err)
1370 		goto err_setup_tx;
1371 
1372 	/* allocate receive descriptors */
1373 	err = e1000_setup_all_rx_resources(adapter);
1374 	if (err)
1375 		goto err_setup_rx;
1376 
1377 	e1000_power_up_phy(adapter);
1378 
1379 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1380 	if ((hw->mng_cookie.status &
1381 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1382 		e1000_update_mng_vlan(adapter);
1383 	}
1384 
1385 	/* before we allocate an interrupt, we must be ready to handle it.
1386 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1387 	 * as soon as we call pci_request_irq, so we have to setup our
1388 	 * clean_rx handler before we do so.
1389 	 */
1390 	e1000_configure(adapter);
1391 
1392 	err = e1000_request_irq(adapter);
1393 	if (err)
1394 		goto err_req_irq;
1395 
1396 	/* From here on the code is the same as e1000_up() */
1397 	clear_bit(__E1000_DOWN, &adapter->flags);
1398 
1399 	napi_enable(&adapter->napi);
1400 
1401 	e1000_irq_enable(adapter);
1402 
1403 	netif_start_queue(netdev);
1404 
1405 	/* fire a link status change interrupt to start the watchdog */
1406 	ew32(ICS, E1000_ICS_LSC);
1407 
1408 	return E1000_SUCCESS;
1409 
1410 err_req_irq:
1411 	e1000_power_down_phy(adapter);
1412 	e1000_free_all_rx_resources(adapter);
1413 err_setup_rx:
1414 	e1000_free_all_tx_resources(adapter);
1415 err_setup_tx:
1416 	e1000_reset(adapter);
1417 
1418 	return err;
1419 }
1420 
1421 /**
1422  * e1000_close - Disables a network interface
1423  * @netdev: network interface device structure
1424  *
1425  * Returns 0, this is not allowed to fail
1426  *
1427  * The close entry point is called when an interface is de-activated
1428  * by the OS.  The hardware is still under the drivers control, but
1429  * needs to be disabled.  A global MAC reset is issued to stop the
1430  * hardware, and all transmit and receive resources are freed.
1431  **/
1432 static int e1000_close(struct net_device *netdev)
1433 {
1434 	struct e1000_adapter *adapter = netdev_priv(netdev);
1435 	struct e1000_hw *hw = &adapter->hw;
1436 	int count = E1000_CHECK_RESET_COUNT;
1437 
1438 	while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1439 		usleep_range(10000, 20000);
1440 
1441 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1442 	e1000_down(adapter);
1443 	e1000_power_down_phy(adapter);
1444 	e1000_free_irq(adapter);
1445 
1446 	e1000_free_all_tx_resources(adapter);
1447 	e1000_free_all_rx_resources(adapter);
1448 
1449 	/* kill manageability vlan ID if supported, but not if a vlan with
1450 	 * the same ID is registered on the host OS (let 8021q kill it)
1451 	 */
1452 	if ((hw->mng_cookie.status &
1453 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1454 	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1455 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1456 				       adapter->mng_vlan_id);
1457 	}
1458 
1459 	return 0;
1460 }
1461 
1462 /**
1463  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1464  * @adapter: address of board private structure
1465  * @start: address of beginning of memory
1466  * @len: length of memory
1467  **/
1468 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1469 				  unsigned long len)
1470 {
1471 	struct e1000_hw *hw = &adapter->hw;
1472 	unsigned long begin = (unsigned long)start;
1473 	unsigned long end = begin + len;
1474 
1475 	/* First rev 82545 and 82546 need to not allow any memory
1476 	 * write location to cross 64k boundary due to errata 23
1477 	 */
1478 	if (hw->mac_type == e1000_82545 ||
1479 	    hw->mac_type == e1000_ce4100 ||
1480 	    hw->mac_type == e1000_82546) {
1481 		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1482 	}
1483 
1484 	return true;
1485 }
1486 
1487 /**
1488  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1489  * @adapter: board private structure
1490  * @txdr:    tx descriptor ring (for a specific queue) to setup
1491  *
1492  * Return 0 on success, negative on failure
1493  **/
1494 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1495 				    struct e1000_tx_ring *txdr)
1496 {
1497 	struct pci_dev *pdev = adapter->pdev;
1498 	int size;
1499 
1500 	size = sizeof(struct e1000_buffer) * txdr->count;
1501 	txdr->buffer_info = vzalloc(size);
1502 	if (!txdr->buffer_info)
1503 		return -ENOMEM;
1504 
1505 	/* round up to nearest 4K */
1506 
1507 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1508 	txdr->size = ALIGN(txdr->size, 4096);
1509 
1510 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1511 					GFP_KERNEL);
1512 	if (!txdr->desc) {
1513 setup_tx_desc_die:
1514 		vfree(txdr->buffer_info);
1515 		return -ENOMEM;
1516 	}
1517 
1518 	/* Fix for errata 23, can't cross 64kB boundary */
1519 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1520 		void *olddesc = txdr->desc;
1521 		dma_addr_t olddma = txdr->dma;
1522 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1523 		      txdr->size, txdr->desc);
1524 		/* Try again, without freeing the previous */
1525 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1526 						&txdr->dma, GFP_KERNEL);
1527 		/* Failed allocation, critical failure */
1528 		if (!txdr->desc) {
1529 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1530 					  olddma);
1531 			goto setup_tx_desc_die;
1532 		}
1533 
1534 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1535 			/* give up */
1536 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1537 					  txdr->dma);
1538 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1539 					  olddma);
1540 			e_err(probe, "Unable to allocate aligned memory "
1541 			      "for the transmit descriptor ring\n");
1542 			vfree(txdr->buffer_info);
1543 			return -ENOMEM;
1544 		} else {
1545 			/* Free old allocation, new allocation was successful */
1546 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547 					  olddma);
1548 		}
1549 	}
1550 	memset(txdr->desc, 0, txdr->size);
1551 
1552 	txdr->next_to_use = 0;
1553 	txdr->next_to_clean = 0;
1554 
1555 	return 0;
1556 }
1557 
1558 /**
1559  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1560  * 				  (Descriptors) for all queues
1561  * @adapter: board private structure
1562  *
1563  * Return 0 on success, negative on failure
1564  **/
1565 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1566 {
1567 	int i, err = 0;
1568 
1569 	for (i = 0; i < adapter->num_tx_queues; i++) {
1570 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1571 		if (err) {
1572 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1573 			for (i-- ; i >= 0; i--)
1574 				e1000_free_tx_resources(adapter,
1575 							&adapter->tx_ring[i]);
1576 			break;
1577 		}
1578 	}
1579 
1580 	return err;
1581 }
1582 
1583 /**
1584  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1585  * @adapter: board private structure
1586  *
1587  * Configure the Tx unit of the MAC after a reset.
1588  **/
1589 static void e1000_configure_tx(struct e1000_adapter *adapter)
1590 {
1591 	u64 tdba;
1592 	struct e1000_hw *hw = &adapter->hw;
1593 	u32 tdlen, tctl, tipg;
1594 	u32 ipgr1, ipgr2;
1595 
1596 	/* Setup the HW Tx Head and Tail descriptor pointers */
1597 
1598 	switch (adapter->num_tx_queues) {
1599 	case 1:
1600 	default:
1601 		tdba = adapter->tx_ring[0].dma;
1602 		tdlen = adapter->tx_ring[0].count *
1603 			sizeof(struct e1000_tx_desc);
1604 		ew32(TDLEN, tdlen);
1605 		ew32(TDBAH, (tdba >> 32));
1606 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1607 		ew32(TDT, 0);
1608 		ew32(TDH, 0);
1609 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1610 					   E1000_TDH : E1000_82542_TDH);
1611 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1612 					   E1000_TDT : E1000_82542_TDT);
1613 		break;
1614 	}
1615 
1616 	/* Set the default values for the Tx Inter Packet Gap timer */
1617 	if ((hw->media_type == e1000_media_type_fiber ||
1618 	     hw->media_type == e1000_media_type_internal_serdes))
1619 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1620 	else
1621 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1622 
1623 	switch (hw->mac_type) {
1624 	case e1000_82542_rev2_0:
1625 	case e1000_82542_rev2_1:
1626 		tipg = DEFAULT_82542_TIPG_IPGT;
1627 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1628 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1629 		break;
1630 	default:
1631 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1632 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1633 		break;
1634 	}
1635 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1636 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1637 	ew32(TIPG, tipg);
1638 
1639 	/* Set the Tx Interrupt Delay register */
1640 
1641 	ew32(TIDV, adapter->tx_int_delay);
1642 	if (hw->mac_type >= e1000_82540)
1643 		ew32(TADV, adapter->tx_abs_int_delay);
1644 
1645 	/* Program the Transmit Control Register */
1646 
1647 	tctl = er32(TCTL);
1648 	tctl &= ~E1000_TCTL_CT;
1649 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1650 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1651 
1652 	e1000_config_collision_dist(hw);
1653 
1654 	/* Setup Transmit Descriptor Settings for eop descriptor */
1655 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1656 
1657 	/* only set IDE if we are delaying interrupts using the timers */
1658 	if (adapter->tx_int_delay)
1659 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1660 
1661 	if (hw->mac_type < e1000_82543)
1662 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1663 	else
1664 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1665 
1666 	/* Cache if we're 82544 running in PCI-X because we'll
1667 	 * need this to apply a workaround later in the send path.
1668 	 */
1669 	if (hw->mac_type == e1000_82544 &&
1670 	    hw->bus_type == e1000_bus_type_pcix)
1671 		adapter->pcix_82544 = true;
1672 
1673 	ew32(TCTL, tctl);
1674 
1675 }
1676 
1677 /**
1678  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1679  * @adapter: board private structure
1680  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1681  *
1682  * Returns 0 on success, negative on failure
1683  **/
1684 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1685 				    struct e1000_rx_ring *rxdr)
1686 {
1687 	struct pci_dev *pdev = adapter->pdev;
1688 	int size, desc_len;
1689 
1690 	size = sizeof(struct e1000_buffer) * rxdr->count;
1691 	rxdr->buffer_info = vzalloc(size);
1692 	if (!rxdr->buffer_info)
1693 		return -ENOMEM;
1694 
1695 	desc_len = sizeof(struct e1000_rx_desc);
1696 
1697 	/* Round up to nearest 4K */
1698 
1699 	rxdr->size = rxdr->count * desc_len;
1700 	rxdr->size = ALIGN(rxdr->size, 4096);
1701 
1702 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1703 					GFP_KERNEL);
1704 	if (!rxdr->desc) {
1705 setup_rx_desc_die:
1706 		vfree(rxdr->buffer_info);
1707 		return -ENOMEM;
1708 	}
1709 
1710 	/* Fix for errata 23, can't cross 64kB boundary */
1711 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1712 		void *olddesc = rxdr->desc;
1713 		dma_addr_t olddma = rxdr->dma;
1714 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1715 		      rxdr->size, rxdr->desc);
1716 		/* Try again, without freeing the previous */
1717 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1718 						&rxdr->dma, GFP_KERNEL);
1719 		/* Failed allocation, critical failure */
1720 		if (!rxdr->desc) {
1721 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1722 					  olddma);
1723 			goto setup_rx_desc_die;
1724 		}
1725 
1726 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1727 			/* give up */
1728 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1729 					  rxdr->dma);
1730 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1731 					  olddma);
1732 			e_err(probe, "Unable to allocate aligned memory for "
1733 			      "the Rx descriptor ring\n");
1734 			goto setup_rx_desc_die;
1735 		} else {
1736 			/* Free old allocation, new allocation was successful */
1737 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1738 					  olddma);
1739 		}
1740 	}
1741 	memset(rxdr->desc, 0, rxdr->size);
1742 
1743 	rxdr->next_to_clean = 0;
1744 	rxdr->next_to_use = 0;
1745 	rxdr->rx_skb_top = NULL;
1746 
1747 	return 0;
1748 }
1749 
1750 /**
1751  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1752  * 				  (Descriptors) for all queues
1753  * @adapter: board private structure
1754  *
1755  * Return 0 on success, negative on failure
1756  **/
1757 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1758 {
1759 	int i, err = 0;
1760 
1761 	for (i = 0; i < adapter->num_rx_queues; i++) {
1762 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1763 		if (err) {
1764 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1765 			for (i-- ; i >= 0; i--)
1766 				e1000_free_rx_resources(adapter,
1767 							&adapter->rx_ring[i]);
1768 			break;
1769 		}
1770 	}
1771 
1772 	return err;
1773 }
1774 
1775 /**
1776  * e1000_setup_rctl - configure the receive control registers
1777  * @adapter: Board private structure
1778  **/
1779 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1780 {
1781 	struct e1000_hw *hw = &adapter->hw;
1782 	u32 rctl;
1783 
1784 	rctl = er32(RCTL);
1785 
1786 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1787 
1788 	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1789 		E1000_RCTL_RDMTS_HALF |
1790 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1791 
1792 	if (hw->tbi_compatibility_on == 1)
1793 		rctl |= E1000_RCTL_SBP;
1794 	else
1795 		rctl &= ~E1000_RCTL_SBP;
1796 
1797 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1798 		rctl &= ~E1000_RCTL_LPE;
1799 	else
1800 		rctl |= E1000_RCTL_LPE;
1801 
1802 	/* Setup buffer sizes */
1803 	rctl &= ~E1000_RCTL_SZ_4096;
1804 	rctl |= E1000_RCTL_BSEX;
1805 	switch (adapter->rx_buffer_len) {
1806 		case E1000_RXBUFFER_2048:
1807 		default:
1808 			rctl |= E1000_RCTL_SZ_2048;
1809 			rctl &= ~E1000_RCTL_BSEX;
1810 			break;
1811 		case E1000_RXBUFFER_4096:
1812 			rctl |= E1000_RCTL_SZ_4096;
1813 			break;
1814 		case E1000_RXBUFFER_8192:
1815 			rctl |= E1000_RCTL_SZ_8192;
1816 			break;
1817 		case E1000_RXBUFFER_16384:
1818 			rctl |= E1000_RCTL_SZ_16384;
1819 			break;
1820 	}
1821 
1822 	/* This is useful for sniffing bad packets. */
1823 	if (adapter->netdev->features & NETIF_F_RXALL) {
1824 		/* UPE and MPE will be handled by normal PROMISC logic
1825 		 * in e1000e_set_rx_mode
1826 		 */
1827 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1828 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1829 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1830 
1831 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1832 			  E1000_RCTL_DPF | /* Allow filtered pause */
1833 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1834 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1835 		 * and that breaks VLANs.
1836 		 */
1837 	}
1838 
1839 	ew32(RCTL, rctl);
1840 }
1841 
1842 /**
1843  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1844  * @adapter: board private structure
1845  *
1846  * Configure the Rx unit of the MAC after a reset.
1847  **/
1848 static void e1000_configure_rx(struct e1000_adapter *adapter)
1849 {
1850 	u64 rdba;
1851 	struct e1000_hw *hw = &adapter->hw;
1852 	u32 rdlen, rctl, rxcsum;
1853 
1854 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1855 		rdlen = adapter->rx_ring[0].count *
1856 		        sizeof(struct e1000_rx_desc);
1857 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1858 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1859 	} else {
1860 		rdlen = adapter->rx_ring[0].count *
1861 		        sizeof(struct e1000_rx_desc);
1862 		adapter->clean_rx = e1000_clean_rx_irq;
1863 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1864 	}
1865 
1866 	/* disable receives while setting up the descriptors */
1867 	rctl = er32(RCTL);
1868 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1869 
1870 	/* set the Receive Delay Timer Register */
1871 	ew32(RDTR, adapter->rx_int_delay);
1872 
1873 	if (hw->mac_type >= e1000_82540) {
1874 		ew32(RADV, adapter->rx_abs_int_delay);
1875 		if (adapter->itr_setting != 0)
1876 			ew32(ITR, 1000000000 / (adapter->itr * 256));
1877 	}
1878 
1879 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1880 	 * the Base and Length of the Rx Descriptor Ring
1881 	 */
1882 	switch (adapter->num_rx_queues) {
1883 	case 1:
1884 	default:
1885 		rdba = adapter->rx_ring[0].dma;
1886 		ew32(RDLEN, rdlen);
1887 		ew32(RDBAH, (rdba >> 32));
1888 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1889 		ew32(RDT, 0);
1890 		ew32(RDH, 0);
1891 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1892 					   E1000_RDH : E1000_82542_RDH);
1893 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1894 					   E1000_RDT : E1000_82542_RDT);
1895 		break;
1896 	}
1897 
1898 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1899 	if (hw->mac_type >= e1000_82543) {
1900 		rxcsum = er32(RXCSUM);
1901 		if (adapter->rx_csum)
1902 			rxcsum |= E1000_RXCSUM_TUOFL;
1903 		else
1904 			/* don't need to clear IPPCSE as it defaults to 0 */
1905 			rxcsum &= ~E1000_RXCSUM_TUOFL;
1906 		ew32(RXCSUM, rxcsum);
1907 	}
1908 
1909 	/* Enable Receives */
1910 	ew32(RCTL, rctl | E1000_RCTL_EN);
1911 }
1912 
1913 /**
1914  * e1000_free_tx_resources - Free Tx Resources per Queue
1915  * @adapter: board private structure
1916  * @tx_ring: Tx descriptor ring for a specific queue
1917  *
1918  * Free all transmit software resources
1919  **/
1920 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1921 				    struct e1000_tx_ring *tx_ring)
1922 {
1923 	struct pci_dev *pdev = adapter->pdev;
1924 
1925 	e1000_clean_tx_ring(adapter, tx_ring);
1926 
1927 	vfree(tx_ring->buffer_info);
1928 	tx_ring->buffer_info = NULL;
1929 
1930 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1931 			  tx_ring->dma);
1932 
1933 	tx_ring->desc = NULL;
1934 }
1935 
1936 /**
1937  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1938  * @adapter: board private structure
1939  *
1940  * Free all transmit software resources
1941  **/
1942 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1943 {
1944 	int i;
1945 
1946 	for (i = 0; i < adapter->num_tx_queues; i++)
1947 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1948 }
1949 
1950 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1951 					     struct e1000_buffer *buffer_info)
1952 {
1953 	if (buffer_info->dma) {
1954 		if (buffer_info->mapped_as_page)
1955 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1956 				       buffer_info->length, DMA_TO_DEVICE);
1957 		else
1958 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1959 					 buffer_info->length,
1960 					 DMA_TO_DEVICE);
1961 		buffer_info->dma = 0;
1962 	}
1963 	if (buffer_info->skb) {
1964 		dev_kfree_skb_any(buffer_info->skb);
1965 		buffer_info->skb = NULL;
1966 	}
1967 	buffer_info->time_stamp = 0;
1968 	/* buffer_info must be completely set up in the transmit path */
1969 }
1970 
1971 /**
1972  * e1000_clean_tx_ring - Free Tx Buffers
1973  * @adapter: board private structure
1974  * @tx_ring: ring to be cleaned
1975  **/
1976 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1977 				struct e1000_tx_ring *tx_ring)
1978 {
1979 	struct e1000_hw *hw = &adapter->hw;
1980 	struct e1000_buffer *buffer_info;
1981 	unsigned long size;
1982 	unsigned int i;
1983 
1984 	/* Free all the Tx ring sk_buffs */
1985 
1986 	for (i = 0; i < tx_ring->count; i++) {
1987 		buffer_info = &tx_ring->buffer_info[i];
1988 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1989 	}
1990 
1991 	netdev_reset_queue(adapter->netdev);
1992 	size = sizeof(struct e1000_buffer) * tx_ring->count;
1993 	memset(tx_ring->buffer_info, 0, size);
1994 
1995 	/* Zero out the descriptor ring */
1996 
1997 	memset(tx_ring->desc, 0, tx_ring->size);
1998 
1999 	tx_ring->next_to_use = 0;
2000 	tx_ring->next_to_clean = 0;
2001 	tx_ring->last_tx_tso = false;
2002 
2003 	writel(0, hw->hw_addr + tx_ring->tdh);
2004 	writel(0, hw->hw_addr + tx_ring->tdt);
2005 }
2006 
2007 /**
2008  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2009  * @adapter: board private structure
2010  **/
2011 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2012 {
2013 	int i;
2014 
2015 	for (i = 0; i < adapter->num_tx_queues; i++)
2016 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2017 }
2018 
2019 /**
2020  * e1000_free_rx_resources - Free Rx Resources
2021  * @adapter: board private structure
2022  * @rx_ring: ring to clean the resources from
2023  *
2024  * Free all receive software resources
2025  **/
2026 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2027 				    struct e1000_rx_ring *rx_ring)
2028 {
2029 	struct pci_dev *pdev = adapter->pdev;
2030 
2031 	e1000_clean_rx_ring(adapter, rx_ring);
2032 
2033 	vfree(rx_ring->buffer_info);
2034 	rx_ring->buffer_info = NULL;
2035 
2036 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2037 			  rx_ring->dma);
2038 
2039 	rx_ring->desc = NULL;
2040 }
2041 
2042 /**
2043  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2044  * @adapter: board private structure
2045  *
2046  * Free all receive software resources
2047  **/
2048 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2049 {
2050 	int i;
2051 
2052 	for (i = 0; i < adapter->num_rx_queues; i++)
2053 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2054 }
2055 
2056 /**
2057  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2058  * @adapter: board private structure
2059  * @rx_ring: ring to free buffers from
2060  **/
2061 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2062 				struct e1000_rx_ring *rx_ring)
2063 {
2064 	struct e1000_hw *hw = &adapter->hw;
2065 	struct e1000_buffer *buffer_info;
2066 	struct pci_dev *pdev = adapter->pdev;
2067 	unsigned long size;
2068 	unsigned int i;
2069 
2070 	/* Free all the Rx ring sk_buffs */
2071 	for (i = 0; i < rx_ring->count; i++) {
2072 		buffer_info = &rx_ring->buffer_info[i];
2073 		if (buffer_info->dma &&
2074 		    adapter->clean_rx == e1000_clean_rx_irq) {
2075 			dma_unmap_single(&pdev->dev, buffer_info->dma,
2076 			                 buffer_info->length,
2077 					 DMA_FROM_DEVICE);
2078 		} else if (buffer_info->dma &&
2079 		           adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2080 			dma_unmap_page(&pdev->dev, buffer_info->dma,
2081 				       buffer_info->length,
2082 				       DMA_FROM_DEVICE);
2083 		}
2084 
2085 		buffer_info->dma = 0;
2086 		if (buffer_info->page) {
2087 			put_page(buffer_info->page);
2088 			buffer_info->page = NULL;
2089 		}
2090 		if (buffer_info->skb) {
2091 			dev_kfree_skb(buffer_info->skb);
2092 			buffer_info->skb = NULL;
2093 		}
2094 	}
2095 
2096 	/* there also may be some cached data from a chained receive */
2097 	if (rx_ring->rx_skb_top) {
2098 		dev_kfree_skb(rx_ring->rx_skb_top);
2099 		rx_ring->rx_skb_top = NULL;
2100 	}
2101 
2102 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2103 	memset(rx_ring->buffer_info, 0, size);
2104 
2105 	/* Zero out the descriptor ring */
2106 	memset(rx_ring->desc, 0, rx_ring->size);
2107 
2108 	rx_ring->next_to_clean = 0;
2109 	rx_ring->next_to_use = 0;
2110 
2111 	writel(0, hw->hw_addr + rx_ring->rdh);
2112 	writel(0, hw->hw_addr + rx_ring->rdt);
2113 }
2114 
2115 /**
2116  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2117  * @adapter: board private structure
2118  **/
2119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2120 {
2121 	int i;
2122 
2123 	for (i = 0; i < adapter->num_rx_queues; i++)
2124 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2125 }
2126 
2127 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2128  * and memory write and invalidate disabled for certain operations
2129  */
2130 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2131 {
2132 	struct e1000_hw *hw = &adapter->hw;
2133 	struct net_device *netdev = adapter->netdev;
2134 	u32 rctl;
2135 
2136 	e1000_pci_clear_mwi(hw);
2137 
2138 	rctl = er32(RCTL);
2139 	rctl |= E1000_RCTL_RST;
2140 	ew32(RCTL, rctl);
2141 	E1000_WRITE_FLUSH();
2142 	mdelay(5);
2143 
2144 	if (netif_running(netdev))
2145 		e1000_clean_all_rx_rings(adapter);
2146 }
2147 
2148 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2149 {
2150 	struct e1000_hw *hw = &adapter->hw;
2151 	struct net_device *netdev = adapter->netdev;
2152 	u32 rctl;
2153 
2154 	rctl = er32(RCTL);
2155 	rctl &= ~E1000_RCTL_RST;
2156 	ew32(RCTL, rctl);
2157 	E1000_WRITE_FLUSH();
2158 	mdelay(5);
2159 
2160 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2161 		e1000_pci_set_mwi(hw);
2162 
2163 	if (netif_running(netdev)) {
2164 		/* No need to loop, because 82542 supports only 1 queue */
2165 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2166 		e1000_configure_rx(adapter);
2167 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2168 	}
2169 }
2170 
2171 /**
2172  * e1000_set_mac - Change the Ethernet Address of the NIC
2173  * @netdev: network interface device structure
2174  * @p: pointer to an address structure
2175  *
2176  * Returns 0 on success, negative on failure
2177  **/
2178 static int e1000_set_mac(struct net_device *netdev, void *p)
2179 {
2180 	struct e1000_adapter *adapter = netdev_priv(netdev);
2181 	struct e1000_hw *hw = &adapter->hw;
2182 	struct sockaddr *addr = p;
2183 
2184 	if (!is_valid_ether_addr(addr->sa_data))
2185 		return -EADDRNOTAVAIL;
2186 
2187 	/* 82542 2.0 needs to be in reset to write receive address registers */
2188 
2189 	if (hw->mac_type == e1000_82542_rev2_0)
2190 		e1000_enter_82542_rst(adapter);
2191 
2192 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2193 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2194 
2195 	e1000_rar_set(hw, hw->mac_addr, 0);
2196 
2197 	if (hw->mac_type == e1000_82542_rev2_0)
2198 		e1000_leave_82542_rst(adapter);
2199 
2200 	return 0;
2201 }
2202 
2203 /**
2204  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2205  * @netdev: network interface device structure
2206  *
2207  * The set_rx_mode entry point is called whenever the unicast or multicast
2208  * address lists or the network interface flags are updated. This routine is
2209  * responsible for configuring the hardware for proper unicast, multicast,
2210  * promiscuous mode, and all-multi behavior.
2211  **/
2212 static void e1000_set_rx_mode(struct net_device *netdev)
2213 {
2214 	struct e1000_adapter *adapter = netdev_priv(netdev);
2215 	struct e1000_hw *hw = &adapter->hw;
2216 	struct netdev_hw_addr *ha;
2217 	bool use_uc = false;
2218 	u32 rctl;
2219 	u32 hash_value;
2220 	int i, rar_entries = E1000_RAR_ENTRIES;
2221 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2222 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2223 
2224 	if (!mcarray)
2225 		return;
2226 
2227 	/* Check for Promiscuous and All Multicast modes */
2228 
2229 	rctl = er32(RCTL);
2230 
2231 	if (netdev->flags & IFF_PROMISC) {
2232 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2233 		rctl &= ~E1000_RCTL_VFE;
2234 	} else {
2235 		if (netdev->flags & IFF_ALLMULTI)
2236 			rctl |= E1000_RCTL_MPE;
2237 		else
2238 			rctl &= ~E1000_RCTL_MPE;
2239 		/* Enable VLAN filter if there is a VLAN */
2240 		if (e1000_vlan_used(adapter))
2241 			rctl |= E1000_RCTL_VFE;
2242 	}
2243 
2244 	if (netdev_uc_count(netdev) > rar_entries - 1) {
2245 		rctl |= E1000_RCTL_UPE;
2246 	} else if (!(netdev->flags & IFF_PROMISC)) {
2247 		rctl &= ~E1000_RCTL_UPE;
2248 		use_uc = true;
2249 	}
2250 
2251 	ew32(RCTL, rctl);
2252 
2253 	/* 82542 2.0 needs to be in reset to write receive address registers */
2254 
2255 	if (hw->mac_type == e1000_82542_rev2_0)
2256 		e1000_enter_82542_rst(adapter);
2257 
2258 	/* load the first 14 addresses into the exact filters 1-14. Unicast
2259 	 * addresses take precedence to avoid disabling unicast filtering
2260 	 * when possible.
2261 	 *
2262 	 * RAR 0 is used for the station MAC address
2263 	 * if there are not 14 addresses, go ahead and clear the filters
2264 	 */
2265 	i = 1;
2266 	if (use_uc)
2267 		netdev_for_each_uc_addr(ha, netdev) {
2268 			if (i == rar_entries)
2269 				break;
2270 			e1000_rar_set(hw, ha->addr, i++);
2271 		}
2272 
2273 	netdev_for_each_mc_addr(ha, netdev) {
2274 		if (i == rar_entries) {
2275 			/* load any remaining addresses into the hash table */
2276 			u32 hash_reg, hash_bit, mta;
2277 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2278 			hash_reg = (hash_value >> 5) & 0x7F;
2279 			hash_bit = hash_value & 0x1F;
2280 			mta = (1 << hash_bit);
2281 			mcarray[hash_reg] |= mta;
2282 		} else {
2283 			e1000_rar_set(hw, ha->addr, i++);
2284 		}
2285 	}
2286 
2287 	for (; i < rar_entries; i++) {
2288 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2289 		E1000_WRITE_FLUSH();
2290 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2291 		E1000_WRITE_FLUSH();
2292 	}
2293 
2294 	/* write the hash table completely, write from bottom to avoid
2295 	 * both stupid write combining chipsets, and flushing each write
2296 	 */
2297 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2298 		/* If we are on an 82544 has an errata where writing odd
2299 		 * offsets overwrites the previous even offset, but writing
2300 		 * backwards over the range solves the issue by always
2301 		 * writing the odd offset first
2302 		 */
2303 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2304 	}
2305 	E1000_WRITE_FLUSH();
2306 
2307 	if (hw->mac_type == e1000_82542_rev2_0)
2308 		e1000_leave_82542_rst(adapter);
2309 
2310 	kfree(mcarray);
2311 }
2312 
2313 /**
2314  * e1000_update_phy_info_task - get phy info
2315  * @work: work struct contained inside adapter struct
2316  *
2317  * Need to wait a few seconds after link up to get diagnostic information from
2318  * the phy
2319  */
2320 static void e1000_update_phy_info_task(struct work_struct *work)
2321 {
2322 	struct e1000_adapter *adapter = container_of(work,
2323 						     struct e1000_adapter,
2324 						     phy_info_task.work);
2325 
2326 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2327 }
2328 
2329 /**
2330  * e1000_82547_tx_fifo_stall_task - task to complete work
2331  * @work: work struct contained inside adapter struct
2332  **/
2333 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2334 {
2335 	struct e1000_adapter *adapter = container_of(work,
2336 						     struct e1000_adapter,
2337 						     fifo_stall_task.work);
2338 	struct e1000_hw *hw = &adapter->hw;
2339 	struct net_device *netdev = adapter->netdev;
2340 	u32 tctl;
2341 
2342 	if (atomic_read(&adapter->tx_fifo_stall)) {
2343 		if ((er32(TDT) == er32(TDH)) &&
2344 		   (er32(TDFT) == er32(TDFH)) &&
2345 		   (er32(TDFTS) == er32(TDFHS))) {
2346 			tctl = er32(TCTL);
2347 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2348 			ew32(TDFT, adapter->tx_head_addr);
2349 			ew32(TDFH, adapter->tx_head_addr);
2350 			ew32(TDFTS, adapter->tx_head_addr);
2351 			ew32(TDFHS, adapter->tx_head_addr);
2352 			ew32(TCTL, tctl);
2353 			E1000_WRITE_FLUSH();
2354 
2355 			adapter->tx_fifo_head = 0;
2356 			atomic_set(&adapter->tx_fifo_stall, 0);
2357 			netif_wake_queue(netdev);
2358 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2359 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2360 		}
2361 	}
2362 }
2363 
2364 bool e1000_has_link(struct e1000_adapter *adapter)
2365 {
2366 	struct e1000_hw *hw = &adapter->hw;
2367 	bool link_active = false;
2368 
2369 	/* get_link_status is set on LSC (link status) interrupt or rx
2370 	 * sequence error interrupt (except on intel ce4100).
2371 	 * get_link_status will stay false until the
2372 	 * e1000_check_for_link establishes link for copper adapters
2373 	 * ONLY
2374 	 */
2375 	switch (hw->media_type) {
2376 	case e1000_media_type_copper:
2377 		if (hw->mac_type == e1000_ce4100)
2378 			hw->get_link_status = 1;
2379 		if (hw->get_link_status) {
2380 			e1000_check_for_link(hw);
2381 			link_active = !hw->get_link_status;
2382 		} else {
2383 			link_active = true;
2384 		}
2385 		break;
2386 	case e1000_media_type_fiber:
2387 		e1000_check_for_link(hw);
2388 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2389 		break;
2390 	case e1000_media_type_internal_serdes:
2391 		e1000_check_for_link(hw);
2392 		link_active = hw->serdes_has_link;
2393 		break;
2394 	default:
2395 		break;
2396 	}
2397 
2398 	return link_active;
2399 }
2400 
2401 /**
2402  * e1000_watchdog - work function
2403  * @work: work struct contained inside adapter struct
2404  **/
2405 static void e1000_watchdog(struct work_struct *work)
2406 {
2407 	struct e1000_adapter *adapter = container_of(work,
2408 						     struct e1000_adapter,
2409 						     watchdog_task.work);
2410 	struct e1000_hw *hw = &adapter->hw;
2411 	struct net_device *netdev = adapter->netdev;
2412 	struct e1000_tx_ring *txdr = adapter->tx_ring;
2413 	u32 link, tctl;
2414 
2415 	link = e1000_has_link(adapter);
2416 	if ((netif_carrier_ok(netdev)) && link)
2417 		goto link_up;
2418 
2419 	if (link) {
2420 		if (!netif_carrier_ok(netdev)) {
2421 			u32 ctrl;
2422 			bool txb2b = true;
2423 			/* update snapshot of PHY registers on LSC */
2424 			e1000_get_speed_and_duplex(hw,
2425 						   &adapter->link_speed,
2426 						   &adapter->link_duplex);
2427 
2428 			ctrl = er32(CTRL);
2429 			pr_info("%s NIC Link is Up %d Mbps %s, "
2430 				"Flow Control: %s\n",
2431 				netdev->name,
2432 				adapter->link_speed,
2433 				adapter->link_duplex == FULL_DUPLEX ?
2434 				"Full Duplex" : "Half Duplex",
2435 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2436 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2437 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2438 				E1000_CTRL_TFCE) ? "TX" : "None")));
2439 
2440 			/* adjust timeout factor according to speed/duplex */
2441 			adapter->tx_timeout_factor = 1;
2442 			switch (adapter->link_speed) {
2443 			case SPEED_10:
2444 				txb2b = false;
2445 				adapter->tx_timeout_factor = 16;
2446 				break;
2447 			case SPEED_100:
2448 				txb2b = false;
2449 				/* maybe add some timeout factor ? */
2450 				break;
2451 			}
2452 
2453 			/* enable transmits in the hardware */
2454 			tctl = er32(TCTL);
2455 			tctl |= E1000_TCTL_EN;
2456 			ew32(TCTL, tctl);
2457 
2458 			netif_carrier_on(netdev);
2459 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2460 				schedule_delayed_work(&adapter->phy_info_task,
2461 						      2 * HZ);
2462 			adapter->smartspeed = 0;
2463 		}
2464 	} else {
2465 		if (netif_carrier_ok(netdev)) {
2466 			adapter->link_speed = 0;
2467 			adapter->link_duplex = 0;
2468 			pr_info("%s NIC Link is Down\n",
2469 				netdev->name);
2470 			netif_carrier_off(netdev);
2471 
2472 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2473 				schedule_delayed_work(&adapter->phy_info_task,
2474 						      2 * HZ);
2475 		}
2476 
2477 		e1000_smartspeed(adapter);
2478 	}
2479 
2480 link_up:
2481 	e1000_update_stats(adapter);
2482 
2483 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2484 	adapter->tpt_old = adapter->stats.tpt;
2485 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2486 	adapter->colc_old = adapter->stats.colc;
2487 
2488 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2489 	adapter->gorcl_old = adapter->stats.gorcl;
2490 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2491 	adapter->gotcl_old = adapter->stats.gotcl;
2492 
2493 	e1000_update_adaptive(hw);
2494 
2495 	if (!netif_carrier_ok(netdev)) {
2496 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2497 			/* We've lost link, so the controller stops DMA,
2498 			 * but we've got queued Tx work that's never going
2499 			 * to get done, so reset controller to flush Tx.
2500 			 * (Do the reset outside of interrupt context).
2501 			 */
2502 			adapter->tx_timeout_count++;
2503 			schedule_work(&adapter->reset_task);
2504 			/* exit immediately since reset is imminent */
2505 			return;
2506 		}
2507 	}
2508 
2509 	/* Simple mode for Interrupt Throttle Rate (ITR) */
2510 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2511 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2512 		 * Total asymmetrical Tx or Rx gets ITR=8000;
2513 		 * everyone else is between 2000-8000.
2514 		 */
2515 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2516 		u32 dif = (adapter->gotcl > adapter->gorcl ?
2517 			    adapter->gotcl - adapter->gorcl :
2518 			    adapter->gorcl - adapter->gotcl) / 10000;
2519 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2520 
2521 		ew32(ITR, 1000000000 / (itr * 256));
2522 	}
2523 
2524 	/* Cause software interrupt to ensure rx ring is cleaned */
2525 	ew32(ICS, E1000_ICS_RXDMT0);
2526 
2527 	/* Force detection of hung controller every watchdog period */
2528 	adapter->detect_tx_hung = true;
2529 
2530 	/* Reschedule the task */
2531 	if (!test_bit(__E1000_DOWN, &adapter->flags))
2532 		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2533 }
2534 
2535 enum latency_range {
2536 	lowest_latency = 0,
2537 	low_latency = 1,
2538 	bulk_latency = 2,
2539 	latency_invalid = 255
2540 };
2541 
2542 /**
2543  * e1000_update_itr - update the dynamic ITR value based on statistics
2544  * @adapter: pointer to adapter
2545  * @itr_setting: current adapter->itr
2546  * @packets: the number of packets during this measurement interval
2547  * @bytes: the number of bytes during this measurement interval
2548  *
2549  *      Stores a new ITR value based on packets and byte
2550  *      counts during the last interrupt.  The advantage of per interrupt
2551  *      computation is faster updates and more accurate ITR for the current
2552  *      traffic pattern.  Constants in this function were computed
2553  *      based on theoretical maximum wire speed and thresholds were set based
2554  *      on testing data as well as attempting to minimize response time
2555  *      while increasing bulk throughput.
2556  *      this functionality is controlled by the InterruptThrottleRate module
2557  *      parameter (see e1000_param.c)
2558  **/
2559 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2560 				     u16 itr_setting, int packets, int bytes)
2561 {
2562 	unsigned int retval = itr_setting;
2563 	struct e1000_hw *hw = &adapter->hw;
2564 
2565 	if (unlikely(hw->mac_type < e1000_82540))
2566 		goto update_itr_done;
2567 
2568 	if (packets == 0)
2569 		goto update_itr_done;
2570 
2571 	switch (itr_setting) {
2572 	case lowest_latency:
2573 		/* jumbo frames get bulk treatment*/
2574 		if (bytes/packets > 8000)
2575 			retval = bulk_latency;
2576 		else if ((packets < 5) && (bytes > 512))
2577 			retval = low_latency;
2578 		break;
2579 	case low_latency:  /* 50 usec aka 20000 ints/s */
2580 		if (bytes > 10000) {
2581 			/* jumbo frames need bulk latency setting */
2582 			if (bytes/packets > 8000)
2583 				retval = bulk_latency;
2584 			else if ((packets < 10) || ((bytes/packets) > 1200))
2585 				retval = bulk_latency;
2586 			else if ((packets > 35))
2587 				retval = lowest_latency;
2588 		} else if (bytes/packets > 2000)
2589 			retval = bulk_latency;
2590 		else if (packets <= 2 && bytes < 512)
2591 			retval = lowest_latency;
2592 		break;
2593 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2594 		if (bytes > 25000) {
2595 			if (packets > 35)
2596 				retval = low_latency;
2597 		} else if (bytes < 6000) {
2598 			retval = low_latency;
2599 		}
2600 		break;
2601 	}
2602 
2603 update_itr_done:
2604 	return retval;
2605 }
2606 
2607 static void e1000_set_itr(struct e1000_adapter *adapter)
2608 {
2609 	struct e1000_hw *hw = &adapter->hw;
2610 	u16 current_itr;
2611 	u32 new_itr = adapter->itr;
2612 
2613 	if (unlikely(hw->mac_type < e1000_82540))
2614 		return;
2615 
2616 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2617 	if (unlikely(adapter->link_speed != SPEED_1000)) {
2618 		current_itr = 0;
2619 		new_itr = 4000;
2620 		goto set_itr_now;
2621 	}
2622 
2623 	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2624 					   adapter->total_tx_packets,
2625 					   adapter->total_tx_bytes);
2626 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2627 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2628 		adapter->tx_itr = low_latency;
2629 
2630 	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2631 					   adapter->total_rx_packets,
2632 					   adapter->total_rx_bytes);
2633 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2634 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2635 		adapter->rx_itr = low_latency;
2636 
2637 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2638 
2639 	switch (current_itr) {
2640 	/* counts and packets in update_itr are dependent on these numbers */
2641 	case lowest_latency:
2642 		new_itr = 70000;
2643 		break;
2644 	case low_latency:
2645 		new_itr = 20000; /* aka hwitr = ~200 */
2646 		break;
2647 	case bulk_latency:
2648 		new_itr = 4000;
2649 		break;
2650 	default:
2651 		break;
2652 	}
2653 
2654 set_itr_now:
2655 	if (new_itr != adapter->itr) {
2656 		/* this attempts to bias the interrupt rate towards Bulk
2657 		 * by adding intermediate steps when interrupt rate is
2658 		 * increasing
2659 		 */
2660 		new_itr = new_itr > adapter->itr ?
2661 			  min(adapter->itr + (new_itr >> 2), new_itr) :
2662 			  new_itr;
2663 		adapter->itr = new_itr;
2664 		ew32(ITR, 1000000000 / (new_itr * 256));
2665 	}
2666 }
2667 
2668 #define E1000_TX_FLAGS_CSUM		0x00000001
2669 #define E1000_TX_FLAGS_VLAN		0x00000002
2670 #define E1000_TX_FLAGS_TSO		0x00000004
2671 #define E1000_TX_FLAGS_IPV4		0x00000008
2672 #define E1000_TX_FLAGS_NO_FCS		0x00000010
2673 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2674 #define E1000_TX_FLAGS_VLAN_SHIFT	16
2675 
2676 static int e1000_tso(struct e1000_adapter *adapter,
2677 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2678 {
2679 	struct e1000_context_desc *context_desc;
2680 	struct e1000_buffer *buffer_info;
2681 	unsigned int i;
2682 	u32 cmd_length = 0;
2683 	u16 ipcse = 0, tucse, mss;
2684 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2685 
2686 	if (skb_is_gso(skb)) {
2687 		int err;
2688 
2689 		err = skb_cow_head(skb, 0);
2690 		if (err < 0)
2691 			return err;
2692 
2693 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2694 		mss = skb_shinfo(skb)->gso_size;
2695 		if (skb->protocol == htons(ETH_P_IP)) {
2696 			struct iphdr *iph = ip_hdr(skb);
2697 			iph->tot_len = 0;
2698 			iph->check = 0;
2699 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2700 								 iph->daddr, 0,
2701 								 IPPROTO_TCP,
2702 								 0);
2703 			cmd_length = E1000_TXD_CMD_IP;
2704 			ipcse = skb_transport_offset(skb) - 1;
2705 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
2706 			ipv6_hdr(skb)->payload_len = 0;
2707 			tcp_hdr(skb)->check =
2708 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2709 						 &ipv6_hdr(skb)->daddr,
2710 						 0, IPPROTO_TCP, 0);
2711 			ipcse = 0;
2712 		}
2713 		ipcss = skb_network_offset(skb);
2714 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2715 		tucss = skb_transport_offset(skb);
2716 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2717 		tucse = 0;
2718 
2719 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2720 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2721 
2722 		i = tx_ring->next_to_use;
2723 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2724 		buffer_info = &tx_ring->buffer_info[i];
2725 
2726 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2727 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2728 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2729 		context_desc->upper_setup.tcp_fields.tucss = tucss;
2730 		context_desc->upper_setup.tcp_fields.tucso = tucso;
2731 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2732 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2733 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2734 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2735 
2736 		buffer_info->time_stamp = jiffies;
2737 		buffer_info->next_to_watch = i;
2738 
2739 		if (++i == tx_ring->count) i = 0;
2740 		tx_ring->next_to_use = i;
2741 
2742 		return true;
2743 	}
2744 	return false;
2745 }
2746 
2747 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2748 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2749 {
2750 	struct e1000_context_desc *context_desc;
2751 	struct e1000_buffer *buffer_info;
2752 	unsigned int i;
2753 	u8 css;
2754 	u32 cmd_len = E1000_TXD_CMD_DEXT;
2755 
2756 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2757 		return false;
2758 
2759 	switch (skb->protocol) {
2760 	case cpu_to_be16(ETH_P_IP):
2761 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2762 			cmd_len |= E1000_TXD_CMD_TCP;
2763 		break;
2764 	case cpu_to_be16(ETH_P_IPV6):
2765 		/* XXX not handling all IPV6 headers */
2766 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2767 			cmd_len |= E1000_TXD_CMD_TCP;
2768 		break;
2769 	default:
2770 		if (unlikely(net_ratelimit()))
2771 			e_warn(drv, "checksum_partial proto=%x!\n",
2772 			       skb->protocol);
2773 		break;
2774 	}
2775 
2776 	css = skb_checksum_start_offset(skb);
2777 
2778 	i = tx_ring->next_to_use;
2779 	buffer_info = &tx_ring->buffer_info[i];
2780 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2781 
2782 	context_desc->lower_setup.ip_config = 0;
2783 	context_desc->upper_setup.tcp_fields.tucss = css;
2784 	context_desc->upper_setup.tcp_fields.tucso =
2785 		css + skb->csum_offset;
2786 	context_desc->upper_setup.tcp_fields.tucse = 0;
2787 	context_desc->tcp_seg_setup.data = 0;
2788 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2789 
2790 	buffer_info->time_stamp = jiffies;
2791 	buffer_info->next_to_watch = i;
2792 
2793 	if (unlikely(++i == tx_ring->count)) i = 0;
2794 	tx_ring->next_to_use = i;
2795 
2796 	return true;
2797 }
2798 
2799 #define E1000_MAX_TXD_PWR	12
2800 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2801 
2802 static int e1000_tx_map(struct e1000_adapter *adapter,
2803 			struct e1000_tx_ring *tx_ring,
2804 			struct sk_buff *skb, unsigned int first,
2805 			unsigned int max_per_txd, unsigned int nr_frags,
2806 			unsigned int mss)
2807 {
2808 	struct e1000_hw *hw = &adapter->hw;
2809 	struct pci_dev *pdev = adapter->pdev;
2810 	struct e1000_buffer *buffer_info;
2811 	unsigned int len = skb_headlen(skb);
2812 	unsigned int offset = 0, size, count = 0, i;
2813 	unsigned int f, bytecount, segs;
2814 
2815 	i = tx_ring->next_to_use;
2816 
2817 	while (len) {
2818 		buffer_info = &tx_ring->buffer_info[i];
2819 		size = min(len, max_per_txd);
2820 		/* Workaround for Controller erratum --
2821 		 * descriptor for non-tso packet in a linear SKB that follows a
2822 		 * tso gets written back prematurely before the data is fully
2823 		 * DMA'd to the controller
2824 		 */
2825 		if (!skb->data_len && tx_ring->last_tx_tso &&
2826 		    !skb_is_gso(skb)) {
2827 			tx_ring->last_tx_tso = false;
2828 			size -= 4;
2829 		}
2830 
2831 		/* Workaround for premature desc write-backs
2832 		 * in TSO mode.  Append 4-byte sentinel desc
2833 		 */
2834 		if (unlikely(mss && !nr_frags && size == len && size > 8))
2835 			size -= 4;
2836 		/* work-around for errata 10 and it applies
2837 		 * to all controllers in PCI-X mode
2838 		 * The fix is to make sure that the first descriptor of a
2839 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2840 		 */
2841 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2842 		                (size > 2015) && count == 0))
2843 		        size = 2015;
2844 
2845 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2846 		 * terminating buffers within evenly-aligned dwords.
2847 		 */
2848 		if (unlikely(adapter->pcix_82544 &&
2849 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2850 		   size > 4))
2851 			size -= 4;
2852 
2853 		buffer_info->length = size;
2854 		/* set time_stamp *before* dma to help avoid a possible race */
2855 		buffer_info->time_stamp = jiffies;
2856 		buffer_info->mapped_as_page = false;
2857 		buffer_info->dma = dma_map_single(&pdev->dev,
2858 						  skb->data + offset,
2859 						  size, DMA_TO_DEVICE);
2860 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2861 			goto dma_error;
2862 		buffer_info->next_to_watch = i;
2863 
2864 		len -= size;
2865 		offset += size;
2866 		count++;
2867 		if (len) {
2868 			i++;
2869 			if (unlikely(i == tx_ring->count))
2870 				i = 0;
2871 		}
2872 	}
2873 
2874 	for (f = 0; f < nr_frags; f++) {
2875 		const struct skb_frag_struct *frag;
2876 
2877 		frag = &skb_shinfo(skb)->frags[f];
2878 		len = skb_frag_size(frag);
2879 		offset = 0;
2880 
2881 		while (len) {
2882 			unsigned long bufend;
2883 			i++;
2884 			if (unlikely(i == tx_ring->count))
2885 				i = 0;
2886 
2887 			buffer_info = &tx_ring->buffer_info[i];
2888 			size = min(len, max_per_txd);
2889 			/* Workaround for premature desc write-backs
2890 			 * in TSO mode.  Append 4-byte sentinel desc
2891 			 */
2892 			if (unlikely(mss && f == (nr_frags-1) &&
2893 			    size == len && size > 8))
2894 				size -= 4;
2895 			/* Workaround for potential 82544 hang in PCI-X.
2896 			 * Avoid terminating buffers within evenly-aligned
2897 			 * dwords.
2898 			 */
2899 			bufend = (unsigned long)
2900 				page_to_phys(skb_frag_page(frag));
2901 			bufend += offset + size - 1;
2902 			if (unlikely(adapter->pcix_82544 &&
2903 				     !(bufend & 4) &&
2904 				     size > 4))
2905 				size -= 4;
2906 
2907 			buffer_info->length = size;
2908 			buffer_info->time_stamp = jiffies;
2909 			buffer_info->mapped_as_page = true;
2910 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2911 						offset, size, DMA_TO_DEVICE);
2912 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2913 				goto dma_error;
2914 			buffer_info->next_to_watch = i;
2915 
2916 			len -= size;
2917 			offset += size;
2918 			count++;
2919 		}
2920 	}
2921 
2922 	segs = skb_shinfo(skb)->gso_segs ?: 1;
2923 	/* multiply data chunks by size of headers */
2924 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2925 
2926 	tx_ring->buffer_info[i].skb = skb;
2927 	tx_ring->buffer_info[i].segs = segs;
2928 	tx_ring->buffer_info[i].bytecount = bytecount;
2929 	tx_ring->buffer_info[first].next_to_watch = i;
2930 
2931 	return count;
2932 
2933 dma_error:
2934 	dev_err(&pdev->dev, "TX DMA map failed\n");
2935 	buffer_info->dma = 0;
2936 	if (count)
2937 		count--;
2938 
2939 	while (count--) {
2940 		if (i==0)
2941 			i += tx_ring->count;
2942 		i--;
2943 		buffer_info = &tx_ring->buffer_info[i];
2944 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2945 	}
2946 
2947 	return 0;
2948 }
2949 
2950 static void e1000_tx_queue(struct e1000_adapter *adapter,
2951 			   struct e1000_tx_ring *tx_ring, int tx_flags,
2952 			   int count)
2953 {
2954 	struct e1000_hw *hw = &adapter->hw;
2955 	struct e1000_tx_desc *tx_desc = NULL;
2956 	struct e1000_buffer *buffer_info;
2957 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2958 	unsigned int i;
2959 
2960 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2961 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2962 			     E1000_TXD_CMD_TSE;
2963 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2964 
2965 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2966 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2967 	}
2968 
2969 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2970 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2971 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2972 	}
2973 
2974 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2975 		txd_lower |= E1000_TXD_CMD_VLE;
2976 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2977 	}
2978 
2979 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2980 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
2981 
2982 	i = tx_ring->next_to_use;
2983 
2984 	while (count--) {
2985 		buffer_info = &tx_ring->buffer_info[i];
2986 		tx_desc = E1000_TX_DESC(*tx_ring, i);
2987 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2988 		tx_desc->lower.data =
2989 			cpu_to_le32(txd_lower | buffer_info->length);
2990 		tx_desc->upper.data = cpu_to_le32(txd_upper);
2991 		if (unlikely(++i == tx_ring->count)) i = 0;
2992 	}
2993 
2994 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2995 
2996 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
2997 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2998 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
2999 
3000 	/* Force memory writes to complete before letting h/w
3001 	 * know there are new descriptors to fetch.  (Only
3002 	 * applicable for weak-ordered memory model archs,
3003 	 * such as IA-64).
3004 	 */
3005 	wmb();
3006 
3007 	tx_ring->next_to_use = i;
3008 	writel(i, hw->hw_addr + tx_ring->tdt);
3009 	/* we need this if more than one processor can write to our tail
3010 	 * at a time, it synchronizes IO on IA64/Altix systems
3011 	 */
3012 	mmiowb();
3013 }
3014 
3015 /* 82547 workaround to avoid controller hang in half-duplex environment.
3016  * The workaround is to avoid queuing a large packet that would span
3017  * the internal Tx FIFO ring boundary by notifying the stack to resend
3018  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3019  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3020  * to the beginning of the Tx FIFO.
3021  */
3022 
3023 #define E1000_FIFO_HDR			0x10
3024 #define E1000_82547_PAD_LEN		0x3E0
3025 
3026 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3027 				       struct sk_buff *skb)
3028 {
3029 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3030 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3031 
3032 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3033 
3034 	if (adapter->link_duplex != HALF_DUPLEX)
3035 		goto no_fifo_stall_required;
3036 
3037 	if (atomic_read(&adapter->tx_fifo_stall))
3038 		return 1;
3039 
3040 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3041 		atomic_set(&adapter->tx_fifo_stall, 1);
3042 		return 1;
3043 	}
3044 
3045 no_fifo_stall_required:
3046 	adapter->tx_fifo_head += skb_fifo_len;
3047 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3048 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3049 	return 0;
3050 }
3051 
3052 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3053 {
3054 	struct e1000_adapter *adapter = netdev_priv(netdev);
3055 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3056 
3057 	netif_stop_queue(netdev);
3058 	/* Herbert's original patch had:
3059 	 *  smp_mb__after_netif_stop_queue();
3060 	 * but since that doesn't exist yet, just open code it.
3061 	 */
3062 	smp_mb();
3063 
3064 	/* We need to check again in a case another CPU has just
3065 	 * made room available.
3066 	 */
3067 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3068 		return -EBUSY;
3069 
3070 	/* A reprieve! */
3071 	netif_start_queue(netdev);
3072 	++adapter->restart_queue;
3073 	return 0;
3074 }
3075 
3076 static int e1000_maybe_stop_tx(struct net_device *netdev,
3077 			       struct e1000_tx_ring *tx_ring, int size)
3078 {
3079 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3080 		return 0;
3081 	return __e1000_maybe_stop_tx(netdev, size);
3082 }
3083 
3084 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3085 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3086 				    struct net_device *netdev)
3087 {
3088 	struct e1000_adapter *adapter = netdev_priv(netdev);
3089 	struct e1000_hw *hw = &adapter->hw;
3090 	struct e1000_tx_ring *tx_ring;
3091 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3092 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3093 	unsigned int tx_flags = 0;
3094 	unsigned int len = skb_headlen(skb);
3095 	unsigned int nr_frags;
3096 	unsigned int mss;
3097 	int count = 0;
3098 	int tso;
3099 	unsigned int f;
3100 
3101 	/* This goes back to the question of how to logically map a Tx queue
3102 	 * to a flow.  Right now, performance is impacted slightly negatively
3103 	 * if using multiple Tx queues.  If the stack breaks away from a
3104 	 * single qdisc implementation, we can look at this again.
3105 	 */
3106 	tx_ring = adapter->tx_ring;
3107 
3108 	if (unlikely(skb->len <= 0)) {
3109 		dev_kfree_skb_any(skb);
3110 		return NETDEV_TX_OK;
3111 	}
3112 
3113 	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3114 	 * packets may get corrupted during padding by HW.
3115 	 * To WA this issue, pad all small packets manually.
3116 	 */
3117 	if (skb->len < ETH_ZLEN) {
3118 		if (skb_pad(skb, ETH_ZLEN - skb->len))
3119 			return NETDEV_TX_OK;
3120 		skb->len = ETH_ZLEN;
3121 		skb_set_tail_pointer(skb, ETH_ZLEN);
3122 	}
3123 
3124 	mss = skb_shinfo(skb)->gso_size;
3125 	/* The controller does a simple calculation to
3126 	 * make sure there is enough room in the FIFO before
3127 	 * initiating the DMA for each buffer.  The calc is:
3128 	 * 4 = ceil(buffer len/mss).  To make sure we don't
3129 	 * overrun the FIFO, adjust the max buffer len if mss
3130 	 * drops.
3131 	 */
3132 	if (mss) {
3133 		u8 hdr_len;
3134 		max_per_txd = min(mss << 2, max_per_txd);
3135 		max_txd_pwr = fls(max_per_txd) - 1;
3136 
3137 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3138 		if (skb->data_len && hdr_len == len) {
3139 			switch (hw->mac_type) {
3140 				unsigned int pull_size;
3141 			case e1000_82544:
3142 				/* Make sure we have room to chop off 4 bytes,
3143 				 * and that the end alignment will work out to
3144 				 * this hardware's requirements
3145 				 * NOTE: this is a TSO only workaround
3146 				 * if end byte alignment not correct move us
3147 				 * into the next dword
3148 				 */
3149 				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3150 				    & 4)
3151 					break;
3152 				/* fall through */
3153 				pull_size = min((unsigned int)4, skb->data_len);
3154 				if (!__pskb_pull_tail(skb, pull_size)) {
3155 					e_err(drv, "__pskb_pull_tail "
3156 					      "failed.\n");
3157 					dev_kfree_skb_any(skb);
3158 					return NETDEV_TX_OK;
3159 				}
3160 				len = skb_headlen(skb);
3161 				break;
3162 			default:
3163 				/* do nothing */
3164 				break;
3165 			}
3166 		}
3167 	}
3168 
3169 	/* reserve a descriptor for the offload context */
3170 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3171 		count++;
3172 	count++;
3173 
3174 	/* Controller Erratum workaround */
3175 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3176 		count++;
3177 
3178 	count += TXD_USE_COUNT(len, max_txd_pwr);
3179 
3180 	if (adapter->pcix_82544)
3181 		count++;
3182 
3183 	/* work-around for errata 10 and it applies to all controllers
3184 	 * in PCI-X mode, so add one more descriptor to the count
3185 	 */
3186 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3187 			(len > 2015)))
3188 		count++;
3189 
3190 	nr_frags = skb_shinfo(skb)->nr_frags;
3191 	for (f = 0; f < nr_frags; f++)
3192 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3193 				       max_txd_pwr);
3194 	if (adapter->pcix_82544)
3195 		count += nr_frags;
3196 
3197 	/* need: count + 2 desc gap to keep tail from touching
3198 	 * head, otherwise try next time
3199 	 */
3200 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3201 		return NETDEV_TX_BUSY;
3202 
3203 	if (unlikely((hw->mac_type == e1000_82547) &&
3204 		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3205 		netif_stop_queue(netdev);
3206 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3207 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3208 		return NETDEV_TX_BUSY;
3209 	}
3210 
3211 	if (vlan_tx_tag_present(skb)) {
3212 		tx_flags |= E1000_TX_FLAGS_VLAN;
3213 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3214 	}
3215 
3216 	first = tx_ring->next_to_use;
3217 
3218 	tso = e1000_tso(adapter, tx_ring, skb);
3219 	if (tso < 0) {
3220 		dev_kfree_skb_any(skb);
3221 		return NETDEV_TX_OK;
3222 	}
3223 
3224 	if (likely(tso)) {
3225 		if (likely(hw->mac_type != e1000_82544))
3226 			tx_ring->last_tx_tso = true;
3227 		tx_flags |= E1000_TX_FLAGS_TSO;
3228 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3229 		tx_flags |= E1000_TX_FLAGS_CSUM;
3230 
3231 	if (likely(skb->protocol == htons(ETH_P_IP)))
3232 		tx_flags |= E1000_TX_FLAGS_IPV4;
3233 
3234 	if (unlikely(skb->no_fcs))
3235 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3236 
3237 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3238 			     nr_frags, mss);
3239 
3240 	if (count) {
3241 		netdev_sent_queue(netdev, skb->len);
3242 		skb_tx_timestamp(skb);
3243 
3244 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3245 		/* Make sure there is space in the ring for the next send. */
3246 		e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3247 
3248 	} else {
3249 		dev_kfree_skb_any(skb);
3250 		tx_ring->buffer_info[first].time_stamp = 0;
3251 		tx_ring->next_to_use = first;
3252 	}
3253 
3254 	return NETDEV_TX_OK;
3255 }
3256 
3257 #define NUM_REGS 38 /* 1 based count */
3258 static void e1000_regdump(struct e1000_adapter *adapter)
3259 {
3260 	struct e1000_hw *hw = &adapter->hw;
3261 	u32 regs[NUM_REGS];
3262 	u32 *regs_buff = regs;
3263 	int i = 0;
3264 
3265 	static const char * const reg_name[] = {
3266 		"CTRL",  "STATUS",
3267 		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3268 		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3269 		"TIDV", "TXDCTL", "TADV", "TARC0",
3270 		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3271 		"TXDCTL1", "TARC1",
3272 		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3273 		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3274 		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3275 	};
3276 
3277 	regs_buff[0]  = er32(CTRL);
3278 	regs_buff[1]  = er32(STATUS);
3279 
3280 	regs_buff[2]  = er32(RCTL);
3281 	regs_buff[3]  = er32(RDLEN);
3282 	regs_buff[4]  = er32(RDH);
3283 	regs_buff[5]  = er32(RDT);
3284 	regs_buff[6]  = er32(RDTR);
3285 
3286 	regs_buff[7]  = er32(TCTL);
3287 	regs_buff[8]  = er32(TDBAL);
3288 	regs_buff[9]  = er32(TDBAH);
3289 	regs_buff[10] = er32(TDLEN);
3290 	regs_buff[11] = er32(TDH);
3291 	regs_buff[12] = er32(TDT);
3292 	regs_buff[13] = er32(TIDV);
3293 	regs_buff[14] = er32(TXDCTL);
3294 	regs_buff[15] = er32(TADV);
3295 	regs_buff[16] = er32(TARC0);
3296 
3297 	regs_buff[17] = er32(TDBAL1);
3298 	regs_buff[18] = er32(TDBAH1);
3299 	regs_buff[19] = er32(TDLEN1);
3300 	regs_buff[20] = er32(TDH1);
3301 	regs_buff[21] = er32(TDT1);
3302 	regs_buff[22] = er32(TXDCTL1);
3303 	regs_buff[23] = er32(TARC1);
3304 	regs_buff[24] = er32(CTRL_EXT);
3305 	regs_buff[25] = er32(ERT);
3306 	regs_buff[26] = er32(RDBAL0);
3307 	regs_buff[27] = er32(RDBAH0);
3308 	regs_buff[28] = er32(TDFH);
3309 	regs_buff[29] = er32(TDFT);
3310 	regs_buff[30] = er32(TDFHS);
3311 	regs_buff[31] = er32(TDFTS);
3312 	regs_buff[32] = er32(TDFPC);
3313 	regs_buff[33] = er32(RDFH);
3314 	regs_buff[34] = er32(RDFT);
3315 	regs_buff[35] = er32(RDFHS);
3316 	regs_buff[36] = er32(RDFTS);
3317 	regs_buff[37] = er32(RDFPC);
3318 
3319 	pr_info("Register dump\n");
3320 	for (i = 0; i < NUM_REGS; i++)
3321 		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3322 }
3323 
3324 /*
3325  * e1000_dump: Print registers, tx ring and rx ring
3326  */
3327 static void e1000_dump(struct e1000_adapter *adapter)
3328 {
3329 	/* this code doesn't handle multiple rings */
3330 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3331 	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3332 	int i;
3333 
3334 	if (!netif_msg_hw(adapter))
3335 		return;
3336 
3337 	/* Print Registers */
3338 	e1000_regdump(adapter);
3339 
3340 	/* transmit dump */
3341 	pr_info("TX Desc ring0 dump\n");
3342 
3343 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3344 	 *
3345 	 * Legacy Transmit Descriptor
3346 	 *   +--------------------------------------------------------------+
3347 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3348 	 *   +--------------------------------------------------------------+
3349 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3350 	 *   +--------------------------------------------------------------+
3351 	 *   63       48 47        36 35    32 31     24 23    16 15        0
3352 	 *
3353 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3354 	 *   63      48 47    40 39       32 31             16 15    8 7      0
3355 	 *   +----------------------------------------------------------------+
3356 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3357 	 *   +----------------------------------------------------------------+
3358 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3359 	 *   +----------------------------------------------------------------+
3360 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3361 	 *
3362 	 * Extended Data Descriptor (DTYP=0x1)
3363 	 *   +----------------------------------------------------------------+
3364 	 * 0 |                     Buffer Address [63:0]                      |
3365 	 *   +----------------------------------------------------------------+
3366 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3367 	 *   +----------------------------------------------------------------+
3368 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3369 	 */
3370 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3371 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3372 
3373 	if (!netif_msg_tx_done(adapter))
3374 		goto rx_ring_summary;
3375 
3376 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3377 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3378 		struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3379 		struct my_u { __le64 a; __le64 b; };
3380 		struct my_u *u = (struct my_u *)tx_desc;
3381 		const char *type;
3382 
3383 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3384 			type = "NTC/U";
3385 		else if (i == tx_ring->next_to_use)
3386 			type = "NTU";
3387 		else if (i == tx_ring->next_to_clean)
3388 			type = "NTC";
3389 		else
3390 			type = "";
3391 
3392 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3393 			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3394 			le64_to_cpu(u->a), le64_to_cpu(u->b),
3395 			(u64)buffer_info->dma, buffer_info->length,
3396 			buffer_info->next_to_watch,
3397 			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3398 	}
3399 
3400 rx_ring_summary:
3401 	/* receive dump */
3402 	pr_info("\nRX Desc ring dump\n");
3403 
3404 	/* Legacy Receive Descriptor Format
3405 	 *
3406 	 * +-----------------------------------------------------+
3407 	 * |                Buffer Address [63:0]                |
3408 	 * +-----------------------------------------------------+
3409 	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3410 	 * +-----------------------------------------------------+
3411 	 * 63       48 47    40 39      32 31         16 15      0
3412 	 */
3413 	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3414 
3415 	if (!netif_msg_rx_status(adapter))
3416 		goto exit;
3417 
3418 	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3419 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3420 		struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3421 		struct my_u { __le64 a; __le64 b; };
3422 		struct my_u *u = (struct my_u *)rx_desc;
3423 		const char *type;
3424 
3425 		if (i == rx_ring->next_to_use)
3426 			type = "NTU";
3427 		else if (i == rx_ring->next_to_clean)
3428 			type = "NTC";
3429 		else
3430 			type = "";
3431 
3432 		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3433 			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3434 			(u64)buffer_info->dma, buffer_info->skb, type);
3435 	} /* for */
3436 
3437 	/* dump the descriptor caches */
3438 	/* rx */
3439 	pr_info("Rx descriptor cache in 64bit format\n");
3440 	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3441 		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3442 			i,
3443 			readl(adapter->hw.hw_addr + i+4),
3444 			readl(adapter->hw.hw_addr + i),
3445 			readl(adapter->hw.hw_addr + i+12),
3446 			readl(adapter->hw.hw_addr + i+8));
3447 	}
3448 	/* tx */
3449 	pr_info("Tx descriptor cache in 64bit format\n");
3450 	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3451 		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3452 			i,
3453 			readl(adapter->hw.hw_addr + i+4),
3454 			readl(adapter->hw.hw_addr + i),
3455 			readl(adapter->hw.hw_addr + i+12),
3456 			readl(adapter->hw.hw_addr + i+8));
3457 	}
3458 exit:
3459 	return;
3460 }
3461 
3462 /**
3463  * e1000_tx_timeout - Respond to a Tx Hang
3464  * @netdev: network interface device structure
3465  **/
3466 static void e1000_tx_timeout(struct net_device *netdev)
3467 {
3468 	struct e1000_adapter *adapter = netdev_priv(netdev);
3469 
3470 	/* Do the reset outside of interrupt context */
3471 	adapter->tx_timeout_count++;
3472 	schedule_work(&adapter->reset_task);
3473 }
3474 
3475 static void e1000_reset_task(struct work_struct *work)
3476 {
3477 	struct e1000_adapter *adapter =
3478 		container_of(work, struct e1000_adapter, reset_task);
3479 
3480 	e_err(drv, "Reset adapter\n");
3481 	e1000_reinit_locked(adapter);
3482 }
3483 
3484 /**
3485  * e1000_get_stats - Get System Network Statistics
3486  * @netdev: network interface device structure
3487  *
3488  * Returns the address of the device statistics structure.
3489  * The statistics are actually updated from the watchdog.
3490  **/
3491 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3492 {
3493 	/* only return the current stats */
3494 	return &netdev->stats;
3495 }
3496 
3497 /**
3498  * e1000_change_mtu - Change the Maximum Transfer Unit
3499  * @netdev: network interface device structure
3500  * @new_mtu: new value for maximum frame size
3501  *
3502  * Returns 0 on success, negative on failure
3503  **/
3504 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3505 {
3506 	struct e1000_adapter *adapter = netdev_priv(netdev);
3507 	struct e1000_hw *hw = &adapter->hw;
3508 	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3509 
3510 	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3511 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3512 		e_err(probe, "Invalid MTU setting\n");
3513 		return -EINVAL;
3514 	}
3515 
3516 	/* Adapter-specific max frame size limits. */
3517 	switch (hw->mac_type) {
3518 	case e1000_undefined ... e1000_82542_rev2_1:
3519 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3520 			e_err(probe, "Jumbo Frames not supported.\n");
3521 			return -EINVAL;
3522 		}
3523 		break;
3524 	default:
3525 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3526 		break;
3527 	}
3528 
3529 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3530 		msleep(1);
3531 	/* e1000_down has a dependency on max_frame_size */
3532 	hw->max_frame_size = max_frame;
3533 	if (netif_running(netdev))
3534 		e1000_down(adapter);
3535 
3536 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3537 	 * means we reserve 2 more, this pushes us to allocate from the next
3538 	 * larger slab size.
3539 	 * i.e. RXBUFFER_2048 --> size-4096 slab
3540 	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3541 	 * fragmented skbs
3542 	 */
3543 
3544 	if (max_frame <= E1000_RXBUFFER_2048)
3545 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3546 	else
3547 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3548 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3549 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3550 		adapter->rx_buffer_len = PAGE_SIZE;
3551 #endif
3552 
3553 	/* adjust allocation if LPE protects us, and we aren't using SBP */
3554 	if (!hw->tbi_compatibility_on &&
3555 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3556 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3557 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3558 
3559 	pr_info("%s changing MTU from %d to %d\n",
3560 		netdev->name, netdev->mtu, new_mtu);
3561 	netdev->mtu = new_mtu;
3562 
3563 	if (netif_running(netdev))
3564 		e1000_up(adapter);
3565 	else
3566 		e1000_reset(adapter);
3567 
3568 	clear_bit(__E1000_RESETTING, &adapter->flags);
3569 
3570 	return 0;
3571 }
3572 
3573 /**
3574  * e1000_update_stats - Update the board statistics counters
3575  * @adapter: board private structure
3576  **/
3577 void e1000_update_stats(struct e1000_adapter *adapter)
3578 {
3579 	struct net_device *netdev = adapter->netdev;
3580 	struct e1000_hw *hw = &adapter->hw;
3581 	struct pci_dev *pdev = adapter->pdev;
3582 	unsigned long flags;
3583 	u16 phy_tmp;
3584 
3585 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3586 
3587 	/* Prevent stats update while adapter is being reset, or if the pci
3588 	 * connection is down.
3589 	 */
3590 	if (adapter->link_speed == 0)
3591 		return;
3592 	if (pci_channel_offline(pdev))
3593 		return;
3594 
3595 	spin_lock_irqsave(&adapter->stats_lock, flags);
3596 
3597 	/* these counters are modified from e1000_tbi_adjust_stats,
3598 	 * called from the interrupt context, so they must only
3599 	 * be written while holding adapter->stats_lock
3600 	 */
3601 
3602 	adapter->stats.crcerrs += er32(CRCERRS);
3603 	adapter->stats.gprc += er32(GPRC);
3604 	adapter->stats.gorcl += er32(GORCL);
3605 	adapter->stats.gorch += er32(GORCH);
3606 	adapter->stats.bprc += er32(BPRC);
3607 	adapter->stats.mprc += er32(MPRC);
3608 	adapter->stats.roc += er32(ROC);
3609 
3610 	adapter->stats.prc64 += er32(PRC64);
3611 	adapter->stats.prc127 += er32(PRC127);
3612 	adapter->stats.prc255 += er32(PRC255);
3613 	adapter->stats.prc511 += er32(PRC511);
3614 	adapter->stats.prc1023 += er32(PRC1023);
3615 	adapter->stats.prc1522 += er32(PRC1522);
3616 
3617 	adapter->stats.symerrs += er32(SYMERRS);
3618 	adapter->stats.mpc += er32(MPC);
3619 	adapter->stats.scc += er32(SCC);
3620 	adapter->stats.ecol += er32(ECOL);
3621 	adapter->stats.mcc += er32(MCC);
3622 	adapter->stats.latecol += er32(LATECOL);
3623 	adapter->stats.dc += er32(DC);
3624 	adapter->stats.sec += er32(SEC);
3625 	adapter->stats.rlec += er32(RLEC);
3626 	adapter->stats.xonrxc += er32(XONRXC);
3627 	adapter->stats.xontxc += er32(XONTXC);
3628 	adapter->stats.xoffrxc += er32(XOFFRXC);
3629 	adapter->stats.xofftxc += er32(XOFFTXC);
3630 	adapter->stats.fcruc += er32(FCRUC);
3631 	adapter->stats.gptc += er32(GPTC);
3632 	adapter->stats.gotcl += er32(GOTCL);
3633 	adapter->stats.gotch += er32(GOTCH);
3634 	adapter->stats.rnbc += er32(RNBC);
3635 	adapter->stats.ruc += er32(RUC);
3636 	adapter->stats.rfc += er32(RFC);
3637 	adapter->stats.rjc += er32(RJC);
3638 	adapter->stats.torl += er32(TORL);
3639 	adapter->stats.torh += er32(TORH);
3640 	adapter->stats.totl += er32(TOTL);
3641 	adapter->stats.toth += er32(TOTH);
3642 	adapter->stats.tpr += er32(TPR);
3643 
3644 	adapter->stats.ptc64 += er32(PTC64);
3645 	adapter->stats.ptc127 += er32(PTC127);
3646 	adapter->stats.ptc255 += er32(PTC255);
3647 	adapter->stats.ptc511 += er32(PTC511);
3648 	adapter->stats.ptc1023 += er32(PTC1023);
3649 	adapter->stats.ptc1522 += er32(PTC1522);
3650 
3651 	adapter->stats.mptc += er32(MPTC);
3652 	adapter->stats.bptc += er32(BPTC);
3653 
3654 	/* used for adaptive IFS */
3655 
3656 	hw->tx_packet_delta = er32(TPT);
3657 	adapter->stats.tpt += hw->tx_packet_delta;
3658 	hw->collision_delta = er32(COLC);
3659 	adapter->stats.colc += hw->collision_delta;
3660 
3661 	if (hw->mac_type >= e1000_82543) {
3662 		adapter->stats.algnerrc += er32(ALGNERRC);
3663 		adapter->stats.rxerrc += er32(RXERRC);
3664 		adapter->stats.tncrs += er32(TNCRS);
3665 		adapter->stats.cexterr += er32(CEXTERR);
3666 		adapter->stats.tsctc += er32(TSCTC);
3667 		adapter->stats.tsctfc += er32(TSCTFC);
3668 	}
3669 
3670 	/* Fill out the OS statistics structure */
3671 	netdev->stats.multicast = adapter->stats.mprc;
3672 	netdev->stats.collisions = adapter->stats.colc;
3673 
3674 	/* Rx Errors */
3675 
3676 	/* RLEC on some newer hardware can be incorrect so build
3677 	 * our own version based on RUC and ROC
3678 	 */
3679 	netdev->stats.rx_errors = adapter->stats.rxerrc +
3680 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3681 		adapter->stats.ruc + adapter->stats.roc +
3682 		adapter->stats.cexterr;
3683 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3684 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3685 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3686 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3687 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3688 
3689 	/* Tx Errors */
3690 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3691 	netdev->stats.tx_errors = adapter->stats.txerrc;
3692 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3693 	netdev->stats.tx_window_errors = adapter->stats.latecol;
3694 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3695 	if (hw->bad_tx_carr_stats_fd &&
3696 	    adapter->link_duplex == FULL_DUPLEX) {
3697 		netdev->stats.tx_carrier_errors = 0;
3698 		adapter->stats.tncrs = 0;
3699 	}
3700 
3701 	/* Tx Dropped needs to be maintained elsewhere */
3702 
3703 	/* Phy Stats */
3704 	if (hw->media_type == e1000_media_type_copper) {
3705 		if ((adapter->link_speed == SPEED_1000) &&
3706 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3707 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3708 			adapter->phy_stats.idle_errors += phy_tmp;
3709 		}
3710 
3711 		if ((hw->mac_type <= e1000_82546) &&
3712 		   (hw->phy_type == e1000_phy_m88) &&
3713 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3714 			adapter->phy_stats.receive_errors += phy_tmp;
3715 	}
3716 
3717 	/* Management Stats */
3718 	if (hw->has_smbus) {
3719 		adapter->stats.mgptc += er32(MGTPTC);
3720 		adapter->stats.mgprc += er32(MGTPRC);
3721 		adapter->stats.mgpdc += er32(MGTPDC);
3722 	}
3723 
3724 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3725 }
3726 
3727 /**
3728  * e1000_intr - Interrupt Handler
3729  * @irq: interrupt number
3730  * @data: pointer to a network interface device structure
3731  **/
3732 static irqreturn_t e1000_intr(int irq, void *data)
3733 {
3734 	struct net_device *netdev = data;
3735 	struct e1000_adapter *adapter = netdev_priv(netdev);
3736 	struct e1000_hw *hw = &adapter->hw;
3737 	u32 icr = er32(ICR);
3738 
3739 	if (unlikely((!icr)))
3740 		return IRQ_NONE;  /* Not our interrupt */
3741 
3742 	/* we might have caused the interrupt, but the above
3743 	 * read cleared it, and just in case the driver is
3744 	 * down there is nothing to do so return handled
3745 	 */
3746 	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3747 		return IRQ_HANDLED;
3748 
3749 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3750 		hw->get_link_status = 1;
3751 		/* guard against interrupt when we're going down */
3752 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3753 			schedule_delayed_work(&adapter->watchdog_task, 1);
3754 	}
3755 
3756 	/* disable interrupts, without the synchronize_irq bit */
3757 	ew32(IMC, ~0);
3758 	E1000_WRITE_FLUSH();
3759 
3760 	if (likely(napi_schedule_prep(&adapter->napi))) {
3761 		adapter->total_tx_bytes = 0;
3762 		adapter->total_tx_packets = 0;
3763 		adapter->total_rx_bytes = 0;
3764 		adapter->total_rx_packets = 0;
3765 		__napi_schedule(&adapter->napi);
3766 	} else {
3767 		/* this really should not happen! if it does it is basically a
3768 		 * bug, but not a hard error, so enable ints and continue
3769 		 */
3770 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3771 			e1000_irq_enable(adapter);
3772 	}
3773 
3774 	return IRQ_HANDLED;
3775 }
3776 
3777 /**
3778  * e1000_clean - NAPI Rx polling callback
3779  * @adapter: board private structure
3780  **/
3781 static int e1000_clean(struct napi_struct *napi, int budget)
3782 {
3783 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3784 						     napi);
3785 	int tx_clean_complete = 0, work_done = 0;
3786 
3787 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3788 
3789 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3790 
3791 	if (!tx_clean_complete)
3792 		work_done = budget;
3793 
3794 	/* If budget not fully consumed, exit the polling mode */
3795 	if (work_done < budget) {
3796 		if (likely(adapter->itr_setting & 3))
3797 			e1000_set_itr(adapter);
3798 		napi_complete(napi);
3799 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3800 			e1000_irq_enable(adapter);
3801 	}
3802 
3803 	return work_done;
3804 }
3805 
3806 /**
3807  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3808  * @adapter: board private structure
3809  **/
3810 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3811 			       struct e1000_tx_ring *tx_ring)
3812 {
3813 	struct e1000_hw *hw = &adapter->hw;
3814 	struct net_device *netdev = adapter->netdev;
3815 	struct e1000_tx_desc *tx_desc, *eop_desc;
3816 	struct e1000_buffer *buffer_info;
3817 	unsigned int i, eop;
3818 	unsigned int count = 0;
3819 	unsigned int total_tx_bytes=0, total_tx_packets=0;
3820 	unsigned int bytes_compl = 0, pkts_compl = 0;
3821 
3822 	i = tx_ring->next_to_clean;
3823 	eop = tx_ring->buffer_info[i].next_to_watch;
3824 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3825 
3826 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3827 	       (count < tx_ring->count)) {
3828 		bool cleaned = false;
3829 		rmb();	/* read buffer_info after eop_desc */
3830 		for ( ; !cleaned; count++) {
3831 			tx_desc = E1000_TX_DESC(*tx_ring, i);
3832 			buffer_info = &tx_ring->buffer_info[i];
3833 			cleaned = (i == eop);
3834 
3835 			if (cleaned) {
3836 				total_tx_packets += buffer_info->segs;
3837 				total_tx_bytes += buffer_info->bytecount;
3838 				if (buffer_info->skb) {
3839 					bytes_compl += buffer_info->skb->len;
3840 					pkts_compl++;
3841 				}
3842 
3843 			}
3844 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3845 			tx_desc->upper.data = 0;
3846 
3847 			if (unlikely(++i == tx_ring->count)) i = 0;
3848 		}
3849 
3850 		eop = tx_ring->buffer_info[i].next_to_watch;
3851 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3852 	}
3853 
3854 	tx_ring->next_to_clean = i;
3855 
3856 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3857 
3858 #define TX_WAKE_THRESHOLD 32
3859 	if (unlikely(count && netif_carrier_ok(netdev) &&
3860 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3861 		/* Make sure that anybody stopping the queue after this
3862 		 * sees the new next_to_clean.
3863 		 */
3864 		smp_mb();
3865 
3866 		if (netif_queue_stopped(netdev) &&
3867 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3868 			netif_wake_queue(netdev);
3869 			++adapter->restart_queue;
3870 		}
3871 	}
3872 
3873 	if (adapter->detect_tx_hung) {
3874 		/* Detect a transmit hang in hardware, this serializes the
3875 		 * check with the clearing of time_stamp and movement of i
3876 		 */
3877 		adapter->detect_tx_hung = false;
3878 		if (tx_ring->buffer_info[eop].time_stamp &&
3879 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3880 			       (adapter->tx_timeout_factor * HZ)) &&
3881 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3882 
3883 			/* detected Tx unit hang */
3884 			e_err(drv, "Detected Tx Unit Hang\n"
3885 			      "  Tx Queue             <%lu>\n"
3886 			      "  TDH                  <%x>\n"
3887 			      "  TDT                  <%x>\n"
3888 			      "  next_to_use          <%x>\n"
3889 			      "  next_to_clean        <%x>\n"
3890 			      "buffer_info[next_to_clean]\n"
3891 			      "  time_stamp           <%lx>\n"
3892 			      "  next_to_watch        <%x>\n"
3893 			      "  jiffies              <%lx>\n"
3894 			      "  next_to_watch.status <%x>\n",
3895 				(unsigned long)(tx_ring - adapter->tx_ring),
3896 				readl(hw->hw_addr + tx_ring->tdh),
3897 				readl(hw->hw_addr + tx_ring->tdt),
3898 				tx_ring->next_to_use,
3899 				tx_ring->next_to_clean,
3900 				tx_ring->buffer_info[eop].time_stamp,
3901 				eop,
3902 				jiffies,
3903 				eop_desc->upper.fields.status);
3904 			e1000_dump(adapter);
3905 			netif_stop_queue(netdev);
3906 		}
3907 	}
3908 	adapter->total_tx_bytes += total_tx_bytes;
3909 	adapter->total_tx_packets += total_tx_packets;
3910 	netdev->stats.tx_bytes += total_tx_bytes;
3911 	netdev->stats.tx_packets += total_tx_packets;
3912 	return count < tx_ring->count;
3913 }
3914 
3915 /**
3916  * e1000_rx_checksum - Receive Checksum Offload for 82543
3917  * @adapter:     board private structure
3918  * @status_err:  receive descriptor status and error fields
3919  * @csum:        receive descriptor csum field
3920  * @sk_buff:     socket buffer with received data
3921  **/
3922 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3923 			      u32 csum, struct sk_buff *skb)
3924 {
3925 	struct e1000_hw *hw = &adapter->hw;
3926 	u16 status = (u16)status_err;
3927 	u8 errors = (u8)(status_err >> 24);
3928 
3929 	skb_checksum_none_assert(skb);
3930 
3931 	/* 82543 or newer only */
3932 	if (unlikely(hw->mac_type < e1000_82543)) return;
3933 	/* Ignore Checksum bit is set */
3934 	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3935 	/* TCP/UDP checksum error bit is set */
3936 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3937 		/* let the stack verify checksum errors */
3938 		adapter->hw_csum_err++;
3939 		return;
3940 	}
3941 	/* TCP/UDP Checksum has not been calculated */
3942 	if (!(status & E1000_RXD_STAT_TCPCS))
3943 		return;
3944 
3945 	/* It must be a TCP or UDP packet with a valid checksum */
3946 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3947 		/* TCP checksum is good */
3948 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3949 	}
3950 	adapter->hw_csum_good++;
3951 }
3952 
3953 /**
3954  * e1000_consume_page - helper function
3955  **/
3956 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3957 			       u16 length)
3958 {
3959 	bi->page = NULL;
3960 	skb->len += length;
3961 	skb->data_len += length;
3962 	skb->truesize += PAGE_SIZE;
3963 }
3964 
3965 /**
3966  * e1000_receive_skb - helper function to handle rx indications
3967  * @adapter: board private structure
3968  * @status: descriptor status field as written by hardware
3969  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3970  * @skb: pointer to sk_buff to be indicated to stack
3971  */
3972 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3973 			      __le16 vlan, struct sk_buff *skb)
3974 {
3975 	skb->protocol = eth_type_trans(skb, adapter->netdev);
3976 
3977 	if (status & E1000_RXD_STAT_VP) {
3978 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3979 
3980 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
3981 	}
3982 	napi_gro_receive(&adapter->napi, skb);
3983 }
3984 
3985 /**
3986  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3987  * @adapter: board private structure
3988  * @rx_ring: ring to clean
3989  * @work_done: amount of napi work completed this call
3990  * @work_to_do: max amount of work allowed for this call to do
3991  *
3992  * the return value indicates whether actual cleaning was done, there
3993  * is no guarantee that everything was cleaned
3994  */
3995 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3996 				     struct e1000_rx_ring *rx_ring,
3997 				     int *work_done, int work_to_do)
3998 {
3999 	struct e1000_hw *hw = &adapter->hw;
4000 	struct net_device *netdev = adapter->netdev;
4001 	struct pci_dev *pdev = adapter->pdev;
4002 	struct e1000_rx_desc *rx_desc, *next_rxd;
4003 	struct e1000_buffer *buffer_info, *next_buffer;
4004 	unsigned long irq_flags;
4005 	u32 length;
4006 	unsigned int i;
4007 	int cleaned_count = 0;
4008 	bool cleaned = false;
4009 	unsigned int total_rx_bytes=0, total_rx_packets=0;
4010 
4011 	i = rx_ring->next_to_clean;
4012 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4013 	buffer_info = &rx_ring->buffer_info[i];
4014 
4015 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4016 		struct sk_buff *skb;
4017 		u8 status;
4018 
4019 		if (*work_done >= work_to_do)
4020 			break;
4021 		(*work_done)++;
4022 		rmb(); /* read descriptor and rx_buffer_info after status DD */
4023 
4024 		status = rx_desc->status;
4025 		skb = buffer_info->skb;
4026 		buffer_info->skb = NULL;
4027 
4028 		if (++i == rx_ring->count) i = 0;
4029 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4030 		prefetch(next_rxd);
4031 
4032 		next_buffer = &rx_ring->buffer_info[i];
4033 
4034 		cleaned = true;
4035 		cleaned_count++;
4036 		dma_unmap_page(&pdev->dev, buffer_info->dma,
4037 			       buffer_info->length, DMA_FROM_DEVICE);
4038 		buffer_info->dma = 0;
4039 
4040 		length = le16_to_cpu(rx_desc->length);
4041 
4042 		/* errors is only valid for DD + EOP descriptors */
4043 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4044 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4045 			u8 *mapped;
4046 			u8 last_byte;
4047 
4048 			mapped = page_address(buffer_info->page);
4049 			last_byte = *(mapped + length - 1);
4050 			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4051 				       last_byte)) {
4052 				spin_lock_irqsave(&adapter->stats_lock,
4053 						  irq_flags);
4054 				e1000_tbi_adjust_stats(hw, &adapter->stats,
4055 						       length, mapped);
4056 				spin_unlock_irqrestore(&adapter->stats_lock,
4057 						       irq_flags);
4058 				length--;
4059 			} else {
4060 				if (netdev->features & NETIF_F_RXALL)
4061 					goto process_skb;
4062 				/* recycle both page and skb */
4063 				buffer_info->skb = skb;
4064 				/* an error means any chain goes out the window
4065 				 * too
4066 				 */
4067 				if (rx_ring->rx_skb_top)
4068 					dev_kfree_skb(rx_ring->rx_skb_top);
4069 				rx_ring->rx_skb_top = NULL;
4070 				goto next_desc;
4071 			}
4072 		}
4073 
4074 #define rxtop rx_ring->rx_skb_top
4075 process_skb:
4076 		if (!(status & E1000_RXD_STAT_EOP)) {
4077 			/* this descriptor is only the beginning (or middle) */
4078 			if (!rxtop) {
4079 				/* this is the beginning of a chain */
4080 				rxtop = skb;
4081 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
4082 						   0, length);
4083 			} else {
4084 				/* this is the middle of a chain */
4085 				skb_fill_page_desc(rxtop,
4086 				    skb_shinfo(rxtop)->nr_frags,
4087 				    buffer_info->page, 0, length);
4088 				/* re-use the skb, only consumed the page */
4089 				buffer_info->skb = skb;
4090 			}
4091 			e1000_consume_page(buffer_info, rxtop, length);
4092 			goto next_desc;
4093 		} else {
4094 			if (rxtop) {
4095 				/* end of the chain */
4096 				skb_fill_page_desc(rxtop,
4097 				    skb_shinfo(rxtop)->nr_frags,
4098 				    buffer_info->page, 0, length);
4099 				/* re-use the current skb, we only consumed the
4100 				 * page
4101 				 */
4102 				buffer_info->skb = skb;
4103 				skb = rxtop;
4104 				rxtop = NULL;
4105 				e1000_consume_page(buffer_info, skb, length);
4106 			} else {
4107 				/* no chain, got EOP, this buf is the packet
4108 				 * copybreak to save the put_page/alloc_page
4109 				 */
4110 				if (length <= copybreak &&
4111 				    skb_tailroom(skb) >= length) {
4112 					u8 *vaddr;
4113 					vaddr = kmap_atomic(buffer_info->page);
4114 					memcpy(skb_tail_pointer(skb), vaddr,
4115 					       length);
4116 					kunmap_atomic(vaddr);
4117 					/* re-use the page, so don't erase
4118 					 * buffer_info->page
4119 					 */
4120 					skb_put(skb, length);
4121 				} else {
4122 					skb_fill_page_desc(skb, 0,
4123 							   buffer_info->page, 0,
4124 							   length);
4125 					e1000_consume_page(buffer_info, skb,
4126 							   length);
4127 				}
4128 			}
4129 		}
4130 
4131 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4132 		e1000_rx_checksum(adapter,
4133 				  (u32)(status) |
4134 				  ((u32)(rx_desc->errors) << 24),
4135 				  le16_to_cpu(rx_desc->csum), skb);
4136 
4137 		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4138 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4139 			pskb_trim(skb, skb->len - 4);
4140 		total_rx_packets++;
4141 
4142 		/* eth type trans needs skb->data to point to something */
4143 		if (!pskb_may_pull(skb, ETH_HLEN)) {
4144 			e_err(drv, "pskb_may_pull failed.\n");
4145 			dev_kfree_skb(skb);
4146 			goto next_desc;
4147 		}
4148 
4149 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4150 
4151 next_desc:
4152 		rx_desc->status = 0;
4153 
4154 		/* return some buffers to hardware, one at a time is too slow */
4155 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4156 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4157 			cleaned_count = 0;
4158 		}
4159 
4160 		/* use prefetched values */
4161 		rx_desc = next_rxd;
4162 		buffer_info = next_buffer;
4163 	}
4164 	rx_ring->next_to_clean = i;
4165 
4166 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4167 	if (cleaned_count)
4168 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4169 
4170 	adapter->total_rx_packets += total_rx_packets;
4171 	adapter->total_rx_bytes += total_rx_bytes;
4172 	netdev->stats.rx_bytes += total_rx_bytes;
4173 	netdev->stats.rx_packets += total_rx_packets;
4174 	return cleaned;
4175 }
4176 
4177 /* this should improve performance for small packets with large amounts
4178  * of reassembly being done in the stack
4179  */
4180 static void e1000_check_copybreak(struct net_device *netdev,
4181 				 struct e1000_buffer *buffer_info,
4182 				 u32 length, struct sk_buff **skb)
4183 {
4184 	struct sk_buff *new_skb;
4185 
4186 	if (length > copybreak)
4187 		return;
4188 
4189 	new_skb = netdev_alloc_skb_ip_align(netdev, length);
4190 	if (!new_skb)
4191 		return;
4192 
4193 	skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4194 				       (*skb)->data - NET_IP_ALIGN,
4195 				       length + NET_IP_ALIGN);
4196 	/* save the skb in buffer_info as good */
4197 	buffer_info->skb = *skb;
4198 	*skb = new_skb;
4199 }
4200 
4201 /**
4202  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4203  * @adapter: board private structure
4204  * @rx_ring: ring to clean
4205  * @work_done: amount of napi work completed this call
4206  * @work_to_do: max amount of work allowed for this call to do
4207  */
4208 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4209 			       struct e1000_rx_ring *rx_ring,
4210 			       int *work_done, int work_to_do)
4211 {
4212 	struct e1000_hw *hw = &adapter->hw;
4213 	struct net_device *netdev = adapter->netdev;
4214 	struct pci_dev *pdev = adapter->pdev;
4215 	struct e1000_rx_desc *rx_desc, *next_rxd;
4216 	struct e1000_buffer *buffer_info, *next_buffer;
4217 	unsigned long flags;
4218 	u32 length;
4219 	unsigned int i;
4220 	int cleaned_count = 0;
4221 	bool cleaned = false;
4222 	unsigned int total_rx_bytes=0, total_rx_packets=0;
4223 
4224 	i = rx_ring->next_to_clean;
4225 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4226 	buffer_info = &rx_ring->buffer_info[i];
4227 
4228 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4229 		struct sk_buff *skb;
4230 		u8 status;
4231 
4232 		if (*work_done >= work_to_do)
4233 			break;
4234 		(*work_done)++;
4235 		rmb(); /* read descriptor and rx_buffer_info after status DD */
4236 
4237 		status = rx_desc->status;
4238 		skb = buffer_info->skb;
4239 		buffer_info->skb = NULL;
4240 
4241 		prefetch(skb->data - NET_IP_ALIGN);
4242 
4243 		if (++i == rx_ring->count) i = 0;
4244 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4245 		prefetch(next_rxd);
4246 
4247 		next_buffer = &rx_ring->buffer_info[i];
4248 
4249 		cleaned = true;
4250 		cleaned_count++;
4251 		dma_unmap_single(&pdev->dev, buffer_info->dma,
4252 				 buffer_info->length, DMA_FROM_DEVICE);
4253 		buffer_info->dma = 0;
4254 
4255 		length = le16_to_cpu(rx_desc->length);
4256 		/* !EOP means multiple descriptors were used to store a single
4257 		 * packet, if thats the case we need to toss it.  In fact, we
4258 		 * to toss every packet with the EOP bit clear and the next
4259 		 * frame that _does_ have the EOP bit set, as it is by
4260 		 * definition only a frame fragment
4261 		 */
4262 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4263 			adapter->discarding = true;
4264 
4265 		if (adapter->discarding) {
4266 			/* All receives must fit into a single buffer */
4267 			e_dbg("Receive packet consumed multiple buffers\n");
4268 			/* recycle */
4269 			buffer_info->skb = skb;
4270 			if (status & E1000_RXD_STAT_EOP)
4271 				adapter->discarding = false;
4272 			goto next_desc;
4273 		}
4274 
4275 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4276 			u8 last_byte = *(skb->data + length - 1);
4277 			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4278 				       last_byte)) {
4279 				spin_lock_irqsave(&adapter->stats_lock, flags);
4280 				e1000_tbi_adjust_stats(hw, &adapter->stats,
4281 						       length, skb->data);
4282 				spin_unlock_irqrestore(&adapter->stats_lock,
4283 						       flags);
4284 				length--;
4285 			} else {
4286 				if (netdev->features & NETIF_F_RXALL)
4287 					goto process_skb;
4288 				/* recycle */
4289 				buffer_info->skb = skb;
4290 				goto next_desc;
4291 			}
4292 		}
4293 
4294 process_skb:
4295 		total_rx_bytes += (length - 4); /* don't count FCS */
4296 		total_rx_packets++;
4297 
4298 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4299 			/* adjust length to remove Ethernet CRC, this must be
4300 			 * done after the TBI_ACCEPT workaround above
4301 			 */
4302 			length -= 4;
4303 
4304 		e1000_check_copybreak(netdev, buffer_info, length, &skb);
4305 
4306 		skb_put(skb, length);
4307 
4308 		/* Receive Checksum Offload */
4309 		e1000_rx_checksum(adapter,
4310 				  (u32)(status) |
4311 				  ((u32)(rx_desc->errors) << 24),
4312 				  le16_to_cpu(rx_desc->csum), skb);
4313 
4314 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4315 
4316 next_desc:
4317 		rx_desc->status = 0;
4318 
4319 		/* return some buffers to hardware, one at a time is too slow */
4320 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4321 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4322 			cleaned_count = 0;
4323 		}
4324 
4325 		/* use prefetched values */
4326 		rx_desc = next_rxd;
4327 		buffer_info = next_buffer;
4328 	}
4329 	rx_ring->next_to_clean = i;
4330 
4331 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4332 	if (cleaned_count)
4333 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4334 
4335 	adapter->total_rx_packets += total_rx_packets;
4336 	adapter->total_rx_bytes += total_rx_bytes;
4337 	netdev->stats.rx_bytes += total_rx_bytes;
4338 	netdev->stats.rx_packets += total_rx_packets;
4339 	return cleaned;
4340 }
4341 
4342 /**
4343  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4344  * @adapter: address of board private structure
4345  * @rx_ring: pointer to receive ring structure
4346  * @cleaned_count: number of buffers to allocate this pass
4347  **/
4348 static void
4349 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4350 			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4351 {
4352 	struct net_device *netdev = adapter->netdev;
4353 	struct pci_dev *pdev = adapter->pdev;
4354 	struct e1000_rx_desc *rx_desc;
4355 	struct e1000_buffer *buffer_info;
4356 	struct sk_buff *skb;
4357 	unsigned int i;
4358 	unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4359 
4360 	i = rx_ring->next_to_use;
4361 	buffer_info = &rx_ring->buffer_info[i];
4362 
4363 	while (cleaned_count--) {
4364 		skb = buffer_info->skb;
4365 		if (skb) {
4366 			skb_trim(skb, 0);
4367 			goto check_page;
4368 		}
4369 
4370 		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4371 		if (unlikely(!skb)) {
4372 			/* Better luck next round */
4373 			adapter->alloc_rx_buff_failed++;
4374 			break;
4375 		}
4376 
4377 		buffer_info->skb = skb;
4378 		buffer_info->length = adapter->rx_buffer_len;
4379 check_page:
4380 		/* allocate a new page if necessary */
4381 		if (!buffer_info->page) {
4382 			buffer_info->page = alloc_page(GFP_ATOMIC);
4383 			if (unlikely(!buffer_info->page)) {
4384 				adapter->alloc_rx_buff_failed++;
4385 				break;
4386 			}
4387 		}
4388 
4389 		if (!buffer_info->dma) {
4390 			buffer_info->dma = dma_map_page(&pdev->dev,
4391 							buffer_info->page, 0,
4392 							buffer_info->length,
4393 							DMA_FROM_DEVICE);
4394 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4395 				put_page(buffer_info->page);
4396 				dev_kfree_skb(skb);
4397 				buffer_info->page = NULL;
4398 				buffer_info->skb = NULL;
4399 				buffer_info->dma = 0;
4400 				adapter->alloc_rx_buff_failed++;
4401 				break; /* while !buffer_info->skb */
4402 			}
4403 		}
4404 
4405 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4406 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4407 
4408 		if (unlikely(++i == rx_ring->count))
4409 			i = 0;
4410 		buffer_info = &rx_ring->buffer_info[i];
4411 	}
4412 
4413 	if (likely(rx_ring->next_to_use != i)) {
4414 		rx_ring->next_to_use = i;
4415 		if (unlikely(i-- == 0))
4416 			i = (rx_ring->count - 1);
4417 
4418 		/* Force memory writes to complete before letting h/w
4419 		 * know there are new descriptors to fetch.  (Only
4420 		 * applicable for weak-ordered memory model archs,
4421 		 * such as IA-64).
4422 		 */
4423 		wmb();
4424 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4425 	}
4426 }
4427 
4428 /**
4429  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4430  * @adapter: address of board private structure
4431  **/
4432 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4433 				   struct e1000_rx_ring *rx_ring,
4434 				   int cleaned_count)
4435 {
4436 	struct e1000_hw *hw = &adapter->hw;
4437 	struct net_device *netdev = adapter->netdev;
4438 	struct pci_dev *pdev = adapter->pdev;
4439 	struct e1000_rx_desc *rx_desc;
4440 	struct e1000_buffer *buffer_info;
4441 	struct sk_buff *skb;
4442 	unsigned int i;
4443 	unsigned int bufsz = adapter->rx_buffer_len;
4444 
4445 	i = rx_ring->next_to_use;
4446 	buffer_info = &rx_ring->buffer_info[i];
4447 
4448 	while (cleaned_count--) {
4449 		skb = buffer_info->skb;
4450 		if (skb) {
4451 			skb_trim(skb, 0);
4452 			goto map_skb;
4453 		}
4454 
4455 		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4456 		if (unlikely(!skb)) {
4457 			/* Better luck next round */
4458 			adapter->alloc_rx_buff_failed++;
4459 			break;
4460 		}
4461 
4462 		/* Fix for errata 23, can't cross 64kB boundary */
4463 		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4464 			struct sk_buff *oldskb = skb;
4465 			e_err(rx_err, "skb align check failed: %u bytes at "
4466 			      "%p\n", bufsz, skb->data);
4467 			/* Try again, without freeing the previous */
4468 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4469 			/* Failed allocation, critical failure */
4470 			if (!skb) {
4471 				dev_kfree_skb(oldskb);
4472 				adapter->alloc_rx_buff_failed++;
4473 				break;
4474 			}
4475 
4476 			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4477 				/* give up */
4478 				dev_kfree_skb(skb);
4479 				dev_kfree_skb(oldskb);
4480 				adapter->alloc_rx_buff_failed++;
4481 				break; /* while !buffer_info->skb */
4482 			}
4483 
4484 			/* Use new allocation */
4485 			dev_kfree_skb(oldskb);
4486 		}
4487 		buffer_info->skb = skb;
4488 		buffer_info->length = adapter->rx_buffer_len;
4489 map_skb:
4490 		buffer_info->dma = dma_map_single(&pdev->dev,
4491 						  skb->data,
4492 						  buffer_info->length,
4493 						  DMA_FROM_DEVICE);
4494 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4495 			dev_kfree_skb(skb);
4496 			buffer_info->skb = NULL;
4497 			buffer_info->dma = 0;
4498 			adapter->alloc_rx_buff_failed++;
4499 			break; /* while !buffer_info->skb */
4500 		}
4501 
4502 		/* XXX if it was allocated cleanly it will never map to a
4503 		 * boundary crossing
4504 		 */
4505 
4506 		/* Fix for errata 23, can't cross 64kB boundary */
4507 		if (!e1000_check_64k_bound(adapter,
4508 					(void *)(unsigned long)buffer_info->dma,
4509 					adapter->rx_buffer_len)) {
4510 			e_err(rx_err, "dma align check failed: %u bytes at "
4511 			      "%p\n", adapter->rx_buffer_len,
4512 			      (void *)(unsigned long)buffer_info->dma);
4513 			dev_kfree_skb(skb);
4514 			buffer_info->skb = NULL;
4515 
4516 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4517 					 adapter->rx_buffer_len,
4518 					 DMA_FROM_DEVICE);
4519 			buffer_info->dma = 0;
4520 
4521 			adapter->alloc_rx_buff_failed++;
4522 			break; /* while !buffer_info->skb */
4523 		}
4524 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4525 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4526 
4527 		if (unlikely(++i == rx_ring->count))
4528 			i = 0;
4529 		buffer_info = &rx_ring->buffer_info[i];
4530 	}
4531 
4532 	if (likely(rx_ring->next_to_use != i)) {
4533 		rx_ring->next_to_use = i;
4534 		if (unlikely(i-- == 0))
4535 			i = (rx_ring->count - 1);
4536 
4537 		/* Force memory writes to complete before letting h/w
4538 		 * know there are new descriptors to fetch.  (Only
4539 		 * applicable for weak-ordered memory model archs,
4540 		 * such as IA-64).
4541 		 */
4542 		wmb();
4543 		writel(i, hw->hw_addr + rx_ring->rdt);
4544 	}
4545 }
4546 
4547 /**
4548  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4549  * @adapter:
4550  **/
4551 static void e1000_smartspeed(struct e1000_adapter *adapter)
4552 {
4553 	struct e1000_hw *hw = &adapter->hw;
4554 	u16 phy_status;
4555 	u16 phy_ctrl;
4556 
4557 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4558 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4559 		return;
4560 
4561 	if (adapter->smartspeed == 0) {
4562 		/* If Master/Slave config fault is asserted twice,
4563 		 * we assume back-to-back
4564 		 */
4565 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4566 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4567 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4568 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4569 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4570 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4571 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4572 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4573 					    phy_ctrl);
4574 			adapter->smartspeed++;
4575 			if (!e1000_phy_setup_autoneg(hw) &&
4576 			   !e1000_read_phy_reg(hw, PHY_CTRL,
4577 					       &phy_ctrl)) {
4578 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4579 					     MII_CR_RESTART_AUTO_NEG);
4580 				e1000_write_phy_reg(hw, PHY_CTRL,
4581 						    phy_ctrl);
4582 			}
4583 		}
4584 		return;
4585 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4586 		/* If still no link, perhaps using 2/3 pair cable */
4587 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4588 		phy_ctrl |= CR_1000T_MS_ENABLE;
4589 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4590 		if (!e1000_phy_setup_autoneg(hw) &&
4591 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4592 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4593 				     MII_CR_RESTART_AUTO_NEG);
4594 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4595 		}
4596 	}
4597 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4598 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4599 		adapter->smartspeed = 0;
4600 }
4601 
4602 /**
4603  * e1000_ioctl -
4604  * @netdev:
4605  * @ifreq:
4606  * @cmd:
4607  **/
4608 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4609 {
4610 	switch (cmd) {
4611 	case SIOCGMIIPHY:
4612 	case SIOCGMIIREG:
4613 	case SIOCSMIIREG:
4614 		return e1000_mii_ioctl(netdev, ifr, cmd);
4615 	default:
4616 		return -EOPNOTSUPP;
4617 	}
4618 }
4619 
4620 /**
4621  * e1000_mii_ioctl -
4622  * @netdev:
4623  * @ifreq:
4624  * @cmd:
4625  **/
4626 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4627 			   int cmd)
4628 {
4629 	struct e1000_adapter *adapter = netdev_priv(netdev);
4630 	struct e1000_hw *hw = &adapter->hw;
4631 	struct mii_ioctl_data *data = if_mii(ifr);
4632 	int retval;
4633 	u16 mii_reg;
4634 	unsigned long flags;
4635 
4636 	if (hw->media_type != e1000_media_type_copper)
4637 		return -EOPNOTSUPP;
4638 
4639 	switch (cmd) {
4640 	case SIOCGMIIPHY:
4641 		data->phy_id = hw->phy_addr;
4642 		break;
4643 	case SIOCGMIIREG:
4644 		spin_lock_irqsave(&adapter->stats_lock, flags);
4645 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4646 				   &data->val_out)) {
4647 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4648 			return -EIO;
4649 		}
4650 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4651 		break;
4652 	case SIOCSMIIREG:
4653 		if (data->reg_num & ~(0x1F))
4654 			return -EFAULT;
4655 		mii_reg = data->val_in;
4656 		spin_lock_irqsave(&adapter->stats_lock, flags);
4657 		if (e1000_write_phy_reg(hw, data->reg_num,
4658 					mii_reg)) {
4659 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4660 			return -EIO;
4661 		}
4662 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4663 		if (hw->media_type == e1000_media_type_copper) {
4664 			switch (data->reg_num) {
4665 			case PHY_CTRL:
4666 				if (mii_reg & MII_CR_POWER_DOWN)
4667 					break;
4668 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4669 					hw->autoneg = 1;
4670 					hw->autoneg_advertised = 0x2F;
4671 				} else {
4672 					u32 speed;
4673 					if (mii_reg & 0x40)
4674 						speed = SPEED_1000;
4675 					else if (mii_reg & 0x2000)
4676 						speed = SPEED_100;
4677 					else
4678 						speed = SPEED_10;
4679 					retval = e1000_set_spd_dplx(
4680 						adapter, speed,
4681 						((mii_reg & 0x100)
4682 						 ? DUPLEX_FULL :
4683 						 DUPLEX_HALF));
4684 					if (retval)
4685 						return retval;
4686 				}
4687 				if (netif_running(adapter->netdev))
4688 					e1000_reinit_locked(adapter);
4689 				else
4690 					e1000_reset(adapter);
4691 				break;
4692 			case M88E1000_PHY_SPEC_CTRL:
4693 			case M88E1000_EXT_PHY_SPEC_CTRL:
4694 				if (e1000_phy_reset(hw))
4695 					return -EIO;
4696 				break;
4697 			}
4698 		} else {
4699 			switch (data->reg_num) {
4700 			case PHY_CTRL:
4701 				if (mii_reg & MII_CR_POWER_DOWN)
4702 					break;
4703 				if (netif_running(adapter->netdev))
4704 					e1000_reinit_locked(adapter);
4705 				else
4706 					e1000_reset(adapter);
4707 				break;
4708 			}
4709 		}
4710 		break;
4711 	default:
4712 		return -EOPNOTSUPP;
4713 	}
4714 	return E1000_SUCCESS;
4715 }
4716 
4717 void e1000_pci_set_mwi(struct e1000_hw *hw)
4718 {
4719 	struct e1000_adapter *adapter = hw->back;
4720 	int ret_val = pci_set_mwi(adapter->pdev);
4721 
4722 	if (ret_val)
4723 		e_err(probe, "Error in setting MWI\n");
4724 }
4725 
4726 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4727 {
4728 	struct e1000_adapter *adapter = hw->back;
4729 
4730 	pci_clear_mwi(adapter->pdev);
4731 }
4732 
4733 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4734 {
4735 	struct e1000_adapter *adapter = hw->back;
4736 	return pcix_get_mmrbc(adapter->pdev);
4737 }
4738 
4739 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4740 {
4741 	struct e1000_adapter *adapter = hw->back;
4742 	pcix_set_mmrbc(adapter->pdev, mmrbc);
4743 }
4744 
4745 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4746 {
4747 	outl(value, port);
4748 }
4749 
4750 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4751 {
4752 	u16 vid;
4753 
4754 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4755 		return true;
4756 	return false;
4757 }
4758 
4759 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4760 			      netdev_features_t features)
4761 {
4762 	struct e1000_hw *hw = &adapter->hw;
4763 	u32 ctrl;
4764 
4765 	ctrl = er32(CTRL);
4766 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4767 		/* enable VLAN tag insert/strip */
4768 		ctrl |= E1000_CTRL_VME;
4769 	} else {
4770 		/* disable VLAN tag insert/strip */
4771 		ctrl &= ~E1000_CTRL_VME;
4772 	}
4773 	ew32(CTRL, ctrl);
4774 }
4775 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4776 				     bool filter_on)
4777 {
4778 	struct e1000_hw *hw = &adapter->hw;
4779 	u32 rctl;
4780 
4781 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4782 		e1000_irq_disable(adapter);
4783 
4784 	__e1000_vlan_mode(adapter, adapter->netdev->features);
4785 	if (filter_on) {
4786 		/* enable VLAN receive filtering */
4787 		rctl = er32(RCTL);
4788 		rctl &= ~E1000_RCTL_CFIEN;
4789 		if (!(adapter->netdev->flags & IFF_PROMISC))
4790 			rctl |= E1000_RCTL_VFE;
4791 		ew32(RCTL, rctl);
4792 		e1000_update_mng_vlan(adapter);
4793 	} else {
4794 		/* disable VLAN receive filtering */
4795 		rctl = er32(RCTL);
4796 		rctl &= ~E1000_RCTL_VFE;
4797 		ew32(RCTL, rctl);
4798 	}
4799 
4800 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4801 		e1000_irq_enable(adapter);
4802 }
4803 
4804 static void e1000_vlan_mode(struct net_device *netdev,
4805 			    netdev_features_t features)
4806 {
4807 	struct e1000_adapter *adapter = netdev_priv(netdev);
4808 
4809 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4810 		e1000_irq_disable(adapter);
4811 
4812 	__e1000_vlan_mode(adapter, features);
4813 
4814 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4815 		e1000_irq_enable(adapter);
4816 }
4817 
4818 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4819 				 __be16 proto, u16 vid)
4820 {
4821 	struct e1000_adapter *adapter = netdev_priv(netdev);
4822 	struct e1000_hw *hw = &adapter->hw;
4823 	u32 vfta, index;
4824 
4825 	if ((hw->mng_cookie.status &
4826 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4827 	    (vid == adapter->mng_vlan_id))
4828 		return 0;
4829 
4830 	if (!e1000_vlan_used(adapter))
4831 		e1000_vlan_filter_on_off(adapter, true);
4832 
4833 	/* add VID to filter table */
4834 	index = (vid >> 5) & 0x7F;
4835 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4836 	vfta |= (1 << (vid & 0x1F));
4837 	e1000_write_vfta(hw, index, vfta);
4838 
4839 	set_bit(vid, adapter->active_vlans);
4840 
4841 	return 0;
4842 }
4843 
4844 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4845 				  __be16 proto, u16 vid)
4846 {
4847 	struct e1000_adapter *adapter = netdev_priv(netdev);
4848 	struct e1000_hw *hw = &adapter->hw;
4849 	u32 vfta, index;
4850 
4851 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4852 		e1000_irq_disable(adapter);
4853 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4854 		e1000_irq_enable(adapter);
4855 
4856 	/* remove VID from filter table */
4857 	index = (vid >> 5) & 0x7F;
4858 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4859 	vfta &= ~(1 << (vid & 0x1F));
4860 	e1000_write_vfta(hw, index, vfta);
4861 
4862 	clear_bit(vid, adapter->active_vlans);
4863 
4864 	if (!e1000_vlan_used(adapter))
4865 		e1000_vlan_filter_on_off(adapter, false);
4866 
4867 	return 0;
4868 }
4869 
4870 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4871 {
4872 	u16 vid;
4873 
4874 	if (!e1000_vlan_used(adapter))
4875 		return;
4876 
4877 	e1000_vlan_filter_on_off(adapter, true);
4878 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4879 		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
4880 }
4881 
4882 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4883 {
4884 	struct e1000_hw *hw = &adapter->hw;
4885 
4886 	hw->autoneg = 0;
4887 
4888 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
4889 	 * for the switch() below to work
4890 	 */
4891 	if ((spd & 1) || (dplx & ~1))
4892 		goto err_inval;
4893 
4894 	/* Fiber NICs only allow 1000 gbps Full duplex */
4895 	if ((hw->media_type == e1000_media_type_fiber) &&
4896 	    spd != SPEED_1000 &&
4897 	    dplx != DUPLEX_FULL)
4898 		goto err_inval;
4899 
4900 	switch (spd + dplx) {
4901 	case SPEED_10 + DUPLEX_HALF:
4902 		hw->forced_speed_duplex = e1000_10_half;
4903 		break;
4904 	case SPEED_10 + DUPLEX_FULL:
4905 		hw->forced_speed_duplex = e1000_10_full;
4906 		break;
4907 	case SPEED_100 + DUPLEX_HALF:
4908 		hw->forced_speed_duplex = e1000_100_half;
4909 		break;
4910 	case SPEED_100 + DUPLEX_FULL:
4911 		hw->forced_speed_duplex = e1000_100_full;
4912 		break;
4913 	case SPEED_1000 + DUPLEX_FULL:
4914 		hw->autoneg = 1;
4915 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
4916 		break;
4917 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
4918 	default:
4919 		goto err_inval;
4920 	}
4921 
4922 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4923 	hw->mdix = AUTO_ALL_MODES;
4924 
4925 	return 0;
4926 
4927 err_inval:
4928 	e_err(probe, "Unsupported Speed/Duplex configuration\n");
4929 	return -EINVAL;
4930 }
4931 
4932 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4933 {
4934 	struct net_device *netdev = pci_get_drvdata(pdev);
4935 	struct e1000_adapter *adapter = netdev_priv(netdev);
4936 	struct e1000_hw *hw = &adapter->hw;
4937 	u32 ctrl, ctrl_ext, rctl, status;
4938 	u32 wufc = adapter->wol;
4939 #ifdef CONFIG_PM
4940 	int retval = 0;
4941 #endif
4942 
4943 	netif_device_detach(netdev);
4944 
4945 	if (netif_running(netdev)) {
4946 		int count = E1000_CHECK_RESET_COUNT;
4947 
4948 		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
4949 			usleep_range(10000, 20000);
4950 
4951 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4952 		e1000_down(adapter);
4953 	}
4954 
4955 #ifdef CONFIG_PM
4956 	retval = pci_save_state(pdev);
4957 	if (retval)
4958 		return retval;
4959 #endif
4960 
4961 	status = er32(STATUS);
4962 	if (status & E1000_STATUS_LU)
4963 		wufc &= ~E1000_WUFC_LNKC;
4964 
4965 	if (wufc) {
4966 		e1000_setup_rctl(adapter);
4967 		e1000_set_rx_mode(netdev);
4968 
4969 		rctl = er32(RCTL);
4970 
4971 		/* turn on all-multi mode if wake on multicast is enabled */
4972 		if (wufc & E1000_WUFC_MC)
4973 			rctl |= E1000_RCTL_MPE;
4974 
4975 		/* enable receives in the hardware */
4976 		ew32(RCTL, rctl | E1000_RCTL_EN);
4977 
4978 		if (hw->mac_type >= e1000_82540) {
4979 			ctrl = er32(CTRL);
4980 			/* advertise wake from D3Cold */
4981 			#define E1000_CTRL_ADVD3WUC 0x00100000
4982 			/* phy power management enable */
4983 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4984 			ctrl |= E1000_CTRL_ADVD3WUC |
4985 				E1000_CTRL_EN_PHY_PWR_MGMT;
4986 			ew32(CTRL, ctrl);
4987 		}
4988 
4989 		if (hw->media_type == e1000_media_type_fiber ||
4990 		    hw->media_type == e1000_media_type_internal_serdes) {
4991 			/* keep the laser running in D3 */
4992 			ctrl_ext = er32(CTRL_EXT);
4993 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4994 			ew32(CTRL_EXT, ctrl_ext);
4995 		}
4996 
4997 		ew32(WUC, E1000_WUC_PME_EN);
4998 		ew32(WUFC, wufc);
4999 	} else {
5000 		ew32(WUC, 0);
5001 		ew32(WUFC, 0);
5002 	}
5003 
5004 	e1000_release_manageability(adapter);
5005 
5006 	*enable_wake = !!wufc;
5007 
5008 	/* make sure adapter isn't asleep if manageability is enabled */
5009 	if (adapter->en_mng_pt)
5010 		*enable_wake = true;
5011 
5012 	if (netif_running(netdev))
5013 		e1000_free_irq(adapter);
5014 
5015 	pci_disable_device(pdev);
5016 
5017 	return 0;
5018 }
5019 
5020 #ifdef CONFIG_PM
5021 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5022 {
5023 	int retval;
5024 	bool wake;
5025 
5026 	retval = __e1000_shutdown(pdev, &wake);
5027 	if (retval)
5028 		return retval;
5029 
5030 	if (wake) {
5031 		pci_prepare_to_sleep(pdev);
5032 	} else {
5033 		pci_wake_from_d3(pdev, false);
5034 		pci_set_power_state(pdev, PCI_D3hot);
5035 	}
5036 
5037 	return 0;
5038 }
5039 
5040 static int e1000_resume(struct pci_dev *pdev)
5041 {
5042 	struct net_device *netdev = pci_get_drvdata(pdev);
5043 	struct e1000_adapter *adapter = netdev_priv(netdev);
5044 	struct e1000_hw *hw = &adapter->hw;
5045 	u32 err;
5046 
5047 	pci_set_power_state(pdev, PCI_D0);
5048 	pci_restore_state(pdev);
5049 	pci_save_state(pdev);
5050 
5051 	if (adapter->need_ioport)
5052 		err = pci_enable_device(pdev);
5053 	else
5054 		err = pci_enable_device_mem(pdev);
5055 	if (err) {
5056 		pr_err("Cannot enable PCI device from suspend\n");
5057 		return err;
5058 	}
5059 	pci_set_master(pdev);
5060 
5061 	pci_enable_wake(pdev, PCI_D3hot, 0);
5062 	pci_enable_wake(pdev, PCI_D3cold, 0);
5063 
5064 	if (netif_running(netdev)) {
5065 		err = e1000_request_irq(adapter);
5066 		if (err)
5067 			return err;
5068 	}
5069 
5070 	e1000_power_up_phy(adapter);
5071 	e1000_reset(adapter);
5072 	ew32(WUS, ~0);
5073 
5074 	e1000_init_manageability(adapter);
5075 
5076 	if (netif_running(netdev))
5077 		e1000_up(adapter);
5078 
5079 	netif_device_attach(netdev);
5080 
5081 	return 0;
5082 }
5083 #endif
5084 
5085 static void e1000_shutdown(struct pci_dev *pdev)
5086 {
5087 	bool wake;
5088 
5089 	__e1000_shutdown(pdev, &wake);
5090 
5091 	if (system_state == SYSTEM_POWER_OFF) {
5092 		pci_wake_from_d3(pdev, wake);
5093 		pci_set_power_state(pdev, PCI_D3hot);
5094 	}
5095 }
5096 
5097 #ifdef CONFIG_NET_POLL_CONTROLLER
5098 /* Polling 'interrupt' - used by things like netconsole to send skbs
5099  * without having to re-enable interrupts. It's not called while
5100  * the interrupt routine is executing.
5101  */
5102 static void e1000_netpoll(struct net_device *netdev)
5103 {
5104 	struct e1000_adapter *adapter = netdev_priv(netdev);
5105 
5106 	disable_irq(adapter->pdev->irq);
5107 	e1000_intr(adapter->pdev->irq, netdev);
5108 	enable_irq(adapter->pdev->irq);
5109 }
5110 #endif
5111 
5112 /**
5113  * e1000_io_error_detected - called when PCI error is detected
5114  * @pdev: Pointer to PCI device
5115  * @state: The current pci connection state
5116  *
5117  * This function is called after a PCI bus error affecting
5118  * this device has been detected.
5119  */
5120 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5121 						pci_channel_state_t state)
5122 {
5123 	struct net_device *netdev = pci_get_drvdata(pdev);
5124 	struct e1000_adapter *adapter = netdev_priv(netdev);
5125 
5126 	netif_device_detach(netdev);
5127 
5128 	if (state == pci_channel_io_perm_failure)
5129 		return PCI_ERS_RESULT_DISCONNECT;
5130 
5131 	if (netif_running(netdev))
5132 		e1000_down(adapter);
5133 	pci_disable_device(pdev);
5134 
5135 	/* Request a slot slot reset. */
5136 	return PCI_ERS_RESULT_NEED_RESET;
5137 }
5138 
5139 /**
5140  * e1000_io_slot_reset - called after the pci bus has been reset.
5141  * @pdev: Pointer to PCI device
5142  *
5143  * Restart the card from scratch, as if from a cold-boot. Implementation
5144  * resembles the first-half of the e1000_resume routine.
5145  */
5146 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5147 {
5148 	struct net_device *netdev = pci_get_drvdata(pdev);
5149 	struct e1000_adapter *adapter = netdev_priv(netdev);
5150 	struct e1000_hw *hw = &adapter->hw;
5151 	int err;
5152 
5153 	if (adapter->need_ioport)
5154 		err = pci_enable_device(pdev);
5155 	else
5156 		err = pci_enable_device_mem(pdev);
5157 	if (err) {
5158 		pr_err("Cannot re-enable PCI device after reset.\n");
5159 		return PCI_ERS_RESULT_DISCONNECT;
5160 	}
5161 	pci_set_master(pdev);
5162 
5163 	pci_enable_wake(pdev, PCI_D3hot, 0);
5164 	pci_enable_wake(pdev, PCI_D3cold, 0);
5165 
5166 	e1000_reset(adapter);
5167 	ew32(WUS, ~0);
5168 
5169 	return PCI_ERS_RESULT_RECOVERED;
5170 }
5171 
5172 /**
5173  * e1000_io_resume - called when traffic can start flowing again.
5174  * @pdev: Pointer to PCI device
5175  *
5176  * This callback is called when the error recovery driver tells us that
5177  * its OK to resume normal operation. Implementation resembles the
5178  * second-half of the e1000_resume routine.
5179  */
5180 static void e1000_io_resume(struct pci_dev *pdev)
5181 {
5182 	struct net_device *netdev = pci_get_drvdata(pdev);
5183 	struct e1000_adapter *adapter = netdev_priv(netdev);
5184 
5185 	e1000_init_manageability(adapter);
5186 
5187 	if (netif_running(netdev)) {
5188 		if (e1000_up(adapter)) {
5189 			pr_info("can't bring device back up after reset\n");
5190 			return;
5191 		}
5192 	}
5193 
5194 	netif_device_attach(netdev);
5195 }
5196 
5197 /* e1000_main.c */
5198