1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35 
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41 
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
50 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 	/* required last entry */
88 	{0,}
89 };
90 
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92 
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106                              struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108                              struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110 
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void __devexit e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125                                 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127                                 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 				    struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 			       struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 			       struct e1000_rx_ring *rx_ring,
143 			       int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 				     struct e1000_rx_ring *rx_ring,
146 				     int *work_done, int work_to_do);
147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148 				   struct e1000_rx_ring *rx_ring,
149 				   int cleaned_count);
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151 					 struct e1000_rx_ring *rx_ring,
152 					 int cleaned_count);
153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155 			   int cmd);
156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158 static void e1000_tx_timeout(struct net_device *dev);
159 static void e1000_reset_task(struct work_struct *work);
160 static void e1000_smartspeed(struct e1000_adapter *adapter);
161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162                                        struct sk_buff *skb);
163 
164 static bool e1000_vlan_used(struct e1000_adapter *adapter);
165 static void e1000_vlan_mode(struct net_device *netdev,
166 			    netdev_features_t features);
167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168 				     bool filter_on);
169 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
170 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
171 static void e1000_restore_vlan(struct e1000_adapter *adapter);
172 
173 #ifdef CONFIG_PM
174 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
175 static int e1000_resume(struct pci_dev *pdev);
176 #endif
177 static void e1000_shutdown(struct pci_dev *pdev);
178 
179 #ifdef CONFIG_NET_POLL_CONTROLLER
180 /* for netdump / net console */
181 static void e1000_netpoll (struct net_device *netdev);
182 #endif
183 
184 #define COPYBREAK_DEFAULT 256
185 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
186 module_param(copybreak, uint, 0644);
187 MODULE_PARM_DESC(copybreak,
188 	"Maximum size of packet that is copied to a new buffer on receive");
189 
190 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
191                      pci_channel_state_t state);
192 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
193 static void e1000_io_resume(struct pci_dev *pdev);
194 
195 static const struct pci_error_handlers e1000_err_handler = {
196 	.error_detected = e1000_io_error_detected,
197 	.slot_reset = e1000_io_slot_reset,
198 	.resume = e1000_io_resume,
199 };
200 
201 static struct pci_driver e1000_driver = {
202 	.name     = e1000_driver_name,
203 	.id_table = e1000_pci_tbl,
204 	.probe    = e1000_probe,
205 	.remove   = __devexit_p(e1000_remove),
206 #ifdef CONFIG_PM
207 	/* Power Management Hooks */
208 	.suspend  = e1000_suspend,
209 	.resume   = e1000_resume,
210 #endif
211 	.shutdown = e1000_shutdown,
212 	.err_handler = &e1000_err_handler
213 };
214 
215 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
216 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
217 MODULE_LICENSE("GPL");
218 MODULE_VERSION(DRV_VERSION);
219 
220 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
221 static int debug = -1;
222 module_param(debug, int, 0);
223 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
224 
225 /**
226  * e1000_get_hw_dev - return device
227  * used by hardware layer to print debugging information
228  *
229  **/
230 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
231 {
232 	struct e1000_adapter *adapter = hw->back;
233 	return adapter->netdev;
234 }
235 
236 /**
237  * e1000_init_module - Driver Registration Routine
238  *
239  * e1000_init_module is the first routine called when the driver is
240  * loaded. All it does is register with the PCI subsystem.
241  **/
242 
243 static int __init e1000_init_module(void)
244 {
245 	int ret;
246 	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
247 
248 	pr_info("%s\n", e1000_copyright);
249 
250 	ret = pci_register_driver(&e1000_driver);
251 	if (copybreak != COPYBREAK_DEFAULT) {
252 		if (copybreak == 0)
253 			pr_info("copybreak disabled\n");
254 		else
255 			pr_info("copybreak enabled for "
256 				   "packets <= %u bytes\n", copybreak);
257 	}
258 	return ret;
259 }
260 
261 module_init(e1000_init_module);
262 
263 /**
264  * e1000_exit_module - Driver Exit Cleanup Routine
265  *
266  * e1000_exit_module is called just before the driver is removed
267  * from memory.
268  **/
269 
270 static void __exit e1000_exit_module(void)
271 {
272 	pci_unregister_driver(&e1000_driver);
273 }
274 
275 module_exit(e1000_exit_module);
276 
277 static int e1000_request_irq(struct e1000_adapter *adapter)
278 {
279 	struct net_device *netdev = adapter->netdev;
280 	irq_handler_t handler = e1000_intr;
281 	int irq_flags = IRQF_SHARED;
282 	int err;
283 
284 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
285 	                  netdev);
286 	if (err) {
287 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
288 	}
289 
290 	return err;
291 }
292 
293 static void e1000_free_irq(struct e1000_adapter *adapter)
294 {
295 	struct net_device *netdev = adapter->netdev;
296 
297 	free_irq(adapter->pdev->irq, netdev);
298 }
299 
300 /**
301  * e1000_irq_disable - Mask off interrupt generation on the NIC
302  * @adapter: board private structure
303  **/
304 
305 static void e1000_irq_disable(struct e1000_adapter *adapter)
306 {
307 	struct e1000_hw *hw = &adapter->hw;
308 
309 	ew32(IMC, ~0);
310 	E1000_WRITE_FLUSH();
311 	synchronize_irq(adapter->pdev->irq);
312 }
313 
314 /**
315  * e1000_irq_enable - Enable default interrupt generation settings
316  * @adapter: board private structure
317  **/
318 
319 static void e1000_irq_enable(struct e1000_adapter *adapter)
320 {
321 	struct e1000_hw *hw = &adapter->hw;
322 
323 	ew32(IMS, IMS_ENABLE_MASK);
324 	E1000_WRITE_FLUSH();
325 }
326 
327 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
328 {
329 	struct e1000_hw *hw = &adapter->hw;
330 	struct net_device *netdev = adapter->netdev;
331 	u16 vid = hw->mng_cookie.vlan_id;
332 	u16 old_vid = adapter->mng_vlan_id;
333 
334 	if (!e1000_vlan_used(adapter))
335 		return;
336 
337 	if (!test_bit(vid, adapter->active_vlans)) {
338 		if (hw->mng_cookie.status &
339 		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
340 			e1000_vlan_rx_add_vid(netdev, vid);
341 			adapter->mng_vlan_id = vid;
342 		} else {
343 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
344 		}
345 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
346 		    (vid != old_vid) &&
347 		    !test_bit(old_vid, adapter->active_vlans))
348 			e1000_vlan_rx_kill_vid(netdev, old_vid);
349 	} else {
350 		adapter->mng_vlan_id = vid;
351 	}
352 }
353 
354 static void e1000_init_manageability(struct e1000_adapter *adapter)
355 {
356 	struct e1000_hw *hw = &adapter->hw;
357 
358 	if (adapter->en_mng_pt) {
359 		u32 manc = er32(MANC);
360 
361 		/* disable hardware interception of ARP */
362 		manc &= ~(E1000_MANC_ARP_EN);
363 
364 		ew32(MANC, manc);
365 	}
366 }
367 
368 static void e1000_release_manageability(struct e1000_adapter *adapter)
369 {
370 	struct e1000_hw *hw = &adapter->hw;
371 
372 	if (adapter->en_mng_pt) {
373 		u32 manc = er32(MANC);
374 
375 		/* re-enable hardware interception of ARP */
376 		manc |= E1000_MANC_ARP_EN;
377 
378 		ew32(MANC, manc);
379 	}
380 }
381 
382 /**
383  * e1000_configure - configure the hardware for RX and TX
384  * @adapter = private board structure
385  **/
386 static void e1000_configure(struct e1000_adapter *adapter)
387 {
388 	struct net_device *netdev = adapter->netdev;
389 	int i;
390 
391 	e1000_set_rx_mode(netdev);
392 
393 	e1000_restore_vlan(adapter);
394 	e1000_init_manageability(adapter);
395 
396 	e1000_configure_tx(adapter);
397 	e1000_setup_rctl(adapter);
398 	e1000_configure_rx(adapter);
399 	/* call E1000_DESC_UNUSED which always leaves
400 	 * at least 1 descriptor unused to make sure
401 	 * next_to_use != next_to_clean */
402 	for (i = 0; i < adapter->num_rx_queues; i++) {
403 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
404 		adapter->alloc_rx_buf(adapter, ring,
405 		                      E1000_DESC_UNUSED(ring));
406 	}
407 }
408 
409 int e1000_up(struct e1000_adapter *adapter)
410 {
411 	struct e1000_hw *hw = &adapter->hw;
412 
413 	/* hardware has been reset, we need to reload some things */
414 	e1000_configure(adapter);
415 
416 	clear_bit(__E1000_DOWN, &adapter->flags);
417 
418 	napi_enable(&adapter->napi);
419 
420 	e1000_irq_enable(adapter);
421 
422 	netif_wake_queue(adapter->netdev);
423 
424 	/* fire a link change interrupt to start the watchdog */
425 	ew32(ICS, E1000_ICS_LSC);
426 	return 0;
427 }
428 
429 /**
430  * e1000_power_up_phy - restore link in case the phy was powered down
431  * @adapter: address of board private structure
432  *
433  * The phy may be powered down to save power and turn off link when the
434  * driver is unloaded and wake on lan is not enabled (among others)
435  * *** this routine MUST be followed by a call to e1000_reset ***
436  *
437  **/
438 
439 void e1000_power_up_phy(struct e1000_adapter *adapter)
440 {
441 	struct e1000_hw *hw = &adapter->hw;
442 	u16 mii_reg = 0;
443 
444 	/* Just clear the power down bit to wake the phy back up */
445 	if (hw->media_type == e1000_media_type_copper) {
446 		/* according to the manual, the phy will retain its
447 		 * settings across a power-down/up cycle */
448 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
449 		mii_reg &= ~MII_CR_POWER_DOWN;
450 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
451 	}
452 }
453 
454 static void e1000_power_down_phy(struct e1000_adapter *adapter)
455 {
456 	struct e1000_hw *hw = &adapter->hw;
457 
458 	/* Power down the PHY so no link is implied when interface is down *
459 	 * The PHY cannot be powered down if any of the following is true *
460 	 * (a) WoL is enabled
461 	 * (b) AMT is active
462 	 * (c) SoL/IDER session is active */
463 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
464 	   hw->media_type == e1000_media_type_copper) {
465 		u16 mii_reg = 0;
466 
467 		switch (hw->mac_type) {
468 		case e1000_82540:
469 		case e1000_82545:
470 		case e1000_82545_rev_3:
471 		case e1000_82546:
472 		case e1000_ce4100:
473 		case e1000_82546_rev_3:
474 		case e1000_82541:
475 		case e1000_82541_rev_2:
476 		case e1000_82547:
477 		case e1000_82547_rev_2:
478 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
479 				goto out;
480 			break;
481 		default:
482 			goto out;
483 		}
484 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
485 		mii_reg |= MII_CR_POWER_DOWN;
486 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
487 		msleep(1);
488 	}
489 out:
490 	return;
491 }
492 
493 static void e1000_down_and_stop(struct e1000_adapter *adapter)
494 {
495 	set_bit(__E1000_DOWN, &adapter->flags);
496 
497 	/* Only kill reset task if adapter is not resetting */
498 	if (!test_bit(__E1000_RESETTING, &adapter->flags))
499 		cancel_work_sync(&adapter->reset_task);
500 
501 	cancel_delayed_work_sync(&adapter->watchdog_task);
502 	cancel_delayed_work_sync(&adapter->phy_info_task);
503 	cancel_delayed_work_sync(&adapter->fifo_stall_task);
504 }
505 
506 void e1000_down(struct e1000_adapter *adapter)
507 {
508 	struct e1000_hw *hw = &adapter->hw;
509 	struct net_device *netdev = adapter->netdev;
510 	u32 rctl, tctl;
511 
512 
513 	/* disable receives in the hardware */
514 	rctl = er32(RCTL);
515 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
516 	/* flush and sleep below */
517 
518 	netif_tx_disable(netdev);
519 
520 	/* disable transmits in the hardware */
521 	tctl = er32(TCTL);
522 	tctl &= ~E1000_TCTL_EN;
523 	ew32(TCTL, tctl);
524 	/* flush both disables and wait for them to finish */
525 	E1000_WRITE_FLUSH();
526 	msleep(10);
527 
528 	napi_disable(&adapter->napi);
529 
530 	e1000_irq_disable(adapter);
531 
532 	/*
533 	 * Setting DOWN must be after irq_disable to prevent
534 	 * a screaming interrupt.  Setting DOWN also prevents
535 	 * tasks from rescheduling.
536 	 */
537 	e1000_down_and_stop(adapter);
538 
539 	adapter->link_speed = 0;
540 	adapter->link_duplex = 0;
541 	netif_carrier_off(netdev);
542 
543 	e1000_reset(adapter);
544 	e1000_clean_all_tx_rings(adapter);
545 	e1000_clean_all_rx_rings(adapter);
546 }
547 
548 static void e1000_reinit_safe(struct e1000_adapter *adapter)
549 {
550 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
551 		msleep(1);
552 	mutex_lock(&adapter->mutex);
553 	e1000_down(adapter);
554 	e1000_up(adapter);
555 	mutex_unlock(&adapter->mutex);
556 	clear_bit(__E1000_RESETTING, &adapter->flags);
557 }
558 
559 void e1000_reinit_locked(struct e1000_adapter *adapter)
560 {
561 	/* if rtnl_lock is not held the call path is bogus */
562 	ASSERT_RTNL();
563 	WARN_ON(in_interrupt());
564 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
565 		msleep(1);
566 	e1000_down(adapter);
567 	e1000_up(adapter);
568 	clear_bit(__E1000_RESETTING, &adapter->flags);
569 }
570 
571 void e1000_reset(struct e1000_adapter *adapter)
572 {
573 	struct e1000_hw *hw = &adapter->hw;
574 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
575 	bool legacy_pba_adjust = false;
576 	u16 hwm;
577 
578 	/* Repartition Pba for greater than 9k mtu
579 	 * To take effect CTRL.RST is required.
580 	 */
581 
582 	switch (hw->mac_type) {
583 	case e1000_82542_rev2_0:
584 	case e1000_82542_rev2_1:
585 	case e1000_82543:
586 	case e1000_82544:
587 	case e1000_82540:
588 	case e1000_82541:
589 	case e1000_82541_rev_2:
590 		legacy_pba_adjust = true;
591 		pba = E1000_PBA_48K;
592 		break;
593 	case e1000_82545:
594 	case e1000_82545_rev_3:
595 	case e1000_82546:
596 	case e1000_ce4100:
597 	case e1000_82546_rev_3:
598 		pba = E1000_PBA_48K;
599 		break;
600 	case e1000_82547:
601 	case e1000_82547_rev_2:
602 		legacy_pba_adjust = true;
603 		pba = E1000_PBA_30K;
604 		break;
605 	case e1000_undefined:
606 	case e1000_num_macs:
607 		break;
608 	}
609 
610 	if (legacy_pba_adjust) {
611 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
612 			pba -= 8; /* allocate more FIFO for Tx */
613 
614 		if (hw->mac_type == e1000_82547) {
615 			adapter->tx_fifo_head = 0;
616 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
617 			adapter->tx_fifo_size =
618 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
619 			atomic_set(&adapter->tx_fifo_stall, 0);
620 		}
621 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
622 		/* adjust PBA for jumbo frames */
623 		ew32(PBA, pba);
624 
625 		/* To maintain wire speed transmits, the Tx FIFO should be
626 		 * large enough to accommodate two full transmit packets,
627 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
628 		 * the Rx FIFO should be large enough to accommodate at least
629 		 * one full receive packet and is similarly rounded up and
630 		 * expressed in KB. */
631 		pba = er32(PBA);
632 		/* upper 16 bits has Tx packet buffer allocation size in KB */
633 		tx_space = pba >> 16;
634 		/* lower 16 bits has Rx packet buffer allocation size in KB */
635 		pba &= 0xffff;
636 		/*
637 		 * the tx fifo also stores 16 bytes of information about the tx
638 		 * but don't include ethernet FCS because hardware appends it
639 		 */
640 		min_tx_space = (hw->max_frame_size +
641 		                sizeof(struct e1000_tx_desc) -
642 		                ETH_FCS_LEN) * 2;
643 		min_tx_space = ALIGN(min_tx_space, 1024);
644 		min_tx_space >>= 10;
645 		/* software strips receive CRC, so leave room for it */
646 		min_rx_space = hw->max_frame_size;
647 		min_rx_space = ALIGN(min_rx_space, 1024);
648 		min_rx_space >>= 10;
649 
650 		/* If current Tx allocation is less than the min Tx FIFO size,
651 		 * and the min Tx FIFO size is less than the current Rx FIFO
652 		 * allocation, take space away from current Rx allocation */
653 		if (tx_space < min_tx_space &&
654 		    ((min_tx_space - tx_space) < pba)) {
655 			pba = pba - (min_tx_space - tx_space);
656 
657 			/* PCI/PCIx hardware has PBA alignment constraints */
658 			switch (hw->mac_type) {
659 			case e1000_82545 ... e1000_82546_rev_3:
660 				pba &= ~(E1000_PBA_8K - 1);
661 				break;
662 			default:
663 				break;
664 			}
665 
666 			/* if short on rx space, rx wins and must trump tx
667 			 * adjustment or use Early Receive if available */
668 			if (pba < min_rx_space)
669 				pba = min_rx_space;
670 		}
671 	}
672 
673 	ew32(PBA, pba);
674 
675 	/*
676 	 * flow control settings:
677 	 * The high water mark must be low enough to fit one full frame
678 	 * (or the size used for early receive) above it in the Rx FIFO.
679 	 * Set it to the lower of:
680 	 * - 90% of the Rx FIFO size, and
681 	 * - the full Rx FIFO size minus the early receive size (for parts
682 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
683 	 * - the full Rx FIFO size minus one full frame
684 	 */
685 	hwm = min(((pba << 10) * 9 / 10),
686 		  ((pba << 10) - hw->max_frame_size));
687 
688 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
689 	hw->fc_low_water = hw->fc_high_water - 8;
690 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
691 	hw->fc_send_xon = 1;
692 	hw->fc = hw->original_fc;
693 
694 	/* Allow time for pending master requests to run */
695 	e1000_reset_hw(hw);
696 	if (hw->mac_type >= e1000_82544)
697 		ew32(WUC, 0);
698 
699 	if (e1000_init_hw(hw))
700 		e_dev_err("Hardware Error\n");
701 	e1000_update_mng_vlan(adapter);
702 
703 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
704 	if (hw->mac_type >= e1000_82544 &&
705 	    hw->autoneg == 1 &&
706 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
707 		u32 ctrl = er32(CTRL);
708 		/* clear phy power management bit if we are in gig only mode,
709 		 * which if enabled will attempt negotiation to 100Mb, which
710 		 * can cause a loss of link at power off or driver unload */
711 		ctrl &= ~E1000_CTRL_SWDPIN3;
712 		ew32(CTRL, ctrl);
713 	}
714 
715 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
717 
718 	e1000_reset_adaptive(hw);
719 	e1000_phy_get_info(hw, &adapter->phy_info);
720 
721 	e1000_release_manageability(adapter);
722 }
723 
724 /* Dump the eeprom for users having checksum issues */
725 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
726 {
727 	struct net_device *netdev = adapter->netdev;
728 	struct ethtool_eeprom eeprom;
729 	const struct ethtool_ops *ops = netdev->ethtool_ops;
730 	u8 *data;
731 	int i;
732 	u16 csum_old, csum_new = 0;
733 
734 	eeprom.len = ops->get_eeprom_len(netdev);
735 	eeprom.offset = 0;
736 
737 	data = kmalloc(eeprom.len, GFP_KERNEL);
738 	if (!data)
739 		return;
740 
741 	ops->get_eeprom(netdev, &eeprom, data);
742 
743 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
744 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
745 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
746 		csum_new += data[i] + (data[i + 1] << 8);
747 	csum_new = EEPROM_SUM - csum_new;
748 
749 	pr_err("/*********************/\n");
750 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
751 	pr_err("Calculated              : 0x%04x\n", csum_new);
752 
753 	pr_err("Offset    Values\n");
754 	pr_err("========  ======\n");
755 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
756 
757 	pr_err("Include this output when contacting your support provider.\n");
758 	pr_err("This is not a software error! Something bad happened to\n");
759 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
760 	pr_err("result in further problems, possibly loss of data,\n");
761 	pr_err("corruption or system hangs!\n");
762 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
763 	pr_err("which is invalid and requires you to set the proper MAC\n");
764 	pr_err("address manually before continuing to enable this network\n");
765 	pr_err("device. Please inspect the EEPROM dump and report the\n");
766 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
767 	pr_err("/*********************/\n");
768 
769 	kfree(data);
770 }
771 
772 /**
773  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
774  * @pdev: PCI device information struct
775  *
776  * Return true if an adapter needs ioport resources
777  **/
778 static int e1000_is_need_ioport(struct pci_dev *pdev)
779 {
780 	switch (pdev->device) {
781 	case E1000_DEV_ID_82540EM:
782 	case E1000_DEV_ID_82540EM_LOM:
783 	case E1000_DEV_ID_82540EP:
784 	case E1000_DEV_ID_82540EP_LOM:
785 	case E1000_DEV_ID_82540EP_LP:
786 	case E1000_DEV_ID_82541EI:
787 	case E1000_DEV_ID_82541EI_MOBILE:
788 	case E1000_DEV_ID_82541ER:
789 	case E1000_DEV_ID_82541ER_LOM:
790 	case E1000_DEV_ID_82541GI:
791 	case E1000_DEV_ID_82541GI_LF:
792 	case E1000_DEV_ID_82541GI_MOBILE:
793 	case E1000_DEV_ID_82544EI_COPPER:
794 	case E1000_DEV_ID_82544EI_FIBER:
795 	case E1000_DEV_ID_82544GC_COPPER:
796 	case E1000_DEV_ID_82544GC_LOM:
797 	case E1000_DEV_ID_82545EM_COPPER:
798 	case E1000_DEV_ID_82545EM_FIBER:
799 	case E1000_DEV_ID_82546EB_COPPER:
800 	case E1000_DEV_ID_82546EB_FIBER:
801 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
802 		return true;
803 	default:
804 		return false;
805 	}
806 }
807 
808 static netdev_features_t e1000_fix_features(struct net_device *netdev,
809 	netdev_features_t features)
810 {
811 	/*
812 	 * Since there is no support for separate rx/tx vlan accel
813 	 * enable/disable make sure tx flag is always in same state as rx.
814 	 */
815 	if (features & NETIF_F_HW_VLAN_RX)
816 		features |= NETIF_F_HW_VLAN_TX;
817 	else
818 		features &= ~NETIF_F_HW_VLAN_TX;
819 
820 	return features;
821 }
822 
823 static int e1000_set_features(struct net_device *netdev,
824 	netdev_features_t features)
825 {
826 	struct e1000_adapter *adapter = netdev_priv(netdev);
827 	netdev_features_t changed = features ^ netdev->features;
828 
829 	if (changed & NETIF_F_HW_VLAN_RX)
830 		e1000_vlan_mode(netdev, features);
831 
832 	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
833 		return 0;
834 
835 	netdev->features = features;
836 	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
837 
838 	if (netif_running(netdev))
839 		e1000_reinit_locked(adapter);
840 	else
841 		e1000_reset(adapter);
842 
843 	return 0;
844 }
845 
846 static const struct net_device_ops e1000_netdev_ops = {
847 	.ndo_open		= e1000_open,
848 	.ndo_stop		= e1000_close,
849 	.ndo_start_xmit		= e1000_xmit_frame,
850 	.ndo_get_stats		= e1000_get_stats,
851 	.ndo_set_rx_mode	= e1000_set_rx_mode,
852 	.ndo_set_mac_address	= e1000_set_mac,
853 	.ndo_tx_timeout		= e1000_tx_timeout,
854 	.ndo_change_mtu		= e1000_change_mtu,
855 	.ndo_do_ioctl		= e1000_ioctl,
856 	.ndo_validate_addr	= eth_validate_addr,
857 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
858 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
859 #ifdef CONFIG_NET_POLL_CONTROLLER
860 	.ndo_poll_controller	= e1000_netpoll,
861 #endif
862 	.ndo_fix_features	= e1000_fix_features,
863 	.ndo_set_features	= e1000_set_features,
864 };
865 
866 /**
867  * e1000_init_hw_struct - initialize members of hw struct
868  * @adapter: board private struct
869  * @hw: structure used by e1000_hw.c
870  *
871  * Factors out initialization of the e1000_hw struct to its own function
872  * that can be called very early at init (just after struct allocation).
873  * Fields are initialized based on PCI device information and
874  * OS network device settings (MTU size).
875  * Returns negative error codes if MAC type setup fails.
876  */
877 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
878 				struct e1000_hw *hw)
879 {
880 	struct pci_dev *pdev = adapter->pdev;
881 
882 	/* PCI config space info */
883 	hw->vendor_id = pdev->vendor;
884 	hw->device_id = pdev->device;
885 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
886 	hw->subsystem_id = pdev->subsystem_device;
887 	hw->revision_id = pdev->revision;
888 
889 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
890 
891 	hw->max_frame_size = adapter->netdev->mtu +
892 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
893 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
894 
895 	/* identify the MAC */
896 	if (e1000_set_mac_type(hw)) {
897 		e_err(probe, "Unknown MAC Type\n");
898 		return -EIO;
899 	}
900 
901 	switch (hw->mac_type) {
902 	default:
903 		break;
904 	case e1000_82541:
905 	case e1000_82547:
906 	case e1000_82541_rev_2:
907 	case e1000_82547_rev_2:
908 		hw->phy_init_script = 1;
909 		break;
910 	}
911 
912 	e1000_set_media_type(hw);
913 	e1000_get_bus_info(hw);
914 
915 	hw->wait_autoneg_complete = false;
916 	hw->tbi_compatibility_en = true;
917 	hw->adaptive_ifs = true;
918 
919 	/* Copper options */
920 
921 	if (hw->media_type == e1000_media_type_copper) {
922 		hw->mdix = AUTO_ALL_MODES;
923 		hw->disable_polarity_correction = false;
924 		hw->master_slave = E1000_MASTER_SLAVE;
925 	}
926 
927 	return 0;
928 }
929 
930 /**
931  * e1000_probe - Device Initialization Routine
932  * @pdev: PCI device information struct
933  * @ent: entry in e1000_pci_tbl
934  *
935  * Returns 0 on success, negative on failure
936  *
937  * e1000_probe initializes an adapter identified by a pci_dev structure.
938  * The OS initialization, configuring of the adapter private structure,
939  * and a hardware reset occur.
940  **/
941 static int __devinit e1000_probe(struct pci_dev *pdev,
942 				 const struct pci_device_id *ent)
943 {
944 	struct net_device *netdev;
945 	struct e1000_adapter *adapter;
946 	struct e1000_hw *hw;
947 
948 	static int cards_found = 0;
949 	static int global_quad_port_a = 0; /* global ksp3 port a indication */
950 	int i, err, pci_using_dac;
951 	u16 eeprom_data = 0;
952 	u16 tmp = 0;
953 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
954 	int bars, need_ioport;
955 
956 	/* do not allocate ioport bars when not needed */
957 	need_ioport = e1000_is_need_ioport(pdev);
958 	if (need_ioport) {
959 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
960 		err = pci_enable_device(pdev);
961 	} else {
962 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
963 		err = pci_enable_device_mem(pdev);
964 	}
965 	if (err)
966 		return err;
967 
968 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
969 	if (err)
970 		goto err_pci_reg;
971 
972 	pci_set_master(pdev);
973 	err = pci_save_state(pdev);
974 	if (err)
975 		goto err_alloc_etherdev;
976 
977 	err = -ENOMEM;
978 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
979 	if (!netdev)
980 		goto err_alloc_etherdev;
981 
982 	SET_NETDEV_DEV(netdev, &pdev->dev);
983 
984 	pci_set_drvdata(pdev, netdev);
985 	adapter = netdev_priv(netdev);
986 	adapter->netdev = netdev;
987 	adapter->pdev = pdev;
988 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
989 	adapter->bars = bars;
990 	adapter->need_ioport = need_ioport;
991 
992 	hw = &adapter->hw;
993 	hw->back = adapter;
994 
995 	err = -EIO;
996 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
997 	if (!hw->hw_addr)
998 		goto err_ioremap;
999 
1000 	if (adapter->need_ioport) {
1001 		for (i = BAR_1; i <= BAR_5; i++) {
1002 			if (pci_resource_len(pdev, i) == 0)
1003 				continue;
1004 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1005 				hw->io_base = pci_resource_start(pdev, i);
1006 				break;
1007 			}
1008 		}
1009 	}
1010 
1011 	/* make ready for any if (hw->...) below */
1012 	err = e1000_init_hw_struct(adapter, hw);
1013 	if (err)
1014 		goto err_sw_init;
1015 
1016 	/*
1017 	 * there is a workaround being applied below that limits
1018 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1019 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1020 	 */
1021 	pci_using_dac = 0;
1022 	if ((hw->bus_type == e1000_bus_type_pcix) &&
1023 	    !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1024 		/*
1025 		 * according to DMA-API-HOWTO, coherent calls will always
1026 		 * succeed if the set call did
1027 		 */
1028 		dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1029 		pci_using_dac = 1;
1030 	} else {
1031 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1032 		if (err) {
1033 			pr_err("No usable DMA config, aborting\n");
1034 			goto err_dma;
1035 		}
1036 		dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1037 	}
1038 
1039 	netdev->netdev_ops = &e1000_netdev_ops;
1040 	e1000_set_ethtool_ops(netdev);
1041 	netdev->watchdog_timeo = 5 * HZ;
1042 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1043 
1044 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1045 
1046 	adapter->bd_number = cards_found;
1047 
1048 	/* setup the private structure */
1049 
1050 	err = e1000_sw_init(adapter);
1051 	if (err)
1052 		goto err_sw_init;
1053 
1054 	err = -EIO;
1055 	if (hw->mac_type == e1000_ce4100) {
1056 		hw->ce4100_gbe_mdio_base_virt =
1057 					ioremap(pci_resource_start(pdev, BAR_1),
1058 		                                pci_resource_len(pdev, BAR_1));
1059 
1060 		if (!hw->ce4100_gbe_mdio_base_virt)
1061 			goto err_mdio_ioremap;
1062 	}
1063 
1064 	if (hw->mac_type >= e1000_82543) {
1065 		netdev->hw_features = NETIF_F_SG |
1066 				   NETIF_F_HW_CSUM |
1067 				   NETIF_F_HW_VLAN_RX;
1068 		netdev->features = NETIF_F_HW_VLAN_TX |
1069 				   NETIF_F_HW_VLAN_FILTER;
1070 	}
1071 
1072 	if ((hw->mac_type >= e1000_82544) &&
1073 	   (hw->mac_type != e1000_82547))
1074 		netdev->hw_features |= NETIF_F_TSO;
1075 
1076 	netdev->priv_flags |= IFF_SUPP_NOFCS;
1077 
1078 	netdev->features |= netdev->hw_features;
1079 	netdev->hw_features |= (NETIF_F_RXCSUM |
1080 				NETIF_F_RXALL |
1081 				NETIF_F_RXFCS);
1082 
1083 	if (pci_using_dac) {
1084 		netdev->features |= NETIF_F_HIGHDMA;
1085 		netdev->vlan_features |= NETIF_F_HIGHDMA;
1086 	}
1087 
1088 	netdev->vlan_features |= (NETIF_F_TSO |
1089 				  NETIF_F_HW_CSUM |
1090 				  NETIF_F_SG);
1091 
1092 	netdev->priv_flags |= IFF_UNICAST_FLT;
1093 
1094 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1095 
1096 	/* initialize eeprom parameters */
1097 	if (e1000_init_eeprom_params(hw)) {
1098 		e_err(probe, "EEPROM initialization failed\n");
1099 		goto err_eeprom;
1100 	}
1101 
1102 	/* before reading the EEPROM, reset the controller to
1103 	 * put the device in a known good starting state */
1104 
1105 	e1000_reset_hw(hw);
1106 
1107 	/* make sure the EEPROM is good */
1108 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1109 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1110 		e1000_dump_eeprom(adapter);
1111 		/*
1112 		 * set MAC address to all zeroes to invalidate and temporary
1113 		 * disable this device for the user. This blocks regular
1114 		 * traffic while still permitting ethtool ioctls from reaching
1115 		 * the hardware as well as allowing the user to run the
1116 		 * interface after manually setting a hw addr using
1117 		 * `ip set address`
1118 		 */
1119 		memset(hw->mac_addr, 0, netdev->addr_len);
1120 	} else {
1121 		/* copy the MAC address out of the EEPROM */
1122 		if (e1000_read_mac_addr(hw))
1123 			e_err(probe, "EEPROM Read Error\n");
1124 	}
1125 	/* don't block initalization here due to bad MAC address */
1126 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1127 	memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1128 
1129 	if (!is_valid_ether_addr(netdev->perm_addr))
1130 		e_err(probe, "Invalid MAC Address\n");
1131 
1132 
1133 	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1134 	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1135 			  e1000_82547_tx_fifo_stall_task);
1136 	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1137 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1138 
1139 	e1000_check_options(adapter);
1140 
1141 	/* Initial Wake on LAN setting
1142 	 * If APM wake is enabled in the EEPROM,
1143 	 * enable the ACPI Magic Packet filter
1144 	 */
1145 
1146 	switch (hw->mac_type) {
1147 	case e1000_82542_rev2_0:
1148 	case e1000_82542_rev2_1:
1149 	case e1000_82543:
1150 		break;
1151 	case e1000_82544:
1152 		e1000_read_eeprom(hw,
1153 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1154 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1155 		break;
1156 	case e1000_82546:
1157 	case e1000_82546_rev_3:
1158 		if (er32(STATUS) & E1000_STATUS_FUNC_1){
1159 			e1000_read_eeprom(hw,
1160 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1161 			break;
1162 		}
1163 		/* Fall Through */
1164 	default:
1165 		e1000_read_eeprom(hw,
1166 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1167 		break;
1168 	}
1169 	if (eeprom_data & eeprom_apme_mask)
1170 		adapter->eeprom_wol |= E1000_WUFC_MAG;
1171 
1172 	/* now that we have the eeprom settings, apply the special cases
1173 	 * where the eeprom may be wrong or the board simply won't support
1174 	 * wake on lan on a particular port */
1175 	switch (pdev->device) {
1176 	case E1000_DEV_ID_82546GB_PCIE:
1177 		adapter->eeprom_wol = 0;
1178 		break;
1179 	case E1000_DEV_ID_82546EB_FIBER:
1180 	case E1000_DEV_ID_82546GB_FIBER:
1181 		/* Wake events only supported on port A for dual fiber
1182 		 * regardless of eeprom setting */
1183 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1184 			adapter->eeprom_wol = 0;
1185 		break;
1186 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1187 		/* if quad port adapter, disable WoL on all but port A */
1188 		if (global_quad_port_a != 0)
1189 			adapter->eeprom_wol = 0;
1190 		else
1191 			adapter->quad_port_a = true;
1192 		/* Reset for multiple quad port adapters */
1193 		if (++global_quad_port_a == 4)
1194 			global_quad_port_a = 0;
1195 		break;
1196 	}
1197 
1198 	/* initialize the wol settings based on the eeprom settings */
1199 	adapter->wol = adapter->eeprom_wol;
1200 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1201 
1202 	/* Auto detect PHY address */
1203 	if (hw->mac_type == e1000_ce4100) {
1204 		for (i = 0; i < 32; i++) {
1205 			hw->phy_addr = i;
1206 			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1207 			if (tmp == 0 || tmp == 0xFF) {
1208 				if (i == 31)
1209 					goto err_eeprom;
1210 				continue;
1211 			} else
1212 				break;
1213 		}
1214 	}
1215 
1216 	/* reset the hardware with the new settings */
1217 	e1000_reset(adapter);
1218 
1219 	strcpy(netdev->name, "eth%d");
1220 	err = register_netdev(netdev);
1221 	if (err)
1222 		goto err_register;
1223 
1224 	e1000_vlan_filter_on_off(adapter, false);
1225 
1226 	/* print bus type/speed/width info */
1227 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1228 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1229 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1230 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1231 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1232 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1233 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1234 	       netdev->dev_addr);
1235 
1236 	/* carrier off reporting is important to ethtool even BEFORE open */
1237 	netif_carrier_off(netdev);
1238 
1239 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1240 
1241 	cards_found++;
1242 	return 0;
1243 
1244 err_register:
1245 err_eeprom:
1246 	e1000_phy_hw_reset(hw);
1247 
1248 	if (hw->flash_address)
1249 		iounmap(hw->flash_address);
1250 	kfree(adapter->tx_ring);
1251 	kfree(adapter->rx_ring);
1252 err_dma:
1253 err_sw_init:
1254 err_mdio_ioremap:
1255 	iounmap(hw->ce4100_gbe_mdio_base_virt);
1256 	iounmap(hw->hw_addr);
1257 err_ioremap:
1258 	free_netdev(netdev);
1259 err_alloc_etherdev:
1260 	pci_release_selected_regions(pdev, bars);
1261 err_pci_reg:
1262 	pci_disable_device(pdev);
1263 	return err;
1264 }
1265 
1266 /**
1267  * e1000_remove - Device Removal Routine
1268  * @pdev: PCI device information struct
1269  *
1270  * e1000_remove is called by the PCI subsystem to alert the driver
1271  * that it should release a PCI device.  The could be caused by a
1272  * Hot-Plug event, or because the driver is going to be removed from
1273  * memory.
1274  **/
1275 
1276 static void __devexit e1000_remove(struct pci_dev *pdev)
1277 {
1278 	struct net_device *netdev = pci_get_drvdata(pdev);
1279 	struct e1000_adapter *adapter = netdev_priv(netdev);
1280 	struct e1000_hw *hw = &adapter->hw;
1281 
1282 	e1000_down_and_stop(adapter);
1283 	e1000_release_manageability(adapter);
1284 
1285 	unregister_netdev(netdev);
1286 
1287 	e1000_phy_hw_reset(hw);
1288 
1289 	kfree(adapter->tx_ring);
1290 	kfree(adapter->rx_ring);
1291 
1292 	if (hw->mac_type == e1000_ce4100)
1293 		iounmap(hw->ce4100_gbe_mdio_base_virt);
1294 	iounmap(hw->hw_addr);
1295 	if (hw->flash_address)
1296 		iounmap(hw->flash_address);
1297 	pci_release_selected_regions(pdev, adapter->bars);
1298 
1299 	free_netdev(netdev);
1300 
1301 	pci_disable_device(pdev);
1302 }
1303 
1304 /**
1305  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1306  * @adapter: board private structure to initialize
1307  *
1308  * e1000_sw_init initializes the Adapter private data structure.
1309  * e1000_init_hw_struct MUST be called before this function
1310  **/
1311 
1312 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1313 {
1314 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1315 
1316 	adapter->num_tx_queues = 1;
1317 	adapter->num_rx_queues = 1;
1318 
1319 	if (e1000_alloc_queues(adapter)) {
1320 		e_err(probe, "Unable to allocate memory for queues\n");
1321 		return -ENOMEM;
1322 	}
1323 
1324 	/* Explicitly disable IRQ since the NIC can be in any state. */
1325 	e1000_irq_disable(adapter);
1326 
1327 	spin_lock_init(&adapter->stats_lock);
1328 	mutex_init(&adapter->mutex);
1329 
1330 	set_bit(__E1000_DOWN, &adapter->flags);
1331 
1332 	return 0;
1333 }
1334 
1335 /**
1336  * e1000_alloc_queues - Allocate memory for all rings
1337  * @adapter: board private structure to initialize
1338  *
1339  * We allocate one ring per queue at run-time since we don't know the
1340  * number of queues at compile-time.
1341  **/
1342 
1343 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1344 {
1345 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1346 	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
1347 	if (!adapter->tx_ring)
1348 		return -ENOMEM;
1349 
1350 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1351 	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
1352 	if (!adapter->rx_ring) {
1353 		kfree(adapter->tx_ring);
1354 		return -ENOMEM;
1355 	}
1356 
1357 	return E1000_SUCCESS;
1358 }
1359 
1360 /**
1361  * e1000_open - Called when a network interface is made active
1362  * @netdev: network interface device structure
1363  *
1364  * Returns 0 on success, negative value on failure
1365  *
1366  * The open entry point is called when a network interface is made
1367  * active by the system (IFF_UP).  At this point all resources needed
1368  * for transmit and receive operations are allocated, the interrupt
1369  * handler is registered with the OS, the watchdog task is started,
1370  * and the stack is notified that the interface is ready.
1371  **/
1372 
1373 static int e1000_open(struct net_device *netdev)
1374 {
1375 	struct e1000_adapter *adapter = netdev_priv(netdev);
1376 	struct e1000_hw *hw = &adapter->hw;
1377 	int err;
1378 
1379 	/* disallow open during test */
1380 	if (test_bit(__E1000_TESTING, &adapter->flags))
1381 		return -EBUSY;
1382 
1383 	netif_carrier_off(netdev);
1384 
1385 	/* allocate transmit descriptors */
1386 	err = e1000_setup_all_tx_resources(adapter);
1387 	if (err)
1388 		goto err_setup_tx;
1389 
1390 	/* allocate receive descriptors */
1391 	err = e1000_setup_all_rx_resources(adapter);
1392 	if (err)
1393 		goto err_setup_rx;
1394 
1395 	e1000_power_up_phy(adapter);
1396 
1397 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1398 	if ((hw->mng_cookie.status &
1399 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1400 		e1000_update_mng_vlan(adapter);
1401 	}
1402 
1403 	/* before we allocate an interrupt, we must be ready to handle it.
1404 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1405 	 * as soon as we call pci_request_irq, so we have to setup our
1406 	 * clean_rx handler before we do so.  */
1407 	e1000_configure(adapter);
1408 
1409 	err = e1000_request_irq(adapter);
1410 	if (err)
1411 		goto err_req_irq;
1412 
1413 	/* From here on the code is the same as e1000_up() */
1414 	clear_bit(__E1000_DOWN, &adapter->flags);
1415 
1416 	napi_enable(&adapter->napi);
1417 
1418 	e1000_irq_enable(adapter);
1419 
1420 	netif_start_queue(netdev);
1421 
1422 	/* fire a link status change interrupt to start the watchdog */
1423 	ew32(ICS, E1000_ICS_LSC);
1424 
1425 	return E1000_SUCCESS;
1426 
1427 err_req_irq:
1428 	e1000_power_down_phy(adapter);
1429 	e1000_free_all_rx_resources(adapter);
1430 err_setup_rx:
1431 	e1000_free_all_tx_resources(adapter);
1432 err_setup_tx:
1433 	e1000_reset(adapter);
1434 
1435 	return err;
1436 }
1437 
1438 /**
1439  * e1000_close - Disables a network interface
1440  * @netdev: network interface device structure
1441  *
1442  * Returns 0, this is not allowed to fail
1443  *
1444  * The close entry point is called when an interface is de-activated
1445  * by the OS.  The hardware is still under the drivers control, but
1446  * needs to be disabled.  A global MAC reset is issued to stop the
1447  * hardware, and all transmit and receive resources are freed.
1448  **/
1449 
1450 static int e1000_close(struct net_device *netdev)
1451 {
1452 	struct e1000_adapter *adapter = netdev_priv(netdev);
1453 	struct e1000_hw *hw = &adapter->hw;
1454 
1455 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1456 	e1000_down(adapter);
1457 	e1000_power_down_phy(adapter);
1458 	e1000_free_irq(adapter);
1459 
1460 	e1000_free_all_tx_resources(adapter);
1461 	e1000_free_all_rx_resources(adapter);
1462 
1463 	/* kill manageability vlan ID if supported, but not if a vlan with
1464 	 * the same ID is registered on the host OS (let 8021q kill it) */
1465 	if ((hw->mng_cookie.status &
1466 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1467 	     !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1468 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1469 	}
1470 
1471 	return 0;
1472 }
1473 
1474 /**
1475  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1476  * @adapter: address of board private structure
1477  * @start: address of beginning of memory
1478  * @len: length of memory
1479  **/
1480 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1481 				  unsigned long len)
1482 {
1483 	struct e1000_hw *hw = &adapter->hw;
1484 	unsigned long begin = (unsigned long)start;
1485 	unsigned long end = begin + len;
1486 
1487 	/* First rev 82545 and 82546 need to not allow any memory
1488 	 * write location to cross 64k boundary due to errata 23 */
1489 	if (hw->mac_type == e1000_82545 ||
1490 	    hw->mac_type == e1000_ce4100 ||
1491 	    hw->mac_type == e1000_82546) {
1492 		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1493 	}
1494 
1495 	return true;
1496 }
1497 
1498 /**
1499  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1500  * @adapter: board private structure
1501  * @txdr:    tx descriptor ring (for a specific queue) to setup
1502  *
1503  * Return 0 on success, negative on failure
1504  **/
1505 
1506 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1507 				    struct e1000_tx_ring *txdr)
1508 {
1509 	struct pci_dev *pdev = adapter->pdev;
1510 	int size;
1511 
1512 	size = sizeof(struct e1000_buffer) * txdr->count;
1513 	txdr->buffer_info = vzalloc(size);
1514 	if (!txdr->buffer_info) {
1515 		e_err(probe, "Unable to allocate memory for the Tx descriptor "
1516 		      "ring\n");
1517 		return -ENOMEM;
1518 	}
1519 
1520 	/* round up to nearest 4K */
1521 
1522 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1523 	txdr->size = ALIGN(txdr->size, 4096);
1524 
1525 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1526 					GFP_KERNEL);
1527 	if (!txdr->desc) {
1528 setup_tx_desc_die:
1529 		vfree(txdr->buffer_info);
1530 		e_err(probe, "Unable to allocate memory for the Tx descriptor "
1531 		      "ring\n");
1532 		return -ENOMEM;
1533 	}
1534 
1535 	/* Fix for errata 23, can't cross 64kB boundary */
1536 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1537 		void *olddesc = txdr->desc;
1538 		dma_addr_t olddma = txdr->dma;
1539 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1540 		      txdr->size, txdr->desc);
1541 		/* Try again, without freeing the previous */
1542 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1543 						&txdr->dma, GFP_KERNEL);
1544 		/* Failed allocation, critical failure */
1545 		if (!txdr->desc) {
1546 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547 					  olddma);
1548 			goto setup_tx_desc_die;
1549 		}
1550 
1551 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1552 			/* give up */
1553 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1554 					  txdr->dma);
1555 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1556 					  olddma);
1557 			e_err(probe, "Unable to allocate aligned memory "
1558 			      "for the transmit descriptor ring\n");
1559 			vfree(txdr->buffer_info);
1560 			return -ENOMEM;
1561 		} else {
1562 			/* Free old allocation, new allocation was successful */
1563 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1564 					  olddma);
1565 		}
1566 	}
1567 	memset(txdr->desc, 0, txdr->size);
1568 
1569 	txdr->next_to_use = 0;
1570 	txdr->next_to_clean = 0;
1571 
1572 	return 0;
1573 }
1574 
1575 /**
1576  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1577  * 				  (Descriptors) for all queues
1578  * @adapter: board private structure
1579  *
1580  * Return 0 on success, negative on failure
1581  **/
1582 
1583 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1584 {
1585 	int i, err = 0;
1586 
1587 	for (i = 0; i < adapter->num_tx_queues; i++) {
1588 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1589 		if (err) {
1590 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1591 			for (i-- ; i >= 0; i--)
1592 				e1000_free_tx_resources(adapter,
1593 							&adapter->tx_ring[i]);
1594 			break;
1595 		}
1596 	}
1597 
1598 	return err;
1599 }
1600 
1601 /**
1602  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1603  * @adapter: board private structure
1604  *
1605  * Configure the Tx unit of the MAC after a reset.
1606  **/
1607 
1608 static void e1000_configure_tx(struct e1000_adapter *adapter)
1609 {
1610 	u64 tdba;
1611 	struct e1000_hw *hw = &adapter->hw;
1612 	u32 tdlen, tctl, tipg;
1613 	u32 ipgr1, ipgr2;
1614 
1615 	/* Setup the HW Tx Head and Tail descriptor pointers */
1616 
1617 	switch (adapter->num_tx_queues) {
1618 	case 1:
1619 	default:
1620 		tdba = adapter->tx_ring[0].dma;
1621 		tdlen = adapter->tx_ring[0].count *
1622 			sizeof(struct e1000_tx_desc);
1623 		ew32(TDLEN, tdlen);
1624 		ew32(TDBAH, (tdba >> 32));
1625 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1626 		ew32(TDT, 0);
1627 		ew32(TDH, 0);
1628 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1629 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1630 		break;
1631 	}
1632 
1633 	/* Set the default values for the Tx Inter Packet Gap timer */
1634 	if ((hw->media_type == e1000_media_type_fiber ||
1635 	     hw->media_type == e1000_media_type_internal_serdes))
1636 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1637 	else
1638 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1639 
1640 	switch (hw->mac_type) {
1641 	case e1000_82542_rev2_0:
1642 	case e1000_82542_rev2_1:
1643 		tipg = DEFAULT_82542_TIPG_IPGT;
1644 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1645 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1646 		break;
1647 	default:
1648 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1649 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1650 		break;
1651 	}
1652 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1653 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1654 	ew32(TIPG, tipg);
1655 
1656 	/* Set the Tx Interrupt Delay register */
1657 
1658 	ew32(TIDV, adapter->tx_int_delay);
1659 	if (hw->mac_type >= e1000_82540)
1660 		ew32(TADV, adapter->tx_abs_int_delay);
1661 
1662 	/* Program the Transmit Control Register */
1663 
1664 	tctl = er32(TCTL);
1665 	tctl &= ~E1000_TCTL_CT;
1666 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1667 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1668 
1669 	e1000_config_collision_dist(hw);
1670 
1671 	/* Setup Transmit Descriptor Settings for eop descriptor */
1672 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1673 
1674 	/* only set IDE if we are delaying interrupts using the timers */
1675 	if (adapter->tx_int_delay)
1676 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1677 
1678 	if (hw->mac_type < e1000_82543)
1679 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1680 	else
1681 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1682 
1683 	/* Cache if we're 82544 running in PCI-X because we'll
1684 	 * need this to apply a workaround later in the send path. */
1685 	if (hw->mac_type == e1000_82544 &&
1686 	    hw->bus_type == e1000_bus_type_pcix)
1687 		adapter->pcix_82544 = true;
1688 
1689 	ew32(TCTL, tctl);
1690 
1691 }
1692 
1693 /**
1694  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1695  * @adapter: board private structure
1696  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1697  *
1698  * Returns 0 on success, negative on failure
1699  **/
1700 
1701 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1702 				    struct e1000_rx_ring *rxdr)
1703 {
1704 	struct pci_dev *pdev = adapter->pdev;
1705 	int size, desc_len;
1706 
1707 	size = sizeof(struct e1000_buffer) * rxdr->count;
1708 	rxdr->buffer_info = vzalloc(size);
1709 	if (!rxdr->buffer_info) {
1710 		e_err(probe, "Unable to allocate memory for the Rx descriptor "
1711 		      "ring\n");
1712 		return -ENOMEM;
1713 	}
1714 
1715 	desc_len = sizeof(struct e1000_rx_desc);
1716 
1717 	/* Round up to nearest 4K */
1718 
1719 	rxdr->size = rxdr->count * desc_len;
1720 	rxdr->size = ALIGN(rxdr->size, 4096);
1721 
1722 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1723 					GFP_KERNEL);
1724 
1725 	if (!rxdr->desc) {
1726 		e_err(probe, "Unable to allocate memory for the Rx descriptor "
1727 		      "ring\n");
1728 setup_rx_desc_die:
1729 		vfree(rxdr->buffer_info);
1730 		return -ENOMEM;
1731 	}
1732 
1733 	/* Fix for errata 23, can't cross 64kB boundary */
1734 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1735 		void *olddesc = rxdr->desc;
1736 		dma_addr_t olddma = rxdr->dma;
1737 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1738 		      rxdr->size, rxdr->desc);
1739 		/* Try again, without freeing the previous */
1740 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1741 						&rxdr->dma, GFP_KERNEL);
1742 		/* Failed allocation, critical failure */
1743 		if (!rxdr->desc) {
1744 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1745 					  olddma);
1746 			e_err(probe, "Unable to allocate memory for the Rx "
1747 			      "descriptor ring\n");
1748 			goto setup_rx_desc_die;
1749 		}
1750 
1751 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1752 			/* give up */
1753 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1754 					  rxdr->dma);
1755 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1756 					  olddma);
1757 			e_err(probe, "Unable to allocate aligned memory for "
1758 			      "the Rx descriptor ring\n");
1759 			goto setup_rx_desc_die;
1760 		} else {
1761 			/* Free old allocation, new allocation was successful */
1762 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1763 					  olddma);
1764 		}
1765 	}
1766 	memset(rxdr->desc, 0, rxdr->size);
1767 
1768 	rxdr->next_to_clean = 0;
1769 	rxdr->next_to_use = 0;
1770 	rxdr->rx_skb_top = NULL;
1771 
1772 	return 0;
1773 }
1774 
1775 /**
1776  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1777  * 				  (Descriptors) for all queues
1778  * @adapter: board private structure
1779  *
1780  * Return 0 on success, negative on failure
1781  **/
1782 
1783 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1784 {
1785 	int i, err = 0;
1786 
1787 	for (i = 0; i < adapter->num_rx_queues; i++) {
1788 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1789 		if (err) {
1790 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1791 			for (i-- ; i >= 0; i--)
1792 				e1000_free_rx_resources(adapter,
1793 							&adapter->rx_ring[i]);
1794 			break;
1795 		}
1796 	}
1797 
1798 	return err;
1799 }
1800 
1801 /**
1802  * e1000_setup_rctl - configure the receive control registers
1803  * @adapter: Board private structure
1804  **/
1805 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1806 {
1807 	struct e1000_hw *hw = &adapter->hw;
1808 	u32 rctl;
1809 
1810 	rctl = er32(RCTL);
1811 
1812 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1813 
1814 	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1815 		E1000_RCTL_RDMTS_HALF |
1816 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1817 
1818 	if (hw->tbi_compatibility_on == 1)
1819 		rctl |= E1000_RCTL_SBP;
1820 	else
1821 		rctl &= ~E1000_RCTL_SBP;
1822 
1823 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1824 		rctl &= ~E1000_RCTL_LPE;
1825 	else
1826 		rctl |= E1000_RCTL_LPE;
1827 
1828 	/* Setup buffer sizes */
1829 	rctl &= ~E1000_RCTL_SZ_4096;
1830 	rctl |= E1000_RCTL_BSEX;
1831 	switch (adapter->rx_buffer_len) {
1832 		case E1000_RXBUFFER_2048:
1833 		default:
1834 			rctl |= E1000_RCTL_SZ_2048;
1835 			rctl &= ~E1000_RCTL_BSEX;
1836 			break;
1837 		case E1000_RXBUFFER_4096:
1838 			rctl |= E1000_RCTL_SZ_4096;
1839 			break;
1840 		case E1000_RXBUFFER_8192:
1841 			rctl |= E1000_RCTL_SZ_8192;
1842 			break;
1843 		case E1000_RXBUFFER_16384:
1844 			rctl |= E1000_RCTL_SZ_16384;
1845 			break;
1846 	}
1847 
1848 	/* This is useful for sniffing bad packets. */
1849 	if (adapter->netdev->features & NETIF_F_RXALL) {
1850 		/* UPE and MPE will be handled by normal PROMISC logic
1851 		 * in e1000e_set_rx_mode */
1852 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1853 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1854 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1855 
1856 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1857 			  E1000_RCTL_DPF | /* Allow filtered pause */
1858 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1859 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1860 		 * and that breaks VLANs.
1861 		 */
1862 	}
1863 
1864 	ew32(RCTL, rctl);
1865 }
1866 
1867 /**
1868  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1869  * @adapter: board private structure
1870  *
1871  * Configure the Rx unit of the MAC after a reset.
1872  **/
1873 
1874 static void e1000_configure_rx(struct e1000_adapter *adapter)
1875 {
1876 	u64 rdba;
1877 	struct e1000_hw *hw = &adapter->hw;
1878 	u32 rdlen, rctl, rxcsum;
1879 
1880 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1881 		rdlen = adapter->rx_ring[0].count *
1882 		        sizeof(struct e1000_rx_desc);
1883 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1884 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1885 	} else {
1886 		rdlen = adapter->rx_ring[0].count *
1887 		        sizeof(struct e1000_rx_desc);
1888 		adapter->clean_rx = e1000_clean_rx_irq;
1889 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1890 	}
1891 
1892 	/* disable receives while setting up the descriptors */
1893 	rctl = er32(RCTL);
1894 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1895 
1896 	/* set the Receive Delay Timer Register */
1897 	ew32(RDTR, adapter->rx_int_delay);
1898 
1899 	if (hw->mac_type >= e1000_82540) {
1900 		ew32(RADV, adapter->rx_abs_int_delay);
1901 		if (adapter->itr_setting != 0)
1902 			ew32(ITR, 1000000000 / (adapter->itr * 256));
1903 	}
1904 
1905 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1906 	 * the Base and Length of the Rx Descriptor Ring */
1907 	switch (adapter->num_rx_queues) {
1908 	case 1:
1909 	default:
1910 		rdba = adapter->rx_ring[0].dma;
1911 		ew32(RDLEN, rdlen);
1912 		ew32(RDBAH, (rdba >> 32));
1913 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1914 		ew32(RDT, 0);
1915 		ew32(RDH, 0);
1916 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1917 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1918 		break;
1919 	}
1920 
1921 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1922 	if (hw->mac_type >= e1000_82543) {
1923 		rxcsum = er32(RXCSUM);
1924 		if (adapter->rx_csum)
1925 			rxcsum |= E1000_RXCSUM_TUOFL;
1926 		else
1927 			/* don't need to clear IPPCSE as it defaults to 0 */
1928 			rxcsum &= ~E1000_RXCSUM_TUOFL;
1929 		ew32(RXCSUM, rxcsum);
1930 	}
1931 
1932 	/* Enable Receives */
1933 	ew32(RCTL, rctl | E1000_RCTL_EN);
1934 }
1935 
1936 /**
1937  * e1000_free_tx_resources - Free Tx Resources per Queue
1938  * @adapter: board private structure
1939  * @tx_ring: Tx descriptor ring for a specific queue
1940  *
1941  * Free all transmit software resources
1942  **/
1943 
1944 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1945 				    struct e1000_tx_ring *tx_ring)
1946 {
1947 	struct pci_dev *pdev = adapter->pdev;
1948 
1949 	e1000_clean_tx_ring(adapter, tx_ring);
1950 
1951 	vfree(tx_ring->buffer_info);
1952 	tx_ring->buffer_info = NULL;
1953 
1954 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1955 			  tx_ring->dma);
1956 
1957 	tx_ring->desc = NULL;
1958 }
1959 
1960 /**
1961  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1962  * @adapter: board private structure
1963  *
1964  * Free all transmit software resources
1965  **/
1966 
1967 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1968 {
1969 	int i;
1970 
1971 	for (i = 0; i < adapter->num_tx_queues; i++)
1972 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1973 }
1974 
1975 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1976 					     struct e1000_buffer *buffer_info)
1977 {
1978 	if (buffer_info->dma) {
1979 		if (buffer_info->mapped_as_page)
1980 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1981 				       buffer_info->length, DMA_TO_DEVICE);
1982 		else
1983 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1984 					 buffer_info->length,
1985 					 DMA_TO_DEVICE);
1986 		buffer_info->dma = 0;
1987 	}
1988 	if (buffer_info->skb) {
1989 		dev_kfree_skb_any(buffer_info->skb);
1990 		buffer_info->skb = NULL;
1991 	}
1992 	buffer_info->time_stamp = 0;
1993 	/* buffer_info must be completely set up in the transmit path */
1994 }
1995 
1996 /**
1997  * e1000_clean_tx_ring - Free Tx Buffers
1998  * @adapter: board private structure
1999  * @tx_ring: ring to be cleaned
2000  **/
2001 
2002 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2003 				struct e1000_tx_ring *tx_ring)
2004 {
2005 	struct e1000_hw *hw = &adapter->hw;
2006 	struct e1000_buffer *buffer_info;
2007 	unsigned long size;
2008 	unsigned int i;
2009 
2010 	/* Free all the Tx ring sk_buffs */
2011 
2012 	for (i = 0; i < tx_ring->count; i++) {
2013 		buffer_info = &tx_ring->buffer_info[i];
2014 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2015 	}
2016 
2017 	netdev_reset_queue(adapter->netdev);
2018 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2019 	memset(tx_ring->buffer_info, 0, size);
2020 
2021 	/* Zero out the descriptor ring */
2022 
2023 	memset(tx_ring->desc, 0, tx_ring->size);
2024 
2025 	tx_ring->next_to_use = 0;
2026 	tx_ring->next_to_clean = 0;
2027 	tx_ring->last_tx_tso = false;
2028 
2029 	writel(0, hw->hw_addr + tx_ring->tdh);
2030 	writel(0, hw->hw_addr + tx_ring->tdt);
2031 }
2032 
2033 /**
2034  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2035  * @adapter: board private structure
2036  **/
2037 
2038 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2039 {
2040 	int i;
2041 
2042 	for (i = 0; i < adapter->num_tx_queues; i++)
2043 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2044 }
2045 
2046 /**
2047  * e1000_free_rx_resources - Free Rx Resources
2048  * @adapter: board private structure
2049  * @rx_ring: ring to clean the resources from
2050  *
2051  * Free all receive software resources
2052  **/
2053 
2054 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2055 				    struct e1000_rx_ring *rx_ring)
2056 {
2057 	struct pci_dev *pdev = adapter->pdev;
2058 
2059 	e1000_clean_rx_ring(adapter, rx_ring);
2060 
2061 	vfree(rx_ring->buffer_info);
2062 	rx_ring->buffer_info = NULL;
2063 
2064 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2065 			  rx_ring->dma);
2066 
2067 	rx_ring->desc = NULL;
2068 }
2069 
2070 /**
2071  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2072  * @adapter: board private structure
2073  *
2074  * Free all receive software resources
2075  **/
2076 
2077 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2078 {
2079 	int i;
2080 
2081 	for (i = 0; i < adapter->num_rx_queues; i++)
2082 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2083 }
2084 
2085 /**
2086  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2087  * @adapter: board private structure
2088  * @rx_ring: ring to free buffers from
2089  **/
2090 
2091 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2092 				struct e1000_rx_ring *rx_ring)
2093 {
2094 	struct e1000_hw *hw = &adapter->hw;
2095 	struct e1000_buffer *buffer_info;
2096 	struct pci_dev *pdev = adapter->pdev;
2097 	unsigned long size;
2098 	unsigned int i;
2099 
2100 	/* Free all the Rx ring sk_buffs */
2101 	for (i = 0; i < rx_ring->count; i++) {
2102 		buffer_info = &rx_ring->buffer_info[i];
2103 		if (buffer_info->dma &&
2104 		    adapter->clean_rx == e1000_clean_rx_irq) {
2105 			dma_unmap_single(&pdev->dev, buffer_info->dma,
2106 			                 buffer_info->length,
2107 					 DMA_FROM_DEVICE);
2108 		} else if (buffer_info->dma &&
2109 		           adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2110 			dma_unmap_page(&pdev->dev, buffer_info->dma,
2111 				       buffer_info->length,
2112 				       DMA_FROM_DEVICE);
2113 		}
2114 
2115 		buffer_info->dma = 0;
2116 		if (buffer_info->page) {
2117 			put_page(buffer_info->page);
2118 			buffer_info->page = NULL;
2119 		}
2120 		if (buffer_info->skb) {
2121 			dev_kfree_skb(buffer_info->skb);
2122 			buffer_info->skb = NULL;
2123 		}
2124 	}
2125 
2126 	/* there also may be some cached data from a chained receive */
2127 	if (rx_ring->rx_skb_top) {
2128 		dev_kfree_skb(rx_ring->rx_skb_top);
2129 		rx_ring->rx_skb_top = NULL;
2130 	}
2131 
2132 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2133 	memset(rx_ring->buffer_info, 0, size);
2134 
2135 	/* Zero out the descriptor ring */
2136 	memset(rx_ring->desc, 0, rx_ring->size);
2137 
2138 	rx_ring->next_to_clean = 0;
2139 	rx_ring->next_to_use = 0;
2140 
2141 	writel(0, hw->hw_addr + rx_ring->rdh);
2142 	writel(0, hw->hw_addr + rx_ring->rdt);
2143 }
2144 
2145 /**
2146  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2147  * @adapter: board private structure
2148  **/
2149 
2150 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2151 {
2152 	int i;
2153 
2154 	for (i = 0; i < adapter->num_rx_queues; i++)
2155 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2156 }
2157 
2158 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2159  * and memory write and invalidate disabled for certain operations
2160  */
2161 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2162 {
2163 	struct e1000_hw *hw = &adapter->hw;
2164 	struct net_device *netdev = adapter->netdev;
2165 	u32 rctl;
2166 
2167 	e1000_pci_clear_mwi(hw);
2168 
2169 	rctl = er32(RCTL);
2170 	rctl |= E1000_RCTL_RST;
2171 	ew32(RCTL, rctl);
2172 	E1000_WRITE_FLUSH();
2173 	mdelay(5);
2174 
2175 	if (netif_running(netdev))
2176 		e1000_clean_all_rx_rings(adapter);
2177 }
2178 
2179 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2180 {
2181 	struct e1000_hw *hw = &adapter->hw;
2182 	struct net_device *netdev = adapter->netdev;
2183 	u32 rctl;
2184 
2185 	rctl = er32(RCTL);
2186 	rctl &= ~E1000_RCTL_RST;
2187 	ew32(RCTL, rctl);
2188 	E1000_WRITE_FLUSH();
2189 	mdelay(5);
2190 
2191 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2192 		e1000_pci_set_mwi(hw);
2193 
2194 	if (netif_running(netdev)) {
2195 		/* No need to loop, because 82542 supports only 1 queue */
2196 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2197 		e1000_configure_rx(adapter);
2198 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2199 	}
2200 }
2201 
2202 /**
2203  * e1000_set_mac - Change the Ethernet Address of the NIC
2204  * @netdev: network interface device structure
2205  * @p: pointer to an address structure
2206  *
2207  * Returns 0 on success, negative on failure
2208  **/
2209 
2210 static int e1000_set_mac(struct net_device *netdev, void *p)
2211 {
2212 	struct e1000_adapter *adapter = netdev_priv(netdev);
2213 	struct e1000_hw *hw = &adapter->hw;
2214 	struct sockaddr *addr = p;
2215 
2216 	if (!is_valid_ether_addr(addr->sa_data))
2217 		return -EADDRNOTAVAIL;
2218 
2219 	/* 82542 2.0 needs to be in reset to write receive address registers */
2220 
2221 	if (hw->mac_type == e1000_82542_rev2_0)
2222 		e1000_enter_82542_rst(adapter);
2223 
2224 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2225 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2226 
2227 	e1000_rar_set(hw, hw->mac_addr, 0);
2228 
2229 	if (hw->mac_type == e1000_82542_rev2_0)
2230 		e1000_leave_82542_rst(adapter);
2231 
2232 	return 0;
2233 }
2234 
2235 /**
2236  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2237  * @netdev: network interface device structure
2238  *
2239  * The set_rx_mode entry point is called whenever the unicast or multicast
2240  * address lists or the network interface flags are updated. This routine is
2241  * responsible for configuring the hardware for proper unicast, multicast,
2242  * promiscuous mode, and all-multi behavior.
2243  **/
2244 
2245 static void e1000_set_rx_mode(struct net_device *netdev)
2246 {
2247 	struct e1000_adapter *adapter = netdev_priv(netdev);
2248 	struct e1000_hw *hw = &adapter->hw;
2249 	struct netdev_hw_addr *ha;
2250 	bool use_uc = false;
2251 	u32 rctl;
2252 	u32 hash_value;
2253 	int i, rar_entries = E1000_RAR_ENTRIES;
2254 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2255 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2256 
2257 	if (!mcarray) {
2258 		e_err(probe, "memory allocation failed\n");
2259 		return;
2260 	}
2261 
2262 	/* Check for Promiscuous and All Multicast modes */
2263 
2264 	rctl = er32(RCTL);
2265 
2266 	if (netdev->flags & IFF_PROMISC) {
2267 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2268 		rctl &= ~E1000_RCTL_VFE;
2269 	} else {
2270 		if (netdev->flags & IFF_ALLMULTI)
2271 			rctl |= E1000_RCTL_MPE;
2272 		else
2273 			rctl &= ~E1000_RCTL_MPE;
2274 		/* Enable VLAN filter if there is a VLAN */
2275 		if (e1000_vlan_used(adapter))
2276 			rctl |= E1000_RCTL_VFE;
2277 	}
2278 
2279 	if (netdev_uc_count(netdev) > rar_entries - 1) {
2280 		rctl |= E1000_RCTL_UPE;
2281 	} else if (!(netdev->flags & IFF_PROMISC)) {
2282 		rctl &= ~E1000_RCTL_UPE;
2283 		use_uc = true;
2284 	}
2285 
2286 	ew32(RCTL, rctl);
2287 
2288 	/* 82542 2.0 needs to be in reset to write receive address registers */
2289 
2290 	if (hw->mac_type == e1000_82542_rev2_0)
2291 		e1000_enter_82542_rst(adapter);
2292 
2293 	/* load the first 14 addresses into the exact filters 1-14. Unicast
2294 	 * addresses take precedence to avoid disabling unicast filtering
2295 	 * when possible.
2296 	 *
2297 	 * RAR 0 is used for the station MAC address
2298 	 * if there are not 14 addresses, go ahead and clear the filters
2299 	 */
2300 	i = 1;
2301 	if (use_uc)
2302 		netdev_for_each_uc_addr(ha, netdev) {
2303 			if (i == rar_entries)
2304 				break;
2305 			e1000_rar_set(hw, ha->addr, i++);
2306 		}
2307 
2308 	netdev_for_each_mc_addr(ha, netdev) {
2309 		if (i == rar_entries) {
2310 			/* load any remaining addresses into the hash table */
2311 			u32 hash_reg, hash_bit, mta;
2312 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2313 			hash_reg = (hash_value >> 5) & 0x7F;
2314 			hash_bit = hash_value & 0x1F;
2315 			mta = (1 << hash_bit);
2316 			mcarray[hash_reg] |= mta;
2317 		} else {
2318 			e1000_rar_set(hw, ha->addr, i++);
2319 		}
2320 	}
2321 
2322 	for (; i < rar_entries; i++) {
2323 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2324 		E1000_WRITE_FLUSH();
2325 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2326 		E1000_WRITE_FLUSH();
2327 	}
2328 
2329 	/* write the hash table completely, write from bottom to avoid
2330 	 * both stupid write combining chipsets, and flushing each write */
2331 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2332 		/*
2333 		 * If we are on an 82544 has an errata where writing odd
2334 		 * offsets overwrites the previous even offset, but writing
2335 		 * backwards over the range solves the issue by always
2336 		 * writing the odd offset first
2337 		 */
2338 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2339 	}
2340 	E1000_WRITE_FLUSH();
2341 
2342 	if (hw->mac_type == e1000_82542_rev2_0)
2343 		e1000_leave_82542_rst(adapter);
2344 
2345 	kfree(mcarray);
2346 }
2347 
2348 /**
2349  * e1000_update_phy_info_task - get phy info
2350  * @work: work struct contained inside adapter struct
2351  *
2352  * Need to wait a few seconds after link up to get diagnostic information from
2353  * the phy
2354  */
2355 static void e1000_update_phy_info_task(struct work_struct *work)
2356 {
2357 	struct e1000_adapter *adapter = container_of(work,
2358 						     struct e1000_adapter,
2359 						     phy_info_task.work);
2360 	if (test_bit(__E1000_DOWN, &adapter->flags))
2361 		return;
2362 	mutex_lock(&adapter->mutex);
2363 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2364 	mutex_unlock(&adapter->mutex);
2365 }
2366 
2367 /**
2368  * e1000_82547_tx_fifo_stall_task - task to complete work
2369  * @work: work struct contained inside adapter struct
2370  **/
2371 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2372 {
2373 	struct e1000_adapter *adapter = container_of(work,
2374 						     struct e1000_adapter,
2375 						     fifo_stall_task.work);
2376 	struct e1000_hw *hw = &adapter->hw;
2377 	struct net_device *netdev = adapter->netdev;
2378 	u32 tctl;
2379 
2380 	if (test_bit(__E1000_DOWN, &adapter->flags))
2381 		return;
2382 	mutex_lock(&adapter->mutex);
2383 	if (atomic_read(&adapter->tx_fifo_stall)) {
2384 		if ((er32(TDT) == er32(TDH)) &&
2385 		   (er32(TDFT) == er32(TDFH)) &&
2386 		   (er32(TDFTS) == er32(TDFHS))) {
2387 			tctl = er32(TCTL);
2388 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2389 			ew32(TDFT, adapter->tx_head_addr);
2390 			ew32(TDFH, adapter->tx_head_addr);
2391 			ew32(TDFTS, adapter->tx_head_addr);
2392 			ew32(TDFHS, adapter->tx_head_addr);
2393 			ew32(TCTL, tctl);
2394 			E1000_WRITE_FLUSH();
2395 
2396 			adapter->tx_fifo_head = 0;
2397 			atomic_set(&adapter->tx_fifo_stall, 0);
2398 			netif_wake_queue(netdev);
2399 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2400 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2401 		}
2402 	}
2403 	mutex_unlock(&adapter->mutex);
2404 }
2405 
2406 bool e1000_has_link(struct e1000_adapter *adapter)
2407 {
2408 	struct e1000_hw *hw = &adapter->hw;
2409 	bool link_active = false;
2410 
2411 	/* get_link_status is set on LSC (link status) interrupt or rx
2412 	 * sequence error interrupt (except on intel ce4100).
2413 	 * get_link_status will stay false until the
2414 	 * e1000_check_for_link establishes link for copper adapters
2415 	 * ONLY
2416 	 */
2417 	switch (hw->media_type) {
2418 	case e1000_media_type_copper:
2419 		if (hw->mac_type == e1000_ce4100)
2420 			hw->get_link_status = 1;
2421 		if (hw->get_link_status) {
2422 			e1000_check_for_link(hw);
2423 			link_active = !hw->get_link_status;
2424 		} else {
2425 			link_active = true;
2426 		}
2427 		break;
2428 	case e1000_media_type_fiber:
2429 		e1000_check_for_link(hw);
2430 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2431 		break;
2432 	case e1000_media_type_internal_serdes:
2433 		e1000_check_for_link(hw);
2434 		link_active = hw->serdes_has_link;
2435 		break;
2436 	default:
2437 		break;
2438 	}
2439 
2440 	return link_active;
2441 }
2442 
2443 /**
2444  * e1000_watchdog - work function
2445  * @work: work struct contained inside adapter struct
2446  **/
2447 static void e1000_watchdog(struct work_struct *work)
2448 {
2449 	struct e1000_adapter *adapter = container_of(work,
2450 						     struct e1000_adapter,
2451 						     watchdog_task.work);
2452 	struct e1000_hw *hw = &adapter->hw;
2453 	struct net_device *netdev = adapter->netdev;
2454 	struct e1000_tx_ring *txdr = adapter->tx_ring;
2455 	u32 link, tctl;
2456 
2457 	if (test_bit(__E1000_DOWN, &adapter->flags))
2458 		return;
2459 
2460 	mutex_lock(&adapter->mutex);
2461 	link = e1000_has_link(adapter);
2462 	if ((netif_carrier_ok(netdev)) && link)
2463 		goto link_up;
2464 
2465 	if (link) {
2466 		if (!netif_carrier_ok(netdev)) {
2467 			u32 ctrl;
2468 			bool txb2b = true;
2469 			/* update snapshot of PHY registers on LSC */
2470 			e1000_get_speed_and_duplex(hw,
2471 			                           &adapter->link_speed,
2472 			                           &adapter->link_duplex);
2473 
2474 			ctrl = er32(CTRL);
2475 			pr_info("%s NIC Link is Up %d Mbps %s, "
2476 				"Flow Control: %s\n",
2477 				netdev->name,
2478 				adapter->link_speed,
2479 				adapter->link_duplex == FULL_DUPLEX ?
2480 				"Full Duplex" : "Half Duplex",
2481 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2482 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2483 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2484 				E1000_CTRL_TFCE) ? "TX" : "None")));
2485 
2486 			/* adjust timeout factor according to speed/duplex */
2487 			adapter->tx_timeout_factor = 1;
2488 			switch (adapter->link_speed) {
2489 			case SPEED_10:
2490 				txb2b = false;
2491 				adapter->tx_timeout_factor = 16;
2492 				break;
2493 			case SPEED_100:
2494 				txb2b = false;
2495 				/* maybe add some timeout factor ? */
2496 				break;
2497 			}
2498 
2499 			/* enable transmits in the hardware */
2500 			tctl = er32(TCTL);
2501 			tctl |= E1000_TCTL_EN;
2502 			ew32(TCTL, tctl);
2503 
2504 			netif_carrier_on(netdev);
2505 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2506 				schedule_delayed_work(&adapter->phy_info_task,
2507 						      2 * HZ);
2508 			adapter->smartspeed = 0;
2509 		}
2510 	} else {
2511 		if (netif_carrier_ok(netdev)) {
2512 			adapter->link_speed = 0;
2513 			adapter->link_duplex = 0;
2514 			pr_info("%s NIC Link is Down\n",
2515 				netdev->name);
2516 			netif_carrier_off(netdev);
2517 
2518 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2519 				schedule_delayed_work(&adapter->phy_info_task,
2520 						      2 * HZ);
2521 		}
2522 
2523 		e1000_smartspeed(adapter);
2524 	}
2525 
2526 link_up:
2527 	e1000_update_stats(adapter);
2528 
2529 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2530 	adapter->tpt_old = adapter->stats.tpt;
2531 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2532 	adapter->colc_old = adapter->stats.colc;
2533 
2534 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2535 	adapter->gorcl_old = adapter->stats.gorcl;
2536 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2537 	adapter->gotcl_old = adapter->stats.gotcl;
2538 
2539 	e1000_update_adaptive(hw);
2540 
2541 	if (!netif_carrier_ok(netdev)) {
2542 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2543 			/* We've lost link, so the controller stops DMA,
2544 			 * but we've got queued Tx work that's never going
2545 			 * to get done, so reset controller to flush Tx.
2546 			 * (Do the reset outside of interrupt context). */
2547 			adapter->tx_timeout_count++;
2548 			schedule_work(&adapter->reset_task);
2549 			/* exit immediately since reset is imminent */
2550 			goto unlock;
2551 		}
2552 	}
2553 
2554 	/* Simple mode for Interrupt Throttle Rate (ITR) */
2555 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2556 		/*
2557 		 * Symmetric Tx/Rx gets a reduced ITR=2000;
2558 		 * Total asymmetrical Tx or Rx gets ITR=8000;
2559 		 * everyone else is between 2000-8000.
2560 		 */
2561 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2562 		u32 dif = (adapter->gotcl > adapter->gorcl ?
2563 			    adapter->gotcl - adapter->gorcl :
2564 			    adapter->gorcl - adapter->gotcl) / 10000;
2565 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2566 
2567 		ew32(ITR, 1000000000 / (itr * 256));
2568 	}
2569 
2570 	/* Cause software interrupt to ensure rx ring is cleaned */
2571 	ew32(ICS, E1000_ICS_RXDMT0);
2572 
2573 	/* Force detection of hung controller every watchdog period */
2574 	adapter->detect_tx_hung = true;
2575 
2576 	/* Reschedule the task */
2577 	if (!test_bit(__E1000_DOWN, &adapter->flags))
2578 		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2579 
2580 unlock:
2581 	mutex_unlock(&adapter->mutex);
2582 }
2583 
2584 enum latency_range {
2585 	lowest_latency = 0,
2586 	low_latency = 1,
2587 	bulk_latency = 2,
2588 	latency_invalid = 255
2589 };
2590 
2591 /**
2592  * e1000_update_itr - update the dynamic ITR value based on statistics
2593  * @adapter: pointer to adapter
2594  * @itr_setting: current adapter->itr
2595  * @packets: the number of packets during this measurement interval
2596  * @bytes: the number of bytes during this measurement interval
2597  *
2598  *      Stores a new ITR value based on packets and byte
2599  *      counts during the last interrupt.  The advantage of per interrupt
2600  *      computation is faster updates and more accurate ITR for the current
2601  *      traffic pattern.  Constants in this function were computed
2602  *      based on theoretical maximum wire speed and thresholds were set based
2603  *      on testing data as well as attempting to minimize response time
2604  *      while increasing bulk throughput.
2605  *      this functionality is controlled by the InterruptThrottleRate module
2606  *      parameter (see e1000_param.c)
2607  **/
2608 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2609 				     u16 itr_setting, int packets, int bytes)
2610 {
2611 	unsigned int retval = itr_setting;
2612 	struct e1000_hw *hw = &adapter->hw;
2613 
2614 	if (unlikely(hw->mac_type < e1000_82540))
2615 		goto update_itr_done;
2616 
2617 	if (packets == 0)
2618 		goto update_itr_done;
2619 
2620 	switch (itr_setting) {
2621 	case lowest_latency:
2622 		/* jumbo frames get bulk treatment*/
2623 		if (bytes/packets > 8000)
2624 			retval = bulk_latency;
2625 		else if ((packets < 5) && (bytes > 512))
2626 			retval = low_latency;
2627 		break;
2628 	case low_latency:  /* 50 usec aka 20000 ints/s */
2629 		if (bytes > 10000) {
2630 			/* jumbo frames need bulk latency setting */
2631 			if (bytes/packets > 8000)
2632 				retval = bulk_latency;
2633 			else if ((packets < 10) || ((bytes/packets) > 1200))
2634 				retval = bulk_latency;
2635 			else if ((packets > 35))
2636 				retval = lowest_latency;
2637 		} else if (bytes/packets > 2000)
2638 			retval = bulk_latency;
2639 		else if (packets <= 2 && bytes < 512)
2640 			retval = lowest_latency;
2641 		break;
2642 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2643 		if (bytes > 25000) {
2644 			if (packets > 35)
2645 				retval = low_latency;
2646 		} else if (bytes < 6000) {
2647 			retval = low_latency;
2648 		}
2649 		break;
2650 	}
2651 
2652 update_itr_done:
2653 	return retval;
2654 }
2655 
2656 static void e1000_set_itr(struct e1000_adapter *adapter)
2657 {
2658 	struct e1000_hw *hw = &adapter->hw;
2659 	u16 current_itr;
2660 	u32 new_itr = adapter->itr;
2661 
2662 	if (unlikely(hw->mac_type < e1000_82540))
2663 		return;
2664 
2665 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2666 	if (unlikely(adapter->link_speed != SPEED_1000)) {
2667 		current_itr = 0;
2668 		new_itr = 4000;
2669 		goto set_itr_now;
2670 	}
2671 
2672 	adapter->tx_itr = e1000_update_itr(adapter,
2673 	                            adapter->tx_itr,
2674 	                            adapter->total_tx_packets,
2675 	                            adapter->total_tx_bytes);
2676 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2677 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2678 		adapter->tx_itr = low_latency;
2679 
2680 	adapter->rx_itr = e1000_update_itr(adapter,
2681 	                            adapter->rx_itr,
2682 	                            adapter->total_rx_packets,
2683 	                            adapter->total_rx_bytes);
2684 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2685 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2686 		adapter->rx_itr = low_latency;
2687 
2688 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2689 
2690 	switch (current_itr) {
2691 	/* counts and packets in update_itr are dependent on these numbers */
2692 	case lowest_latency:
2693 		new_itr = 70000;
2694 		break;
2695 	case low_latency:
2696 		new_itr = 20000; /* aka hwitr = ~200 */
2697 		break;
2698 	case bulk_latency:
2699 		new_itr = 4000;
2700 		break;
2701 	default:
2702 		break;
2703 	}
2704 
2705 set_itr_now:
2706 	if (new_itr != adapter->itr) {
2707 		/* this attempts to bias the interrupt rate towards Bulk
2708 		 * by adding intermediate steps when interrupt rate is
2709 		 * increasing */
2710 		new_itr = new_itr > adapter->itr ?
2711 		             min(adapter->itr + (new_itr >> 2), new_itr) :
2712 		             new_itr;
2713 		adapter->itr = new_itr;
2714 		ew32(ITR, 1000000000 / (new_itr * 256));
2715 	}
2716 }
2717 
2718 #define E1000_TX_FLAGS_CSUM		0x00000001
2719 #define E1000_TX_FLAGS_VLAN		0x00000002
2720 #define E1000_TX_FLAGS_TSO		0x00000004
2721 #define E1000_TX_FLAGS_IPV4		0x00000008
2722 #define E1000_TX_FLAGS_NO_FCS		0x00000010
2723 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2724 #define E1000_TX_FLAGS_VLAN_SHIFT	16
2725 
2726 static int e1000_tso(struct e1000_adapter *adapter,
2727 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2728 {
2729 	struct e1000_context_desc *context_desc;
2730 	struct e1000_buffer *buffer_info;
2731 	unsigned int i;
2732 	u32 cmd_length = 0;
2733 	u16 ipcse = 0, tucse, mss;
2734 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2735 	int err;
2736 
2737 	if (skb_is_gso(skb)) {
2738 		if (skb_header_cloned(skb)) {
2739 			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2740 			if (err)
2741 				return err;
2742 		}
2743 
2744 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2745 		mss = skb_shinfo(skb)->gso_size;
2746 		if (skb->protocol == htons(ETH_P_IP)) {
2747 			struct iphdr *iph = ip_hdr(skb);
2748 			iph->tot_len = 0;
2749 			iph->check = 0;
2750 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2751 								 iph->daddr, 0,
2752 								 IPPROTO_TCP,
2753 								 0);
2754 			cmd_length = E1000_TXD_CMD_IP;
2755 			ipcse = skb_transport_offset(skb) - 1;
2756 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
2757 			ipv6_hdr(skb)->payload_len = 0;
2758 			tcp_hdr(skb)->check =
2759 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2760 						 &ipv6_hdr(skb)->daddr,
2761 						 0, IPPROTO_TCP, 0);
2762 			ipcse = 0;
2763 		}
2764 		ipcss = skb_network_offset(skb);
2765 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2766 		tucss = skb_transport_offset(skb);
2767 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2768 		tucse = 0;
2769 
2770 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2771 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2772 
2773 		i = tx_ring->next_to_use;
2774 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2775 		buffer_info = &tx_ring->buffer_info[i];
2776 
2777 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2778 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2779 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2780 		context_desc->upper_setup.tcp_fields.tucss = tucss;
2781 		context_desc->upper_setup.tcp_fields.tucso = tucso;
2782 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2783 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2784 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2785 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2786 
2787 		buffer_info->time_stamp = jiffies;
2788 		buffer_info->next_to_watch = i;
2789 
2790 		if (++i == tx_ring->count) i = 0;
2791 		tx_ring->next_to_use = i;
2792 
2793 		return true;
2794 	}
2795 	return false;
2796 }
2797 
2798 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2799 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2800 {
2801 	struct e1000_context_desc *context_desc;
2802 	struct e1000_buffer *buffer_info;
2803 	unsigned int i;
2804 	u8 css;
2805 	u32 cmd_len = E1000_TXD_CMD_DEXT;
2806 
2807 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2808 		return false;
2809 
2810 	switch (skb->protocol) {
2811 	case cpu_to_be16(ETH_P_IP):
2812 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2813 			cmd_len |= E1000_TXD_CMD_TCP;
2814 		break;
2815 	case cpu_to_be16(ETH_P_IPV6):
2816 		/* XXX not handling all IPV6 headers */
2817 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2818 			cmd_len |= E1000_TXD_CMD_TCP;
2819 		break;
2820 	default:
2821 		if (unlikely(net_ratelimit()))
2822 			e_warn(drv, "checksum_partial proto=%x!\n",
2823 			       skb->protocol);
2824 		break;
2825 	}
2826 
2827 	css = skb_checksum_start_offset(skb);
2828 
2829 	i = tx_ring->next_to_use;
2830 	buffer_info = &tx_ring->buffer_info[i];
2831 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2832 
2833 	context_desc->lower_setup.ip_config = 0;
2834 	context_desc->upper_setup.tcp_fields.tucss = css;
2835 	context_desc->upper_setup.tcp_fields.tucso =
2836 		css + skb->csum_offset;
2837 	context_desc->upper_setup.tcp_fields.tucse = 0;
2838 	context_desc->tcp_seg_setup.data = 0;
2839 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2840 
2841 	buffer_info->time_stamp = jiffies;
2842 	buffer_info->next_to_watch = i;
2843 
2844 	if (unlikely(++i == tx_ring->count)) i = 0;
2845 	tx_ring->next_to_use = i;
2846 
2847 	return true;
2848 }
2849 
2850 #define E1000_MAX_TXD_PWR	12
2851 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2852 
2853 static int e1000_tx_map(struct e1000_adapter *adapter,
2854 			struct e1000_tx_ring *tx_ring,
2855 			struct sk_buff *skb, unsigned int first,
2856 			unsigned int max_per_txd, unsigned int nr_frags,
2857 			unsigned int mss)
2858 {
2859 	struct e1000_hw *hw = &adapter->hw;
2860 	struct pci_dev *pdev = adapter->pdev;
2861 	struct e1000_buffer *buffer_info;
2862 	unsigned int len = skb_headlen(skb);
2863 	unsigned int offset = 0, size, count = 0, i;
2864 	unsigned int f, bytecount, segs;
2865 
2866 	i = tx_ring->next_to_use;
2867 
2868 	while (len) {
2869 		buffer_info = &tx_ring->buffer_info[i];
2870 		size = min(len, max_per_txd);
2871 		/* Workaround for Controller erratum --
2872 		 * descriptor for non-tso packet in a linear SKB that follows a
2873 		 * tso gets written back prematurely before the data is fully
2874 		 * DMA'd to the controller */
2875 		if (!skb->data_len && tx_ring->last_tx_tso &&
2876 		    !skb_is_gso(skb)) {
2877 			tx_ring->last_tx_tso = false;
2878 			size -= 4;
2879 		}
2880 
2881 		/* Workaround for premature desc write-backs
2882 		 * in TSO mode.  Append 4-byte sentinel desc */
2883 		if (unlikely(mss && !nr_frags && size == len && size > 8))
2884 			size -= 4;
2885 		/* work-around for errata 10 and it applies
2886 		 * to all controllers in PCI-X mode
2887 		 * The fix is to make sure that the first descriptor of a
2888 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2889 		 */
2890 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2891 		                (size > 2015) && count == 0))
2892 		        size = 2015;
2893 
2894 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2895 		 * terminating buffers within evenly-aligned dwords. */
2896 		if (unlikely(adapter->pcix_82544 &&
2897 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2898 		   size > 4))
2899 			size -= 4;
2900 
2901 		buffer_info->length = size;
2902 		/* set time_stamp *before* dma to help avoid a possible race */
2903 		buffer_info->time_stamp = jiffies;
2904 		buffer_info->mapped_as_page = false;
2905 		buffer_info->dma = dma_map_single(&pdev->dev,
2906 						  skb->data + offset,
2907 						  size,	DMA_TO_DEVICE);
2908 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2909 			goto dma_error;
2910 		buffer_info->next_to_watch = i;
2911 
2912 		len -= size;
2913 		offset += size;
2914 		count++;
2915 		if (len) {
2916 			i++;
2917 			if (unlikely(i == tx_ring->count))
2918 				i = 0;
2919 		}
2920 	}
2921 
2922 	for (f = 0; f < nr_frags; f++) {
2923 		const struct skb_frag_struct *frag;
2924 
2925 		frag = &skb_shinfo(skb)->frags[f];
2926 		len = skb_frag_size(frag);
2927 		offset = 0;
2928 
2929 		while (len) {
2930 			unsigned long bufend;
2931 			i++;
2932 			if (unlikely(i == tx_ring->count))
2933 				i = 0;
2934 
2935 			buffer_info = &tx_ring->buffer_info[i];
2936 			size = min(len, max_per_txd);
2937 			/* Workaround for premature desc write-backs
2938 			 * in TSO mode.  Append 4-byte sentinel desc */
2939 			if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2940 				size -= 4;
2941 			/* Workaround for potential 82544 hang in PCI-X.
2942 			 * Avoid terminating buffers within evenly-aligned
2943 			 * dwords. */
2944 			bufend = (unsigned long)
2945 				page_to_phys(skb_frag_page(frag));
2946 			bufend += offset + size - 1;
2947 			if (unlikely(adapter->pcix_82544 &&
2948 				     !(bufend & 4) &&
2949 				     size > 4))
2950 				size -= 4;
2951 
2952 			buffer_info->length = size;
2953 			buffer_info->time_stamp = jiffies;
2954 			buffer_info->mapped_as_page = true;
2955 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2956 						offset, size, DMA_TO_DEVICE);
2957 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2958 				goto dma_error;
2959 			buffer_info->next_to_watch = i;
2960 
2961 			len -= size;
2962 			offset += size;
2963 			count++;
2964 		}
2965 	}
2966 
2967 	segs = skb_shinfo(skb)->gso_segs ?: 1;
2968 	/* multiply data chunks by size of headers */
2969 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2970 
2971 	tx_ring->buffer_info[i].skb = skb;
2972 	tx_ring->buffer_info[i].segs = segs;
2973 	tx_ring->buffer_info[i].bytecount = bytecount;
2974 	tx_ring->buffer_info[first].next_to_watch = i;
2975 
2976 	return count;
2977 
2978 dma_error:
2979 	dev_err(&pdev->dev, "TX DMA map failed\n");
2980 	buffer_info->dma = 0;
2981 	if (count)
2982 		count--;
2983 
2984 	while (count--) {
2985 		if (i==0)
2986 			i += tx_ring->count;
2987 		i--;
2988 		buffer_info = &tx_ring->buffer_info[i];
2989 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2990 	}
2991 
2992 	return 0;
2993 }
2994 
2995 static void e1000_tx_queue(struct e1000_adapter *adapter,
2996 			   struct e1000_tx_ring *tx_ring, int tx_flags,
2997 			   int count)
2998 {
2999 	struct e1000_hw *hw = &adapter->hw;
3000 	struct e1000_tx_desc *tx_desc = NULL;
3001 	struct e1000_buffer *buffer_info;
3002 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3003 	unsigned int i;
3004 
3005 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3006 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3007 		             E1000_TXD_CMD_TSE;
3008 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3009 
3010 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3011 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3012 	}
3013 
3014 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3015 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3016 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3017 	}
3018 
3019 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3020 		txd_lower |= E1000_TXD_CMD_VLE;
3021 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3022 	}
3023 
3024 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3025 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3026 
3027 	i = tx_ring->next_to_use;
3028 
3029 	while (count--) {
3030 		buffer_info = &tx_ring->buffer_info[i];
3031 		tx_desc = E1000_TX_DESC(*tx_ring, i);
3032 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3033 		tx_desc->lower.data =
3034 			cpu_to_le32(txd_lower | buffer_info->length);
3035 		tx_desc->upper.data = cpu_to_le32(txd_upper);
3036 		if (unlikely(++i == tx_ring->count)) i = 0;
3037 	}
3038 
3039 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3040 
3041 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3042 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3043 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3044 
3045 	/* Force memory writes to complete before letting h/w
3046 	 * know there are new descriptors to fetch.  (Only
3047 	 * applicable for weak-ordered memory model archs,
3048 	 * such as IA-64). */
3049 	wmb();
3050 
3051 	tx_ring->next_to_use = i;
3052 	writel(i, hw->hw_addr + tx_ring->tdt);
3053 	/* we need this if more than one processor can write to our tail
3054 	 * at a time, it syncronizes IO on IA64/Altix systems */
3055 	mmiowb();
3056 }
3057 
3058 /* 82547 workaround to avoid controller hang in half-duplex environment.
3059  * The workaround is to avoid queuing a large packet that would span
3060  * the internal Tx FIFO ring boundary by notifying the stack to resend
3061  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3062  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3063  * to the beginning of the Tx FIFO.
3064  */
3065 
3066 #define E1000_FIFO_HDR			0x10
3067 #define E1000_82547_PAD_LEN		0x3E0
3068 
3069 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3070 				       struct sk_buff *skb)
3071 {
3072 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3073 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3074 
3075 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3076 
3077 	if (adapter->link_duplex != HALF_DUPLEX)
3078 		goto no_fifo_stall_required;
3079 
3080 	if (atomic_read(&adapter->tx_fifo_stall))
3081 		return 1;
3082 
3083 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3084 		atomic_set(&adapter->tx_fifo_stall, 1);
3085 		return 1;
3086 	}
3087 
3088 no_fifo_stall_required:
3089 	adapter->tx_fifo_head += skb_fifo_len;
3090 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3091 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3092 	return 0;
3093 }
3094 
3095 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3096 {
3097 	struct e1000_adapter *adapter = netdev_priv(netdev);
3098 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3099 
3100 	netif_stop_queue(netdev);
3101 	/* Herbert's original patch had:
3102 	 *  smp_mb__after_netif_stop_queue();
3103 	 * but since that doesn't exist yet, just open code it. */
3104 	smp_mb();
3105 
3106 	/* We need to check again in a case another CPU has just
3107 	 * made room available. */
3108 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3109 		return -EBUSY;
3110 
3111 	/* A reprieve! */
3112 	netif_start_queue(netdev);
3113 	++adapter->restart_queue;
3114 	return 0;
3115 }
3116 
3117 static int e1000_maybe_stop_tx(struct net_device *netdev,
3118                                struct e1000_tx_ring *tx_ring, int size)
3119 {
3120 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3121 		return 0;
3122 	return __e1000_maybe_stop_tx(netdev, size);
3123 }
3124 
3125 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3126 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3127 				    struct net_device *netdev)
3128 {
3129 	struct e1000_adapter *adapter = netdev_priv(netdev);
3130 	struct e1000_hw *hw = &adapter->hw;
3131 	struct e1000_tx_ring *tx_ring;
3132 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3133 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3134 	unsigned int tx_flags = 0;
3135 	unsigned int len = skb_headlen(skb);
3136 	unsigned int nr_frags;
3137 	unsigned int mss;
3138 	int count = 0;
3139 	int tso;
3140 	unsigned int f;
3141 
3142 	/* This goes back to the question of how to logically map a tx queue
3143 	 * to a flow.  Right now, performance is impacted slightly negatively
3144 	 * if using multiple tx queues.  If the stack breaks away from a
3145 	 * single qdisc implementation, we can look at this again. */
3146 	tx_ring = adapter->tx_ring;
3147 
3148 	if (unlikely(skb->len <= 0)) {
3149 		dev_kfree_skb_any(skb);
3150 		return NETDEV_TX_OK;
3151 	}
3152 
3153 	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3154 	 * packets may get corrupted during padding by HW.
3155 	 * To WA this issue, pad all small packets manually.
3156 	 */
3157 	if (skb->len < ETH_ZLEN) {
3158 		if (skb_pad(skb, ETH_ZLEN - skb->len))
3159 			return NETDEV_TX_OK;
3160 		skb->len = ETH_ZLEN;
3161 		skb_set_tail_pointer(skb, ETH_ZLEN);
3162 	}
3163 
3164 	mss = skb_shinfo(skb)->gso_size;
3165 	/* The controller does a simple calculation to
3166 	 * make sure there is enough room in the FIFO before
3167 	 * initiating the DMA for each buffer.  The calc is:
3168 	 * 4 = ceil(buffer len/mss).  To make sure we don't
3169 	 * overrun the FIFO, adjust the max buffer len if mss
3170 	 * drops. */
3171 	if (mss) {
3172 		u8 hdr_len;
3173 		max_per_txd = min(mss << 2, max_per_txd);
3174 		max_txd_pwr = fls(max_per_txd) - 1;
3175 
3176 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3177 		if (skb->data_len && hdr_len == len) {
3178 			switch (hw->mac_type) {
3179 				unsigned int pull_size;
3180 			case e1000_82544:
3181 				/* Make sure we have room to chop off 4 bytes,
3182 				 * and that the end alignment will work out to
3183 				 * this hardware's requirements
3184 				 * NOTE: this is a TSO only workaround
3185 				 * if end byte alignment not correct move us
3186 				 * into the next dword */
3187 				if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3188 					break;
3189 				/* fall through */
3190 				pull_size = min((unsigned int)4, skb->data_len);
3191 				if (!__pskb_pull_tail(skb, pull_size)) {
3192 					e_err(drv, "__pskb_pull_tail "
3193 					      "failed.\n");
3194 					dev_kfree_skb_any(skb);
3195 					return NETDEV_TX_OK;
3196 				}
3197 				len = skb_headlen(skb);
3198 				break;
3199 			default:
3200 				/* do nothing */
3201 				break;
3202 			}
3203 		}
3204 	}
3205 
3206 	/* reserve a descriptor for the offload context */
3207 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3208 		count++;
3209 	count++;
3210 
3211 	/* Controller Erratum workaround */
3212 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3213 		count++;
3214 
3215 	count += TXD_USE_COUNT(len, max_txd_pwr);
3216 
3217 	if (adapter->pcix_82544)
3218 		count++;
3219 
3220 	/* work-around for errata 10 and it applies to all controllers
3221 	 * in PCI-X mode, so add one more descriptor to the count
3222 	 */
3223 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3224 			(len > 2015)))
3225 		count++;
3226 
3227 	nr_frags = skb_shinfo(skb)->nr_frags;
3228 	for (f = 0; f < nr_frags; f++)
3229 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3230 				       max_txd_pwr);
3231 	if (adapter->pcix_82544)
3232 		count += nr_frags;
3233 
3234 	/* need: count + 2 desc gap to keep tail from touching
3235 	 * head, otherwise try next time */
3236 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3237 		return NETDEV_TX_BUSY;
3238 
3239 	if (unlikely((hw->mac_type == e1000_82547) &&
3240 		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3241 		netif_stop_queue(netdev);
3242 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3243 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3244 		return NETDEV_TX_BUSY;
3245 	}
3246 
3247 	if (vlan_tx_tag_present(skb)) {
3248 		tx_flags |= E1000_TX_FLAGS_VLAN;
3249 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3250 	}
3251 
3252 	first = tx_ring->next_to_use;
3253 
3254 	tso = e1000_tso(adapter, tx_ring, skb);
3255 	if (tso < 0) {
3256 		dev_kfree_skb_any(skb);
3257 		return NETDEV_TX_OK;
3258 	}
3259 
3260 	if (likely(tso)) {
3261 		if (likely(hw->mac_type != e1000_82544))
3262 			tx_ring->last_tx_tso = true;
3263 		tx_flags |= E1000_TX_FLAGS_TSO;
3264 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3265 		tx_flags |= E1000_TX_FLAGS_CSUM;
3266 
3267 	if (likely(skb->protocol == htons(ETH_P_IP)))
3268 		tx_flags |= E1000_TX_FLAGS_IPV4;
3269 
3270 	if (unlikely(skb->no_fcs))
3271 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3272 
3273 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3274 	                     nr_frags, mss);
3275 
3276 	if (count) {
3277 		netdev_sent_queue(netdev, skb->len);
3278 		skb_tx_timestamp(skb);
3279 
3280 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3281 		/* Make sure there is space in the ring for the next send. */
3282 		e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3283 
3284 	} else {
3285 		dev_kfree_skb_any(skb);
3286 		tx_ring->buffer_info[first].time_stamp = 0;
3287 		tx_ring->next_to_use = first;
3288 	}
3289 
3290 	return NETDEV_TX_OK;
3291 }
3292 
3293 #define NUM_REGS 38 /* 1 based count */
3294 static void e1000_regdump(struct e1000_adapter *adapter)
3295 {
3296 	struct e1000_hw *hw = &adapter->hw;
3297 	u32 regs[NUM_REGS];
3298 	u32 *regs_buff = regs;
3299 	int i = 0;
3300 
3301 	static const char * const reg_name[] = {
3302 		"CTRL",  "STATUS",
3303 		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3304 		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3305 		"TIDV", "TXDCTL", "TADV", "TARC0",
3306 		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3307 		"TXDCTL1", "TARC1",
3308 		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3309 		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3310 		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3311 	};
3312 
3313 	regs_buff[0]  = er32(CTRL);
3314 	regs_buff[1]  = er32(STATUS);
3315 
3316 	regs_buff[2]  = er32(RCTL);
3317 	regs_buff[3]  = er32(RDLEN);
3318 	regs_buff[4]  = er32(RDH);
3319 	regs_buff[5]  = er32(RDT);
3320 	regs_buff[6]  = er32(RDTR);
3321 
3322 	regs_buff[7]  = er32(TCTL);
3323 	regs_buff[8]  = er32(TDBAL);
3324 	regs_buff[9]  = er32(TDBAH);
3325 	regs_buff[10] = er32(TDLEN);
3326 	regs_buff[11] = er32(TDH);
3327 	regs_buff[12] = er32(TDT);
3328 	regs_buff[13] = er32(TIDV);
3329 	regs_buff[14] = er32(TXDCTL);
3330 	regs_buff[15] = er32(TADV);
3331 	regs_buff[16] = er32(TARC0);
3332 
3333 	regs_buff[17] = er32(TDBAL1);
3334 	regs_buff[18] = er32(TDBAH1);
3335 	regs_buff[19] = er32(TDLEN1);
3336 	regs_buff[20] = er32(TDH1);
3337 	regs_buff[21] = er32(TDT1);
3338 	regs_buff[22] = er32(TXDCTL1);
3339 	regs_buff[23] = er32(TARC1);
3340 	regs_buff[24] = er32(CTRL_EXT);
3341 	regs_buff[25] = er32(ERT);
3342 	regs_buff[26] = er32(RDBAL0);
3343 	regs_buff[27] = er32(RDBAH0);
3344 	regs_buff[28] = er32(TDFH);
3345 	regs_buff[29] = er32(TDFT);
3346 	regs_buff[30] = er32(TDFHS);
3347 	regs_buff[31] = er32(TDFTS);
3348 	regs_buff[32] = er32(TDFPC);
3349 	regs_buff[33] = er32(RDFH);
3350 	regs_buff[34] = er32(RDFT);
3351 	regs_buff[35] = er32(RDFHS);
3352 	regs_buff[36] = er32(RDFTS);
3353 	regs_buff[37] = er32(RDFPC);
3354 
3355 	pr_info("Register dump\n");
3356 	for (i = 0; i < NUM_REGS; i++)
3357 		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3358 }
3359 
3360 /*
3361  * e1000_dump: Print registers, tx ring and rx ring
3362  */
3363 static void e1000_dump(struct e1000_adapter *adapter)
3364 {
3365 	/* this code doesn't handle multiple rings */
3366 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3367 	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3368 	int i;
3369 
3370 	if (!netif_msg_hw(adapter))
3371 		return;
3372 
3373 	/* Print Registers */
3374 	e1000_regdump(adapter);
3375 
3376 	/*
3377 	 * transmit dump
3378 	 */
3379 	pr_info("TX Desc ring0 dump\n");
3380 
3381 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3382 	 *
3383 	 * Legacy Transmit Descriptor
3384 	 *   +--------------------------------------------------------------+
3385 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3386 	 *   +--------------------------------------------------------------+
3387 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3388 	 *   +--------------------------------------------------------------+
3389 	 *   63       48 47        36 35    32 31     24 23    16 15        0
3390 	 *
3391 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3392 	 *   63      48 47    40 39       32 31             16 15    8 7      0
3393 	 *   +----------------------------------------------------------------+
3394 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3395 	 *   +----------------------------------------------------------------+
3396 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3397 	 *   +----------------------------------------------------------------+
3398 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3399 	 *
3400 	 * Extended Data Descriptor (DTYP=0x1)
3401 	 *   +----------------------------------------------------------------+
3402 	 * 0 |                     Buffer Address [63:0]                      |
3403 	 *   +----------------------------------------------------------------+
3404 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3405 	 *   +----------------------------------------------------------------+
3406 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3407 	 */
3408 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3409 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3410 
3411 	if (!netif_msg_tx_done(adapter))
3412 		goto rx_ring_summary;
3413 
3414 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3415 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3416 		struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3417 		struct my_u { __le64 a; __le64 b; };
3418 		struct my_u *u = (struct my_u *)tx_desc;
3419 		const char *type;
3420 
3421 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3422 			type = "NTC/U";
3423 		else if (i == tx_ring->next_to_use)
3424 			type = "NTU";
3425 		else if (i == tx_ring->next_to_clean)
3426 			type = "NTC";
3427 		else
3428 			type = "";
3429 
3430 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3431 			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3432 			le64_to_cpu(u->a), le64_to_cpu(u->b),
3433 			(u64)buffer_info->dma, buffer_info->length,
3434 			buffer_info->next_to_watch,
3435 			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3436 	}
3437 
3438 rx_ring_summary:
3439 	/*
3440 	 * receive dump
3441 	 */
3442 	pr_info("\nRX Desc ring dump\n");
3443 
3444 	/* Legacy Receive Descriptor Format
3445 	 *
3446 	 * +-----------------------------------------------------+
3447 	 * |                Buffer Address [63:0]                |
3448 	 * +-----------------------------------------------------+
3449 	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3450 	 * +-----------------------------------------------------+
3451 	 * 63       48 47    40 39      32 31         16 15      0
3452 	 */
3453 	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3454 
3455 	if (!netif_msg_rx_status(adapter))
3456 		goto exit;
3457 
3458 	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3459 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3460 		struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3461 		struct my_u { __le64 a; __le64 b; };
3462 		struct my_u *u = (struct my_u *)rx_desc;
3463 		const char *type;
3464 
3465 		if (i == rx_ring->next_to_use)
3466 			type = "NTU";
3467 		else if (i == rx_ring->next_to_clean)
3468 			type = "NTC";
3469 		else
3470 			type = "";
3471 
3472 		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3473 			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3474 			(u64)buffer_info->dma, buffer_info->skb, type);
3475 	} /* for */
3476 
3477 	/* dump the descriptor caches */
3478 	/* rx */
3479 	pr_info("Rx descriptor cache in 64bit format\n");
3480 	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3481 		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3482 			i,
3483 			readl(adapter->hw.hw_addr + i+4),
3484 			readl(adapter->hw.hw_addr + i),
3485 			readl(adapter->hw.hw_addr + i+12),
3486 			readl(adapter->hw.hw_addr + i+8));
3487 	}
3488 	/* tx */
3489 	pr_info("Tx descriptor cache in 64bit format\n");
3490 	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3491 		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3492 			i,
3493 			readl(adapter->hw.hw_addr + i+4),
3494 			readl(adapter->hw.hw_addr + i),
3495 			readl(adapter->hw.hw_addr + i+12),
3496 			readl(adapter->hw.hw_addr + i+8));
3497 	}
3498 exit:
3499 	return;
3500 }
3501 
3502 /**
3503  * e1000_tx_timeout - Respond to a Tx Hang
3504  * @netdev: network interface device structure
3505  **/
3506 
3507 static void e1000_tx_timeout(struct net_device *netdev)
3508 {
3509 	struct e1000_adapter *adapter = netdev_priv(netdev);
3510 
3511 	/* Do the reset outside of interrupt context */
3512 	adapter->tx_timeout_count++;
3513 	schedule_work(&adapter->reset_task);
3514 }
3515 
3516 static void e1000_reset_task(struct work_struct *work)
3517 {
3518 	struct e1000_adapter *adapter =
3519 		container_of(work, struct e1000_adapter, reset_task);
3520 
3521 	if (test_bit(__E1000_DOWN, &adapter->flags))
3522 		return;
3523 	e_err(drv, "Reset adapter\n");
3524 	e1000_reinit_safe(adapter);
3525 }
3526 
3527 /**
3528  * e1000_get_stats - Get System Network Statistics
3529  * @netdev: network interface device structure
3530  *
3531  * Returns the address of the device statistics structure.
3532  * The statistics are actually updated from the watchdog.
3533  **/
3534 
3535 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3536 {
3537 	/* only return the current stats */
3538 	return &netdev->stats;
3539 }
3540 
3541 /**
3542  * e1000_change_mtu - Change the Maximum Transfer Unit
3543  * @netdev: network interface device structure
3544  * @new_mtu: new value for maximum frame size
3545  *
3546  * Returns 0 on success, negative on failure
3547  **/
3548 
3549 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3550 {
3551 	struct e1000_adapter *adapter = netdev_priv(netdev);
3552 	struct e1000_hw *hw = &adapter->hw;
3553 	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3554 
3555 	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3556 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3557 		e_err(probe, "Invalid MTU setting\n");
3558 		return -EINVAL;
3559 	}
3560 
3561 	/* Adapter-specific max frame size limits. */
3562 	switch (hw->mac_type) {
3563 	case e1000_undefined ... e1000_82542_rev2_1:
3564 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3565 			e_err(probe, "Jumbo Frames not supported.\n");
3566 			return -EINVAL;
3567 		}
3568 		break;
3569 	default:
3570 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3571 		break;
3572 	}
3573 
3574 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3575 		msleep(1);
3576 	/* e1000_down has a dependency on max_frame_size */
3577 	hw->max_frame_size = max_frame;
3578 	if (netif_running(netdev))
3579 		e1000_down(adapter);
3580 
3581 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3582 	 * means we reserve 2 more, this pushes us to allocate from the next
3583 	 * larger slab size.
3584 	 * i.e. RXBUFFER_2048 --> size-4096 slab
3585 	 *  however with the new *_jumbo_rx* routines, jumbo receives will use
3586 	 *  fragmented skbs */
3587 
3588 	if (max_frame <= E1000_RXBUFFER_2048)
3589 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3590 	else
3591 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3592 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3593 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3594 		adapter->rx_buffer_len = PAGE_SIZE;
3595 #endif
3596 
3597 	/* adjust allocation if LPE protects us, and we aren't using SBP */
3598 	if (!hw->tbi_compatibility_on &&
3599 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3600 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3601 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3602 
3603 	pr_info("%s changing MTU from %d to %d\n",
3604 		netdev->name, netdev->mtu, new_mtu);
3605 	netdev->mtu = new_mtu;
3606 
3607 	if (netif_running(netdev))
3608 		e1000_up(adapter);
3609 	else
3610 		e1000_reset(adapter);
3611 
3612 	clear_bit(__E1000_RESETTING, &adapter->flags);
3613 
3614 	return 0;
3615 }
3616 
3617 /**
3618  * e1000_update_stats - Update the board statistics counters
3619  * @adapter: board private structure
3620  **/
3621 
3622 void e1000_update_stats(struct e1000_adapter *adapter)
3623 {
3624 	struct net_device *netdev = adapter->netdev;
3625 	struct e1000_hw *hw = &adapter->hw;
3626 	struct pci_dev *pdev = adapter->pdev;
3627 	unsigned long flags;
3628 	u16 phy_tmp;
3629 
3630 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3631 
3632 	/*
3633 	 * Prevent stats update while adapter is being reset, or if the pci
3634 	 * connection is down.
3635 	 */
3636 	if (adapter->link_speed == 0)
3637 		return;
3638 	if (pci_channel_offline(pdev))
3639 		return;
3640 
3641 	spin_lock_irqsave(&adapter->stats_lock, flags);
3642 
3643 	/* these counters are modified from e1000_tbi_adjust_stats,
3644 	 * called from the interrupt context, so they must only
3645 	 * be written while holding adapter->stats_lock
3646 	 */
3647 
3648 	adapter->stats.crcerrs += er32(CRCERRS);
3649 	adapter->stats.gprc += er32(GPRC);
3650 	adapter->stats.gorcl += er32(GORCL);
3651 	adapter->stats.gorch += er32(GORCH);
3652 	adapter->stats.bprc += er32(BPRC);
3653 	adapter->stats.mprc += er32(MPRC);
3654 	adapter->stats.roc += er32(ROC);
3655 
3656 	adapter->stats.prc64 += er32(PRC64);
3657 	adapter->stats.prc127 += er32(PRC127);
3658 	adapter->stats.prc255 += er32(PRC255);
3659 	adapter->stats.prc511 += er32(PRC511);
3660 	adapter->stats.prc1023 += er32(PRC1023);
3661 	adapter->stats.prc1522 += er32(PRC1522);
3662 
3663 	adapter->stats.symerrs += er32(SYMERRS);
3664 	adapter->stats.mpc += er32(MPC);
3665 	adapter->stats.scc += er32(SCC);
3666 	adapter->stats.ecol += er32(ECOL);
3667 	adapter->stats.mcc += er32(MCC);
3668 	adapter->stats.latecol += er32(LATECOL);
3669 	adapter->stats.dc += er32(DC);
3670 	adapter->stats.sec += er32(SEC);
3671 	adapter->stats.rlec += er32(RLEC);
3672 	adapter->stats.xonrxc += er32(XONRXC);
3673 	adapter->stats.xontxc += er32(XONTXC);
3674 	adapter->stats.xoffrxc += er32(XOFFRXC);
3675 	adapter->stats.xofftxc += er32(XOFFTXC);
3676 	adapter->stats.fcruc += er32(FCRUC);
3677 	adapter->stats.gptc += er32(GPTC);
3678 	adapter->stats.gotcl += er32(GOTCL);
3679 	adapter->stats.gotch += er32(GOTCH);
3680 	adapter->stats.rnbc += er32(RNBC);
3681 	adapter->stats.ruc += er32(RUC);
3682 	adapter->stats.rfc += er32(RFC);
3683 	adapter->stats.rjc += er32(RJC);
3684 	adapter->stats.torl += er32(TORL);
3685 	adapter->stats.torh += er32(TORH);
3686 	adapter->stats.totl += er32(TOTL);
3687 	adapter->stats.toth += er32(TOTH);
3688 	adapter->stats.tpr += er32(TPR);
3689 
3690 	adapter->stats.ptc64 += er32(PTC64);
3691 	adapter->stats.ptc127 += er32(PTC127);
3692 	adapter->stats.ptc255 += er32(PTC255);
3693 	adapter->stats.ptc511 += er32(PTC511);
3694 	adapter->stats.ptc1023 += er32(PTC1023);
3695 	adapter->stats.ptc1522 += er32(PTC1522);
3696 
3697 	adapter->stats.mptc += er32(MPTC);
3698 	adapter->stats.bptc += er32(BPTC);
3699 
3700 	/* used for adaptive IFS */
3701 
3702 	hw->tx_packet_delta = er32(TPT);
3703 	adapter->stats.tpt += hw->tx_packet_delta;
3704 	hw->collision_delta = er32(COLC);
3705 	adapter->stats.colc += hw->collision_delta;
3706 
3707 	if (hw->mac_type >= e1000_82543) {
3708 		adapter->stats.algnerrc += er32(ALGNERRC);
3709 		adapter->stats.rxerrc += er32(RXERRC);
3710 		adapter->stats.tncrs += er32(TNCRS);
3711 		adapter->stats.cexterr += er32(CEXTERR);
3712 		adapter->stats.tsctc += er32(TSCTC);
3713 		adapter->stats.tsctfc += er32(TSCTFC);
3714 	}
3715 
3716 	/* Fill out the OS statistics structure */
3717 	netdev->stats.multicast = adapter->stats.mprc;
3718 	netdev->stats.collisions = adapter->stats.colc;
3719 
3720 	/* Rx Errors */
3721 
3722 	/* RLEC on some newer hardware can be incorrect so build
3723 	* our own version based on RUC and ROC */
3724 	netdev->stats.rx_errors = adapter->stats.rxerrc +
3725 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3726 		adapter->stats.ruc + adapter->stats.roc +
3727 		adapter->stats.cexterr;
3728 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3729 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3730 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3731 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3732 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3733 
3734 	/* Tx Errors */
3735 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3736 	netdev->stats.tx_errors = adapter->stats.txerrc;
3737 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3738 	netdev->stats.tx_window_errors = adapter->stats.latecol;
3739 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3740 	if (hw->bad_tx_carr_stats_fd &&
3741 	    adapter->link_duplex == FULL_DUPLEX) {
3742 		netdev->stats.tx_carrier_errors = 0;
3743 		adapter->stats.tncrs = 0;
3744 	}
3745 
3746 	/* Tx Dropped needs to be maintained elsewhere */
3747 
3748 	/* Phy Stats */
3749 	if (hw->media_type == e1000_media_type_copper) {
3750 		if ((adapter->link_speed == SPEED_1000) &&
3751 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3752 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3753 			adapter->phy_stats.idle_errors += phy_tmp;
3754 		}
3755 
3756 		if ((hw->mac_type <= e1000_82546) &&
3757 		   (hw->phy_type == e1000_phy_m88) &&
3758 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3759 			adapter->phy_stats.receive_errors += phy_tmp;
3760 	}
3761 
3762 	/* Management Stats */
3763 	if (hw->has_smbus) {
3764 		adapter->stats.mgptc += er32(MGTPTC);
3765 		adapter->stats.mgprc += er32(MGTPRC);
3766 		adapter->stats.mgpdc += er32(MGTPDC);
3767 	}
3768 
3769 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3770 }
3771 
3772 /**
3773  * e1000_intr - Interrupt Handler
3774  * @irq: interrupt number
3775  * @data: pointer to a network interface device structure
3776  **/
3777 
3778 static irqreturn_t e1000_intr(int irq, void *data)
3779 {
3780 	struct net_device *netdev = data;
3781 	struct e1000_adapter *adapter = netdev_priv(netdev);
3782 	struct e1000_hw *hw = &adapter->hw;
3783 	u32 icr = er32(ICR);
3784 
3785 	if (unlikely((!icr)))
3786 		return IRQ_NONE;  /* Not our interrupt */
3787 
3788 	/*
3789 	 * we might have caused the interrupt, but the above
3790 	 * read cleared it, and just in case the driver is
3791 	 * down there is nothing to do so return handled
3792 	 */
3793 	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3794 		return IRQ_HANDLED;
3795 
3796 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3797 		hw->get_link_status = 1;
3798 		/* guard against interrupt when we're going down */
3799 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3800 			schedule_delayed_work(&adapter->watchdog_task, 1);
3801 	}
3802 
3803 	/* disable interrupts, without the synchronize_irq bit */
3804 	ew32(IMC, ~0);
3805 	E1000_WRITE_FLUSH();
3806 
3807 	if (likely(napi_schedule_prep(&adapter->napi))) {
3808 		adapter->total_tx_bytes = 0;
3809 		adapter->total_tx_packets = 0;
3810 		adapter->total_rx_bytes = 0;
3811 		adapter->total_rx_packets = 0;
3812 		__napi_schedule(&adapter->napi);
3813 	} else {
3814 		/* this really should not happen! if it does it is basically a
3815 		 * bug, but not a hard error, so enable ints and continue */
3816 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3817 			e1000_irq_enable(adapter);
3818 	}
3819 
3820 	return IRQ_HANDLED;
3821 }
3822 
3823 /**
3824  * e1000_clean - NAPI Rx polling callback
3825  * @adapter: board private structure
3826  **/
3827 static int e1000_clean(struct napi_struct *napi, int budget)
3828 {
3829 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3830 	int tx_clean_complete = 0, work_done = 0;
3831 
3832 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3833 
3834 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3835 
3836 	if (!tx_clean_complete)
3837 		work_done = budget;
3838 
3839 	/* If budget not fully consumed, exit the polling mode */
3840 	if (work_done < budget) {
3841 		if (likely(adapter->itr_setting & 3))
3842 			e1000_set_itr(adapter);
3843 		napi_complete(napi);
3844 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3845 			e1000_irq_enable(adapter);
3846 	}
3847 
3848 	return work_done;
3849 }
3850 
3851 /**
3852  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3853  * @adapter: board private structure
3854  **/
3855 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3856 			       struct e1000_tx_ring *tx_ring)
3857 {
3858 	struct e1000_hw *hw = &adapter->hw;
3859 	struct net_device *netdev = adapter->netdev;
3860 	struct e1000_tx_desc *tx_desc, *eop_desc;
3861 	struct e1000_buffer *buffer_info;
3862 	unsigned int i, eop;
3863 	unsigned int count = 0;
3864 	unsigned int total_tx_bytes=0, total_tx_packets=0;
3865 	unsigned int bytes_compl = 0, pkts_compl = 0;
3866 
3867 	i = tx_ring->next_to_clean;
3868 	eop = tx_ring->buffer_info[i].next_to_watch;
3869 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3870 
3871 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3872 	       (count < tx_ring->count)) {
3873 		bool cleaned = false;
3874 		rmb();	/* read buffer_info after eop_desc */
3875 		for ( ; !cleaned; count++) {
3876 			tx_desc = E1000_TX_DESC(*tx_ring, i);
3877 			buffer_info = &tx_ring->buffer_info[i];
3878 			cleaned = (i == eop);
3879 
3880 			if (cleaned) {
3881 				total_tx_packets += buffer_info->segs;
3882 				total_tx_bytes += buffer_info->bytecount;
3883 				if (buffer_info->skb) {
3884 					bytes_compl += buffer_info->skb->len;
3885 					pkts_compl++;
3886 				}
3887 
3888 			}
3889 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3890 			tx_desc->upper.data = 0;
3891 
3892 			if (unlikely(++i == tx_ring->count)) i = 0;
3893 		}
3894 
3895 		eop = tx_ring->buffer_info[i].next_to_watch;
3896 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3897 	}
3898 
3899 	tx_ring->next_to_clean = i;
3900 
3901 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3902 
3903 #define TX_WAKE_THRESHOLD 32
3904 	if (unlikely(count && netif_carrier_ok(netdev) &&
3905 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3906 		/* Make sure that anybody stopping the queue after this
3907 		 * sees the new next_to_clean.
3908 		 */
3909 		smp_mb();
3910 
3911 		if (netif_queue_stopped(netdev) &&
3912 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3913 			netif_wake_queue(netdev);
3914 			++adapter->restart_queue;
3915 		}
3916 	}
3917 
3918 	if (adapter->detect_tx_hung) {
3919 		/* Detect a transmit hang in hardware, this serializes the
3920 		 * check with the clearing of time_stamp and movement of i */
3921 		adapter->detect_tx_hung = false;
3922 		if (tx_ring->buffer_info[eop].time_stamp &&
3923 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3924 		               (adapter->tx_timeout_factor * HZ)) &&
3925 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3926 
3927 			/* detected Tx unit hang */
3928 			e_err(drv, "Detected Tx Unit Hang\n"
3929 			      "  Tx Queue             <%lu>\n"
3930 			      "  TDH                  <%x>\n"
3931 			      "  TDT                  <%x>\n"
3932 			      "  next_to_use          <%x>\n"
3933 			      "  next_to_clean        <%x>\n"
3934 			      "buffer_info[next_to_clean]\n"
3935 			      "  time_stamp           <%lx>\n"
3936 			      "  next_to_watch        <%x>\n"
3937 			      "  jiffies              <%lx>\n"
3938 			      "  next_to_watch.status <%x>\n",
3939 				(unsigned long)((tx_ring - adapter->tx_ring) /
3940 					sizeof(struct e1000_tx_ring)),
3941 				readl(hw->hw_addr + tx_ring->tdh),
3942 				readl(hw->hw_addr + tx_ring->tdt),
3943 				tx_ring->next_to_use,
3944 				tx_ring->next_to_clean,
3945 				tx_ring->buffer_info[eop].time_stamp,
3946 				eop,
3947 				jiffies,
3948 				eop_desc->upper.fields.status);
3949 			e1000_dump(adapter);
3950 			netif_stop_queue(netdev);
3951 		}
3952 	}
3953 	adapter->total_tx_bytes += total_tx_bytes;
3954 	adapter->total_tx_packets += total_tx_packets;
3955 	netdev->stats.tx_bytes += total_tx_bytes;
3956 	netdev->stats.tx_packets += total_tx_packets;
3957 	return count < tx_ring->count;
3958 }
3959 
3960 /**
3961  * e1000_rx_checksum - Receive Checksum Offload for 82543
3962  * @adapter:     board private structure
3963  * @status_err:  receive descriptor status and error fields
3964  * @csum:        receive descriptor csum field
3965  * @sk_buff:     socket buffer with received data
3966  **/
3967 
3968 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3969 			      u32 csum, struct sk_buff *skb)
3970 {
3971 	struct e1000_hw *hw = &adapter->hw;
3972 	u16 status = (u16)status_err;
3973 	u8 errors = (u8)(status_err >> 24);
3974 
3975 	skb_checksum_none_assert(skb);
3976 
3977 	/* 82543 or newer only */
3978 	if (unlikely(hw->mac_type < e1000_82543)) return;
3979 	/* Ignore Checksum bit is set */
3980 	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3981 	/* TCP/UDP checksum error bit is set */
3982 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3983 		/* let the stack verify checksum errors */
3984 		adapter->hw_csum_err++;
3985 		return;
3986 	}
3987 	/* TCP/UDP Checksum has not been calculated */
3988 	if (!(status & E1000_RXD_STAT_TCPCS))
3989 		return;
3990 
3991 	/* It must be a TCP or UDP packet with a valid checksum */
3992 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3993 		/* TCP checksum is good */
3994 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3995 	}
3996 	adapter->hw_csum_good++;
3997 }
3998 
3999 /**
4000  * e1000_consume_page - helper function
4001  **/
4002 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
4003                                u16 length)
4004 {
4005 	bi->page = NULL;
4006 	skb->len += length;
4007 	skb->data_len += length;
4008 	skb->truesize += PAGE_SIZE;
4009 }
4010 
4011 /**
4012  * e1000_receive_skb - helper function to handle rx indications
4013  * @adapter: board private structure
4014  * @status: descriptor status field as written by hardware
4015  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4016  * @skb: pointer to sk_buff to be indicated to stack
4017  */
4018 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4019 			      __le16 vlan, struct sk_buff *skb)
4020 {
4021 	skb->protocol = eth_type_trans(skb, adapter->netdev);
4022 
4023 	if (status & E1000_RXD_STAT_VP) {
4024 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4025 
4026 		__vlan_hwaccel_put_tag(skb, vid);
4027 	}
4028 	napi_gro_receive(&adapter->napi, skb);
4029 }
4030 
4031 /**
4032  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4033  * @adapter: board private structure
4034  * @rx_ring: ring to clean
4035  * @work_done: amount of napi work completed this call
4036  * @work_to_do: max amount of work allowed for this call to do
4037  *
4038  * the return value indicates whether actual cleaning was done, there
4039  * is no guarantee that everything was cleaned
4040  */
4041 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4042 				     struct e1000_rx_ring *rx_ring,
4043 				     int *work_done, int work_to_do)
4044 {
4045 	struct e1000_hw *hw = &adapter->hw;
4046 	struct net_device *netdev = adapter->netdev;
4047 	struct pci_dev *pdev = adapter->pdev;
4048 	struct e1000_rx_desc *rx_desc, *next_rxd;
4049 	struct e1000_buffer *buffer_info, *next_buffer;
4050 	unsigned long irq_flags;
4051 	u32 length;
4052 	unsigned int i;
4053 	int cleaned_count = 0;
4054 	bool cleaned = false;
4055 	unsigned int total_rx_bytes=0, total_rx_packets=0;
4056 
4057 	i = rx_ring->next_to_clean;
4058 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4059 	buffer_info = &rx_ring->buffer_info[i];
4060 
4061 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4062 		struct sk_buff *skb;
4063 		u8 status;
4064 
4065 		if (*work_done >= work_to_do)
4066 			break;
4067 		(*work_done)++;
4068 		rmb(); /* read descriptor and rx_buffer_info after status DD */
4069 
4070 		status = rx_desc->status;
4071 		skb = buffer_info->skb;
4072 		buffer_info->skb = NULL;
4073 
4074 		if (++i == rx_ring->count) i = 0;
4075 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4076 		prefetch(next_rxd);
4077 
4078 		next_buffer = &rx_ring->buffer_info[i];
4079 
4080 		cleaned = true;
4081 		cleaned_count++;
4082 		dma_unmap_page(&pdev->dev, buffer_info->dma,
4083 			       buffer_info->length, DMA_FROM_DEVICE);
4084 		buffer_info->dma = 0;
4085 
4086 		length = le16_to_cpu(rx_desc->length);
4087 
4088 		/* errors is only valid for DD + EOP descriptors */
4089 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4090 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4091 			u8 *mapped;
4092 			u8 last_byte;
4093 
4094 			mapped = page_address(buffer_info->page);
4095 			last_byte = *(mapped + length - 1);
4096 			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4097 				       last_byte)) {
4098 				spin_lock_irqsave(&adapter->stats_lock,
4099 				                  irq_flags);
4100 				e1000_tbi_adjust_stats(hw, &adapter->stats,
4101 						       length, mapped);
4102 				spin_unlock_irqrestore(&adapter->stats_lock,
4103 				                       irq_flags);
4104 				length--;
4105 			} else {
4106 				if (netdev->features & NETIF_F_RXALL)
4107 					goto process_skb;
4108 				/* recycle both page and skb */
4109 				buffer_info->skb = skb;
4110 				/* an error means any chain goes out the window
4111 				 * too */
4112 				if (rx_ring->rx_skb_top)
4113 					dev_kfree_skb(rx_ring->rx_skb_top);
4114 				rx_ring->rx_skb_top = NULL;
4115 				goto next_desc;
4116 			}
4117 		}
4118 
4119 #define rxtop rx_ring->rx_skb_top
4120 process_skb:
4121 		if (!(status & E1000_RXD_STAT_EOP)) {
4122 			/* this descriptor is only the beginning (or middle) */
4123 			if (!rxtop) {
4124 				/* this is the beginning of a chain */
4125 				rxtop = skb;
4126 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
4127 				                   0, length);
4128 			} else {
4129 				/* this is the middle of a chain */
4130 				skb_fill_page_desc(rxtop,
4131 				    skb_shinfo(rxtop)->nr_frags,
4132 				    buffer_info->page, 0, length);
4133 				/* re-use the skb, only consumed the page */
4134 				buffer_info->skb = skb;
4135 			}
4136 			e1000_consume_page(buffer_info, rxtop, length);
4137 			goto next_desc;
4138 		} else {
4139 			if (rxtop) {
4140 				/* end of the chain */
4141 				skb_fill_page_desc(rxtop,
4142 				    skb_shinfo(rxtop)->nr_frags,
4143 				    buffer_info->page, 0, length);
4144 				/* re-use the current skb, we only consumed the
4145 				 * page */
4146 				buffer_info->skb = skb;
4147 				skb = rxtop;
4148 				rxtop = NULL;
4149 				e1000_consume_page(buffer_info, skb, length);
4150 			} else {
4151 				/* no chain, got EOP, this buf is the packet
4152 				 * copybreak to save the put_page/alloc_page */
4153 				if (length <= copybreak &&
4154 				    skb_tailroom(skb) >= length) {
4155 					u8 *vaddr;
4156 					vaddr = kmap_atomic(buffer_info->page);
4157 					memcpy(skb_tail_pointer(skb), vaddr, length);
4158 					kunmap_atomic(vaddr);
4159 					/* re-use the page, so don't erase
4160 					 * buffer_info->page */
4161 					skb_put(skb, length);
4162 				} else {
4163 					skb_fill_page_desc(skb, 0,
4164 					                   buffer_info->page, 0,
4165 				                           length);
4166 					e1000_consume_page(buffer_info, skb,
4167 					                   length);
4168 				}
4169 			}
4170 		}
4171 
4172 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4173 		e1000_rx_checksum(adapter,
4174 		                  (u32)(status) |
4175 		                  ((u32)(rx_desc->errors) << 24),
4176 		                  le16_to_cpu(rx_desc->csum), skb);
4177 
4178 		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4179 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4180 			pskb_trim(skb, skb->len - 4);
4181 		total_rx_packets++;
4182 
4183 		/* eth type trans needs skb->data to point to something */
4184 		if (!pskb_may_pull(skb, ETH_HLEN)) {
4185 			e_err(drv, "pskb_may_pull failed.\n");
4186 			dev_kfree_skb(skb);
4187 			goto next_desc;
4188 		}
4189 
4190 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4191 
4192 next_desc:
4193 		rx_desc->status = 0;
4194 
4195 		/* return some buffers to hardware, one at a time is too slow */
4196 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4197 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4198 			cleaned_count = 0;
4199 		}
4200 
4201 		/* use prefetched values */
4202 		rx_desc = next_rxd;
4203 		buffer_info = next_buffer;
4204 	}
4205 	rx_ring->next_to_clean = i;
4206 
4207 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4208 	if (cleaned_count)
4209 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4210 
4211 	adapter->total_rx_packets += total_rx_packets;
4212 	adapter->total_rx_bytes += total_rx_bytes;
4213 	netdev->stats.rx_bytes += total_rx_bytes;
4214 	netdev->stats.rx_packets += total_rx_packets;
4215 	return cleaned;
4216 }
4217 
4218 /*
4219  * this should improve performance for small packets with large amounts
4220  * of reassembly being done in the stack
4221  */
4222 static void e1000_check_copybreak(struct net_device *netdev,
4223 				 struct e1000_buffer *buffer_info,
4224 				 u32 length, struct sk_buff **skb)
4225 {
4226 	struct sk_buff *new_skb;
4227 
4228 	if (length > copybreak)
4229 		return;
4230 
4231 	new_skb = netdev_alloc_skb_ip_align(netdev, length);
4232 	if (!new_skb)
4233 		return;
4234 
4235 	skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4236 				       (*skb)->data - NET_IP_ALIGN,
4237 				       length + NET_IP_ALIGN);
4238 	/* save the skb in buffer_info as good */
4239 	buffer_info->skb = *skb;
4240 	*skb = new_skb;
4241 }
4242 
4243 /**
4244  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4245  * @adapter: board private structure
4246  * @rx_ring: ring to clean
4247  * @work_done: amount of napi work completed this call
4248  * @work_to_do: max amount of work allowed for this call to do
4249  */
4250 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4251 			       struct e1000_rx_ring *rx_ring,
4252 			       int *work_done, int work_to_do)
4253 {
4254 	struct e1000_hw *hw = &adapter->hw;
4255 	struct net_device *netdev = adapter->netdev;
4256 	struct pci_dev *pdev = adapter->pdev;
4257 	struct e1000_rx_desc *rx_desc, *next_rxd;
4258 	struct e1000_buffer *buffer_info, *next_buffer;
4259 	unsigned long flags;
4260 	u32 length;
4261 	unsigned int i;
4262 	int cleaned_count = 0;
4263 	bool cleaned = false;
4264 	unsigned int total_rx_bytes=0, total_rx_packets=0;
4265 
4266 	i = rx_ring->next_to_clean;
4267 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4268 	buffer_info = &rx_ring->buffer_info[i];
4269 
4270 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4271 		struct sk_buff *skb;
4272 		u8 status;
4273 
4274 		if (*work_done >= work_to_do)
4275 			break;
4276 		(*work_done)++;
4277 		rmb(); /* read descriptor and rx_buffer_info after status DD */
4278 
4279 		status = rx_desc->status;
4280 		skb = buffer_info->skb;
4281 		buffer_info->skb = NULL;
4282 
4283 		prefetch(skb->data - NET_IP_ALIGN);
4284 
4285 		if (++i == rx_ring->count) i = 0;
4286 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4287 		prefetch(next_rxd);
4288 
4289 		next_buffer = &rx_ring->buffer_info[i];
4290 
4291 		cleaned = true;
4292 		cleaned_count++;
4293 		dma_unmap_single(&pdev->dev, buffer_info->dma,
4294 				 buffer_info->length, DMA_FROM_DEVICE);
4295 		buffer_info->dma = 0;
4296 
4297 		length = le16_to_cpu(rx_desc->length);
4298 		/* !EOP means multiple descriptors were used to store a single
4299 		 * packet, if thats the case we need to toss it.  In fact, we
4300 		 * to toss every packet with the EOP bit clear and the next
4301 		 * frame that _does_ have the EOP bit set, as it is by
4302 		 * definition only a frame fragment
4303 		 */
4304 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4305 			adapter->discarding = true;
4306 
4307 		if (adapter->discarding) {
4308 			/* All receives must fit into a single buffer */
4309 			e_dbg("Receive packet consumed multiple buffers\n");
4310 			/* recycle */
4311 			buffer_info->skb = skb;
4312 			if (status & E1000_RXD_STAT_EOP)
4313 				adapter->discarding = false;
4314 			goto next_desc;
4315 		}
4316 
4317 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4318 			u8 last_byte = *(skb->data + length - 1);
4319 			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4320 				       last_byte)) {
4321 				spin_lock_irqsave(&adapter->stats_lock, flags);
4322 				e1000_tbi_adjust_stats(hw, &adapter->stats,
4323 				                       length, skb->data);
4324 				spin_unlock_irqrestore(&adapter->stats_lock,
4325 				                       flags);
4326 				length--;
4327 			} else {
4328 				if (netdev->features & NETIF_F_RXALL)
4329 					goto process_skb;
4330 				/* recycle */
4331 				buffer_info->skb = skb;
4332 				goto next_desc;
4333 			}
4334 		}
4335 
4336 process_skb:
4337 		total_rx_bytes += (length - 4); /* don't count FCS */
4338 		total_rx_packets++;
4339 
4340 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4341 			/* adjust length to remove Ethernet CRC, this must be
4342 			 * done after the TBI_ACCEPT workaround above
4343 			 */
4344 			length -= 4;
4345 
4346 		e1000_check_copybreak(netdev, buffer_info, length, &skb);
4347 
4348 		skb_put(skb, length);
4349 
4350 		/* Receive Checksum Offload */
4351 		e1000_rx_checksum(adapter,
4352 				  (u32)(status) |
4353 				  ((u32)(rx_desc->errors) << 24),
4354 				  le16_to_cpu(rx_desc->csum), skb);
4355 
4356 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4357 
4358 next_desc:
4359 		rx_desc->status = 0;
4360 
4361 		/* return some buffers to hardware, one at a time is too slow */
4362 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4363 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4364 			cleaned_count = 0;
4365 		}
4366 
4367 		/* use prefetched values */
4368 		rx_desc = next_rxd;
4369 		buffer_info = next_buffer;
4370 	}
4371 	rx_ring->next_to_clean = i;
4372 
4373 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4374 	if (cleaned_count)
4375 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4376 
4377 	adapter->total_rx_packets += total_rx_packets;
4378 	adapter->total_rx_bytes += total_rx_bytes;
4379 	netdev->stats.rx_bytes += total_rx_bytes;
4380 	netdev->stats.rx_packets += total_rx_packets;
4381 	return cleaned;
4382 }
4383 
4384 /**
4385  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4386  * @adapter: address of board private structure
4387  * @rx_ring: pointer to receive ring structure
4388  * @cleaned_count: number of buffers to allocate this pass
4389  **/
4390 
4391 static void
4392 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4393                              struct e1000_rx_ring *rx_ring, int cleaned_count)
4394 {
4395 	struct net_device *netdev = adapter->netdev;
4396 	struct pci_dev *pdev = adapter->pdev;
4397 	struct e1000_rx_desc *rx_desc;
4398 	struct e1000_buffer *buffer_info;
4399 	struct sk_buff *skb;
4400 	unsigned int i;
4401 	unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4402 
4403 	i = rx_ring->next_to_use;
4404 	buffer_info = &rx_ring->buffer_info[i];
4405 
4406 	while (cleaned_count--) {
4407 		skb = buffer_info->skb;
4408 		if (skb) {
4409 			skb_trim(skb, 0);
4410 			goto check_page;
4411 		}
4412 
4413 		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4414 		if (unlikely(!skb)) {
4415 			/* Better luck next round */
4416 			adapter->alloc_rx_buff_failed++;
4417 			break;
4418 		}
4419 
4420 		buffer_info->skb = skb;
4421 		buffer_info->length = adapter->rx_buffer_len;
4422 check_page:
4423 		/* allocate a new page if necessary */
4424 		if (!buffer_info->page) {
4425 			buffer_info->page = alloc_page(GFP_ATOMIC);
4426 			if (unlikely(!buffer_info->page)) {
4427 				adapter->alloc_rx_buff_failed++;
4428 				break;
4429 			}
4430 		}
4431 
4432 		if (!buffer_info->dma) {
4433 			buffer_info->dma = dma_map_page(&pdev->dev,
4434 			                                buffer_info->page, 0,
4435 							buffer_info->length,
4436 							DMA_FROM_DEVICE);
4437 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4438 				put_page(buffer_info->page);
4439 				dev_kfree_skb(skb);
4440 				buffer_info->page = NULL;
4441 				buffer_info->skb = NULL;
4442 				buffer_info->dma = 0;
4443 				adapter->alloc_rx_buff_failed++;
4444 				break; /* while !buffer_info->skb */
4445 			}
4446 		}
4447 
4448 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4449 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4450 
4451 		if (unlikely(++i == rx_ring->count))
4452 			i = 0;
4453 		buffer_info = &rx_ring->buffer_info[i];
4454 	}
4455 
4456 	if (likely(rx_ring->next_to_use != i)) {
4457 		rx_ring->next_to_use = i;
4458 		if (unlikely(i-- == 0))
4459 			i = (rx_ring->count - 1);
4460 
4461 		/* Force memory writes to complete before letting h/w
4462 		 * know there are new descriptors to fetch.  (Only
4463 		 * applicable for weak-ordered memory model archs,
4464 		 * such as IA-64). */
4465 		wmb();
4466 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4467 	}
4468 }
4469 
4470 /**
4471  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4472  * @adapter: address of board private structure
4473  **/
4474 
4475 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4476 				   struct e1000_rx_ring *rx_ring,
4477 				   int cleaned_count)
4478 {
4479 	struct e1000_hw *hw = &adapter->hw;
4480 	struct net_device *netdev = adapter->netdev;
4481 	struct pci_dev *pdev = adapter->pdev;
4482 	struct e1000_rx_desc *rx_desc;
4483 	struct e1000_buffer *buffer_info;
4484 	struct sk_buff *skb;
4485 	unsigned int i;
4486 	unsigned int bufsz = adapter->rx_buffer_len;
4487 
4488 	i = rx_ring->next_to_use;
4489 	buffer_info = &rx_ring->buffer_info[i];
4490 
4491 	while (cleaned_count--) {
4492 		skb = buffer_info->skb;
4493 		if (skb) {
4494 			skb_trim(skb, 0);
4495 			goto map_skb;
4496 		}
4497 
4498 		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4499 		if (unlikely(!skb)) {
4500 			/* Better luck next round */
4501 			adapter->alloc_rx_buff_failed++;
4502 			break;
4503 		}
4504 
4505 		/* Fix for errata 23, can't cross 64kB boundary */
4506 		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4507 			struct sk_buff *oldskb = skb;
4508 			e_err(rx_err, "skb align check failed: %u bytes at "
4509 			      "%p\n", bufsz, skb->data);
4510 			/* Try again, without freeing the previous */
4511 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4512 			/* Failed allocation, critical failure */
4513 			if (!skb) {
4514 				dev_kfree_skb(oldskb);
4515 				adapter->alloc_rx_buff_failed++;
4516 				break;
4517 			}
4518 
4519 			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4520 				/* give up */
4521 				dev_kfree_skb(skb);
4522 				dev_kfree_skb(oldskb);
4523 				adapter->alloc_rx_buff_failed++;
4524 				break; /* while !buffer_info->skb */
4525 			}
4526 
4527 			/* Use new allocation */
4528 			dev_kfree_skb(oldskb);
4529 		}
4530 		buffer_info->skb = skb;
4531 		buffer_info->length = adapter->rx_buffer_len;
4532 map_skb:
4533 		buffer_info->dma = dma_map_single(&pdev->dev,
4534 						  skb->data,
4535 						  buffer_info->length,
4536 						  DMA_FROM_DEVICE);
4537 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4538 			dev_kfree_skb(skb);
4539 			buffer_info->skb = NULL;
4540 			buffer_info->dma = 0;
4541 			adapter->alloc_rx_buff_failed++;
4542 			break; /* while !buffer_info->skb */
4543 		}
4544 
4545 		/*
4546 		 * XXX if it was allocated cleanly it will never map to a
4547 		 * boundary crossing
4548 		 */
4549 
4550 		/* Fix for errata 23, can't cross 64kB boundary */
4551 		if (!e1000_check_64k_bound(adapter,
4552 					(void *)(unsigned long)buffer_info->dma,
4553 					adapter->rx_buffer_len)) {
4554 			e_err(rx_err, "dma align check failed: %u bytes at "
4555 			      "%p\n", adapter->rx_buffer_len,
4556 			      (void *)(unsigned long)buffer_info->dma);
4557 			dev_kfree_skb(skb);
4558 			buffer_info->skb = NULL;
4559 
4560 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4561 					 adapter->rx_buffer_len,
4562 					 DMA_FROM_DEVICE);
4563 			buffer_info->dma = 0;
4564 
4565 			adapter->alloc_rx_buff_failed++;
4566 			break; /* while !buffer_info->skb */
4567 		}
4568 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4569 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4570 
4571 		if (unlikely(++i == rx_ring->count))
4572 			i = 0;
4573 		buffer_info = &rx_ring->buffer_info[i];
4574 	}
4575 
4576 	if (likely(rx_ring->next_to_use != i)) {
4577 		rx_ring->next_to_use = i;
4578 		if (unlikely(i-- == 0))
4579 			i = (rx_ring->count - 1);
4580 
4581 		/* Force memory writes to complete before letting h/w
4582 		 * know there are new descriptors to fetch.  (Only
4583 		 * applicable for weak-ordered memory model archs,
4584 		 * such as IA-64). */
4585 		wmb();
4586 		writel(i, hw->hw_addr + rx_ring->rdt);
4587 	}
4588 }
4589 
4590 /**
4591  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4592  * @adapter:
4593  **/
4594 
4595 static void e1000_smartspeed(struct e1000_adapter *adapter)
4596 {
4597 	struct e1000_hw *hw = &adapter->hw;
4598 	u16 phy_status;
4599 	u16 phy_ctrl;
4600 
4601 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4602 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4603 		return;
4604 
4605 	if (adapter->smartspeed == 0) {
4606 		/* If Master/Slave config fault is asserted twice,
4607 		 * we assume back-to-back */
4608 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4609 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4610 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4611 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4612 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4613 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4614 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4615 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4616 					    phy_ctrl);
4617 			adapter->smartspeed++;
4618 			if (!e1000_phy_setup_autoneg(hw) &&
4619 			   !e1000_read_phy_reg(hw, PHY_CTRL,
4620 				   	       &phy_ctrl)) {
4621 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4622 					     MII_CR_RESTART_AUTO_NEG);
4623 				e1000_write_phy_reg(hw, PHY_CTRL,
4624 						    phy_ctrl);
4625 			}
4626 		}
4627 		return;
4628 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4629 		/* If still no link, perhaps using 2/3 pair cable */
4630 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4631 		phy_ctrl |= CR_1000T_MS_ENABLE;
4632 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4633 		if (!e1000_phy_setup_autoneg(hw) &&
4634 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4635 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4636 				     MII_CR_RESTART_AUTO_NEG);
4637 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4638 		}
4639 	}
4640 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4641 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4642 		adapter->smartspeed = 0;
4643 }
4644 
4645 /**
4646  * e1000_ioctl -
4647  * @netdev:
4648  * @ifreq:
4649  * @cmd:
4650  **/
4651 
4652 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4653 {
4654 	switch (cmd) {
4655 	case SIOCGMIIPHY:
4656 	case SIOCGMIIREG:
4657 	case SIOCSMIIREG:
4658 		return e1000_mii_ioctl(netdev, ifr, cmd);
4659 	default:
4660 		return -EOPNOTSUPP;
4661 	}
4662 }
4663 
4664 /**
4665  * e1000_mii_ioctl -
4666  * @netdev:
4667  * @ifreq:
4668  * @cmd:
4669  **/
4670 
4671 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4672 			   int cmd)
4673 {
4674 	struct e1000_adapter *adapter = netdev_priv(netdev);
4675 	struct e1000_hw *hw = &adapter->hw;
4676 	struct mii_ioctl_data *data = if_mii(ifr);
4677 	int retval;
4678 	u16 mii_reg;
4679 	unsigned long flags;
4680 
4681 	if (hw->media_type != e1000_media_type_copper)
4682 		return -EOPNOTSUPP;
4683 
4684 	switch (cmd) {
4685 	case SIOCGMIIPHY:
4686 		data->phy_id = hw->phy_addr;
4687 		break;
4688 	case SIOCGMIIREG:
4689 		spin_lock_irqsave(&adapter->stats_lock, flags);
4690 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4691 				   &data->val_out)) {
4692 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4693 			return -EIO;
4694 		}
4695 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4696 		break;
4697 	case SIOCSMIIREG:
4698 		if (data->reg_num & ~(0x1F))
4699 			return -EFAULT;
4700 		mii_reg = data->val_in;
4701 		spin_lock_irqsave(&adapter->stats_lock, flags);
4702 		if (e1000_write_phy_reg(hw, data->reg_num,
4703 					mii_reg)) {
4704 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4705 			return -EIO;
4706 		}
4707 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4708 		if (hw->media_type == e1000_media_type_copper) {
4709 			switch (data->reg_num) {
4710 			case PHY_CTRL:
4711 				if (mii_reg & MII_CR_POWER_DOWN)
4712 					break;
4713 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4714 					hw->autoneg = 1;
4715 					hw->autoneg_advertised = 0x2F;
4716 				} else {
4717 					u32 speed;
4718 					if (mii_reg & 0x40)
4719 						speed = SPEED_1000;
4720 					else if (mii_reg & 0x2000)
4721 						speed = SPEED_100;
4722 					else
4723 						speed = SPEED_10;
4724 					retval = e1000_set_spd_dplx(
4725 						adapter, speed,
4726 						((mii_reg & 0x100)
4727 						 ? DUPLEX_FULL :
4728 						 DUPLEX_HALF));
4729 					if (retval)
4730 						return retval;
4731 				}
4732 				if (netif_running(adapter->netdev))
4733 					e1000_reinit_locked(adapter);
4734 				else
4735 					e1000_reset(adapter);
4736 				break;
4737 			case M88E1000_PHY_SPEC_CTRL:
4738 			case M88E1000_EXT_PHY_SPEC_CTRL:
4739 				if (e1000_phy_reset(hw))
4740 					return -EIO;
4741 				break;
4742 			}
4743 		} else {
4744 			switch (data->reg_num) {
4745 			case PHY_CTRL:
4746 				if (mii_reg & MII_CR_POWER_DOWN)
4747 					break;
4748 				if (netif_running(adapter->netdev))
4749 					e1000_reinit_locked(adapter);
4750 				else
4751 					e1000_reset(adapter);
4752 				break;
4753 			}
4754 		}
4755 		break;
4756 	default:
4757 		return -EOPNOTSUPP;
4758 	}
4759 	return E1000_SUCCESS;
4760 }
4761 
4762 void e1000_pci_set_mwi(struct e1000_hw *hw)
4763 {
4764 	struct e1000_adapter *adapter = hw->back;
4765 	int ret_val = pci_set_mwi(adapter->pdev);
4766 
4767 	if (ret_val)
4768 		e_err(probe, "Error in setting MWI\n");
4769 }
4770 
4771 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4772 {
4773 	struct e1000_adapter *adapter = hw->back;
4774 
4775 	pci_clear_mwi(adapter->pdev);
4776 }
4777 
4778 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4779 {
4780 	struct e1000_adapter *adapter = hw->back;
4781 	return pcix_get_mmrbc(adapter->pdev);
4782 }
4783 
4784 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4785 {
4786 	struct e1000_adapter *adapter = hw->back;
4787 	pcix_set_mmrbc(adapter->pdev, mmrbc);
4788 }
4789 
4790 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4791 {
4792 	outl(value, port);
4793 }
4794 
4795 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4796 {
4797 	u16 vid;
4798 
4799 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4800 		return true;
4801 	return false;
4802 }
4803 
4804 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4805 			      netdev_features_t features)
4806 {
4807 	struct e1000_hw *hw = &adapter->hw;
4808 	u32 ctrl;
4809 
4810 	ctrl = er32(CTRL);
4811 	if (features & NETIF_F_HW_VLAN_RX) {
4812 		/* enable VLAN tag insert/strip */
4813 		ctrl |= E1000_CTRL_VME;
4814 	} else {
4815 		/* disable VLAN tag insert/strip */
4816 		ctrl &= ~E1000_CTRL_VME;
4817 	}
4818 	ew32(CTRL, ctrl);
4819 }
4820 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4821 				     bool filter_on)
4822 {
4823 	struct e1000_hw *hw = &adapter->hw;
4824 	u32 rctl;
4825 
4826 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4827 		e1000_irq_disable(adapter);
4828 
4829 	__e1000_vlan_mode(adapter, adapter->netdev->features);
4830 	if (filter_on) {
4831 		/* enable VLAN receive filtering */
4832 		rctl = er32(RCTL);
4833 		rctl &= ~E1000_RCTL_CFIEN;
4834 		if (!(adapter->netdev->flags & IFF_PROMISC))
4835 			rctl |= E1000_RCTL_VFE;
4836 		ew32(RCTL, rctl);
4837 		e1000_update_mng_vlan(adapter);
4838 	} else {
4839 		/* disable VLAN receive filtering */
4840 		rctl = er32(RCTL);
4841 		rctl &= ~E1000_RCTL_VFE;
4842 		ew32(RCTL, rctl);
4843 	}
4844 
4845 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4846 		e1000_irq_enable(adapter);
4847 }
4848 
4849 static void e1000_vlan_mode(struct net_device *netdev,
4850 			    netdev_features_t features)
4851 {
4852 	struct e1000_adapter *adapter = netdev_priv(netdev);
4853 
4854 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4855 		e1000_irq_disable(adapter);
4856 
4857 	__e1000_vlan_mode(adapter, features);
4858 
4859 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4860 		e1000_irq_enable(adapter);
4861 }
4862 
4863 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4864 {
4865 	struct e1000_adapter *adapter = netdev_priv(netdev);
4866 	struct e1000_hw *hw = &adapter->hw;
4867 	u32 vfta, index;
4868 
4869 	if ((hw->mng_cookie.status &
4870 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4871 	    (vid == adapter->mng_vlan_id))
4872 		return 0;
4873 
4874 	if (!e1000_vlan_used(adapter))
4875 		e1000_vlan_filter_on_off(adapter, true);
4876 
4877 	/* add VID to filter table */
4878 	index = (vid >> 5) & 0x7F;
4879 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4880 	vfta |= (1 << (vid & 0x1F));
4881 	e1000_write_vfta(hw, index, vfta);
4882 
4883 	set_bit(vid, adapter->active_vlans);
4884 
4885 	return 0;
4886 }
4887 
4888 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4889 {
4890 	struct e1000_adapter *adapter = netdev_priv(netdev);
4891 	struct e1000_hw *hw = &adapter->hw;
4892 	u32 vfta, index;
4893 
4894 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4895 		e1000_irq_disable(adapter);
4896 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4897 		e1000_irq_enable(adapter);
4898 
4899 	/* remove VID from filter table */
4900 	index = (vid >> 5) & 0x7F;
4901 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4902 	vfta &= ~(1 << (vid & 0x1F));
4903 	e1000_write_vfta(hw, index, vfta);
4904 
4905 	clear_bit(vid, adapter->active_vlans);
4906 
4907 	if (!e1000_vlan_used(adapter))
4908 		e1000_vlan_filter_on_off(adapter, false);
4909 
4910 	return 0;
4911 }
4912 
4913 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4914 {
4915 	u16 vid;
4916 
4917 	if (!e1000_vlan_used(adapter))
4918 		return;
4919 
4920 	e1000_vlan_filter_on_off(adapter, true);
4921 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4922 		e1000_vlan_rx_add_vid(adapter->netdev, vid);
4923 }
4924 
4925 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4926 {
4927 	struct e1000_hw *hw = &adapter->hw;
4928 
4929 	hw->autoneg = 0;
4930 
4931 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
4932 	 * for the switch() below to work */
4933 	if ((spd & 1) || (dplx & ~1))
4934 		goto err_inval;
4935 
4936 	/* Fiber NICs only allow 1000 gbps Full duplex */
4937 	if ((hw->media_type == e1000_media_type_fiber) &&
4938 	    spd != SPEED_1000 &&
4939 	    dplx != DUPLEX_FULL)
4940 		goto err_inval;
4941 
4942 	switch (spd + dplx) {
4943 	case SPEED_10 + DUPLEX_HALF:
4944 		hw->forced_speed_duplex = e1000_10_half;
4945 		break;
4946 	case SPEED_10 + DUPLEX_FULL:
4947 		hw->forced_speed_duplex = e1000_10_full;
4948 		break;
4949 	case SPEED_100 + DUPLEX_HALF:
4950 		hw->forced_speed_duplex = e1000_100_half;
4951 		break;
4952 	case SPEED_100 + DUPLEX_FULL:
4953 		hw->forced_speed_duplex = e1000_100_full;
4954 		break;
4955 	case SPEED_1000 + DUPLEX_FULL:
4956 		hw->autoneg = 1;
4957 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
4958 		break;
4959 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
4960 	default:
4961 		goto err_inval;
4962 	}
4963 
4964 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4965 	hw->mdix = AUTO_ALL_MODES;
4966 
4967 	return 0;
4968 
4969 err_inval:
4970 	e_err(probe, "Unsupported Speed/Duplex configuration\n");
4971 	return -EINVAL;
4972 }
4973 
4974 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4975 {
4976 	struct net_device *netdev = pci_get_drvdata(pdev);
4977 	struct e1000_adapter *adapter = netdev_priv(netdev);
4978 	struct e1000_hw *hw = &adapter->hw;
4979 	u32 ctrl, ctrl_ext, rctl, status;
4980 	u32 wufc = adapter->wol;
4981 #ifdef CONFIG_PM
4982 	int retval = 0;
4983 #endif
4984 
4985 	netif_device_detach(netdev);
4986 
4987 	if (netif_running(netdev)) {
4988 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4989 		e1000_down(adapter);
4990 	}
4991 
4992 #ifdef CONFIG_PM
4993 	retval = pci_save_state(pdev);
4994 	if (retval)
4995 		return retval;
4996 #endif
4997 
4998 	status = er32(STATUS);
4999 	if (status & E1000_STATUS_LU)
5000 		wufc &= ~E1000_WUFC_LNKC;
5001 
5002 	if (wufc) {
5003 		e1000_setup_rctl(adapter);
5004 		e1000_set_rx_mode(netdev);
5005 
5006 		rctl = er32(RCTL);
5007 
5008 		/* turn on all-multi mode if wake on multicast is enabled */
5009 		if (wufc & E1000_WUFC_MC)
5010 			rctl |= E1000_RCTL_MPE;
5011 
5012 		/* enable receives in the hardware */
5013 		ew32(RCTL, rctl | E1000_RCTL_EN);
5014 
5015 		if (hw->mac_type >= e1000_82540) {
5016 			ctrl = er32(CTRL);
5017 			/* advertise wake from D3Cold */
5018 			#define E1000_CTRL_ADVD3WUC 0x00100000
5019 			/* phy power management enable */
5020 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5021 			ctrl |= E1000_CTRL_ADVD3WUC |
5022 				E1000_CTRL_EN_PHY_PWR_MGMT;
5023 			ew32(CTRL, ctrl);
5024 		}
5025 
5026 		if (hw->media_type == e1000_media_type_fiber ||
5027 		    hw->media_type == e1000_media_type_internal_serdes) {
5028 			/* keep the laser running in D3 */
5029 			ctrl_ext = er32(CTRL_EXT);
5030 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5031 			ew32(CTRL_EXT, ctrl_ext);
5032 		}
5033 
5034 		ew32(WUC, E1000_WUC_PME_EN);
5035 		ew32(WUFC, wufc);
5036 	} else {
5037 		ew32(WUC, 0);
5038 		ew32(WUFC, 0);
5039 	}
5040 
5041 	e1000_release_manageability(adapter);
5042 
5043 	*enable_wake = !!wufc;
5044 
5045 	/* make sure adapter isn't asleep if manageability is enabled */
5046 	if (adapter->en_mng_pt)
5047 		*enable_wake = true;
5048 
5049 	if (netif_running(netdev))
5050 		e1000_free_irq(adapter);
5051 
5052 	pci_disable_device(pdev);
5053 
5054 	return 0;
5055 }
5056 
5057 #ifdef CONFIG_PM
5058 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5059 {
5060 	int retval;
5061 	bool wake;
5062 
5063 	retval = __e1000_shutdown(pdev, &wake);
5064 	if (retval)
5065 		return retval;
5066 
5067 	if (wake) {
5068 		pci_prepare_to_sleep(pdev);
5069 	} else {
5070 		pci_wake_from_d3(pdev, false);
5071 		pci_set_power_state(pdev, PCI_D3hot);
5072 	}
5073 
5074 	return 0;
5075 }
5076 
5077 static int e1000_resume(struct pci_dev *pdev)
5078 {
5079 	struct net_device *netdev = pci_get_drvdata(pdev);
5080 	struct e1000_adapter *adapter = netdev_priv(netdev);
5081 	struct e1000_hw *hw = &adapter->hw;
5082 	u32 err;
5083 
5084 	pci_set_power_state(pdev, PCI_D0);
5085 	pci_restore_state(pdev);
5086 	pci_save_state(pdev);
5087 
5088 	if (adapter->need_ioport)
5089 		err = pci_enable_device(pdev);
5090 	else
5091 		err = pci_enable_device_mem(pdev);
5092 	if (err) {
5093 		pr_err("Cannot enable PCI device from suspend\n");
5094 		return err;
5095 	}
5096 	pci_set_master(pdev);
5097 
5098 	pci_enable_wake(pdev, PCI_D3hot, 0);
5099 	pci_enable_wake(pdev, PCI_D3cold, 0);
5100 
5101 	if (netif_running(netdev)) {
5102 		err = e1000_request_irq(adapter);
5103 		if (err)
5104 			return err;
5105 	}
5106 
5107 	e1000_power_up_phy(adapter);
5108 	e1000_reset(adapter);
5109 	ew32(WUS, ~0);
5110 
5111 	e1000_init_manageability(adapter);
5112 
5113 	if (netif_running(netdev))
5114 		e1000_up(adapter);
5115 
5116 	netif_device_attach(netdev);
5117 
5118 	return 0;
5119 }
5120 #endif
5121 
5122 static void e1000_shutdown(struct pci_dev *pdev)
5123 {
5124 	bool wake;
5125 
5126 	__e1000_shutdown(pdev, &wake);
5127 
5128 	if (system_state == SYSTEM_POWER_OFF) {
5129 		pci_wake_from_d3(pdev, wake);
5130 		pci_set_power_state(pdev, PCI_D3hot);
5131 	}
5132 }
5133 
5134 #ifdef CONFIG_NET_POLL_CONTROLLER
5135 /*
5136  * Polling 'interrupt' - used by things like netconsole to send skbs
5137  * without having to re-enable interrupts. It's not called while
5138  * the interrupt routine is executing.
5139  */
5140 static void e1000_netpoll(struct net_device *netdev)
5141 {
5142 	struct e1000_adapter *adapter = netdev_priv(netdev);
5143 
5144 	disable_irq(adapter->pdev->irq);
5145 	e1000_intr(adapter->pdev->irq, netdev);
5146 	enable_irq(adapter->pdev->irq);
5147 }
5148 #endif
5149 
5150 /**
5151  * e1000_io_error_detected - called when PCI error is detected
5152  * @pdev: Pointer to PCI device
5153  * @state: The current pci connection state
5154  *
5155  * This function is called after a PCI bus error affecting
5156  * this device has been detected.
5157  */
5158 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5159 						pci_channel_state_t state)
5160 {
5161 	struct net_device *netdev = pci_get_drvdata(pdev);
5162 	struct e1000_adapter *adapter = netdev_priv(netdev);
5163 
5164 	netif_device_detach(netdev);
5165 
5166 	if (state == pci_channel_io_perm_failure)
5167 		return PCI_ERS_RESULT_DISCONNECT;
5168 
5169 	if (netif_running(netdev))
5170 		e1000_down(adapter);
5171 	pci_disable_device(pdev);
5172 
5173 	/* Request a slot slot reset. */
5174 	return PCI_ERS_RESULT_NEED_RESET;
5175 }
5176 
5177 /**
5178  * e1000_io_slot_reset - called after the pci bus has been reset.
5179  * @pdev: Pointer to PCI device
5180  *
5181  * Restart the card from scratch, as if from a cold-boot. Implementation
5182  * resembles the first-half of the e1000_resume routine.
5183  */
5184 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5185 {
5186 	struct net_device *netdev = pci_get_drvdata(pdev);
5187 	struct e1000_adapter *adapter = netdev_priv(netdev);
5188 	struct e1000_hw *hw = &adapter->hw;
5189 	int err;
5190 
5191 	if (adapter->need_ioport)
5192 		err = pci_enable_device(pdev);
5193 	else
5194 		err = pci_enable_device_mem(pdev);
5195 	if (err) {
5196 		pr_err("Cannot re-enable PCI device after reset.\n");
5197 		return PCI_ERS_RESULT_DISCONNECT;
5198 	}
5199 	pci_set_master(pdev);
5200 
5201 	pci_enable_wake(pdev, PCI_D3hot, 0);
5202 	pci_enable_wake(pdev, PCI_D3cold, 0);
5203 
5204 	e1000_reset(adapter);
5205 	ew32(WUS, ~0);
5206 
5207 	return PCI_ERS_RESULT_RECOVERED;
5208 }
5209 
5210 /**
5211  * e1000_io_resume - called when traffic can start flowing again.
5212  * @pdev: Pointer to PCI device
5213  *
5214  * This callback is called when the error recovery driver tells us that
5215  * its OK to resume normal operation. Implementation resembles the
5216  * second-half of the e1000_resume routine.
5217  */
5218 static void e1000_io_resume(struct pci_dev *pdev)
5219 {
5220 	struct net_device *netdev = pci_get_drvdata(pdev);
5221 	struct e1000_adapter *adapter = netdev_priv(netdev);
5222 
5223 	e1000_init_manageability(adapter);
5224 
5225 	if (netif_running(netdev)) {
5226 		if (e1000_up(adapter)) {
5227 			pr_info("can't bring device back up after reset\n");
5228 			return;
5229 		}
5230 	}
5231 
5232 	netif_device_attach(netdev);
5233 }
5234 
5235 /* e1000_main.c */
5236