xref: /openbmc/linux/drivers/net/ethernet/intel/e1000/e1000_hw.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*******************************************************************************
3 *
4   Intel PRO/1000 Linux driver
5   Copyright(c) 1999 - 2006 Intel Corporation.
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 
28  */
29 
30 /* e1000_hw.c
31  * Shared functions for accessing and configuring the MAC
32  */
33 
34 #include "e1000.h"
35 
36 static s32 e1000_check_downshift(struct e1000_hw *hw);
37 static s32 e1000_check_polarity(struct e1000_hw *hw,
38 				e1000_rev_polarity *polarity);
39 static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
40 static void e1000_clear_vfta(struct e1000_hw *hw);
41 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
42 					      bool link_up);
43 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
44 static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
45 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
46 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
47 				  u16 *max_length);
48 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
49 static s32 e1000_id_led_init(struct e1000_hw *hw);
50 static void e1000_init_rx_addrs(struct e1000_hw *hw);
51 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
52 				  struct e1000_phy_info *phy_info);
53 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
54 				  struct e1000_phy_info *phy_info);
55 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
56 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
57 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
58 static s32 e1000_set_phy_type(struct e1000_hw *hw);
59 static void e1000_phy_init_script(struct e1000_hw *hw);
60 static s32 e1000_setup_copper_link(struct e1000_hw *hw);
61 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
62 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
63 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
64 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
65 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
66 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
67 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
68 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
69 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
70 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
71 				  u16 words, u16 *data);
72 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
73 					u16 words, u16 *data);
74 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
75 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
76 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
77 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
78 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
79 				  u16 phy_data);
80 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
81 				 u16 *phy_data);
82 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
83 static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
84 static void e1000_release_eeprom(struct e1000_hw *hw);
85 static void e1000_standby_eeprom(struct e1000_hw *hw);
86 static s32 e1000_set_vco_speed(struct e1000_hw *hw);
87 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
88 static s32 e1000_set_phy_mode(struct e1000_hw *hw);
89 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
90 				u16 *data);
91 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
92 				 u16 *data);
93 
94 /* IGP cable length table */
95 static const
96 u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
97 	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
98 	5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
99 	25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
100 	40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
101 	60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
102 	90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
103 	    100,
104 	100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
105 	    110, 110,
106 	110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
107 	    120, 120
108 };
109 
110 static DEFINE_MUTEX(e1000_eeprom_lock);
111 static DEFINE_SPINLOCK(e1000_phy_lock);
112 
113 /**
114  * e1000_set_phy_type - Set the phy type member in the hw struct.
115  * @hw: Struct containing variables accessed by shared code
116  */
117 static s32 e1000_set_phy_type(struct e1000_hw *hw)
118 {
119 	if (hw->mac_type == e1000_undefined)
120 		return -E1000_ERR_PHY_TYPE;
121 
122 	switch (hw->phy_id) {
123 	case M88E1000_E_PHY_ID:
124 	case M88E1000_I_PHY_ID:
125 	case M88E1011_I_PHY_ID:
126 	case M88E1111_I_PHY_ID:
127 	case M88E1118_E_PHY_ID:
128 		hw->phy_type = e1000_phy_m88;
129 		break;
130 	case IGP01E1000_I_PHY_ID:
131 		if (hw->mac_type == e1000_82541 ||
132 		    hw->mac_type == e1000_82541_rev_2 ||
133 		    hw->mac_type == e1000_82547 ||
134 		    hw->mac_type == e1000_82547_rev_2)
135 			hw->phy_type = e1000_phy_igp;
136 		break;
137 	case RTL8211B_PHY_ID:
138 		hw->phy_type = e1000_phy_8211;
139 		break;
140 	case RTL8201N_PHY_ID:
141 		hw->phy_type = e1000_phy_8201;
142 		break;
143 	default:
144 		/* Should never have loaded on this device */
145 		hw->phy_type = e1000_phy_undefined;
146 		return -E1000_ERR_PHY_TYPE;
147 	}
148 
149 	return E1000_SUCCESS;
150 }
151 
152 /**
153  * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
154  * @hw: Struct containing variables accessed by shared code
155  */
156 static void e1000_phy_init_script(struct e1000_hw *hw)
157 {
158 	u32 ret_val;
159 	u16 phy_saved_data;
160 
161 	if (hw->phy_init_script) {
162 		msleep(20);
163 
164 		/* Save off the current value of register 0x2F5B to be restored
165 		 * at the end of this routine.
166 		 */
167 		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
168 
169 		/* Disabled the PHY transmitter */
170 		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
171 		msleep(20);
172 
173 		e1000_write_phy_reg(hw, 0x0000, 0x0140);
174 		msleep(5);
175 
176 		switch (hw->mac_type) {
177 		case e1000_82541:
178 		case e1000_82547:
179 			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
180 			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
181 			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
182 			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
183 			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
184 			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
185 			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
186 			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
187 			e1000_write_phy_reg(hw, 0x2010, 0x0008);
188 			break;
189 
190 		case e1000_82541_rev_2:
191 		case e1000_82547_rev_2:
192 			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
193 			break;
194 		default:
195 			break;
196 		}
197 
198 		e1000_write_phy_reg(hw, 0x0000, 0x3300);
199 		msleep(20);
200 
201 		/* Now enable the transmitter */
202 		e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
203 
204 		if (hw->mac_type == e1000_82547) {
205 			u16 fused, fine, coarse;
206 
207 			/* Move to analog registers page */
208 			e1000_read_phy_reg(hw,
209 					   IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
210 					   &fused);
211 
212 			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
213 				e1000_read_phy_reg(hw,
214 						   IGP01E1000_ANALOG_FUSE_STATUS,
215 						   &fused);
216 
217 				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
218 				coarse =
219 				    fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
220 
221 				if (coarse >
222 				    IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
223 					coarse -=
224 					    IGP01E1000_ANALOG_FUSE_COARSE_10;
225 					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
226 				} else if (coarse ==
227 					   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
228 					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
229 
230 				fused =
231 				    (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
232 				    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
233 				    (coarse &
234 				     IGP01E1000_ANALOG_FUSE_COARSE_MASK);
235 
236 				e1000_write_phy_reg(hw,
237 						    IGP01E1000_ANALOG_FUSE_CONTROL,
238 						    fused);
239 				e1000_write_phy_reg(hw,
240 						    IGP01E1000_ANALOG_FUSE_BYPASS,
241 						    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
242 			}
243 		}
244 	}
245 }
246 
247 /**
248  * e1000_set_mac_type - Set the mac type member in the hw struct.
249  * @hw: Struct containing variables accessed by shared code
250  */
251 s32 e1000_set_mac_type(struct e1000_hw *hw)
252 {
253 	switch (hw->device_id) {
254 	case E1000_DEV_ID_82542:
255 		switch (hw->revision_id) {
256 		case E1000_82542_2_0_REV_ID:
257 			hw->mac_type = e1000_82542_rev2_0;
258 			break;
259 		case E1000_82542_2_1_REV_ID:
260 			hw->mac_type = e1000_82542_rev2_1;
261 			break;
262 		default:
263 			/* Invalid 82542 revision ID */
264 			return -E1000_ERR_MAC_TYPE;
265 		}
266 		break;
267 	case E1000_DEV_ID_82543GC_FIBER:
268 	case E1000_DEV_ID_82543GC_COPPER:
269 		hw->mac_type = e1000_82543;
270 		break;
271 	case E1000_DEV_ID_82544EI_COPPER:
272 	case E1000_DEV_ID_82544EI_FIBER:
273 	case E1000_DEV_ID_82544GC_COPPER:
274 	case E1000_DEV_ID_82544GC_LOM:
275 		hw->mac_type = e1000_82544;
276 		break;
277 	case E1000_DEV_ID_82540EM:
278 	case E1000_DEV_ID_82540EM_LOM:
279 	case E1000_DEV_ID_82540EP:
280 	case E1000_DEV_ID_82540EP_LOM:
281 	case E1000_DEV_ID_82540EP_LP:
282 		hw->mac_type = e1000_82540;
283 		break;
284 	case E1000_DEV_ID_82545EM_COPPER:
285 	case E1000_DEV_ID_82545EM_FIBER:
286 		hw->mac_type = e1000_82545;
287 		break;
288 	case E1000_DEV_ID_82545GM_COPPER:
289 	case E1000_DEV_ID_82545GM_FIBER:
290 	case E1000_DEV_ID_82545GM_SERDES:
291 		hw->mac_type = e1000_82545_rev_3;
292 		break;
293 	case E1000_DEV_ID_82546EB_COPPER:
294 	case E1000_DEV_ID_82546EB_FIBER:
295 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
296 		hw->mac_type = e1000_82546;
297 		break;
298 	case E1000_DEV_ID_82546GB_COPPER:
299 	case E1000_DEV_ID_82546GB_FIBER:
300 	case E1000_DEV_ID_82546GB_SERDES:
301 	case E1000_DEV_ID_82546GB_PCIE:
302 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
303 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
304 		hw->mac_type = e1000_82546_rev_3;
305 		break;
306 	case E1000_DEV_ID_82541EI:
307 	case E1000_DEV_ID_82541EI_MOBILE:
308 	case E1000_DEV_ID_82541ER_LOM:
309 		hw->mac_type = e1000_82541;
310 		break;
311 	case E1000_DEV_ID_82541ER:
312 	case E1000_DEV_ID_82541GI:
313 	case E1000_DEV_ID_82541GI_LF:
314 	case E1000_DEV_ID_82541GI_MOBILE:
315 		hw->mac_type = e1000_82541_rev_2;
316 		break;
317 	case E1000_DEV_ID_82547EI:
318 	case E1000_DEV_ID_82547EI_MOBILE:
319 		hw->mac_type = e1000_82547;
320 		break;
321 	case E1000_DEV_ID_82547GI:
322 		hw->mac_type = e1000_82547_rev_2;
323 		break;
324 	case E1000_DEV_ID_INTEL_CE4100_GBE:
325 		hw->mac_type = e1000_ce4100;
326 		break;
327 	default:
328 		/* Should never have loaded on this device */
329 		return -E1000_ERR_MAC_TYPE;
330 	}
331 
332 	switch (hw->mac_type) {
333 	case e1000_82541:
334 	case e1000_82547:
335 	case e1000_82541_rev_2:
336 	case e1000_82547_rev_2:
337 		hw->asf_firmware_present = true;
338 		break;
339 	default:
340 		break;
341 	}
342 
343 	/* The 82543 chip does not count tx_carrier_errors properly in
344 	 * FD mode
345 	 */
346 	if (hw->mac_type == e1000_82543)
347 		hw->bad_tx_carr_stats_fd = true;
348 
349 	if (hw->mac_type > e1000_82544)
350 		hw->has_smbus = true;
351 
352 	return E1000_SUCCESS;
353 }
354 
355 /**
356  * e1000_set_media_type - Set media type and TBI compatibility.
357  * @hw: Struct containing variables accessed by shared code
358  */
359 void e1000_set_media_type(struct e1000_hw *hw)
360 {
361 	u32 status;
362 
363 	if (hw->mac_type != e1000_82543) {
364 		/* tbi_compatibility is only valid on 82543 */
365 		hw->tbi_compatibility_en = false;
366 	}
367 
368 	switch (hw->device_id) {
369 	case E1000_DEV_ID_82545GM_SERDES:
370 	case E1000_DEV_ID_82546GB_SERDES:
371 		hw->media_type = e1000_media_type_internal_serdes;
372 		break;
373 	default:
374 		switch (hw->mac_type) {
375 		case e1000_82542_rev2_0:
376 		case e1000_82542_rev2_1:
377 			hw->media_type = e1000_media_type_fiber;
378 			break;
379 		case e1000_ce4100:
380 			hw->media_type = e1000_media_type_copper;
381 			break;
382 		default:
383 			status = er32(STATUS);
384 			if (status & E1000_STATUS_TBIMODE) {
385 				hw->media_type = e1000_media_type_fiber;
386 				/* tbi_compatibility not valid on fiber */
387 				hw->tbi_compatibility_en = false;
388 			} else {
389 				hw->media_type = e1000_media_type_copper;
390 			}
391 			break;
392 		}
393 	}
394 }
395 
396 /**
397  * e1000_reset_hw - reset the hardware completely
398  * @hw: Struct containing variables accessed by shared code
399  *
400  * Reset the transmit and receive units; mask and clear all interrupts.
401  */
402 s32 e1000_reset_hw(struct e1000_hw *hw)
403 {
404 	u32 ctrl;
405 	u32 ctrl_ext;
406 	u32 icr;
407 	u32 manc;
408 	u32 led_ctrl;
409 	s32 ret_val;
410 
411 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
412 	if (hw->mac_type == e1000_82542_rev2_0) {
413 		e_dbg("Disabling MWI on 82542 rev 2.0\n");
414 		e1000_pci_clear_mwi(hw);
415 	}
416 
417 	/* Clear interrupt mask to stop board from generating interrupts */
418 	e_dbg("Masking off all interrupts\n");
419 	ew32(IMC, 0xffffffff);
420 
421 	/* Disable the Transmit and Receive units.  Then delay to allow
422 	 * any pending transactions to complete before we hit the MAC with
423 	 * the global reset.
424 	 */
425 	ew32(RCTL, 0);
426 	ew32(TCTL, E1000_TCTL_PSP);
427 	E1000_WRITE_FLUSH();
428 
429 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
430 	hw->tbi_compatibility_on = false;
431 
432 	/* Delay to allow any outstanding PCI transactions to complete before
433 	 * resetting the device
434 	 */
435 	msleep(10);
436 
437 	ctrl = er32(CTRL);
438 
439 	/* Must reset the PHY before resetting the MAC */
440 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
441 		ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
442 		E1000_WRITE_FLUSH();
443 		msleep(5);
444 	}
445 
446 	/* Issue a global reset to the MAC.  This will reset the chip's
447 	 * transmit, receive, DMA, and link units.  It will not effect
448 	 * the current PCI configuration.  The global reset bit is self-
449 	 * clearing, and should clear within a microsecond.
450 	 */
451 	e_dbg("Issuing a global reset to MAC\n");
452 
453 	switch (hw->mac_type) {
454 	case e1000_82544:
455 	case e1000_82540:
456 	case e1000_82545:
457 	case e1000_82546:
458 	case e1000_82541:
459 	case e1000_82541_rev_2:
460 		/* These controllers can't ack the 64-bit write when issuing the
461 		 * reset, so use IO-mapping as a workaround to issue the reset
462 		 */
463 		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
464 		break;
465 	case e1000_82545_rev_3:
466 	case e1000_82546_rev_3:
467 		/* Reset is performed on a shadow of the control register */
468 		ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
469 		break;
470 	case e1000_ce4100:
471 	default:
472 		ew32(CTRL, (ctrl | E1000_CTRL_RST));
473 		break;
474 	}
475 
476 	/* After MAC reset, force reload of EEPROM to restore power-on settings
477 	 * to device.  Later controllers reload the EEPROM automatically, so
478 	 * just wait for reload to complete.
479 	 */
480 	switch (hw->mac_type) {
481 	case e1000_82542_rev2_0:
482 	case e1000_82542_rev2_1:
483 	case e1000_82543:
484 	case e1000_82544:
485 		/* Wait for reset to complete */
486 		udelay(10);
487 		ctrl_ext = er32(CTRL_EXT);
488 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
489 		ew32(CTRL_EXT, ctrl_ext);
490 		E1000_WRITE_FLUSH();
491 		/* Wait for EEPROM reload */
492 		msleep(2);
493 		break;
494 	case e1000_82541:
495 	case e1000_82541_rev_2:
496 	case e1000_82547:
497 	case e1000_82547_rev_2:
498 		/* Wait for EEPROM reload */
499 		msleep(20);
500 		break;
501 	default:
502 		/* Auto read done will delay 5ms or poll based on mac type */
503 		ret_val = e1000_get_auto_rd_done(hw);
504 		if (ret_val)
505 			return ret_val;
506 		break;
507 	}
508 
509 	/* Disable HW ARPs on ASF enabled adapters */
510 	if (hw->mac_type >= e1000_82540) {
511 		manc = er32(MANC);
512 		manc &= ~(E1000_MANC_ARP_EN);
513 		ew32(MANC, manc);
514 	}
515 
516 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
517 		e1000_phy_init_script(hw);
518 
519 		/* Configure activity LED after PHY reset */
520 		led_ctrl = er32(LEDCTL);
521 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
522 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
523 		ew32(LEDCTL, led_ctrl);
524 	}
525 
526 	/* Clear interrupt mask to stop board from generating interrupts */
527 	e_dbg("Masking off all interrupts\n");
528 	ew32(IMC, 0xffffffff);
529 
530 	/* Clear any pending interrupt events. */
531 	icr = er32(ICR);
532 
533 	/* If MWI was previously enabled, reenable it. */
534 	if (hw->mac_type == e1000_82542_rev2_0) {
535 		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
536 			e1000_pci_set_mwi(hw);
537 	}
538 
539 	return E1000_SUCCESS;
540 }
541 
542 /**
543  * e1000_init_hw - Performs basic configuration of the adapter.
544  * @hw: Struct containing variables accessed by shared code
545  *
546  * Assumes that the controller has previously been reset and is in a
547  * post-reset uninitialized state. Initializes the receive address registers,
548  * multicast table, and VLAN filter table. Calls routines to setup link
549  * configuration and flow control settings. Clears all on-chip counters. Leaves
550  * the transmit and receive units disabled and uninitialized.
551  */
552 s32 e1000_init_hw(struct e1000_hw *hw)
553 {
554 	u32 ctrl;
555 	u32 i;
556 	s32 ret_val;
557 	u32 mta_size;
558 	u32 ctrl_ext;
559 
560 	/* Initialize Identification LED */
561 	ret_val = e1000_id_led_init(hw);
562 	if (ret_val) {
563 		e_dbg("Error Initializing Identification LED\n");
564 		return ret_val;
565 	}
566 
567 	/* Set the media type and TBI compatibility */
568 	e1000_set_media_type(hw);
569 
570 	/* Disabling VLAN filtering. */
571 	e_dbg("Initializing the IEEE VLAN\n");
572 	if (hw->mac_type < e1000_82545_rev_3)
573 		ew32(VET, 0);
574 	e1000_clear_vfta(hw);
575 
576 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
577 	if (hw->mac_type == e1000_82542_rev2_0) {
578 		e_dbg("Disabling MWI on 82542 rev 2.0\n");
579 		e1000_pci_clear_mwi(hw);
580 		ew32(RCTL, E1000_RCTL_RST);
581 		E1000_WRITE_FLUSH();
582 		msleep(5);
583 	}
584 
585 	/* Setup the receive address. This involves initializing all of the
586 	 * Receive Address Registers (RARs 0 - 15).
587 	 */
588 	e1000_init_rx_addrs(hw);
589 
590 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
591 	if (hw->mac_type == e1000_82542_rev2_0) {
592 		ew32(RCTL, 0);
593 		E1000_WRITE_FLUSH();
594 		msleep(1);
595 		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
596 			e1000_pci_set_mwi(hw);
597 	}
598 
599 	/* Zero out the Multicast HASH table */
600 	e_dbg("Zeroing the MTA\n");
601 	mta_size = E1000_MC_TBL_SIZE;
602 	for (i = 0; i < mta_size; i++) {
603 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
604 		/* use write flush to prevent Memory Write Block (MWB) from
605 		 * occurring when accessing our register space
606 		 */
607 		E1000_WRITE_FLUSH();
608 	}
609 
610 	/* Set the PCI priority bit correctly in the CTRL register.  This
611 	 * determines if the adapter gives priority to receives, or if it
612 	 * gives equal priority to transmits and receives.  Valid only on
613 	 * 82542 and 82543 silicon.
614 	 */
615 	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
616 		ctrl = er32(CTRL);
617 		ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
618 	}
619 
620 	switch (hw->mac_type) {
621 	case e1000_82545_rev_3:
622 	case e1000_82546_rev_3:
623 		break;
624 	default:
625 		/* Workaround for PCI-X problem when BIOS sets MMRBC
626 		 * incorrectly.
627 		 */
628 		if (hw->bus_type == e1000_bus_type_pcix &&
629 		    e1000_pcix_get_mmrbc(hw) > 2048)
630 			e1000_pcix_set_mmrbc(hw, 2048);
631 		break;
632 	}
633 
634 	/* Call a subroutine to configure the link and setup flow control. */
635 	ret_val = e1000_setup_link(hw);
636 
637 	/* Set the transmit descriptor write-back policy */
638 	if (hw->mac_type > e1000_82544) {
639 		ctrl = er32(TXDCTL);
640 		ctrl =
641 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
642 		    E1000_TXDCTL_FULL_TX_DESC_WB;
643 		ew32(TXDCTL, ctrl);
644 	}
645 
646 	/* Clear all of the statistics registers (clear on read).  It is
647 	 * important that we do this after we have tried to establish link
648 	 * because the symbol error count will increment wildly if there
649 	 * is no link.
650 	 */
651 	e1000_clear_hw_cntrs(hw);
652 
653 	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
654 	    hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
655 		ctrl_ext = er32(CTRL_EXT);
656 		/* Relaxed ordering must be disabled to avoid a parity
657 		 * error crash in a PCI slot.
658 		 */
659 		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
660 		ew32(CTRL_EXT, ctrl_ext);
661 	}
662 
663 	return ret_val;
664 }
665 
666 /**
667  * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
668  * @hw: Struct containing variables accessed by shared code.
669  */
670 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
671 {
672 	u16 eeprom_data;
673 	s32 ret_val;
674 
675 	if (hw->media_type != e1000_media_type_internal_serdes)
676 		return E1000_SUCCESS;
677 
678 	switch (hw->mac_type) {
679 	case e1000_82545_rev_3:
680 	case e1000_82546_rev_3:
681 		break;
682 	default:
683 		return E1000_SUCCESS;
684 	}
685 
686 	ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
687 				    &eeprom_data);
688 	if (ret_val)
689 		return ret_val;
690 
691 	if (eeprom_data != EEPROM_RESERVED_WORD) {
692 		/* Adjust SERDES output amplitude only. */
693 		eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
694 		ret_val =
695 		    e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
696 		if (ret_val)
697 			return ret_val;
698 	}
699 
700 	return E1000_SUCCESS;
701 }
702 
703 /**
704  * e1000_setup_link - Configures flow control and link settings.
705  * @hw: Struct containing variables accessed by shared code
706  *
707  * Determines which flow control settings to use. Calls the appropriate media-
708  * specific link configuration function. Configures the flow control settings.
709  * Assuming the adapter has a valid link partner, a valid link should be
710  * established. Assumes the hardware has previously been reset and the
711  * transmitter and receiver are not enabled.
712  */
713 s32 e1000_setup_link(struct e1000_hw *hw)
714 {
715 	u32 ctrl_ext;
716 	s32 ret_val;
717 	u16 eeprom_data;
718 
719 	/* Read and store word 0x0F of the EEPROM. This word contains bits
720 	 * that determine the hardware's default PAUSE (flow control) mode,
721 	 * a bit that determines whether the HW defaults to enabling or
722 	 * disabling auto-negotiation, and the direction of the
723 	 * SW defined pins. If there is no SW over-ride of the flow
724 	 * control setting, then the variable hw->fc will
725 	 * be initialized based on a value in the EEPROM.
726 	 */
727 	if (hw->fc == E1000_FC_DEFAULT) {
728 		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
729 					    1, &eeprom_data);
730 		if (ret_val) {
731 			e_dbg("EEPROM Read Error\n");
732 			return -E1000_ERR_EEPROM;
733 		}
734 		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
735 			hw->fc = E1000_FC_NONE;
736 		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
737 			 EEPROM_WORD0F_ASM_DIR)
738 			hw->fc = E1000_FC_TX_PAUSE;
739 		else
740 			hw->fc = E1000_FC_FULL;
741 	}
742 
743 	/* We want to save off the original Flow Control configuration just
744 	 * in case we get disconnected and then reconnected into a different
745 	 * hub or switch with different Flow Control capabilities.
746 	 */
747 	if (hw->mac_type == e1000_82542_rev2_0)
748 		hw->fc &= (~E1000_FC_TX_PAUSE);
749 
750 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
751 		hw->fc &= (~E1000_FC_RX_PAUSE);
752 
753 	hw->original_fc = hw->fc;
754 
755 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
756 
757 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
758 	 * polarity value for the SW controlled pins, and setup the
759 	 * Extended Device Control reg with that info.
760 	 * This is needed because one of the SW controlled pins is used for
761 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
762 	 * or e1000_phy_setup() is called.
763 	 */
764 	if (hw->mac_type == e1000_82543) {
765 		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
766 					    1, &eeprom_data);
767 		if (ret_val) {
768 			e_dbg("EEPROM Read Error\n");
769 			return -E1000_ERR_EEPROM;
770 		}
771 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
772 			    SWDPIO__EXT_SHIFT);
773 		ew32(CTRL_EXT, ctrl_ext);
774 	}
775 
776 	/* Call the necessary subroutine to configure the link. */
777 	ret_val = (hw->media_type == e1000_media_type_copper) ?
778 	    e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
779 
780 	/* Initialize the flow control address, type, and PAUSE timer
781 	 * registers to their default values.  This is done even if flow
782 	 * control is disabled, because it does not hurt anything to
783 	 * initialize these registers.
784 	 */
785 	e_dbg("Initializing the Flow Control address, type and timer regs\n");
786 
787 	ew32(FCT, FLOW_CONTROL_TYPE);
788 	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
789 	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
790 
791 	ew32(FCTTV, hw->fc_pause_time);
792 
793 	/* Set the flow control receive threshold registers.  Normally,
794 	 * these registers will be set to a default threshold that may be
795 	 * adjusted later by the driver's runtime code.  However, if the
796 	 * ability to transmit pause frames in not enabled, then these
797 	 * registers will be set to 0.
798 	 */
799 	if (!(hw->fc & E1000_FC_TX_PAUSE)) {
800 		ew32(FCRTL, 0);
801 		ew32(FCRTH, 0);
802 	} else {
803 		/* We need to set up the Receive Threshold high and low water
804 		 * marks as well as (optionally) enabling the transmission of
805 		 * XON frames.
806 		 */
807 		if (hw->fc_send_xon) {
808 			ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
809 			ew32(FCRTH, hw->fc_high_water);
810 		} else {
811 			ew32(FCRTL, hw->fc_low_water);
812 			ew32(FCRTH, hw->fc_high_water);
813 		}
814 	}
815 	return ret_val;
816 }
817 
818 /**
819  * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
820  * @hw: Struct containing variables accessed by shared code
821  *
822  * Manipulates Physical Coding Sublayer functions in order to configure
823  * link. Assumes the hardware has been previously reset and the transmitter
824  * and receiver are not enabled.
825  */
826 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
827 {
828 	u32 ctrl;
829 	u32 status;
830 	u32 txcw = 0;
831 	u32 i;
832 	u32 signal = 0;
833 	s32 ret_val;
834 
835 	/* On adapters with a MAC newer than 82544, SWDP 1 will be
836 	 * set when the optics detect a signal. On older adapters, it will be
837 	 * cleared when there is a signal.  This applies to fiber media only.
838 	 * If we're on serdes media, adjust the output amplitude to value
839 	 * set in the EEPROM.
840 	 */
841 	ctrl = er32(CTRL);
842 	if (hw->media_type == e1000_media_type_fiber)
843 		signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
844 
845 	ret_val = e1000_adjust_serdes_amplitude(hw);
846 	if (ret_val)
847 		return ret_val;
848 
849 	/* Take the link out of reset */
850 	ctrl &= ~(E1000_CTRL_LRST);
851 
852 	/* Adjust VCO speed to improve BER performance */
853 	ret_val = e1000_set_vco_speed(hw);
854 	if (ret_val)
855 		return ret_val;
856 
857 	e1000_config_collision_dist(hw);
858 
859 	/* Check for a software override of the flow control settings, and setup
860 	 * the device accordingly.  If auto-negotiation is enabled, then
861 	 * software will have to set the "PAUSE" bits to the correct value in
862 	 * the Tranmsit Config Word Register (TXCW) and re-start
863 	 * auto-negotiation.  However, if auto-negotiation is disabled, then
864 	 * software will have to manually configure the two flow control enable
865 	 * bits in the CTRL register.
866 	 *
867 	 * The possible values of the "fc" parameter are:
868 	 *  0:  Flow control is completely disabled
869 	 *  1:  Rx flow control is enabled (we can receive pause frames, but
870 	 *      not send pause frames).
871 	 *  2:  Tx flow control is enabled (we can send pause frames but we do
872 	 *      not support receiving pause frames).
873 	 *  3:  Both Rx and TX flow control (symmetric) are enabled.
874 	 */
875 	switch (hw->fc) {
876 	case E1000_FC_NONE:
877 		/* Flow ctrl is completely disabled by a software over-ride */
878 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
879 		break;
880 	case E1000_FC_RX_PAUSE:
881 		/* Rx Flow control is enabled and Tx Flow control is disabled by
882 		 * a software over-ride. Since there really isn't a way to
883 		 * advertise that we are capable of Rx Pause ONLY, we will
884 		 * advertise that we support both symmetric and asymmetric Rx
885 		 * PAUSE. Later, we will disable the adapter's ability to send
886 		 * PAUSE frames.
887 		 */
888 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
889 		break;
890 	case E1000_FC_TX_PAUSE:
891 		/* Tx Flow control is enabled, and Rx Flow control is disabled,
892 		 * by a software over-ride.
893 		 */
894 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
895 		break;
896 	case E1000_FC_FULL:
897 		/* Flow control (both Rx and Tx) is enabled by a software
898 		 * over-ride.
899 		 */
900 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
901 		break;
902 	default:
903 		e_dbg("Flow control param set incorrectly\n");
904 		return -E1000_ERR_CONFIG;
905 	}
906 
907 	/* Since auto-negotiation is enabled, take the link out of reset (the
908 	 * link will be in reset, because we previously reset the chip). This
909 	 * will restart auto-negotiation.  If auto-negotiation is successful
910 	 * then the link-up status bit will be set and the flow control enable
911 	 * bits (RFCE and TFCE) will be set according to their negotiated value.
912 	 */
913 	e_dbg("Auto-negotiation enabled\n");
914 
915 	ew32(TXCW, txcw);
916 	ew32(CTRL, ctrl);
917 	E1000_WRITE_FLUSH();
918 
919 	hw->txcw = txcw;
920 	msleep(1);
921 
922 	/* If we have a signal (the cable is plugged in) then poll for a
923 	 * "Link-Up" indication in the Device Status Register.  Time-out if a
924 	 * link isn't seen in 500 milliseconds seconds (Auto-negotiation should
925 	 * complete in less than 500 milliseconds even if the other end is doing
926 	 * it in SW). For internal serdes, we just assume a signal is present,
927 	 * then poll.
928 	 */
929 	if (hw->media_type == e1000_media_type_internal_serdes ||
930 	    (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
931 		e_dbg("Looking for Link\n");
932 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
933 			msleep(10);
934 			status = er32(STATUS);
935 			if (status & E1000_STATUS_LU)
936 				break;
937 		}
938 		if (i == (LINK_UP_TIMEOUT / 10)) {
939 			e_dbg("Never got a valid link from auto-neg!!!\n");
940 			hw->autoneg_failed = 1;
941 			/* AutoNeg failed to achieve a link, so we'll call
942 			 * e1000_check_for_link. This routine will force the
943 			 * link up if we detect a signal. This will allow us to
944 			 * communicate with non-autonegotiating link partners.
945 			 */
946 			ret_val = e1000_check_for_link(hw);
947 			if (ret_val) {
948 				e_dbg("Error while checking for link\n");
949 				return ret_val;
950 			}
951 			hw->autoneg_failed = 0;
952 		} else {
953 			hw->autoneg_failed = 0;
954 			e_dbg("Valid Link Found\n");
955 		}
956 	} else {
957 		e_dbg("No Signal Detected\n");
958 	}
959 	return E1000_SUCCESS;
960 }
961 
962 /**
963  * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
964  * @hw: Struct containing variables accessed by shared code
965  *
966  * Commits changes to PHY configuration by calling e1000_phy_reset().
967  */
968 static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
969 {
970 	s32 ret_val;
971 
972 	/* SW reset the PHY so all changes take effect */
973 	ret_val = e1000_phy_reset(hw);
974 	if (ret_val) {
975 		e_dbg("Error Resetting the PHY\n");
976 		return ret_val;
977 	}
978 
979 	return E1000_SUCCESS;
980 }
981 
982 static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
983 {
984 	s32 ret_val;
985 	u32 ctrl_aux;
986 
987 	switch (hw->phy_type) {
988 	case e1000_phy_8211:
989 		ret_val = e1000_copper_link_rtl_setup(hw);
990 		if (ret_val) {
991 			e_dbg("e1000_copper_link_rtl_setup failed!\n");
992 			return ret_val;
993 		}
994 		break;
995 	case e1000_phy_8201:
996 		/* Set RMII mode */
997 		ctrl_aux = er32(CTL_AUX);
998 		ctrl_aux |= E1000_CTL_AUX_RMII;
999 		ew32(CTL_AUX, ctrl_aux);
1000 		E1000_WRITE_FLUSH();
1001 
1002 		/* Disable the J/K bits required for receive */
1003 		ctrl_aux = er32(CTL_AUX);
1004 		ctrl_aux |= 0x4;
1005 		ctrl_aux &= ~0x2;
1006 		ew32(CTL_AUX, ctrl_aux);
1007 		E1000_WRITE_FLUSH();
1008 		ret_val = e1000_copper_link_rtl_setup(hw);
1009 
1010 		if (ret_val) {
1011 			e_dbg("e1000_copper_link_rtl_setup failed!\n");
1012 			return ret_val;
1013 		}
1014 		break;
1015 	default:
1016 		e_dbg("Error Resetting the PHY\n");
1017 		return E1000_ERR_PHY_TYPE;
1018 	}
1019 
1020 	return E1000_SUCCESS;
1021 }
1022 
1023 /**
1024  * e1000_copper_link_preconfig - early configuration for copper
1025  * @hw: Struct containing variables accessed by shared code
1026  *
1027  * Make sure we have a valid PHY and change PHY mode before link setup.
1028  */
1029 static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1030 {
1031 	u32 ctrl;
1032 	s32 ret_val;
1033 	u16 phy_data;
1034 
1035 	ctrl = er32(CTRL);
1036 	/* With 82543, we need to force speed and duplex on the MAC equal to
1037 	 * what the PHY speed and duplex configuration is. In addition, we need
1038 	 * to perform a hardware reset on the PHY to take it out of reset.
1039 	 */
1040 	if (hw->mac_type > e1000_82543) {
1041 		ctrl |= E1000_CTRL_SLU;
1042 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1043 		ew32(CTRL, ctrl);
1044 	} else {
1045 		ctrl |=
1046 		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1047 		ew32(CTRL, ctrl);
1048 		ret_val = e1000_phy_hw_reset(hw);
1049 		if (ret_val)
1050 			return ret_val;
1051 	}
1052 
1053 	/* Make sure we have a valid PHY */
1054 	ret_val = e1000_detect_gig_phy(hw);
1055 	if (ret_val) {
1056 		e_dbg("Error, did not detect valid phy.\n");
1057 		return ret_val;
1058 	}
1059 	e_dbg("Phy ID = %x\n", hw->phy_id);
1060 
1061 	/* Set PHY to class A mode (if necessary) */
1062 	ret_val = e1000_set_phy_mode(hw);
1063 	if (ret_val)
1064 		return ret_val;
1065 
1066 	if ((hw->mac_type == e1000_82545_rev_3) ||
1067 	    (hw->mac_type == e1000_82546_rev_3)) {
1068 		ret_val =
1069 		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1070 		phy_data |= 0x00000008;
1071 		ret_val =
1072 		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1073 	}
1074 
1075 	if (hw->mac_type <= e1000_82543 ||
1076 	    hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1077 	    hw->mac_type == e1000_82541_rev_2 ||
1078 	    hw->mac_type == e1000_82547_rev_2)
1079 		hw->phy_reset_disable = false;
1080 
1081 	return E1000_SUCCESS;
1082 }
1083 
1084 /**
1085  * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1086  * @hw: Struct containing variables accessed by shared code
1087  */
1088 static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1089 {
1090 	u32 led_ctrl;
1091 	s32 ret_val;
1092 	u16 phy_data;
1093 
1094 	if (hw->phy_reset_disable)
1095 		return E1000_SUCCESS;
1096 
1097 	ret_val = e1000_phy_reset(hw);
1098 	if (ret_val) {
1099 		e_dbg("Error Resetting the PHY\n");
1100 		return ret_val;
1101 	}
1102 
1103 	/* Wait 15ms for MAC to configure PHY from eeprom settings */
1104 	msleep(15);
1105 	/* Configure activity LED after PHY reset */
1106 	led_ctrl = er32(LEDCTL);
1107 	led_ctrl &= IGP_ACTIVITY_LED_MASK;
1108 	led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1109 	ew32(LEDCTL, led_ctrl);
1110 
1111 	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1112 	if (hw->phy_type == e1000_phy_igp) {
1113 		/* disable lplu d3 during driver init */
1114 		ret_val = e1000_set_d3_lplu_state(hw, false);
1115 		if (ret_val) {
1116 			e_dbg("Error Disabling LPLU D3\n");
1117 			return ret_val;
1118 		}
1119 	}
1120 
1121 	/* Configure mdi-mdix settings */
1122 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1123 	if (ret_val)
1124 		return ret_val;
1125 
1126 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1127 		hw->dsp_config_state = e1000_dsp_config_disabled;
1128 		/* Force MDI for earlier revs of the IGP PHY */
1129 		phy_data &=
1130 		    ~(IGP01E1000_PSCR_AUTO_MDIX |
1131 		      IGP01E1000_PSCR_FORCE_MDI_MDIX);
1132 		hw->mdix = 1;
1133 
1134 	} else {
1135 		hw->dsp_config_state = e1000_dsp_config_enabled;
1136 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1137 
1138 		switch (hw->mdix) {
1139 		case 1:
1140 			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1141 			break;
1142 		case 2:
1143 			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1144 			break;
1145 		case 0:
1146 		default:
1147 			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1148 			break;
1149 		}
1150 	}
1151 	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1152 	if (ret_val)
1153 		return ret_val;
1154 
1155 	/* set auto-master slave resolution settings */
1156 	if (hw->autoneg) {
1157 		e1000_ms_type phy_ms_setting = hw->master_slave;
1158 
1159 		if (hw->ffe_config_state == e1000_ffe_config_active)
1160 			hw->ffe_config_state = e1000_ffe_config_enabled;
1161 
1162 		if (hw->dsp_config_state == e1000_dsp_config_activated)
1163 			hw->dsp_config_state = e1000_dsp_config_enabled;
1164 
1165 		/* when autonegotiation advertisement is only 1000Mbps then we
1166 		 * should disable SmartSpeed and enable Auto MasterSlave
1167 		 * resolution as hardware default.
1168 		 */
1169 		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1170 			/* Disable SmartSpeed */
1171 			ret_val =
1172 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1173 					       &phy_data);
1174 			if (ret_val)
1175 				return ret_val;
1176 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1177 			ret_val =
1178 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1179 						phy_data);
1180 			if (ret_val)
1181 				return ret_val;
1182 			/* Set auto Master/Slave resolution process */
1183 			ret_val =
1184 			    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1185 			if (ret_val)
1186 				return ret_val;
1187 			phy_data &= ~CR_1000T_MS_ENABLE;
1188 			ret_val =
1189 			    e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1190 			if (ret_val)
1191 				return ret_val;
1192 		}
1193 
1194 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1195 		if (ret_val)
1196 			return ret_val;
1197 
1198 		/* load defaults for future use */
1199 		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1200 		    ((phy_data & CR_1000T_MS_VALUE) ?
1201 		     e1000_ms_force_master :
1202 		     e1000_ms_force_slave) : e1000_ms_auto;
1203 
1204 		switch (phy_ms_setting) {
1205 		case e1000_ms_force_master:
1206 			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1207 			break;
1208 		case e1000_ms_force_slave:
1209 			phy_data |= CR_1000T_MS_ENABLE;
1210 			phy_data &= ~(CR_1000T_MS_VALUE);
1211 			break;
1212 		case e1000_ms_auto:
1213 			phy_data &= ~CR_1000T_MS_ENABLE;
1214 		default:
1215 			break;
1216 		}
1217 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1218 		if (ret_val)
1219 			return ret_val;
1220 	}
1221 
1222 	return E1000_SUCCESS;
1223 }
1224 
1225 /**
1226  * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1227  * @hw: Struct containing variables accessed by shared code
1228  */
1229 static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1230 {
1231 	s32 ret_val;
1232 	u16 phy_data;
1233 
1234 	if (hw->phy_reset_disable)
1235 		return E1000_SUCCESS;
1236 
1237 	/* Enable CRS on TX. This must be set for half-duplex operation. */
1238 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1239 	if (ret_val)
1240 		return ret_val;
1241 
1242 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1243 
1244 	/* Options:
1245 	 *   MDI/MDI-X = 0 (default)
1246 	 *   0 - Auto for all speeds
1247 	 *   1 - MDI mode
1248 	 *   2 - MDI-X mode
1249 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1250 	 */
1251 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1252 
1253 	switch (hw->mdix) {
1254 	case 1:
1255 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1256 		break;
1257 	case 2:
1258 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1259 		break;
1260 	case 3:
1261 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1262 		break;
1263 	case 0:
1264 	default:
1265 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1266 		break;
1267 	}
1268 
1269 	/* Options:
1270 	 *   disable_polarity_correction = 0 (default)
1271 	 *       Automatic Correction for Reversed Cable Polarity
1272 	 *   0 - Disabled
1273 	 *   1 - Enabled
1274 	 */
1275 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1276 	if (hw->disable_polarity_correction == 1)
1277 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1278 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1279 	if (ret_val)
1280 		return ret_val;
1281 
1282 	if (hw->phy_revision < M88E1011_I_REV_4) {
1283 		/* Force TX_CLK in the Extended PHY Specific Control Register
1284 		 * to 25MHz clock.
1285 		 */
1286 		ret_val =
1287 		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1288 				       &phy_data);
1289 		if (ret_val)
1290 			return ret_val;
1291 
1292 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1293 
1294 		if ((hw->phy_revision == E1000_REVISION_2) &&
1295 		    (hw->phy_id == M88E1111_I_PHY_ID)) {
1296 			/* Vidalia Phy, set the downshift counter to 5x */
1297 			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1298 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1299 			ret_val = e1000_write_phy_reg(hw,
1300 						      M88E1000_EXT_PHY_SPEC_CTRL,
1301 						      phy_data);
1302 			if (ret_val)
1303 				return ret_val;
1304 		} else {
1305 			/* Configure Master and Slave downshift values */
1306 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1307 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1308 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1309 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1310 			ret_val = e1000_write_phy_reg(hw,
1311 						      M88E1000_EXT_PHY_SPEC_CTRL,
1312 						      phy_data);
1313 			if (ret_val)
1314 				return ret_val;
1315 		}
1316 	}
1317 
1318 	/* SW Reset the PHY so all changes take effect */
1319 	ret_val = e1000_phy_reset(hw);
1320 	if (ret_val) {
1321 		e_dbg("Error Resetting the PHY\n");
1322 		return ret_val;
1323 	}
1324 
1325 	return E1000_SUCCESS;
1326 }
1327 
1328 /**
1329  * e1000_copper_link_autoneg - setup auto-neg
1330  * @hw: Struct containing variables accessed by shared code
1331  *
1332  * Setup auto-negotiation and flow control advertisements,
1333  * and then perform auto-negotiation.
1334  */
1335 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1336 {
1337 	s32 ret_val;
1338 	u16 phy_data;
1339 
1340 	/* Perform some bounds checking on the hw->autoneg_advertised
1341 	 * parameter.  If this variable is zero, then set it to the default.
1342 	 */
1343 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1344 
1345 	/* If autoneg_advertised is zero, we assume it was not defaulted
1346 	 * by the calling code so we set to advertise full capability.
1347 	 */
1348 	if (hw->autoneg_advertised == 0)
1349 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1350 
1351 	/* IFE/RTL8201N PHY only supports 10/100 */
1352 	if (hw->phy_type == e1000_phy_8201)
1353 		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1354 
1355 	e_dbg("Reconfiguring auto-neg advertisement params\n");
1356 	ret_val = e1000_phy_setup_autoneg(hw);
1357 	if (ret_val) {
1358 		e_dbg("Error Setting up Auto-Negotiation\n");
1359 		return ret_val;
1360 	}
1361 	e_dbg("Restarting Auto-Neg\n");
1362 
1363 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1364 	 * the Auto Neg Restart bit in the PHY control register.
1365 	 */
1366 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1367 	if (ret_val)
1368 		return ret_val;
1369 
1370 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1371 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1372 	if (ret_val)
1373 		return ret_val;
1374 
1375 	/* Does the user want to wait for Auto-Neg to complete here, or
1376 	 * check at a later time (for example, callback routine).
1377 	 */
1378 	if (hw->wait_autoneg_complete) {
1379 		ret_val = e1000_wait_autoneg(hw);
1380 		if (ret_val) {
1381 			e_dbg
1382 			    ("Error while waiting for autoneg to complete\n");
1383 			return ret_val;
1384 		}
1385 	}
1386 
1387 	hw->get_link_status = true;
1388 
1389 	return E1000_SUCCESS;
1390 }
1391 
1392 /**
1393  * e1000_copper_link_postconfig - post link setup
1394  * @hw: Struct containing variables accessed by shared code
1395  *
1396  * Config the MAC and the PHY after link is up.
1397  *   1) Set up the MAC to the current PHY speed/duplex
1398  *      if we are on 82543.  If we
1399  *      are on newer silicon, we only need to configure
1400  *      collision distance in the Transmit Control Register.
1401  *   2) Set up flow control on the MAC to that established with
1402  *      the link partner.
1403  *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
1404  */
1405 static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1406 {
1407 	s32 ret_val;
1408 
1409 	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
1410 		e1000_config_collision_dist(hw);
1411 	} else {
1412 		ret_val = e1000_config_mac_to_phy(hw);
1413 		if (ret_val) {
1414 			e_dbg("Error configuring MAC to PHY settings\n");
1415 			return ret_val;
1416 		}
1417 	}
1418 	ret_val = e1000_config_fc_after_link_up(hw);
1419 	if (ret_val) {
1420 		e_dbg("Error Configuring Flow Control\n");
1421 		return ret_val;
1422 	}
1423 
1424 	/* Config DSP to improve Giga link quality */
1425 	if (hw->phy_type == e1000_phy_igp) {
1426 		ret_val = e1000_config_dsp_after_link_change(hw, true);
1427 		if (ret_val) {
1428 			e_dbg("Error Configuring DSP after link up\n");
1429 			return ret_val;
1430 		}
1431 	}
1432 
1433 	return E1000_SUCCESS;
1434 }
1435 
1436 /**
1437  * e1000_setup_copper_link - phy/speed/duplex setting
1438  * @hw: Struct containing variables accessed by shared code
1439  *
1440  * Detects which PHY is present and sets up the speed and duplex
1441  */
1442 static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1443 {
1444 	s32 ret_val;
1445 	u16 i;
1446 	u16 phy_data;
1447 
1448 	/* Check if it is a valid PHY and set PHY mode if necessary. */
1449 	ret_val = e1000_copper_link_preconfig(hw);
1450 	if (ret_val)
1451 		return ret_val;
1452 
1453 	if (hw->phy_type == e1000_phy_igp) {
1454 		ret_val = e1000_copper_link_igp_setup(hw);
1455 		if (ret_val)
1456 			return ret_val;
1457 	} else if (hw->phy_type == e1000_phy_m88) {
1458 		ret_val = e1000_copper_link_mgp_setup(hw);
1459 		if (ret_val)
1460 			return ret_val;
1461 	} else {
1462 		ret_val = gbe_dhg_phy_setup(hw);
1463 		if (ret_val) {
1464 			e_dbg("gbe_dhg_phy_setup failed!\n");
1465 			return ret_val;
1466 		}
1467 	}
1468 
1469 	if (hw->autoneg) {
1470 		/* Setup autoneg and flow control advertisement
1471 		 * and perform autonegotiation
1472 		 */
1473 		ret_val = e1000_copper_link_autoneg(hw);
1474 		if (ret_val)
1475 			return ret_val;
1476 	} else {
1477 		/* PHY will be set to 10H, 10F, 100H,or 100F
1478 		 * depending on value from forced_speed_duplex.
1479 		 */
1480 		e_dbg("Forcing speed and duplex\n");
1481 		ret_val = e1000_phy_force_speed_duplex(hw);
1482 		if (ret_val) {
1483 			e_dbg("Error Forcing Speed and Duplex\n");
1484 			return ret_val;
1485 		}
1486 	}
1487 
1488 	/* Check link status. Wait up to 100 microseconds for link to become
1489 	 * valid.
1490 	 */
1491 	for (i = 0; i < 10; i++) {
1492 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1493 		if (ret_val)
1494 			return ret_val;
1495 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1496 		if (ret_val)
1497 			return ret_val;
1498 
1499 		if (phy_data & MII_SR_LINK_STATUS) {
1500 			/* Config the MAC and PHY after link is up */
1501 			ret_val = e1000_copper_link_postconfig(hw);
1502 			if (ret_val)
1503 				return ret_val;
1504 
1505 			e_dbg("Valid link established!!!\n");
1506 			return E1000_SUCCESS;
1507 		}
1508 		udelay(10);
1509 	}
1510 
1511 	e_dbg("Unable to establish link!!!\n");
1512 	return E1000_SUCCESS;
1513 }
1514 
1515 /**
1516  * e1000_phy_setup_autoneg - phy settings
1517  * @hw: Struct containing variables accessed by shared code
1518  *
1519  * Configures PHY autoneg and flow control advertisement settings
1520  */
1521 s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1522 {
1523 	s32 ret_val;
1524 	u16 mii_autoneg_adv_reg;
1525 	u16 mii_1000t_ctrl_reg;
1526 
1527 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1528 	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1529 	if (ret_val)
1530 		return ret_val;
1531 
1532 	/* Read the MII 1000Base-T Control Register (Address 9). */
1533 	ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1534 	if (ret_val)
1535 		return ret_val;
1536 	else if (hw->phy_type == e1000_phy_8201)
1537 		mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1538 
1539 	/* Need to parse both autoneg_advertised and fc and set up
1540 	 * the appropriate PHY registers.  First we will parse for
1541 	 * autoneg_advertised software override.  Since we can advertise
1542 	 * a plethora of combinations, we need to check each bit
1543 	 * individually.
1544 	 */
1545 
1546 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1547 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1548 	 * the  1000Base-T Control Register (Address 9).
1549 	 */
1550 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1551 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1552 
1553 	e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
1554 
1555 	/* Do we want to advertise 10 Mb Half Duplex? */
1556 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1557 		e_dbg("Advertise 10mb Half duplex\n");
1558 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1559 	}
1560 
1561 	/* Do we want to advertise 10 Mb Full Duplex? */
1562 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1563 		e_dbg("Advertise 10mb Full duplex\n");
1564 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1565 	}
1566 
1567 	/* Do we want to advertise 100 Mb Half Duplex? */
1568 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1569 		e_dbg("Advertise 100mb Half duplex\n");
1570 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1571 	}
1572 
1573 	/* Do we want to advertise 100 Mb Full Duplex? */
1574 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1575 		e_dbg("Advertise 100mb Full duplex\n");
1576 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1577 	}
1578 
1579 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1580 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1581 		e_dbg
1582 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
1583 	}
1584 
1585 	/* Do we want to advertise 1000 Mb Full Duplex? */
1586 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1587 		e_dbg("Advertise 1000mb Full duplex\n");
1588 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1589 	}
1590 
1591 	/* Check for a software override of the flow control settings, and
1592 	 * setup the PHY advertisement registers accordingly.  If
1593 	 * auto-negotiation is enabled, then software will have to set the
1594 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1595 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start
1596 	 * auto-negotiation.
1597 	 *
1598 	 * The possible values of the "fc" parameter are:
1599 	 *      0:  Flow control is completely disabled
1600 	 *      1:  Rx flow control is enabled (we can receive pause frames
1601 	 *          but not send pause frames).
1602 	 *      2:  Tx flow control is enabled (we can send pause frames
1603 	 *          but we do not support receiving pause frames).
1604 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1605 	 *  other:  No software override.  The flow control configuration
1606 	 *          in the EEPROM is used.
1607 	 */
1608 	switch (hw->fc) {
1609 	case E1000_FC_NONE:	/* 0 */
1610 		/* Flow control (RX & TX) is completely disabled by a
1611 		 * software over-ride.
1612 		 */
1613 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1614 		break;
1615 	case E1000_FC_RX_PAUSE:	/* 1 */
1616 		/* RX Flow control is enabled, and TX Flow control is
1617 		 * disabled, by a software over-ride.
1618 		 */
1619 		/* Since there really isn't a way to advertise that we are
1620 		 * capable of RX Pause ONLY, we will advertise that we
1621 		 * support both symmetric and asymmetric RX PAUSE.  Later
1622 		 * (in e1000_config_fc_after_link_up) we will disable the
1623 		 * hw's ability to send PAUSE frames.
1624 		 */
1625 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1626 		break;
1627 	case E1000_FC_TX_PAUSE:	/* 2 */
1628 		/* TX Flow control is enabled, and RX Flow control is
1629 		 * disabled, by a software over-ride.
1630 		 */
1631 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1632 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1633 		break;
1634 	case E1000_FC_FULL:	/* 3 */
1635 		/* Flow control (both RX and TX) is enabled by a software
1636 		 * over-ride.
1637 		 */
1638 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1639 		break;
1640 	default:
1641 		e_dbg("Flow control param set incorrectly\n");
1642 		return -E1000_ERR_CONFIG;
1643 	}
1644 
1645 	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1646 	if (ret_val)
1647 		return ret_val;
1648 
1649 	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1650 
1651 	if (hw->phy_type == e1000_phy_8201) {
1652 		mii_1000t_ctrl_reg = 0;
1653 	} else {
1654 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1655 					      mii_1000t_ctrl_reg);
1656 		if (ret_val)
1657 			return ret_val;
1658 	}
1659 
1660 	return E1000_SUCCESS;
1661 }
1662 
1663 /**
1664  * e1000_phy_force_speed_duplex - force link settings
1665  * @hw: Struct containing variables accessed by shared code
1666  *
1667  * Force PHY speed and duplex settings to hw->forced_speed_duplex
1668  */
1669 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1670 {
1671 	u32 ctrl;
1672 	s32 ret_val;
1673 	u16 mii_ctrl_reg;
1674 	u16 mii_status_reg;
1675 	u16 phy_data;
1676 	u16 i;
1677 
1678 	/* Turn off Flow control if we are forcing speed and duplex. */
1679 	hw->fc = E1000_FC_NONE;
1680 
1681 	e_dbg("hw->fc = %d\n", hw->fc);
1682 
1683 	/* Read the Device Control Register. */
1684 	ctrl = er32(CTRL);
1685 
1686 	/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1687 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1688 	ctrl &= ~(DEVICE_SPEED_MASK);
1689 
1690 	/* Clear the Auto Speed Detect Enable bit. */
1691 	ctrl &= ~E1000_CTRL_ASDE;
1692 
1693 	/* Read the MII Control Register. */
1694 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1695 	if (ret_val)
1696 		return ret_val;
1697 
1698 	/* We need to disable autoneg in order to force link and duplex. */
1699 
1700 	mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1701 
1702 	/* Are we forcing Full or Half Duplex? */
1703 	if (hw->forced_speed_duplex == e1000_100_full ||
1704 	    hw->forced_speed_duplex == e1000_10_full) {
1705 		/* We want to force full duplex so we SET the full duplex bits
1706 		 * in the Device and MII Control Registers.
1707 		 */
1708 		ctrl |= E1000_CTRL_FD;
1709 		mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1710 		e_dbg("Full Duplex\n");
1711 	} else {
1712 		/* We want to force half duplex so we CLEAR the full duplex bits
1713 		 * in the Device and MII Control Registers.
1714 		 */
1715 		ctrl &= ~E1000_CTRL_FD;
1716 		mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1717 		e_dbg("Half Duplex\n");
1718 	}
1719 
1720 	/* Are we forcing 100Mbps??? */
1721 	if (hw->forced_speed_duplex == e1000_100_full ||
1722 	    hw->forced_speed_duplex == e1000_100_half) {
1723 		/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1724 		ctrl |= E1000_CTRL_SPD_100;
1725 		mii_ctrl_reg |= MII_CR_SPEED_100;
1726 		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1727 		e_dbg("Forcing 100mb ");
1728 	} else {
1729 		/* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1730 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1731 		mii_ctrl_reg |= MII_CR_SPEED_10;
1732 		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1733 		e_dbg("Forcing 10mb ");
1734 	}
1735 
1736 	e1000_config_collision_dist(hw);
1737 
1738 	/* Write the configured values back to the Device Control Reg. */
1739 	ew32(CTRL, ctrl);
1740 
1741 	if (hw->phy_type == e1000_phy_m88) {
1742 		ret_val =
1743 		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1744 		if (ret_val)
1745 			return ret_val;
1746 
1747 		/* Clear Auto-Crossover to force MDI manually. M88E1000 requires
1748 		 * MDI forced whenever speed are duplex are forced.
1749 		 */
1750 		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1751 		ret_val =
1752 		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1753 		if (ret_val)
1754 			return ret_val;
1755 
1756 		e_dbg("M88E1000 PSCR: %x\n", phy_data);
1757 
1758 		/* Need to reset the PHY or these changes will be ignored */
1759 		mii_ctrl_reg |= MII_CR_RESET;
1760 
1761 		/* Disable MDI-X support for 10/100 */
1762 	} else {
1763 		/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1764 		 * forced whenever speed or duplex are forced.
1765 		 */
1766 		ret_val =
1767 		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1768 		if (ret_val)
1769 			return ret_val;
1770 
1771 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1772 		phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1773 
1774 		ret_val =
1775 		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1776 		if (ret_val)
1777 			return ret_val;
1778 	}
1779 
1780 	/* Write back the modified PHY MII control register. */
1781 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1782 	if (ret_val)
1783 		return ret_val;
1784 
1785 	udelay(1);
1786 
1787 	/* The wait_autoneg_complete flag may be a little misleading here.
1788 	 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1789 	 * But we do want to delay for a period while forcing only so we
1790 	 * don't generate false No Link messages.  So we will wait here
1791 	 * only if the user has set wait_autoneg_complete to 1, which is
1792 	 * the default.
1793 	 */
1794 	if (hw->wait_autoneg_complete) {
1795 		/* We will wait for autoneg to complete. */
1796 		e_dbg("Waiting for forced speed/duplex link.\n");
1797 		mii_status_reg = 0;
1798 
1799 		/* Wait for autoneg to complete or 4.5 seconds to expire */
1800 		for (i = PHY_FORCE_TIME; i > 0; i--) {
1801 			/* Read the MII Status Register and wait for Auto-Neg
1802 			 * Complete bit to be set.
1803 			 */
1804 			ret_val =
1805 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1806 			if (ret_val)
1807 				return ret_val;
1808 
1809 			ret_val =
1810 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1811 			if (ret_val)
1812 				return ret_val;
1813 
1814 			if (mii_status_reg & MII_SR_LINK_STATUS)
1815 				break;
1816 			msleep(100);
1817 		}
1818 		if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1819 			/* We didn't get link.  Reset the DSP and wait again
1820 			 * for link.
1821 			 */
1822 			ret_val = e1000_phy_reset_dsp(hw);
1823 			if (ret_val) {
1824 				e_dbg("Error Resetting PHY DSP\n");
1825 				return ret_val;
1826 			}
1827 		}
1828 		/* This loop will early-out if the link condition has been
1829 		 * met
1830 		 */
1831 		for (i = PHY_FORCE_TIME; i > 0; i--) {
1832 			if (mii_status_reg & MII_SR_LINK_STATUS)
1833 				break;
1834 			msleep(100);
1835 			/* Read the MII Status Register and wait for Auto-Neg
1836 			 * Complete bit to be set.
1837 			 */
1838 			ret_val =
1839 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1840 			if (ret_val)
1841 				return ret_val;
1842 
1843 			ret_val =
1844 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1845 			if (ret_val)
1846 				return ret_val;
1847 		}
1848 	}
1849 
1850 	if (hw->phy_type == e1000_phy_m88) {
1851 		/* Because we reset the PHY above, we need to re-force TX_CLK in
1852 		 * the Extended PHY Specific Control Register to 25MHz clock.
1853 		 * This value defaults back to a 2.5MHz clock when the PHY is
1854 		 * reset.
1855 		 */
1856 		ret_val =
1857 		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1858 				       &phy_data);
1859 		if (ret_val)
1860 			return ret_val;
1861 
1862 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1863 		ret_val =
1864 		    e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1865 					phy_data);
1866 		if (ret_val)
1867 			return ret_val;
1868 
1869 		/* In addition, because of the s/w reset above, we need to
1870 		 * enable CRS on Tx.  This must be set for both full and half
1871 		 * duplex operation.
1872 		 */
1873 		ret_val =
1874 		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1875 		if (ret_val)
1876 			return ret_val;
1877 
1878 		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1879 		ret_val =
1880 		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1881 		if (ret_val)
1882 			return ret_val;
1883 
1884 		if ((hw->mac_type == e1000_82544 ||
1885 		     hw->mac_type == e1000_82543) &&
1886 		    (!hw->autoneg) &&
1887 		    (hw->forced_speed_duplex == e1000_10_full ||
1888 		     hw->forced_speed_duplex == e1000_10_half)) {
1889 			ret_val = e1000_polarity_reversal_workaround(hw);
1890 			if (ret_val)
1891 				return ret_val;
1892 		}
1893 	}
1894 	return E1000_SUCCESS;
1895 }
1896 
1897 /**
1898  * e1000_config_collision_dist - set collision distance register
1899  * @hw: Struct containing variables accessed by shared code
1900  *
1901  * Sets the collision distance in the Transmit Control register.
1902  * Link should have been established previously. Reads the speed and duplex
1903  * information from the Device Status register.
1904  */
1905 void e1000_config_collision_dist(struct e1000_hw *hw)
1906 {
1907 	u32 tctl, coll_dist;
1908 
1909 	if (hw->mac_type < e1000_82543)
1910 		coll_dist = E1000_COLLISION_DISTANCE_82542;
1911 	else
1912 		coll_dist = E1000_COLLISION_DISTANCE;
1913 
1914 	tctl = er32(TCTL);
1915 
1916 	tctl &= ~E1000_TCTL_COLD;
1917 	tctl |= coll_dist << E1000_COLD_SHIFT;
1918 
1919 	ew32(TCTL, tctl);
1920 	E1000_WRITE_FLUSH();
1921 }
1922 
1923 /**
1924  * e1000_config_mac_to_phy - sync phy and mac settings
1925  * @hw: Struct containing variables accessed by shared code
1926  * @mii_reg: data to write to the MII control register
1927  *
1928  * Sets MAC speed and duplex settings to reflect the those in the PHY
1929  * The contents of the PHY register containing the needed information need to
1930  * be passed in.
1931  */
1932 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1933 {
1934 	u32 ctrl;
1935 	s32 ret_val;
1936 	u16 phy_data;
1937 
1938 	/* 82544 or newer MAC, Auto Speed Detection takes care of
1939 	 * MAC speed/duplex configuration.
1940 	 */
1941 	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
1942 		return E1000_SUCCESS;
1943 
1944 	/* Read the Device Control Register and set the bits to Force Speed
1945 	 * and Duplex.
1946 	 */
1947 	ctrl = er32(CTRL);
1948 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1949 	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1950 
1951 	switch (hw->phy_type) {
1952 	case e1000_phy_8201:
1953 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1954 		if (ret_val)
1955 			return ret_val;
1956 
1957 		if (phy_data & RTL_PHY_CTRL_FD)
1958 			ctrl |= E1000_CTRL_FD;
1959 		else
1960 			ctrl &= ~E1000_CTRL_FD;
1961 
1962 		if (phy_data & RTL_PHY_CTRL_SPD_100)
1963 			ctrl |= E1000_CTRL_SPD_100;
1964 		else
1965 			ctrl |= E1000_CTRL_SPD_10;
1966 
1967 		e1000_config_collision_dist(hw);
1968 		break;
1969 	default:
1970 		/* Set up duplex in the Device Control and Transmit Control
1971 		 * registers depending on negotiated values.
1972 		 */
1973 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1974 					     &phy_data);
1975 		if (ret_val)
1976 			return ret_val;
1977 
1978 		if (phy_data & M88E1000_PSSR_DPLX)
1979 			ctrl |= E1000_CTRL_FD;
1980 		else
1981 			ctrl &= ~E1000_CTRL_FD;
1982 
1983 		e1000_config_collision_dist(hw);
1984 
1985 		/* Set up speed in the Device Control register depending on
1986 		 * negotiated values.
1987 		 */
1988 		if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1989 			ctrl |= E1000_CTRL_SPD_1000;
1990 		else if ((phy_data & M88E1000_PSSR_SPEED) ==
1991 			 M88E1000_PSSR_100MBS)
1992 			ctrl |= E1000_CTRL_SPD_100;
1993 	}
1994 
1995 	/* Write the configured values back to the Device Control Reg. */
1996 	ew32(CTRL, ctrl);
1997 	return E1000_SUCCESS;
1998 }
1999 
2000 /**
2001  * e1000_force_mac_fc - force flow control settings
2002  * @hw: Struct containing variables accessed by shared code
2003  *
2004  * Forces the MAC's flow control settings.
2005  * Sets the TFCE and RFCE bits in the device control register to reflect
2006  * the adapter settings. TFCE and RFCE need to be explicitly set by
2007  * software when a Copper PHY is used because autonegotiation is managed
2008  * by the PHY rather than the MAC. Software must also configure these
2009  * bits when link is forced on a fiber connection.
2010  */
2011 s32 e1000_force_mac_fc(struct e1000_hw *hw)
2012 {
2013 	u32 ctrl;
2014 
2015 	/* Get the current configuration of the Device Control Register */
2016 	ctrl = er32(CTRL);
2017 
2018 	/* Because we didn't get link via the internal auto-negotiation
2019 	 * mechanism (we either forced link or we got link via PHY
2020 	 * auto-neg), we have to manually enable/disable transmit an
2021 	 * receive flow control.
2022 	 *
2023 	 * The "Case" statement below enables/disable flow control
2024 	 * according to the "hw->fc" parameter.
2025 	 *
2026 	 * The possible values of the "fc" parameter are:
2027 	 *      0:  Flow control is completely disabled
2028 	 *      1:  Rx flow control is enabled (we can receive pause
2029 	 *          frames but not send pause frames).
2030 	 *      2:  Tx flow control is enabled (we can send pause frames
2031 	 *          frames but we do not receive pause frames).
2032 	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
2033 	 *  other:  No other values should be possible at this point.
2034 	 */
2035 
2036 	switch (hw->fc) {
2037 	case E1000_FC_NONE:
2038 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2039 		break;
2040 	case E1000_FC_RX_PAUSE:
2041 		ctrl &= (~E1000_CTRL_TFCE);
2042 		ctrl |= E1000_CTRL_RFCE;
2043 		break;
2044 	case E1000_FC_TX_PAUSE:
2045 		ctrl &= (~E1000_CTRL_RFCE);
2046 		ctrl |= E1000_CTRL_TFCE;
2047 		break;
2048 	case E1000_FC_FULL:
2049 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2050 		break;
2051 	default:
2052 		e_dbg("Flow control param set incorrectly\n");
2053 		return -E1000_ERR_CONFIG;
2054 	}
2055 
2056 	/* Disable TX Flow Control for 82542 (rev 2.0) */
2057 	if (hw->mac_type == e1000_82542_rev2_0)
2058 		ctrl &= (~E1000_CTRL_TFCE);
2059 
2060 	ew32(CTRL, ctrl);
2061 	return E1000_SUCCESS;
2062 }
2063 
2064 /**
2065  * e1000_config_fc_after_link_up - configure flow control after autoneg
2066  * @hw: Struct containing variables accessed by shared code
2067  *
2068  * Configures flow control settings after link is established
2069  * Should be called immediately after a valid link has been established.
2070  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2071  * and autonegotiation is enabled, the MAC flow control settings will be set
2072  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2073  * and RFCE bits will be automatically set to the negotiated flow control mode.
2074  */
2075 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2076 {
2077 	s32 ret_val;
2078 	u16 mii_status_reg;
2079 	u16 mii_nway_adv_reg;
2080 	u16 mii_nway_lp_ability_reg;
2081 	u16 speed;
2082 	u16 duplex;
2083 
2084 	/* Check for the case where we have fiber media and auto-neg failed
2085 	 * so we had to force link.  In this case, we need to force the
2086 	 * configuration of the MAC to match the "fc" parameter.
2087 	 */
2088 	if (((hw->media_type == e1000_media_type_fiber) &&
2089 	     (hw->autoneg_failed)) ||
2090 	    ((hw->media_type == e1000_media_type_internal_serdes) &&
2091 	     (hw->autoneg_failed)) ||
2092 	    ((hw->media_type == e1000_media_type_copper) &&
2093 	     (!hw->autoneg))) {
2094 		ret_val = e1000_force_mac_fc(hw);
2095 		if (ret_val) {
2096 			e_dbg("Error forcing flow control settings\n");
2097 			return ret_val;
2098 		}
2099 	}
2100 
2101 	/* Check for the case where we have copper media and auto-neg is
2102 	 * enabled.  In this case, we need to check and see if Auto-Neg
2103 	 * has completed, and if so, how the PHY and link partner has
2104 	 * flow control configured.
2105 	 */
2106 	if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2107 		/* Read the MII Status Register and check to see if AutoNeg
2108 		 * has completed.  We read this twice because this reg has
2109 		 * some "sticky" (latched) bits.
2110 		 */
2111 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2112 		if (ret_val)
2113 			return ret_val;
2114 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2115 		if (ret_val)
2116 			return ret_val;
2117 
2118 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2119 			/* The AutoNeg process has completed, so we now need to
2120 			 * read both the Auto Negotiation Advertisement Register
2121 			 * (Address 4) and the Auto_Negotiation Base Page
2122 			 * Ability Register (Address 5) to determine how flow
2123 			 * control was negotiated.
2124 			 */
2125 			ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2126 						     &mii_nway_adv_reg);
2127 			if (ret_val)
2128 				return ret_val;
2129 			ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2130 						     &mii_nway_lp_ability_reg);
2131 			if (ret_val)
2132 				return ret_val;
2133 
2134 			/* Two bits in the Auto Negotiation Advertisement
2135 			 * Register (Address 4) and two bits in the Auto
2136 			 * Negotiation Base Page Ability Register (Address 5)
2137 			 * determine flow control for both the PHY and the link
2138 			 * partner.  The following table, taken out of the IEEE
2139 			 * 802.3ab/D6.0 dated March 25, 1999, describes these
2140 			 * PAUSE resolution bits and how flow control is
2141 			 * determined based upon these settings.
2142 			 * NOTE:  DC = Don't Care
2143 			 *
2144 			 *   LOCAL DEVICE  |   LINK PARTNER
2145 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2146 			 *-------|---------|-------|---------|------------------
2147 			 *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
2148 			 *   0   |    1    |   0   |   DC    | E1000_FC_NONE
2149 			 *   0   |    1    |   1   |    0    | E1000_FC_NONE
2150 			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2151 			 *   1   |    0    |   0   |   DC    | E1000_FC_NONE
2152 			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2153 			 *   1   |    1    |   0   |    0    | E1000_FC_NONE
2154 			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2155 			 *
2156 			 */
2157 			/* Are both PAUSE bits set to 1?  If so, this implies
2158 			 * Symmetric Flow Control is enabled at both ends.  The
2159 			 * ASM_DIR bits are irrelevant per the spec.
2160 			 *
2161 			 * For Symmetric Flow Control:
2162 			 *
2163 			 *   LOCAL DEVICE  |   LINK PARTNER
2164 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2165 			 *-------|---------|-------|---------|------------------
2166 			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2167 			 *
2168 			 */
2169 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2170 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2171 				/* Now we need to check if the user selected Rx
2172 				 * ONLY of pause frames.  In this case, we had
2173 				 * to advertise FULL flow control because we
2174 				 * could not advertise Rx ONLY. Hence, we must
2175 				 * now check to see if we need to turn OFF the
2176 				 * TRANSMISSION of PAUSE frames.
2177 				 */
2178 				if (hw->original_fc == E1000_FC_FULL) {
2179 					hw->fc = E1000_FC_FULL;
2180 					e_dbg("Flow Control = FULL.\n");
2181 				} else {
2182 					hw->fc = E1000_FC_RX_PAUSE;
2183 					e_dbg
2184 					    ("Flow Control = RX PAUSE frames only.\n");
2185 				}
2186 			}
2187 			/* For receiving PAUSE frames ONLY.
2188 			 *
2189 			 *   LOCAL DEVICE  |   LINK PARTNER
2190 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2191 			 *-------|---------|-------|---------|------------------
2192 			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2193 			 *
2194 			 */
2195 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2196 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2197 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2198 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2199 				hw->fc = E1000_FC_TX_PAUSE;
2200 				e_dbg
2201 				    ("Flow Control = TX PAUSE frames only.\n");
2202 			}
2203 			/* For transmitting PAUSE frames ONLY.
2204 			 *
2205 			 *   LOCAL DEVICE  |   LINK PARTNER
2206 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2207 			 *-------|---------|-------|---------|------------------
2208 			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2209 			 *
2210 			 */
2211 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2212 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2213 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2214 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2215 				hw->fc = E1000_FC_RX_PAUSE;
2216 				e_dbg
2217 				    ("Flow Control = RX PAUSE frames only.\n");
2218 			}
2219 			/* Per the IEEE spec, at this point flow control should
2220 			 * be disabled.  However, we want to consider that we
2221 			 * could be connected to a legacy switch that doesn't
2222 			 * advertise desired flow control, but can be forced on
2223 			 * the link partner.  So if we advertised no flow
2224 			 * control, that is what we will resolve to.  If we
2225 			 * advertised some kind of receive capability (Rx Pause
2226 			 * Only or Full Flow Control) and the link partner
2227 			 * advertised none, we will configure ourselves to
2228 			 * enable Rx Flow Control only.  We can do this safely
2229 			 * for two reasons:  If the link partner really
2230 			 * didn't want flow control enabled, and we enable Rx,
2231 			 * no harm done since we won't be receiving any PAUSE
2232 			 * frames anyway.  If the intent on the link partner was
2233 			 * to have flow control enabled, then by us enabling Rx
2234 			 * only, we can at least receive pause frames and
2235 			 * process them. This is a good idea because in most
2236 			 * cases, since we are predominantly a server NIC, more
2237 			 * times than not we will be asked to delay transmission
2238 			 * of packets than asking our link partner to pause
2239 			 * transmission of frames.
2240 			 */
2241 			else if ((hw->original_fc == E1000_FC_NONE ||
2242 				  hw->original_fc == E1000_FC_TX_PAUSE) ||
2243 				 hw->fc_strict_ieee) {
2244 				hw->fc = E1000_FC_NONE;
2245 				e_dbg("Flow Control = NONE.\n");
2246 			} else {
2247 				hw->fc = E1000_FC_RX_PAUSE;
2248 				e_dbg
2249 				    ("Flow Control = RX PAUSE frames only.\n");
2250 			}
2251 
2252 			/* Now we need to do one last check...  If we auto-
2253 			 * negotiated to HALF DUPLEX, flow control should not be
2254 			 * enabled per IEEE 802.3 spec.
2255 			 */
2256 			ret_val =
2257 			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2258 			if (ret_val) {
2259 				e_dbg
2260 				    ("Error getting link speed and duplex\n");
2261 				return ret_val;
2262 			}
2263 
2264 			if (duplex == HALF_DUPLEX)
2265 				hw->fc = E1000_FC_NONE;
2266 
2267 			/* Now we call a subroutine to actually force the MAC
2268 			 * controller to use the correct flow control settings.
2269 			 */
2270 			ret_val = e1000_force_mac_fc(hw);
2271 			if (ret_val) {
2272 				e_dbg
2273 				    ("Error forcing flow control settings\n");
2274 				return ret_val;
2275 			}
2276 		} else {
2277 			e_dbg
2278 			    ("Copper PHY and Auto Neg has not completed.\n");
2279 		}
2280 	}
2281 	return E1000_SUCCESS;
2282 }
2283 
2284 /**
2285  * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2286  * @hw: pointer to the HW structure
2287  *
2288  * Checks for link up on the hardware.  If link is not up and we have
2289  * a signal, then we need to force link up.
2290  */
2291 static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
2292 {
2293 	u32 rxcw;
2294 	u32 ctrl;
2295 	u32 status;
2296 	s32 ret_val = E1000_SUCCESS;
2297 
2298 	ctrl = er32(CTRL);
2299 	status = er32(STATUS);
2300 	rxcw = er32(RXCW);
2301 
2302 	/* If we don't have link (auto-negotiation failed or link partner
2303 	 * cannot auto-negotiate), and our link partner is not trying to
2304 	 * auto-negotiate with us (we are receiving idles or data),
2305 	 * we need to force link up. We also need to give auto-negotiation
2306 	 * time to complete.
2307 	 */
2308 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2309 	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2310 		if (hw->autoneg_failed == 0) {
2311 			hw->autoneg_failed = 1;
2312 			goto out;
2313 		}
2314 		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
2315 
2316 		/* Disable auto-negotiation in the TXCW register */
2317 		ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2318 
2319 		/* Force link-up and also force full-duplex. */
2320 		ctrl = er32(CTRL);
2321 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2322 		ew32(CTRL, ctrl);
2323 
2324 		/* Configure Flow Control after forcing link up. */
2325 		ret_val = e1000_config_fc_after_link_up(hw);
2326 		if (ret_val) {
2327 			e_dbg("Error configuring flow control\n");
2328 			goto out;
2329 		}
2330 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2331 		/* If we are forcing link and we are receiving /C/ ordered
2332 		 * sets, re-enable auto-negotiation in the TXCW register
2333 		 * and disable forced link in the Device Control register
2334 		 * in an attempt to auto-negotiate with our link partner.
2335 		 */
2336 		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
2337 		ew32(TXCW, hw->txcw);
2338 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2339 
2340 		hw->serdes_has_link = true;
2341 	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2342 		/* If we force link for non-auto-negotiation switch, check
2343 		 * link status based on MAC synchronization for internal
2344 		 * serdes media type.
2345 		 */
2346 		/* SYNCH bit and IV bit are sticky. */
2347 		udelay(10);
2348 		rxcw = er32(RXCW);
2349 		if (rxcw & E1000_RXCW_SYNCH) {
2350 			if (!(rxcw & E1000_RXCW_IV)) {
2351 				hw->serdes_has_link = true;
2352 				e_dbg("SERDES: Link up - forced.\n");
2353 			}
2354 		} else {
2355 			hw->serdes_has_link = false;
2356 			e_dbg("SERDES: Link down - force failed.\n");
2357 		}
2358 	}
2359 
2360 	if (E1000_TXCW_ANE & er32(TXCW)) {
2361 		status = er32(STATUS);
2362 		if (status & E1000_STATUS_LU) {
2363 			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
2364 			udelay(10);
2365 			rxcw = er32(RXCW);
2366 			if (rxcw & E1000_RXCW_SYNCH) {
2367 				if (!(rxcw & E1000_RXCW_IV)) {
2368 					hw->serdes_has_link = true;
2369 					e_dbg("SERDES: Link up - autoneg "
2370 						 "completed successfully.\n");
2371 				} else {
2372 					hw->serdes_has_link = false;
2373 					e_dbg("SERDES: Link down - invalid"
2374 						 "codewords detected in autoneg.\n");
2375 				}
2376 			} else {
2377 				hw->serdes_has_link = false;
2378 				e_dbg("SERDES: Link down - no sync.\n");
2379 			}
2380 		} else {
2381 			hw->serdes_has_link = false;
2382 			e_dbg("SERDES: Link down - autoneg failed\n");
2383 		}
2384 	}
2385 
2386       out:
2387 	return ret_val;
2388 }
2389 
2390 /**
2391  * e1000_check_for_link
2392  * @hw: Struct containing variables accessed by shared code
2393  *
2394  * Checks to see if the link status of the hardware has changed.
2395  * Called by any function that needs to check the link status of the adapter.
2396  */
2397 s32 e1000_check_for_link(struct e1000_hw *hw)
2398 {
2399 	u32 rxcw = 0;
2400 	u32 ctrl;
2401 	u32 status;
2402 	u32 rctl;
2403 	u32 icr;
2404 	u32 signal = 0;
2405 	s32 ret_val;
2406 	u16 phy_data;
2407 
2408 	ctrl = er32(CTRL);
2409 	status = er32(STATUS);
2410 
2411 	/* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2412 	 * set when the optics detect a signal. On older adapters, it will be
2413 	 * cleared when there is a signal.  This applies to fiber media only.
2414 	 */
2415 	if ((hw->media_type == e1000_media_type_fiber) ||
2416 	    (hw->media_type == e1000_media_type_internal_serdes)) {
2417 		rxcw = er32(RXCW);
2418 
2419 		if (hw->media_type == e1000_media_type_fiber) {
2420 			signal =
2421 			    (hw->mac_type >
2422 			     e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2423 			if (status & E1000_STATUS_LU)
2424 				hw->get_link_status = false;
2425 		}
2426 	}
2427 
2428 	/* If we have a copper PHY then we only want to go out to the PHY
2429 	 * registers to see if Auto-Neg has completed and/or if our link
2430 	 * status has changed.  The get_link_status flag will be set if we
2431 	 * receive a Link Status Change interrupt or we have Rx Sequence
2432 	 * Errors.
2433 	 */
2434 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2435 		/* First we want to see if the MII Status Register reports
2436 		 * link.  If so, then we want to get the current speed/duplex
2437 		 * of the PHY.
2438 		 * Read the register twice since the link bit is sticky.
2439 		 */
2440 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2441 		if (ret_val)
2442 			return ret_val;
2443 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2444 		if (ret_val)
2445 			return ret_val;
2446 
2447 		if (phy_data & MII_SR_LINK_STATUS) {
2448 			hw->get_link_status = false;
2449 			/* Check if there was DownShift, must be checked
2450 			 * immediately after link-up
2451 			 */
2452 			e1000_check_downshift(hw);
2453 
2454 			/* If we are on 82544 or 82543 silicon and speed/duplex
2455 			 * are forced to 10H or 10F, then we will implement the
2456 			 * polarity reversal workaround.  We disable interrupts
2457 			 * first, and upon returning, place the devices
2458 			 * interrupt state to its previous value except for the
2459 			 * link status change interrupt which will
2460 			 * happen due to the execution of this workaround.
2461 			 */
2462 
2463 			if ((hw->mac_type == e1000_82544 ||
2464 			     hw->mac_type == e1000_82543) &&
2465 			    (!hw->autoneg) &&
2466 			    (hw->forced_speed_duplex == e1000_10_full ||
2467 			     hw->forced_speed_duplex == e1000_10_half)) {
2468 				ew32(IMC, 0xffffffff);
2469 				ret_val =
2470 				    e1000_polarity_reversal_workaround(hw);
2471 				icr = er32(ICR);
2472 				ew32(ICS, (icr & ~E1000_ICS_LSC));
2473 				ew32(IMS, IMS_ENABLE_MASK);
2474 			}
2475 
2476 		} else {
2477 			/* No link detected */
2478 			e1000_config_dsp_after_link_change(hw, false);
2479 			return 0;
2480 		}
2481 
2482 		/* If we are forcing speed/duplex, then we simply return since
2483 		 * we have already determined whether we have link or not.
2484 		 */
2485 		if (!hw->autoneg)
2486 			return -E1000_ERR_CONFIG;
2487 
2488 		/* optimize the dsp settings for the igp phy */
2489 		e1000_config_dsp_after_link_change(hw, true);
2490 
2491 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
2492 		 * have Si on board that is 82544 or newer, Auto
2493 		 * Speed Detection takes care of MAC speed/duplex
2494 		 * configuration.  So we only need to configure Collision
2495 		 * Distance in the MAC.  Otherwise, we need to force
2496 		 * speed/duplex on the MAC to the current PHY speed/duplex
2497 		 * settings.
2498 		 */
2499 		if ((hw->mac_type >= e1000_82544) &&
2500 		    (hw->mac_type != e1000_ce4100))
2501 			e1000_config_collision_dist(hw);
2502 		else {
2503 			ret_val = e1000_config_mac_to_phy(hw);
2504 			if (ret_val) {
2505 				e_dbg
2506 				    ("Error configuring MAC to PHY settings\n");
2507 				return ret_val;
2508 			}
2509 		}
2510 
2511 		/* Configure Flow Control now that Auto-Neg has completed.
2512 		 * First, we need to restore the desired flow control settings
2513 		 * because we may have had to re-autoneg with a different link
2514 		 * partner.
2515 		 */
2516 		ret_val = e1000_config_fc_after_link_up(hw);
2517 		if (ret_val) {
2518 			e_dbg("Error configuring flow control\n");
2519 			return ret_val;
2520 		}
2521 
2522 		/* At this point we know that we are on copper and we have
2523 		 * auto-negotiated link.  These are conditions for checking the
2524 		 * link partner capability register.  We use the link speed to
2525 		 * determine if TBI compatibility needs to be turned on or off.
2526 		 * If the link is not at gigabit speed, then TBI compatibility
2527 		 * is not needed.  If we are at gigabit speed, we turn on TBI
2528 		 * compatibility.
2529 		 */
2530 		if (hw->tbi_compatibility_en) {
2531 			u16 speed, duplex;
2532 
2533 			ret_val =
2534 			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2535 
2536 			if (ret_val) {
2537 				e_dbg
2538 				    ("Error getting link speed and duplex\n");
2539 				return ret_val;
2540 			}
2541 			if (speed != SPEED_1000) {
2542 				/* If link speed is not set to gigabit speed, we
2543 				 * do not need to enable TBI compatibility.
2544 				 */
2545 				if (hw->tbi_compatibility_on) {
2546 					/* If we previously were in the mode,
2547 					 * turn it off.
2548 					 */
2549 					rctl = er32(RCTL);
2550 					rctl &= ~E1000_RCTL_SBP;
2551 					ew32(RCTL, rctl);
2552 					hw->tbi_compatibility_on = false;
2553 				}
2554 			} else {
2555 				/* If TBI compatibility is was previously off,
2556 				 * turn it on. For compatibility with a TBI link
2557 				 * partner, we will store bad packets. Some
2558 				 * frames have an additional byte on the end and
2559 				 * will look like CRC errors to to the hardware.
2560 				 */
2561 				if (!hw->tbi_compatibility_on) {
2562 					hw->tbi_compatibility_on = true;
2563 					rctl = er32(RCTL);
2564 					rctl |= E1000_RCTL_SBP;
2565 					ew32(RCTL, rctl);
2566 				}
2567 			}
2568 		}
2569 	}
2570 
2571 	if ((hw->media_type == e1000_media_type_fiber) ||
2572 	    (hw->media_type == e1000_media_type_internal_serdes))
2573 		e1000_check_for_serdes_link_generic(hw);
2574 
2575 	return E1000_SUCCESS;
2576 }
2577 
2578 /**
2579  * e1000_get_speed_and_duplex
2580  * @hw: Struct containing variables accessed by shared code
2581  * @speed: Speed of the connection
2582  * @duplex: Duplex setting of the connection
2583  *
2584  * Detects the current speed and duplex settings of the hardware.
2585  */
2586 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
2587 {
2588 	u32 status;
2589 	s32 ret_val;
2590 	u16 phy_data;
2591 
2592 	if (hw->mac_type >= e1000_82543) {
2593 		status = er32(STATUS);
2594 		if (status & E1000_STATUS_SPEED_1000) {
2595 			*speed = SPEED_1000;
2596 			e_dbg("1000 Mbs, ");
2597 		} else if (status & E1000_STATUS_SPEED_100) {
2598 			*speed = SPEED_100;
2599 			e_dbg("100 Mbs, ");
2600 		} else {
2601 			*speed = SPEED_10;
2602 			e_dbg("10 Mbs, ");
2603 		}
2604 
2605 		if (status & E1000_STATUS_FD) {
2606 			*duplex = FULL_DUPLEX;
2607 			e_dbg("Full Duplex\n");
2608 		} else {
2609 			*duplex = HALF_DUPLEX;
2610 			e_dbg(" Half Duplex\n");
2611 		}
2612 	} else {
2613 		e_dbg("1000 Mbs, Full Duplex\n");
2614 		*speed = SPEED_1000;
2615 		*duplex = FULL_DUPLEX;
2616 	}
2617 
2618 	/* IGP01 PHY may advertise full duplex operation after speed downgrade
2619 	 * even if it is operating at half duplex.  Here we set the duplex
2620 	 * settings to match the duplex in the link partner's capabilities.
2621 	 */
2622 	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2623 		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2624 		if (ret_val)
2625 			return ret_val;
2626 
2627 		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2628 			*duplex = HALF_DUPLEX;
2629 		else {
2630 			ret_val =
2631 			    e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2632 			if (ret_val)
2633 				return ret_val;
2634 			if ((*speed == SPEED_100 &&
2635 			     !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
2636 			    (*speed == SPEED_10 &&
2637 			     !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2638 				*duplex = HALF_DUPLEX;
2639 		}
2640 	}
2641 
2642 	return E1000_SUCCESS;
2643 }
2644 
2645 /**
2646  * e1000_wait_autoneg
2647  * @hw: Struct containing variables accessed by shared code
2648  *
2649  * Blocks until autoneg completes or times out (~4.5 seconds)
2650  */
2651 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2652 {
2653 	s32 ret_val;
2654 	u16 i;
2655 	u16 phy_data;
2656 
2657 	e_dbg("Waiting for Auto-Neg to complete.\n");
2658 
2659 	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
2660 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2661 		/* Read the MII Status Register and wait for Auto-Neg
2662 		 * Complete bit to be set.
2663 		 */
2664 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2665 		if (ret_val)
2666 			return ret_val;
2667 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2668 		if (ret_val)
2669 			return ret_val;
2670 		if (phy_data & MII_SR_AUTONEG_COMPLETE)
2671 			return E1000_SUCCESS;
2672 
2673 		msleep(100);
2674 	}
2675 	return E1000_SUCCESS;
2676 }
2677 
2678 /**
2679  * e1000_raise_mdi_clk - Raises the Management Data Clock
2680  * @hw: Struct containing variables accessed by shared code
2681  * @ctrl: Device control register's current value
2682  */
2683 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2684 {
2685 	/* Raise the clock input to the Management Data Clock (by setting the
2686 	 * MDC bit), and then delay 10 microseconds.
2687 	 */
2688 	ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2689 	E1000_WRITE_FLUSH();
2690 	udelay(10);
2691 }
2692 
2693 /**
2694  * e1000_lower_mdi_clk - Lowers the Management Data Clock
2695  * @hw: Struct containing variables accessed by shared code
2696  * @ctrl: Device control register's current value
2697  */
2698 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2699 {
2700 	/* Lower the clock input to the Management Data Clock (by clearing the
2701 	 * MDC bit), and then delay 10 microseconds.
2702 	 */
2703 	ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2704 	E1000_WRITE_FLUSH();
2705 	udelay(10);
2706 }
2707 
2708 /**
2709  * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2710  * @hw: Struct containing variables accessed by shared code
2711  * @data: Data to send out to the PHY
2712  * @count: Number of bits to shift out
2713  *
2714  * Bits are shifted out in MSB to LSB order.
2715  */
2716 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
2717 {
2718 	u32 ctrl;
2719 	u32 mask;
2720 
2721 	/* We need to shift "count" number of bits out to the PHY. So, the value
2722 	 * in the "data" parameter will be shifted out to the PHY one bit at a
2723 	 * time. In order to do this, "data" must be broken down into bits.
2724 	 */
2725 	mask = 0x01;
2726 	mask <<= (count - 1);
2727 
2728 	ctrl = er32(CTRL);
2729 
2730 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2731 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2732 
2733 	while (mask) {
2734 		/* A "1" is shifted out to the PHY by setting the MDIO bit to
2735 		 * "1" and then raising and lowering the Management Data Clock.
2736 		 * A "0" is shifted out to the PHY by setting the MDIO bit to
2737 		 * "0" and then raising and lowering the clock.
2738 		 */
2739 		if (data & mask)
2740 			ctrl |= E1000_CTRL_MDIO;
2741 		else
2742 			ctrl &= ~E1000_CTRL_MDIO;
2743 
2744 		ew32(CTRL, ctrl);
2745 		E1000_WRITE_FLUSH();
2746 
2747 		udelay(10);
2748 
2749 		e1000_raise_mdi_clk(hw, &ctrl);
2750 		e1000_lower_mdi_clk(hw, &ctrl);
2751 
2752 		mask = mask >> 1;
2753 	}
2754 }
2755 
2756 /**
2757  * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2758  * @hw: Struct containing variables accessed by shared code
2759  *
2760  * Bits are shifted in in MSB to LSB order.
2761  */
2762 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2763 {
2764 	u32 ctrl;
2765 	u16 data = 0;
2766 	u8 i;
2767 
2768 	/* In order to read a register from the PHY, we need to shift in a total
2769 	 * of 18 bits from the PHY. The first two bit (turnaround) times are
2770 	 * used to avoid contention on the MDIO pin when a read operation is
2771 	 * performed. These two bits are ignored by us and thrown away. Bits are
2772 	 * "shifted in" by raising the input to the Management Data Clock
2773 	 * (setting the MDC bit), and then reading the value of the MDIO bit.
2774 	 */
2775 	ctrl = er32(CTRL);
2776 
2777 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
2778 	 * input.
2779 	 */
2780 	ctrl &= ~E1000_CTRL_MDIO_DIR;
2781 	ctrl &= ~E1000_CTRL_MDIO;
2782 
2783 	ew32(CTRL, ctrl);
2784 	E1000_WRITE_FLUSH();
2785 
2786 	/* Raise and Lower the clock before reading in the data. This accounts
2787 	 * for the turnaround bits. The first clock occurred when we clocked out
2788 	 * the last bit of the Register Address.
2789 	 */
2790 	e1000_raise_mdi_clk(hw, &ctrl);
2791 	e1000_lower_mdi_clk(hw, &ctrl);
2792 
2793 	for (data = 0, i = 0; i < 16; i++) {
2794 		data = data << 1;
2795 		e1000_raise_mdi_clk(hw, &ctrl);
2796 		ctrl = er32(CTRL);
2797 		/* Check to see if we shifted in a "1". */
2798 		if (ctrl & E1000_CTRL_MDIO)
2799 			data |= 1;
2800 		e1000_lower_mdi_clk(hw, &ctrl);
2801 	}
2802 
2803 	e1000_raise_mdi_clk(hw, &ctrl);
2804 	e1000_lower_mdi_clk(hw, &ctrl);
2805 
2806 	return data;
2807 }
2808 
2809 /**
2810  * e1000_read_phy_reg - read a phy register
2811  * @hw: Struct containing variables accessed by shared code
2812  * @reg_addr: address of the PHY register to read
2813  * @phy_data: pointer to the value on the PHY register
2814  *
2815  * Reads the value from a PHY register, if the value is on a specific non zero
2816  * page, sets the page first.
2817  */
2818 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
2819 {
2820 	u32 ret_val;
2821 	unsigned long flags;
2822 
2823 	spin_lock_irqsave(&e1000_phy_lock, flags);
2824 
2825 	if ((hw->phy_type == e1000_phy_igp) &&
2826 	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2827 		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2828 						 (u16) reg_addr);
2829 		if (ret_val)
2830 			goto out;
2831 	}
2832 
2833 	ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2834 					phy_data);
2835 out:
2836 	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2837 
2838 	return ret_val;
2839 }
2840 
2841 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2842 				 u16 *phy_data)
2843 {
2844 	u32 i;
2845 	u32 mdic = 0;
2846 	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2847 
2848 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2849 		e_dbg("PHY Address %d is out of range\n", reg_addr);
2850 		return -E1000_ERR_PARAM;
2851 	}
2852 
2853 	if (hw->mac_type > e1000_82543) {
2854 		/* Set up Op-code, Phy Address, and register address in the MDI
2855 		 * Control register.  The MAC will take care of interfacing with
2856 		 * the PHY to retrieve the desired data.
2857 		 */
2858 		if (hw->mac_type == e1000_ce4100) {
2859 			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2860 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2861 				(INTEL_CE_GBE_MDIC_OP_READ) |
2862 				(INTEL_CE_GBE_MDIC_GO));
2863 
2864 			writel(mdic, E1000_MDIO_CMD);
2865 
2866 			/* Poll the ready bit to see if the MDI read
2867 			 * completed
2868 			 */
2869 			for (i = 0; i < 64; i++) {
2870 				udelay(50);
2871 				mdic = readl(E1000_MDIO_CMD);
2872 				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2873 					break;
2874 			}
2875 
2876 			if (mdic & INTEL_CE_GBE_MDIC_GO) {
2877 				e_dbg("MDI Read did not complete\n");
2878 				return -E1000_ERR_PHY;
2879 			}
2880 
2881 			mdic = readl(E1000_MDIO_STS);
2882 			if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2883 				e_dbg("MDI Read Error\n");
2884 				return -E1000_ERR_PHY;
2885 			}
2886 			*phy_data = (u16)mdic;
2887 		} else {
2888 			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2889 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2890 				(E1000_MDIC_OP_READ));
2891 
2892 			ew32(MDIC, mdic);
2893 
2894 			/* Poll the ready bit to see if the MDI read
2895 			 * completed
2896 			 */
2897 			for (i = 0; i < 64; i++) {
2898 				udelay(50);
2899 				mdic = er32(MDIC);
2900 				if (mdic & E1000_MDIC_READY)
2901 					break;
2902 			}
2903 			if (!(mdic & E1000_MDIC_READY)) {
2904 				e_dbg("MDI Read did not complete\n");
2905 				return -E1000_ERR_PHY;
2906 			}
2907 			if (mdic & E1000_MDIC_ERROR) {
2908 				e_dbg("MDI Error\n");
2909 				return -E1000_ERR_PHY;
2910 			}
2911 			*phy_data = (u16)mdic;
2912 		}
2913 	} else {
2914 		/* We must first send a preamble through the MDIO pin to signal
2915 		 * the beginning of an MII instruction.  This is done by sending
2916 		 * 32 consecutive "1" bits.
2917 		 */
2918 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2919 
2920 		/* Now combine the next few fields that are required for a read
2921 		 * operation.  We use this method instead of calling the
2922 		 * e1000_shift_out_mdi_bits routine five different times. The
2923 		 * format of a MII read instruction consists of a shift out of
2924 		 * 14 bits and is defined as follows:
2925 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2926 		 * followed by a shift in of 18 bits.  This first two bits
2927 		 * shifted in are TurnAround bits used to avoid contention on
2928 		 * the MDIO pin when a READ operation is performed.  These two
2929 		 * bits are thrown away followed by a shift in of 16 bits which
2930 		 * contains the desired data.
2931 		 */
2932 		mdic = ((reg_addr) | (phy_addr << 5) |
2933 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
2934 
2935 		e1000_shift_out_mdi_bits(hw, mdic, 14);
2936 
2937 		/* Now that we've shifted out the read command to the MII, we
2938 		 * need to "shift in" the 16-bit value (18 total bits) of the
2939 		 * requested PHY register address.
2940 		 */
2941 		*phy_data = e1000_shift_in_mdi_bits(hw);
2942 	}
2943 	return E1000_SUCCESS;
2944 }
2945 
2946 /**
2947  * e1000_write_phy_reg - write a phy register
2948  *
2949  * @hw: Struct containing variables accessed by shared code
2950  * @reg_addr: address of the PHY register to write
2951  * @data: data to write to the PHY
2952  *
2953  * Writes a value to a PHY register
2954  */
2955 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
2956 {
2957 	u32 ret_val;
2958 	unsigned long flags;
2959 
2960 	spin_lock_irqsave(&e1000_phy_lock, flags);
2961 
2962 	if ((hw->phy_type == e1000_phy_igp) &&
2963 	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2964 		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2965 						 (u16)reg_addr);
2966 		if (ret_val) {
2967 			spin_unlock_irqrestore(&e1000_phy_lock, flags);
2968 			return ret_val;
2969 		}
2970 	}
2971 
2972 	ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2973 					 phy_data);
2974 	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2975 
2976 	return ret_val;
2977 }
2978 
2979 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2980 				  u16 phy_data)
2981 {
2982 	u32 i;
2983 	u32 mdic = 0;
2984 	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2985 
2986 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2987 		e_dbg("PHY Address %d is out of range\n", reg_addr);
2988 		return -E1000_ERR_PARAM;
2989 	}
2990 
2991 	if (hw->mac_type > e1000_82543) {
2992 		/* Set up Op-code, Phy Address, register address, and data
2993 		 * intended for the PHY register in the MDI Control register.
2994 		 * The MAC will take care of interfacing with the PHY to send
2995 		 * the desired data.
2996 		 */
2997 		if (hw->mac_type == e1000_ce4100) {
2998 			mdic = (((u32)phy_data) |
2999 				(reg_addr << E1000_MDIC_REG_SHIFT) |
3000 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
3001 				(INTEL_CE_GBE_MDIC_OP_WRITE) |
3002 				(INTEL_CE_GBE_MDIC_GO));
3003 
3004 			writel(mdic, E1000_MDIO_CMD);
3005 
3006 			/* Poll the ready bit to see if the MDI read
3007 			 * completed
3008 			 */
3009 			for (i = 0; i < 640; i++) {
3010 				udelay(5);
3011 				mdic = readl(E1000_MDIO_CMD);
3012 				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
3013 					break;
3014 			}
3015 			if (mdic & INTEL_CE_GBE_MDIC_GO) {
3016 				e_dbg("MDI Write did not complete\n");
3017 				return -E1000_ERR_PHY;
3018 			}
3019 		} else {
3020 			mdic = (((u32)phy_data) |
3021 				(reg_addr << E1000_MDIC_REG_SHIFT) |
3022 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
3023 				(E1000_MDIC_OP_WRITE));
3024 
3025 			ew32(MDIC, mdic);
3026 
3027 			/* Poll the ready bit to see if the MDI read
3028 			 * completed
3029 			 */
3030 			for (i = 0; i < 641; i++) {
3031 				udelay(5);
3032 				mdic = er32(MDIC);
3033 				if (mdic & E1000_MDIC_READY)
3034 					break;
3035 			}
3036 			if (!(mdic & E1000_MDIC_READY)) {
3037 				e_dbg("MDI Write did not complete\n");
3038 				return -E1000_ERR_PHY;
3039 			}
3040 		}
3041 	} else {
3042 		/* We'll need to use the SW defined pins to shift the write
3043 		 * command out to the PHY. We first send a preamble to the PHY
3044 		 * to signal the beginning of the MII instruction.  This is done
3045 		 * by sending 32 consecutive "1" bits.
3046 		 */
3047 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3048 
3049 		/* Now combine the remaining required fields that will indicate
3050 		 * a write operation. We use this method instead of calling the
3051 		 * e1000_shift_out_mdi_bits routine for each field in the
3052 		 * command. The format of a MII write instruction is as follows:
3053 		 * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>.
3054 		 */
3055 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3056 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3057 		mdic <<= 16;
3058 		mdic |= (u32)phy_data;
3059 
3060 		e1000_shift_out_mdi_bits(hw, mdic, 32);
3061 	}
3062 
3063 	return E1000_SUCCESS;
3064 }
3065 
3066 /**
3067  * e1000_phy_hw_reset - reset the phy, hardware style
3068  * @hw: Struct containing variables accessed by shared code
3069  *
3070  * Returns the PHY to the power-on reset state
3071  */
3072 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3073 {
3074 	u32 ctrl, ctrl_ext;
3075 	u32 led_ctrl;
3076 
3077 	e_dbg("Resetting Phy...\n");
3078 
3079 	if (hw->mac_type > e1000_82543) {
3080 		/* Read the device control register and assert the
3081 		 * E1000_CTRL_PHY_RST bit. Then, take it out of reset.
3082 		 * For e1000 hardware, we delay for 10ms between the assert
3083 		 * and de-assert.
3084 		 */
3085 		ctrl = er32(CTRL);
3086 		ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3087 		E1000_WRITE_FLUSH();
3088 
3089 		msleep(10);
3090 
3091 		ew32(CTRL, ctrl);
3092 		E1000_WRITE_FLUSH();
3093 
3094 	} else {
3095 		/* Read the Extended Device Control Register, assert the
3096 		 * PHY_RESET_DIR bit to put the PHY into reset. Then, take it
3097 		 * out of reset.
3098 		 */
3099 		ctrl_ext = er32(CTRL_EXT);
3100 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3101 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3102 		ew32(CTRL_EXT, ctrl_ext);
3103 		E1000_WRITE_FLUSH();
3104 		msleep(10);
3105 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3106 		ew32(CTRL_EXT, ctrl_ext);
3107 		E1000_WRITE_FLUSH();
3108 	}
3109 	udelay(150);
3110 
3111 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3112 		/* Configure activity LED after PHY reset */
3113 		led_ctrl = er32(LEDCTL);
3114 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
3115 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3116 		ew32(LEDCTL, led_ctrl);
3117 	}
3118 
3119 	/* Wait for FW to finish PHY configuration. */
3120 	return e1000_get_phy_cfg_done(hw);
3121 }
3122 
3123 /**
3124  * e1000_phy_reset - reset the phy to commit settings
3125  * @hw: Struct containing variables accessed by shared code
3126  *
3127  * Resets the PHY
3128  * Sets bit 15 of the MII Control register
3129  */
3130 s32 e1000_phy_reset(struct e1000_hw *hw)
3131 {
3132 	s32 ret_val;
3133 	u16 phy_data;
3134 
3135 	switch (hw->phy_type) {
3136 	case e1000_phy_igp:
3137 		ret_val = e1000_phy_hw_reset(hw);
3138 		if (ret_val)
3139 			return ret_val;
3140 		break;
3141 	default:
3142 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3143 		if (ret_val)
3144 			return ret_val;
3145 
3146 		phy_data |= MII_CR_RESET;
3147 		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3148 		if (ret_val)
3149 			return ret_val;
3150 
3151 		udelay(1);
3152 		break;
3153 	}
3154 
3155 	if (hw->phy_type == e1000_phy_igp)
3156 		e1000_phy_init_script(hw);
3157 
3158 	return E1000_SUCCESS;
3159 }
3160 
3161 /**
3162  * e1000_detect_gig_phy - check the phy type
3163  * @hw: Struct containing variables accessed by shared code
3164  *
3165  * Probes the expected PHY address for known PHY IDs
3166  */
3167 static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
3168 {
3169 	s32 phy_init_status, ret_val;
3170 	u16 phy_id_high, phy_id_low;
3171 	bool match = false;
3172 
3173 	if (hw->phy_id != 0)
3174 		return E1000_SUCCESS;
3175 
3176 	/* Read the PHY ID Registers to identify which PHY is onboard. */
3177 	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3178 	if (ret_val)
3179 		return ret_val;
3180 
3181 	hw->phy_id = (u32)(phy_id_high << 16);
3182 	udelay(20);
3183 	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3184 	if (ret_val)
3185 		return ret_val;
3186 
3187 	hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK);
3188 	hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK;
3189 
3190 	switch (hw->mac_type) {
3191 	case e1000_82543:
3192 		if (hw->phy_id == M88E1000_E_PHY_ID)
3193 			match = true;
3194 		break;
3195 	case e1000_82544:
3196 		if (hw->phy_id == M88E1000_I_PHY_ID)
3197 			match = true;
3198 		break;
3199 	case e1000_82540:
3200 	case e1000_82545:
3201 	case e1000_82545_rev_3:
3202 	case e1000_82546:
3203 	case e1000_82546_rev_3:
3204 		if (hw->phy_id == M88E1011_I_PHY_ID)
3205 			match = true;
3206 		break;
3207 	case e1000_ce4100:
3208 		if ((hw->phy_id == RTL8211B_PHY_ID) ||
3209 		    (hw->phy_id == RTL8201N_PHY_ID) ||
3210 		    (hw->phy_id == M88E1118_E_PHY_ID))
3211 			match = true;
3212 		break;
3213 	case e1000_82541:
3214 	case e1000_82541_rev_2:
3215 	case e1000_82547:
3216 	case e1000_82547_rev_2:
3217 		if (hw->phy_id == IGP01E1000_I_PHY_ID)
3218 			match = true;
3219 		break;
3220 	default:
3221 		e_dbg("Invalid MAC type %d\n", hw->mac_type);
3222 		return -E1000_ERR_CONFIG;
3223 	}
3224 	phy_init_status = e1000_set_phy_type(hw);
3225 
3226 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
3227 		e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
3228 		return E1000_SUCCESS;
3229 	}
3230 	e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
3231 	return -E1000_ERR_PHY;
3232 }
3233 
3234 /**
3235  * e1000_phy_reset_dsp - reset DSP
3236  * @hw: Struct containing variables accessed by shared code
3237  *
3238  * Resets the PHY's DSP
3239  */
3240 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
3241 {
3242 	s32 ret_val;
3243 
3244 	do {
3245 		ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3246 		if (ret_val)
3247 			break;
3248 		ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3249 		if (ret_val)
3250 			break;
3251 		ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3252 		if (ret_val)
3253 			break;
3254 		ret_val = E1000_SUCCESS;
3255 	} while (0);
3256 
3257 	return ret_val;
3258 }
3259 
3260 /**
3261  * e1000_phy_igp_get_info - get igp specific registers
3262  * @hw: Struct containing variables accessed by shared code
3263  * @phy_info: PHY information structure
3264  *
3265  * Get PHY information from various PHY registers for igp PHY only.
3266  */
3267 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3268 				  struct e1000_phy_info *phy_info)
3269 {
3270 	s32 ret_val;
3271 	u16 phy_data, min_length, max_length, average;
3272 	e1000_rev_polarity polarity;
3273 
3274 	/* The downshift status is checked only once, after link is established,
3275 	 * and it stored in the hw->speed_downgraded parameter.
3276 	 */
3277 	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3278 
3279 	/* IGP01E1000 does not need to support it. */
3280 	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3281 
3282 	/* IGP01E1000 always correct polarity reversal */
3283 	phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3284 
3285 	/* Check polarity status */
3286 	ret_val = e1000_check_polarity(hw, &polarity);
3287 	if (ret_val)
3288 		return ret_val;
3289 
3290 	phy_info->cable_polarity = polarity;
3291 
3292 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3293 	if (ret_val)
3294 		return ret_val;
3295 
3296 	phy_info->mdix_mode =
3297 	    (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
3298 				 IGP01E1000_PSSR_MDIX_SHIFT);
3299 
3300 	if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3301 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
3302 		/* Local/Remote Receiver Information are only valid @ 1000
3303 		 * Mbps
3304 		 */
3305 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3306 		if (ret_val)
3307 			return ret_val;
3308 
3309 		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3310 				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3311 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3312 		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3313 				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3314 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3315 
3316 		/* Get cable length */
3317 		ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3318 		if (ret_val)
3319 			return ret_val;
3320 
3321 		/* Translate to old method */
3322 		average = (max_length + min_length) / 2;
3323 
3324 		if (average <= e1000_igp_cable_length_50)
3325 			phy_info->cable_length = e1000_cable_length_50;
3326 		else if (average <= e1000_igp_cable_length_80)
3327 			phy_info->cable_length = e1000_cable_length_50_80;
3328 		else if (average <= e1000_igp_cable_length_110)
3329 			phy_info->cable_length = e1000_cable_length_80_110;
3330 		else if (average <= e1000_igp_cable_length_140)
3331 			phy_info->cable_length = e1000_cable_length_110_140;
3332 		else
3333 			phy_info->cable_length = e1000_cable_length_140;
3334 	}
3335 
3336 	return E1000_SUCCESS;
3337 }
3338 
3339 /**
3340  * e1000_phy_m88_get_info - get m88 specific registers
3341  * @hw: Struct containing variables accessed by shared code
3342  * @phy_info: PHY information structure
3343  *
3344  * Get PHY information from various PHY registers for m88 PHY only.
3345  */
3346 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3347 				  struct e1000_phy_info *phy_info)
3348 {
3349 	s32 ret_val;
3350 	u16 phy_data;
3351 	e1000_rev_polarity polarity;
3352 
3353 	/* The downshift status is checked only once, after link is established,
3354 	 * and it stored in the hw->speed_downgraded parameter.
3355 	 */
3356 	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3357 
3358 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3359 	if (ret_val)
3360 		return ret_val;
3361 
3362 	phy_info->extended_10bt_distance =
3363 	    ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3364 	     M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
3365 	    e1000_10bt_ext_dist_enable_lower :
3366 	    e1000_10bt_ext_dist_enable_normal;
3367 
3368 	phy_info->polarity_correction =
3369 	    ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3370 	     M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
3371 	    e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
3372 
3373 	/* Check polarity status */
3374 	ret_val = e1000_check_polarity(hw, &polarity);
3375 	if (ret_val)
3376 		return ret_val;
3377 	phy_info->cable_polarity = polarity;
3378 
3379 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3380 	if (ret_val)
3381 		return ret_val;
3382 
3383 	phy_info->mdix_mode =
3384 	    (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
3385 				 M88E1000_PSSR_MDIX_SHIFT);
3386 
3387 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3388 		/* Cable Length Estimation and Local/Remote Receiver Information
3389 		 * are only valid at 1000 Mbps.
3390 		 */
3391 		phy_info->cable_length =
3392 		    (e1000_cable_length) ((phy_data &
3393 					   M88E1000_PSSR_CABLE_LENGTH) >>
3394 					  M88E1000_PSSR_CABLE_LENGTH_SHIFT);
3395 
3396 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3397 		if (ret_val)
3398 			return ret_val;
3399 
3400 		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3401 				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3402 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3403 		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3404 				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3405 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3406 	}
3407 
3408 	return E1000_SUCCESS;
3409 }
3410 
3411 /**
3412  * e1000_phy_get_info - request phy info
3413  * @hw: Struct containing variables accessed by shared code
3414  * @phy_info: PHY information structure
3415  *
3416  * Get PHY information from various PHY registers
3417  */
3418 s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
3419 {
3420 	s32 ret_val;
3421 	u16 phy_data;
3422 
3423 	phy_info->cable_length = e1000_cable_length_undefined;
3424 	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3425 	phy_info->cable_polarity = e1000_rev_polarity_undefined;
3426 	phy_info->downshift = e1000_downshift_undefined;
3427 	phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3428 	phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3429 	phy_info->local_rx = e1000_1000t_rx_status_undefined;
3430 	phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3431 
3432 	if (hw->media_type != e1000_media_type_copper) {
3433 		e_dbg("PHY info is only valid for copper media\n");
3434 		return -E1000_ERR_CONFIG;
3435 	}
3436 
3437 	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3438 	if (ret_val)
3439 		return ret_val;
3440 
3441 	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3442 	if (ret_val)
3443 		return ret_val;
3444 
3445 	if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3446 		e_dbg("PHY info is only valid if link is up\n");
3447 		return -E1000_ERR_CONFIG;
3448 	}
3449 
3450 	if (hw->phy_type == e1000_phy_igp)
3451 		return e1000_phy_igp_get_info(hw, phy_info);
3452 	else if ((hw->phy_type == e1000_phy_8211) ||
3453 		 (hw->phy_type == e1000_phy_8201))
3454 		return E1000_SUCCESS;
3455 	else
3456 		return e1000_phy_m88_get_info(hw, phy_info);
3457 }
3458 
3459 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
3460 {
3461 	if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3462 		e_dbg("Invalid MDI setting detected\n");
3463 		hw->mdix = 1;
3464 		return -E1000_ERR_CONFIG;
3465 	}
3466 	return E1000_SUCCESS;
3467 }
3468 
3469 /**
3470  * e1000_init_eeprom_params - initialize sw eeprom vars
3471  * @hw: Struct containing variables accessed by shared code
3472  *
3473  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
3474  * is configured.
3475  */
3476 s32 e1000_init_eeprom_params(struct e1000_hw *hw)
3477 {
3478 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3479 	u32 eecd = er32(EECD);
3480 	s32 ret_val = E1000_SUCCESS;
3481 	u16 eeprom_size;
3482 
3483 	switch (hw->mac_type) {
3484 	case e1000_82542_rev2_0:
3485 	case e1000_82542_rev2_1:
3486 	case e1000_82543:
3487 	case e1000_82544:
3488 		eeprom->type = e1000_eeprom_microwire;
3489 		eeprom->word_size = 64;
3490 		eeprom->opcode_bits = 3;
3491 		eeprom->address_bits = 6;
3492 		eeprom->delay_usec = 50;
3493 		break;
3494 	case e1000_82540:
3495 	case e1000_82545:
3496 	case e1000_82545_rev_3:
3497 	case e1000_82546:
3498 	case e1000_82546_rev_3:
3499 		eeprom->type = e1000_eeprom_microwire;
3500 		eeprom->opcode_bits = 3;
3501 		eeprom->delay_usec = 50;
3502 		if (eecd & E1000_EECD_SIZE) {
3503 			eeprom->word_size = 256;
3504 			eeprom->address_bits = 8;
3505 		} else {
3506 			eeprom->word_size = 64;
3507 			eeprom->address_bits = 6;
3508 		}
3509 		break;
3510 	case e1000_82541:
3511 	case e1000_82541_rev_2:
3512 	case e1000_82547:
3513 	case e1000_82547_rev_2:
3514 		if (eecd & E1000_EECD_TYPE) {
3515 			eeprom->type = e1000_eeprom_spi;
3516 			eeprom->opcode_bits = 8;
3517 			eeprom->delay_usec = 1;
3518 			if (eecd & E1000_EECD_ADDR_BITS) {
3519 				eeprom->page_size = 32;
3520 				eeprom->address_bits = 16;
3521 			} else {
3522 				eeprom->page_size = 8;
3523 				eeprom->address_bits = 8;
3524 			}
3525 		} else {
3526 			eeprom->type = e1000_eeprom_microwire;
3527 			eeprom->opcode_bits = 3;
3528 			eeprom->delay_usec = 50;
3529 			if (eecd & E1000_EECD_ADDR_BITS) {
3530 				eeprom->word_size = 256;
3531 				eeprom->address_bits = 8;
3532 			} else {
3533 				eeprom->word_size = 64;
3534 				eeprom->address_bits = 6;
3535 			}
3536 		}
3537 		break;
3538 	default:
3539 		break;
3540 	}
3541 
3542 	if (eeprom->type == e1000_eeprom_spi) {
3543 		/* eeprom_size will be an enum [0..8] that maps to eeprom sizes
3544 		 * 128B to 32KB (incremented by powers of 2).
3545 		 */
3546 		/* Set to default value for initial eeprom read. */
3547 		eeprom->word_size = 64;
3548 		ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3549 		if (ret_val)
3550 			return ret_val;
3551 		eeprom_size =
3552 		    (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3553 		/* 256B eeprom size was not supported in earlier hardware, so we
3554 		 * bump eeprom_size up one to ensure that "1" (which maps to
3555 		 * 256B) is never the result used in the shifting logic below.
3556 		 */
3557 		if (eeprom_size)
3558 			eeprom_size++;
3559 
3560 		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3561 	}
3562 	return ret_val;
3563 }
3564 
3565 /**
3566  * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3567  * @hw: Struct containing variables accessed by shared code
3568  * @eecd: EECD's current value
3569  */
3570 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
3571 {
3572 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
3573 	 * wait <delay> microseconds.
3574 	 */
3575 	*eecd = *eecd | E1000_EECD_SK;
3576 	ew32(EECD, *eecd);
3577 	E1000_WRITE_FLUSH();
3578 	udelay(hw->eeprom.delay_usec);
3579 }
3580 
3581 /**
3582  * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3583  * @hw: Struct containing variables accessed by shared code
3584  * @eecd: EECD's current value
3585  */
3586 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
3587 {
3588 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and
3589 	 * then wait 50 microseconds.
3590 	 */
3591 	*eecd = *eecd & ~E1000_EECD_SK;
3592 	ew32(EECD, *eecd);
3593 	E1000_WRITE_FLUSH();
3594 	udelay(hw->eeprom.delay_usec);
3595 }
3596 
3597 /**
3598  * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3599  * @hw: Struct containing variables accessed by shared code
3600  * @data: data to send to the EEPROM
3601  * @count: number of bits to shift out
3602  */
3603 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
3604 {
3605 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3606 	u32 eecd;
3607 	u32 mask;
3608 
3609 	/* We need to shift "count" bits out to the EEPROM. So, value in the
3610 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3611 	 * In order to do this, "data" must be broken down into bits.
3612 	 */
3613 	mask = 0x01 << (count - 1);
3614 	eecd = er32(EECD);
3615 	if (eeprom->type == e1000_eeprom_microwire)
3616 		eecd &= ~E1000_EECD_DO;
3617 	else if (eeprom->type == e1000_eeprom_spi)
3618 		eecd |= E1000_EECD_DO;
3619 
3620 	do {
3621 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a
3622 		 * "1", and then raising and then lowering the clock (the SK bit
3623 		 * controls the clock input to the EEPROM).  A "0" is shifted
3624 		 * out to the EEPROM by setting "DI" to "0" and then raising and
3625 		 * then lowering the clock.
3626 		 */
3627 		eecd &= ~E1000_EECD_DI;
3628 
3629 		if (data & mask)
3630 			eecd |= E1000_EECD_DI;
3631 
3632 		ew32(EECD, eecd);
3633 		E1000_WRITE_FLUSH();
3634 
3635 		udelay(eeprom->delay_usec);
3636 
3637 		e1000_raise_ee_clk(hw, &eecd);
3638 		e1000_lower_ee_clk(hw, &eecd);
3639 
3640 		mask = mask >> 1;
3641 
3642 	} while (mask);
3643 
3644 	/* We leave the "DI" bit set to "0" when we leave this routine. */
3645 	eecd &= ~E1000_EECD_DI;
3646 	ew32(EECD, eecd);
3647 }
3648 
3649 /**
3650  * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3651  * @hw: Struct containing variables accessed by shared code
3652  * @count: number of bits to shift in
3653  */
3654 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
3655 {
3656 	u32 eecd;
3657 	u32 i;
3658 	u16 data;
3659 
3660 	/* In order to read a register from the EEPROM, we need to shift 'count'
3661 	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3662 	 * input to the EEPROM (setting the SK bit), and then reading the value
3663 	 * of the "DO" bit.  During this "shifting in" process the "DI" bit
3664 	 * should always be clear.
3665 	 */
3666 
3667 	eecd = er32(EECD);
3668 
3669 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3670 	data = 0;
3671 
3672 	for (i = 0; i < count; i++) {
3673 		data = data << 1;
3674 		e1000_raise_ee_clk(hw, &eecd);
3675 
3676 		eecd = er32(EECD);
3677 
3678 		eecd &= ~(E1000_EECD_DI);
3679 		if (eecd & E1000_EECD_DO)
3680 			data |= 1;
3681 
3682 		e1000_lower_ee_clk(hw, &eecd);
3683 	}
3684 
3685 	return data;
3686 }
3687 
3688 /**
3689  * e1000_acquire_eeprom - Prepares EEPROM for access
3690  * @hw: Struct containing variables accessed by shared code
3691  *
3692  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3693  * function should be called before issuing a command to the EEPROM.
3694  */
3695 static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
3696 {
3697 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3698 	u32 eecd, i = 0;
3699 
3700 	eecd = er32(EECD);
3701 
3702 	/* Request EEPROM Access */
3703 	if (hw->mac_type > e1000_82544) {
3704 		eecd |= E1000_EECD_REQ;
3705 		ew32(EECD, eecd);
3706 		eecd = er32(EECD);
3707 		while ((!(eecd & E1000_EECD_GNT)) &&
3708 		       (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3709 			i++;
3710 			udelay(5);
3711 			eecd = er32(EECD);
3712 		}
3713 		if (!(eecd & E1000_EECD_GNT)) {
3714 			eecd &= ~E1000_EECD_REQ;
3715 			ew32(EECD, eecd);
3716 			e_dbg("Could not acquire EEPROM grant\n");
3717 			return -E1000_ERR_EEPROM;
3718 		}
3719 	}
3720 
3721 	/* Setup EEPROM for Read/Write */
3722 
3723 	if (eeprom->type == e1000_eeprom_microwire) {
3724 		/* Clear SK and DI */
3725 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3726 		ew32(EECD, eecd);
3727 
3728 		/* Set CS */
3729 		eecd |= E1000_EECD_CS;
3730 		ew32(EECD, eecd);
3731 	} else if (eeprom->type == e1000_eeprom_spi) {
3732 		/* Clear SK and CS */
3733 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3734 		ew32(EECD, eecd);
3735 		E1000_WRITE_FLUSH();
3736 		udelay(1);
3737 	}
3738 
3739 	return E1000_SUCCESS;
3740 }
3741 
3742 /**
3743  * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3744  * @hw: Struct containing variables accessed by shared code
3745  */
3746 static void e1000_standby_eeprom(struct e1000_hw *hw)
3747 {
3748 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3749 	u32 eecd;
3750 
3751 	eecd = er32(EECD);
3752 
3753 	if (eeprom->type == e1000_eeprom_microwire) {
3754 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3755 		ew32(EECD, eecd);
3756 		E1000_WRITE_FLUSH();
3757 		udelay(eeprom->delay_usec);
3758 
3759 		/* Clock high */
3760 		eecd |= E1000_EECD_SK;
3761 		ew32(EECD, eecd);
3762 		E1000_WRITE_FLUSH();
3763 		udelay(eeprom->delay_usec);
3764 
3765 		/* Select EEPROM */
3766 		eecd |= E1000_EECD_CS;
3767 		ew32(EECD, eecd);
3768 		E1000_WRITE_FLUSH();
3769 		udelay(eeprom->delay_usec);
3770 
3771 		/* Clock low */
3772 		eecd &= ~E1000_EECD_SK;
3773 		ew32(EECD, eecd);
3774 		E1000_WRITE_FLUSH();
3775 		udelay(eeprom->delay_usec);
3776 	} else if (eeprom->type == e1000_eeprom_spi) {
3777 		/* Toggle CS to flush commands */
3778 		eecd |= E1000_EECD_CS;
3779 		ew32(EECD, eecd);
3780 		E1000_WRITE_FLUSH();
3781 		udelay(eeprom->delay_usec);
3782 		eecd &= ~E1000_EECD_CS;
3783 		ew32(EECD, eecd);
3784 		E1000_WRITE_FLUSH();
3785 		udelay(eeprom->delay_usec);
3786 	}
3787 }
3788 
3789 /**
3790  * e1000_release_eeprom - drop chip select
3791  * @hw: Struct containing variables accessed by shared code
3792  *
3793  * Terminates a command by inverting the EEPROM's chip select pin
3794  */
3795 static void e1000_release_eeprom(struct e1000_hw *hw)
3796 {
3797 	u32 eecd;
3798 
3799 	eecd = er32(EECD);
3800 
3801 	if (hw->eeprom.type == e1000_eeprom_spi) {
3802 		eecd |= E1000_EECD_CS;	/* Pull CS high */
3803 		eecd &= ~E1000_EECD_SK;	/* Lower SCK */
3804 
3805 		ew32(EECD, eecd);
3806 		E1000_WRITE_FLUSH();
3807 
3808 		udelay(hw->eeprom.delay_usec);
3809 	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
3810 		/* cleanup eeprom */
3811 
3812 		/* CS on Microwire is active-high */
3813 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3814 
3815 		ew32(EECD, eecd);
3816 
3817 		/* Rising edge of clock */
3818 		eecd |= E1000_EECD_SK;
3819 		ew32(EECD, eecd);
3820 		E1000_WRITE_FLUSH();
3821 		udelay(hw->eeprom.delay_usec);
3822 
3823 		/* Falling edge of clock */
3824 		eecd &= ~E1000_EECD_SK;
3825 		ew32(EECD, eecd);
3826 		E1000_WRITE_FLUSH();
3827 		udelay(hw->eeprom.delay_usec);
3828 	}
3829 
3830 	/* Stop requesting EEPROM access */
3831 	if (hw->mac_type > e1000_82544) {
3832 		eecd &= ~E1000_EECD_REQ;
3833 		ew32(EECD, eecd);
3834 	}
3835 }
3836 
3837 /**
3838  * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3839  * @hw: Struct containing variables accessed by shared code
3840  */
3841 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3842 {
3843 	u16 retry_count = 0;
3844 	u8 spi_stat_reg;
3845 
3846 	/* Read "Status Register" repeatedly until the LSB is cleared.  The
3847 	 * EEPROM will signal that the command has been completed by clearing
3848 	 * bit 0 of the internal status register.  If it's not cleared within
3849 	 * 5 milliseconds, then error out.
3850 	 */
3851 	retry_count = 0;
3852 	do {
3853 		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3854 					hw->eeprom.opcode_bits);
3855 		spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8);
3856 		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3857 			break;
3858 
3859 		udelay(5);
3860 		retry_count += 5;
3861 
3862 		e1000_standby_eeprom(hw);
3863 	} while (retry_count < EEPROM_MAX_RETRY_SPI);
3864 
3865 	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3866 	 * only 0-5mSec on 5V devices)
3867 	 */
3868 	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
3869 		e_dbg("SPI EEPROM Status error\n");
3870 		return -E1000_ERR_EEPROM;
3871 	}
3872 
3873 	return E1000_SUCCESS;
3874 }
3875 
3876 /**
3877  * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3878  * @hw: Struct containing variables accessed by shared code
3879  * @offset: offset of  word in the EEPROM to read
3880  * @data: word read from the EEPROM
3881  * @words: number of words to read
3882  */
3883 s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3884 {
3885 	s32 ret;
3886 
3887 	mutex_lock(&e1000_eeprom_lock);
3888 	ret = e1000_do_read_eeprom(hw, offset, words, data);
3889 	mutex_unlock(&e1000_eeprom_lock);
3890 	return ret;
3891 }
3892 
3893 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3894 				u16 *data)
3895 {
3896 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3897 	u32 i = 0;
3898 
3899 	if (hw->mac_type == e1000_ce4100) {
3900 		GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3901 				      data);
3902 		return E1000_SUCCESS;
3903 	}
3904 
3905 	/* A check for invalid values:  offset too large, too many words, and
3906 	 * not enough words.
3907 	 */
3908 	if ((offset >= eeprom->word_size) ||
3909 	    (words > eeprom->word_size - offset) ||
3910 	    (words == 0)) {
3911 		e_dbg("\"words\" parameter out of bounds. Words = %d,"
3912 		      "size = %d\n", offset, eeprom->word_size);
3913 		return -E1000_ERR_EEPROM;
3914 	}
3915 
3916 	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3917 	 * directly. In this case, we need to acquire the EEPROM so that
3918 	 * FW or other port software does not interrupt.
3919 	 */
3920 	/* Prepare the EEPROM for bit-bang reading */
3921 	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3922 		return -E1000_ERR_EEPROM;
3923 
3924 	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
3925 	 * acquired the EEPROM at this point, so any returns should release it
3926 	 */
3927 	if (eeprom->type == e1000_eeprom_spi) {
3928 		u16 word_in;
3929 		u8 read_opcode = EEPROM_READ_OPCODE_SPI;
3930 
3931 		if (e1000_spi_eeprom_ready(hw)) {
3932 			e1000_release_eeprom(hw);
3933 			return -E1000_ERR_EEPROM;
3934 		}
3935 
3936 		e1000_standby_eeprom(hw);
3937 
3938 		/* Some SPI eeproms use the 8th address bit embedded in the
3939 		 * opcode
3940 		 */
3941 		if ((eeprom->address_bits == 8) && (offset >= 128))
3942 			read_opcode |= EEPROM_A8_OPCODE_SPI;
3943 
3944 		/* Send the READ command (opcode + addr)  */
3945 		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3946 		e1000_shift_out_ee_bits(hw, (u16)(offset * 2),
3947 					eeprom->address_bits);
3948 
3949 		/* Read the data.  The address of the eeprom internally
3950 		 * increments with each byte (spi) being read, saving on the
3951 		 * overhead of eeprom setup and tear-down.  The address counter
3952 		 * will roll over if reading beyond the size of the eeprom, thus
3953 		 * allowing the entire memory to be read starting from any
3954 		 * offset.
3955 		 */
3956 		for (i = 0; i < words; i++) {
3957 			word_in = e1000_shift_in_ee_bits(hw, 16);
3958 			data[i] = (word_in >> 8) | (word_in << 8);
3959 		}
3960 	} else if (eeprom->type == e1000_eeprom_microwire) {
3961 		for (i = 0; i < words; i++) {
3962 			/* Send the READ command (opcode + addr)  */
3963 			e1000_shift_out_ee_bits(hw,
3964 						EEPROM_READ_OPCODE_MICROWIRE,
3965 						eeprom->opcode_bits);
3966 			e1000_shift_out_ee_bits(hw, (u16)(offset + i),
3967 						eeprom->address_bits);
3968 
3969 			/* Read the data.  For microwire, each word requires the
3970 			 * overhead of eeprom setup and tear-down.
3971 			 */
3972 			data[i] = e1000_shift_in_ee_bits(hw, 16);
3973 			e1000_standby_eeprom(hw);
3974 			cond_resched();
3975 		}
3976 	}
3977 
3978 	/* End this read operation */
3979 	e1000_release_eeprom(hw);
3980 
3981 	return E1000_SUCCESS;
3982 }
3983 
3984 /**
3985  * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
3986  * @hw: Struct containing variables accessed by shared code
3987  *
3988  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
3989  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
3990  * valid.
3991  */
3992 s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
3993 {
3994 	u16 checksum = 0;
3995 	u16 i, eeprom_data;
3996 
3997 	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
3998 		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3999 			e_dbg("EEPROM Read Error\n");
4000 			return -E1000_ERR_EEPROM;
4001 		}
4002 		checksum += eeprom_data;
4003 	}
4004 
4005 #ifdef CONFIG_PARISC
4006 	/* This is a signature and not a checksum on HP c8000 */
4007 	if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
4008 		return E1000_SUCCESS;
4009 
4010 #endif
4011 	if (checksum == (u16)EEPROM_SUM)
4012 		return E1000_SUCCESS;
4013 	else {
4014 		e_dbg("EEPROM Checksum Invalid\n");
4015 		return -E1000_ERR_EEPROM;
4016 	}
4017 }
4018 
4019 /**
4020  * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
4021  * @hw: Struct containing variables accessed by shared code
4022  *
4023  * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
4024  * Writes the difference to word offset 63 of the EEPROM.
4025  */
4026 s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
4027 {
4028 	u16 checksum = 0;
4029 	u16 i, eeprom_data;
4030 
4031 	for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
4032 		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4033 			e_dbg("EEPROM Read Error\n");
4034 			return -E1000_ERR_EEPROM;
4035 		}
4036 		checksum += eeprom_data;
4037 	}
4038 	checksum = (u16)EEPROM_SUM - checksum;
4039 	if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4040 		e_dbg("EEPROM Write Error\n");
4041 		return -E1000_ERR_EEPROM;
4042 	}
4043 	return E1000_SUCCESS;
4044 }
4045 
4046 /**
4047  * e1000_write_eeprom - write words to the different EEPROM types.
4048  * @hw: Struct containing variables accessed by shared code
4049  * @offset: offset within the EEPROM to be written to
4050  * @words: number of words to write
4051  * @data: 16 bit word to be written to the EEPROM
4052  *
4053  * If e1000_update_eeprom_checksum is not called after this function, the
4054  * EEPROM will most likely contain an invalid checksum.
4055  */
4056 s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4057 {
4058 	s32 ret;
4059 
4060 	mutex_lock(&e1000_eeprom_lock);
4061 	ret = e1000_do_write_eeprom(hw, offset, words, data);
4062 	mutex_unlock(&e1000_eeprom_lock);
4063 	return ret;
4064 }
4065 
4066 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4067 				 u16 *data)
4068 {
4069 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4070 	s32 status = 0;
4071 
4072 	if (hw->mac_type == e1000_ce4100) {
4073 		GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4074 				       data);
4075 		return E1000_SUCCESS;
4076 	}
4077 
4078 	/* A check for invalid values:  offset too large, too many words, and
4079 	 * not enough words.
4080 	 */
4081 	if ((offset >= eeprom->word_size) ||
4082 	    (words > eeprom->word_size - offset) ||
4083 	    (words == 0)) {
4084 		e_dbg("\"words\" parameter out of bounds\n");
4085 		return -E1000_ERR_EEPROM;
4086 	}
4087 
4088 	/* Prepare the EEPROM for writing  */
4089 	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4090 		return -E1000_ERR_EEPROM;
4091 
4092 	if (eeprom->type == e1000_eeprom_microwire) {
4093 		status = e1000_write_eeprom_microwire(hw, offset, words, data);
4094 	} else {
4095 		status = e1000_write_eeprom_spi(hw, offset, words, data);
4096 		msleep(10);
4097 	}
4098 
4099 	/* Done with writing */
4100 	e1000_release_eeprom(hw);
4101 
4102 	return status;
4103 }
4104 
4105 /**
4106  * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4107  * @hw: Struct containing variables accessed by shared code
4108  * @offset: offset within the EEPROM to be written to
4109  * @words: number of words to write
4110  * @data: pointer to array of 8 bit words to be written to the EEPROM
4111  */
4112 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4113 				  u16 *data)
4114 {
4115 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4116 	u16 widx = 0;
4117 
4118 	while (widx < words) {
4119 		u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
4120 
4121 		if (e1000_spi_eeprom_ready(hw))
4122 			return -E1000_ERR_EEPROM;
4123 
4124 		e1000_standby_eeprom(hw);
4125 		cond_resched();
4126 
4127 		/*  Send the WRITE ENABLE command (8 bit opcode )  */
4128 		e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4129 					eeprom->opcode_bits);
4130 
4131 		e1000_standby_eeprom(hw);
4132 
4133 		/* Some SPI eeproms use the 8th address bit embedded in the
4134 		 * opcode
4135 		 */
4136 		if ((eeprom->address_bits == 8) && (offset >= 128))
4137 			write_opcode |= EEPROM_A8_OPCODE_SPI;
4138 
4139 		/* Send the Write command (8-bit opcode + addr) */
4140 		e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4141 
4142 		e1000_shift_out_ee_bits(hw, (u16)((offset + widx) * 2),
4143 					eeprom->address_bits);
4144 
4145 		/* Send the data */
4146 
4147 		/* Loop to allow for up to whole page write (32 bytes) of
4148 		 * eeprom
4149 		 */
4150 		while (widx < words) {
4151 			u16 word_out = data[widx];
4152 
4153 			word_out = (word_out >> 8) | (word_out << 8);
4154 			e1000_shift_out_ee_bits(hw, word_out, 16);
4155 			widx++;
4156 
4157 			/* Some larger eeprom sizes are capable of a 32-byte
4158 			 * PAGE WRITE operation, while the smaller eeproms are
4159 			 * capable of an 8-byte PAGE WRITE operation.  Break the
4160 			 * inner loop to pass new address
4161 			 */
4162 			if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4163 				e1000_standby_eeprom(hw);
4164 				break;
4165 			}
4166 		}
4167 	}
4168 
4169 	return E1000_SUCCESS;
4170 }
4171 
4172 /**
4173  * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4174  * @hw: Struct containing variables accessed by shared code
4175  * @offset: offset within the EEPROM to be written to
4176  * @words: number of words to write
4177  * @data: pointer to array of 8 bit words to be written to the EEPROM
4178  */
4179 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4180 					u16 words, u16 *data)
4181 {
4182 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4183 	u32 eecd;
4184 	u16 words_written = 0;
4185 	u16 i = 0;
4186 
4187 	/* Send the write enable command to the EEPROM (3-bit opcode plus
4188 	 * 6/8-bit dummy address beginning with 11).  It's less work to include
4189 	 * the 11 of the dummy address as part of the opcode than it is to shift
4190 	 * it over the correct number of bits for the address.  This puts the
4191 	 * EEPROM into write/erase mode.
4192 	 */
4193 	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4194 				(u16)(eeprom->opcode_bits + 2));
4195 
4196 	e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4197 
4198 	/* Prepare the EEPROM */
4199 	e1000_standby_eeprom(hw);
4200 
4201 	while (words_written < words) {
4202 		/* Send the Write command (3-bit opcode + addr) */
4203 		e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4204 					eeprom->opcode_bits);
4205 
4206 		e1000_shift_out_ee_bits(hw, (u16)(offset + words_written),
4207 					eeprom->address_bits);
4208 
4209 		/* Send the data */
4210 		e1000_shift_out_ee_bits(hw, data[words_written], 16);
4211 
4212 		/* Toggle the CS line.  This in effect tells the EEPROM to
4213 		 * execute the previous command.
4214 		 */
4215 		e1000_standby_eeprom(hw);
4216 
4217 		/* Read DO repeatedly until it is high (equal to '1').  The
4218 		 * EEPROM will signal that the command has been completed by
4219 		 * raising the DO signal. If DO does not go high in 10
4220 		 * milliseconds, then error out.
4221 		 */
4222 		for (i = 0; i < 200; i++) {
4223 			eecd = er32(EECD);
4224 			if (eecd & E1000_EECD_DO)
4225 				break;
4226 			udelay(50);
4227 		}
4228 		if (i == 200) {
4229 			e_dbg("EEPROM Write did not complete\n");
4230 			return -E1000_ERR_EEPROM;
4231 		}
4232 
4233 		/* Recover from write */
4234 		e1000_standby_eeprom(hw);
4235 		cond_resched();
4236 
4237 		words_written++;
4238 	}
4239 
4240 	/* Send the write disable command to the EEPROM (3-bit opcode plus
4241 	 * 6/8-bit dummy address beginning with 10).  It's less work to include
4242 	 * the 10 of the dummy address as part of the opcode than it is to shift
4243 	 * it over the correct number of bits for the address.  This takes the
4244 	 * EEPROM out of write/erase mode.
4245 	 */
4246 	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4247 				(u16)(eeprom->opcode_bits + 2));
4248 
4249 	e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4250 
4251 	return E1000_SUCCESS;
4252 }
4253 
4254 /**
4255  * e1000_read_mac_addr - read the adapters MAC from eeprom
4256  * @hw: Struct containing variables accessed by shared code
4257  *
4258  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4259  * second function of dual function devices
4260  */
4261 s32 e1000_read_mac_addr(struct e1000_hw *hw)
4262 {
4263 	u16 offset;
4264 	u16 eeprom_data, i;
4265 
4266 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4267 		offset = i >> 1;
4268 		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4269 			e_dbg("EEPROM Read Error\n");
4270 			return -E1000_ERR_EEPROM;
4271 		}
4272 		hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF);
4273 		hw->perm_mac_addr[i + 1] = (u8)(eeprom_data >> 8);
4274 	}
4275 
4276 	switch (hw->mac_type) {
4277 	default:
4278 		break;
4279 	case e1000_82546:
4280 	case e1000_82546_rev_3:
4281 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
4282 			hw->perm_mac_addr[5] ^= 0x01;
4283 		break;
4284 	}
4285 
4286 	for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4287 		hw->mac_addr[i] = hw->perm_mac_addr[i];
4288 	return E1000_SUCCESS;
4289 }
4290 
4291 /**
4292  * e1000_init_rx_addrs - Initializes receive address filters.
4293  * @hw: Struct containing variables accessed by shared code
4294  *
4295  * Places the MAC address in receive address register 0 and clears the rest
4296  * of the receive address registers. Clears the multicast table. Assumes
4297  * the receiver is in reset when the routine is called.
4298  */
4299 static void e1000_init_rx_addrs(struct e1000_hw *hw)
4300 {
4301 	u32 i;
4302 	u32 rar_num;
4303 
4304 	/* Setup the receive address. */
4305 	e_dbg("Programming MAC Address into RAR[0]\n");
4306 
4307 	e1000_rar_set(hw, hw->mac_addr, 0);
4308 
4309 	rar_num = E1000_RAR_ENTRIES;
4310 
4311 	/* Zero out the following 14 receive addresses. RAR[15] is for
4312 	 * manageability
4313 	 */
4314 	e_dbg("Clearing RAR[1-14]\n");
4315 	for (i = 1; i < rar_num; i++) {
4316 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4317 		E1000_WRITE_FLUSH();
4318 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4319 		E1000_WRITE_FLUSH();
4320 	}
4321 }
4322 
4323 /**
4324  * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4325  * @hw: Struct containing variables accessed by shared code
4326  * @mc_addr: the multicast address to hash
4327  */
4328 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4329 {
4330 	u32 hash_value = 0;
4331 
4332 	/* The portion of the address that is used for the hash table is
4333 	 * determined by the mc_filter_type setting.
4334 	 */
4335 	switch (hw->mc_filter_type) {
4336 		/* [0] [1] [2] [3] [4] [5]
4337 		 * 01  AA  00  12  34  56
4338 		 * LSB                 MSB
4339 		 */
4340 	case 0:
4341 		/* [47:36] i.e. 0x563 for above example address */
4342 		hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
4343 		break;
4344 	case 1:
4345 		/* [46:35] i.e. 0xAC6 for above example address */
4346 		hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
4347 		break;
4348 	case 2:
4349 		/* [45:34] i.e. 0x5D8 for above example address */
4350 		hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
4351 		break;
4352 	case 3:
4353 		/* [43:32] i.e. 0x634 for above example address */
4354 		hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
4355 		break;
4356 	}
4357 
4358 	hash_value &= 0xFFF;
4359 	return hash_value;
4360 }
4361 
4362 /**
4363  * e1000_rar_set - Puts an ethernet address into a receive address register.
4364  * @hw: Struct containing variables accessed by shared code
4365  * @addr: Address to put into receive address register
4366  * @index: Receive address register to write
4367  */
4368 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
4369 {
4370 	u32 rar_low, rar_high;
4371 
4372 	/* HW expects these in little endian so we reverse the byte order
4373 	 * from network order (big endian) to little endian
4374 	 */
4375 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
4376 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
4377 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
4378 
4379 	/* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4380 	 * unit hang.
4381 	 *
4382 	 * Description:
4383 	 * If there are any Rx frames queued up or otherwise present in the HW
4384 	 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4385 	 * hang.  To work around this issue, we have to disable receives and
4386 	 * flush out all Rx frames before we enable RSS. To do so, we modify we
4387 	 * redirect all Rx traffic to manageability and then reset the HW.
4388 	 * This flushes away Rx frames, and (since the redirections to
4389 	 * manageability persists across resets) keeps new ones from coming in
4390 	 * while we work.  Then, we clear the Address Valid AV bit for all MAC
4391 	 * addresses and undo the re-direction to manageability.
4392 	 * Now, frames are coming in again, but the MAC won't accept them, so
4393 	 * far so good.  We now proceed to initialize RSS (if necessary) and
4394 	 * configure the Rx unit.  Last, we re-enable the AV bits and continue
4395 	 * on our merry way.
4396 	 */
4397 	switch (hw->mac_type) {
4398 	default:
4399 		/* Indicate to hardware the Address is Valid. */
4400 		rar_high |= E1000_RAH_AV;
4401 		break;
4402 	}
4403 
4404 	E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4405 	E1000_WRITE_FLUSH();
4406 	E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4407 	E1000_WRITE_FLUSH();
4408 }
4409 
4410 /**
4411  * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4412  * @hw: Struct containing variables accessed by shared code
4413  * @offset: Offset in VLAN filer table to write
4414  * @value: Value to write into VLAN filter table
4415  */
4416 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
4417 {
4418 	u32 temp;
4419 
4420 	if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4421 		temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4422 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4423 		E1000_WRITE_FLUSH();
4424 		E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4425 		E1000_WRITE_FLUSH();
4426 	} else {
4427 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4428 		E1000_WRITE_FLUSH();
4429 	}
4430 }
4431 
4432 /**
4433  * e1000_clear_vfta - Clears the VLAN filer table
4434  * @hw: Struct containing variables accessed by shared code
4435  */
4436 static void e1000_clear_vfta(struct e1000_hw *hw)
4437 {
4438 	u32 offset;
4439 	u32 vfta_value = 0;
4440 	u32 vfta_offset = 0;
4441 	u32 vfta_bit_in_reg = 0;
4442 
4443 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4444 		/* If the offset we want to clear is the same offset of the
4445 		 * manageability VLAN ID, then clear all bits except that of the
4446 		 * manageability unit
4447 		 */
4448 		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
4449 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
4450 		E1000_WRITE_FLUSH();
4451 	}
4452 }
4453 
4454 static s32 e1000_id_led_init(struct e1000_hw *hw)
4455 {
4456 	u32 ledctl;
4457 	const u32 ledctl_mask = 0x000000FF;
4458 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4459 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4460 	u16 eeprom_data, i, temp;
4461 	const u16 led_mask = 0x0F;
4462 
4463 	if (hw->mac_type < e1000_82540) {
4464 		/* Nothing to do */
4465 		return E1000_SUCCESS;
4466 	}
4467 
4468 	ledctl = er32(LEDCTL);
4469 	hw->ledctl_default = ledctl;
4470 	hw->ledctl_mode1 = hw->ledctl_default;
4471 	hw->ledctl_mode2 = hw->ledctl_default;
4472 
4473 	if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4474 		e_dbg("EEPROM Read Error\n");
4475 		return -E1000_ERR_EEPROM;
4476 	}
4477 
4478 	if ((eeprom_data == ID_LED_RESERVED_0000) ||
4479 	    (eeprom_data == ID_LED_RESERVED_FFFF)) {
4480 		eeprom_data = ID_LED_DEFAULT;
4481 	}
4482 
4483 	for (i = 0; i < 4; i++) {
4484 		temp = (eeprom_data >> (i << 2)) & led_mask;
4485 		switch (temp) {
4486 		case ID_LED_ON1_DEF2:
4487 		case ID_LED_ON1_ON2:
4488 		case ID_LED_ON1_OFF2:
4489 			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4490 			hw->ledctl_mode1 |= ledctl_on << (i << 3);
4491 			break;
4492 		case ID_LED_OFF1_DEF2:
4493 		case ID_LED_OFF1_ON2:
4494 		case ID_LED_OFF1_OFF2:
4495 			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4496 			hw->ledctl_mode1 |= ledctl_off << (i << 3);
4497 			break;
4498 		default:
4499 			/* Do nothing */
4500 			break;
4501 		}
4502 		switch (temp) {
4503 		case ID_LED_DEF1_ON2:
4504 		case ID_LED_ON1_ON2:
4505 		case ID_LED_OFF1_ON2:
4506 			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4507 			hw->ledctl_mode2 |= ledctl_on << (i << 3);
4508 			break;
4509 		case ID_LED_DEF1_OFF2:
4510 		case ID_LED_ON1_OFF2:
4511 		case ID_LED_OFF1_OFF2:
4512 			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4513 			hw->ledctl_mode2 |= ledctl_off << (i << 3);
4514 			break;
4515 		default:
4516 			/* Do nothing */
4517 			break;
4518 		}
4519 	}
4520 	return E1000_SUCCESS;
4521 }
4522 
4523 /**
4524  * e1000_setup_led
4525  * @hw: Struct containing variables accessed by shared code
4526  *
4527  * Prepares SW controlable LED for use and saves the current state of the LED.
4528  */
4529 s32 e1000_setup_led(struct e1000_hw *hw)
4530 {
4531 	u32 ledctl;
4532 	s32 ret_val = E1000_SUCCESS;
4533 
4534 	switch (hw->mac_type) {
4535 	case e1000_82542_rev2_0:
4536 	case e1000_82542_rev2_1:
4537 	case e1000_82543:
4538 	case e1000_82544:
4539 		/* No setup necessary */
4540 		break;
4541 	case e1000_82541:
4542 	case e1000_82547:
4543 	case e1000_82541_rev_2:
4544 	case e1000_82547_rev_2:
4545 		/* Turn off PHY Smart Power Down (if enabled) */
4546 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4547 					     &hw->phy_spd_default);
4548 		if (ret_val)
4549 			return ret_val;
4550 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4551 					      (u16)(hw->phy_spd_default &
4552 						     ~IGP01E1000_GMII_SPD));
4553 		if (ret_val)
4554 			return ret_val;
4555 		/* Fall Through */
4556 	default:
4557 		if (hw->media_type == e1000_media_type_fiber) {
4558 			ledctl = er32(LEDCTL);
4559 			/* Save current LEDCTL settings */
4560 			hw->ledctl_default = ledctl;
4561 			/* Turn off LED0 */
4562 			ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4563 				    E1000_LEDCTL_LED0_BLINK |
4564 				    E1000_LEDCTL_LED0_MODE_MASK);
4565 			ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4566 				   E1000_LEDCTL_LED0_MODE_SHIFT);
4567 			ew32(LEDCTL, ledctl);
4568 		} else if (hw->media_type == e1000_media_type_copper)
4569 			ew32(LEDCTL, hw->ledctl_mode1);
4570 		break;
4571 	}
4572 
4573 	return E1000_SUCCESS;
4574 }
4575 
4576 /**
4577  * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4578  * @hw: Struct containing variables accessed by shared code
4579  */
4580 s32 e1000_cleanup_led(struct e1000_hw *hw)
4581 {
4582 	s32 ret_val = E1000_SUCCESS;
4583 
4584 	switch (hw->mac_type) {
4585 	case e1000_82542_rev2_0:
4586 	case e1000_82542_rev2_1:
4587 	case e1000_82543:
4588 	case e1000_82544:
4589 		/* No cleanup necessary */
4590 		break;
4591 	case e1000_82541:
4592 	case e1000_82547:
4593 	case e1000_82541_rev_2:
4594 	case e1000_82547_rev_2:
4595 		/* Turn on PHY Smart Power Down (if previously enabled) */
4596 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4597 					      hw->phy_spd_default);
4598 		if (ret_val)
4599 			return ret_val;
4600 		/* Fall Through */
4601 	default:
4602 		/* Restore LEDCTL settings */
4603 		ew32(LEDCTL, hw->ledctl_default);
4604 		break;
4605 	}
4606 
4607 	return E1000_SUCCESS;
4608 }
4609 
4610 /**
4611  * e1000_led_on - Turns on the software controllable LED
4612  * @hw: Struct containing variables accessed by shared code
4613  */
4614 s32 e1000_led_on(struct e1000_hw *hw)
4615 {
4616 	u32 ctrl = er32(CTRL);
4617 
4618 	switch (hw->mac_type) {
4619 	case e1000_82542_rev2_0:
4620 	case e1000_82542_rev2_1:
4621 	case e1000_82543:
4622 		/* Set SW Defineable Pin 0 to turn on the LED */
4623 		ctrl |= E1000_CTRL_SWDPIN0;
4624 		ctrl |= E1000_CTRL_SWDPIO0;
4625 		break;
4626 	case e1000_82544:
4627 		if (hw->media_type == e1000_media_type_fiber) {
4628 			/* Set SW Defineable Pin 0 to turn on the LED */
4629 			ctrl |= E1000_CTRL_SWDPIN0;
4630 			ctrl |= E1000_CTRL_SWDPIO0;
4631 		} else {
4632 			/* Clear SW Defineable Pin 0 to turn on the LED */
4633 			ctrl &= ~E1000_CTRL_SWDPIN0;
4634 			ctrl |= E1000_CTRL_SWDPIO0;
4635 		}
4636 		break;
4637 	default:
4638 		if (hw->media_type == e1000_media_type_fiber) {
4639 			/* Clear SW Defineable Pin 0 to turn on the LED */
4640 			ctrl &= ~E1000_CTRL_SWDPIN0;
4641 			ctrl |= E1000_CTRL_SWDPIO0;
4642 		} else if (hw->media_type == e1000_media_type_copper) {
4643 			ew32(LEDCTL, hw->ledctl_mode2);
4644 			return E1000_SUCCESS;
4645 		}
4646 		break;
4647 	}
4648 
4649 	ew32(CTRL, ctrl);
4650 
4651 	return E1000_SUCCESS;
4652 }
4653 
4654 /**
4655  * e1000_led_off - Turns off the software controllable LED
4656  * @hw: Struct containing variables accessed by shared code
4657  */
4658 s32 e1000_led_off(struct e1000_hw *hw)
4659 {
4660 	u32 ctrl = er32(CTRL);
4661 
4662 	switch (hw->mac_type) {
4663 	case e1000_82542_rev2_0:
4664 	case e1000_82542_rev2_1:
4665 	case e1000_82543:
4666 		/* Clear SW Defineable Pin 0 to turn off the LED */
4667 		ctrl &= ~E1000_CTRL_SWDPIN0;
4668 		ctrl |= E1000_CTRL_SWDPIO0;
4669 		break;
4670 	case e1000_82544:
4671 		if (hw->media_type == e1000_media_type_fiber) {
4672 			/* Clear SW Defineable Pin 0 to turn off the LED */
4673 			ctrl &= ~E1000_CTRL_SWDPIN0;
4674 			ctrl |= E1000_CTRL_SWDPIO0;
4675 		} else {
4676 			/* Set SW Defineable Pin 0 to turn off the LED */
4677 			ctrl |= E1000_CTRL_SWDPIN0;
4678 			ctrl |= E1000_CTRL_SWDPIO0;
4679 		}
4680 		break;
4681 	default:
4682 		if (hw->media_type == e1000_media_type_fiber) {
4683 			/* Set SW Defineable Pin 0 to turn off the LED */
4684 			ctrl |= E1000_CTRL_SWDPIN0;
4685 			ctrl |= E1000_CTRL_SWDPIO0;
4686 		} else if (hw->media_type == e1000_media_type_copper) {
4687 			ew32(LEDCTL, hw->ledctl_mode1);
4688 			return E1000_SUCCESS;
4689 		}
4690 		break;
4691 	}
4692 
4693 	ew32(CTRL, ctrl);
4694 
4695 	return E1000_SUCCESS;
4696 }
4697 
4698 /**
4699  * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4700  * @hw: Struct containing variables accessed by shared code
4701  */
4702 static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
4703 {
4704 	volatile u32 temp;
4705 
4706 	temp = er32(CRCERRS);
4707 	temp = er32(SYMERRS);
4708 	temp = er32(MPC);
4709 	temp = er32(SCC);
4710 	temp = er32(ECOL);
4711 	temp = er32(MCC);
4712 	temp = er32(LATECOL);
4713 	temp = er32(COLC);
4714 	temp = er32(DC);
4715 	temp = er32(SEC);
4716 	temp = er32(RLEC);
4717 	temp = er32(XONRXC);
4718 	temp = er32(XONTXC);
4719 	temp = er32(XOFFRXC);
4720 	temp = er32(XOFFTXC);
4721 	temp = er32(FCRUC);
4722 
4723 	temp = er32(PRC64);
4724 	temp = er32(PRC127);
4725 	temp = er32(PRC255);
4726 	temp = er32(PRC511);
4727 	temp = er32(PRC1023);
4728 	temp = er32(PRC1522);
4729 
4730 	temp = er32(GPRC);
4731 	temp = er32(BPRC);
4732 	temp = er32(MPRC);
4733 	temp = er32(GPTC);
4734 	temp = er32(GORCL);
4735 	temp = er32(GORCH);
4736 	temp = er32(GOTCL);
4737 	temp = er32(GOTCH);
4738 	temp = er32(RNBC);
4739 	temp = er32(RUC);
4740 	temp = er32(RFC);
4741 	temp = er32(ROC);
4742 	temp = er32(RJC);
4743 	temp = er32(TORL);
4744 	temp = er32(TORH);
4745 	temp = er32(TOTL);
4746 	temp = er32(TOTH);
4747 	temp = er32(TPR);
4748 	temp = er32(TPT);
4749 
4750 	temp = er32(PTC64);
4751 	temp = er32(PTC127);
4752 	temp = er32(PTC255);
4753 	temp = er32(PTC511);
4754 	temp = er32(PTC1023);
4755 	temp = er32(PTC1522);
4756 
4757 	temp = er32(MPTC);
4758 	temp = er32(BPTC);
4759 
4760 	if (hw->mac_type < e1000_82543)
4761 		return;
4762 
4763 	temp = er32(ALGNERRC);
4764 	temp = er32(RXERRC);
4765 	temp = er32(TNCRS);
4766 	temp = er32(CEXTERR);
4767 	temp = er32(TSCTC);
4768 	temp = er32(TSCTFC);
4769 
4770 	if (hw->mac_type <= e1000_82544)
4771 		return;
4772 
4773 	temp = er32(MGTPRC);
4774 	temp = er32(MGTPDC);
4775 	temp = er32(MGTPTC);
4776 }
4777 
4778 /**
4779  * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4780  * @hw: Struct containing variables accessed by shared code
4781  *
4782  * Call this after e1000_init_hw. You may override the IFS defaults by setting
4783  * hw->ifs_params_forced to true. However, you must initialize hw->
4784  * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4785  * before calling this function.
4786  */
4787 void e1000_reset_adaptive(struct e1000_hw *hw)
4788 {
4789 	if (hw->adaptive_ifs) {
4790 		if (!hw->ifs_params_forced) {
4791 			hw->current_ifs_val = 0;
4792 			hw->ifs_min_val = IFS_MIN;
4793 			hw->ifs_max_val = IFS_MAX;
4794 			hw->ifs_step_size = IFS_STEP;
4795 			hw->ifs_ratio = IFS_RATIO;
4796 		}
4797 		hw->in_ifs_mode = false;
4798 		ew32(AIT, 0);
4799 	} else {
4800 		e_dbg("Not in Adaptive IFS mode!\n");
4801 	}
4802 }
4803 
4804 /**
4805  * e1000_update_adaptive - update adaptive IFS
4806  * @hw: Struct containing variables accessed by shared code
4807  * @tx_packets: Number of transmits since last callback
4808  * @total_collisions: Number of collisions since last callback
4809  *
4810  * Called during the callback/watchdog routine to update IFS value based on
4811  * the ratio of transmits to collisions.
4812  */
4813 void e1000_update_adaptive(struct e1000_hw *hw)
4814 {
4815 	if (hw->adaptive_ifs) {
4816 		if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
4817 			if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4818 				hw->in_ifs_mode = true;
4819 				if (hw->current_ifs_val < hw->ifs_max_val) {
4820 					if (hw->current_ifs_val == 0)
4821 						hw->current_ifs_val =
4822 						    hw->ifs_min_val;
4823 					else
4824 						hw->current_ifs_val +=
4825 						    hw->ifs_step_size;
4826 					ew32(AIT, hw->current_ifs_val);
4827 				}
4828 			}
4829 		} else {
4830 			if (hw->in_ifs_mode &&
4831 			    (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4832 				hw->current_ifs_val = 0;
4833 				hw->in_ifs_mode = false;
4834 				ew32(AIT, 0);
4835 			}
4836 		}
4837 	} else {
4838 		e_dbg("Not in Adaptive IFS mode!\n");
4839 	}
4840 }
4841 
4842 /**
4843  * e1000_get_bus_info
4844  * @hw: Struct containing variables accessed by shared code
4845  *
4846  * Gets the current PCI bus type, speed, and width of the hardware
4847  */
4848 void e1000_get_bus_info(struct e1000_hw *hw)
4849 {
4850 	u32 status;
4851 
4852 	switch (hw->mac_type) {
4853 	case e1000_82542_rev2_0:
4854 	case e1000_82542_rev2_1:
4855 		hw->bus_type = e1000_bus_type_pci;
4856 		hw->bus_speed = e1000_bus_speed_unknown;
4857 		hw->bus_width = e1000_bus_width_unknown;
4858 		break;
4859 	default:
4860 		status = er32(STATUS);
4861 		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4862 		    e1000_bus_type_pcix : e1000_bus_type_pci;
4863 
4864 		if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4865 			hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4866 			    e1000_bus_speed_66 : e1000_bus_speed_120;
4867 		} else if (hw->bus_type == e1000_bus_type_pci) {
4868 			hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4869 			    e1000_bus_speed_66 : e1000_bus_speed_33;
4870 		} else {
4871 			switch (status & E1000_STATUS_PCIX_SPEED) {
4872 			case E1000_STATUS_PCIX_SPEED_66:
4873 				hw->bus_speed = e1000_bus_speed_66;
4874 				break;
4875 			case E1000_STATUS_PCIX_SPEED_100:
4876 				hw->bus_speed = e1000_bus_speed_100;
4877 				break;
4878 			case E1000_STATUS_PCIX_SPEED_133:
4879 				hw->bus_speed = e1000_bus_speed_133;
4880 				break;
4881 			default:
4882 				hw->bus_speed = e1000_bus_speed_reserved;
4883 				break;
4884 			}
4885 		}
4886 		hw->bus_width = (status & E1000_STATUS_BUS64) ?
4887 		    e1000_bus_width_64 : e1000_bus_width_32;
4888 		break;
4889 	}
4890 }
4891 
4892 /**
4893  * e1000_write_reg_io
4894  * @hw: Struct containing variables accessed by shared code
4895  * @offset: offset to write to
4896  * @value: value to write
4897  *
4898  * Writes a value to one of the devices registers using port I/O (as opposed to
4899  * memory mapped I/O). Only 82544 and newer devices support port I/O.
4900  */
4901 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
4902 {
4903 	unsigned long io_addr = hw->io_base;
4904 	unsigned long io_data = hw->io_base + 4;
4905 
4906 	e1000_io_write(hw, io_addr, offset);
4907 	e1000_io_write(hw, io_data, value);
4908 }
4909 
4910 /**
4911  * e1000_get_cable_length - Estimates the cable length.
4912  * @hw: Struct containing variables accessed by shared code
4913  * @min_length: The estimated minimum length
4914  * @max_length: The estimated maximum length
4915  *
4916  * returns: - E1000_ERR_XXX
4917  *            E1000_SUCCESS
4918  *
4919  * This function always returns a ranged length (minimum & maximum).
4920  * So for M88 phy's, this function interprets the one value returned from the
4921  * register to the minimum and maximum range.
4922  * For IGP phy's, the function calculates the range by the AGC registers.
4923  */
4924 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
4925 				  u16 *max_length)
4926 {
4927 	s32 ret_val;
4928 	u16 agc_value = 0;
4929 	u16 i, phy_data;
4930 	u16 cable_length;
4931 
4932 	*min_length = *max_length = 0;
4933 
4934 	/* Use old method for Phy older than IGP */
4935 	if (hw->phy_type == e1000_phy_m88) {
4936 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
4937 					     &phy_data);
4938 		if (ret_val)
4939 			return ret_val;
4940 		cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
4941 		    M88E1000_PSSR_CABLE_LENGTH_SHIFT;
4942 
4943 		/* Convert the enum value to ranged values */
4944 		switch (cable_length) {
4945 		case e1000_cable_length_50:
4946 			*min_length = 0;
4947 			*max_length = e1000_igp_cable_length_50;
4948 			break;
4949 		case e1000_cable_length_50_80:
4950 			*min_length = e1000_igp_cable_length_50;
4951 			*max_length = e1000_igp_cable_length_80;
4952 			break;
4953 		case e1000_cable_length_80_110:
4954 			*min_length = e1000_igp_cable_length_80;
4955 			*max_length = e1000_igp_cable_length_110;
4956 			break;
4957 		case e1000_cable_length_110_140:
4958 			*min_length = e1000_igp_cable_length_110;
4959 			*max_length = e1000_igp_cable_length_140;
4960 			break;
4961 		case e1000_cable_length_140:
4962 			*min_length = e1000_igp_cable_length_140;
4963 			*max_length = e1000_igp_cable_length_170;
4964 			break;
4965 		default:
4966 			return -E1000_ERR_PHY;
4967 		}
4968 	} else if (hw->phy_type == e1000_phy_igp) {	/* For IGP PHY */
4969 		u16 cur_agc_value;
4970 		u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
4971 		static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
4972 		       IGP01E1000_PHY_AGC_A,
4973 		       IGP01E1000_PHY_AGC_B,
4974 		       IGP01E1000_PHY_AGC_C,
4975 		       IGP01E1000_PHY_AGC_D
4976 		};
4977 		/* Read the AGC registers for all channels */
4978 		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
4979 			ret_val =
4980 			    e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
4981 			if (ret_val)
4982 				return ret_val;
4983 
4984 			cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
4985 
4986 			/* Value bound check. */
4987 			if ((cur_agc_value >=
4988 			     IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
4989 			    (cur_agc_value == 0))
4990 				return -E1000_ERR_PHY;
4991 
4992 			agc_value += cur_agc_value;
4993 
4994 			/* Update minimal AGC value. */
4995 			if (min_agc_value > cur_agc_value)
4996 				min_agc_value = cur_agc_value;
4997 		}
4998 
4999 		/* Remove the minimal AGC result for length < 50m */
5000 		if (agc_value <
5001 		    IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
5002 			agc_value -= min_agc_value;
5003 
5004 			/* Get the average length of the remaining 3 channels */
5005 			agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
5006 		} else {
5007 			/* Get the average length of all the 4 channels. */
5008 			agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
5009 		}
5010 
5011 		/* Set the range of the calculated length. */
5012 		*min_length = ((e1000_igp_cable_length_table[agc_value] -
5013 				IGP01E1000_AGC_RANGE) > 0) ?
5014 		    (e1000_igp_cable_length_table[agc_value] -
5015 		     IGP01E1000_AGC_RANGE) : 0;
5016 		*max_length = e1000_igp_cable_length_table[agc_value] +
5017 		    IGP01E1000_AGC_RANGE;
5018 	}
5019 
5020 	return E1000_SUCCESS;
5021 }
5022 
5023 /**
5024  * e1000_check_polarity - Check the cable polarity
5025  * @hw: Struct containing variables accessed by shared code
5026  * @polarity: output parameter : 0 - Polarity is not reversed
5027  *                               1 - Polarity is reversed.
5028  *
5029  * returns: - E1000_ERR_XXX
5030  *            E1000_SUCCESS
5031  *
5032  * For phy's older than IGP, this function simply reads the polarity bit in the
5033  * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
5034  * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
5035  * return 0.  If the link speed is 1000 Mbps the polarity status is in the
5036  * IGP01E1000_PHY_PCS_INIT_REG.
5037  */
5038 static s32 e1000_check_polarity(struct e1000_hw *hw,
5039 				e1000_rev_polarity *polarity)
5040 {
5041 	s32 ret_val;
5042 	u16 phy_data;
5043 
5044 	if (hw->phy_type == e1000_phy_m88) {
5045 		/* return the Polarity bit in the Status register. */
5046 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5047 					     &phy_data);
5048 		if (ret_val)
5049 			return ret_val;
5050 		*polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
5051 			     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
5052 		    e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
5053 
5054 	} else if (hw->phy_type == e1000_phy_igp) {
5055 		/* Read the Status register to check the speed */
5056 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5057 					     &phy_data);
5058 		if (ret_val)
5059 			return ret_val;
5060 
5061 		/* If speed is 1000 Mbps, must read the
5062 		 * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status
5063 		 */
5064 		if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5065 		    IGP01E1000_PSSR_SPEED_1000MBPS) {
5066 			/* Read the GIG initialization PCS register (0x00B4) */
5067 			ret_val =
5068 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5069 					       &phy_data);
5070 			if (ret_val)
5071 				return ret_val;
5072 
5073 			/* Check the polarity bits */
5074 			*polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5075 			    e1000_rev_polarity_reversed :
5076 			    e1000_rev_polarity_normal;
5077 		} else {
5078 			/* For 10 Mbps, read the polarity bit in the status
5079 			 * register. (for 100 Mbps this bit is always 0)
5080 			 */
5081 			*polarity =
5082 			    (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5083 			    e1000_rev_polarity_reversed :
5084 			    e1000_rev_polarity_normal;
5085 		}
5086 	}
5087 	return E1000_SUCCESS;
5088 }
5089 
5090 /**
5091  * e1000_check_downshift - Check if Downshift occurred
5092  * @hw: Struct containing variables accessed by shared code
5093  * @downshift: output parameter : 0 - No Downshift occurred.
5094  *                                1 - Downshift occurred.
5095  *
5096  * returns: - E1000_ERR_XXX
5097  *            E1000_SUCCESS
5098  *
5099  * For phy's older than IGP, this function reads the Downshift bit in the Phy
5100  * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
5101  * Link Health register.  In IGP this bit is latched high, so the driver must
5102  * read it immediately after link is established.
5103  */
5104 static s32 e1000_check_downshift(struct e1000_hw *hw)
5105 {
5106 	s32 ret_val;
5107 	u16 phy_data;
5108 
5109 	if (hw->phy_type == e1000_phy_igp) {
5110 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5111 					     &phy_data);
5112 		if (ret_val)
5113 			return ret_val;
5114 
5115 		hw->speed_downgraded =
5116 		    (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5117 	} else if (hw->phy_type == e1000_phy_m88) {
5118 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5119 					     &phy_data);
5120 		if (ret_val)
5121 			return ret_val;
5122 
5123 		hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5124 		    M88E1000_PSSR_DOWNSHIFT_SHIFT;
5125 	}
5126 
5127 	return E1000_SUCCESS;
5128 }
5129 
5130 static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5131 	IGP01E1000_PHY_AGC_PARAM_A,
5132 	IGP01E1000_PHY_AGC_PARAM_B,
5133 	IGP01E1000_PHY_AGC_PARAM_C,
5134 	IGP01E1000_PHY_AGC_PARAM_D
5135 };
5136 
5137 static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5138 {
5139 	u16 min_length, max_length;
5140 	u16 phy_data, i;
5141 	s32 ret_val;
5142 
5143 	ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5144 	if (ret_val)
5145 		return ret_val;
5146 
5147 	if (hw->dsp_config_state != e1000_dsp_config_enabled)
5148 		return 0;
5149 
5150 	if (min_length >= e1000_igp_cable_length_50) {
5151 		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5152 			ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5153 						     &phy_data);
5154 			if (ret_val)
5155 				return ret_val;
5156 
5157 			phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5158 
5159 			ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5160 						      phy_data);
5161 			if (ret_val)
5162 				return ret_val;
5163 		}
5164 		hw->dsp_config_state = e1000_dsp_config_activated;
5165 	} else {
5166 		u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5167 		u32 idle_errs = 0;
5168 
5169 		/* clear previous idle error counts */
5170 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5171 		if (ret_val)
5172 			return ret_val;
5173 
5174 		for (i = 0; i < ffe_idle_err_timeout; i++) {
5175 			udelay(1000);
5176 			ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5177 						     &phy_data);
5178 			if (ret_val)
5179 				return ret_val;
5180 
5181 			idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5182 			if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5183 				hw->ffe_config_state = e1000_ffe_config_active;
5184 
5185 				ret_val = e1000_write_phy_reg(hw,
5186 							      IGP01E1000_PHY_DSP_FFE,
5187 							      IGP01E1000_PHY_DSP_FFE_CM_CP);
5188 				if (ret_val)
5189 					return ret_val;
5190 				break;
5191 			}
5192 
5193 			if (idle_errs)
5194 				ffe_idle_err_timeout =
5195 					    FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5196 		}
5197 	}
5198 
5199 	return 0;
5200 }
5201 
5202 /**
5203  * e1000_config_dsp_after_link_change
5204  * @hw: Struct containing variables accessed by shared code
5205  * @link_up: was link up at the time this was called
5206  *
5207  * returns: - E1000_ERR_PHY if fail to read/write the PHY
5208  *            E1000_SUCCESS at any other case.
5209  *
5210  * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5211  * gigabit link is achieved to improve link quality.
5212  */
5213 
5214 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
5215 {
5216 	s32 ret_val;
5217 	u16 phy_data, phy_saved_data, speed, duplex, i;
5218 
5219 	if (hw->phy_type != e1000_phy_igp)
5220 		return E1000_SUCCESS;
5221 
5222 	if (link_up) {
5223 		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5224 		if (ret_val) {
5225 			e_dbg("Error getting link speed and duplex\n");
5226 			return ret_val;
5227 		}
5228 
5229 		if (speed == SPEED_1000) {
5230 			ret_val = e1000_1000Mb_check_cable_length(hw);
5231 			if (ret_val)
5232 				return ret_val;
5233 		}
5234 	} else {
5235 		if (hw->dsp_config_state == e1000_dsp_config_activated) {
5236 			/* Save off the current value of register 0x2F5B to be
5237 			 * restored at the end of the routines.
5238 			 */
5239 			ret_val =
5240 			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5241 
5242 			if (ret_val)
5243 				return ret_val;
5244 
5245 			/* Disable the PHY transmitter */
5246 			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5247 
5248 			if (ret_val)
5249 				return ret_val;
5250 
5251 			msleep(20);
5252 
5253 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5254 						      IGP01E1000_IEEE_FORCE_GIGA);
5255 			if (ret_val)
5256 				return ret_val;
5257 			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5258 				ret_val =
5259 				    e1000_read_phy_reg(hw, dsp_reg_array[i],
5260 						       &phy_data);
5261 				if (ret_val)
5262 					return ret_val;
5263 
5264 				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5265 				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5266 
5267 				ret_val =
5268 				    e1000_write_phy_reg(hw, dsp_reg_array[i],
5269 							phy_data);
5270 				if (ret_val)
5271 					return ret_val;
5272 			}
5273 
5274 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5275 						      IGP01E1000_IEEE_RESTART_AUTONEG);
5276 			if (ret_val)
5277 				return ret_val;
5278 
5279 			msleep(20);
5280 
5281 			/* Now enable the transmitter */
5282 			ret_val =
5283 			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5284 
5285 			if (ret_val)
5286 				return ret_val;
5287 
5288 			hw->dsp_config_state = e1000_dsp_config_enabled;
5289 		}
5290 
5291 		if (hw->ffe_config_state == e1000_ffe_config_active) {
5292 			/* Save off the current value of register 0x2F5B to be
5293 			 * restored at the end of the routines.
5294 			 */
5295 			ret_val =
5296 			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5297 
5298 			if (ret_val)
5299 				return ret_val;
5300 
5301 			/* Disable the PHY transmitter */
5302 			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5303 
5304 			if (ret_val)
5305 				return ret_val;
5306 
5307 			msleep(20);
5308 
5309 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5310 						      IGP01E1000_IEEE_FORCE_GIGA);
5311 			if (ret_val)
5312 				return ret_val;
5313 			ret_val =
5314 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5315 						IGP01E1000_PHY_DSP_FFE_DEFAULT);
5316 			if (ret_val)
5317 				return ret_val;
5318 
5319 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5320 						      IGP01E1000_IEEE_RESTART_AUTONEG);
5321 			if (ret_val)
5322 				return ret_val;
5323 
5324 			msleep(20);
5325 
5326 			/* Now enable the transmitter */
5327 			ret_val =
5328 			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5329 
5330 			if (ret_val)
5331 				return ret_val;
5332 
5333 			hw->ffe_config_state = e1000_ffe_config_enabled;
5334 		}
5335 	}
5336 	return E1000_SUCCESS;
5337 }
5338 
5339 /**
5340  * e1000_set_phy_mode - Set PHY to class A mode
5341  * @hw: Struct containing variables accessed by shared code
5342  *
5343  * Assumes the following operations will follow to enable the new class mode.
5344  *  1. Do a PHY soft reset
5345  *  2. Restart auto-negotiation or force link.
5346  */
5347 static s32 e1000_set_phy_mode(struct e1000_hw *hw)
5348 {
5349 	s32 ret_val;
5350 	u16 eeprom_data;
5351 
5352 	if ((hw->mac_type == e1000_82545_rev_3) &&
5353 	    (hw->media_type == e1000_media_type_copper)) {
5354 		ret_val =
5355 		    e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5356 				      &eeprom_data);
5357 		if (ret_val)
5358 			return ret_val;
5359 
5360 		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5361 		    (eeprom_data & EEPROM_PHY_CLASS_A)) {
5362 			ret_val =
5363 			    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5364 						0x000B);
5365 			if (ret_val)
5366 				return ret_val;
5367 			ret_val =
5368 			    e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5369 						0x8104);
5370 			if (ret_val)
5371 				return ret_val;
5372 
5373 			hw->phy_reset_disable = false;
5374 		}
5375 	}
5376 
5377 	return E1000_SUCCESS;
5378 }
5379 
5380 /**
5381  * e1000_set_d3_lplu_state - set d3 link power state
5382  * @hw: Struct containing variables accessed by shared code
5383  * @active: true to enable lplu false to disable lplu.
5384  *
5385  * This function sets the lplu state according to the active flag.  When
5386  * activating lplu this function also disables smart speed and vise versa.
5387  * lplu will not be activated unless the device autonegotiation advertisement
5388  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5389  *
5390  * returns: - E1000_ERR_PHY if fail to read/write the PHY
5391  *            E1000_SUCCESS at any other case.
5392  */
5393 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
5394 {
5395 	s32 ret_val;
5396 	u16 phy_data;
5397 
5398 	if (hw->phy_type != e1000_phy_igp)
5399 		return E1000_SUCCESS;
5400 
5401 	/* During driver activity LPLU should not be used or it will attain link
5402 	 * from the lowest speeds starting from 10Mbps. The capability is used
5403 	 * for Dx transitions and states
5404 	 */
5405 	if (hw->mac_type == e1000_82541_rev_2 ||
5406 	    hw->mac_type == e1000_82547_rev_2) {
5407 		ret_val =
5408 		    e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5409 		if (ret_val)
5410 			return ret_val;
5411 	}
5412 
5413 	if (!active) {
5414 		if (hw->mac_type == e1000_82541_rev_2 ||
5415 		    hw->mac_type == e1000_82547_rev_2) {
5416 			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5417 			ret_val =
5418 			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5419 						phy_data);
5420 			if (ret_val)
5421 				return ret_val;
5422 		}
5423 
5424 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
5425 		 * during Dx states where the power conservation is most
5426 		 * important.  During driver activity we should enable
5427 		 * SmartSpeed, so performance is maintained.
5428 		 */
5429 		if (hw->smart_speed == e1000_smart_speed_on) {
5430 			ret_val =
5431 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5432 					       &phy_data);
5433 			if (ret_val)
5434 				return ret_val;
5435 
5436 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5437 			ret_val =
5438 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5439 						phy_data);
5440 			if (ret_val)
5441 				return ret_val;
5442 		} else if (hw->smart_speed == e1000_smart_speed_off) {
5443 			ret_val =
5444 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5445 					       &phy_data);
5446 			if (ret_val)
5447 				return ret_val;
5448 
5449 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5450 			ret_val =
5451 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5452 						phy_data);
5453 			if (ret_val)
5454 				return ret_val;
5455 		}
5456 	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
5457 		   (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
5458 		   (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
5459 		if (hw->mac_type == e1000_82541_rev_2 ||
5460 		    hw->mac_type == e1000_82547_rev_2) {
5461 			phy_data |= IGP01E1000_GMII_FLEX_SPD;
5462 			ret_val =
5463 			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5464 						phy_data);
5465 			if (ret_val)
5466 				return ret_val;
5467 		}
5468 
5469 		/* When LPLU is enabled we should disable SmartSpeed */
5470 		ret_val =
5471 		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5472 				       &phy_data);
5473 		if (ret_val)
5474 			return ret_val;
5475 
5476 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5477 		ret_val =
5478 		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5479 					phy_data);
5480 		if (ret_val)
5481 			return ret_val;
5482 	}
5483 	return E1000_SUCCESS;
5484 }
5485 
5486 /**
5487  * e1000_set_vco_speed
5488  * @hw: Struct containing variables accessed by shared code
5489  *
5490  * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5491  */
5492 static s32 e1000_set_vco_speed(struct e1000_hw *hw)
5493 {
5494 	s32 ret_val;
5495 	u16 default_page = 0;
5496 	u16 phy_data;
5497 
5498 	switch (hw->mac_type) {
5499 	case e1000_82545_rev_3:
5500 	case e1000_82546_rev_3:
5501 		break;
5502 	default:
5503 		return E1000_SUCCESS;
5504 	}
5505 
5506 	/* Set PHY register 30, page 5, bit 8 to 0 */
5507 
5508 	ret_val =
5509 	    e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5510 	if (ret_val)
5511 		return ret_val;
5512 
5513 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5514 	if (ret_val)
5515 		return ret_val;
5516 
5517 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5518 	if (ret_val)
5519 		return ret_val;
5520 
5521 	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5522 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5523 	if (ret_val)
5524 		return ret_val;
5525 
5526 	/* Set PHY register 30, page 4, bit 11 to 1 */
5527 
5528 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5529 	if (ret_val)
5530 		return ret_val;
5531 
5532 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5533 	if (ret_val)
5534 		return ret_val;
5535 
5536 	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5537 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5538 	if (ret_val)
5539 		return ret_val;
5540 
5541 	ret_val =
5542 	    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5543 	if (ret_val)
5544 		return ret_val;
5545 
5546 	return E1000_SUCCESS;
5547 }
5548 
5549 /**
5550  * e1000_enable_mng_pass_thru - check for bmc pass through
5551  * @hw: Struct containing variables accessed by shared code
5552  *
5553  * Verifies the hardware needs to allow ARPs to be processed by the host
5554  * returns: - true/false
5555  */
5556 u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
5557 {
5558 	u32 manc;
5559 
5560 	if (hw->asf_firmware_present) {
5561 		manc = er32(MANC);
5562 
5563 		if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5564 		    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5565 			return false;
5566 		if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5567 			return true;
5568 	}
5569 	return false;
5570 }
5571 
5572 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
5573 {
5574 	s32 ret_val;
5575 	u16 mii_status_reg;
5576 	u16 i;
5577 
5578 	/* Polarity reversal workaround for forced 10F/10H links. */
5579 
5580 	/* Disable the transmitter on the PHY */
5581 
5582 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5583 	if (ret_val)
5584 		return ret_val;
5585 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5586 	if (ret_val)
5587 		return ret_val;
5588 
5589 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5590 	if (ret_val)
5591 		return ret_val;
5592 
5593 	/* This loop will early-out if the NO link condition has been met. */
5594 	for (i = PHY_FORCE_TIME; i > 0; i--) {
5595 		/* Read the MII Status Register and wait for Link Status bit
5596 		 * to be clear.
5597 		 */
5598 
5599 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5600 		if (ret_val)
5601 			return ret_val;
5602 
5603 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5604 		if (ret_val)
5605 			return ret_val;
5606 
5607 		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5608 			break;
5609 		msleep(100);
5610 	}
5611 
5612 	/* Recommended delay time after link has been lost */
5613 	msleep(1000);
5614 
5615 	/* Now we will re-enable th transmitter on the PHY */
5616 
5617 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5618 	if (ret_val)
5619 		return ret_val;
5620 	msleep(50);
5621 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5622 	if (ret_val)
5623 		return ret_val;
5624 	msleep(50);
5625 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5626 	if (ret_val)
5627 		return ret_val;
5628 	msleep(50);
5629 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5630 	if (ret_val)
5631 		return ret_val;
5632 
5633 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5634 	if (ret_val)
5635 		return ret_val;
5636 
5637 	/* This loop will early-out if the link condition has been met. */
5638 	for (i = PHY_FORCE_TIME; i > 0; i--) {
5639 		/* Read the MII Status Register and wait for Link Status bit
5640 		 * to be set.
5641 		 */
5642 
5643 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5644 		if (ret_val)
5645 			return ret_val;
5646 
5647 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5648 		if (ret_val)
5649 			return ret_val;
5650 
5651 		if (mii_status_reg & MII_SR_LINK_STATUS)
5652 			break;
5653 		msleep(100);
5654 	}
5655 	return E1000_SUCCESS;
5656 }
5657 
5658 /**
5659  * e1000_get_auto_rd_done
5660  * @hw: Struct containing variables accessed by shared code
5661  *
5662  * Check for EEPROM Auto Read bit done.
5663  * returns: - E1000_ERR_RESET if fail to reset MAC
5664  *            E1000_SUCCESS at any other case.
5665  */
5666 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
5667 {
5668 	msleep(5);
5669 	return E1000_SUCCESS;
5670 }
5671 
5672 /**
5673  * e1000_get_phy_cfg_done
5674  * @hw: Struct containing variables accessed by shared code
5675  *
5676  * Checks if the PHY configuration is done
5677  * returns: - E1000_ERR_RESET if fail to reset MAC
5678  *            E1000_SUCCESS at any other case.
5679  */
5680 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
5681 {
5682 	msleep(10);
5683 	return E1000_SUCCESS;
5684 }
5685