1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2006 Intel Corporation. */ 3 4 #include "e1000.h" 5 #include <net/ip6_checksum.h> 6 #include <linux/io.h> 7 #include <linux/prefetch.h> 8 #include <linux/bitops.h> 9 #include <linux/if_vlan.h> 10 11 char e1000_driver_name[] = "e1000"; 12 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; 13 #define DRV_VERSION "7.3.21-k8-NAPI" 14 const char e1000_driver_version[] = DRV_VERSION; 15 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; 16 17 /* e1000_pci_tbl - PCI Device ID Table 18 * 19 * Last entry must be all 0s 20 * 21 * Macro expands to... 22 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} 23 */ 24 static const struct pci_device_id e1000_pci_tbl[] = { 25 INTEL_E1000_ETHERNET_DEVICE(0x1000), 26 INTEL_E1000_ETHERNET_DEVICE(0x1001), 27 INTEL_E1000_ETHERNET_DEVICE(0x1004), 28 INTEL_E1000_ETHERNET_DEVICE(0x1008), 29 INTEL_E1000_ETHERNET_DEVICE(0x1009), 30 INTEL_E1000_ETHERNET_DEVICE(0x100C), 31 INTEL_E1000_ETHERNET_DEVICE(0x100D), 32 INTEL_E1000_ETHERNET_DEVICE(0x100E), 33 INTEL_E1000_ETHERNET_DEVICE(0x100F), 34 INTEL_E1000_ETHERNET_DEVICE(0x1010), 35 INTEL_E1000_ETHERNET_DEVICE(0x1011), 36 INTEL_E1000_ETHERNET_DEVICE(0x1012), 37 INTEL_E1000_ETHERNET_DEVICE(0x1013), 38 INTEL_E1000_ETHERNET_DEVICE(0x1014), 39 INTEL_E1000_ETHERNET_DEVICE(0x1015), 40 INTEL_E1000_ETHERNET_DEVICE(0x1016), 41 INTEL_E1000_ETHERNET_DEVICE(0x1017), 42 INTEL_E1000_ETHERNET_DEVICE(0x1018), 43 INTEL_E1000_ETHERNET_DEVICE(0x1019), 44 INTEL_E1000_ETHERNET_DEVICE(0x101A), 45 INTEL_E1000_ETHERNET_DEVICE(0x101D), 46 INTEL_E1000_ETHERNET_DEVICE(0x101E), 47 INTEL_E1000_ETHERNET_DEVICE(0x1026), 48 INTEL_E1000_ETHERNET_DEVICE(0x1027), 49 INTEL_E1000_ETHERNET_DEVICE(0x1028), 50 INTEL_E1000_ETHERNET_DEVICE(0x1075), 51 INTEL_E1000_ETHERNET_DEVICE(0x1076), 52 INTEL_E1000_ETHERNET_DEVICE(0x1077), 53 INTEL_E1000_ETHERNET_DEVICE(0x1078), 54 INTEL_E1000_ETHERNET_DEVICE(0x1079), 55 INTEL_E1000_ETHERNET_DEVICE(0x107A), 56 INTEL_E1000_ETHERNET_DEVICE(0x107B), 57 INTEL_E1000_ETHERNET_DEVICE(0x107C), 58 INTEL_E1000_ETHERNET_DEVICE(0x108A), 59 INTEL_E1000_ETHERNET_DEVICE(0x1099), 60 INTEL_E1000_ETHERNET_DEVICE(0x10B5), 61 INTEL_E1000_ETHERNET_DEVICE(0x2E6E), 62 /* required last entry */ 63 {0,} 64 }; 65 66 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 67 68 int e1000_up(struct e1000_adapter *adapter); 69 void e1000_down(struct e1000_adapter *adapter); 70 void e1000_reinit_locked(struct e1000_adapter *adapter); 71 void e1000_reset(struct e1000_adapter *adapter); 72 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); 73 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); 74 void e1000_free_all_tx_resources(struct e1000_adapter *adapter); 75 void e1000_free_all_rx_resources(struct e1000_adapter *adapter); 76 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 77 struct e1000_tx_ring *txdr); 78 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 79 struct e1000_rx_ring *rxdr); 80 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 81 struct e1000_tx_ring *tx_ring); 82 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 83 struct e1000_rx_ring *rx_ring); 84 void e1000_update_stats(struct e1000_adapter *adapter); 85 86 static int e1000_init_module(void); 87 static void e1000_exit_module(void); 88 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); 89 static void e1000_remove(struct pci_dev *pdev); 90 static int e1000_alloc_queues(struct e1000_adapter *adapter); 91 static int e1000_sw_init(struct e1000_adapter *adapter); 92 int e1000_open(struct net_device *netdev); 93 int e1000_close(struct net_device *netdev); 94 static void e1000_configure_tx(struct e1000_adapter *adapter); 95 static void e1000_configure_rx(struct e1000_adapter *adapter); 96 static void e1000_setup_rctl(struct e1000_adapter *adapter); 97 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); 98 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); 99 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 100 struct e1000_tx_ring *tx_ring); 101 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 102 struct e1000_rx_ring *rx_ring); 103 static void e1000_set_rx_mode(struct net_device *netdev); 104 static void e1000_update_phy_info_task(struct work_struct *work); 105 static void e1000_watchdog(struct work_struct *work); 106 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work); 107 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 108 struct net_device *netdev); 109 static int e1000_change_mtu(struct net_device *netdev, int new_mtu); 110 static int e1000_set_mac(struct net_device *netdev, void *p); 111 static irqreturn_t e1000_intr(int irq, void *data); 112 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 113 struct e1000_tx_ring *tx_ring); 114 static int e1000_clean(struct napi_struct *napi, int budget); 115 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 116 struct e1000_rx_ring *rx_ring, 117 int *work_done, int work_to_do); 118 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 119 struct e1000_rx_ring *rx_ring, 120 int *work_done, int work_to_do); 121 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter, 122 struct e1000_rx_ring *rx_ring, 123 int cleaned_count) 124 { 125 } 126 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 127 struct e1000_rx_ring *rx_ring, 128 int cleaned_count); 129 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 130 struct e1000_rx_ring *rx_ring, 131 int cleaned_count); 132 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); 133 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 134 int cmd); 135 static void e1000_enter_82542_rst(struct e1000_adapter *adapter); 136 static void e1000_leave_82542_rst(struct e1000_adapter *adapter); 137 static void e1000_tx_timeout(struct net_device *dev); 138 static void e1000_reset_task(struct work_struct *work); 139 static void e1000_smartspeed(struct e1000_adapter *adapter); 140 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 141 struct sk_buff *skb); 142 143 static bool e1000_vlan_used(struct e1000_adapter *adapter); 144 static void e1000_vlan_mode(struct net_device *netdev, 145 netdev_features_t features); 146 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 147 bool filter_on); 148 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 149 __be16 proto, u16 vid); 150 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 151 __be16 proto, u16 vid); 152 static void e1000_restore_vlan(struct e1000_adapter *adapter); 153 154 #ifdef CONFIG_PM 155 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); 156 static int e1000_resume(struct pci_dev *pdev); 157 #endif 158 static void e1000_shutdown(struct pci_dev *pdev); 159 160 #ifdef CONFIG_NET_POLL_CONTROLLER 161 /* for netdump / net console */ 162 static void e1000_netpoll (struct net_device *netdev); 163 #endif 164 165 #define COPYBREAK_DEFAULT 256 166 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; 167 module_param(copybreak, uint, 0644); 168 MODULE_PARM_DESC(copybreak, 169 "Maximum size of packet that is copied to a new buffer on receive"); 170 171 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 172 pci_channel_state_t state); 173 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); 174 static void e1000_io_resume(struct pci_dev *pdev); 175 176 static const struct pci_error_handlers e1000_err_handler = { 177 .error_detected = e1000_io_error_detected, 178 .slot_reset = e1000_io_slot_reset, 179 .resume = e1000_io_resume, 180 }; 181 182 static struct pci_driver e1000_driver = { 183 .name = e1000_driver_name, 184 .id_table = e1000_pci_tbl, 185 .probe = e1000_probe, 186 .remove = e1000_remove, 187 #ifdef CONFIG_PM 188 /* Power Management Hooks */ 189 .suspend = e1000_suspend, 190 .resume = e1000_resume, 191 #endif 192 .shutdown = e1000_shutdown, 193 .err_handler = &e1000_err_handler 194 }; 195 196 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 197 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 198 MODULE_LICENSE("GPL v2"); 199 MODULE_VERSION(DRV_VERSION); 200 201 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 202 static int debug = -1; 203 module_param(debug, int, 0); 204 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 205 206 /** 207 * e1000_get_hw_dev - return device 208 * used by hardware layer to print debugging information 209 * 210 **/ 211 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) 212 { 213 struct e1000_adapter *adapter = hw->back; 214 return adapter->netdev; 215 } 216 217 /** 218 * e1000_init_module - Driver Registration Routine 219 * 220 * e1000_init_module is the first routine called when the driver is 221 * loaded. All it does is register with the PCI subsystem. 222 **/ 223 static int __init e1000_init_module(void) 224 { 225 int ret; 226 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version); 227 228 pr_info("%s\n", e1000_copyright); 229 230 ret = pci_register_driver(&e1000_driver); 231 if (copybreak != COPYBREAK_DEFAULT) { 232 if (copybreak == 0) 233 pr_info("copybreak disabled\n"); 234 else 235 pr_info("copybreak enabled for " 236 "packets <= %u bytes\n", copybreak); 237 } 238 return ret; 239 } 240 241 module_init(e1000_init_module); 242 243 /** 244 * e1000_exit_module - Driver Exit Cleanup Routine 245 * 246 * e1000_exit_module is called just before the driver is removed 247 * from memory. 248 **/ 249 static void __exit e1000_exit_module(void) 250 { 251 pci_unregister_driver(&e1000_driver); 252 } 253 254 module_exit(e1000_exit_module); 255 256 static int e1000_request_irq(struct e1000_adapter *adapter) 257 { 258 struct net_device *netdev = adapter->netdev; 259 irq_handler_t handler = e1000_intr; 260 int irq_flags = IRQF_SHARED; 261 int err; 262 263 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, 264 netdev); 265 if (err) { 266 e_err(probe, "Unable to allocate interrupt Error: %d\n", err); 267 } 268 269 return err; 270 } 271 272 static void e1000_free_irq(struct e1000_adapter *adapter) 273 { 274 struct net_device *netdev = adapter->netdev; 275 276 free_irq(adapter->pdev->irq, netdev); 277 } 278 279 /** 280 * e1000_irq_disable - Mask off interrupt generation on the NIC 281 * @adapter: board private structure 282 **/ 283 static void e1000_irq_disable(struct e1000_adapter *adapter) 284 { 285 struct e1000_hw *hw = &adapter->hw; 286 287 ew32(IMC, ~0); 288 E1000_WRITE_FLUSH(); 289 synchronize_irq(adapter->pdev->irq); 290 } 291 292 /** 293 * e1000_irq_enable - Enable default interrupt generation settings 294 * @adapter: board private structure 295 **/ 296 static void e1000_irq_enable(struct e1000_adapter *adapter) 297 { 298 struct e1000_hw *hw = &adapter->hw; 299 300 ew32(IMS, IMS_ENABLE_MASK); 301 E1000_WRITE_FLUSH(); 302 } 303 304 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 305 { 306 struct e1000_hw *hw = &adapter->hw; 307 struct net_device *netdev = adapter->netdev; 308 u16 vid = hw->mng_cookie.vlan_id; 309 u16 old_vid = adapter->mng_vlan_id; 310 311 if (!e1000_vlan_used(adapter)) 312 return; 313 314 if (!test_bit(vid, adapter->active_vlans)) { 315 if (hw->mng_cookie.status & 316 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { 317 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); 318 adapter->mng_vlan_id = vid; 319 } else { 320 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 321 } 322 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && 323 (vid != old_vid) && 324 !test_bit(old_vid, adapter->active_vlans)) 325 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 326 old_vid); 327 } else { 328 adapter->mng_vlan_id = vid; 329 } 330 } 331 332 static void e1000_init_manageability(struct e1000_adapter *adapter) 333 { 334 struct e1000_hw *hw = &adapter->hw; 335 336 if (adapter->en_mng_pt) { 337 u32 manc = er32(MANC); 338 339 /* disable hardware interception of ARP */ 340 manc &= ~(E1000_MANC_ARP_EN); 341 342 ew32(MANC, manc); 343 } 344 } 345 346 static void e1000_release_manageability(struct e1000_adapter *adapter) 347 { 348 struct e1000_hw *hw = &adapter->hw; 349 350 if (adapter->en_mng_pt) { 351 u32 manc = er32(MANC); 352 353 /* re-enable hardware interception of ARP */ 354 manc |= E1000_MANC_ARP_EN; 355 356 ew32(MANC, manc); 357 } 358 } 359 360 /** 361 * e1000_configure - configure the hardware for RX and TX 362 * @adapter = private board structure 363 **/ 364 static void e1000_configure(struct e1000_adapter *adapter) 365 { 366 struct net_device *netdev = adapter->netdev; 367 int i; 368 369 e1000_set_rx_mode(netdev); 370 371 e1000_restore_vlan(adapter); 372 e1000_init_manageability(adapter); 373 374 e1000_configure_tx(adapter); 375 e1000_setup_rctl(adapter); 376 e1000_configure_rx(adapter); 377 /* call E1000_DESC_UNUSED which always leaves 378 * at least 1 descriptor unused to make sure 379 * next_to_use != next_to_clean 380 */ 381 for (i = 0; i < adapter->num_rx_queues; i++) { 382 struct e1000_rx_ring *ring = &adapter->rx_ring[i]; 383 adapter->alloc_rx_buf(adapter, ring, 384 E1000_DESC_UNUSED(ring)); 385 } 386 } 387 388 int e1000_up(struct e1000_adapter *adapter) 389 { 390 struct e1000_hw *hw = &adapter->hw; 391 392 /* hardware has been reset, we need to reload some things */ 393 e1000_configure(adapter); 394 395 clear_bit(__E1000_DOWN, &adapter->flags); 396 397 napi_enable(&adapter->napi); 398 399 e1000_irq_enable(adapter); 400 401 netif_wake_queue(adapter->netdev); 402 403 /* fire a link change interrupt to start the watchdog */ 404 ew32(ICS, E1000_ICS_LSC); 405 return 0; 406 } 407 408 /** 409 * e1000_power_up_phy - restore link in case the phy was powered down 410 * @adapter: address of board private structure 411 * 412 * The phy may be powered down to save power and turn off link when the 413 * driver is unloaded and wake on lan is not enabled (among others) 414 * *** this routine MUST be followed by a call to e1000_reset *** 415 **/ 416 void e1000_power_up_phy(struct e1000_adapter *adapter) 417 { 418 struct e1000_hw *hw = &adapter->hw; 419 u16 mii_reg = 0; 420 421 /* Just clear the power down bit to wake the phy back up */ 422 if (hw->media_type == e1000_media_type_copper) { 423 /* according to the manual, the phy will retain its 424 * settings across a power-down/up cycle 425 */ 426 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 427 mii_reg &= ~MII_CR_POWER_DOWN; 428 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 429 } 430 } 431 432 static void e1000_power_down_phy(struct e1000_adapter *adapter) 433 { 434 struct e1000_hw *hw = &adapter->hw; 435 436 /* Power down the PHY so no link is implied when interface is down * 437 * The PHY cannot be powered down if any of the following is true * 438 * (a) WoL is enabled 439 * (b) AMT is active 440 * (c) SoL/IDER session is active 441 */ 442 if (!adapter->wol && hw->mac_type >= e1000_82540 && 443 hw->media_type == e1000_media_type_copper) { 444 u16 mii_reg = 0; 445 446 switch (hw->mac_type) { 447 case e1000_82540: 448 case e1000_82545: 449 case e1000_82545_rev_3: 450 case e1000_82546: 451 case e1000_ce4100: 452 case e1000_82546_rev_3: 453 case e1000_82541: 454 case e1000_82541_rev_2: 455 case e1000_82547: 456 case e1000_82547_rev_2: 457 if (er32(MANC) & E1000_MANC_SMBUS_EN) 458 goto out; 459 break; 460 default: 461 goto out; 462 } 463 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 464 mii_reg |= MII_CR_POWER_DOWN; 465 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 466 msleep(1); 467 } 468 out: 469 return; 470 } 471 472 static void e1000_down_and_stop(struct e1000_adapter *adapter) 473 { 474 set_bit(__E1000_DOWN, &adapter->flags); 475 476 cancel_delayed_work_sync(&adapter->watchdog_task); 477 478 /* 479 * Since the watchdog task can reschedule other tasks, we should cancel 480 * it first, otherwise we can run into the situation when a work is 481 * still running after the adapter has been turned down. 482 */ 483 484 cancel_delayed_work_sync(&adapter->phy_info_task); 485 cancel_delayed_work_sync(&adapter->fifo_stall_task); 486 487 /* Only kill reset task if adapter is not resetting */ 488 if (!test_bit(__E1000_RESETTING, &adapter->flags)) 489 cancel_work_sync(&adapter->reset_task); 490 } 491 492 void e1000_down(struct e1000_adapter *adapter) 493 { 494 struct e1000_hw *hw = &adapter->hw; 495 struct net_device *netdev = adapter->netdev; 496 u32 rctl, tctl; 497 498 /* disable receives in the hardware */ 499 rctl = er32(RCTL); 500 ew32(RCTL, rctl & ~E1000_RCTL_EN); 501 /* flush and sleep below */ 502 503 netif_tx_disable(netdev); 504 505 /* disable transmits in the hardware */ 506 tctl = er32(TCTL); 507 tctl &= ~E1000_TCTL_EN; 508 ew32(TCTL, tctl); 509 /* flush both disables and wait for them to finish */ 510 E1000_WRITE_FLUSH(); 511 msleep(10); 512 513 /* Set the carrier off after transmits have been disabled in the 514 * hardware, to avoid race conditions with e1000_watchdog() (which 515 * may be running concurrently to us, checking for the carrier 516 * bit to decide whether it should enable transmits again). Such 517 * a race condition would result into transmission being disabled 518 * in the hardware until the next IFF_DOWN+IFF_UP cycle. 519 */ 520 netif_carrier_off(netdev); 521 522 napi_disable(&adapter->napi); 523 524 e1000_irq_disable(adapter); 525 526 /* Setting DOWN must be after irq_disable to prevent 527 * a screaming interrupt. Setting DOWN also prevents 528 * tasks from rescheduling. 529 */ 530 e1000_down_and_stop(adapter); 531 532 adapter->link_speed = 0; 533 adapter->link_duplex = 0; 534 535 e1000_reset(adapter); 536 e1000_clean_all_tx_rings(adapter); 537 e1000_clean_all_rx_rings(adapter); 538 } 539 540 void e1000_reinit_locked(struct e1000_adapter *adapter) 541 { 542 WARN_ON(in_interrupt()); 543 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 544 msleep(1); 545 e1000_down(adapter); 546 e1000_up(adapter); 547 clear_bit(__E1000_RESETTING, &adapter->flags); 548 } 549 550 void e1000_reset(struct e1000_adapter *adapter) 551 { 552 struct e1000_hw *hw = &adapter->hw; 553 u32 pba = 0, tx_space, min_tx_space, min_rx_space; 554 bool legacy_pba_adjust = false; 555 u16 hwm; 556 557 /* Repartition Pba for greater than 9k mtu 558 * To take effect CTRL.RST is required. 559 */ 560 561 switch (hw->mac_type) { 562 case e1000_82542_rev2_0: 563 case e1000_82542_rev2_1: 564 case e1000_82543: 565 case e1000_82544: 566 case e1000_82540: 567 case e1000_82541: 568 case e1000_82541_rev_2: 569 legacy_pba_adjust = true; 570 pba = E1000_PBA_48K; 571 break; 572 case e1000_82545: 573 case e1000_82545_rev_3: 574 case e1000_82546: 575 case e1000_ce4100: 576 case e1000_82546_rev_3: 577 pba = E1000_PBA_48K; 578 break; 579 case e1000_82547: 580 case e1000_82547_rev_2: 581 legacy_pba_adjust = true; 582 pba = E1000_PBA_30K; 583 break; 584 case e1000_undefined: 585 case e1000_num_macs: 586 break; 587 } 588 589 if (legacy_pba_adjust) { 590 if (hw->max_frame_size > E1000_RXBUFFER_8192) 591 pba -= 8; /* allocate more FIFO for Tx */ 592 593 if (hw->mac_type == e1000_82547) { 594 adapter->tx_fifo_head = 0; 595 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; 596 adapter->tx_fifo_size = 597 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; 598 atomic_set(&adapter->tx_fifo_stall, 0); 599 } 600 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { 601 /* adjust PBA for jumbo frames */ 602 ew32(PBA, pba); 603 604 /* To maintain wire speed transmits, the Tx FIFO should be 605 * large enough to accommodate two full transmit packets, 606 * rounded up to the next 1KB and expressed in KB. Likewise, 607 * the Rx FIFO should be large enough to accommodate at least 608 * one full receive packet and is similarly rounded up and 609 * expressed in KB. 610 */ 611 pba = er32(PBA); 612 /* upper 16 bits has Tx packet buffer allocation size in KB */ 613 tx_space = pba >> 16; 614 /* lower 16 bits has Rx packet buffer allocation size in KB */ 615 pba &= 0xffff; 616 /* the Tx fifo also stores 16 bytes of information about the Tx 617 * but don't include ethernet FCS because hardware appends it 618 */ 619 min_tx_space = (hw->max_frame_size + 620 sizeof(struct e1000_tx_desc) - 621 ETH_FCS_LEN) * 2; 622 min_tx_space = ALIGN(min_tx_space, 1024); 623 min_tx_space >>= 10; 624 /* software strips receive CRC, so leave room for it */ 625 min_rx_space = hw->max_frame_size; 626 min_rx_space = ALIGN(min_rx_space, 1024); 627 min_rx_space >>= 10; 628 629 /* If current Tx allocation is less than the min Tx FIFO size, 630 * and the min Tx FIFO size is less than the current Rx FIFO 631 * allocation, take space away from current Rx allocation 632 */ 633 if (tx_space < min_tx_space && 634 ((min_tx_space - tx_space) < pba)) { 635 pba = pba - (min_tx_space - tx_space); 636 637 /* PCI/PCIx hardware has PBA alignment constraints */ 638 switch (hw->mac_type) { 639 case e1000_82545 ... e1000_82546_rev_3: 640 pba &= ~(E1000_PBA_8K - 1); 641 break; 642 default: 643 break; 644 } 645 646 /* if short on Rx space, Rx wins and must trump Tx 647 * adjustment or use Early Receive if available 648 */ 649 if (pba < min_rx_space) 650 pba = min_rx_space; 651 } 652 } 653 654 ew32(PBA, pba); 655 656 /* flow control settings: 657 * The high water mark must be low enough to fit one full frame 658 * (or the size used for early receive) above it in the Rx FIFO. 659 * Set it to the lower of: 660 * - 90% of the Rx FIFO size, and 661 * - the full Rx FIFO size minus the early receive size (for parts 662 * with ERT support assuming ERT set to E1000_ERT_2048), or 663 * - the full Rx FIFO size minus one full frame 664 */ 665 hwm = min(((pba << 10) * 9 / 10), 666 ((pba << 10) - hw->max_frame_size)); 667 668 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ 669 hw->fc_low_water = hw->fc_high_water - 8; 670 hw->fc_pause_time = E1000_FC_PAUSE_TIME; 671 hw->fc_send_xon = 1; 672 hw->fc = hw->original_fc; 673 674 /* Allow time for pending master requests to run */ 675 e1000_reset_hw(hw); 676 if (hw->mac_type >= e1000_82544) 677 ew32(WUC, 0); 678 679 if (e1000_init_hw(hw)) 680 e_dev_err("Hardware Error\n"); 681 e1000_update_mng_vlan(adapter); 682 683 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ 684 if (hw->mac_type >= e1000_82544 && 685 hw->autoneg == 1 && 686 hw->autoneg_advertised == ADVERTISE_1000_FULL) { 687 u32 ctrl = er32(CTRL); 688 /* clear phy power management bit if we are in gig only mode, 689 * which if enabled will attempt negotiation to 100Mb, which 690 * can cause a loss of link at power off or driver unload 691 */ 692 ctrl &= ~E1000_CTRL_SWDPIN3; 693 ew32(CTRL, ctrl); 694 } 695 696 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 697 ew32(VET, ETHERNET_IEEE_VLAN_TYPE); 698 699 e1000_reset_adaptive(hw); 700 e1000_phy_get_info(hw, &adapter->phy_info); 701 702 e1000_release_manageability(adapter); 703 } 704 705 /* Dump the eeprom for users having checksum issues */ 706 static void e1000_dump_eeprom(struct e1000_adapter *adapter) 707 { 708 struct net_device *netdev = adapter->netdev; 709 struct ethtool_eeprom eeprom; 710 const struct ethtool_ops *ops = netdev->ethtool_ops; 711 u8 *data; 712 int i; 713 u16 csum_old, csum_new = 0; 714 715 eeprom.len = ops->get_eeprom_len(netdev); 716 eeprom.offset = 0; 717 718 data = kmalloc(eeprom.len, GFP_KERNEL); 719 if (!data) 720 return; 721 722 ops->get_eeprom(netdev, &eeprom, data); 723 724 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + 725 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); 726 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) 727 csum_new += data[i] + (data[i + 1] << 8); 728 csum_new = EEPROM_SUM - csum_new; 729 730 pr_err("/*********************/\n"); 731 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); 732 pr_err("Calculated : 0x%04x\n", csum_new); 733 734 pr_err("Offset Values\n"); 735 pr_err("======== ======\n"); 736 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); 737 738 pr_err("Include this output when contacting your support provider.\n"); 739 pr_err("This is not a software error! Something bad happened to\n"); 740 pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); 741 pr_err("result in further problems, possibly loss of data,\n"); 742 pr_err("corruption or system hangs!\n"); 743 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); 744 pr_err("which is invalid and requires you to set the proper MAC\n"); 745 pr_err("address manually before continuing to enable this network\n"); 746 pr_err("device. Please inspect the EEPROM dump and report the\n"); 747 pr_err("issue to your hardware vendor or Intel Customer Support.\n"); 748 pr_err("/*********************/\n"); 749 750 kfree(data); 751 } 752 753 /** 754 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not 755 * @pdev: PCI device information struct 756 * 757 * Return true if an adapter needs ioport resources 758 **/ 759 static int e1000_is_need_ioport(struct pci_dev *pdev) 760 { 761 switch (pdev->device) { 762 case E1000_DEV_ID_82540EM: 763 case E1000_DEV_ID_82540EM_LOM: 764 case E1000_DEV_ID_82540EP: 765 case E1000_DEV_ID_82540EP_LOM: 766 case E1000_DEV_ID_82540EP_LP: 767 case E1000_DEV_ID_82541EI: 768 case E1000_DEV_ID_82541EI_MOBILE: 769 case E1000_DEV_ID_82541ER: 770 case E1000_DEV_ID_82541ER_LOM: 771 case E1000_DEV_ID_82541GI: 772 case E1000_DEV_ID_82541GI_LF: 773 case E1000_DEV_ID_82541GI_MOBILE: 774 case E1000_DEV_ID_82544EI_COPPER: 775 case E1000_DEV_ID_82544EI_FIBER: 776 case E1000_DEV_ID_82544GC_COPPER: 777 case E1000_DEV_ID_82544GC_LOM: 778 case E1000_DEV_ID_82545EM_COPPER: 779 case E1000_DEV_ID_82545EM_FIBER: 780 case E1000_DEV_ID_82546EB_COPPER: 781 case E1000_DEV_ID_82546EB_FIBER: 782 case E1000_DEV_ID_82546EB_QUAD_COPPER: 783 return true; 784 default: 785 return false; 786 } 787 } 788 789 static netdev_features_t e1000_fix_features(struct net_device *netdev, 790 netdev_features_t features) 791 { 792 /* Since there is no support for separate Rx/Tx vlan accel 793 * enable/disable make sure Tx flag is always in same state as Rx. 794 */ 795 if (features & NETIF_F_HW_VLAN_CTAG_RX) 796 features |= NETIF_F_HW_VLAN_CTAG_TX; 797 else 798 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 799 800 return features; 801 } 802 803 static int e1000_set_features(struct net_device *netdev, 804 netdev_features_t features) 805 { 806 struct e1000_adapter *adapter = netdev_priv(netdev); 807 netdev_features_t changed = features ^ netdev->features; 808 809 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 810 e1000_vlan_mode(netdev, features); 811 812 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL))) 813 return 0; 814 815 netdev->features = features; 816 adapter->rx_csum = !!(features & NETIF_F_RXCSUM); 817 818 if (netif_running(netdev)) 819 e1000_reinit_locked(adapter); 820 else 821 e1000_reset(adapter); 822 823 return 0; 824 } 825 826 static const struct net_device_ops e1000_netdev_ops = { 827 .ndo_open = e1000_open, 828 .ndo_stop = e1000_close, 829 .ndo_start_xmit = e1000_xmit_frame, 830 .ndo_set_rx_mode = e1000_set_rx_mode, 831 .ndo_set_mac_address = e1000_set_mac, 832 .ndo_tx_timeout = e1000_tx_timeout, 833 .ndo_change_mtu = e1000_change_mtu, 834 .ndo_do_ioctl = e1000_ioctl, 835 .ndo_validate_addr = eth_validate_addr, 836 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, 837 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, 838 #ifdef CONFIG_NET_POLL_CONTROLLER 839 .ndo_poll_controller = e1000_netpoll, 840 #endif 841 .ndo_fix_features = e1000_fix_features, 842 .ndo_set_features = e1000_set_features, 843 }; 844 845 /** 846 * e1000_init_hw_struct - initialize members of hw struct 847 * @adapter: board private struct 848 * @hw: structure used by e1000_hw.c 849 * 850 * Factors out initialization of the e1000_hw struct to its own function 851 * that can be called very early at init (just after struct allocation). 852 * Fields are initialized based on PCI device information and 853 * OS network device settings (MTU size). 854 * Returns negative error codes if MAC type setup fails. 855 */ 856 static int e1000_init_hw_struct(struct e1000_adapter *adapter, 857 struct e1000_hw *hw) 858 { 859 struct pci_dev *pdev = adapter->pdev; 860 861 /* PCI config space info */ 862 hw->vendor_id = pdev->vendor; 863 hw->device_id = pdev->device; 864 hw->subsystem_vendor_id = pdev->subsystem_vendor; 865 hw->subsystem_id = pdev->subsystem_device; 866 hw->revision_id = pdev->revision; 867 868 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); 869 870 hw->max_frame_size = adapter->netdev->mtu + 871 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; 872 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; 873 874 /* identify the MAC */ 875 if (e1000_set_mac_type(hw)) { 876 e_err(probe, "Unknown MAC Type\n"); 877 return -EIO; 878 } 879 880 switch (hw->mac_type) { 881 default: 882 break; 883 case e1000_82541: 884 case e1000_82547: 885 case e1000_82541_rev_2: 886 case e1000_82547_rev_2: 887 hw->phy_init_script = 1; 888 break; 889 } 890 891 e1000_set_media_type(hw); 892 e1000_get_bus_info(hw); 893 894 hw->wait_autoneg_complete = false; 895 hw->tbi_compatibility_en = true; 896 hw->adaptive_ifs = true; 897 898 /* Copper options */ 899 900 if (hw->media_type == e1000_media_type_copper) { 901 hw->mdix = AUTO_ALL_MODES; 902 hw->disable_polarity_correction = false; 903 hw->master_slave = E1000_MASTER_SLAVE; 904 } 905 906 return 0; 907 } 908 909 /** 910 * e1000_probe - Device Initialization Routine 911 * @pdev: PCI device information struct 912 * @ent: entry in e1000_pci_tbl 913 * 914 * Returns 0 on success, negative on failure 915 * 916 * e1000_probe initializes an adapter identified by a pci_dev structure. 917 * The OS initialization, configuring of the adapter private structure, 918 * and a hardware reset occur. 919 **/ 920 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 921 { 922 struct net_device *netdev; 923 struct e1000_adapter *adapter = NULL; 924 struct e1000_hw *hw; 925 926 static int cards_found; 927 static int global_quad_port_a; /* global ksp3 port a indication */ 928 int i, err, pci_using_dac; 929 u16 eeprom_data = 0; 930 u16 tmp = 0; 931 u16 eeprom_apme_mask = E1000_EEPROM_APME; 932 int bars, need_ioport; 933 bool disable_dev = false; 934 935 /* do not allocate ioport bars when not needed */ 936 need_ioport = e1000_is_need_ioport(pdev); 937 if (need_ioport) { 938 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); 939 err = pci_enable_device(pdev); 940 } else { 941 bars = pci_select_bars(pdev, IORESOURCE_MEM); 942 err = pci_enable_device_mem(pdev); 943 } 944 if (err) 945 return err; 946 947 err = pci_request_selected_regions(pdev, bars, e1000_driver_name); 948 if (err) 949 goto err_pci_reg; 950 951 pci_set_master(pdev); 952 err = pci_save_state(pdev); 953 if (err) 954 goto err_alloc_etherdev; 955 956 err = -ENOMEM; 957 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 958 if (!netdev) 959 goto err_alloc_etherdev; 960 961 SET_NETDEV_DEV(netdev, &pdev->dev); 962 963 pci_set_drvdata(pdev, netdev); 964 adapter = netdev_priv(netdev); 965 adapter->netdev = netdev; 966 adapter->pdev = pdev; 967 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 968 adapter->bars = bars; 969 adapter->need_ioport = need_ioport; 970 971 hw = &adapter->hw; 972 hw->back = adapter; 973 974 err = -EIO; 975 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); 976 if (!hw->hw_addr) 977 goto err_ioremap; 978 979 if (adapter->need_ioport) { 980 for (i = BAR_1; i <= BAR_5; i++) { 981 if (pci_resource_len(pdev, i) == 0) 982 continue; 983 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 984 hw->io_base = pci_resource_start(pdev, i); 985 break; 986 } 987 } 988 } 989 990 /* make ready for any if (hw->...) below */ 991 err = e1000_init_hw_struct(adapter, hw); 992 if (err) 993 goto err_sw_init; 994 995 /* there is a workaround being applied below that limits 996 * 64-bit DMA addresses to 64-bit hardware. There are some 997 * 32-bit adapters that Tx hang when given 64-bit DMA addresses 998 */ 999 pci_using_dac = 0; 1000 if ((hw->bus_type == e1000_bus_type_pcix) && 1001 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 1002 pci_using_dac = 1; 1003 } else { 1004 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1005 if (err) { 1006 pr_err("No usable DMA config, aborting\n"); 1007 goto err_dma; 1008 } 1009 } 1010 1011 netdev->netdev_ops = &e1000_netdev_ops; 1012 e1000_set_ethtool_ops(netdev); 1013 netdev->watchdog_timeo = 5 * HZ; 1014 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); 1015 1016 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 1017 1018 adapter->bd_number = cards_found; 1019 1020 /* setup the private structure */ 1021 1022 err = e1000_sw_init(adapter); 1023 if (err) 1024 goto err_sw_init; 1025 1026 err = -EIO; 1027 if (hw->mac_type == e1000_ce4100) { 1028 hw->ce4100_gbe_mdio_base_virt = 1029 ioremap(pci_resource_start(pdev, BAR_1), 1030 pci_resource_len(pdev, BAR_1)); 1031 1032 if (!hw->ce4100_gbe_mdio_base_virt) 1033 goto err_mdio_ioremap; 1034 } 1035 1036 if (hw->mac_type >= e1000_82543) { 1037 netdev->hw_features = NETIF_F_SG | 1038 NETIF_F_HW_CSUM | 1039 NETIF_F_HW_VLAN_CTAG_RX; 1040 netdev->features = NETIF_F_HW_VLAN_CTAG_TX | 1041 NETIF_F_HW_VLAN_CTAG_FILTER; 1042 } 1043 1044 if ((hw->mac_type >= e1000_82544) && 1045 (hw->mac_type != e1000_82547)) 1046 netdev->hw_features |= NETIF_F_TSO; 1047 1048 netdev->priv_flags |= IFF_SUPP_NOFCS; 1049 1050 netdev->features |= netdev->hw_features; 1051 netdev->hw_features |= (NETIF_F_RXCSUM | 1052 NETIF_F_RXALL | 1053 NETIF_F_RXFCS); 1054 1055 if (pci_using_dac) { 1056 netdev->features |= NETIF_F_HIGHDMA; 1057 netdev->vlan_features |= NETIF_F_HIGHDMA; 1058 } 1059 1060 netdev->vlan_features |= (NETIF_F_TSO | 1061 NETIF_F_HW_CSUM | 1062 NETIF_F_SG); 1063 1064 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */ 1065 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER || 1066 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE) 1067 netdev->priv_flags |= IFF_UNICAST_FLT; 1068 1069 /* MTU range: 46 - 16110 */ 1070 netdev->min_mtu = ETH_ZLEN - ETH_HLEN; 1071 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN); 1072 1073 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); 1074 1075 /* initialize eeprom parameters */ 1076 if (e1000_init_eeprom_params(hw)) { 1077 e_err(probe, "EEPROM initialization failed\n"); 1078 goto err_eeprom; 1079 } 1080 1081 /* before reading the EEPROM, reset the controller to 1082 * put the device in a known good starting state 1083 */ 1084 1085 e1000_reset_hw(hw); 1086 1087 /* make sure the EEPROM is good */ 1088 if (e1000_validate_eeprom_checksum(hw) < 0) { 1089 e_err(probe, "The EEPROM Checksum Is Not Valid\n"); 1090 e1000_dump_eeprom(adapter); 1091 /* set MAC address to all zeroes to invalidate and temporary 1092 * disable this device for the user. This blocks regular 1093 * traffic while still permitting ethtool ioctls from reaching 1094 * the hardware as well as allowing the user to run the 1095 * interface after manually setting a hw addr using 1096 * `ip set address` 1097 */ 1098 memset(hw->mac_addr, 0, netdev->addr_len); 1099 } else { 1100 /* copy the MAC address out of the EEPROM */ 1101 if (e1000_read_mac_addr(hw)) 1102 e_err(probe, "EEPROM Read Error\n"); 1103 } 1104 /* don't block initialization here due to bad MAC address */ 1105 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); 1106 1107 if (!is_valid_ether_addr(netdev->dev_addr)) 1108 e_err(probe, "Invalid MAC Address\n"); 1109 1110 1111 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog); 1112 INIT_DELAYED_WORK(&adapter->fifo_stall_task, 1113 e1000_82547_tx_fifo_stall_task); 1114 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task); 1115 INIT_WORK(&adapter->reset_task, e1000_reset_task); 1116 1117 e1000_check_options(adapter); 1118 1119 /* Initial Wake on LAN setting 1120 * If APM wake is enabled in the EEPROM, 1121 * enable the ACPI Magic Packet filter 1122 */ 1123 1124 switch (hw->mac_type) { 1125 case e1000_82542_rev2_0: 1126 case e1000_82542_rev2_1: 1127 case e1000_82543: 1128 break; 1129 case e1000_82544: 1130 e1000_read_eeprom(hw, 1131 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); 1132 eeprom_apme_mask = E1000_EEPROM_82544_APM; 1133 break; 1134 case e1000_82546: 1135 case e1000_82546_rev_3: 1136 if (er32(STATUS) & E1000_STATUS_FUNC_1) { 1137 e1000_read_eeprom(hw, 1138 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 1139 break; 1140 } 1141 /* Fall Through */ 1142 default: 1143 e1000_read_eeprom(hw, 1144 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 1145 break; 1146 } 1147 if (eeprom_data & eeprom_apme_mask) 1148 adapter->eeprom_wol |= E1000_WUFC_MAG; 1149 1150 /* now that we have the eeprom settings, apply the special cases 1151 * where the eeprom may be wrong or the board simply won't support 1152 * wake on lan on a particular port 1153 */ 1154 switch (pdev->device) { 1155 case E1000_DEV_ID_82546GB_PCIE: 1156 adapter->eeprom_wol = 0; 1157 break; 1158 case E1000_DEV_ID_82546EB_FIBER: 1159 case E1000_DEV_ID_82546GB_FIBER: 1160 /* Wake events only supported on port A for dual fiber 1161 * regardless of eeprom setting 1162 */ 1163 if (er32(STATUS) & E1000_STATUS_FUNC_1) 1164 adapter->eeprom_wol = 0; 1165 break; 1166 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1167 /* if quad port adapter, disable WoL on all but port A */ 1168 if (global_quad_port_a != 0) 1169 adapter->eeprom_wol = 0; 1170 else 1171 adapter->quad_port_a = true; 1172 /* Reset for multiple quad port adapters */ 1173 if (++global_quad_port_a == 4) 1174 global_quad_port_a = 0; 1175 break; 1176 } 1177 1178 /* initialize the wol settings based on the eeprom settings */ 1179 adapter->wol = adapter->eeprom_wol; 1180 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1181 1182 /* Auto detect PHY address */ 1183 if (hw->mac_type == e1000_ce4100) { 1184 for (i = 0; i < 32; i++) { 1185 hw->phy_addr = i; 1186 e1000_read_phy_reg(hw, PHY_ID2, &tmp); 1187 1188 if (tmp != 0 && tmp != 0xFF) 1189 break; 1190 } 1191 1192 if (i >= 32) 1193 goto err_eeprom; 1194 } 1195 1196 /* reset the hardware with the new settings */ 1197 e1000_reset(adapter); 1198 1199 strcpy(netdev->name, "eth%d"); 1200 err = register_netdev(netdev); 1201 if (err) 1202 goto err_register; 1203 1204 e1000_vlan_filter_on_off(adapter, false); 1205 1206 /* print bus type/speed/width info */ 1207 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n", 1208 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), 1209 ((hw->bus_speed == e1000_bus_speed_133) ? 133 : 1210 (hw->bus_speed == e1000_bus_speed_120) ? 120 : 1211 (hw->bus_speed == e1000_bus_speed_100) ? 100 : 1212 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), 1213 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), 1214 netdev->dev_addr); 1215 1216 /* carrier off reporting is important to ethtool even BEFORE open */ 1217 netif_carrier_off(netdev); 1218 1219 e_info(probe, "Intel(R) PRO/1000 Network Connection\n"); 1220 1221 cards_found++; 1222 return 0; 1223 1224 err_register: 1225 err_eeprom: 1226 e1000_phy_hw_reset(hw); 1227 1228 if (hw->flash_address) 1229 iounmap(hw->flash_address); 1230 kfree(adapter->tx_ring); 1231 kfree(adapter->rx_ring); 1232 err_dma: 1233 err_sw_init: 1234 err_mdio_ioremap: 1235 iounmap(hw->ce4100_gbe_mdio_base_virt); 1236 iounmap(hw->hw_addr); 1237 err_ioremap: 1238 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags); 1239 free_netdev(netdev); 1240 err_alloc_etherdev: 1241 pci_release_selected_regions(pdev, bars); 1242 err_pci_reg: 1243 if (!adapter || disable_dev) 1244 pci_disable_device(pdev); 1245 return err; 1246 } 1247 1248 /** 1249 * e1000_remove - Device Removal Routine 1250 * @pdev: PCI device information struct 1251 * 1252 * e1000_remove is called by the PCI subsystem to alert the driver 1253 * that it should release a PCI device. That could be caused by a 1254 * Hot-Plug event, or because the driver is going to be removed from 1255 * memory. 1256 **/ 1257 static void e1000_remove(struct pci_dev *pdev) 1258 { 1259 struct net_device *netdev = pci_get_drvdata(pdev); 1260 struct e1000_adapter *adapter = netdev_priv(netdev); 1261 struct e1000_hw *hw = &adapter->hw; 1262 bool disable_dev; 1263 1264 e1000_down_and_stop(adapter); 1265 e1000_release_manageability(adapter); 1266 1267 unregister_netdev(netdev); 1268 1269 e1000_phy_hw_reset(hw); 1270 1271 kfree(adapter->tx_ring); 1272 kfree(adapter->rx_ring); 1273 1274 if (hw->mac_type == e1000_ce4100) 1275 iounmap(hw->ce4100_gbe_mdio_base_virt); 1276 iounmap(hw->hw_addr); 1277 if (hw->flash_address) 1278 iounmap(hw->flash_address); 1279 pci_release_selected_regions(pdev, adapter->bars); 1280 1281 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags); 1282 free_netdev(netdev); 1283 1284 if (disable_dev) 1285 pci_disable_device(pdev); 1286 } 1287 1288 /** 1289 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 1290 * @adapter: board private structure to initialize 1291 * 1292 * e1000_sw_init initializes the Adapter private data structure. 1293 * e1000_init_hw_struct MUST be called before this function 1294 **/ 1295 static int e1000_sw_init(struct e1000_adapter *adapter) 1296 { 1297 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 1298 1299 adapter->num_tx_queues = 1; 1300 adapter->num_rx_queues = 1; 1301 1302 if (e1000_alloc_queues(adapter)) { 1303 e_err(probe, "Unable to allocate memory for queues\n"); 1304 return -ENOMEM; 1305 } 1306 1307 /* Explicitly disable IRQ since the NIC can be in any state. */ 1308 e1000_irq_disable(adapter); 1309 1310 spin_lock_init(&adapter->stats_lock); 1311 1312 set_bit(__E1000_DOWN, &adapter->flags); 1313 1314 return 0; 1315 } 1316 1317 /** 1318 * e1000_alloc_queues - Allocate memory for all rings 1319 * @adapter: board private structure to initialize 1320 * 1321 * We allocate one ring per queue at run-time since we don't know the 1322 * number of queues at compile-time. 1323 **/ 1324 static int e1000_alloc_queues(struct e1000_adapter *adapter) 1325 { 1326 adapter->tx_ring = kcalloc(adapter->num_tx_queues, 1327 sizeof(struct e1000_tx_ring), GFP_KERNEL); 1328 if (!adapter->tx_ring) 1329 return -ENOMEM; 1330 1331 adapter->rx_ring = kcalloc(adapter->num_rx_queues, 1332 sizeof(struct e1000_rx_ring), GFP_KERNEL); 1333 if (!adapter->rx_ring) { 1334 kfree(adapter->tx_ring); 1335 return -ENOMEM; 1336 } 1337 1338 return E1000_SUCCESS; 1339 } 1340 1341 /** 1342 * e1000_open - Called when a network interface is made active 1343 * @netdev: network interface device structure 1344 * 1345 * Returns 0 on success, negative value on failure 1346 * 1347 * The open entry point is called when a network interface is made 1348 * active by the system (IFF_UP). At this point all resources needed 1349 * for transmit and receive operations are allocated, the interrupt 1350 * handler is registered with the OS, the watchdog task is started, 1351 * and the stack is notified that the interface is ready. 1352 **/ 1353 int e1000_open(struct net_device *netdev) 1354 { 1355 struct e1000_adapter *adapter = netdev_priv(netdev); 1356 struct e1000_hw *hw = &adapter->hw; 1357 int err; 1358 1359 /* disallow open during test */ 1360 if (test_bit(__E1000_TESTING, &adapter->flags)) 1361 return -EBUSY; 1362 1363 netif_carrier_off(netdev); 1364 1365 /* allocate transmit descriptors */ 1366 err = e1000_setup_all_tx_resources(adapter); 1367 if (err) 1368 goto err_setup_tx; 1369 1370 /* allocate receive descriptors */ 1371 err = e1000_setup_all_rx_resources(adapter); 1372 if (err) 1373 goto err_setup_rx; 1374 1375 e1000_power_up_phy(adapter); 1376 1377 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1378 if ((hw->mng_cookie.status & 1379 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { 1380 e1000_update_mng_vlan(adapter); 1381 } 1382 1383 /* before we allocate an interrupt, we must be ready to handle it. 1384 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1385 * as soon as we call pci_request_irq, so we have to setup our 1386 * clean_rx handler before we do so. 1387 */ 1388 e1000_configure(adapter); 1389 1390 err = e1000_request_irq(adapter); 1391 if (err) 1392 goto err_req_irq; 1393 1394 /* From here on the code is the same as e1000_up() */ 1395 clear_bit(__E1000_DOWN, &adapter->flags); 1396 1397 napi_enable(&adapter->napi); 1398 1399 e1000_irq_enable(adapter); 1400 1401 netif_start_queue(netdev); 1402 1403 /* fire a link status change interrupt to start the watchdog */ 1404 ew32(ICS, E1000_ICS_LSC); 1405 1406 return E1000_SUCCESS; 1407 1408 err_req_irq: 1409 e1000_power_down_phy(adapter); 1410 e1000_free_all_rx_resources(adapter); 1411 err_setup_rx: 1412 e1000_free_all_tx_resources(adapter); 1413 err_setup_tx: 1414 e1000_reset(adapter); 1415 1416 return err; 1417 } 1418 1419 /** 1420 * e1000_close - Disables a network interface 1421 * @netdev: network interface device structure 1422 * 1423 * Returns 0, this is not allowed to fail 1424 * 1425 * The close entry point is called when an interface is de-activated 1426 * by the OS. The hardware is still under the drivers control, but 1427 * needs to be disabled. A global MAC reset is issued to stop the 1428 * hardware, and all transmit and receive resources are freed. 1429 **/ 1430 int e1000_close(struct net_device *netdev) 1431 { 1432 struct e1000_adapter *adapter = netdev_priv(netdev); 1433 struct e1000_hw *hw = &adapter->hw; 1434 int count = E1000_CHECK_RESET_COUNT; 1435 1436 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 1437 usleep_range(10000, 20000); 1438 1439 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 1440 e1000_down(adapter); 1441 e1000_power_down_phy(adapter); 1442 e1000_free_irq(adapter); 1443 1444 e1000_free_all_tx_resources(adapter); 1445 e1000_free_all_rx_resources(adapter); 1446 1447 /* kill manageability vlan ID if supported, but not if a vlan with 1448 * the same ID is registered on the host OS (let 8021q kill it) 1449 */ 1450 if ((hw->mng_cookie.status & 1451 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 1452 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { 1453 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 1454 adapter->mng_vlan_id); 1455 } 1456 1457 return 0; 1458 } 1459 1460 /** 1461 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary 1462 * @adapter: address of board private structure 1463 * @start: address of beginning of memory 1464 * @len: length of memory 1465 **/ 1466 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, 1467 unsigned long len) 1468 { 1469 struct e1000_hw *hw = &adapter->hw; 1470 unsigned long begin = (unsigned long)start; 1471 unsigned long end = begin + len; 1472 1473 /* First rev 82545 and 82546 need to not allow any memory 1474 * write location to cross 64k boundary due to errata 23 1475 */ 1476 if (hw->mac_type == e1000_82545 || 1477 hw->mac_type == e1000_ce4100 || 1478 hw->mac_type == e1000_82546) { 1479 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; 1480 } 1481 1482 return true; 1483 } 1484 1485 /** 1486 * e1000_setup_tx_resources - allocate Tx resources (Descriptors) 1487 * @adapter: board private structure 1488 * @txdr: tx descriptor ring (for a specific queue) to setup 1489 * 1490 * Return 0 on success, negative on failure 1491 **/ 1492 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 1493 struct e1000_tx_ring *txdr) 1494 { 1495 struct pci_dev *pdev = adapter->pdev; 1496 int size; 1497 1498 size = sizeof(struct e1000_tx_buffer) * txdr->count; 1499 txdr->buffer_info = vzalloc(size); 1500 if (!txdr->buffer_info) 1501 return -ENOMEM; 1502 1503 /* round up to nearest 4K */ 1504 1505 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 1506 txdr->size = ALIGN(txdr->size, 4096); 1507 1508 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, 1509 GFP_KERNEL); 1510 if (!txdr->desc) { 1511 setup_tx_desc_die: 1512 vfree(txdr->buffer_info); 1513 return -ENOMEM; 1514 } 1515 1516 /* Fix for errata 23, can't cross 64kB boundary */ 1517 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1518 void *olddesc = txdr->desc; 1519 dma_addr_t olddma = txdr->dma; 1520 e_err(tx_err, "txdr align check failed: %u bytes at %p\n", 1521 txdr->size, txdr->desc); 1522 /* Try again, without freeing the previous */ 1523 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, 1524 &txdr->dma, GFP_KERNEL); 1525 /* Failed allocation, critical failure */ 1526 if (!txdr->desc) { 1527 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1528 olddma); 1529 goto setup_tx_desc_die; 1530 } 1531 1532 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1533 /* give up */ 1534 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, 1535 txdr->dma); 1536 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1537 olddma); 1538 e_err(probe, "Unable to allocate aligned memory " 1539 "for the transmit descriptor ring\n"); 1540 vfree(txdr->buffer_info); 1541 return -ENOMEM; 1542 } else { 1543 /* Free old allocation, new allocation was successful */ 1544 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1545 olddma); 1546 } 1547 } 1548 memset(txdr->desc, 0, txdr->size); 1549 1550 txdr->next_to_use = 0; 1551 txdr->next_to_clean = 0; 1552 1553 return 0; 1554 } 1555 1556 /** 1557 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources 1558 * (Descriptors) for all queues 1559 * @adapter: board private structure 1560 * 1561 * Return 0 on success, negative on failure 1562 **/ 1563 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) 1564 { 1565 int i, err = 0; 1566 1567 for (i = 0; i < adapter->num_tx_queues; i++) { 1568 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); 1569 if (err) { 1570 e_err(probe, "Allocation for Tx Queue %u failed\n", i); 1571 for (i-- ; i >= 0; i--) 1572 e1000_free_tx_resources(adapter, 1573 &adapter->tx_ring[i]); 1574 break; 1575 } 1576 } 1577 1578 return err; 1579 } 1580 1581 /** 1582 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset 1583 * @adapter: board private structure 1584 * 1585 * Configure the Tx unit of the MAC after a reset. 1586 **/ 1587 static void e1000_configure_tx(struct e1000_adapter *adapter) 1588 { 1589 u64 tdba; 1590 struct e1000_hw *hw = &adapter->hw; 1591 u32 tdlen, tctl, tipg; 1592 u32 ipgr1, ipgr2; 1593 1594 /* Setup the HW Tx Head and Tail descriptor pointers */ 1595 1596 switch (adapter->num_tx_queues) { 1597 case 1: 1598 default: 1599 tdba = adapter->tx_ring[0].dma; 1600 tdlen = adapter->tx_ring[0].count * 1601 sizeof(struct e1000_tx_desc); 1602 ew32(TDLEN, tdlen); 1603 ew32(TDBAH, (tdba >> 32)); 1604 ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); 1605 ew32(TDT, 0); 1606 ew32(TDH, 0); 1607 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? 1608 E1000_TDH : E1000_82542_TDH); 1609 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? 1610 E1000_TDT : E1000_82542_TDT); 1611 break; 1612 } 1613 1614 /* Set the default values for the Tx Inter Packet Gap timer */ 1615 if ((hw->media_type == e1000_media_type_fiber || 1616 hw->media_type == e1000_media_type_internal_serdes)) 1617 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 1618 else 1619 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 1620 1621 switch (hw->mac_type) { 1622 case e1000_82542_rev2_0: 1623 case e1000_82542_rev2_1: 1624 tipg = DEFAULT_82542_TIPG_IPGT; 1625 ipgr1 = DEFAULT_82542_TIPG_IPGR1; 1626 ipgr2 = DEFAULT_82542_TIPG_IPGR2; 1627 break; 1628 default: 1629 ipgr1 = DEFAULT_82543_TIPG_IPGR1; 1630 ipgr2 = DEFAULT_82543_TIPG_IPGR2; 1631 break; 1632 } 1633 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; 1634 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; 1635 ew32(TIPG, tipg); 1636 1637 /* Set the Tx Interrupt Delay register */ 1638 1639 ew32(TIDV, adapter->tx_int_delay); 1640 if (hw->mac_type >= e1000_82540) 1641 ew32(TADV, adapter->tx_abs_int_delay); 1642 1643 /* Program the Transmit Control Register */ 1644 1645 tctl = er32(TCTL); 1646 tctl &= ~E1000_TCTL_CT; 1647 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 1648 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 1649 1650 e1000_config_collision_dist(hw); 1651 1652 /* Setup Transmit Descriptor Settings for eop descriptor */ 1653 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 1654 1655 /* only set IDE if we are delaying interrupts using the timers */ 1656 if (adapter->tx_int_delay) 1657 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 1658 1659 if (hw->mac_type < e1000_82543) 1660 adapter->txd_cmd |= E1000_TXD_CMD_RPS; 1661 else 1662 adapter->txd_cmd |= E1000_TXD_CMD_RS; 1663 1664 /* Cache if we're 82544 running in PCI-X because we'll 1665 * need this to apply a workaround later in the send path. 1666 */ 1667 if (hw->mac_type == e1000_82544 && 1668 hw->bus_type == e1000_bus_type_pcix) 1669 adapter->pcix_82544 = true; 1670 1671 ew32(TCTL, tctl); 1672 1673 } 1674 1675 /** 1676 * e1000_setup_rx_resources - allocate Rx resources (Descriptors) 1677 * @adapter: board private structure 1678 * @rxdr: rx descriptor ring (for a specific queue) to setup 1679 * 1680 * Returns 0 on success, negative on failure 1681 **/ 1682 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 1683 struct e1000_rx_ring *rxdr) 1684 { 1685 struct pci_dev *pdev = adapter->pdev; 1686 int size, desc_len; 1687 1688 size = sizeof(struct e1000_rx_buffer) * rxdr->count; 1689 rxdr->buffer_info = vzalloc(size); 1690 if (!rxdr->buffer_info) 1691 return -ENOMEM; 1692 1693 desc_len = sizeof(struct e1000_rx_desc); 1694 1695 /* Round up to nearest 4K */ 1696 1697 rxdr->size = rxdr->count * desc_len; 1698 rxdr->size = ALIGN(rxdr->size, 4096); 1699 1700 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, 1701 GFP_KERNEL); 1702 if (!rxdr->desc) { 1703 setup_rx_desc_die: 1704 vfree(rxdr->buffer_info); 1705 return -ENOMEM; 1706 } 1707 1708 /* Fix for errata 23, can't cross 64kB boundary */ 1709 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1710 void *olddesc = rxdr->desc; 1711 dma_addr_t olddma = rxdr->dma; 1712 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n", 1713 rxdr->size, rxdr->desc); 1714 /* Try again, without freeing the previous */ 1715 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, 1716 &rxdr->dma, GFP_KERNEL); 1717 /* Failed allocation, critical failure */ 1718 if (!rxdr->desc) { 1719 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1720 olddma); 1721 goto setup_rx_desc_die; 1722 } 1723 1724 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1725 /* give up */ 1726 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, 1727 rxdr->dma); 1728 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1729 olddma); 1730 e_err(probe, "Unable to allocate aligned memory for " 1731 "the Rx descriptor ring\n"); 1732 goto setup_rx_desc_die; 1733 } else { 1734 /* Free old allocation, new allocation was successful */ 1735 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1736 olddma); 1737 } 1738 } 1739 memset(rxdr->desc, 0, rxdr->size); 1740 1741 rxdr->next_to_clean = 0; 1742 rxdr->next_to_use = 0; 1743 rxdr->rx_skb_top = NULL; 1744 1745 return 0; 1746 } 1747 1748 /** 1749 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources 1750 * (Descriptors) for all queues 1751 * @adapter: board private structure 1752 * 1753 * Return 0 on success, negative on failure 1754 **/ 1755 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) 1756 { 1757 int i, err = 0; 1758 1759 for (i = 0; i < adapter->num_rx_queues; i++) { 1760 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); 1761 if (err) { 1762 e_err(probe, "Allocation for Rx Queue %u failed\n", i); 1763 for (i-- ; i >= 0; i--) 1764 e1000_free_rx_resources(adapter, 1765 &adapter->rx_ring[i]); 1766 break; 1767 } 1768 } 1769 1770 return err; 1771 } 1772 1773 /** 1774 * e1000_setup_rctl - configure the receive control registers 1775 * @adapter: Board private structure 1776 **/ 1777 static void e1000_setup_rctl(struct e1000_adapter *adapter) 1778 { 1779 struct e1000_hw *hw = &adapter->hw; 1780 u32 rctl; 1781 1782 rctl = er32(RCTL); 1783 1784 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 1785 1786 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO | 1787 E1000_RCTL_RDMTS_HALF | 1788 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); 1789 1790 if (hw->tbi_compatibility_on == 1) 1791 rctl |= E1000_RCTL_SBP; 1792 else 1793 rctl &= ~E1000_RCTL_SBP; 1794 1795 if (adapter->netdev->mtu <= ETH_DATA_LEN) 1796 rctl &= ~E1000_RCTL_LPE; 1797 else 1798 rctl |= E1000_RCTL_LPE; 1799 1800 /* Setup buffer sizes */ 1801 rctl &= ~E1000_RCTL_SZ_4096; 1802 rctl |= E1000_RCTL_BSEX; 1803 switch (adapter->rx_buffer_len) { 1804 case E1000_RXBUFFER_2048: 1805 default: 1806 rctl |= E1000_RCTL_SZ_2048; 1807 rctl &= ~E1000_RCTL_BSEX; 1808 break; 1809 case E1000_RXBUFFER_4096: 1810 rctl |= E1000_RCTL_SZ_4096; 1811 break; 1812 case E1000_RXBUFFER_8192: 1813 rctl |= E1000_RCTL_SZ_8192; 1814 break; 1815 case E1000_RXBUFFER_16384: 1816 rctl |= E1000_RCTL_SZ_16384; 1817 break; 1818 } 1819 1820 /* This is useful for sniffing bad packets. */ 1821 if (adapter->netdev->features & NETIF_F_RXALL) { 1822 /* UPE and MPE will be handled by normal PROMISC logic 1823 * in e1000e_set_rx_mode 1824 */ 1825 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 1826 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 1827 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 1828 1829 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 1830 E1000_RCTL_DPF | /* Allow filtered pause */ 1831 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 1832 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 1833 * and that breaks VLANs. 1834 */ 1835 } 1836 1837 ew32(RCTL, rctl); 1838 } 1839 1840 /** 1841 * e1000_configure_rx - Configure 8254x Receive Unit after Reset 1842 * @adapter: board private structure 1843 * 1844 * Configure the Rx unit of the MAC after a reset. 1845 **/ 1846 static void e1000_configure_rx(struct e1000_adapter *adapter) 1847 { 1848 u64 rdba; 1849 struct e1000_hw *hw = &adapter->hw; 1850 u32 rdlen, rctl, rxcsum; 1851 1852 if (adapter->netdev->mtu > ETH_DATA_LEN) { 1853 rdlen = adapter->rx_ring[0].count * 1854 sizeof(struct e1000_rx_desc); 1855 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 1856 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 1857 } else { 1858 rdlen = adapter->rx_ring[0].count * 1859 sizeof(struct e1000_rx_desc); 1860 adapter->clean_rx = e1000_clean_rx_irq; 1861 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 1862 } 1863 1864 /* disable receives while setting up the descriptors */ 1865 rctl = er32(RCTL); 1866 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1867 1868 /* set the Receive Delay Timer Register */ 1869 ew32(RDTR, adapter->rx_int_delay); 1870 1871 if (hw->mac_type >= e1000_82540) { 1872 ew32(RADV, adapter->rx_abs_int_delay); 1873 if (adapter->itr_setting != 0) 1874 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1875 } 1876 1877 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1878 * the Base and Length of the Rx Descriptor Ring 1879 */ 1880 switch (adapter->num_rx_queues) { 1881 case 1: 1882 default: 1883 rdba = adapter->rx_ring[0].dma; 1884 ew32(RDLEN, rdlen); 1885 ew32(RDBAH, (rdba >> 32)); 1886 ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); 1887 ew32(RDT, 0); 1888 ew32(RDH, 0); 1889 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? 1890 E1000_RDH : E1000_82542_RDH); 1891 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? 1892 E1000_RDT : E1000_82542_RDT); 1893 break; 1894 } 1895 1896 /* Enable 82543 Receive Checksum Offload for TCP and UDP */ 1897 if (hw->mac_type >= e1000_82543) { 1898 rxcsum = er32(RXCSUM); 1899 if (adapter->rx_csum) 1900 rxcsum |= E1000_RXCSUM_TUOFL; 1901 else 1902 /* don't need to clear IPPCSE as it defaults to 0 */ 1903 rxcsum &= ~E1000_RXCSUM_TUOFL; 1904 ew32(RXCSUM, rxcsum); 1905 } 1906 1907 /* Enable Receives */ 1908 ew32(RCTL, rctl | E1000_RCTL_EN); 1909 } 1910 1911 /** 1912 * e1000_free_tx_resources - Free Tx Resources per Queue 1913 * @adapter: board private structure 1914 * @tx_ring: Tx descriptor ring for a specific queue 1915 * 1916 * Free all transmit software resources 1917 **/ 1918 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 1919 struct e1000_tx_ring *tx_ring) 1920 { 1921 struct pci_dev *pdev = adapter->pdev; 1922 1923 e1000_clean_tx_ring(adapter, tx_ring); 1924 1925 vfree(tx_ring->buffer_info); 1926 tx_ring->buffer_info = NULL; 1927 1928 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1929 tx_ring->dma); 1930 1931 tx_ring->desc = NULL; 1932 } 1933 1934 /** 1935 * e1000_free_all_tx_resources - Free Tx Resources for All Queues 1936 * @adapter: board private structure 1937 * 1938 * Free all transmit software resources 1939 **/ 1940 void e1000_free_all_tx_resources(struct e1000_adapter *adapter) 1941 { 1942 int i; 1943 1944 for (i = 0; i < adapter->num_tx_queues; i++) 1945 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); 1946 } 1947 1948 static void 1949 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, 1950 struct e1000_tx_buffer *buffer_info) 1951 { 1952 if (buffer_info->dma) { 1953 if (buffer_info->mapped_as_page) 1954 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, 1955 buffer_info->length, DMA_TO_DEVICE); 1956 else 1957 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1958 buffer_info->length, 1959 DMA_TO_DEVICE); 1960 buffer_info->dma = 0; 1961 } 1962 if (buffer_info->skb) { 1963 dev_kfree_skb_any(buffer_info->skb); 1964 buffer_info->skb = NULL; 1965 } 1966 buffer_info->time_stamp = 0; 1967 /* buffer_info must be completely set up in the transmit path */ 1968 } 1969 1970 /** 1971 * e1000_clean_tx_ring - Free Tx Buffers 1972 * @adapter: board private structure 1973 * @tx_ring: ring to be cleaned 1974 **/ 1975 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 1976 struct e1000_tx_ring *tx_ring) 1977 { 1978 struct e1000_hw *hw = &adapter->hw; 1979 struct e1000_tx_buffer *buffer_info; 1980 unsigned long size; 1981 unsigned int i; 1982 1983 /* Free all the Tx ring sk_buffs */ 1984 1985 for (i = 0; i < tx_ring->count; i++) { 1986 buffer_info = &tx_ring->buffer_info[i]; 1987 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 1988 } 1989 1990 netdev_reset_queue(adapter->netdev); 1991 size = sizeof(struct e1000_tx_buffer) * tx_ring->count; 1992 memset(tx_ring->buffer_info, 0, size); 1993 1994 /* Zero out the descriptor ring */ 1995 1996 memset(tx_ring->desc, 0, tx_ring->size); 1997 1998 tx_ring->next_to_use = 0; 1999 tx_ring->next_to_clean = 0; 2000 tx_ring->last_tx_tso = false; 2001 2002 writel(0, hw->hw_addr + tx_ring->tdh); 2003 writel(0, hw->hw_addr + tx_ring->tdt); 2004 } 2005 2006 /** 2007 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues 2008 * @adapter: board private structure 2009 **/ 2010 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) 2011 { 2012 int i; 2013 2014 for (i = 0; i < adapter->num_tx_queues; i++) 2015 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); 2016 } 2017 2018 /** 2019 * e1000_free_rx_resources - Free Rx Resources 2020 * @adapter: board private structure 2021 * @rx_ring: ring to clean the resources from 2022 * 2023 * Free all receive software resources 2024 **/ 2025 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 2026 struct e1000_rx_ring *rx_ring) 2027 { 2028 struct pci_dev *pdev = adapter->pdev; 2029 2030 e1000_clean_rx_ring(adapter, rx_ring); 2031 2032 vfree(rx_ring->buffer_info); 2033 rx_ring->buffer_info = NULL; 2034 2035 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 2036 rx_ring->dma); 2037 2038 rx_ring->desc = NULL; 2039 } 2040 2041 /** 2042 * e1000_free_all_rx_resources - Free Rx Resources for All Queues 2043 * @adapter: board private structure 2044 * 2045 * Free all receive software resources 2046 **/ 2047 void e1000_free_all_rx_resources(struct e1000_adapter *adapter) 2048 { 2049 int i; 2050 2051 for (i = 0; i < adapter->num_rx_queues; i++) 2052 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); 2053 } 2054 2055 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN) 2056 static unsigned int e1000_frag_len(const struct e1000_adapter *a) 2057 { 2058 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) + 2059 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2060 } 2061 2062 static void *e1000_alloc_frag(const struct e1000_adapter *a) 2063 { 2064 unsigned int len = e1000_frag_len(a); 2065 u8 *data = netdev_alloc_frag(len); 2066 2067 if (likely(data)) 2068 data += E1000_HEADROOM; 2069 return data; 2070 } 2071 2072 /** 2073 * e1000_clean_rx_ring - Free Rx Buffers per Queue 2074 * @adapter: board private structure 2075 * @rx_ring: ring to free buffers from 2076 **/ 2077 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 2078 struct e1000_rx_ring *rx_ring) 2079 { 2080 struct e1000_hw *hw = &adapter->hw; 2081 struct e1000_rx_buffer *buffer_info; 2082 struct pci_dev *pdev = adapter->pdev; 2083 unsigned long size; 2084 unsigned int i; 2085 2086 /* Free all the Rx netfrags */ 2087 for (i = 0; i < rx_ring->count; i++) { 2088 buffer_info = &rx_ring->buffer_info[i]; 2089 if (adapter->clean_rx == e1000_clean_rx_irq) { 2090 if (buffer_info->dma) 2091 dma_unmap_single(&pdev->dev, buffer_info->dma, 2092 adapter->rx_buffer_len, 2093 DMA_FROM_DEVICE); 2094 if (buffer_info->rxbuf.data) { 2095 skb_free_frag(buffer_info->rxbuf.data); 2096 buffer_info->rxbuf.data = NULL; 2097 } 2098 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) { 2099 if (buffer_info->dma) 2100 dma_unmap_page(&pdev->dev, buffer_info->dma, 2101 adapter->rx_buffer_len, 2102 DMA_FROM_DEVICE); 2103 if (buffer_info->rxbuf.page) { 2104 put_page(buffer_info->rxbuf.page); 2105 buffer_info->rxbuf.page = NULL; 2106 } 2107 } 2108 2109 buffer_info->dma = 0; 2110 } 2111 2112 /* there also may be some cached data from a chained receive */ 2113 napi_free_frags(&adapter->napi); 2114 rx_ring->rx_skb_top = NULL; 2115 2116 size = sizeof(struct e1000_rx_buffer) * rx_ring->count; 2117 memset(rx_ring->buffer_info, 0, size); 2118 2119 /* Zero out the descriptor ring */ 2120 memset(rx_ring->desc, 0, rx_ring->size); 2121 2122 rx_ring->next_to_clean = 0; 2123 rx_ring->next_to_use = 0; 2124 2125 writel(0, hw->hw_addr + rx_ring->rdh); 2126 writel(0, hw->hw_addr + rx_ring->rdt); 2127 } 2128 2129 /** 2130 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues 2131 * @adapter: board private structure 2132 **/ 2133 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) 2134 { 2135 int i; 2136 2137 for (i = 0; i < adapter->num_rx_queues; i++) 2138 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); 2139 } 2140 2141 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset 2142 * and memory write and invalidate disabled for certain operations 2143 */ 2144 static void e1000_enter_82542_rst(struct e1000_adapter *adapter) 2145 { 2146 struct e1000_hw *hw = &adapter->hw; 2147 struct net_device *netdev = adapter->netdev; 2148 u32 rctl; 2149 2150 e1000_pci_clear_mwi(hw); 2151 2152 rctl = er32(RCTL); 2153 rctl |= E1000_RCTL_RST; 2154 ew32(RCTL, rctl); 2155 E1000_WRITE_FLUSH(); 2156 mdelay(5); 2157 2158 if (netif_running(netdev)) 2159 e1000_clean_all_rx_rings(adapter); 2160 } 2161 2162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter) 2163 { 2164 struct e1000_hw *hw = &adapter->hw; 2165 struct net_device *netdev = adapter->netdev; 2166 u32 rctl; 2167 2168 rctl = er32(RCTL); 2169 rctl &= ~E1000_RCTL_RST; 2170 ew32(RCTL, rctl); 2171 E1000_WRITE_FLUSH(); 2172 mdelay(5); 2173 2174 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) 2175 e1000_pci_set_mwi(hw); 2176 2177 if (netif_running(netdev)) { 2178 /* No need to loop, because 82542 supports only 1 queue */ 2179 struct e1000_rx_ring *ring = &adapter->rx_ring[0]; 2180 e1000_configure_rx(adapter); 2181 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); 2182 } 2183 } 2184 2185 /** 2186 * e1000_set_mac - Change the Ethernet Address of the NIC 2187 * @netdev: network interface device structure 2188 * @p: pointer to an address structure 2189 * 2190 * Returns 0 on success, negative on failure 2191 **/ 2192 static int e1000_set_mac(struct net_device *netdev, void *p) 2193 { 2194 struct e1000_adapter *adapter = netdev_priv(netdev); 2195 struct e1000_hw *hw = &adapter->hw; 2196 struct sockaddr *addr = p; 2197 2198 if (!is_valid_ether_addr(addr->sa_data)) 2199 return -EADDRNOTAVAIL; 2200 2201 /* 82542 2.0 needs to be in reset to write receive address registers */ 2202 2203 if (hw->mac_type == e1000_82542_rev2_0) 2204 e1000_enter_82542_rst(adapter); 2205 2206 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2207 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); 2208 2209 e1000_rar_set(hw, hw->mac_addr, 0); 2210 2211 if (hw->mac_type == e1000_82542_rev2_0) 2212 e1000_leave_82542_rst(adapter); 2213 2214 return 0; 2215 } 2216 2217 /** 2218 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 2219 * @netdev: network interface device structure 2220 * 2221 * The set_rx_mode entry point is called whenever the unicast or multicast 2222 * address lists or the network interface flags are updated. This routine is 2223 * responsible for configuring the hardware for proper unicast, multicast, 2224 * promiscuous mode, and all-multi behavior. 2225 **/ 2226 static void e1000_set_rx_mode(struct net_device *netdev) 2227 { 2228 struct e1000_adapter *adapter = netdev_priv(netdev); 2229 struct e1000_hw *hw = &adapter->hw; 2230 struct netdev_hw_addr *ha; 2231 bool use_uc = false; 2232 u32 rctl; 2233 u32 hash_value; 2234 int i, rar_entries = E1000_RAR_ENTRIES; 2235 int mta_reg_count = E1000_NUM_MTA_REGISTERS; 2236 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); 2237 2238 if (!mcarray) 2239 return; 2240 2241 /* Check for Promiscuous and All Multicast modes */ 2242 2243 rctl = er32(RCTL); 2244 2245 if (netdev->flags & IFF_PROMISC) { 2246 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 2247 rctl &= ~E1000_RCTL_VFE; 2248 } else { 2249 if (netdev->flags & IFF_ALLMULTI) 2250 rctl |= E1000_RCTL_MPE; 2251 else 2252 rctl &= ~E1000_RCTL_MPE; 2253 /* Enable VLAN filter if there is a VLAN */ 2254 if (e1000_vlan_used(adapter)) 2255 rctl |= E1000_RCTL_VFE; 2256 } 2257 2258 if (netdev_uc_count(netdev) > rar_entries - 1) { 2259 rctl |= E1000_RCTL_UPE; 2260 } else if (!(netdev->flags & IFF_PROMISC)) { 2261 rctl &= ~E1000_RCTL_UPE; 2262 use_uc = true; 2263 } 2264 2265 ew32(RCTL, rctl); 2266 2267 /* 82542 2.0 needs to be in reset to write receive address registers */ 2268 2269 if (hw->mac_type == e1000_82542_rev2_0) 2270 e1000_enter_82542_rst(adapter); 2271 2272 /* load the first 14 addresses into the exact filters 1-14. Unicast 2273 * addresses take precedence to avoid disabling unicast filtering 2274 * when possible. 2275 * 2276 * RAR 0 is used for the station MAC address 2277 * if there are not 14 addresses, go ahead and clear the filters 2278 */ 2279 i = 1; 2280 if (use_uc) 2281 netdev_for_each_uc_addr(ha, netdev) { 2282 if (i == rar_entries) 2283 break; 2284 e1000_rar_set(hw, ha->addr, i++); 2285 } 2286 2287 netdev_for_each_mc_addr(ha, netdev) { 2288 if (i == rar_entries) { 2289 /* load any remaining addresses into the hash table */ 2290 u32 hash_reg, hash_bit, mta; 2291 hash_value = e1000_hash_mc_addr(hw, ha->addr); 2292 hash_reg = (hash_value >> 5) & 0x7F; 2293 hash_bit = hash_value & 0x1F; 2294 mta = (1 << hash_bit); 2295 mcarray[hash_reg] |= mta; 2296 } else { 2297 e1000_rar_set(hw, ha->addr, i++); 2298 } 2299 } 2300 2301 for (; i < rar_entries; i++) { 2302 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); 2303 E1000_WRITE_FLUSH(); 2304 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); 2305 E1000_WRITE_FLUSH(); 2306 } 2307 2308 /* write the hash table completely, write from bottom to avoid 2309 * both stupid write combining chipsets, and flushing each write 2310 */ 2311 for (i = mta_reg_count - 1; i >= 0 ; i--) { 2312 /* If we are on an 82544 has an errata where writing odd 2313 * offsets overwrites the previous even offset, but writing 2314 * backwards over the range solves the issue by always 2315 * writing the odd offset first 2316 */ 2317 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); 2318 } 2319 E1000_WRITE_FLUSH(); 2320 2321 if (hw->mac_type == e1000_82542_rev2_0) 2322 e1000_leave_82542_rst(adapter); 2323 2324 kfree(mcarray); 2325 } 2326 2327 /** 2328 * e1000_update_phy_info_task - get phy info 2329 * @work: work struct contained inside adapter struct 2330 * 2331 * Need to wait a few seconds after link up to get diagnostic information from 2332 * the phy 2333 */ 2334 static void e1000_update_phy_info_task(struct work_struct *work) 2335 { 2336 struct e1000_adapter *adapter = container_of(work, 2337 struct e1000_adapter, 2338 phy_info_task.work); 2339 2340 e1000_phy_get_info(&adapter->hw, &adapter->phy_info); 2341 } 2342 2343 /** 2344 * e1000_82547_tx_fifo_stall_task - task to complete work 2345 * @work: work struct contained inside adapter struct 2346 **/ 2347 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work) 2348 { 2349 struct e1000_adapter *adapter = container_of(work, 2350 struct e1000_adapter, 2351 fifo_stall_task.work); 2352 struct e1000_hw *hw = &adapter->hw; 2353 struct net_device *netdev = adapter->netdev; 2354 u32 tctl; 2355 2356 if (atomic_read(&adapter->tx_fifo_stall)) { 2357 if ((er32(TDT) == er32(TDH)) && 2358 (er32(TDFT) == er32(TDFH)) && 2359 (er32(TDFTS) == er32(TDFHS))) { 2360 tctl = er32(TCTL); 2361 ew32(TCTL, tctl & ~E1000_TCTL_EN); 2362 ew32(TDFT, adapter->tx_head_addr); 2363 ew32(TDFH, adapter->tx_head_addr); 2364 ew32(TDFTS, adapter->tx_head_addr); 2365 ew32(TDFHS, adapter->tx_head_addr); 2366 ew32(TCTL, tctl); 2367 E1000_WRITE_FLUSH(); 2368 2369 adapter->tx_fifo_head = 0; 2370 atomic_set(&adapter->tx_fifo_stall, 0); 2371 netif_wake_queue(netdev); 2372 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { 2373 schedule_delayed_work(&adapter->fifo_stall_task, 1); 2374 } 2375 } 2376 } 2377 2378 bool e1000_has_link(struct e1000_adapter *adapter) 2379 { 2380 struct e1000_hw *hw = &adapter->hw; 2381 bool link_active = false; 2382 2383 /* get_link_status is set on LSC (link status) interrupt or rx 2384 * sequence error interrupt (except on intel ce4100). 2385 * get_link_status will stay false until the 2386 * e1000_check_for_link establishes link for copper adapters 2387 * ONLY 2388 */ 2389 switch (hw->media_type) { 2390 case e1000_media_type_copper: 2391 if (hw->mac_type == e1000_ce4100) 2392 hw->get_link_status = 1; 2393 if (hw->get_link_status) { 2394 e1000_check_for_link(hw); 2395 link_active = !hw->get_link_status; 2396 } else { 2397 link_active = true; 2398 } 2399 break; 2400 case e1000_media_type_fiber: 2401 e1000_check_for_link(hw); 2402 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 2403 break; 2404 case e1000_media_type_internal_serdes: 2405 e1000_check_for_link(hw); 2406 link_active = hw->serdes_has_link; 2407 break; 2408 default: 2409 break; 2410 } 2411 2412 return link_active; 2413 } 2414 2415 /** 2416 * e1000_watchdog - work function 2417 * @work: work struct contained inside adapter struct 2418 **/ 2419 static void e1000_watchdog(struct work_struct *work) 2420 { 2421 struct e1000_adapter *adapter = container_of(work, 2422 struct e1000_adapter, 2423 watchdog_task.work); 2424 struct e1000_hw *hw = &adapter->hw; 2425 struct net_device *netdev = adapter->netdev; 2426 struct e1000_tx_ring *txdr = adapter->tx_ring; 2427 u32 link, tctl; 2428 2429 link = e1000_has_link(adapter); 2430 if ((netif_carrier_ok(netdev)) && link) 2431 goto link_up; 2432 2433 if (link) { 2434 if (!netif_carrier_ok(netdev)) { 2435 u32 ctrl; 2436 /* update snapshot of PHY registers on LSC */ 2437 e1000_get_speed_and_duplex(hw, 2438 &adapter->link_speed, 2439 &adapter->link_duplex); 2440 2441 ctrl = er32(CTRL); 2442 pr_info("%s NIC Link is Up %d Mbps %s, " 2443 "Flow Control: %s\n", 2444 netdev->name, 2445 adapter->link_speed, 2446 adapter->link_duplex == FULL_DUPLEX ? 2447 "Full Duplex" : "Half Duplex", 2448 ((ctrl & E1000_CTRL_TFCE) && (ctrl & 2449 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & 2450 E1000_CTRL_RFCE) ? "RX" : ((ctrl & 2451 E1000_CTRL_TFCE) ? "TX" : "None"))); 2452 2453 /* adjust timeout factor according to speed/duplex */ 2454 adapter->tx_timeout_factor = 1; 2455 switch (adapter->link_speed) { 2456 case SPEED_10: 2457 adapter->tx_timeout_factor = 16; 2458 break; 2459 case SPEED_100: 2460 /* maybe add some timeout factor ? */ 2461 break; 2462 } 2463 2464 /* enable transmits in the hardware */ 2465 tctl = er32(TCTL); 2466 tctl |= E1000_TCTL_EN; 2467 ew32(TCTL, tctl); 2468 2469 netif_carrier_on(netdev); 2470 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2471 schedule_delayed_work(&adapter->phy_info_task, 2472 2 * HZ); 2473 adapter->smartspeed = 0; 2474 } 2475 } else { 2476 if (netif_carrier_ok(netdev)) { 2477 adapter->link_speed = 0; 2478 adapter->link_duplex = 0; 2479 pr_info("%s NIC Link is Down\n", 2480 netdev->name); 2481 netif_carrier_off(netdev); 2482 2483 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2484 schedule_delayed_work(&adapter->phy_info_task, 2485 2 * HZ); 2486 } 2487 2488 e1000_smartspeed(adapter); 2489 } 2490 2491 link_up: 2492 e1000_update_stats(adapter); 2493 2494 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 2495 adapter->tpt_old = adapter->stats.tpt; 2496 hw->collision_delta = adapter->stats.colc - adapter->colc_old; 2497 adapter->colc_old = adapter->stats.colc; 2498 2499 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; 2500 adapter->gorcl_old = adapter->stats.gorcl; 2501 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; 2502 adapter->gotcl_old = adapter->stats.gotcl; 2503 2504 e1000_update_adaptive(hw); 2505 2506 if (!netif_carrier_ok(netdev)) { 2507 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { 2508 /* We've lost link, so the controller stops DMA, 2509 * but we've got queued Tx work that's never going 2510 * to get done, so reset controller to flush Tx. 2511 * (Do the reset outside of interrupt context). 2512 */ 2513 adapter->tx_timeout_count++; 2514 schedule_work(&adapter->reset_task); 2515 /* exit immediately since reset is imminent */ 2516 return; 2517 } 2518 } 2519 2520 /* Simple mode for Interrupt Throttle Rate (ITR) */ 2521 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { 2522 /* Symmetric Tx/Rx gets a reduced ITR=2000; 2523 * Total asymmetrical Tx or Rx gets ITR=8000; 2524 * everyone else is between 2000-8000. 2525 */ 2526 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; 2527 u32 dif = (adapter->gotcl > adapter->gorcl ? 2528 adapter->gotcl - adapter->gorcl : 2529 adapter->gorcl - adapter->gotcl) / 10000; 2530 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; 2531 2532 ew32(ITR, 1000000000 / (itr * 256)); 2533 } 2534 2535 /* Cause software interrupt to ensure rx ring is cleaned */ 2536 ew32(ICS, E1000_ICS_RXDMT0); 2537 2538 /* Force detection of hung controller every watchdog period */ 2539 adapter->detect_tx_hung = true; 2540 2541 /* Reschedule the task */ 2542 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2543 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ); 2544 } 2545 2546 enum latency_range { 2547 lowest_latency = 0, 2548 low_latency = 1, 2549 bulk_latency = 2, 2550 latency_invalid = 255 2551 }; 2552 2553 /** 2554 * e1000_update_itr - update the dynamic ITR value based on statistics 2555 * @adapter: pointer to adapter 2556 * @itr_setting: current adapter->itr 2557 * @packets: the number of packets during this measurement interval 2558 * @bytes: the number of bytes during this measurement interval 2559 * 2560 * Stores a new ITR value based on packets and byte 2561 * counts during the last interrupt. The advantage of per interrupt 2562 * computation is faster updates and more accurate ITR for the current 2563 * traffic pattern. Constants in this function were computed 2564 * based on theoretical maximum wire speed and thresholds were set based 2565 * on testing data as well as attempting to minimize response time 2566 * while increasing bulk throughput. 2567 * this functionality is controlled by the InterruptThrottleRate module 2568 * parameter (see e1000_param.c) 2569 **/ 2570 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, 2571 u16 itr_setting, int packets, int bytes) 2572 { 2573 unsigned int retval = itr_setting; 2574 struct e1000_hw *hw = &adapter->hw; 2575 2576 if (unlikely(hw->mac_type < e1000_82540)) 2577 goto update_itr_done; 2578 2579 if (packets == 0) 2580 goto update_itr_done; 2581 2582 switch (itr_setting) { 2583 case lowest_latency: 2584 /* jumbo frames get bulk treatment*/ 2585 if (bytes/packets > 8000) 2586 retval = bulk_latency; 2587 else if ((packets < 5) && (bytes > 512)) 2588 retval = low_latency; 2589 break; 2590 case low_latency: /* 50 usec aka 20000 ints/s */ 2591 if (bytes > 10000) { 2592 /* jumbo frames need bulk latency setting */ 2593 if (bytes/packets > 8000) 2594 retval = bulk_latency; 2595 else if ((packets < 10) || ((bytes/packets) > 1200)) 2596 retval = bulk_latency; 2597 else if ((packets > 35)) 2598 retval = lowest_latency; 2599 } else if (bytes/packets > 2000) 2600 retval = bulk_latency; 2601 else if (packets <= 2 && bytes < 512) 2602 retval = lowest_latency; 2603 break; 2604 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2605 if (bytes > 25000) { 2606 if (packets > 35) 2607 retval = low_latency; 2608 } else if (bytes < 6000) { 2609 retval = low_latency; 2610 } 2611 break; 2612 } 2613 2614 update_itr_done: 2615 return retval; 2616 } 2617 2618 static void e1000_set_itr(struct e1000_adapter *adapter) 2619 { 2620 struct e1000_hw *hw = &adapter->hw; 2621 u16 current_itr; 2622 u32 new_itr = adapter->itr; 2623 2624 if (unlikely(hw->mac_type < e1000_82540)) 2625 return; 2626 2627 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2628 if (unlikely(adapter->link_speed != SPEED_1000)) { 2629 current_itr = 0; 2630 new_itr = 4000; 2631 goto set_itr_now; 2632 } 2633 2634 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr, 2635 adapter->total_tx_packets, 2636 adapter->total_tx_bytes); 2637 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2638 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 2639 adapter->tx_itr = low_latency; 2640 2641 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr, 2642 adapter->total_rx_packets, 2643 adapter->total_rx_bytes); 2644 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2645 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 2646 adapter->rx_itr = low_latency; 2647 2648 current_itr = max(adapter->rx_itr, adapter->tx_itr); 2649 2650 switch (current_itr) { 2651 /* counts and packets in update_itr are dependent on these numbers */ 2652 case lowest_latency: 2653 new_itr = 70000; 2654 break; 2655 case low_latency: 2656 new_itr = 20000; /* aka hwitr = ~200 */ 2657 break; 2658 case bulk_latency: 2659 new_itr = 4000; 2660 break; 2661 default: 2662 break; 2663 } 2664 2665 set_itr_now: 2666 if (new_itr != adapter->itr) { 2667 /* this attempts to bias the interrupt rate towards Bulk 2668 * by adding intermediate steps when interrupt rate is 2669 * increasing 2670 */ 2671 new_itr = new_itr > adapter->itr ? 2672 min(adapter->itr + (new_itr >> 2), new_itr) : 2673 new_itr; 2674 adapter->itr = new_itr; 2675 ew32(ITR, 1000000000 / (new_itr * 256)); 2676 } 2677 } 2678 2679 #define E1000_TX_FLAGS_CSUM 0x00000001 2680 #define E1000_TX_FLAGS_VLAN 0x00000002 2681 #define E1000_TX_FLAGS_TSO 0x00000004 2682 #define E1000_TX_FLAGS_IPV4 0x00000008 2683 #define E1000_TX_FLAGS_NO_FCS 0x00000010 2684 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 2685 #define E1000_TX_FLAGS_VLAN_SHIFT 16 2686 2687 static int e1000_tso(struct e1000_adapter *adapter, 2688 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2689 __be16 protocol) 2690 { 2691 struct e1000_context_desc *context_desc; 2692 struct e1000_tx_buffer *buffer_info; 2693 unsigned int i; 2694 u32 cmd_length = 0; 2695 u16 ipcse = 0, tucse, mss; 2696 u8 ipcss, ipcso, tucss, tucso, hdr_len; 2697 2698 if (skb_is_gso(skb)) { 2699 int err; 2700 2701 err = skb_cow_head(skb, 0); 2702 if (err < 0) 2703 return err; 2704 2705 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2706 mss = skb_shinfo(skb)->gso_size; 2707 if (protocol == htons(ETH_P_IP)) { 2708 struct iphdr *iph = ip_hdr(skb); 2709 iph->tot_len = 0; 2710 iph->check = 0; 2711 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 2712 iph->daddr, 0, 2713 IPPROTO_TCP, 2714 0); 2715 cmd_length = E1000_TXD_CMD_IP; 2716 ipcse = skb_transport_offset(skb) - 1; 2717 } else if (skb_is_gso_v6(skb)) { 2718 ipv6_hdr(skb)->payload_len = 0; 2719 tcp_hdr(skb)->check = 2720 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 2721 &ipv6_hdr(skb)->daddr, 2722 0, IPPROTO_TCP, 0); 2723 ipcse = 0; 2724 } 2725 ipcss = skb_network_offset(skb); 2726 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 2727 tucss = skb_transport_offset(skb); 2728 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 2729 tucse = 0; 2730 2731 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 2732 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 2733 2734 i = tx_ring->next_to_use; 2735 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2736 buffer_info = &tx_ring->buffer_info[i]; 2737 2738 context_desc->lower_setup.ip_fields.ipcss = ipcss; 2739 context_desc->lower_setup.ip_fields.ipcso = ipcso; 2740 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 2741 context_desc->upper_setup.tcp_fields.tucss = tucss; 2742 context_desc->upper_setup.tcp_fields.tucso = tucso; 2743 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); 2744 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 2745 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 2746 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 2747 2748 buffer_info->time_stamp = jiffies; 2749 buffer_info->next_to_watch = i; 2750 2751 if (++i == tx_ring->count) 2752 i = 0; 2753 2754 tx_ring->next_to_use = i; 2755 2756 return true; 2757 } 2758 return false; 2759 } 2760 2761 static bool e1000_tx_csum(struct e1000_adapter *adapter, 2762 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2763 __be16 protocol) 2764 { 2765 struct e1000_context_desc *context_desc; 2766 struct e1000_tx_buffer *buffer_info; 2767 unsigned int i; 2768 u8 css; 2769 u32 cmd_len = E1000_TXD_CMD_DEXT; 2770 2771 if (skb->ip_summed != CHECKSUM_PARTIAL) 2772 return false; 2773 2774 switch (protocol) { 2775 case cpu_to_be16(ETH_P_IP): 2776 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 2777 cmd_len |= E1000_TXD_CMD_TCP; 2778 break; 2779 case cpu_to_be16(ETH_P_IPV6): 2780 /* XXX not handling all IPV6 headers */ 2781 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 2782 cmd_len |= E1000_TXD_CMD_TCP; 2783 break; 2784 default: 2785 if (unlikely(net_ratelimit())) 2786 e_warn(drv, "checksum_partial proto=%x!\n", 2787 skb->protocol); 2788 break; 2789 } 2790 2791 css = skb_checksum_start_offset(skb); 2792 2793 i = tx_ring->next_to_use; 2794 buffer_info = &tx_ring->buffer_info[i]; 2795 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2796 2797 context_desc->lower_setup.ip_config = 0; 2798 context_desc->upper_setup.tcp_fields.tucss = css; 2799 context_desc->upper_setup.tcp_fields.tucso = 2800 css + skb->csum_offset; 2801 context_desc->upper_setup.tcp_fields.tucse = 0; 2802 context_desc->tcp_seg_setup.data = 0; 2803 context_desc->cmd_and_length = cpu_to_le32(cmd_len); 2804 2805 buffer_info->time_stamp = jiffies; 2806 buffer_info->next_to_watch = i; 2807 2808 if (unlikely(++i == tx_ring->count)) 2809 i = 0; 2810 2811 tx_ring->next_to_use = i; 2812 2813 return true; 2814 } 2815 2816 #define E1000_MAX_TXD_PWR 12 2817 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) 2818 2819 static int e1000_tx_map(struct e1000_adapter *adapter, 2820 struct e1000_tx_ring *tx_ring, 2821 struct sk_buff *skb, unsigned int first, 2822 unsigned int max_per_txd, unsigned int nr_frags, 2823 unsigned int mss) 2824 { 2825 struct e1000_hw *hw = &adapter->hw; 2826 struct pci_dev *pdev = adapter->pdev; 2827 struct e1000_tx_buffer *buffer_info; 2828 unsigned int len = skb_headlen(skb); 2829 unsigned int offset = 0, size, count = 0, i; 2830 unsigned int f, bytecount, segs; 2831 2832 i = tx_ring->next_to_use; 2833 2834 while (len) { 2835 buffer_info = &tx_ring->buffer_info[i]; 2836 size = min(len, max_per_txd); 2837 /* Workaround for Controller erratum -- 2838 * descriptor for non-tso packet in a linear SKB that follows a 2839 * tso gets written back prematurely before the data is fully 2840 * DMA'd to the controller 2841 */ 2842 if (!skb->data_len && tx_ring->last_tx_tso && 2843 !skb_is_gso(skb)) { 2844 tx_ring->last_tx_tso = false; 2845 size -= 4; 2846 } 2847 2848 /* Workaround for premature desc write-backs 2849 * in TSO mode. Append 4-byte sentinel desc 2850 */ 2851 if (unlikely(mss && !nr_frags && size == len && size > 8)) 2852 size -= 4; 2853 /* work-around for errata 10 and it applies 2854 * to all controllers in PCI-X mode 2855 * The fix is to make sure that the first descriptor of a 2856 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes 2857 */ 2858 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 2859 (size > 2015) && count == 0)) 2860 size = 2015; 2861 2862 /* Workaround for potential 82544 hang in PCI-X. Avoid 2863 * terminating buffers within evenly-aligned dwords. 2864 */ 2865 if (unlikely(adapter->pcix_82544 && 2866 !((unsigned long)(skb->data + offset + size - 1) & 4) && 2867 size > 4)) 2868 size -= 4; 2869 2870 buffer_info->length = size; 2871 /* set time_stamp *before* dma to help avoid a possible race */ 2872 buffer_info->time_stamp = jiffies; 2873 buffer_info->mapped_as_page = false; 2874 buffer_info->dma = dma_map_single(&pdev->dev, 2875 skb->data + offset, 2876 size, DMA_TO_DEVICE); 2877 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2878 goto dma_error; 2879 buffer_info->next_to_watch = i; 2880 2881 len -= size; 2882 offset += size; 2883 count++; 2884 if (len) { 2885 i++; 2886 if (unlikely(i == tx_ring->count)) 2887 i = 0; 2888 } 2889 } 2890 2891 for (f = 0; f < nr_frags; f++) { 2892 const struct skb_frag_struct *frag; 2893 2894 frag = &skb_shinfo(skb)->frags[f]; 2895 len = skb_frag_size(frag); 2896 offset = 0; 2897 2898 while (len) { 2899 unsigned long bufend; 2900 i++; 2901 if (unlikely(i == tx_ring->count)) 2902 i = 0; 2903 2904 buffer_info = &tx_ring->buffer_info[i]; 2905 size = min(len, max_per_txd); 2906 /* Workaround for premature desc write-backs 2907 * in TSO mode. Append 4-byte sentinel desc 2908 */ 2909 if (unlikely(mss && f == (nr_frags-1) && 2910 size == len && size > 8)) 2911 size -= 4; 2912 /* Workaround for potential 82544 hang in PCI-X. 2913 * Avoid terminating buffers within evenly-aligned 2914 * dwords. 2915 */ 2916 bufend = (unsigned long) 2917 page_to_phys(skb_frag_page(frag)); 2918 bufend += offset + size - 1; 2919 if (unlikely(adapter->pcix_82544 && 2920 !(bufend & 4) && 2921 size > 4)) 2922 size -= 4; 2923 2924 buffer_info->length = size; 2925 buffer_info->time_stamp = jiffies; 2926 buffer_info->mapped_as_page = true; 2927 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 2928 offset, size, DMA_TO_DEVICE); 2929 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2930 goto dma_error; 2931 buffer_info->next_to_watch = i; 2932 2933 len -= size; 2934 offset += size; 2935 count++; 2936 } 2937 } 2938 2939 segs = skb_shinfo(skb)->gso_segs ?: 1; 2940 /* multiply data chunks by size of headers */ 2941 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; 2942 2943 tx_ring->buffer_info[i].skb = skb; 2944 tx_ring->buffer_info[i].segs = segs; 2945 tx_ring->buffer_info[i].bytecount = bytecount; 2946 tx_ring->buffer_info[first].next_to_watch = i; 2947 2948 return count; 2949 2950 dma_error: 2951 dev_err(&pdev->dev, "TX DMA map failed\n"); 2952 buffer_info->dma = 0; 2953 if (count) 2954 count--; 2955 2956 while (count--) { 2957 if (i == 0) 2958 i += tx_ring->count; 2959 i--; 2960 buffer_info = &tx_ring->buffer_info[i]; 2961 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 2962 } 2963 2964 return 0; 2965 } 2966 2967 static void e1000_tx_queue(struct e1000_adapter *adapter, 2968 struct e1000_tx_ring *tx_ring, int tx_flags, 2969 int count) 2970 { 2971 struct e1000_tx_desc *tx_desc = NULL; 2972 struct e1000_tx_buffer *buffer_info; 2973 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 2974 unsigned int i; 2975 2976 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { 2977 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 2978 E1000_TXD_CMD_TSE; 2979 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2980 2981 if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) 2982 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 2983 } 2984 2985 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { 2986 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 2987 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2988 } 2989 2990 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { 2991 txd_lower |= E1000_TXD_CMD_VLE; 2992 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 2993 } 2994 2995 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 2996 txd_lower &= ~(E1000_TXD_CMD_IFCS); 2997 2998 i = tx_ring->next_to_use; 2999 3000 while (count--) { 3001 buffer_info = &tx_ring->buffer_info[i]; 3002 tx_desc = E1000_TX_DESC(*tx_ring, i); 3003 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 3004 tx_desc->lower.data = 3005 cpu_to_le32(txd_lower | buffer_info->length); 3006 tx_desc->upper.data = cpu_to_le32(txd_upper); 3007 if (unlikely(++i == tx_ring->count)) 3008 i = 0; 3009 } 3010 3011 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 3012 3013 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ 3014 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 3015 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); 3016 3017 /* Force memory writes to complete before letting h/w 3018 * know there are new descriptors to fetch. (Only 3019 * applicable for weak-ordered memory model archs, 3020 * such as IA-64). 3021 */ 3022 wmb(); 3023 3024 tx_ring->next_to_use = i; 3025 } 3026 3027 /* 82547 workaround to avoid controller hang in half-duplex environment. 3028 * The workaround is to avoid queuing a large packet that would span 3029 * the internal Tx FIFO ring boundary by notifying the stack to resend 3030 * the packet at a later time. This gives the Tx FIFO an opportunity to 3031 * flush all packets. When that occurs, we reset the Tx FIFO pointers 3032 * to the beginning of the Tx FIFO. 3033 */ 3034 3035 #define E1000_FIFO_HDR 0x10 3036 #define E1000_82547_PAD_LEN 0x3E0 3037 3038 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 3039 struct sk_buff *skb) 3040 { 3041 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; 3042 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; 3043 3044 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); 3045 3046 if (adapter->link_duplex != HALF_DUPLEX) 3047 goto no_fifo_stall_required; 3048 3049 if (atomic_read(&adapter->tx_fifo_stall)) 3050 return 1; 3051 3052 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { 3053 atomic_set(&adapter->tx_fifo_stall, 1); 3054 return 1; 3055 } 3056 3057 no_fifo_stall_required: 3058 adapter->tx_fifo_head += skb_fifo_len; 3059 if (adapter->tx_fifo_head >= adapter->tx_fifo_size) 3060 adapter->tx_fifo_head -= adapter->tx_fifo_size; 3061 return 0; 3062 } 3063 3064 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) 3065 { 3066 struct e1000_adapter *adapter = netdev_priv(netdev); 3067 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3068 3069 netif_stop_queue(netdev); 3070 /* Herbert's original patch had: 3071 * smp_mb__after_netif_stop_queue(); 3072 * but since that doesn't exist yet, just open code it. 3073 */ 3074 smp_mb(); 3075 3076 /* We need to check again in a case another CPU has just 3077 * made room available. 3078 */ 3079 if (likely(E1000_DESC_UNUSED(tx_ring) < size)) 3080 return -EBUSY; 3081 3082 /* A reprieve! */ 3083 netif_start_queue(netdev); 3084 ++adapter->restart_queue; 3085 return 0; 3086 } 3087 3088 static int e1000_maybe_stop_tx(struct net_device *netdev, 3089 struct e1000_tx_ring *tx_ring, int size) 3090 { 3091 if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) 3092 return 0; 3093 return __e1000_maybe_stop_tx(netdev, size); 3094 } 3095 3096 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X)) 3097 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 3098 struct net_device *netdev) 3099 { 3100 struct e1000_adapter *adapter = netdev_priv(netdev); 3101 struct e1000_hw *hw = &adapter->hw; 3102 struct e1000_tx_ring *tx_ring; 3103 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; 3104 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; 3105 unsigned int tx_flags = 0; 3106 unsigned int len = skb_headlen(skb); 3107 unsigned int nr_frags; 3108 unsigned int mss; 3109 int count = 0; 3110 int tso; 3111 unsigned int f; 3112 __be16 protocol = vlan_get_protocol(skb); 3113 3114 /* This goes back to the question of how to logically map a Tx queue 3115 * to a flow. Right now, performance is impacted slightly negatively 3116 * if using multiple Tx queues. If the stack breaks away from a 3117 * single qdisc implementation, we can look at this again. 3118 */ 3119 tx_ring = adapter->tx_ring; 3120 3121 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN, 3122 * packets may get corrupted during padding by HW. 3123 * To WA this issue, pad all small packets manually. 3124 */ 3125 if (eth_skb_pad(skb)) 3126 return NETDEV_TX_OK; 3127 3128 mss = skb_shinfo(skb)->gso_size; 3129 /* The controller does a simple calculation to 3130 * make sure there is enough room in the FIFO before 3131 * initiating the DMA for each buffer. The calc is: 3132 * 4 = ceil(buffer len/mss). To make sure we don't 3133 * overrun the FIFO, adjust the max buffer len if mss 3134 * drops. 3135 */ 3136 if (mss) { 3137 u8 hdr_len; 3138 max_per_txd = min(mss << 2, max_per_txd); 3139 max_txd_pwr = fls(max_per_txd) - 1; 3140 3141 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3142 if (skb->data_len && hdr_len == len) { 3143 switch (hw->mac_type) { 3144 unsigned int pull_size; 3145 case e1000_82544: 3146 /* Make sure we have room to chop off 4 bytes, 3147 * and that the end alignment will work out to 3148 * this hardware's requirements 3149 * NOTE: this is a TSO only workaround 3150 * if end byte alignment not correct move us 3151 * into the next dword 3152 */ 3153 if ((unsigned long)(skb_tail_pointer(skb) - 1) 3154 & 4) 3155 break; 3156 /* fall through */ 3157 pull_size = min((unsigned int)4, skb->data_len); 3158 if (!__pskb_pull_tail(skb, pull_size)) { 3159 e_err(drv, "__pskb_pull_tail " 3160 "failed.\n"); 3161 dev_kfree_skb_any(skb); 3162 return NETDEV_TX_OK; 3163 } 3164 len = skb_headlen(skb); 3165 break; 3166 default: 3167 /* do nothing */ 3168 break; 3169 } 3170 } 3171 } 3172 3173 /* reserve a descriptor for the offload context */ 3174 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 3175 count++; 3176 count++; 3177 3178 /* Controller Erratum workaround */ 3179 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) 3180 count++; 3181 3182 count += TXD_USE_COUNT(len, max_txd_pwr); 3183 3184 if (adapter->pcix_82544) 3185 count++; 3186 3187 /* work-around for errata 10 and it applies to all controllers 3188 * in PCI-X mode, so add one more descriptor to the count 3189 */ 3190 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 3191 (len > 2015))) 3192 count++; 3193 3194 nr_frags = skb_shinfo(skb)->nr_frags; 3195 for (f = 0; f < nr_frags; f++) 3196 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]), 3197 max_txd_pwr); 3198 if (adapter->pcix_82544) 3199 count += nr_frags; 3200 3201 /* need: count + 2 desc gap to keep tail from touching 3202 * head, otherwise try next time 3203 */ 3204 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) 3205 return NETDEV_TX_BUSY; 3206 3207 if (unlikely((hw->mac_type == e1000_82547) && 3208 (e1000_82547_fifo_workaround(adapter, skb)))) { 3209 netif_stop_queue(netdev); 3210 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3211 schedule_delayed_work(&adapter->fifo_stall_task, 1); 3212 return NETDEV_TX_BUSY; 3213 } 3214 3215 if (skb_vlan_tag_present(skb)) { 3216 tx_flags |= E1000_TX_FLAGS_VLAN; 3217 tx_flags |= (skb_vlan_tag_get(skb) << 3218 E1000_TX_FLAGS_VLAN_SHIFT); 3219 } 3220 3221 first = tx_ring->next_to_use; 3222 3223 tso = e1000_tso(adapter, tx_ring, skb, protocol); 3224 if (tso < 0) { 3225 dev_kfree_skb_any(skb); 3226 return NETDEV_TX_OK; 3227 } 3228 3229 if (likely(tso)) { 3230 if (likely(hw->mac_type != e1000_82544)) 3231 tx_ring->last_tx_tso = true; 3232 tx_flags |= E1000_TX_FLAGS_TSO; 3233 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol))) 3234 tx_flags |= E1000_TX_FLAGS_CSUM; 3235 3236 if (protocol == htons(ETH_P_IP)) 3237 tx_flags |= E1000_TX_FLAGS_IPV4; 3238 3239 if (unlikely(skb->no_fcs)) 3240 tx_flags |= E1000_TX_FLAGS_NO_FCS; 3241 3242 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, 3243 nr_frags, mss); 3244 3245 if (count) { 3246 /* The descriptors needed is higher than other Intel drivers 3247 * due to a number of workarounds. The breakdown is below: 3248 * Data descriptors: MAX_SKB_FRAGS + 1 3249 * Context Descriptor: 1 3250 * Keep head from touching tail: 2 3251 * Workarounds: 3 3252 */ 3253 int desc_needed = MAX_SKB_FRAGS + 7; 3254 3255 netdev_sent_queue(netdev, skb->len); 3256 skb_tx_timestamp(skb); 3257 3258 e1000_tx_queue(adapter, tx_ring, tx_flags, count); 3259 3260 /* 82544 potentially requires twice as many data descriptors 3261 * in order to guarantee buffers don't end on evenly-aligned 3262 * dwords 3263 */ 3264 if (adapter->pcix_82544) 3265 desc_needed += MAX_SKB_FRAGS + 1; 3266 3267 /* Make sure there is space in the ring for the next send. */ 3268 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed); 3269 3270 if (!skb->xmit_more || 3271 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) { 3272 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt); 3273 /* we need this if more than one processor can write to 3274 * our tail at a time, it synchronizes IO on IA64/Altix 3275 * systems 3276 */ 3277 mmiowb(); 3278 } 3279 } else { 3280 dev_kfree_skb_any(skb); 3281 tx_ring->buffer_info[first].time_stamp = 0; 3282 tx_ring->next_to_use = first; 3283 } 3284 3285 return NETDEV_TX_OK; 3286 } 3287 3288 #define NUM_REGS 38 /* 1 based count */ 3289 static void e1000_regdump(struct e1000_adapter *adapter) 3290 { 3291 struct e1000_hw *hw = &adapter->hw; 3292 u32 regs[NUM_REGS]; 3293 u32 *regs_buff = regs; 3294 int i = 0; 3295 3296 static const char * const reg_name[] = { 3297 "CTRL", "STATUS", 3298 "RCTL", "RDLEN", "RDH", "RDT", "RDTR", 3299 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT", 3300 "TIDV", "TXDCTL", "TADV", "TARC0", 3301 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1", 3302 "TXDCTL1", "TARC1", 3303 "CTRL_EXT", "ERT", "RDBAL", "RDBAH", 3304 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC", 3305 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC" 3306 }; 3307 3308 regs_buff[0] = er32(CTRL); 3309 regs_buff[1] = er32(STATUS); 3310 3311 regs_buff[2] = er32(RCTL); 3312 regs_buff[3] = er32(RDLEN); 3313 regs_buff[4] = er32(RDH); 3314 regs_buff[5] = er32(RDT); 3315 regs_buff[6] = er32(RDTR); 3316 3317 regs_buff[7] = er32(TCTL); 3318 regs_buff[8] = er32(TDBAL); 3319 regs_buff[9] = er32(TDBAH); 3320 regs_buff[10] = er32(TDLEN); 3321 regs_buff[11] = er32(TDH); 3322 regs_buff[12] = er32(TDT); 3323 regs_buff[13] = er32(TIDV); 3324 regs_buff[14] = er32(TXDCTL); 3325 regs_buff[15] = er32(TADV); 3326 regs_buff[16] = er32(TARC0); 3327 3328 regs_buff[17] = er32(TDBAL1); 3329 regs_buff[18] = er32(TDBAH1); 3330 regs_buff[19] = er32(TDLEN1); 3331 regs_buff[20] = er32(TDH1); 3332 regs_buff[21] = er32(TDT1); 3333 regs_buff[22] = er32(TXDCTL1); 3334 regs_buff[23] = er32(TARC1); 3335 regs_buff[24] = er32(CTRL_EXT); 3336 regs_buff[25] = er32(ERT); 3337 regs_buff[26] = er32(RDBAL0); 3338 regs_buff[27] = er32(RDBAH0); 3339 regs_buff[28] = er32(TDFH); 3340 regs_buff[29] = er32(TDFT); 3341 regs_buff[30] = er32(TDFHS); 3342 regs_buff[31] = er32(TDFTS); 3343 regs_buff[32] = er32(TDFPC); 3344 regs_buff[33] = er32(RDFH); 3345 regs_buff[34] = er32(RDFT); 3346 regs_buff[35] = er32(RDFHS); 3347 regs_buff[36] = er32(RDFTS); 3348 regs_buff[37] = er32(RDFPC); 3349 3350 pr_info("Register dump\n"); 3351 for (i = 0; i < NUM_REGS; i++) 3352 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]); 3353 } 3354 3355 /* 3356 * e1000_dump: Print registers, tx ring and rx ring 3357 */ 3358 static void e1000_dump(struct e1000_adapter *adapter) 3359 { 3360 /* this code doesn't handle multiple rings */ 3361 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3362 struct e1000_rx_ring *rx_ring = adapter->rx_ring; 3363 int i; 3364 3365 if (!netif_msg_hw(adapter)) 3366 return; 3367 3368 /* Print Registers */ 3369 e1000_regdump(adapter); 3370 3371 /* transmit dump */ 3372 pr_info("TX Desc ring0 dump\n"); 3373 3374 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) 3375 * 3376 * Legacy Transmit Descriptor 3377 * +--------------------------------------------------------------+ 3378 * 0 | Buffer Address [63:0] (Reserved on Write Back) | 3379 * +--------------------------------------------------------------+ 3380 * 8 | Special | CSS | Status | CMD | CSO | Length | 3381 * +--------------------------------------------------------------+ 3382 * 63 48 47 36 35 32 31 24 23 16 15 0 3383 * 3384 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload 3385 * 63 48 47 40 39 32 31 16 15 8 7 0 3386 * +----------------------------------------------------------------+ 3387 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | 3388 * +----------------------------------------------------------------+ 3389 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | 3390 * +----------------------------------------------------------------+ 3391 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3392 * 3393 * Extended Data Descriptor (DTYP=0x1) 3394 * +----------------------------------------------------------------+ 3395 * 0 | Buffer Address [63:0] | 3396 * +----------------------------------------------------------------+ 3397 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | 3398 * +----------------------------------------------------------------+ 3399 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3400 */ 3401 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3402 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3403 3404 if (!netif_msg_tx_done(adapter)) 3405 goto rx_ring_summary; 3406 3407 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 3408 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 3409 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i]; 3410 struct my_u { __le64 a; __le64 b; }; 3411 struct my_u *u = (struct my_u *)tx_desc; 3412 const char *type; 3413 3414 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) 3415 type = "NTC/U"; 3416 else if (i == tx_ring->next_to_use) 3417 type = "NTU"; 3418 else if (i == tx_ring->next_to_clean) 3419 type = "NTC"; 3420 else 3421 type = ""; 3422 3423 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n", 3424 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i, 3425 le64_to_cpu(u->a), le64_to_cpu(u->b), 3426 (u64)buffer_info->dma, buffer_info->length, 3427 buffer_info->next_to_watch, 3428 (u64)buffer_info->time_stamp, buffer_info->skb, type); 3429 } 3430 3431 rx_ring_summary: 3432 /* receive dump */ 3433 pr_info("\nRX Desc ring dump\n"); 3434 3435 /* Legacy Receive Descriptor Format 3436 * 3437 * +-----------------------------------------------------+ 3438 * | Buffer Address [63:0] | 3439 * +-----------------------------------------------------+ 3440 * | VLAN Tag | Errors | Status 0 | Packet csum | Length | 3441 * +-----------------------------------------------------+ 3442 * 63 48 47 40 39 32 31 16 15 0 3443 */ 3444 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n"); 3445 3446 if (!netif_msg_rx_status(adapter)) 3447 goto exit; 3448 3449 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { 3450 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); 3451 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i]; 3452 struct my_u { __le64 a; __le64 b; }; 3453 struct my_u *u = (struct my_u *)rx_desc; 3454 const char *type; 3455 3456 if (i == rx_ring->next_to_use) 3457 type = "NTU"; 3458 else if (i == rx_ring->next_to_clean) 3459 type = "NTC"; 3460 else 3461 type = ""; 3462 3463 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n", 3464 i, le64_to_cpu(u->a), le64_to_cpu(u->b), 3465 (u64)buffer_info->dma, buffer_info->rxbuf.data, type); 3466 } /* for */ 3467 3468 /* dump the descriptor caches */ 3469 /* rx */ 3470 pr_info("Rx descriptor cache in 64bit format\n"); 3471 for (i = 0x6000; i <= 0x63FF ; i += 0x10) { 3472 pr_info("R%04X: %08X|%08X %08X|%08X\n", 3473 i, 3474 readl(adapter->hw.hw_addr + i+4), 3475 readl(adapter->hw.hw_addr + i), 3476 readl(adapter->hw.hw_addr + i+12), 3477 readl(adapter->hw.hw_addr + i+8)); 3478 } 3479 /* tx */ 3480 pr_info("Tx descriptor cache in 64bit format\n"); 3481 for (i = 0x7000; i <= 0x73FF ; i += 0x10) { 3482 pr_info("T%04X: %08X|%08X %08X|%08X\n", 3483 i, 3484 readl(adapter->hw.hw_addr + i+4), 3485 readl(adapter->hw.hw_addr + i), 3486 readl(adapter->hw.hw_addr + i+12), 3487 readl(adapter->hw.hw_addr + i+8)); 3488 } 3489 exit: 3490 return; 3491 } 3492 3493 /** 3494 * e1000_tx_timeout - Respond to a Tx Hang 3495 * @netdev: network interface device structure 3496 **/ 3497 static void e1000_tx_timeout(struct net_device *netdev) 3498 { 3499 struct e1000_adapter *adapter = netdev_priv(netdev); 3500 3501 /* Do the reset outside of interrupt context */ 3502 adapter->tx_timeout_count++; 3503 schedule_work(&adapter->reset_task); 3504 } 3505 3506 static void e1000_reset_task(struct work_struct *work) 3507 { 3508 struct e1000_adapter *adapter = 3509 container_of(work, struct e1000_adapter, reset_task); 3510 3511 e_err(drv, "Reset adapter\n"); 3512 e1000_reinit_locked(adapter); 3513 } 3514 3515 /** 3516 * e1000_change_mtu - Change the Maximum Transfer Unit 3517 * @netdev: network interface device structure 3518 * @new_mtu: new value for maximum frame size 3519 * 3520 * Returns 0 on success, negative on failure 3521 **/ 3522 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 3523 { 3524 struct e1000_adapter *adapter = netdev_priv(netdev); 3525 struct e1000_hw *hw = &adapter->hw; 3526 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 3527 3528 /* Adapter-specific max frame size limits. */ 3529 switch (hw->mac_type) { 3530 case e1000_undefined ... e1000_82542_rev2_1: 3531 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { 3532 e_err(probe, "Jumbo Frames not supported.\n"); 3533 return -EINVAL; 3534 } 3535 break; 3536 default: 3537 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ 3538 break; 3539 } 3540 3541 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 3542 msleep(1); 3543 /* e1000_down has a dependency on max_frame_size */ 3544 hw->max_frame_size = max_frame; 3545 if (netif_running(netdev)) { 3546 /* prevent buffers from being reallocated */ 3547 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers; 3548 e1000_down(adapter); 3549 } 3550 3551 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 3552 * means we reserve 2 more, this pushes us to allocate from the next 3553 * larger slab size. 3554 * i.e. RXBUFFER_2048 --> size-4096 slab 3555 * however with the new *_jumbo_rx* routines, jumbo receives will use 3556 * fragmented skbs 3557 */ 3558 3559 if (max_frame <= E1000_RXBUFFER_2048) 3560 adapter->rx_buffer_len = E1000_RXBUFFER_2048; 3561 else 3562 #if (PAGE_SIZE >= E1000_RXBUFFER_16384) 3563 adapter->rx_buffer_len = E1000_RXBUFFER_16384; 3564 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096) 3565 adapter->rx_buffer_len = PAGE_SIZE; 3566 #endif 3567 3568 /* adjust allocation if LPE protects us, and we aren't using SBP */ 3569 if (!hw->tbi_compatibility_on && 3570 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || 3571 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) 3572 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 3573 3574 pr_info("%s changing MTU from %d to %d\n", 3575 netdev->name, netdev->mtu, new_mtu); 3576 netdev->mtu = new_mtu; 3577 3578 if (netif_running(netdev)) 3579 e1000_up(adapter); 3580 else 3581 e1000_reset(adapter); 3582 3583 clear_bit(__E1000_RESETTING, &adapter->flags); 3584 3585 return 0; 3586 } 3587 3588 /** 3589 * e1000_update_stats - Update the board statistics counters 3590 * @adapter: board private structure 3591 **/ 3592 void e1000_update_stats(struct e1000_adapter *adapter) 3593 { 3594 struct net_device *netdev = adapter->netdev; 3595 struct e1000_hw *hw = &adapter->hw; 3596 struct pci_dev *pdev = adapter->pdev; 3597 unsigned long flags; 3598 u16 phy_tmp; 3599 3600 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 3601 3602 /* Prevent stats update while adapter is being reset, or if the pci 3603 * connection is down. 3604 */ 3605 if (adapter->link_speed == 0) 3606 return; 3607 if (pci_channel_offline(pdev)) 3608 return; 3609 3610 spin_lock_irqsave(&adapter->stats_lock, flags); 3611 3612 /* these counters are modified from e1000_tbi_adjust_stats, 3613 * called from the interrupt context, so they must only 3614 * be written while holding adapter->stats_lock 3615 */ 3616 3617 adapter->stats.crcerrs += er32(CRCERRS); 3618 adapter->stats.gprc += er32(GPRC); 3619 adapter->stats.gorcl += er32(GORCL); 3620 adapter->stats.gorch += er32(GORCH); 3621 adapter->stats.bprc += er32(BPRC); 3622 adapter->stats.mprc += er32(MPRC); 3623 adapter->stats.roc += er32(ROC); 3624 3625 adapter->stats.prc64 += er32(PRC64); 3626 adapter->stats.prc127 += er32(PRC127); 3627 adapter->stats.prc255 += er32(PRC255); 3628 adapter->stats.prc511 += er32(PRC511); 3629 adapter->stats.prc1023 += er32(PRC1023); 3630 adapter->stats.prc1522 += er32(PRC1522); 3631 3632 adapter->stats.symerrs += er32(SYMERRS); 3633 adapter->stats.mpc += er32(MPC); 3634 adapter->stats.scc += er32(SCC); 3635 adapter->stats.ecol += er32(ECOL); 3636 adapter->stats.mcc += er32(MCC); 3637 adapter->stats.latecol += er32(LATECOL); 3638 adapter->stats.dc += er32(DC); 3639 adapter->stats.sec += er32(SEC); 3640 adapter->stats.rlec += er32(RLEC); 3641 adapter->stats.xonrxc += er32(XONRXC); 3642 adapter->stats.xontxc += er32(XONTXC); 3643 adapter->stats.xoffrxc += er32(XOFFRXC); 3644 adapter->stats.xofftxc += er32(XOFFTXC); 3645 adapter->stats.fcruc += er32(FCRUC); 3646 adapter->stats.gptc += er32(GPTC); 3647 adapter->stats.gotcl += er32(GOTCL); 3648 adapter->stats.gotch += er32(GOTCH); 3649 adapter->stats.rnbc += er32(RNBC); 3650 adapter->stats.ruc += er32(RUC); 3651 adapter->stats.rfc += er32(RFC); 3652 adapter->stats.rjc += er32(RJC); 3653 adapter->stats.torl += er32(TORL); 3654 adapter->stats.torh += er32(TORH); 3655 adapter->stats.totl += er32(TOTL); 3656 adapter->stats.toth += er32(TOTH); 3657 adapter->stats.tpr += er32(TPR); 3658 3659 adapter->stats.ptc64 += er32(PTC64); 3660 adapter->stats.ptc127 += er32(PTC127); 3661 adapter->stats.ptc255 += er32(PTC255); 3662 adapter->stats.ptc511 += er32(PTC511); 3663 adapter->stats.ptc1023 += er32(PTC1023); 3664 adapter->stats.ptc1522 += er32(PTC1522); 3665 3666 adapter->stats.mptc += er32(MPTC); 3667 adapter->stats.bptc += er32(BPTC); 3668 3669 /* used for adaptive IFS */ 3670 3671 hw->tx_packet_delta = er32(TPT); 3672 adapter->stats.tpt += hw->tx_packet_delta; 3673 hw->collision_delta = er32(COLC); 3674 adapter->stats.colc += hw->collision_delta; 3675 3676 if (hw->mac_type >= e1000_82543) { 3677 adapter->stats.algnerrc += er32(ALGNERRC); 3678 adapter->stats.rxerrc += er32(RXERRC); 3679 adapter->stats.tncrs += er32(TNCRS); 3680 adapter->stats.cexterr += er32(CEXTERR); 3681 adapter->stats.tsctc += er32(TSCTC); 3682 adapter->stats.tsctfc += er32(TSCTFC); 3683 } 3684 3685 /* Fill out the OS statistics structure */ 3686 netdev->stats.multicast = adapter->stats.mprc; 3687 netdev->stats.collisions = adapter->stats.colc; 3688 3689 /* Rx Errors */ 3690 3691 /* RLEC on some newer hardware can be incorrect so build 3692 * our own version based on RUC and ROC 3693 */ 3694 netdev->stats.rx_errors = adapter->stats.rxerrc + 3695 adapter->stats.crcerrs + adapter->stats.algnerrc + 3696 adapter->stats.ruc + adapter->stats.roc + 3697 adapter->stats.cexterr; 3698 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; 3699 netdev->stats.rx_length_errors = adapter->stats.rlerrc; 3700 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; 3701 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; 3702 netdev->stats.rx_missed_errors = adapter->stats.mpc; 3703 3704 /* Tx Errors */ 3705 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; 3706 netdev->stats.tx_errors = adapter->stats.txerrc; 3707 netdev->stats.tx_aborted_errors = adapter->stats.ecol; 3708 netdev->stats.tx_window_errors = adapter->stats.latecol; 3709 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; 3710 if (hw->bad_tx_carr_stats_fd && 3711 adapter->link_duplex == FULL_DUPLEX) { 3712 netdev->stats.tx_carrier_errors = 0; 3713 adapter->stats.tncrs = 0; 3714 } 3715 3716 /* Tx Dropped needs to be maintained elsewhere */ 3717 3718 /* Phy Stats */ 3719 if (hw->media_type == e1000_media_type_copper) { 3720 if ((adapter->link_speed == SPEED_1000) && 3721 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { 3722 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 3723 adapter->phy_stats.idle_errors += phy_tmp; 3724 } 3725 3726 if ((hw->mac_type <= e1000_82546) && 3727 (hw->phy_type == e1000_phy_m88) && 3728 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) 3729 adapter->phy_stats.receive_errors += phy_tmp; 3730 } 3731 3732 /* Management Stats */ 3733 if (hw->has_smbus) { 3734 adapter->stats.mgptc += er32(MGTPTC); 3735 adapter->stats.mgprc += er32(MGTPRC); 3736 adapter->stats.mgpdc += er32(MGTPDC); 3737 } 3738 3739 spin_unlock_irqrestore(&adapter->stats_lock, flags); 3740 } 3741 3742 /** 3743 * e1000_intr - Interrupt Handler 3744 * @irq: interrupt number 3745 * @data: pointer to a network interface device structure 3746 **/ 3747 static irqreturn_t e1000_intr(int irq, void *data) 3748 { 3749 struct net_device *netdev = data; 3750 struct e1000_adapter *adapter = netdev_priv(netdev); 3751 struct e1000_hw *hw = &adapter->hw; 3752 u32 icr = er32(ICR); 3753 3754 if (unlikely((!icr))) 3755 return IRQ_NONE; /* Not our interrupt */ 3756 3757 /* we might have caused the interrupt, but the above 3758 * read cleared it, and just in case the driver is 3759 * down there is nothing to do so return handled 3760 */ 3761 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags))) 3762 return IRQ_HANDLED; 3763 3764 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { 3765 hw->get_link_status = 1; 3766 /* guard against interrupt when we're going down */ 3767 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3768 schedule_delayed_work(&adapter->watchdog_task, 1); 3769 } 3770 3771 /* disable interrupts, without the synchronize_irq bit */ 3772 ew32(IMC, ~0); 3773 E1000_WRITE_FLUSH(); 3774 3775 if (likely(napi_schedule_prep(&adapter->napi))) { 3776 adapter->total_tx_bytes = 0; 3777 adapter->total_tx_packets = 0; 3778 adapter->total_rx_bytes = 0; 3779 adapter->total_rx_packets = 0; 3780 __napi_schedule(&adapter->napi); 3781 } else { 3782 /* this really should not happen! if it does it is basically a 3783 * bug, but not a hard error, so enable ints and continue 3784 */ 3785 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3786 e1000_irq_enable(adapter); 3787 } 3788 3789 return IRQ_HANDLED; 3790 } 3791 3792 /** 3793 * e1000_clean - NAPI Rx polling callback 3794 * @adapter: board private structure 3795 **/ 3796 static int e1000_clean(struct napi_struct *napi, int budget) 3797 { 3798 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, 3799 napi); 3800 int tx_clean_complete = 0, work_done = 0; 3801 3802 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); 3803 3804 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); 3805 3806 if (!tx_clean_complete) 3807 work_done = budget; 3808 3809 /* If budget not fully consumed, exit the polling mode */ 3810 if (work_done < budget) { 3811 if (likely(adapter->itr_setting & 3)) 3812 e1000_set_itr(adapter); 3813 napi_complete_done(napi, work_done); 3814 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3815 e1000_irq_enable(adapter); 3816 } 3817 3818 return work_done; 3819 } 3820 3821 /** 3822 * e1000_clean_tx_irq - Reclaim resources after transmit completes 3823 * @adapter: board private structure 3824 **/ 3825 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 3826 struct e1000_tx_ring *tx_ring) 3827 { 3828 struct e1000_hw *hw = &adapter->hw; 3829 struct net_device *netdev = adapter->netdev; 3830 struct e1000_tx_desc *tx_desc, *eop_desc; 3831 struct e1000_tx_buffer *buffer_info; 3832 unsigned int i, eop; 3833 unsigned int count = 0; 3834 unsigned int total_tx_bytes = 0, total_tx_packets = 0; 3835 unsigned int bytes_compl = 0, pkts_compl = 0; 3836 3837 i = tx_ring->next_to_clean; 3838 eop = tx_ring->buffer_info[i].next_to_watch; 3839 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3840 3841 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && 3842 (count < tx_ring->count)) { 3843 bool cleaned = false; 3844 dma_rmb(); /* read buffer_info after eop_desc */ 3845 for ( ; !cleaned; count++) { 3846 tx_desc = E1000_TX_DESC(*tx_ring, i); 3847 buffer_info = &tx_ring->buffer_info[i]; 3848 cleaned = (i == eop); 3849 3850 if (cleaned) { 3851 total_tx_packets += buffer_info->segs; 3852 total_tx_bytes += buffer_info->bytecount; 3853 if (buffer_info->skb) { 3854 bytes_compl += buffer_info->skb->len; 3855 pkts_compl++; 3856 } 3857 3858 } 3859 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 3860 tx_desc->upper.data = 0; 3861 3862 if (unlikely(++i == tx_ring->count)) 3863 i = 0; 3864 } 3865 3866 eop = tx_ring->buffer_info[i].next_to_watch; 3867 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3868 } 3869 3870 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame, 3871 * which will reuse the cleaned buffers. 3872 */ 3873 smp_store_release(&tx_ring->next_to_clean, i); 3874 3875 netdev_completed_queue(netdev, pkts_compl, bytes_compl); 3876 3877 #define TX_WAKE_THRESHOLD 32 3878 if (unlikely(count && netif_carrier_ok(netdev) && 3879 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { 3880 /* Make sure that anybody stopping the queue after this 3881 * sees the new next_to_clean. 3882 */ 3883 smp_mb(); 3884 3885 if (netif_queue_stopped(netdev) && 3886 !(test_bit(__E1000_DOWN, &adapter->flags))) { 3887 netif_wake_queue(netdev); 3888 ++adapter->restart_queue; 3889 } 3890 } 3891 3892 if (adapter->detect_tx_hung) { 3893 /* Detect a transmit hang in hardware, this serializes the 3894 * check with the clearing of time_stamp and movement of i 3895 */ 3896 adapter->detect_tx_hung = false; 3897 if (tx_ring->buffer_info[eop].time_stamp && 3898 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + 3899 (adapter->tx_timeout_factor * HZ)) && 3900 !(er32(STATUS) & E1000_STATUS_TXOFF)) { 3901 3902 /* detected Tx unit hang */ 3903 e_err(drv, "Detected Tx Unit Hang\n" 3904 " Tx Queue <%lu>\n" 3905 " TDH <%x>\n" 3906 " TDT <%x>\n" 3907 " next_to_use <%x>\n" 3908 " next_to_clean <%x>\n" 3909 "buffer_info[next_to_clean]\n" 3910 " time_stamp <%lx>\n" 3911 " next_to_watch <%x>\n" 3912 " jiffies <%lx>\n" 3913 " next_to_watch.status <%x>\n", 3914 (unsigned long)(tx_ring - adapter->tx_ring), 3915 readl(hw->hw_addr + tx_ring->tdh), 3916 readl(hw->hw_addr + tx_ring->tdt), 3917 tx_ring->next_to_use, 3918 tx_ring->next_to_clean, 3919 tx_ring->buffer_info[eop].time_stamp, 3920 eop, 3921 jiffies, 3922 eop_desc->upper.fields.status); 3923 e1000_dump(adapter); 3924 netif_stop_queue(netdev); 3925 } 3926 } 3927 adapter->total_tx_bytes += total_tx_bytes; 3928 adapter->total_tx_packets += total_tx_packets; 3929 netdev->stats.tx_bytes += total_tx_bytes; 3930 netdev->stats.tx_packets += total_tx_packets; 3931 return count < tx_ring->count; 3932 } 3933 3934 /** 3935 * e1000_rx_checksum - Receive Checksum Offload for 82543 3936 * @adapter: board private structure 3937 * @status_err: receive descriptor status and error fields 3938 * @csum: receive descriptor csum field 3939 * @sk_buff: socket buffer with received data 3940 **/ 3941 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 3942 u32 csum, struct sk_buff *skb) 3943 { 3944 struct e1000_hw *hw = &adapter->hw; 3945 u16 status = (u16)status_err; 3946 u8 errors = (u8)(status_err >> 24); 3947 3948 skb_checksum_none_assert(skb); 3949 3950 /* 82543 or newer only */ 3951 if (unlikely(hw->mac_type < e1000_82543)) 3952 return; 3953 /* Ignore Checksum bit is set */ 3954 if (unlikely(status & E1000_RXD_STAT_IXSM)) 3955 return; 3956 /* TCP/UDP checksum error bit is set */ 3957 if (unlikely(errors & E1000_RXD_ERR_TCPE)) { 3958 /* let the stack verify checksum errors */ 3959 adapter->hw_csum_err++; 3960 return; 3961 } 3962 /* TCP/UDP Checksum has not been calculated */ 3963 if (!(status & E1000_RXD_STAT_TCPCS)) 3964 return; 3965 3966 /* It must be a TCP or UDP packet with a valid checksum */ 3967 if (likely(status & E1000_RXD_STAT_TCPCS)) { 3968 /* TCP checksum is good */ 3969 skb->ip_summed = CHECKSUM_UNNECESSARY; 3970 } 3971 adapter->hw_csum_good++; 3972 } 3973 3974 /** 3975 * e1000_consume_page - helper function for jumbo Rx path 3976 **/ 3977 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb, 3978 u16 length) 3979 { 3980 bi->rxbuf.page = NULL; 3981 skb->len += length; 3982 skb->data_len += length; 3983 skb->truesize += PAGE_SIZE; 3984 } 3985 3986 /** 3987 * e1000_receive_skb - helper function to handle rx indications 3988 * @adapter: board private structure 3989 * @status: descriptor status field as written by hardware 3990 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 3991 * @skb: pointer to sk_buff to be indicated to stack 3992 */ 3993 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, 3994 __le16 vlan, struct sk_buff *skb) 3995 { 3996 skb->protocol = eth_type_trans(skb, adapter->netdev); 3997 3998 if (status & E1000_RXD_STAT_VP) { 3999 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 4000 4001 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 4002 } 4003 napi_gro_receive(&adapter->napi, skb); 4004 } 4005 4006 /** 4007 * e1000_tbi_adjust_stats 4008 * @hw: Struct containing variables accessed by shared code 4009 * @frame_len: The length of the frame in question 4010 * @mac_addr: The Ethernet destination address of the frame in question 4011 * 4012 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT 4013 */ 4014 static void e1000_tbi_adjust_stats(struct e1000_hw *hw, 4015 struct e1000_hw_stats *stats, 4016 u32 frame_len, const u8 *mac_addr) 4017 { 4018 u64 carry_bit; 4019 4020 /* First adjust the frame length. */ 4021 frame_len--; 4022 /* We need to adjust the statistics counters, since the hardware 4023 * counters overcount this packet as a CRC error and undercount 4024 * the packet as a good packet 4025 */ 4026 /* This packet should not be counted as a CRC error. */ 4027 stats->crcerrs--; 4028 /* This packet does count as a Good Packet Received. */ 4029 stats->gprc++; 4030 4031 /* Adjust the Good Octets received counters */ 4032 carry_bit = 0x80000000 & stats->gorcl; 4033 stats->gorcl += frame_len; 4034 /* If the high bit of Gorcl (the low 32 bits of the Good Octets 4035 * Received Count) was one before the addition, 4036 * AND it is zero after, then we lost the carry out, 4037 * need to add one to Gorch (Good Octets Received Count High). 4038 * This could be simplified if all environments supported 4039 * 64-bit integers. 4040 */ 4041 if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) 4042 stats->gorch++; 4043 /* Is this a broadcast or multicast? Check broadcast first, 4044 * since the test for a multicast frame will test positive on 4045 * a broadcast frame. 4046 */ 4047 if (is_broadcast_ether_addr(mac_addr)) 4048 stats->bprc++; 4049 else if (is_multicast_ether_addr(mac_addr)) 4050 stats->mprc++; 4051 4052 if (frame_len == hw->max_frame_size) { 4053 /* In this case, the hardware has overcounted the number of 4054 * oversize frames. 4055 */ 4056 if (stats->roc > 0) 4057 stats->roc--; 4058 } 4059 4060 /* Adjust the bin counters when the extra byte put the frame in the 4061 * wrong bin. Remember that the frame_len was adjusted above. 4062 */ 4063 if (frame_len == 64) { 4064 stats->prc64++; 4065 stats->prc127--; 4066 } else if (frame_len == 127) { 4067 stats->prc127++; 4068 stats->prc255--; 4069 } else if (frame_len == 255) { 4070 stats->prc255++; 4071 stats->prc511--; 4072 } else if (frame_len == 511) { 4073 stats->prc511++; 4074 stats->prc1023--; 4075 } else if (frame_len == 1023) { 4076 stats->prc1023++; 4077 stats->prc1522--; 4078 } else if (frame_len == 1522) { 4079 stats->prc1522++; 4080 } 4081 } 4082 4083 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter, 4084 u8 status, u8 errors, 4085 u32 length, const u8 *data) 4086 { 4087 struct e1000_hw *hw = &adapter->hw; 4088 u8 last_byte = *(data + length - 1); 4089 4090 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) { 4091 unsigned long irq_flags; 4092 4093 spin_lock_irqsave(&adapter->stats_lock, irq_flags); 4094 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data); 4095 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); 4096 4097 return true; 4098 } 4099 4100 return false; 4101 } 4102 4103 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter, 4104 unsigned int bufsz) 4105 { 4106 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz); 4107 4108 if (unlikely(!skb)) 4109 adapter->alloc_rx_buff_failed++; 4110 return skb; 4111 } 4112 4113 /** 4114 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 4115 * @adapter: board private structure 4116 * @rx_ring: ring to clean 4117 * @work_done: amount of napi work completed this call 4118 * @work_to_do: max amount of work allowed for this call to do 4119 * 4120 * the return value indicates whether actual cleaning was done, there 4121 * is no guarantee that everything was cleaned 4122 */ 4123 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 4124 struct e1000_rx_ring *rx_ring, 4125 int *work_done, int work_to_do) 4126 { 4127 struct net_device *netdev = adapter->netdev; 4128 struct pci_dev *pdev = adapter->pdev; 4129 struct e1000_rx_desc *rx_desc, *next_rxd; 4130 struct e1000_rx_buffer *buffer_info, *next_buffer; 4131 u32 length; 4132 unsigned int i; 4133 int cleaned_count = 0; 4134 bool cleaned = false; 4135 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 4136 4137 i = rx_ring->next_to_clean; 4138 rx_desc = E1000_RX_DESC(*rx_ring, i); 4139 buffer_info = &rx_ring->buffer_info[i]; 4140 4141 while (rx_desc->status & E1000_RXD_STAT_DD) { 4142 struct sk_buff *skb; 4143 u8 status; 4144 4145 if (*work_done >= work_to_do) 4146 break; 4147 (*work_done)++; 4148 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 4149 4150 status = rx_desc->status; 4151 4152 if (++i == rx_ring->count) 4153 i = 0; 4154 4155 next_rxd = E1000_RX_DESC(*rx_ring, i); 4156 prefetch(next_rxd); 4157 4158 next_buffer = &rx_ring->buffer_info[i]; 4159 4160 cleaned = true; 4161 cleaned_count++; 4162 dma_unmap_page(&pdev->dev, buffer_info->dma, 4163 adapter->rx_buffer_len, DMA_FROM_DEVICE); 4164 buffer_info->dma = 0; 4165 4166 length = le16_to_cpu(rx_desc->length); 4167 4168 /* errors is only valid for DD + EOP descriptors */ 4169 if (unlikely((status & E1000_RXD_STAT_EOP) && 4170 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { 4171 u8 *mapped = page_address(buffer_info->rxbuf.page); 4172 4173 if (e1000_tbi_should_accept(adapter, status, 4174 rx_desc->errors, 4175 length, mapped)) { 4176 length--; 4177 } else if (netdev->features & NETIF_F_RXALL) { 4178 goto process_skb; 4179 } else { 4180 /* an error means any chain goes out the window 4181 * too 4182 */ 4183 if (rx_ring->rx_skb_top) 4184 dev_kfree_skb(rx_ring->rx_skb_top); 4185 rx_ring->rx_skb_top = NULL; 4186 goto next_desc; 4187 } 4188 } 4189 4190 #define rxtop rx_ring->rx_skb_top 4191 process_skb: 4192 if (!(status & E1000_RXD_STAT_EOP)) { 4193 /* this descriptor is only the beginning (or middle) */ 4194 if (!rxtop) { 4195 /* this is the beginning of a chain */ 4196 rxtop = napi_get_frags(&adapter->napi); 4197 if (!rxtop) 4198 break; 4199 4200 skb_fill_page_desc(rxtop, 0, 4201 buffer_info->rxbuf.page, 4202 0, length); 4203 } else { 4204 /* this is the middle of a chain */ 4205 skb_fill_page_desc(rxtop, 4206 skb_shinfo(rxtop)->nr_frags, 4207 buffer_info->rxbuf.page, 0, length); 4208 } 4209 e1000_consume_page(buffer_info, rxtop, length); 4210 goto next_desc; 4211 } else { 4212 if (rxtop) { 4213 /* end of the chain */ 4214 skb_fill_page_desc(rxtop, 4215 skb_shinfo(rxtop)->nr_frags, 4216 buffer_info->rxbuf.page, 0, length); 4217 skb = rxtop; 4218 rxtop = NULL; 4219 e1000_consume_page(buffer_info, skb, length); 4220 } else { 4221 struct page *p; 4222 /* no chain, got EOP, this buf is the packet 4223 * copybreak to save the put_page/alloc_page 4224 */ 4225 p = buffer_info->rxbuf.page; 4226 if (length <= copybreak) { 4227 u8 *vaddr; 4228 4229 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4230 length -= 4; 4231 skb = e1000_alloc_rx_skb(adapter, 4232 length); 4233 if (!skb) 4234 break; 4235 4236 vaddr = kmap_atomic(p); 4237 memcpy(skb_tail_pointer(skb), vaddr, 4238 length); 4239 kunmap_atomic(vaddr); 4240 /* re-use the page, so don't erase 4241 * buffer_info->rxbuf.page 4242 */ 4243 skb_put(skb, length); 4244 e1000_rx_checksum(adapter, 4245 status | rx_desc->errors << 24, 4246 le16_to_cpu(rx_desc->csum), skb); 4247 4248 total_rx_bytes += skb->len; 4249 total_rx_packets++; 4250 4251 e1000_receive_skb(adapter, status, 4252 rx_desc->special, skb); 4253 goto next_desc; 4254 } else { 4255 skb = napi_get_frags(&adapter->napi); 4256 if (!skb) { 4257 adapter->alloc_rx_buff_failed++; 4258 break; 4259 } 4260 skb_fill_page_desc(skb, 0, p, 0, 4261 length); 4262 e1000_consume_page(buffer_info, skb, 4263 length); 4264 } 4265 } 4266 } 4267 4268 /* Receive Checksum Offload XXX recompute due to CRC strip? */ 4269 e1000_rx_checksum(adapter, 4270 (u32)(status) | 4271 ((u32)(rx_desc->errors) << 24), 4272 le16_to_cpu(rx_desc->csum), skb); 4273 4274 total_rx_bytes += (skb->len - 4); /* don't count FCS */ 4275 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4276 pskb_trim(skb, skb->len - 4); 4277 total_rx_packets++; 4278 4279 if (status & E1000_RXD_STAT_VP) { 4280 __le16 vlan = rx_desc->special; 4281 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 4282 4283 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 4284 } 4285 4286 napi_gro_frags(&adapter->napi); 4287 4288 next_desc: 4289 rx_desc->status = 0; 4290 4291 /* return some buffers to hardware, one at a time is too slow */ 4292 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4293 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4294 cleaned_count = 0; 4295 } 4296 4297 /* use prefetched values */ 4298 rx_desc = next_rxd; 4299 buffer_info = next_buffer; 4300 } 4301 rx_ring->next_to_clean = i; 4302 4303 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4304 if (cleaned_count) 4305 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4306 4307 adapter->total_rx_packets += total_rx_packets; 4308 adapter->total_rx_bytes += total_rx_bytes; 4309 netdev->stats.rx_bytes += total_rx_bytes; 4310 netdev->stats.rx_packets += total_rx_packets; 4311 return cleaned; 4312 } 4313 4314 /* this should improve performance for small packets with large amounts 4315 * of reassembly being done in the stack 4316 */ 4317 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter, 4318 struct e1000_rx_buffer *buffer_info, 4319 u32 length, const void *data) 4320 { 4321 struct sk_buff *skb; 4322 4323 if (length > copybreak) 4324 return NULL; 4325 4326 skb = e1000_alloc_rx_skb(adapter, length); 4327 if (!skb) 4328 return NULL; 4329 4330 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma, 4331 length, DMA_FROM_DEVICE); 4332 4333 skb_put_data(skb, data, length); 4334 4335 return skb; 4336 } 4337 4338 /** 4339 * e1000_clean_rx_irq - Send received data up the network stack; legacy 4340 * @adapter: board private structure 4341 * @rx_ring: ring to clean 4342 * @work_done: amount of napi work completed this call 4343 * @work_to_do: max amount of work allowed for this call to do 4344 */ 4345 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 4346 struct e1000_rx_ring *rx_ring, 4347 int *work_done, int work_to_do) 4348 { 4349 struct net_device *netdev = adapter->netdev; 4350 struct pci_dev *pdev = adapter->pdev; 4351 struct e1000_rx_desc *rx_desc, *next_rxd; 4352 struct e1000_rx_buffer *buffer_info, *next_buffer; 4353 u32 length; 4354 unsigned int i; 4355 int cleaned_count = 0; 4356 bool cleaned = false; 4357 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 4358 4359 i = rx_ring->next_to_clean; 4360 rx_desc = E1000_RX_DESC(*rx_ring, i); 4361 buffer_info = &rx_ring->buffer_info[i]; 4362 4363 while (rx_desc->status & E1000_RXD_STAT_DD) { 4364 struct sk_buff *skb; 4365 u8 *data; 4366 u8 status; 4367 4368 if (*work_done >= work_to_do) 4369 break; 4370 (*work_done)++; 4371 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 4372 4373 status = rx_desc->status; 4374 length = le16_to_cpu(rx_desc->length); 4375 4376 data = buffer_info->rxbuf.data; 4377 prefetch(data); 4378 skb = e1000_copybreak(adapter, buffer_info, length, data); 4379 if (!skb) { 4380 unsigned int frag_len = e1000_frag_len(adapter); 4381 4382 skb = build_skb(data - E1000_HEADROOM, frag_len); 4383 if (!skb) { 4384 adapter->alloc_rx_buff_failed++; 4385 break; 4386 } 4387 4388 skb_reserve(skb, E1000_HEADROOM); 4389 dma_unmap_single(&pdev->dev, buffer_info->dma, 4390 adapter->rx_buffer_len, 4391 DMA_FROM_DEVICE); 4392 buffer_info->dma = 0; 4393 buffer_info->rxbuf.data = NULL; 4394 } 4395 4396 if (++i == rx_ring->count) 4397 i = 0; 4398 4399 next_rxd = E1000_RX_DESC(*rx_ring, i); 4400 prefetch(next_rxd); 4401 4402 next_buffer = &rx_ring->buffer_info[i]; 4403 4404 cleaned = true; 4405 cleaned_count++; 4406 4407 /* !EOP means multiple descriptors were used to store a single 4408 * packet, if thats the case we need to toss it. In fact, we 4409 * to toss every packet with the EOP bit clear and the next 4410 * frame that _does_ have the EOP bit set, as it is by 4411 * definition only a frame fragment 4412 */ 4413 if (unlikely(!(status & E1000_RXD_STAT_EOP))) 4414 adapter->discarding = true; 4415 4416 if (adapter->discarding) { 4417 /* All receives must fit into a single buffer */ 4418 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n"); 4419 dev_kfree_skb(skb); 4420 if (status & E1000_RXD_STAT_EOP) 4421 adapter->discarding = false; 4422 goto next_desc; 4423 } 4424 4425 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { 4426 if (e1000_tbi_should_accept(adapter, status, 4427 rx_desc->errors, 4428 length, data)) { 4429 length--; 4430 } else if (netdev->features & NETIF_F_RXALL) { 4431 goto process_skb; 4432 } else { 4433 dev_kfree_skb(skb); 4434 goto next_desc; 4435 } 4436 } 4437 4438 process_skb: 4439 total_rx_bytes += (length - 4); /* don't count FCS */ 4440 total_rx_packets++; 4441 4442 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4443 /* adjust length to remove Ethernet CRC, this must be 4444 * done after the TBI_ACCEPT workaround above 4445 */ 4446 length -= 4; 4447 4448 if (buffer_info->rxbuf.data == NULL) 4449 skb_put(skb, length); 4450 else /* copybreak skb */ 4451 skb_trim(skb, length); 4452 4453 /* Receive Checksum Offload */ 4454 e1000_rx_checksum(adapter, 4455 (u32)(status) | 4456 ((u32)(rx_desc->errors) << 24), 4457 le16_to_cpu(rx_desc->csum), skb); 4458 4459 e1000_receive_skb(adapter, status, rx_desc->special, skb); 4460 4461 next_desc: 4462 rx_desc->status = 0; 4463 4464 /* return some buffers to hardware, one at a time is too slow */ 4465 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4466 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4467 cleaned_count = 0; 4468 } 4469 4470 /* use prefetched values */ 4471 rx_desc = next_rxd; 4472 buffer_info = next_buffer; 4473 } 4474 rx_ring->next_to_clean = i; 4475 4476 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4477 if (cleaned_count) 4478 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4479 4480 adapter->total_rx_packets += total_rx_packets; 4481 adapter->total_rx_bytes += total_rx_bytes; 4482 netdev->stats.rx_bytes += total_rx_bytes; 4483 netdev->stats.rx_packets += total_rx_packets; 4484 return cleaned; 4485 } 4486 4487 /** 4488 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 4489 * @adapter: address of board private structure 4490 * @rx_ring: pointer to receive ring structure 4491 * @cleaned_count: number of buffers to allocate this pass 4492 **/ 4493 static void 4494 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 4495 struct e1000_rx_ring *rx_ring, int cleaned_count) 4496 { 4497 struct pci_dev *pdev = adapter->pdev; 4498 struct e1000_rx_desc *rx_desc; 4499 struct e1000_rx_buffer *buffer_info; 4500 unsigned int i; 4501 4502 i = rx_ring->next_to_use; 4503 buffer_info = &rx_ring->buffer_info[i]; 4504 4505 while (cleaned_count--) { 4506 /* allocate a new page if necessary */ 4507 if (!buffer_info->rxbuf.page) { 4508 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC); 4509 if (unlikely(!buffer_info->rxbuf.page)) { 4510 adapter->alloc_rx_buff_failed++; 4511 break; 4512 } 4513 } 4514 4515 if (!buffer_info->dma) { 4516 buffer_info->dma = dma_map_page(&pdev->dev, 4517 buffer_info->rxbuf.page, 0, 4518 adapter->rx_buffer_len, 4519 DMA_FROM_DEVICE); 4520 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4521 put_page(buffer_info->rxbuf.page); 4522 buffer_info->rxbuf.page = NULL; 4523 buffer_info->dma = 0; 4524 adapter->alloc_rx_buff_failed++; 4525 break; 4526 } 4527 } 4528 4529 rx_desc = E1000_RX_DESC(*rx_ring, i); 4530 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4531 4532 if (unlikely(++i == rx_ring->count)) 4533 i = 0; 4534 buffer_info = &rx_ring->buffer_info[i]; 4535 } 4536 4537 if (likely(rx_ring->next_to_use != i)) { 4538 rx_ring->next_to_use = i; 4539 if (unlikely(i-- == 0)) 4540 i = (rx_ring->count - 1); 4541 4542 /* Force memory writes to complete before letting h/w 4543 * know there are new descriptors to fetch. (Only 4544 * applicable for weak-ordered memory model archs, 4545 * such as IA-64). 4546 */ 4547 wmb(); 4548 writel(i, adapter->hw.hw_addr + rx_ring->rdt); 4549 } 4550 } 4551 4552 /** 4553 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended 4554 * @adapter: address of board private structure 4555 **/ 4556 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 4557 struct e1000_rx_ring *rx_ring, 4558 int cleaned_count) 4559 { 4560 struct e1000_hw *hw = &adapter->hw; 4561 struct pci_dev *pdev = adapter->pdev; 4562 struct e1000_rx_desc *rx_desc; 4563 struct e1000_rx_buffer *buffer_info; 4564 unsigned int i; 4565 unsigned int bufsz = adapter->rx_buffer_len; 4566 4567 i = rx_ring->next_to_use; 4568 buffer_info = &rx_ring->buffer_info[i]; 4569 4570 while (cleaned_count--) { 4571 void *data; 4572 4573 if (buffer_info->rxbuf.data) 4574 goto skip; 4575 4576 data = e1000_alloc_frag(adapter); 4577 if (!data) { 4578 /* Better luck next round */ 4579 adapter->alloc_rx_buff_failed++; 4580 break; 4581 } 4582 4583 /* Fix for errata 23, can't cross 64kB boundary */ 4584 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4585 void *olddata = data; 4586 e_err(rx_err, "skb align check failed: %u bytes at " 4587 "%p\n", bufsz, data); 4588 /* Try again, without freeing the previous */ 4589 data = e1000_alloc_frag(adapter); 4590 /* Failed allocation, critical failure */ 4591 if (!data) { 4592 skb_free_frag(olddata); 4593 adapter->alloc_rx_buff_failed++; 4594 break; 4595 } 4596 4597 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4598 /* give up */ 4599 skb_free_frag(data); 4600 skb_free_frag(olddata); 4601 adapter->alloc_rx_buff_failed++; 4602 break; 4603 } 4604 4605 /* Use new allocation */ 4606 skb_free_frag(olddata); 4607 } 4608 buffer_info->dma = dma_map_single(&pdev->dev, 4609 data, 4610 adapter->rx_buffer_len, 4611 DMA_FROM_DEVICE); 4612 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4613 skb_free_frag(data); 4614 buffer_info->dma = 0; 4615 adapter->alloc_rx_buff_failed++; 4616 break; 4617 } 4618 4619 /* XXX if it was allocated cleanly it will never map to a 4620 * boundary crossing 4621 */ 4622 4623 /* Fix for errata 23, can't cross 64kB boundary */ 4624 if (!e1000_check_64k_bound(adapter, 4625 (void *)(unsigned long)buffer_info->dma, 4626 adapter->rx_buffer_len)) { 4627 e_err(rx_err, "dma align check failed: %u bytes at " 4628 "%p\n", adapter->rx_buffer_len, 4629 (void *)(unsigned long)buffer_info->dma); 4630 4631 dma_unmap_single(&pdev->dev, buffer_info->dma, 4632 adapter->rx_buffer_len, 4633 DMA_FROM_DEVICE); 4634 4635 skb_free_frag(data); 4636 buffer_info->rxbuf.data = NULL; 4637 buffer_info->dma = 0; 4638 4639 adapter->alloc_rx_buff_failed++; 4640 break; 4641 } 4642 buffer_info->rxbuf.data = data; 4643 skip: 4644 rx_desc = E1000_RX_DESC(*rx_ring, i); 4645 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4646 4647 if (unlikely(++i == rx_ring->count)) 4648 i = 0; 4649 buffer_info = &rx_ring->buffer_info[i]; 4650 } 4651 4652 if (likely(rx_ring->next_to_use != i)) { 4653 rx_ring->next_to_use = i; 4654 if (unlikely(i-- == 0)) 4655 i = (rx_ring->count - 1); 4656 4657 /* Force memory writes to complete before letting h/w 4658 * know there are new descriptors to fetch. (Only 4659 * applicable for weak-ordered memory model archs, 4660 * such as IA-64). 4661 */ 4662 wmb(); 4663 writel(i, hw->hw_addr + rx_ring->rdt); 4664 } 4665 } 4666 4667 /** 4668 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. 4669 * @adapter: 4670 **/ 4671 static void e1000_smartspeed(struct e1000_adapter *adapter) 4672 { 4673 struct e1000_hw *hw = &adapter->hw; 4674 u16 phy_status; 4675 u16 phy_ctrl; 4676 4677 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || 4678 !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) 4679 return; 4680 4681 if (adapter->smartspeed == 0) { 4682 /* If Master/Slave config fault is asserted twice, 4683 * we assume back-to-back 4684 */ 4685 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4686 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) 4687 return; 4688 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4689 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) 4690 return; 4691 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4692 if (phy_ctrl & CR_1000T_MS_ENABLE) { 4693 phy_ctrl &= ~CR_1000T_MS_ENABLE; 4694 e1000_write_phy_reg(hw, PHY_1000T_CTRL, 4695 phy_ctrl); 4696 adapter->smartspeed++; 4697 if (!e1000_phy_setup_autoneg(hw) && 4698 !e1000_read_phy_reg(hw, PHY_CTRL, 4699 &phy_ctrl)) { 4700 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4701 MII_CR_RESTART_AUTO_NEG); 4702 e1000_write_phy_reg(hw, PHY_CTRL, 4703 phy_ctrl); 4704 } 4705 } 4706 return; 4707 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { 4708 /* If still no link, perhaps using 2/3 pair cable */ 4709 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4710 phy_ctrl |= CR_1000T_MS_ENABLE; 4711 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); 4712 if (!e1000_phy_setup_autoneg(hw) && 4713 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { 4714 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4715 MII_CR_RESTART_AUTO_NEG); 4716 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); 4717 } 4718 } 4719 /* Restart process after E1000_SMARTSPEED_MAX iterations */ 4720 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) 4721 adapter->smartspeed = 0; 4722 } 4723 4724 /** 4725 * e1000_ioctl - 4726 * @netdev: 4727 * @ifreq: 4728 * @cmd: 4729 **/ 4730 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 4731 { 4732 switch (cmd) { 4733 case SIOCGMIIPHY: 4734 case SIOCGMIIREG: 4735 case SIOCSMIIREG: 4736 return e1000_mii_ioctl(netdev, ifr, cmd); 4737 default: 4738 return -EOPNOTSUPP; 4739 } 4740 } 4741 4742 /** 4743 * e1000_mii_ioctl - 4744 * @netdev: 4745 * @ifreq: 4746 * @cmd: 4747 **/ 4748 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 4749 int cmd) 4750 { 4751 struct e1000_adapter *adapter = netdev_priv(netdev); 4752 struct e1000_hw *hw = &adapter->hw; 4753 struct mii_ioctl_data *data = if_mii(ifr); 4754 int retval; 4755 u16 mii_reg; 4756 unsigned long flags; 4757 4758 if (hw->media_type != e1000_media_type_copper) 4759 return -EOPNOTSUPP; 4760 4761 switch (cmd) { 4762 case SIOCGMIIPHY: 4763 data->phy_id = hw->phy_addr; 4764 break; 4765 case SIOCGMIIREG: 4766 spin_lock_irqsave(&adapter->stats_lock, flags); 4767 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, 4768 &data->val_out)) { 4769 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4770 return -EIO; 4771 } 4772 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4773 break; 4774 case SIOCSMIIREG: 4775 if (data->reg_num & ~(0x1F)) 4776 return -EFAULT; 4777 mii_reg = data->val_in; 4778 spin_lock_irqsave(&adapter->stats_lock, flags); 4779 if (e1000_write_phy_reg(hw, data->reg_num, 4780 mii_reg)) { 4781 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4782 return -EIO; 4783 } 4784 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4785 if (hw->media_type == e1000_media_type_copper) { 4786 switch (data->reg_num) { 4787 case PHY_CTRL: 4788 if (mii_reg & MII_CR_POWER_DOWN) 4789 break; 4790 if (mii_reg & MII_CR_AUTO_NEG_EN) { 4791 hw->autoneg = 1; 4792 hw->autoneg_advertised = 0x2F; 4793 } else { 4794 u32 speed; 4795 if (mii_reg & 0x40) 4796 speed = SPEED_1000; 4797 else if (mii_reg & 0x2000) 4798 speed = SPEED_100; 4799 else 4800 speed = SPEED_10; 4801 retval = e1000_set_spd_dplx( 4802 adapter, speed, 4803 ((mii_reg & 0x100) 4804 ? DUPLEX_FULL : 4805 DUPLEX_HALF)); 4806 if (retval) 4807 return retval; 4808 } 4809 if (netif_running(adapter->netdev)) 4810 e1000_reinit_locked(adapter); 4811 else 4812 e1000_reset(adapter); 4813 break; 4814 case M88E1000_PHY_SPEC_CTRL: 4815 case M88E1000_EXT_PHY_SPEC_CTRL: 4816 if (e1000_phy_reset(hw)) 4817 return -EIO; 4818 break; 4819 } 4820 } else { 4821 switch (data->reg_num) { 4822 case PHY_CTRL: 4823 if (mii_reg & MII_CR_POWER_DOWN) 4824 break; 4825 if (netif_running(adapter->netdev)) 4826 e1000_reinit_locked(adapter); 4827 else 4828 e1000_reset(adapter); 4829 break; 4830 } 4831 } 4832 break; 4833 default: 4834 return -EOPNOTSUPP; 4835 } 4836 return E1000_SUCCESS; 4837 } 4838 4839 void e1000_pci_set_mwi(struct e1000_hw *hw) 4840 { 4841 struct e1000_adapter *adapter = hw->back; 4842 int ret_val = pci_set_mwi(adapter->pdev); 4843 4844 if (ret_val) 4845 e_err(probe, "Error in setting MWI\n"); 4846 } 4847 4848 void e1000_pci_clear_mwi(struct e1000_hw *hw) 4849 { 4850 struct e1000_adapter *adapter = hw->back; 4851 4852 pci_clear_mwi(adapter->pdev); 4853 } 4854 4855 int e1000_pcix_get_mmrbc(struct e1000_hw *hw) 4856 { 4857 struct e1000_adapter *adapter = hw->back; 4858 return pcix_get_mmrbc(adapter->pdev); 4859 } 4860 4861 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) 4862 { 4863 struct e1000_adapter *adapter = hw->back; 4864 pcix_set_mmrbc(adapter->pdev, mmrbc); 4865 } 4866 4867 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) 4868 { 4869 outl(value, port); 4870 } 4871 4872 static bool e1000_vlan_used(struct e1000_adapter *adapter) 4873 { 4874 u16 vid; 4875 4876 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 4877 return true; 4878 return false; 4879 } 4880 4881 static void __e1000_vlan_mode(struct e1000_adapter *adapter, 4882 netdev_features_t features) 4883 { 4884 struct e1000_hw *hw = &adapter->hw; 4885 u32 ctrl; 4886 4887 ctrl = er32(CTRL); 4888 if (features & NETIF_F_HW_VLAN_CTAG_RX) { 4889 /* enable VLAN tag insert/strip */ 4890 ctrl |= E1000_CTRL_VME; 4891 } else { 4892 /* disable VLAN tag insert/strip */ 4893 ctrl &= ~E1000_CTRL_VME; 4894 } 4895 ew32(CTRL, ctrl); 4896 } 4897 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 4898 bool filter_on) 4899 { 4900 struct e1000_hw *hw = &adapter->hw; 4901 u32 rctl; 4902 4903 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4904 e1000_irq_disable(adapter); 4905 4906 __e1000_vlan_mode(adapter, adapter->netdev->features); 4907 if (filter_on) { 4908 /* enable VLAN receive filtering */ 4909 rctl = er32(RCTL); 4910 rctl &= ~E1000_RCTL_CFIEN; 4911 if (!(adapter->netdev->flags & IFF_PROMISC)) 4912 rctl |= E1000_RCTL_VFE; 4913 ew32(RCTL, rctl); 4914 e1000_update_mng_vlan(adapter); 4915 } else { 4916 /* disable VLAN receive filtering */ 4917 rctl = er32(RCTL); 4918 rctl &= ~E1000_RCTL_VFE; 4919 ew32(RCTL, rctl); 4920 } 4921 4922 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4923 e1000_irq_enable(adapter); 4924 } 4925 4926 static void e1000_vlan_mode(struct net_device *netdev, 4927 netdev_features_t features) 4928 { 4929 struct e1000_adapter *adapter = netdev_priv(netdev); 4930 4931 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4932 e1000_irq_disable(adapter); 4933 4934 __e1000_vlan_mode(adapter, features); 4935 4936 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4937 e1000_irq_enable(adapter); 4938 } 4939 4940 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 4941 __be16 proto, u16 vid) 4942 { 4943 struct e1000_adapter *adapter = netdev_priv(netdev); 4944 struct e1000_hw *hw = &adapter->hw; 4945 u32 vfta, index; 4946 4947 if ((hw->mng_cookie.status & 4948 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 4949 (vid == adapter->mng_vlan_id)) 4950 return 0; 4951 4952 if (!e1000_vlan_used(adapter)) 4953 e1000_vlan_filter_on_off(adapter, true); 4954 4955 /* add VID to filter table */ 4956 index = (vid >> 5) & 0x7F; 4957 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4958 vfta |= (1 << (vid & 0x1F)); 4959 e1000_write_vfta(hw, index, vfta); 4960 4961 set_bit(vid, adapter->active_vlans); 4962 4963 return 0; 4964 } 4965 4966 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 4967 __be16 proto, u16 vid) 4968 { 4969 struct e1000_adapter *adapter = netdev_priv(netdev); 4970 struct e1000_hw *hw = &adapter->hw; 4971 u32 vfta, index; 4972 4973 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4974 e1000_irq_disable(adapter); 4975 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4976 e1000_irq_enable(adapter); 4977 4978 /* remove VID from filter table */ 4979 index = (vid >> 5) & 0x7F; 4980 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4981 vfta &= ~(1 << (vid & 0x1F)); 4982 e1000_write_vfta(hw, index, vfta); 4983 4984 clear_bit(vid, adapter->active_vlans); 4985 4986 if (!e1000_vlan_used(adapter)) 4987 e1000_vlan_filter_on_off(adapter, false); 4988 4989 return 0; 4990 } 4991 4992 static void e1000_restore_vlan(struct e1000_adapter *adapter) 4993 { 4994 u16 vid; 4995 4996 if (!e1000_vlan_used(adapter)) 4997 return; 4998 4999 e1000_vlan_filter_on_off(adapter, true); 5000 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 5001 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 5002 } 5003 5004 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 5005 { 5006 struct e1000_hw *hw = &adapter->hw; 5007 5008 hw->autoneg = 0; 5009 5010 /* Make sure dplx is at most 1 bit and lsb of speed is not set 5011 * for the switch() below to work 5012 */ 5013 if ((spd & 1) || (dplx & ~1)) 5014 goto err_inval; 5015 5016 /* Fiber NICs only allow 1000 gbps Full duplex */ 5017 if ((hw->media_type == e1000_media_type_fiber) && 5018 spd != SPEED_1000 && 5019 dplx != DUPLEX_FULL) 5020 goto err_inval; 5021 5022 switch (spd + dplx) { 5023 case SPEED_10 + DUPLEX_HALF: 5024 hw->forced_speed_duplex = e1000_10_half; 5025 break; 5026 case SPEED_10 + DUPLEX_FULL: 5027 hw->forced_speed_duplex = e1000_10_full; 5028 break; 5029 case SPEED_100 + DUPLEX_HALF: 5030 hw->forced_speed_duplex = e1000_100_half; 5031 break; 5032 case SPEED_100 + DUPLEX_FULL: 5033 hw->forced_speed_duplex = e1000_100_full; 5034 break; 5035 case SPEED_1000 + DUPLEX_FULL: 5036 hw->autoneg = 1; 5037 hw->autoneg_advertised = ADVERTISE_1000_FULL; 5038 break; 5039 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 5040 default: 5041 goto err_inval; 5042 } 5043 5044 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 5045 hw->mdix = AUTO_ALL_MODES; 5046 5047 return 0; 5048 5049 err_inval: 5050 e_err(probe, "Unsupported Speed/Duplex configuration\n"); 5051 return -EINVAL; 5052 } 5053 5054 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) 5055 { 5056 struct net_device *netdev = pci_get_drvdata(pdev); 5057 struct e1000_adapter *adapter = netdev_priv(netdev); 5058 struct e1000_hw *hw = &adapter->hw; 5059 u32 ctrl, ctrl_ext, rctl, status; 5060 u32 wufc = adapter->wol; 5061 #ifdef CONFIG_PM 5062 int retval = 0; 5063 #endif 5064 5065 netif_device_detach(netdev); 5066 5067 if (netif_running(netdev)) { 5068 int count = E1000_CHECK_RESET_COUNT; 5069 5070 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 5071 usleep_range(10000, 20000); 5072 5073 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 5074 e1000_down(adapter); 5075 } 5076 5077 #ifdef CONFIG_PM 5078 retval = pci_save_state(pdev); 5079 if (retval) 5080 return retval; 5081 #endif 5082 5083 status = er32(STATUS); 5084 if (status & E1000_STATUS_LU) 5085 wufc &= ~E1000_WUFC_LNKC; 5086 5087 if (wufc) { 5088 e1000_setup_rctl(adapter); 5089 e1000_set_rx_mode(netdev); 5090 5091 rctl = er32(RCTL); 5092 5093 /* turn on all-multi mode if wake on multicast is enabled */ 5094 if (wufc & E1000_WUFC_MC) 5095 rctl |= E1000_RCTL_MPE; 5096 5097 /* enable receives in the hardware */ 5098 ew32(RCTL, rctl | E1000_RCTL_EN); 5099 5100 if (hw->mac_type >= e1000_82540) { 5101 ctrl = er32(CTRL); 5102 /* advertise wake from D3Cold */ 5103 #define E1000_CTRL_ADVD3WUC 0x00100000 5104 /* phy power management enable */ 5105 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 5106 ctrl |= E1000_CTRL_ADVD3WUC | 5107 E1000_CTRL_EN_PHY_PWR_MGMT; 5108 ew32(CTRL, ctrl); 5109 } 5110 5111 if (hw->media_type == e1000_media_type_fiber || 5112 hw->media_type == e1000_media_type_internal_serdes) { 5113 /* keep the laser running in D3 */ 5114 ctrl_ext = er32(CTRL_EXT); 5115 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; 5116 ew32(CTRL_EXT, ctrl_ext); 5117 } 5118 5119 ew32(WUC, E1000_WUC_PME_EN); 5120 ew32(WUFC, wufc); 5121 } else { 5122 ew32(WUC, 0); 5123 ew32(WUFC, 0); 5124 } 5125 5126 e1000_release_manageability(adapter); 5127 5128 *enable_wake = !!wufc; 5129 5130 /* make sure adapter isn't asleep if manageability is enabled */ 5131 if (adapter->en_mng_pt) 5132 *enable_wake = true; 5133 5134 if (netif_running(netdev)) 5135 e1000_free_irq(adapter); 5136 5137 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags)) 5138 pci_disable_device(pdev); 5139 5140 return 0; 5141 } 5142 5143 #ifdef CONFIG_PM 5144 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) 5145 { 5146 int retval; 5147 bool wake; 5148 5149 retval = __e1000_shutdown(pdev, &wake); 5150 if (retval) 5151 return retval; 5152 5153 if (wake) { 5154 pci_prepare_to_sleep(pdev); 5155 } else { 5156 pci_wake_from_d3(pdev, false); 5157 pci_set_power_state(pdev, PCI_D3hot); 5158 } 5159 5160 return 0; 5161 } 5162 5163 static int e1000_resume(struct pci_dev *pdev) 5164 { 5165 struct net_device *netdev = pci_get_drvdata(pdev); 5166 struct e1000_adapter *adapter = netdev_priv(netdev); 5167 struct e1000_hw *hw = &adapter->hw; 5168 u32 err; 5169 5170 pci_set_power_state(pdev, PCI_D0); 5171 pci_restore_state(pdev); 5172 pci_save_state(pdev); 5173 5174 if (adapter->need_ioport) 5175 err = pci_enable_device(pdev); 5176 else 5177 err = pci_enable_device_mem(pdev); 5178 if (err) { 5179 pr_err("Cannot enable PCI device from suspend\n"); 5180 return err; 5181 } 5182 5183 /* flush memory to make sure state is correct */ 5184 smp_mb__before_atomic(); 5185 clear_bit(__E1000_DISABLED, &adapter->flags); 5186 pci_set_master(pdev); 5187 5188 pci_enable_wake(pdev, PCI_D3hot, 0); 5189 pci_enable_wake(pdev, PCI_D3cold, 0); 5190 5191 if (netif_running(netdev)) { 5192 err = e1000_request_irq(adapter); 5193 if (err) 5194 return err; 5195 } 5196 5197 e1000_power_up_phy(adapter); 5198 e1000_reset(adapter); 5199 ew32(WUS, ~0); 5200 5201 e1000_init_manageability(adapter); 5202 5203 if (netif_running(netdev)) 5204 e1000_up(adapter); 5205 5206 netif_device_attach(netdev); 5207 5208 return 0; 5209 } 5210 #endif 5211 5212 static void e1000_shutdown(struct pci_dev *pdev) 5213 { 5214 bool wake; 5215 5216 __e1000_shutdown(pdev, &wake); 5217 5218 if (system_state == SYSTEM_POWER_OFF) { 5219 pci_wake_from_d3(pdev, wake); 5220 pci_set_power_state(pdev, PCI_D3hot); 5221 } 5222 } 5223 5224 #ifdef CONFIG_NET_POLL_CONTROLLER 5225 /* Polling 'interrupt' - used by things like netconsole to send skbs 5226 * without having to re-enable interrupts. It's not called while 5227 * the interrupt routine is executing. 5228 */ 5229 static void e1000_netpoll(struct net_device *netdev) 5230 { 5231 struct e1000_adapter *adapter = netdev_priv(netdev); 5232 5233 if (disable_hardirq(adapter->pdev->irq)) 5234 e1000_intr(adapter->pdev->irq, netdev); 5235 enable_irq(adapter->pdev->irq); 5236 } 5237 #endif 5238 5239 /** 5240 * e1000_io_error_detected - called when PCI error is detected 5241 * @pdev: Pointer to PCI device 5242 * @state: The current pci connection state 5243 * 5244 * This function is called after a PCI bus error affecting 5245 * this device has been detected. 5246 */ 5247 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 5248 pci_channel_state_t state) 5249 { 5250 struct net_device *netdev = pci_get_drvdata(pdev); 5251 struct e1000_adapter *adapter = netdev_priv(netdev); 5252 5253 netif_device_detach(netdev); 5254 5255 if (state == pci_channel_io_perm_failure) 5256 return PCI_ERS_RESULT_DISCONNECT; 5257 5258 if (netif_running(netdev)) 5259 e1000_down(adapter); 5260 5261 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags)) 5262 pci_disable_device(pdev); 5263 5264 /* Request a slot slot reset. */ 5265 return PCI_ERS_RESULT_NEED_RESET; 5266 } 5267 5268 /** 5269 * e1000_io_slot_reset - called after the pci bus has been reset. 5270 * @pdev: Pointer to PCI device 5271 * 5272 * Restart the card from scratch, as if from a cold-boot. Implementation 5273 * resembles the first-half of the e1000_resume routine. 5274 */ 5275 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 5276 { 5277 struct net_device *netdev = pci_get_drvdata(pdev); 5278 struct e1000_adapter *adapter = netdev_priv(netdev); 5279 struct e1000_hw *hw = &adapter->hw; 5280 int err; 5281 5282 if (adapter->need_ioport) 5283 err = pci_enable_device(pdev); 5284 else 5285 err = pci_enable_device_mem(pdev); 5286 if (err) { 5287 pr_err("Cannot re-enable PCI device after reset.\n"); 5288 return PCI_ERS_RESULT_DISCONNECT; 5289 } 5290 5291 /* flush memory to make sure state is correct */ 5292 smp_mb__before_atomic(); 5293 clear_bit(__E1000_DISABLED, &adapter->flags); 5294 pci_set_master(pdev); 5295 5296 pci_enable_wake(pdev, PCI_D3hot, 0); 5297 pci_enable_wake(pdev, PCI_D3cold, 0); 5298 5299 e1000_reset(adapter); 5300 ew32(WUS, ~0); 5301 5302 return PCI_ERS_RESULT_RECOVERED; 5303 } 5304 5305 /** 5306 * e1000_io_resume - called when traffic can start flowing again. 5307 * @pdev: Pointer to PCI device 5308 * 5309 * This callback is called when the error recovery driver tells us that 5310 * its OK to resume normal operation. Implementation resembles the 5311 * second-half of the e1000_resume routine. 5312 */ 5313 static void e1000_io_resume(struct pci_dev *pdev) 5314 { 5315 struct net_device *netdev = pci_get_drvdata(pdev); 5316 struct e1000_adapter *adapter = netdev_priv(netdev); 5317 5318 e1000_init_manageability(adapter); 5319 5320 if (netif_running(netdev)) { 5321 if (e1000_up(adapter)) { 5322 pr_info("can't bring device back up after reset\n"); 5323 return; 5324 } 5325 } 5326 5327 netif_device_attach(netdev); 5328 } 5329 5330 /* e1000_main.c */ 5331