1 /******************************************************************************* 2 * 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2006 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 */ 28 29 /* e1000_hw.c 30 * Shared functions for accessing and configuring the MAC 31 */ 32 33 #include "e1000.h" 34 35 static s32 e1000_check_downshift(struct e1000_hw *hw); 36 static s32 e1000_check_polarity(struct e1000_hw *hw, 37 e1000_rev_polarity *polarity); 38 static void e1000_clear_hw_cntrs(struct e1000_hw *hw); 39 static void e1000_clear_vfta(struct e1000_hw *hw); 40 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, 41 bool link_up); 42 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw); 43 static s32 e1000_detect_gig_phy(struct e1000_hw *hw); 44 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw); 45 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, 46 u16 *max_length); 47 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); 48 static s32 e1000_id_led_init(struct e1000_hw *hw); 49 static void e1000_init_rx_addrs(struct e1000_hw *hw); 50 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, 51 struct e1000_phy_info *phy_info); 52 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, 53 struct e1000_phy_info *phy_info); 54 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); 55 static s32 e1000_wait_autoneg(struct e1000_hw *hw); 56 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value); 57 static s32 e1000_set_phy_type(struct e1000_hw *hw); 58 static void e1000_phy_init_script(struct e1000_hw *hw); 59 static s32 e1000_setup_copper_link(struct e1000_hw *hw); 60 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw); 61 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw); 62 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); 63 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw); 64 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl); 65 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl); 66 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count); 67 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw); 68 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw); 69 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, 70 u16 words, u16 *data); 71 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, 72 u16 words, u16 *data); 73 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw); 74 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd); 75 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd); 76 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count); 77 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, 78 u16 phy_data); 79 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, 80 u16 *phy_data); 81 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count); 82 static s32 e1000_acquire_eeprom(struct e1000_hw *hw); 83 static void e1000_release_eeprom(struct e1000_hw *hw); 84 static void e1000_standby_eeprom(struct e1000_hw *hw); 85 static s32 e1000_set_vco_speed(struct e1000_hw *hw); 86 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw); 87 static s32 e1000_set_phy_mode(struct e1000_hw *hw); 88 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, 89 u16 *data); 90 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, 91 u16 *data); 92 93 /* IGP cable length table */ 94 static const 95 u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = { 96 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 97 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, 98 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, 99 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, 100 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, 101 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 102 100, 103 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 104 110, 110, 105 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 106 120, 120 107 }; 108 109 static DEFINE_MUTEX(e1000_eeprom_lock); 110 static DEFINE_SPINLOCK(e1000_phy_lock); 111 112 /** 113 * e1000_set_phy_type - Set the phy type member in the hw struct. 114 * @hw: Struct containing variables accessed by shared code 115 */ 116 static s32 e1000_set_phy_type(struct e1000_hw *hw) 117 { 118 if (hw->mac_type == e1000_undefined) 119 return -E1000_ERR_PHY_TYPE; 120 121 switch (hw->phy_id) { 122 case M88E1000_E_PHY_ID: 123 case M88E1000_I_PHY_ID: 124 case M88E1011_I_PHY_ID: 125 case M88E1111_I_PHY_ID: 126 case M88E1118_E_PHY_ID: 127 hw->phy_type = e1000_phy_m88; 128 break; 129 case IGP01E1000_I_PHY_ID: 130 if (hw->mac_type == e1000_82541 || 131 hw->mac_type == e1000_82541_rev_2 || 132 hw->mac_type == e1000_82547 || 133 hw->mac_type == e1000_82547_rev_2) 134 hw->phy_type = e1000_phy_igp; 135 break; 136 case RTL8211B_PHY_ID: 137 hw->phy_type = e1000_phy_8211; 138 break; 139 case RTL8201N_PHY_ID: 140 hw->phy_type = e1000_phy_8201; 141 break; 142 default: 143 /* Should never have loaded on this device */ 144 hw->phy_type = e1000_phy_undefined; 145 return -E1000_ERR_PHY_TYPE; 146 } 147 148 return E1000_SUCCESS; 149 } 150 151 /** 152 * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY 153 * @hw: Struct containing variables accessed by shared code 154 */ 155 static void e1000_phy_init_script(struct e1000_hw *hw) 156 { 157 u32 ret_val; 158 u16 phy_saved_data; 159 160 if (hw->phy_init_script) { 161 msleep(20); 162 163 /* Save off the current value of register 0x2F5B to be restored 164 * at the end of this routine. 165 */ 166 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); 167 168 /* Disabled the PHY transmitter */ 169 e1000_write_phy_reg(hw, 0x2F5B, 0x0003); 170 msleep(20); 171 172 e1000_write_phy_reg(hw, 0x0000, 0x0140); 173 msleep(5); 174 175 switch (hw->mac_type) { 176 case e1000_82541: 177 case e1000_82547: 178 e1000_write_phy_reg(hw, 0x1F95, 0x0001); 179 e1000_write_phy_reg(hw, 0x1F71, 0xBD21); 180 e1000_write_phy_reg(hw, 0x1F79, 0x0018); 181 e1000_write_phy_reg(hw, 0x1F30, 0x1600); 182 e1000_write_phy_reg(hw, 0x1F31, 0x0014); 183 e1000_write_phy_reg(hw, 0x1F32, 0x161C); 184 e1000_write_phy_reg(hw, 0x1F94, 0x0003); 185 e1000_write_phy_reg(hw, 0x1F96, 0x003F); 186 e1000_write_phy_reg(hw, 0x2010, 0x0008); 187 break; 188 189 case e1000_82541_rev_2: 190 case e1000_82547_rev_2: 191 e1000_write_phy_reg(hw, 0x1F73, 0x0099); 192 break; 193 default: 194 break; 195 } 196 197 e1000_write_phy_reg(hw, 0x0000, 0x3300); 198 msleep(20); 199 200 /* Now enable the transmitter */ 201 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); 202 203 if (hw->mac_type == e1000_82547) { 204 u16 fused, fine, coarse; 205 206 /* Move to analog registers page */ 207 e1000_read_phy_reg(hw, 208 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, 209 &fused); 210 211 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { 212 e1000_read_phy_reg(hw, 213 IGP01E1000_ANALOG_FUSE_STATUS, 214 &fused); 215 216 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; 217 coarse = 218 fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; 219 220 if (coarse > 221 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { 222 coarse -= 223 IGP01E1000_ANALOG_FUSE_COARSE_10; 224 fine -= IGP01E1000_ANALOG_FUSE_FINE_1; 225 } else if (coarse == 226 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) 227 fine -= IGP01E1000_ANALOG_FUSE_FINE_10; 228 229 fused = 230 (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | 231 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | 232 (coarse & 233 IGP01E1000_ANALOG_FUSE_COARSE_MASK); 234 235 e1000_write_phy_reg(hw, 236 IGP01E1000_ANALOG_FUSE_CONTROL, 237 fused); 238 e1000_write_phy_reg(hw, 239 IGP01E1000_ANALOG_FUSE_BYPASS, 240 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); 241 } 242 } 243 } 244 } 245 246 /** 247 * e1000_set_mac_type - Set the mac type member in the hw struct. 248 * @hw: Struct containing variables accessed by shared code 249 */ 250 s32 e1000_set_mac_type(struct e1000_hw *hw) 251 { 252 switch (hw->device_id) { 253 case E1000_DEV_ID_82542: 254 switch (hw->revision_id) { 255 case E1000_82542_2_0_REV_ID: 256 hw->mac_type = e1000_82542_rev2_0; 257 break; 258 case E1000_82542_2_1_REV_ID: 259 hw->mac_type = e1000_82542_rev2_1; 260 break; 261 default: 262 /* Invalid 82542 revision ID */ 263 return -E1000_ERR_MAC_TYPE; 264 } 265 break; 266 case E1000_DEV_ID_82543GC_FIBER: 267 case E1000_DEV_ID_82543GC_COPPER: 268 hw->mac_type = e1000_82543; 269 break; 270 case E1000_DEV_ID_82544EI_COPPER: 271 case E1000_DEV_ID_82544EI_FIBER: 272 case E1000_DEV_ID_82544GC_COPPER: 273 case E1000_DEV_ID_82544GC_LOM: 274 hw->mac_type = e1000_82544; 275 break; 276 case E1000_DEV_ID_82540EM: 277 case E1000_DEV_ID_82540EM_LOM: 278 case E1000_DEV_ID_82540EP: 279 case E1000_DEV_ID_82540EP_LOM: 280 case E1000_DEV_ID_82540EP_LP: 281 hw->mac_type = e1000_82540; 282 break; 283 case E1000_DEV_ID_82545EM_COPPER: 284 case E1000_DEV_ID_82545EM_FIBER: 285 hw->mac_type = e1000_82545; 286 break; 287 case E1000_DEV_ID_82545GM_COPPER: 288 case E1000_DEV_ID_82545GM_FIBER: 289 case E1000_DEV_ID_82545GM_SERDES: 290 hw->mac_type = e1000_82545_rev_3; 291 break; 292 case E1000_DEV_ID_82546EB_COPPER: 293 case E1000_DEV_ID_82546EB_FIBER: 294 case E1000_DEV_ID_82546EB_QUAD_COPPER: 295 hw->mac_type = e1000_82546; 296 break; 297 case E1000_DEV_ID_82546GB_COPPER: 298 case E1000_DEV_ID_82546GB_FIBER: 299 case E1000_DEV_ID_82546GB_SERDES: 300 case E1000_DEV_ID_82546GB_PCIE: 301 case E1000_DEV_ID_82546GB_QUAD_COPPER: 302 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 303 hw->mac_type = e1000_82546_rev_3; 304 break; 305 case E1000_DEV_ID_82541EI: 306 case E1000_DEV_ID_82541EI_MOBILE: 307 case E1000_DEV_ID_82541ER_LOM: 308 hw->mac_type = e1000_82541; 309 break; 310 case E1000_DEV_ID_82541ER: 311 case E1000_DEV_ID_82541GI: 312 case E1000_DEV_ID_82541GI_LF: 313 case E1000_DEV_ID_82541GI_MOBILE: 314 hw->mac_type = e1000_82541_rev_2; 315 break; 316 case E1000_DEV_ID_82547EI: 317 case E1000_DEV_ID_82547EI_MOBILE: 318 hw->mac_type = e1000_82547; 319 break; 320 case E1000_DEV_ID_82547GI: 321 hw->mac_type = e1000_82547_rev_2; 322 break; 323 case E1000_DEV_ID_INTEL_CE4100_GBE: 324 hw->mac_type = e1000_ce4100; 325 break; 326 default: 327 /* Should never have loaded on this device */ 328 return -E1000_ERR_MAC_TYPE; 329 } 330 331 switch (hw->mac_type) { 332 case e1000_82541: 333 case e1000_82547: 334 case e1000_82541_rev_2: 335 case e1000_82547_rev_2: 336 hw->asf_firmware_present = true; 337 break; 338 default: 339 break; 340 } 341 342 /* The 82543 chip does not count tx_carrier_errors properly in 343 * FD mode 344 */ 345 if (hw->mac_type == e1000_82543) 346 hw->bad_tx_carr_stats_fd = true; 347 348 if (hw->mac_type > e1000_82544) 349 hw->has_smbus = true; 350 351 return E1000_SUCCESS; 352 } 353 354 /** 355 * e1000_set_media_type - Set media type and TBI compatibility. 356 * @hw: Struct containing variables accessed by shared code 357 */ 358 void e1000_set_media_type(struct e1000_hw *hw) 359 { 360 u32 status; 361 362 if (hw->mac_type != e1000_82543) { 363 /* tbi_compatibility is only valid on 82543 */ 364 hw->tbi_compatibility_en = false; 365 } 366 367 switch (hw->device_id) { 368 case E1000_DEV_ID_82545GM_SERDES: 369 case E1000_DEV_ID_82546GB_SERDES: 370 hw->media_type = e1000_media_type_internal_serdes; 371 break; 372 default: 373 switch (hw->mac_type) { 374 case e1000_82542_rev2_0: 375 case e1000_82542_rev2_1: 376 hw->media_type = e1000_media_type_fiber; 377 break; 378 case e1000_ce4100: 379 hw->media_type = e1000_media_type_copper; 380 break; 381 default: 382 status = er32(STATUS); 383 if (status & E1000_STATUS_TBIMODE) { 384 hw->media_type = e1000_media_type_fiber; 385 /* tbi_compatibility not valid on fiber */ 386 hw->tbi_compatibility_en = false; 387 } else { 388 hw->media_type = e1000_media_type_copper; 389 } 390 break; 391 } 392 } 393 } 394 395 /** 396 * e1000_reset_hw - reset the hardware completely 397 * @hw: Struct containing variables accessed by shared code 398 * 399 * Reset the transmit and receive units; mask and clear all interrupts. 400 */ 401 s32 e1000_reset_hw(struct e1000_hw *hw) 402 { 403 u32 ctrl; 404 u32 ctrl_ext; 405 u32 icr; 406 u32 manc; 407 u32 led_ctrl; 408 s32 ret_val; 409 410 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ 411 if (hw->mac_type == e1000_82542_rev2_0) { 412 e_dbg("Disabling MWI on 82542 rev 2.0\n"); 413 e1000_pci_clear_mwi(hw); 414 } 415 416 /* Clear interrupt mask to stop board from generating interrupts */ 417 e_dbg("Masking off all interrupts\n"); 418 ew32(IMC, 0xffffffff); 419 420 /* Disable the Transmit and Receive units. Then delay to allow 421 * any pending transactions to complete before we hit the MAC with 422 * the global reset. 423 */ 424 ew32(RCTL, 0); 425 ew32(TCTL, E1000_TCTL_PSP); 426 E1000_WRITE_FLUSH(); 427 428 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ 429 hw->tbi_compatibility_on = false; 430 431 /* Delay to allow any outstanding PCI transactions to complete before 432 * resetting the device 433 */ 434 msleep(10); 435 436 ctrl = er32(CTRL); 437 438 /* Must reset the PHY before resetting the MAC */ 439 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { 440 ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST)); 441 E1000_WRITE_FLUSH(); 442 msleep(5); 443 } 444 445 /* Issue a global reset to the MAC. This will reset the chip's 446 * transmit, receive, DMA, and link units. It will not effect 447 * the current PCI configuration. The global reset bit is self- 448 * clearing, and should clear within a microsecond. 449 */ 450 e_dbg("Issuing a global reset to MAC\n"); 451 452 switch (hw->mac_type) { 453 case e1000_82544: 454 case e1000_82540: 455 case e1000_82545: 456 case e1000_82546: 457 case e1000_82541: 458 case e1000_82541_rev_2: 459 /* These controllers can't ack the 64-bit write when issuing the 460 * reset, so use IO-mapping as a workaround to issue the reset 461 */ 462 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); 463 break; 464 case e1000_82545_rev_3: 465 case e1000_82546_rev_3: 466 /* Reset is performed on a shadow of the control register */ 467 ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST)); 468 break; 469 case e1000_ce4100: 470 default: 471 ew32(CTRL, (ctrl | E1000_CTRL_RST)); 472 break; 473 } 474 475 /* After MAC reset, force reload of EEPROM to restore power-on settings 476 * to device. Later controllers reload the EEPROM automatically, so 477 * just wait for reload to complete. 478 */ 479 switch (hw->mac_type) { 480 case e1000_82542_rev2_0: 481 case e1000_82542_rev2_1: 482 case e1000_82543: 483 case e1000_82544: 484 /* Wait for reset to complete */ 485 udelay(10); 486 ctrl_ext = er32(CTRL_EXT); 487 ctrl_ext |= E1000_CTRL_EXT_EE_RST; 488 ew32(CTRL_EXT, ctrl_ext); 489 E1000_WRITE_FLUSH(); 490 /* Wait for EEPROM reload */ 491 msleep(2); 492 break; 493 case e1000_82541: 494 case e1000_82541_rev_2: 495 case e1000_82547: 496 case e1000_82547_rev_2: 497 /* Wait for EEPROM reload */ 498 msleep(20); 499 break; 500 default: 501 /* Auto read done will delay 5ms or poll based on mac type */ 502 ret_val = e1000_get_auto_rd_done(hw); 503 if (ret_val) 504 return ret_val; 505 break; 506 } 507 508 /* Disable HW ARPs on ASF enabled adapters */ 509 if (hw->mac_type >= e1000_82540) { 510 manc = er32(MANC); 511 manc &= ~(E1000_MANC_ARP_EN); 512 ew32(MANC, manc); 513 } 514 515 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { 516 e1000_phy_init_script(hw); 517 518 /* Configure activity LED after PHY reset */ 519 led_ctrl = er32(LEDCTL); 520 led_ctrl &= IGP_ACTIVITY_LED_MASK; 521 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); 522 ew32(LEDCTL, led_ctrl); 523 } 524 525 /* Clear interrupt mask to stop board from generating interrupts */ 526 e_dbg("Masking off all interrupts\n"); 527 ew32(IMC, 0xffffffff); 528 529 /* Clear any pending interrupt events. */ 530 icr = er32(ICR); 531 532 /* If MWI was previously enabled, reenable it. */ 533 if (hw->mac_type == e1000_82542_rev2_0) { 534 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) 535 e1000_pci_set_mwi(hw); 536 } 537 538 return E1000_SUCCESS; 539 } 540 541 /** 542 * e1000_init_hw - Performs basic configuration of the adapter. 543 * @hw: Struct containing variables accessed by shared code 544 * 545 * Assumes that the controller has previously been reset and is in a 546 * post-reset uninitialized state. Initializes the receive address registers, 547 * multicast table, and VLAN filter table. Calls routines to setup link 548 * configuration and flow control settings. Clears all on-chip counters. Leaves 549 * the transmit and receive units disabled and uninitialized. 550 */ 551 s32 e1000_init_hw(struct e1000_hw *hw) 552 { 553 u32 ctrl; 554 u32 i; 555 s32 ret_val; 556 u32 mta_size; 557 u32 ctrl_ext; 558 559 /* Initialize Identification LED */ 560 ret_val = e1000_id_led_init(hw); 561 if (ret_val) { 562 e_dbg("Error Initializing Identification LED\n"); 563 return ret_val; 564 } 565 566 /* Set the media type and TBI compatibility */ 567 e1000_set_media_type(hw); 568 569 /* Disabling VLAN filtering. */ 570 e_dbg("Initializing the IEEE VLAN\n"); 571 if (hw->mac_type < e1000_82545_rev_3) 572 ew32(VET, 0); 573 e1000_clear_vfta(hw); 574 575 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ 576 if (hw->mac_type == e1000_82542_rev2_0) { 577 e_dbg("Disabling MWI on 82542 rev 2.0\n"); 578 e1000_pci_clear_mwi(hw); 579 ew32(RCTL, E1000_RCTL_RST); 580 E1000_WRITE_FLUSH(); 581 msleep(5); 582 } 583 584 /* Setup the receive address. This involves initializing all of the 585 * Receive Address Registers (RARs 0 - 15). 586 */ 587 e1000_init_rx_addrs(hw); 588 589 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ 590 if (hw->mac_type == e1000_82542_rev2_0) { 591 ew32(RCTL, 0); 592 E1000_WRITE_FLUSH(); 593 msleep(1); 594 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) 595 e1000_pci_set_mwi(hw); 596 } 597 598 /* Zero out the Multicast HASH table */ 599 e_dbg("Zeroing the MTA\n"); 600 mta_size = E1000_MC_TBL_SIZE; 601 for (i = 0; i < mta_size; i++) { 602 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); 603 /* use write flush to prevent Memory Write Block (MWB) from 604 * occurring when accessing our register space 605 */ 606 E1000_WRITE_FLUSH(); 607 } 608 609 /* Set the PCI priority bit correctly in the CTRL register. This 610 * determines if the adapter gives priority to receives, or if it 611 * gives equal priority to transmits and receives. Valid only on 612 * 82542 and 82543 silicon. 613 */ 614 if (hw->dma_fairness && hw->mac_type <= e1000_82543) { 615 ctrl = er32(CTRL); 616 ew32(CTRL, ctrl | E1000_CTRL_PRIOR); 617 } 618 619 switch (hw->mac_type) { 620 case e1000_82545_rev_3: 621 case e1000_82546_rev_3: 622 break; 623 default: 624 /* Workaround for PCI-X problem when BIOS sets MMRBC 625 * incorrectly. 626 */ 627 if (hw->bus_type == e1000_bus_type_pcix && 628 e1000_pcix_get_mmrbc(hw) > 2048) 629 e1000_pcix_set_mmrbc(hw, 2048); 630 break; 631 } 632 633 /* Call a subroutine to configure the link and setup flow control. */ 634 ret_val = e1000_setup_link(hw); 635 636 /* Set the transmit descriptor write-back policy */ 637 if (hw->mac_type > e1000_82544) { 638 ctrl = er32(TXDCTL); 639 ctrl = 640 (ctrl & ~E1000_TXDCTL_WTHRESH) | 641 E1000_TXDCTL_FULL_TX_DESC_WB; 642 ew32(TXDCTL, ctrl); 643 } 644 645 /* Clear all of the statistics registers (clear on read). It is 646 * important that we do this after we have tried to establish link 647 * because the symbol error count will increment wildly if there 648 * is no link. 649 */ 650 e1000_clear_hw_cntrs(hw); 651 652 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || 653 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { 654 ctrl_ext = er32(CTRL_EXT); 655 /* Relaxed ordering must be disabled to avoid a parity 656 * error crash in a PCI slot. 657 */ 658 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; 659 ew32(CTRL_EXT, ctrl_ext); 660 } 661 662 return ret_val; 663 } 664 665 /** 666 * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting. 667 * @hw: Struct containing variables accessed by shared code. 668 */ 669 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw) 670 { 671 u16 eeprom_data; 672 s32 ret_val; 673 674 if (hw->media_type != e1000_media_type_internal_serdes) 675 return E1000_SUCCESS; 676 677 switch (hw->mac_type) { 678 case e1000_82545_rev_3: 679 case e1000_82546_rev_3: 680 break; 681 default: 682 return E1000_SUCCESS; 683 } 684 685 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, 686 &eeprom_data); 687 if (ret_val) 688 return ret_val; 689 690 if (eeprom_data != EEPROM_RESERVED_WORD) { 691 /* Adjust SERDES output amplitude only. */ 692 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; 693 ret_val = 694 e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); 695 if (ret_val) 696 return ret_val; 697 } 698 699 return E1000_SUCCESS; 700 } 701 702 /** 703 * e1000_setup_link - Configures flow control and link settings. 704 * @hw: Struct containing variables accessed by shared code 705 * 706 * Determines which flow control settings to use. Calls the appropriate media- 707 * specific link configuration function. Configures the flow control settings. 708 * Assuming the adapter has a valid link partner, a valid link should be 709 * established. Assumes the hardware has previously been reset and the 710 * transmitter and receiver are not enabled. 711 */ 712 s32 e1000_setup_link(struct e1000_hw *hw) 713 { 714 u32 ctrl_ext; 715 s32 ret_val; 716 u16 eeprom_data; 717 718 /* Read and store word 0x0F of the EEPROM. This word contains bits 719 * that determine the hardware's default PAUSE (flow control) mode, 720 * a bit that determines whether the HW defaults to enabling or 721 * disabling auto-negotiation, and the direction of the 722 * SW defined pins. If there is no SW over-ride of the flow 723 * control setting, then the variable hw->fc will 724 * be initialized based on a value in the EEPROM. 725 */ 726 if (hw->fc == E1000_FC_DEFAULT) { 727 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 728 1, &eeprom_data); 729 if (ret_val) { 730 e_dbg("EEPROM Read Error\n"); 731 return -E1000_ERR_EEPROM; 732 } 733 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) 734 hw->fc = E1000_FC_NONE; 735 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 736 EEPROM_WORD0F_ASM_DIR) 737 hw->fc = E1000_FC_TX_PAUSE; 738 else 739 hw->fc = E1000_FC_FULL; 740 } 741 742 /* We want to save off the original Flow Control configuration just 743 * in case we get disconnected and then reconnected into a different 744 * hub or switch with different Flow Control capabilities. 745 */ 746 if (hw->mac_type == e1000_82542_rev2_0) 747 hw->fc &= (~E1000_FC_TX_PAUSE); 748 749 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) 750 hw->fc &= (~E1000_FC_RX_PAUSE); 751 752 hw->original_fc = hw->fc; 753 754 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc); 755 756 /* Take the 4 bits from EEPROM word 0x0F that determine the initial 757 * polarity value for the SW controlled pins, and setup the 758 * Extended Device Control reg with that info. 759 * This is needed because one of the SW controlled pins is used for 760 * signal detection. So this should be done before e1000_setup_pcs_link() 761 * or e1000_phy_setup() is called. 762 */ 763 if (hw->mac_type == e1000_82543) { 764 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 765 1, &eeprom_data); 766 if (ret_val) { 767 e_dbg("EEPROM Read Error\n"); 768 return -E1000_ERR_EEPROM; 769 } 770 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << 771 SWDPIO__EXT_SHIFT); 772 ew32(CTRL_EXT, ctrl_ext); 773 } 774 775 /* Call the necessary subroutine to configure the link. */ 776 ret_val = (hw->media_type == e1000_media_type_copper) ? 777 e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw); 778 779 /* Initialize the flow control address, type, and PAUSE timer 780 * registers to their default values. This is done even if flow 781 * control is disabled, because it does not hurt anything to 782 * initialize these registers. 783 */ 784 e_dbg("Initializing the Flow Control address, type and timer regs\n"); 785 786 ew32(FCT, FLOW_CONTROL_TYPE); 787 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); 788 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); 789 790 ew32(FCTTV, hw->fc_pause_time); 791 792 /* Set the flow control receive threshold registers. Normally, 793 * these registers will be set to a default threshold that may be 794 * adjusted later by the driver's runtime code. However, if the 795 * ability to transmit pause frames in not enabled, then these 796 * registers will be set to 0. 797 */ 798 if (!(hw->fc & E1000_FC_TX_PAUSE)) { 799 ew32(FCRTL, 0); 800 ew32(FCRTH, 0); 801 } else { 802 /* We need to set up the Receive Threshold high and low water 803 * marks as well as (optionally) enabling the transmission of 804 * XON frames. 805 */ 806 if (hw->fc_send_xon) { 807 ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); 808 ew32(FCRTH, hw->fc_high_water); 809 } else { 810 ew32(FCRTL, hw->fc_low_water); 811 ew32(FCRTH, hw->fc_high_water); 812 } 813 } 814 return ret_val; 815 } 816 817 /** 818 * e1000_setup_fiber_serdes_link - prepare fiber or serdes link 819 * @hw: Struct containing variables accessed by shared code 820 * 821 * Manipulates Physical Coding Sublayer functions in order to configure 822 * link. Assumes the hardware has been previously reset and the transmitter 823 * and receiver are not enabled. 824 */ 825 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) 826 { 827 u32 ctrl; 828 u32 status; 829 u32 txcw = 0; 830 u32 i; 831 u32 signal = 0; 832 s32 ret_val; 833 834 /* On adapters with a MAC newer than 82544, SWDP 1 will be 835 * set when the optics detect a signal. On older adapters, it will be 836 * cleared when there is a signal. This applies to fiber media only. 837 * If we're on serdes media, adjust the output amplitude to value 838 * set in the EEPROM. 839 */ 840 ctrl = er32(CTRL); 841 if (hw->media_type == e1000_media_type_fiber) 842 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; 843 844 ret_val = e1000_adjust_serdes_amplitude(hw); 845 if (ret_val) 846 return ret_val; 847 848 /* Take the link out of reset */ 849 ctrl &= ~(E1000_CTRL_LRST); 850 851 /* Adjust VCO speed to improve BER performance */ 852 ret_val = e1000_set_vco_speed(hw); 853 if (ret_val) 854 return ret_val; 855 856 e1000_config_collision_dist(hw); 857 858 /* Check for a software override of the flow control settings, and setup 859 * the device accordingly. If auto-negotiation is enabled, then 860 * software will have to set the "PAUSE" bits to the correct value in 861 * the Tranmsit Config Word Register (TXCW) and re-start 862 * auto-negotiation. However, if auto-negotiation is disabled, then 863 * software will have to manually configure the two flow control enable 864 * bits in the CTRL register. 865 * 866 * The possible values of the "fc" parameter are: 867 * 0: Flow control is completely disabled 868 * 1: Rx flow control is enabled (we can receive pause frames, but 869 * not send pause frames). 870 * 2: Tx flow control is enabled (we can send pause frames but we do 871 * not support receiving pause frames). 872 * 3: Both Rx and TX flow control (symmetric) are enabled. 873 */ 874 switch (hw->fc) { 875 case E1000_FC_NONE: 876 /* Flow ctrl is completely disabled by a software over-ride */ 877 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); 878 break; 879 case E1000_FC_RX_PAUSE: 880 /* Rx Flow control is enabled and Tx Flow control is disabled by 881 * a software over-ride. Since there really isn't a way to 882 * advertise that we are capable of Rx Pause ONLY, we will 883 * advertise that we support both symmetric and asymmetric Rx 884 * PAUSE. Later, we will disable the adapter's ability to send 885 * PAUSE frames. 886 */ 887 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); 888 break; 889 case E1000_FC_TX_PAUSE: 890 /* Tx Flow control is enabled, and Rx Flow control is disabled, 891 * by a software over-ride. 892 */ 893 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); 894 break; 895 case E1000_FC_FULL: 896 /* Flow control (both Rx and Tx) is enabled by a software 897 * over-ride. 898 */ 899 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); 900 break; 901 default: 902 e_dbg("Flow control param set incorrectly\n"); 903 return -E1000_ERR_CONFIG; 904 } 905 906 /* Since auto-negotiation is enabled, take the link out of reset (the 907 * link will be in reset, because we previously reset the chip). This 908 * will restart auto-negotiation. If auto-negotiation is successful 909 * then the link-up status bit will be set and the flow control enable 910 * bits (RFCE and TFCE) will be set according to their negotiated value. 911 */ 912 e_dbg("Auto-negotiation enabled\n"); 913 914 ew32(TXCW, txcw); 915 ew32(CTRL, ctrl); 916 E1000_WRITE_FLUSH(); 917 918 hw->txcw = txcw; 919 msleep(1); 920 921 /* If we have a signal (the cable is plugged in) then poll for a 922 * "Link-Up" indication in the Device Status Register. Time-out if a 923 * link isn't seen in 500 milliseconds seconds (Auto-negotiation should 924 * complete in less than 500 milliseconds even if the other end is doing 925 * it in SW). For internal serdes, we just assume a signal is present, 926 * then poll. 927 */ 928 if (hw->media_type == e1000_media_type_internal_serdes || 929 (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) { 930 e_dbg("Looking for Link\n"); 931 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { 932 msleep(10); 933 status = er32(STATUS); 934 if (status & E1000_STATUS_LU) 935 break; 936 } 937 if (i == (LINK_UP_TIMEOUT / 10)) { 938 e_dbg("Never got a valid link from auto-neg!!!\n"); 939 hw->autoneg_failed = 1; 940 /* AutoNeg failed to achieve a link, so we'll call 941 * e1000_check_for_link. This routine will force the 942 * link up if we detect a signal. This will allow us to 943 * communicate with non-autonegotiating link partners. 944 */ 945 ret_val = e1000_check_for_link(hw); 946 if (ret_val) { 947 e_dbg("Error while checking for link\n"); 948 return ret_val; 949 } 950 hw->autoneg_failed = 0; 951 } else { 952 hw->autoneg_failed = 0; 953 e_dbg("Valid Link Found\n"); 954 } 955 } else { 956 e_dbg("No Signal Detected\n"); 957 } 958 return E1000_SUCCESS; 959 } 960 961 /** 962 * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series. 963 * @hw: Struct containing variables accessed by shared code 964 * 965 * Commits changes to PHY configuration by calling e1000_phy_reset(). 966 */ 967 static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw) 968 { 969 s32 ret_val; 970 971 /* SW reset the PHY so all changes take effect */ 972 ret_val = e1000_phy_reset(hw); 973 if (ret_val) { 974 e_dbg("Error Resetting the PHY\n"); 975 return ret_val; 976 } 977 978 return E1000_SUCCESS; 979 } 980 981 static s32 gbe_dhg_phy_setup(struct e1000_hw *hw) 982 { 983 s32 ret_val; 984 u32 ctrl_aux; 985 986 switch (hw->phy_type) { 987 case e1000_phy_8211: 988 ret_val = e1000_copper_link_rtl_setup(hw); 989 if (ret_val) { 990 e_dbg("e1000_copper_link_rtl_setup failed!\n"); 991 return ret_val; 992 } 993 break; 994 case e1000_phy_8201: 995 /* Set RMII mode */ 996 ctrl_aux = er32(CTL_AUX); 997 ctrl_aux |= E1000_CTL_AUX_RMII; 998 ew32(CTL_AUX, ctrl_aux); 999 E1000_WRITE_FLUSH(); 1000 1001 /* Disable the J/K bits required for receive */ 1002 ctrl_aux = er32(CTL_AUX); 1003 ctrl_aux |= 0x4; 1004 ctrl_aux &= ~0x2; 1005 ew32(CTL_AUX, ctrl_aux); 1006 E1000_WRITE_FLUSH(); 1007 ret_val = e1000_copper_link_rtl_setup(hw); 1008 1009 if (ret_val) { 1010 e_dbg("e1000_copper_link_rtl_setup failed!\n"); 1011 return ret_val; 1012 } 1013 break; 1014 default: 1015 e_dbg("Error Resetting the PHY\n"); 1016 return E1000_ERR_PHY_TYPE; 1017 } 1018 1019 return E1000_SUCCESS; 1020 } 1021 1022 /** 1023 * e1000_copper_link_preconfig - early configuration for copper 1024 * @hw: Struct containing variables accessed by shared code 1025 * 1026 * Make sure we have a valid PHY and change PHY mode before link setup. 1027 */ 1028 static s32 e1000_copper_link_preconfig(struct e1000_hw *hw) 1029 { 1030 u32 ctrl; 1031 s32 ret_val; 1032 u16 phy_data; 1033 1034 ctrl = er32(CTRL); 1035 /* With 82543, we need to force speed and duplex on the MAC equal to 1036 * what the PHY speed and duplex configuration is. In addition, we need 1037 * to perform a hardware reset on the PHY to take it out of reset. 1038 */ 1039 if (hw->mac_type > e1000_82543) { 1040 ctrl |= E1000_CTRL_SLU; 1041 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1042 ew32(CTRL, ctrl); 1043 } else { 1044 ctrl |= 1045 (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); 1046 ew32(CTRL, ctrl); 1047 ret_val = e1000_phy_hw_reset(hw); 1048 if (ret_val) 1049 return ret_val; 1050 } 1051 1052 /* Make sure we have a valid PHY */ 1053 ret_val = e1000_detect_gig_phy(hw); 1054 if (ret_val) { 1055 e_dbg("Error, did not detect valid phy.\n"); 1056 return ret_val; 1057 } 1058 e_dbg("Phy ID = %x\n", hw->phy_id); 1059 1060 /* Set PHY to class A mode (if necessary) */ 1061 ret_val = e1000_set_phy_mode(hw); 1062 if (ret_val) 1063 return ret_val; 1064 1065 if ((hw->mac_type == e1000_82545_rev_3) || 1066 (hw->mac_type == e1000_82546_rev_3)) { 1067 ret_val = 1068 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1069 phy_data |= 0x00000008; 1070 ret_val = 1071 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1072 } 1073 1074 if (hw->mac_type <= e1000_82543 || 1075 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || 1076 hw->mac_type == e1000_82541_rev_2 || 1077 hw->mac_type == e1000_82547_rev_2) 1078 hw->phy_reset_disable = false; 1079 1080 return E1000_SUCCESS; 1081 } 1082 1083 /** 1084 * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series. 1085 * @hw: Struct containing variables accessed by shared code 1086 */ 1087 static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw) 1088 { 1089 u32 led_ctrl; 1090 s32 ret_val; 1091 u16 phy_data; 1092 1093 if (hw->phy_reset_disable) 1094 return E1000_SUCCESS; 1095 1096 ret_val = e1000_phy_reset(hw); 1097 if (ret_val) { 1098 e_dbg("Error Resetting the PHY\n"); 1099 return ret_val; 1100 } 1101 1102 /* Wait 15ms for MAC to configure PHY from eeprom settings */ 1103 msleep(15); 1104 /* Configure activity LED after PHY reset */ 1105 led_ctrl = er32(LEDCTL); 1106 led_ctrl &= IGP_ACTIVITY_LED_MASK; 1107 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); 1108 ew32(LEDCTL, led_ctrl); 1109 1110 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ 1111 if (hw->phy_type == e1000_phy_igp) { 1112 /* disable lplu d3 during driver init */ 1113 ret_val = e1000_set_d3_lplu_state(hw, false); 1114 if (ret_val) { 1115 e_dbg("Error Disabling LPLU D3\n"); 1116 return ret_val; 1117 } 1118 } 1119 1120 /* Configure mdi-mdix settings */ 1121 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); 1122 if (ret_val) 1123 return ret_val; 1124 1125 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { 1126 hw->dsp_config_state = e1000_dsp_config_disabled; 1127 /* Force MDI for earlier revs of the IGP PHY */ 1128 phy_data &= 1129 ~(IGP01E1000_PSCR_AUTO_MDIX | 1130 IGP01E1000_PSCR_FORCE_MDI_MDIX); 1131 hw->mdix = 1; 1132 1133 } else { 1134 hw->dsp_config_state = e1000_dsp_config_enabled; 1135 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; 1136 1137 switch (hw->mdix) { 1138 case 1: 1139 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 1140 break; 1141 case 2: 1142 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; 1143 break; 1144 case 0: 1145 default: 1146 phy_data |= IGP01E1000_PSCR_AUTO_MDIX; 1147 break; 1148 } 1149 } 1150 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); 1151 if (ret_val) 1152 return ret_val; 1153 1154 /* set auto-master slave resolution settings */ 1155 if (hw->autoneg) { 1156 e1000_ms_type phy_ms_setting = hw->master_slave; 1157 1158 if (hw->ffe_config_state == e1000_ffe_config_active) 1159 hw->ffe_config_state = e1000_ffe_config_enabled; 1160 1161 if (hw->dsp_config_state == e1000_dsp_config_activated) 1162 hw->dsp_config_state = e1000_dsp_config_enabled; 1163 1164 /* when autonegotiation advertisement is only 1000Mbps then we 1165 * should disable SmartSpeed and enable Auto MasterSlave 1166 * resolution as hardware default. 1167 */ 1168 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { 1169 /* Disable SmartSpeed */ 1170 ret_val = 1171 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 1172 &phy_data); 1173 if (ret_val) 1174 return ret_val; 1175 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1176 ret_val = 1177 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 1178 phy_data); 1179 if (ret_val) 1180 return ret_val; 1181 /* Set auto Master/Slave resolution process */ 1182 ret_val = 1183 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); 1184 if (ret_val) 1185 return ret_val; 1186 phy_data &= ~CR_1000T_MS_ENABLE; 1187 ret_val = 1188 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); 1189 if (ret_val) 1190 return ret_val; 1191 } 1192 1193 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); 1194 if (ret_val) 1195 return ret_val; 1196 1197 /* load defaults for future use */ 1198 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? 1199 ((phy_data & CR_1000T_MS_VALUE) ? 1200 e1000_ms_force_master : 1201 e1000_ms_force_slave) : e1000_ms_auto; 1202 1203 switch (phy_ms_setting) { 1204 case e1000_ms_force_master: 1205 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); 1206 break; 1207 case e1000_ms_force_slave: 1208 phy_data |= CR_1000T_MS_ENABLE; 1209 phy_data &= ~(CR_1000T_MS_VALUE); 1210 break; 1211 case e1000_ms_auto: 1212 phy_data &= ~CR_1000T_MS_ENABLE; 1213 default: 1214 break; 1215 } 1216 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); 1217 if (ret_val) 1218 return ret_val; 1219 } 1220 1221 return E1000_SUCCESS; 1222 } 1223 1224 /** 1225 * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series. 1226 * @hw: Struct containing variables accessed by shared code 1227 */ 1228 static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw) 1229 { 1230 s32 ret_val; 1231 u16 phy_data; 1232 1233 if (hw->phy_reset_disable) 1234 return E1000_SUCCESS; 1235 1236 /* Enable CRS on TX. This must be set for half-duplex operation. */ 1237 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1238 if (ret_val) 1239 return ret_val; 1240 1241 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 1242 1243 /* Options: 1244 * MDI/MDI-X = 0 (default) 1245 * 0 - Auto for all speeds 1246 * 1 - MDI mode 1247 * 2 - MDI-X mode 1248 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) 1249 */ 1250 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 1251 1252 switch (hw->mdix) { 1253 case 1: 1254 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; 1255 break; 1256 case 2: 1257 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; 1258 break; 1259 case 3: 1260 phy_data |= M88E1000_PSCR_AUTO_X_1000T; 1261 break; 1262 case 0: 1263 default: 1264 phy_data |= M88E1000_PSCR_AUTO_X_MODE; 1265 break; 1266 } 1267 1268 /* Options: 1269 * disable_polarity_correction = 0 (default) 1270 * Automatic Correction for Reversed Cable Polarity 1271 * 0 - Disabled 1272 * 1 - Enabled 1273 */ 1274 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; 1275 if (hw->disable_polarity_correction == 1) 1276 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; 1277 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1278 if (ret_val) 1279 return ret_val; 1280 1281 if (hw->phy_revision < M88E1011_I_REV_4) { 1282 /* Force TX_CLK in the Extended PHY Specific Control Register 1283 * to 25MHz clock. 1284 */ 1285 ret_val = 1286 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, 1287 &phy_data); 1288 if (ret_val) 1289 return ret_val; 1290 1291 phy_data |= M88E1000_EPSCR_TX_CLK_25; 1292 1293 if ((hw->phy_revision == E1000_REVISION_2) && 1294 (hw->phy_id == M88E1111_I_PHY_ID)) { 1295 /* Vidalia Phy, set the downshift counter to 5x */ 1296 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); 1297 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; 1298 ret_val = e1000_write_phy_reg(hw, 1299 M88E1000_EXT_PHY_SPEC_CTRL, 1300 phy_data); 1301 if (ret_val) 1302 return ret_val; 1303 } else { 1304 /* Configure Master and Slave downshift values */ 1305 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | 1306 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); 1307 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | 1308 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); 1309 ret_val = e1000_write_phy_reg(hw, 1310 M88E1000_EXT_PHY_SPEC_CTRL, 1311 phy_data); 1312 if (ret_val) 1313 return ret_val; 1314 } 1315 } 1316 1317 /* SW Reset the PHY so all changes take effect */ 1318 ret_val = e1000_phy_reset(hw); 1319 if (ret_val) { 1320 e_dbg("Error Resetting the PHY\n"); 1321 return ret_val; 1322 } 1323 1324 return E1000_SUCCESS; 1325 } 1326 1327 /** 1328 * e1000_copper_link_autoneg - setup auto-neg 1329 * @hw: Struct containing variables accessed by shared code 1330 * 1331 * Setup auto-negotiation and flow control advertisements, 1332 * and then perform auto-negotiation. 1333 */ 1334 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) 1335 { 1336 s32 ret_val; 1337 u16 phy_data; 1338 1339 /* Perform some bounds checking on the hw->autoneg_advertised 1340 * parameter. If this variable is zero, then set it to the default. 1341 */ 1342 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; 1343 1344 /* If autoneg_advertised is zero, we assume it was not defaulted 1345 * by the calling code so we set to advertise full capability. 1346 */ 1347 if (hw->autoneg_advertised == 0) 1348 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; 1349 1350 /* IFE/RTL8201N PHY only supports 10/100 */ 1351 if (hw->phy_type == e1000_phy_8201) 1352 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; 1353 1354 e_dbg("Reconfiguring auto-neg advertisement params\n"); 1355 ret_val = e1000_phy_setup_autoneg(hw); 1356 if (ret_val) { 1357 e_dbg("Error Setting up Auto-Negotiation\n"); 1358 return ret_val; 1359 } 1360 e_dbg("Restarting Auto-Neg\n"); 1361 1362 /* Restart auto-negotiation by setting the Auto Neg Enable bit and 1363 * the Auto Neg Restart bit in the PHY control register. 1364 */ 1365 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); 1366 if (ret_val) 1367 return ret_val; 1368 1369 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); 1370 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); 1371 if (ret_val) 1372 return ret_val; 1373 1374 /* Does the user want to wait for Auto-Neg to complete here, or 1375 * check at a later time (for example, callback routine). 1376 */ 1377 if (hw->wait_autoneg_complete) { 1378 ret_val = e1000_wait_autoneg(hw); 1379 if (ret_val) { 1380 e_dbg 1381 ("Error while waiting for autoneg to complete\n"); 1382 return ret_val; 1383 } 1384 } 1385 1386 hw->get_link_status = true; 1387 1388 return E1000_SUCCESS; 1389 } 1390 1391 /** 1392 * e1000_copper_link_postconfig - post link setup 1393 * @hw: Struct containing variables accessed by shared code 1394 * 1395 * Config the MAC and the PHY after link is up. 1396 * 1) Set up the MAC to the current PHY speed/duplex 1397 * if we are on 82543. If we 1398 * are on newer silicon, we only need to configure 1399 * collision distance in the Transmit Control Register. 1400 * 2) Set up flow control on the MAC to that established with 1401 * the link partner. 1402 * 3) Config DSP to improve Gigabit link quality for some PHY revisions. 1403 */ 1404 static s32 e1000_copper_link_postconfig(struct e1000_hw *hw) 1405 { 1406 s32 ret_val; 1407 1408 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) { 1409 e1000_config_collision_dist(hw); 1410 } else { 1411 ret_val = e1000_config_mac_to_phy(hw); 1412 if (ret_val) { 1413 e_dbg("Error configuring MAC to PHY settings\n"); 1414 return ret_val; 1415 } 1416 } 1417 ret_val = e1000_config_fc_after_link_up(hw); 1418 if (ret_val) { 1419 e_dbg("Error Configuring Flow Control\n"); 1420 return ret_val; 1421 } 1422 1423 /* Config DSP to improve Giga link quality */ 1424 if (hw->phy_type == e1000_phy_igp) { 1425 ret_val = e1000_config_dsp_after_link_change(hw, true); 1426 if (ret_val) { 1427 e_dbg("Error Configuring DSP after link up\n"); 1428 return ret_val; 1429 } 1430 } 1431 1432 return E1000_SUCCESS; 1433 } 1434 1435 /** 1436 * e1000_setup_copper_link - phy/speed/duplex setting 1437 * @hw: Struct containing variables accessed by shared code 1438 * 1439 * Detects which PHY is present and sets up the speed and duplex 1440 */ 1441 static s32 e1000_setup_copper_link(struct e1000_hw *hw) 1442 { 1443 s32 ret_val; 1444 u16 i; 1445 u16 phy_data; 1446 1447 /* Check if it is a valid PHY and set PHY mode if necessary. */ 1448 ret_val = e1000_copper_link_preconfig(hw); 1449 if (ret_val) 1450 return ret_val; 1451 1452 if (hw->phy_type == e1000_phy_igp) { 1453 ret_val = e1000_copper_link_igp_setup(hw); 1454 if (ret_val) 1455 return ret_val; 1456 } else if (hw->phy_type == e1000_phy_m88) { 1457 ret_val = e1000_copper_link_mgp_setup(hw); 1458 if (ret_val) 1459 return ret_val; 1460 } else { 1461 ret_val = gbe_dhg_phy_setup(hw); 1462 if (ret_val) { 1463 e_dbg("gbe_dhg_phy_setup failed!\n"); 1464 return ret_val; 1465 } 1466 } 1467 1468 if (hw->autoneg) { 1469 /* Setup autoneg and flow control advertisement 1470 * and perform autonegotiation 1471 */ 1472 ret_val = e1000_copper_link_autoneg(hw); 1473 if (ret_val) 1474 return ret_val; 1475 } else { 1476 /* PHY will be set to 10H, 10F, 100H,or 100F 1477 * depending on value from forced_speed_duplex. 1478 */ 1479 e_dbg("Forcing speed and duplex\n"); 1480 ret_val = e1000_phy_force_speed_duplex(hw); 1481 if (ret_val) { 1482 e_dbg("Error Forcing Speed and Duplex\n"); 1483 return ret_val; 1484 } 1485 } 1486 1487 /* Check link status. Wait up to 100 microseconds for link to become 1488 * valid. 1489 */ 1490 for (i = 0; i < 10; i++) { 1491 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); 1492 if (ret_val) 1493 return ret_val; 1494 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); 1495 if (ret_val) 1496 return ret_val; 1497 1498 if (phy_data & MII_SR_LINK_STATUS) { 1499 /* Config the MAC and PHY after link is up */ 1500 ret_val = e1000_copper_link_postconfig(hw); 1501 if (ret_val) 1502 return ret_val; 1503 1504 e_dbg("Valid link established!!!\n"); 1505 return E1000_SUCCESS; 1506 } 1507 udelay(10); 1508 } 1509 1510 e_dbg("Unable to establish link!!!\n"); 1511 return E1000_SUCCESS; 1512 } 1513 1514 /** 1515 * e1000_phy_setup_autoneg - phy settings 1516 * @hw: Struct containing variables accessed by shared code 1517 * 1518 * Configures PHY autoneg and flow control advertisement settings 1519 */ 1520 s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) 1521 { 1522 s32 ret_val; 1523 u16 mii_autoneg_adv_reg; 1524 u16 mii_1000t_ctrl_reg; 1525 1526 /* Read the MII Auto-Neg Advertisement Register (Address 4). */ 1527 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); 1528 if (ret_val) 1529 return ret_val; 1530 1531 /* Read the MII 1000Base-T Control Register (Address 9). */ 1532 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); 1533 if (ret_val) 1534 return ret_val; 1535 else if (hw->phy_type == e1000_phy_8201) 1536 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; 1537 1538 /* Need to parse both autoneg_advertised and fc and set up 1539 * the appropriate PHY registers. First we will parse for 1540 * autoneg_advertised software override. Since we can advertise 1541 * a plethora of combinations, we need to check each bit 1542 * individually. 1543 */ 1544 1545 /* First we clear all the 10/100 mb speed bits in the Auto-Neg 1546 * Advertisement Register (Address 4) and the 1000 mb speed bits in 1547 * the 1000Base-T Control Register (Address 9). 1548 */ 1549 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; 1550 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; 1551 1552 e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised); 1553 1554 /* Do we want to advertise 10 Mb Half Duplex? */ 1555 if (hw->autoneg_advertised & ADVERTISE_10_HALF) { 1556 e_dbg("Advertise 10mb Half duplex\n"); 1557 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; 1558 } 1559 1560 /* Do we want to advertise 10 Mb Full Duplex? */ 1561 if (hw->autoneg_advertised & ADVERTISE_10_FULL) { 1562 e_dbg("Advertise 10mb Full duplex\n"); 1563 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; 1564 } 1565 1566 /* Do we want to advertise 100 Mb Half Duplex? */ 1567 if (hw->autoneg_advertised & ADVERTISE_100_HALF) { 1568 e_dbg("Advertise 100mb Half duplex\n"); 1569 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; 1570 } 1571 1572 /* Do we want to advertise 100 Mb Full Duplex? */ 1573 if (hw->autoneg_advertised & ADVERTISE_100_FULL) { 1574 e_dbg("Advertise 100mb Full duplex\n"); 1575 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; 1576 } 1577 1578 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ 1579 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { 1580 e_dbg 1581 ("Advertise 1000mb Half duplex requested, request denied!\n"); 1582 } 1583 1584 /* Do we want to advertise 1000 Mb Full Duplex? */ 1585 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { 1586 e_dbg("Advertise 1000mb Full duplex\n"); 1587 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; 1588 } 1589 1590 /* Check for a software override of the flow control settings, and 1591 * setup the PHY advertisement registers accordingly. If 1592 * auto-negotiation is enabled, then software will have to set the 1593 * "PAUSE" bits to the correct value in the Auto-Negotiation 1594 * Advertisement Register (PHY_AUTONEG_ADV) and re-start 1595 * auto-negotiation. 1596 * 1597 * The possible values of the "fc" parameter are: 1598 * 0: Flow control is completely disabled 1599 * 1: Rx flow control is enabled (we can receive pause frames 1600 * but not send pause frames). 1601 * 2: Tx flow control is enabled (we can send pause frames 1602 * but we do not support receiving pause frames). 1603 * 3: Both Rx and TX flow control (symmetric) are enabled. 1604 * other: No software override. The flow control configuration 1605 * in the EEPROM is used. 1606 */ 1607 switch (hw->fc) { 1608 case E1000_FC_NONE: /* 0 */ 1609 /* Flow control (RX & TX) is completely disabled by a 1610 * software over-ride. 1611 */ 1612 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 1613 break; 1614 case E1000_FC_RX_PAUSE: /* 1 */ 1615 /* RX Flow control is enabled, and TX Flow control is 1616 * disabled, by a software over-ride. 1617 */ 1618 /* Since there really isn't a way to advertise that we are 1619 * capable of RX Pause ONLY, we will advertise that we 1620 * support both symmetric and asymmetric RX PAUSE. Later 1621 * (in e1000_config_fc_after_link_up) we will disable the 1622 * hw's ability to send PAUSE frames. 1623 */ 1624 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 1625 break; 1626 case E1000_FC_TX_PAUSE: /* 2 */ 1627 /* TX Flow control is enabled, and RX Flow control is 1628 * disabled, by a software over-ride. 1629 */ 1630 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; 1631 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; 1632 break; 1633 case E1000_FC_FULL: /* 3 */ 1634 /* Flow control (both RX and TX) is enabled by a software 1635 * over-ride. 1636 */ 1637 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 1638 break; 1639 default: 1640 e_dbg("Flow control param set incorrectly\n"); 1641 return -E1000_ERR_CONFIG; 1642 } 1643 1644 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); 1645 if (ret_val) 1646 return ret_val; 1647 1648 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); 1649 1650 if (hw->phy_type == e1000_phy_8201) { 1651 mii_1000t_ctrl_reg = 0; 1652 } else { 1653 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, 1654 mii_1000t_ctrl_reg); 1655 if (ret_val) 1656 return ret_val; 1657 } 1658 1659 return E1000_SUCCESS; 1660 } 1661 1662 /** 1663 * e1000_phy_force_speed_duplex - force link settings 1664 * @hw: Struct containing variables accessed by shared code 1665 * 1666 * Force PHY speed and duplex settings to hw->forced_speed_duplex 1667 */ 1668 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) 1669 { 1670 u32 ctrl; 1671 s32 ret_val; 1672 u16 mii_ctrl_reg; 1673 u16 mii_status_reg; 1674 u16 phy_data; 1675 u16 i; 1676 1677 /* Turn off Flow control if we are forcing speed and duplex. */ 1678 hw->fc = E1000_FC_NONE; 1679 1680 e_dbg("hw->fc = %d\n", hw->fc); 1681 1682 /* Read the Device Control Register. */ 1683 ctrl = er32(CTRL); 1684 1685 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ 1686 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1687 ctrl &= ~(DEVICE_SPEED_MASK); 1688 1689 /* Clear the Auto Speed Detect Enable bit. */ 1690 ctrl &= ~E1000_CTRL_ASDE; 1691 1692 /* Read the MII Control Register. */ 1693 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); 1694 if (ret_val) 1695 return ret_val; 1696 1697 /* We need to disable autoneg in order to force link and duplex. */ 1698 1699 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; 1700 1701 /* Are we forcing Full or Half Duplex? */ 1702 if (hw->forced_speed_duplex == e1000_100_full || 1703 hw->forced_speed_duplex == e1000_10_full) { 1704 /* We want to force full duplex so we SET the full duplex bits 1705 * in the Device and MII Control Registers. 1706 */ 1707 ctrl |= E1000_CTRL_FD; 1708 mii_ctrl_reg |= MII_CR_FULL_DUPLEX; 1709 e_dbg("Full Duplex\n"); 1710 } else { 1711 /* We want to force half duplex so we CLEAR the full duplex bits 1712 * in the Device and MII Control Registers. 1713 */ 1714 ctrl &= ~E1000_CTRL_FD; 1715 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; 1716 e_dbg("Half Duplex\n"); 1717 } 1718 1719 /* Are we forcing 100Mbps??? */ 1720 if (hw->forced_speed_duplex == e1000_100_full || 1721 hw->forced_speed_duplex == e1000_100_half) { 1722 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ 1723 ctrl |= E1000_CTRL_SPD_100; 1724 mii_ctrl_reg |= MII_CR_SPEED_100; 1725 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); 1726 e_dbg("Forcing 100mb "); 1727 } else { 1728 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ 1729 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1730 mii_ctrl_reg |= MII_CR_SPEED_10; 1731 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); 1732 e_dbg("Forcing 10mb "); 1733 } 1734 1735 e1000_config_collision_dist(hw); 1736 1737 /* Write the configured values back to the Device Control Reg. */ 1738 ew32(CTRL, ctrl); 1739 1740 if (hw->phy_type == e1000_phy_m88) { 1741 ret_val = 1742 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1743 if (ret_val) 1744 return ret_val; 1745 1746 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires 1747 * MDI forced whenever speed are duplex are forced. 1748 */ 1749 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 1750 ret_val = 1751 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1752 if (ret_val) 1753 return ret_val; 1754 1755 e_dbg("M88E1000 PSCR: %x\n", phy_data); 1756 1757 /* Need to reset the PHY or these changes will be ignored */ 1758 mii_ctrl_reg |= MII_CR_RESET; 1759 1760 /* Disable MDI-X support for 10/100 */ 1761 } else { 1762 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI 1763 * forced whenever speed or duplex are forced. 1764 */ 1765 ret_val = 1766 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); 1767 if (ret_val) 1768 return ret_val; 1769 1770 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; 1771 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 1772 1773 ret_val = 1774 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); 1775 if (ret_val) 1776 return ret_val; 1777 } 1778 1779 /* Write back the modified PHY MII control register. */ 1780 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); 1781 if (ret_val) 1782 return ret_val; 1783 1784 udelay(1); 1785 1786 /* The wait_autoneg_complete flag may be a little misleading here. 1787 * Since we are forcing speed and duplex, Auto-Neg is not enabled. 1788 * But we do want to delay for a period while forcing only so we 1789 * don't generate false No Link messages. So we will wait here 1790 * only if the user has set wait_autoneg_complete to 1, which is 1791 * the default. 1792 */ 1793 if (hw->wait_autoneg_complete) { 1794 /* We will wait for autoneg to complete. */ 1795 e_dbg("Waiting for forced speed/duplex link.\n"); 1796 mii_status_reg = 0; 1797 1798 /* Wait for autoneg to complete or 4.5 seconds to expire */ 1799 for (i = PHY_FORCE_TIME; i > 0; i--) { 1800 /* Read the MII Status Register and wait for Auto-Neg 1801 * Complete bit to be set. 1802 */ 1803 ret_val = 1804 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); 1805 if (ret_val) 1806 return ret_val; 1807 1808 ret_val = 1809 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); 1810 if (ret_val) 1811 return ret_val; 1812 1813 if (mii_status_reg & MII_SR_LINK_STATUS) 1814 break; 1815 msleep(100); 1816 } 1817 if ((i == 0) && (hw->phy_type == e1000_phy_m88)) { 1818 /* We didn't get link. Reset the DSP and wait again 1819 * for link. 1820 */ 1821 ret_val = e1000_phy_reset_dsp(hw); 1822 if (ret_val) { 1823 e_dbg("Error Resetting PHY DSP\n"); 1824 return ret_val; 1825 } 1826 } 1827 /* This loop will early-out if the link condition has been 1828 * met 1829 */ 1830 for (i = PHY_FORCE_TIME; i > 0; i--) { 1831 if (mii_status_reg & MII_SR_LINK_STATUS) 1832 break; 1833 msleep(100); 1834 /* Read the MII Status Register and wait for Auto-Neg 1835 * Complete bit to be set. 1836 */ 1837 ret_val = 1838 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); 1839 if (ret_val) 1840 return ret_val; 1841 1842 ret_val = 1843 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); 1844 if (ret_val) 1845 return ret_val; 1846 } 1847 } 1848 1849 if (hw->phy_type == e1000_phy_m88) { 1850 /* Because we reset the PHY above, we need to re-force TX_CLK in 1851 * the Extended PHY Specific Control Register to 25MHz clock. 1852 * This value defaults back to a 2.5MHz clock when the PHY is 1853 * reset. 1854 */ 1855 ret_val = 1856 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, 1857 &phy_data); 1858 if (ret_val) 1859 return ret_val; 1860 1861 phy_data |= M88E1000_EPSCR_TX_CLK_25; 1862 ret_val = 1863 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, 1864 phy_data); 1865 if (ret_val) 1866 return ret_val; 1867 1868 /* In addition, because of the s/w reset above, we need to 1869 * enable CRS on Tx. This must be set for both full and half 1870 * duplex operation. 1871 */ 1872 ret_val = 1873 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1874 if (ret_val) 1875 return ret_val; 1876 1877 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 1878 ret_val = 1879 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1880 if (ret_val) 1881 return ret_val; 1882 1883 if ((hw->mac_type == e1000_82544 || 1884 hw->mac_type == e1000_82543) && 1885 (!hw->autoneg) && 1886 (hw->forced_speed_duplex == e1000_10_full || 1887 hw->forced_speed_duplex == e1000_10_half)) { 1888 ret_val = e1000_polarity_reversal_workaround(hw); 1889 if (ret_val) 1890 return ret_val; 1891 } 1892 } 1893 return E1000_SUCCESS; 1894 } 1895 1896 /** 1897 * e1000_config_collision_dist - set collision distance register 1898 * @hw: Struct containing variables accessed by shared code 1899 * 1900 * Sets the collision distance in the Transmit Control register. 1901 * Link should have been established previously. Reads the speed and duplex 1902 * information from the Device Status register. 1903 */ 1904 void e1000_config_collision_dist(struct e1000_hw *hw) 1905 { 1906 u32 tctl, coll_dist; 1907 1908 if (hw->mac_type < e1000_82543) 1909 coll_dist = E1000_COLLISION_DISTANCE_82542; 1910 else 1911 coll_dist = E1000_COLLISION_DISTANCE; 1912 1913 tctl = er32(TCTL); 1914 1915 tctl &= ~E1000_TCTL_COLD; 1916 tctl |= coll_dist << E1000_COLD_SHIFT; 1917 1918 ew32(TCTL, tctl); 1919 E1000_WRITE_FLUSH(); 1920 } 1921 1922 /** 1923 * e1000_config_mac_to_phy - sync phy and mac settings 1924 * @hw: Struct containing variables accessed by shared code 1925 * @mii_reg: data to write to the MII control register 1926 * 1927 * Sets MAC speed and duplex settings to reflect the those in the PHY 1928 * The contents of the PHY register containing the needed information need to 1929 * be passed in. 1930 */ 1931 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw) 1932 { 1933 u32 ctrl; 1934 s32 ret_val; 1935 u16 phy_data; 1936 1937 /* 82544 or newer MAC, Auto Speed Detection takes care of 1938 * MAC speed/duplex configuration. 1939 */ 1940 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) 1941 return E1000_SUCCESS; 1942 1943 /* Read the Device Control Register and set the bits to Force Speed 1944 * and Duplex. 1945 */ 1946 ctrl = er32(CTRL); 1947 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1948 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); 1949 1950 switch (hw->phy_type) { 1951 case e1000_phy_8201: 1952 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); 1953 if (ret_val) 1954 return ret_val; 1955 1956 if (phy_data & RTL_PHY_CTRL_FD) 1957 ctrl |= E1000_CTRL_FD; 1958 else 1959 ctrl &= ~E1000_CTRL_FD; 1960 1961 if (phy_data & RTL_PHY_CTRL_SPD_100) 1962 ctrl |= E1000_CTRL_SPD_100; 1963 else 1964 ctrl |= E1000_CTRL_SPD_10; 1965 1966 e1000_config_collision_dist(hw); 1967 break; 1968 default: 1969 /* Set up duplex in the Device Control and Transmit Control 1970 * registers depending on negotiated values. 1971 */ 1972 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, 1973 &phy_data); 1974 if (ret_val) 1975 return ret_val; 1976 1977 if (phy_data & M88E1000_PSSR_DPLX) 1978 ctrl |= E1000_CTRL_FD; 1979 else 1980 ctrl &= ~E1000_CTRL_FD; 1981 1982 e1000_config_collision_dist(hw); 1983 1984 /* Set up speed in the Device Control register depending on 1985 * negotiated values. 1986 */ 1987 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) 1988 ctrl |= E1000_CTRL_SPD_1000; 1989 else if ((phy_data & M88E1000_PSSR_SPEED) == 1990 M88E1000_PSSR_100MBS) 1991 ctrl |= E1000_CTRL_SPD_100; 1992 } 1993 1994 /* Write the configured values back to the Device Control Reg. */ 1995 ew32(CTRL, ctrl); 1996 return E1000_SUCCESS; 1997 } 1998 1999 /** 2000 * e1000_force_mac_fc - force flow control settings 2001 * @hw: Struct containing variables accessed by shared code 2002 * 2003 * Forces the MAC's flow control settings. 2004 * Sets the TFCE and RFCE bits in the device control register to reflect 2005 * the adapter settings. TFCE and RFCE need to be explicitly set by 2006 * software when a Copper PHY is used because autonegotiation is managed 2007 * by the PHY rather than the MAC. Software must also configure these 2008 * bits when link is forced on a fiber connection. 2009 */ 2010 s32 e1000_force_mac_fc(struct e1000_hw *hw) 2011 { 2012 u32 ctrl; 2013 2014 /* Get the current configuration of the Device Control Register */ 2015 ctrl = er32(CTRL); 2016 2017 /* Because we didn't get link via the internal auto-negotiation 2018 * mechanism (we either forced link or we got link via PHY 2019 * auto-neg), we have to manually enable/disable transmit an 2020 * receive flow control. 2021 * 2022 * The "Case" statement below enables/disable flow control 2023 * according to the "hw->fc" parameter. 2024 * 2025 * The possible values of the "fc" parameter are: 2026 * 0: Flow control is completely disabled 2027 * 1: Rx flow control is enabled (we can receive pause 2028 * frames but not send pause frames). 2029 * 2: Tx flow control is enabled (we can send pause frames 2030 * frames but we do not receive pause frames). 2031 * 3: Both Rx and TX flow control (symmetric) is enabled. 2032 * other: No other values should be possible at this point. 2033 */ 2034 2035 switch (hw->fc) { 2036 case E1000_FC_NONE: 2037 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); 2038 break; 2039 case E1000_FC_RX_PAUSE: 2040 ctrl &= (~E1000_CTRL_TFCE); 2041 ctrl |= E1000_CTRL_RFCE; 2042 break; 2043 case E1000_FC_TX_PAUSE: 2044 ctrl &= (~E1000_CTRL_RFCE); 2045 ctrl |= E1000_CTRL_TFCE; 2046 break; 2047 case E1000_FC_FULL: 2048 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); 2049 break; 2050 default: 2051 e_dbg("Flow control param set incorrectly\n"); 2052 return -E1000_ERR_CONFIG; 2053 } 2054 2055 /* Disable TX Flow Control for 82542 (rev 2.0) */ 2056 if (hw->mac_type == e1000_82542_rev2_0) 2057 ctrl &= (~E1000_CTRL_TFCE); 2058 2059 ew32(CTRL, ctrl); 2060 return E1000_SUCCESS; 2061 } 2062 2063 /** 2064 * e1000_config_fc_after_link_up - configure flow control after autoneg 2065 * @hw: Struct containing variables accessed by shared code 2066 * 2067 * Configures flow control settings after link is established 2068 * Should be called immediately after a valid link has been established. 2069 * Forces MAC flow control settings if link was forced. When in MII/GMII mode 2070 * and autonegotiation is enabled, the MAC flow control settings will be set 2071 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE 2072 * and RFCE bits will be automatically set to the negotiated flow control mode. 2073 */ 2074 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw) 2075 { 2076 s32 ret_val; 2077 u16 mii_status_reg; 2078 u16 mii_nway_adv_reg; 2079 u16 mii_nway_lp_ability_reg; 2080 u16 speed; 2081 u16 duplex; 2082 2083 /* Check for the case where we have fiber media and auto-neg failed 2084 * so we had to force link. In this case, we need to force the 2085 * configuration of the MAC to match the "fc" parameter. 2086 */ 2087 if (((hw->media_type == e1000_media_type_fiber) && 2088 (hw->autoneg_failed)) || 2089 ((hw->media_type == e1000_media_type_internal_serdes) && 2090 (hw->autoneg_failed)) || 2091 ((hw->media_type == e1000_media_type_copper) && 2092 (!hw->autoneg))) { 2093 ret_val = e1000_force_mac_fc(hw); 2094 if (ret_val) { 2095 e_dbg("Error forcing flow control settings\n"); 2096 return ret_val; 2097 } 2098 } 2099 2100 /* Check for the case where we have copper media and auto-neg is 2101 * enabled. In this case, we need to check and see if Auto-Neg 2102 * has completed, and if so, how the PHY and link partner has 2103 * flow control configured. 2104 */ 2105 if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) { 2106 /* Read the MII Status Register and check to see if AutoNeg 2107 * has completed. We read this twice because this reg has 2108 * some "sticky" (latched) bits. 2109 */ 2110 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); 2111 if (ret_val) 2112 return ret_val; 2113 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); 2114 if (ret_val) 2115 return ret_val; 2116 2117 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { 2118 /* The AutoNeg process has completed, so we now need to 2119 * read both the Auto Negotiation Advertisement Register 2120 * (Address 4) and the Auto_Negotiation Base Page 2121 * Ability Register (Address 5) to determine how flow 2122 * control was negotiated. 2123 */ 2124 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, 2125 &mii_nway_adv_reg); 2126 if (ret_val) 2127 return ret_val; 2128 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, 2129 &mii_nway_lp_ability_reg); 2130 if (ret_val) 2131 return ret_val; 2132 2133 /* Two bits in the Auto Negotiation Advertisement 2134 * Register (Address 4) and two bits in the Auto 2135 * Negotiation Base Page Ability Register (Address 5) 2136 * determine flow control for both the PHY and the link 2137 * partner. The following table, taken out of the IEEE 2138 * 802.3ab/D6.0 dated March 25, 1999, describes these 2139 * PAUSE resolution bits and how flow control is 2140 * determined based upon these settings. 2141 * NOTE: DC = Don't Care 2142 * 2143 * LOCAL DEVICE | LINK PARTNER 2144 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution 2145 *-------|---------|-------|---------|------------------ 2146 * 0 | 0 | DC | DC | E1000_FC_NONE 2147 * 0 | 1 | 0 | DC | E1000_FC_NONE 2148 * 0 | 1 | 1 | 0 | E1000_FC_NONE 2149 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE 2150 * 1 | 0 | 0 | DC | E1000_FC_NONE 2151 * 1 | DC | 1 | DC | E1000_FC_FULL 2152 * 1 | 1 | 0 | 0 | E1000_FC_NONE 2153 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE 2154 * 2155 */ 2156 /* Are both PAUSE bits set to 1? If so, this implies 2157 * Symmetric Flow Control is enabled at both ends. The 2158 * ASM_DIR bits are irrelevant per the spec. 2159 * 2160 * For Symmetric Flow Control: 2161 * 2162 * LOCAL DEVICE | LINK PARTNER 2163 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 2164 *-------|---------|-------|---------|------------------ 2165 * 1 | DC | 1 | DC | E1000_FC_FULL 2166 * 2167 */ 2168 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && 2169 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { 2170 /* Now we need to check if the user selected Rx 2171 * ONLY of pause frames. In this case, we had 2172 * to advertise FULL flow control because we 2173 * could not advertise Rx ONLY. Hence, we must 2174 * now check to see if we need to turn OFF the 2175 * TRANSMISSION of PAUSE frames. 2176 */ 2177 if (hw->original_fc == E1000_FC_FULL) { 2178 hw->fc = E1000_FC_FULL; 2179 e_dbg("Flow Control = FULL.\n"); 2180 } else { 2181 hw->fc = E1000_FC_RX_PAUSE; 2182 e_dbg 2183 ("Flow Control = RX PAUSE frames only.\n"); 2184 } 2185 } 2186 /* For receiving PAUSE frames ONLY. 2187 * 2188 * LOCAL DEVICE | LINK PARTNER 2189 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 2190 *-------|---------|-------|---------|------------------ 2191 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE 2192 * 2193 */ 2194 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && 2195 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && 2196 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && 2197 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { 2198 hw->fc = E1000_FC_TX_PAUSE; 2199 e_dbg 2200 ("Flow Control = TX PAUSE frames only.\n"); 2201 } 2202 /* For transmitting PAUSE frames ONLY. 2203 * 2204 * LOCAL DEVICE | LINK PARTNER 2205 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 2206 *-------|---------|-------|---------|------------------ 2207 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE 2208 * 2209 */ 2210 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && 2211 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && 2212 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && 2213 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { 2214 hw->fc = E1000_FC_RX_PAUSE; 2215 e_dbg 2216 ("Flow Control = RX PAUSE frames only.\n"); 2217 } 2218 /* Per the IEEE spec, at this point flow control should 2219 * be disabled. However, we want to consider that we 2220 * could be connected to a legacy switch that doesn't 2221 * advertise desired flow control, but can be forced on 2222 * the link partner. So if we advertised no flow 2223 * control, that is what we will resolve to. If we 2224 * advertised some kind of receive capability (Rx Pause 2225 * Only or Full Flow Control) and the link partner 2226 * advertised none, we will configure ourselves to 2227 * enable Rx Flow Control only. We can do this safely 2228 * for two reasons: If the link partner really 2229 * didn't want flow control enabled, and we enable Rx, 2230 * no harm done since we won't be receiving any PAUSE 2231 * frames anyway. If the intent on the link partner was 2232 * to have flow control enabled, then by us enabling Rx 2233 * only, we can at least receive pause frames and 2234 * process them. This is a good idea because in most 2235 * cases, since we are predominantly a server NIC, more 2236 * times than not we will be asked to delay transmission 2237 * of packets than asking our link partner to pause 2238 * transmission of frames. 2239 */ 2240 else if ((hw->original_fc == E1000_FC_NONE || 2241 hw->original_fc == E1000_FC_TX_PAUSE) || 2242 hw->fc_strict_ieee) { 2243 hw->fc = E1000_FC_NONE; 2244 e_dbg("Flow Control = NONE.\n"); 2245 } else { 2246 hw->fc = E1000_FC_RX_PAUSE; 2247 e_dbg 2248 ("Flow Control = RX PAUSE frames only.\n"); 2249 } 2250 2251 /* Now we need to do one last check... If we auto- 2252 * negotiated to HALF DUPLEX, flow control should not be 2253 * enabled per IEEE 802.3 spec. 2254 */ 2255 ret_val = 2256 e1000_get_speed_and_duplex(hw, &speed, &duplex); 2257 if (ret_val) { 2258 e_dbg 2259 ("Error getting link speed and duplex\n"); 2260 return ret_val; 2261 } 2262 2263 if (duplex == HALF_DUPLEX) 2264 hw->fc = E1000_FC_NONE; 2265 2266 /* Now we call a subroutine to actually force the MAC 2267 * controller to use the correct flow control settings. 2268 */ 2269 ret_val = e1000_force_mac_fc(hw); 2270 if (ret_val) { 2271 e_dbg 2272 ("Error forcing flow control settings\n"); 2273 return ret_val; 2274 } 2275 } else { 2276 e_dbg 2277 ("Copper PHY and Auto Neg has not completed.\n"); 2278 } 2279 } 2280 return E1000_SUCCESS; 2281 } 2282 2283 /** 2284 * e1000_check_for_serdes_link_generic - Check for link (Serdes) 2285 * @hw: pointer to the HW structure 2286 * 2287 * Checks for link up on the hardware. If link is not up and we have 2288 * a signal, then we need to force link up. 2289 */ 2290 static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) 2291 { 2292 u32 rxcw; 2293 u32 ctrl; 2294 u32 status; 2295 s32 ret_val = E1000_SUCCESS; 2296 2297 ctrl = er32(CTRL); 2298 status = er32(STATUS); 2299 rxcw = er32(RXCW); 2300 2301 /* If we don't have link (auto-negotiation failed or link partner 2302 * cannot auto-negotiate), and our link partner is not trying to 2303 * auto-negotiate with us (we are receiving idles or data), 2304 * we need to force link up. We also need to give auto-negotiation 2305 * time to complete. 2306 */ 2307 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ 2308 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { 2309 if (hw->autoneg_failed == 0) { 2310 hw->autoneg_failed = 1; 2311 goto out; 2312 } 2313 e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n"); 2314 2315 /* Disable auto-negotiation in the TXCW register */ 2316 ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE)); 2317 2318 /* Force link-up and also force full-duplex. */ 2319 ctrl = er32(CTRL); 2320 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); 2321 ew32(CTRL, ctrl); 2322 2323 /* Configure Flow Control after forcing link up. */ 2324 ret_val = e1000_config_fc_after_link_up(hw); 2325 if (ret_val) { 2326 e_dbg("Error configuring flow control\n"); 2327 goto out; 2328 } 2329 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { 2330 /* If we are forcing link and we are receiving /C/ ordered 2331 * sets, re-enable auto-negotiation in the TXCW register 2332 * and disable forced link in the Device Control register 2333 * in an attempt to auto-negotiate with our link partner. 2334 */ 2335 e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n"); 2336 ew32(TXCW, hw->txcw); 2337 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); 2338 2339 hw->serdes_has_link = true; 2340 } else if (!(E1000_TXCW_ANE & er32(TXCW))) { 2341 /* If we force link for non-auto-negotiation switch, check 2342 * link status based on MAC synchronization for internal 2343 * serdes media type. 2344 */ 2345 /* SYNCH bit and IV bit are sticky. */ 2346 udelay(10); 2347 rxcw = er32(RXCW); 2348 if (rxcw & E1000_RXCW_SYNCH) { 2349 if (!(rxcw & E1000_RXCW_IV)) { 2350 hw->serdes_has_link = true; 2351 e_dbg("SERDES: Link up - forced.\n"); 2352 } 2353 } else { 2354 hw->serdes_has_link = false; 2355 e_dbg("SERDES: Link down - force failed.\n"); 2356 } 2357 } 2358 2359 if (E1000_TXCW_ANE & er32(TXCW)) { 2360 status = er32(STATUS); 2361 if (status & E1000_STATUS_LU) { 2362 /* SYNCH bit and IV bit are sticky, so reread rxcw. */ 2363 udelay(10); 2364 rxcw = er32(RXCW); 2365 if (rxcw & E1000_RXCW_SYNCH) { 2366 if (!(rxcw & E1000_RXCW_IV)) { 2367 hw->serdes_has_link = true; 2368 e_dbg("SERDES: Link up - autoneg " 2369 "completed successfully.\n"); 2370 } else { 2371 hw->serdes_has_link = false; 2372 e_dbg("SERDES: Link down - invalid" 2373 "codewords detected in autoneg.\n"); 2374 } 2375 } else { 2376 hw->serdes_has_link = false; 2377 e_dbg("SERDES: Link down - no sync.\n"); 2378 } 2379 } else { 2380 hw->serdes_has_link = false; 2381 e_dbg("SERDES: Link down - autoneg failed\n"); 2382 } 2383 } 2384 2385 out: 2386 return ret_val; 2387 } 2388 2389 /** 2390 * e1000_check_for_link 2391 * @hw: Struct containing variables accessed by shared code 2392 * 2393 * Checks to see if the link status of the hardware has changed. 2394 * Called by any function that needs to check the link status of the adapter. 2395 */ 2396 s32 e1000_check_for_link(struct e1000_hw *hw) 2397 { 2398 u32 rxcw = 0; 2399 u32 ctrl; 2400 u32 status; 2401 u32 rctl; 2402 u32 icr; 2403 u32 signal = 0; 2404 s32 ret_val; 2405 u16 phy_data; 2406 2407 ctrl = er32(CTRL); 2408 status = er32(STATUS); 2409 2410 /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be 2411 * set when the optics detect a signal. On older adapters, it will be 2412 * cleared when there is a signal. This applies to fiber media only. 2413 */ 2414 if ((hw->media_type == e1000_media_type_fiber) || 2415 (hw->media_type == e1000_media_type_internal_serdes)) { 2416 rxcw = er32(RXCW); 2417 2418 if (hw->media_type == e1000_media_type_fiber) { 2419 signal = 2420 (hw->mac_type > 2421 e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; 2422 if (status & E1000_STATUS_LU) 2423 hw->get_link_status = false; 2424 } 2425 } 2426 2427 /* If we have a copper PHY then we only want to go out to the PHY 2428 * registers to see if Auto-Neg has completed and/or if our link 2429 * status has changed. The get_link_status flag will be set if we 2430 * receive a Link Status Change interrupt or we have Rx Sequence 2431 * Errors. 2432 */ 2433 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { 2434 /* First we want to see if the MII Status Register reports 2435 * link. If so, then we want to get the current speed/duplex 2436 * of the PHY. 2437 * Read the register twice since the link bit is sticky. 2438 */ 2439 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); 2440 if (ret_val) 2441 return ret_val; 2442 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); 2443 if (ret_val) 2444 return ret_val; 2445 2446 if (phy_data & MII_SR_LINK_STATUS) { 2447 hw->get_link_status = false; 2448 /* Check if there was DownShift, must be checked 2449 * immediately after link-up 2450 */ 2451 e1000_check_downshift(hw); 2452 2453 /* If we are on 82544 or 82543 silicon and speed/duplex 2454 * are forced to 10H or 10F, then we will implement the 2455 * polarity reversal workaround. We disable interrupts 2456 * first, and upon returning, place the devices 2457 * interrupt state to its previous value except for the 2458 * link status change interrupt which will 2459 * happen due to the execution of this workaround. 2460 */ 2461 2462 if ((hw->mac_type == e1000_82544 || 2463 hw->mac_type == e1000_82543) && 2464 (!hw->autoneg) && 2465 (hw->forced_speed_duplex == e1000_10_full || 2466 hw->forced_speed_duplex == e1000_10_half)) { 2467 ew32(IMC, 0xffffffff); 2468 ret_val = 2469 e1000_polarity_reversal_workaround(hw); 2470 icr = er32(ICR); 2471 ew32(ICS, (icr & ~E1000_ICS_LSC)); 2472 ew32(IMS, IMS_ENABLE_MASK); 2473 } 2474 2475 } else { 2476 /* No link detected */ 2477 e1000_config_dsp_after_link_change(hw, false); 2478 return 0; 2479 } 2480 2481 /* If we are forcing speed/duplex, then we simply return since 2482 * we have already determined whether we have link or not. 2483 */ 2484 if (!hw->autoneg) 2485 return -E1000_ERR_CONFIG; 2486 2487 /* optimize the dsp settings for the igp phy */ 2488 e1000_config_dsp_after_link_change(hw, true); 2489 2490 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we 2491 * have Si on board that is 82544 or newer, Auto 2492 * Speed Detection takes care of MAC speed/duplex 2493 * configuration. So we only need to configure Collision 2494 * Distance in the MAC. Otherwise, we need to force 2495 * speed/duplex on the MAC to the current PHY speed/duplex 2496 * settings. 2497 */ 2498 if ((hw->mac_type >= e1000_82544) && 2499 (hw->mac_type != e1000_ce4100)) 2500 e1000_config_collision_dist(hw); 2501 else { 2502 ret_val = e1000_config_mac_to_phy(hw); 2503 if (ret_val) { 2504 e_dbg 2505 ("Error configuring MAC to PHY settings\n"); 2506 return ret_val; 2507 } 2508 } 2509 2510 /* Configure Flow Control now that Auto-Neg has completed. 2511 * First, we need to restore the desired flow control settings 2512 * because we may have had to re-autoneg with a different link 2513 * partner. 2514 */ 2515 ret_val = e1000_config_fc_after_link_up(hw); 2516 if (ret_val) { 2517 e_dbg("Error configuring flow control\n"); 2518 return ret_val; 2519 } 2520 2521 /* At this point we know that we are on copper and we have 2522 * auto-negotiated link. These are conditions for checking the 2523 * link partner capability register. We use the link speed to 2524 * determine if TBI compatibility needs to be turned on or off. 2525 * If the link is not at gigabit speed, then TBI compatibility 2526 * is not needed. If we are at gigabit speed, we turn on TBI 2527 * compatibility. 2528 */ 2529 if (hw->tbi_compatibility_en) { 2530 u16 speed, duplex; 2531 2532 ret_val = 2533 e1000_get_speed_and_duplex(hw, &speed, &duplex); 2534 2535 if (ret_val) { 2536 e_dbg 2537 ("Error getting link speed and duplex\n"); 2538 return ret_val; 2539 } 2540 if (speed != SPEED_1000) { 2541 /* If link speed is not set to gigabit speed, we 2542 * do not need to enable TBI compatibility. 2543 */ 2544 if (hw->tbi_compatibility_on) { 2545 /* If we previously were in the mode, 2546 * turn it off. 2547 */ 2548 rctl = er32(RCTL); 2549 rctl &= ~E1000_RCTL_SBP; 2550 ew32(RCTL, rctl); 2551 hw->tbi_compatibility_on = false; 2552 } 2553 } else { 2554 /* If TBI compatibility is was previously off, 2555 * turn it on. For compatibility with a TBI link 2556 * partner, we will store bad packets. Some 2557 * frames have an additional byte on the end and 2558 * will look like CRC errors to to the hardware. 2559 */ 2560 if (!hw->tbi_compatibility_on) { 2561 hw->tbi_compatibility_on = true; 2562 rctl = er32(RCTL); 2563 rctl |= E1000_RCTL_SBP; 2564 ew32(RCTL, rctl); 2565 } 2566 } 2567 } 2568 } 2569 2570 if ((hw->media_type == e1000_media_type_fiber) || 2571 (hw->media_type == e1000_media_type_internal_serdes)) 2572 e1000_check_for_serdes_link_generic(hw); 2573 2574 return E1000_SUCCESS; 2575 } 2576 2577 /** 2578 * e1000_get_speed_and_duplex 2579 * @hw: Struct containing variables accessed by shared code 2580 * @speed: Speed of the connection 2581 * @duplex: Duplex setting of the connection 2582 * 2583 * Detects the current speed and duplex settings of the hardware. 2584 */ 2585 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 2586 { 2587 u32 status; 2588 s32 ret_val; 2589 u16 phy_data; 2590 2591 if (hw->mac_type >= e1000_82543) { 2592 status = er32(STATUS); 2593 if (status & E1000_STATUS_SPEED_1000) { 2594 *speed = SPEED_1000; 2595 e_dbg("1000 Mbs, "); 2596 } else if (status & E1000_STATUS_SPEED_100) { 2597 *speed = SPEED_100; 2598 e_dbg("100 Mbs, "); 2599 } else { 2600 *speed = SPEED_10; 2601 e_dbg("10 Mbs, "); 2602 } 2603 2604 if (status & E1000_STATUS_FD) { 2605 *duplex = FULL_DUPLEX; 2606 e_dbg("Full Duplex\n"); 2607 } else { 2608 *duplex = HALF_DUPLEX; 2609 e_dbg(" Half Duplex\n"); 2610 } 2611 } else { 2612 e_dbg("1000 Mbs, Full Duplex\n"); 2613 *speed = SPEED_1000; 2614 *duplex = FULL_DUPLEX; 2615 } 2616 2617 /* IGP01 PHY may advertise full duplex operation after speed downgrade 2618 * even if it is operating at half duplex. Here we set the duplex 2619 * settings to match the duplex in the link partner's capabilities. 2620 */ 2621 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { 2622 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); 2623 if (ret_val) 2624 return ret_val; 2625 2626 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) 2627 *duplex = HALF_DUPLEX; 2628 else { 2629 ret_val = 2630 e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); 2631 if (ret_val) 2632 return ret_val; 2633 if ((*speed == SPEED_100 && 2634 !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || 2635 (*speed == SPEED_10 && 2636 !(phy_data & NWAY_LPAR_10T_FD_CAPS))) 2637 *duplex = HALF_DUPLEX; 2638 } 2639 } 2640 2641 return E1000_SUCCESS; 2642 } 2643 2644 /** 2645 * e1000_wait_autoneg 2646 * @hw: Struct containing variables accessed by shared code 2647 * 2648 * Blocks until autoneg completes or times out (~4.5 seconds) 2649 */ 2650 static s32 e1000_wait_autoneg(struct e1000_hw *hw) 2651 { 2652 s32 ret_val; 2653 u16 i; 2654 u16 phy_data; 2655 2656 e_dbg("Waiting for Auto-Neg to complete.\n"); 2657 2658 /* We will wait for autoneg to complete or 4.5 seconds to expire. */ 2659 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { 2660 /* Read the MII Status Register and wait for Auto-Neg 2661 * Complete bit to be set. 2662 */ 2663 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); 2664 if (ret_val) 2665 return ret_val; 2666 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); 2667 if (ret_val) 2668 return ret_val; 2669 if (phy_data & MII_SR_AUTONEG_COMPLETE) 2670 return E1000_SUCCESS; 2671 2672 msleep(100); 2673 } 2674 return E1000_SUCCESS; 2675 } 2676 2677 /** 2678 * e1000_raise_mdi_clk - Raises the Management Data Clock 2679 * @hw: Struct containing variables accessed by shared code 2680 * @ctrl: Device control register's current value 2681 */ 2682 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl) 2683 { 2684 /* Raise the clock input to the Management Data Clock (by setting the 2685 * MDC bit), and then delay 10 microseconds. 2686 */ 2687 ew32(CTRL, (*ctrl | E1000_CTRL_MDC)); 2688 E1000_WRITE_FLUSH(); 2689 udelay(10); 2690 } 2691 2692 /** 2693 * e1000_lower_mdi_clk - Lowers the Management Data Clock 2694 * @hw: Struct containing variables accessed by shared code 2695 * @ctrl: Device control register's current value 2696 */ 2697 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl) 2698 { 2699 /* Lower the clock input to the Management Data Clock (by clearing the 2700 * MDC bit), and then delay 10 microseconds. 2701 */ 2702 ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC)); 2703 E1000_WRITE_FLUSH(); 2704 udelay(10); 2705 } 2706 2707 /** 2708 * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY 2709 * @hw: Struct containing variables accessed by shared code 2710 * @data: Data to send out to the PHY 2711 * @count: Number of bits to shift out 2712 * 2713 * Bits are shifted out in MSB to LSB order. 2714 */ 2715 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count) 2716 { 2717 u32 ctrl; 2718 u32 mask; 2719 2720 /* We need to shift "count" number of bits out to the PHY. So, the value 2721 * in the "data" parameter will be shifted out to the PHY one bit at a 2722 * time. In order to do this, "data" must be broken down into bits. 2723 */ 2724 mask = 0x01; 2725 mask <<= (count - 1); 2726 2727 ctrl = er32(CTRL); 2728 2729 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ 2730 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); 2731 2732 while (mask) { 2733 /* A "1" is shifted out to the PHY by setting the MDIO bit to 2734 * "1" and then raising and lowering the Management Data Clock. 2735 * A "0" is shifted out to the PHY by setting the MDIO bit to 2736 * "0" and then raising and lowering the clock. 2737 */ 2738 if (data & mask) 2739 ctrl |= E1000_CTRL_MDIO; 2740 else 2741 ctrl &= ~E1000_CTRL_MDIO; 2742 2743 ew32(CTRL, ctrl); 2744 E1000_WRITE_FLUSH(); 2745 2746 udelay(10); 2747 2748 e1000_raise_mdi_clk(hw, &ctrl); 2749 e1000_lower_mdi_clk(hw, &ctrl); 2750 2751 mask = mask >> 1; 2752 } 2753 } 2754 2755 /** 2756 * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY 2757 * @hw: Struct containing variables accessed by shared code 2758 * 2759 * Bits are shifted in in MSB to LSB order. 2760 */ 2761 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw) 2762 { 2763 u32 ctrl; 2764 u16 data = 0; 2765 u8 i; 2766 2767 /* In order to read a register from the PHY, we need to shift in a total 2768 * of 18 bits from the PHY. The first two bit (turnaround) times are 2769 * used to avoid contention on the MDIO pin when a read operation is 2770 * performed. These two bits are ignored by us and thrown away. Bits are 2771 * "shifted in" by raising the input to the Management Data Clock 2772 * (setting the MDC bit), and then reading the value of the MDIO bit. 2773 */ 2774 ctrl = er32(CTRL); 2775 2776 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as 2777 * input. 2778 */ 2779 ctrl &= ~E1000_CTRL_MDIO_DIR; 2780 ctrl &= ~E1000_CTRL_MDIO; 2781 2782 ew32(CTRL, ctrl); 2783 E1000_WRITE_FLUSH(); 2784 2785 /* Raise and Lower the clock before reading in the data. This accounts 2786 * for the turnaround bits. The first clock occurred when we clocked out 2787 * the last bit of the Register Address. 2788 */ 2789 e1000_raise_mdi_clk(hw, &ctrl); 2790 e1000_lower_mdi_clk(hw, &ctrl); 2791 2792 for (data = 0, i = 0; i < 16; i++) { 2793 data = data << 1; 2794 e1000_raise_mdi_clk(hw, &ctrl); 2795 ctrl = er32(CTRL); 2796 /* Check to see if we shifted in a "1". */ 2797 if (ctrl & E1000_CTRL_MDIO) 2798 data |= 1; 2799 e1000_lower_mdi_clk(hw, &ctrl); 2800 } 2801 2802 e1000_raise_mdi_clk(hw, &ctrl); 2803 e1000_lower_mdi_clk(hw, &ctrl); 2804 2805 return data; 2806 } 2807 2808 /** 2809 * e1000_read_phy_reg - read a phy register 2810 * @hw: Struct containing variables accessed by shared code 2811 * @reg_addr: address of the PHY register to read 2812 * @phy_data: pointer to the value on the PHY register 2813 * 2814 * Reads the value from a PHY register, if the value is on a specific non zero 2815 * page, sets the page first. 2816 */ 2817 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data) 2818 { 2819 u32 ret_val; 2820 unsigned long flags; 2821 2822 spin_lock_irqsave(&e1000_phy_lock, flags); 2823 2824 if ((hw->phy_type == e1000_phy_igp) && 2825 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { 2826 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, 2827 (u16) reg_addr); 2828 if (ret_val) 2829 goto out; 2830 } 2831 2832 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, 2833 phy_data); 2834 out: 2835 spin_unlock_irqrestore(&e1000_phy_lock, flags); 2836 2837 return ret_val; 2838 } 2839 2840 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, 2841 u16 *phy_data) 2842 { 2843 u32 i; 2844 u32 mdic = 0; 2845 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1; 2846 2847 if (reg_addr > MAX_PHY_REG_ADDRESS) { 2848 e_dbg("PHY Address %d is out of range\n", reg_addr); 2849 return -E1000_ERR_PARAM; 2850 } 2851 2852 if (hw->mac_type > e1000_82543) { 2853 /* Set up Op-code, Phy Address, and register address in the MDI 2854 * Control register. The MAC will take care of interfacing with 2855 * the PHY to retrieve the desired data. 2856 */ 2857 if (hw->mac_type == e1000_ce4100) { 2858 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | 2859 (phy_addr << E1000_MDIC_PHY_SHIFT) | 2860 (INTEL_CE_GBE_MDIC_OP_READ) | 2861 (INTEL_CE_GBE_MDIC_GO)); 2862 2863 writel(mdic, E1000_MDIO_CMD); 2864 2865 /* Poll the ready bit to see if the MDI read 2866 * completed 2867 */ 2868 for (i = 0; i < 64; i++) { 2869 udelay(50); 2870 mdic = readl(E1000_MDIO_CMD); 2871 if (!(mdic & INTEL_CE_GBE_MDIC_GO)) 2872 break; 2873 } 2874 2875 if (mdic & INTEL_CE_GBE_MDIC_GO) { 2876 e_dbg("MDI Read did not complete\n"); 2877 return -E1000_ERR_PHY; 2878 } 2879 2880 mdic = readl(E1000_MDIO_STS); 2881 if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) { 2882 e_dbg("MDI Read Error\n"); 2883 return -E1000_ERR_PHY; 2884 } 2885 *phy_data = (u16)mdic; 2886 } else { 2887 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | 2888 (phy_addr << E1000_MDIC_PHY_SHIFT) | 2889 (E1000_MDIC_OP_READ)); 2890 2891 ew32(MDIC, mdic); 2892 2893 /* Poll the ready bit to see if the MDI read 2894 * completed 2895 */ 2896 for (i = 0; i < 64; i++) { 2897 udelay(50); 2898 mdic = er32(MDIC); 2899 if (mdic & E1000_MDIC_READY) 2900 break; 2901 } 2902 if (!(mdic & E1000_MDIC_READY)) { 2903 e_dbg("MDI Read did not complete\n"); 2904 return -E1000_ERR_PHY; 2905 } 2906 if (mdic & E1000_MDIC_ERROR) { 2907 e_dbg("MDI Error\n"); 2908 return -E1000_ERR_PHY; 2909 } 2910 *phy_data = (u16)mdic; 2911 } 2912 } else { 2913 /* We must first send a preamble through the MDIO pin to signal 2914 * the beginning of an MII instruction. This is done by sending 2915 * 32 consecutive "1" bits. 2916 */ 2917 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); 2918 2919 /* Now combine the next few fields that are required for a read 2920 * operation. We use this method instead of calling the 2921 * e1000_shift_out_mdi_bits routine five different times. The 2922 * format of a MII read instruction consists of a shift out of 2923 * 14 bits and is defined as follows: 2924 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> 2925 * followed by a shift in of 18 bits. This first two bits 2926 * shifted in are TurnAround bits used to avoid contention on 2927 * the MDIO pin when a READ operation is performed. These two 2928 * bits are thrown away followed by a shift in of 16 bits which 2929 * contains the desired data. 2930 */ 2931 mdic = ((reg_addr) | (phy_addr << 5) | 2932 (PHY_OP_READ << 10) | (PHY_SOF << 12)); 2933 2934 e1000_shift_out_mdi_bits(hw, mdic, 14); 2935 2936 /* Now that we've shifted out the read command to the MII, we 2937 * need to "shift in" the 16-bit value (18 total bits) of the 2938 * requested PHY register address. 2939 */ 2940 *phy_data = e1000_shift_in_mdi_bits(hw); 2941 } 2942 return E1000_SUCCESS; 2943 } 2944 2945 /** 2946 * e1000_write_phy_reg - write a phy register 2947 * 2948 * @hw: Struct containing variables accessed by shared code 2949 * @reg_addr: address of the PHY register to write 2950 * @data: data to write to the PHY 2951 * 2952 * Writes a value to a PHY register 2953 */ 2954 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data) 2955 { 2956 u32 ret_val; 2957 unsigned long flags; 2958 2959 spin_lock_irqsave(&e1000_phy_lock, flags); 2960 2961 if ((hw->phy_type == e1000_phy_igp) && 2962 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { 2963 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, 2964 (u16)reg_addr); 2965 if (ret_val) { 2966 spin_unlock_irqrestore(&e1000_phy_lock, flags); 2967 return ret_val; 2968 } 2969 } 2970 2971 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, 2972 phy_data); 2973 spin_unlock_irqrestore(&e1000_phy_lock, flags); 2974 2975 return ret_val; 2976 } 2977 2978 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, 2979 u16 phy_data) 2980 { 2981 u32 i; 2982 u32 mdic = 0; 2983 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1; 2984 2985 if (reg_addr > MAX_PHY_REG_ADDRESS) { 2986 e_dbg("PHY Address %d is out of range\n", reg_addr); 2987 return -E1000_ERR_PARAM; 2988 } 2989 2990 if (hw->mac_type > e1000_82543) { 2991 /* Set up Op-code, Phy Address, register address, and data 2992 * intended for the PHY register in the MDI Control register. 2993 * The MAC will take care of interfacing with the PHY to send 2994 * the desired data. 2995 */ 2996 if (hw->mac_type == e1000_ce4100) { 2997 mdic = (((u32)phy_data) | 2998 (reg_addr << E1000_MDIC_REG_SHIFT) | 2999 (phy_addr << E1000_MDIC_PHY_SHIFT) | 3000 (INTEL_CE_GBE_MDIC_OP_WRITE) | 3001 (INTEL_CE_GBE_MDIC_GO)); 3002 3003 writel(mdic, E1000_MDIO_CMD); 3004 3005 /* Poll the ready bit to see if the MDI read 3006 * completed 3007 */ 3008 for (i = 0; i < 640; i++) { 3009 udelay(5); 3010 mdic = readl(E1000_MDIO_CMD); 3011 if (!(mdic & INTEL_CE_GBE_MDIC_GO)) 3012 break; 3013 } 3014 if (mdic & INTEL_CE_GBE_MDIC_GO) { 3015 e_dbg("MDI Write did not complete\n"); 3016 return -E1000_ERR_PHY; 3017 } 3018 } else { 3019 mdic = (((u32)phy_data) | 3020 (reg_addr << E1000_MDIC_REG_SHIFT) | 3021 (phy_addr << E1000_MDIC_PHY_SHIFT) | 3022 (E1000_MDIC_OP_WRITE)); 3023 3024 ew32(MDIC, mdic); 3025 3026 /* Poll the ready bit to see if the MDI read 3027 * completed 3028 */ 3029 for (i = 0; i < 641; i++) { 3030 udelay(5); 3031 mdic = er32(MDIC); 3032 if (mdic & E1000_MDIC_READY) 3033 break; 3034 } 3035 if (!(mdic & E1000_MDIC_READY)) { 3036 e_dbg("MDI Write did not complete\n"); 3037 return -E1000_ERR_PHY; 3038 } 3039 } 3040 } else { 3041 /* We'll need to use the SW defined pins to shift the write 3042 * command out to the PHY. We first send a preamble to the PHY 3043 * to signal the beginning of the MII instruction. This is done 3044 * by sending 32 consecutive "1" bits. 3045 */ 3046 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); 3047 3048 /* Now combine the remaining required fields that will indicate 3049 * a write operation. We use this method instead of calling the 3050 * e1000_shift_out_mdi_bits routine for each field in the 3051 * command. The format of a MII write instruction is as follows: 3052 * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>. 3053 */ 3054 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | 3055 (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); 3056 mdic <<= 16; 3057 mdic |= (u32)phy_data; 3058 3059 e1000_shift_out_mdi_bits(hw, mdic, 32); 3060 } 3061 3062 return E1000_SUCCESS; 3063 } 3064 3065 /** 3066 * e1000_phy_hw_reset - reset the phy, hardware style 3067 * @hw: Struct containing variables accessed by shared code 3068 * 3069 * Returns the PHY to the power-on reset state 3070 */ 3071 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 3072 { 3073 u32 ctrl, ctrl_ext; 3074 u32 led_ctrl; 3075 3076 e_dbg("Resetting Phy...\n"); 3077 3078 if (hw->mac_type > e1000_82543) { 3079 /* Read the device control register and assert the 3080 * E1000_CTRL_PHY_RST bit. Then, take it out of reset. 3081 * For e1000 hardware, we delay for 10ms between the assert 3082 * and de-assert. 3083 */ 3084 ctrl = er32(CTRL); 3085 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); 3086 E1000_WRITE_FLUSH(); 3087 3088 msleep(10); 3089 3090 ew32(CTRL, ctrl); 3091 E1000_WRITE_FLUSH(); 3092 3093 } else { 3094 /* Read the Extended Device Control Register, assert the 3095 * PHY_RESET_DIR bit to put the PHY into reset. Then, take it 3096 * out of reset. 3097 */ 3098 ctrl_ext = er32(CTRL_EXT); 3099 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; 3100 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; 3101 ew32(CTRL_EXT, ctrl_ext); 3102 E1000_WRITE_FLUSH(); 3103 msleep(10); 3104 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; 3105 ew32(CTRL_EXT, ctrl_ext); 3106 E1000_WRITE_FLUSH(); 3107 } 3108 udelay(150); 3109 3110 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { 3111 /* Configure activity LED after PHY reset */ 3112 led_ctrl = er32(LEDCTL); 3113 led_ctrl &= IGP_ACTIVITY_LED_MASK; 3114 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); 3115 ew32(LEDCTL, led_ctrl); 3116 } 3117 3118 /* Wait for FW to finish PHY configuration. */ 3119 return e1000_get_phy_cfg_done(hw); 3120 } 3121 3122 /** 3123 * e1000_phy_reset - reset the phy to commit settings 3124 * @hw: Struct containing variables accessed by shared code 3125 * 3126 * Resets the PHY 3127 * Sets bit 15 of the MII Control register 3128 */ 3129 s32 e1000_phy_reset(struct e1000_hw *hw) 3130 { 3131 s32 ret_val; 3132 u16 phy_data; 3133 3134 switch (hw->phy_type) { 3135 case e1000_phy_igp: 3136 ret_val = e1000_phy_hw_reset(hw); 3137 if (ret_val) 3138 return ret_val; 3139 break; 3140 default: 3141 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); 3142 if (ret_val) 3143 return ret_val; 3144 3145 phy_data |= MII_CR_RESET; 3146 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); 3147 if (ret_val) 3148 return ret_val; 3149 3150 udelay(1); 3151 break; 3152 } 3153 3154 if (hw->phy_type == e1000_phy_igp) 3155 e1000_phy_init_script(hw); 3156 3157 return E1000_SUCCESS; 3158 } 3159 3160 /** 3161 * e1000_detect_gig_phy - check the phy type 3162 * @hw: Struct containing variables accessed by shared code 3163 * 3164 * Probes the expected PHY address for known PHY IDs 3165 */ 3166 static s32 e1000_detect_gig_phy(struct e1000_hw *hw) 3167 { 3168 s32 phy_init_status, ret_val; 3169 u16 phy_id_high, phy_id_low; 3170 bool match = false; 3171 3172 if (hw->phy_id != 0) 3173 return E1000_SUCCESS; 3174 3175 /* Read the PHY ID Registers to identify which PHY is onboard. */ 3176 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); 3177 if (ret_val) 3178 return ret_val; 3179 3180 hw->phy_id = (u32)(phy_id_high << 16); 3181 udelay(20); 3182 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); 3183 if (ret_val) 3184 return ret_val; 3185 3186 hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK); 3187 hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK; 3188 3189 switch (hw->mac_type) { 3190 case e1000_82543: 3191 if (hw->phy_id == M88E1000_E_PHY_ID) 3192 match = true; 3193 break; 3194 case e1000_82544: 3195 if (hw->phy_id == M88E1000_I_PHY_ID) 3196 match = true; 3197 break; 3198 case e1000_82540: 3199 case e1000_82545: 3200 case e1000_82545_rev_3: 3201 case e1000_82546: 3202 case e1000_82546_rev_3: 3203 if (hw->phy_id == M88E1011_I_PHY_ID) 3204 match = true; 3205 break; 3206 case e1000_ce4100: 3207 if ((hw->phy_id == RTL8211B_PHY_ID) || 3208 (hw->phy_id == RTL8201N_PHY_ID) || 3209 (hw->phy_id == M88E1118_E_PHY_ID)) 3210 match = true; 3211 break; 3212 case e1000_82541: 3213 case e1000_82541_rev_2: 3214 case e1000_82547: 3215 case e1000_82547_rev_2: 3216 if (hw->phy_id == IGP01E1000_I_PHY_ID) 3217 match = true; 3218 break; 3219 default: 3220 e_dbg("Invalid MAC type %d\n", hw->mac_type); 3221 return -E1000_ERR_CONFIG; 3222 } 3223 phy_init_status = e1000_set_phy_type(hw); 3224 3225 if ((match) && (phy_init_status == E1000_SUCCESS)) { 3226 e_dbg("PHY ID 0x%X detected\n", hw->phy_id); 3227 return E1000_SUCCESS; 3228 } 3229 e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id); 3230 return -E1000_ERR_PHY; 3231 } 3232 3233 /** 3234 * e1000_phy_reset_dsp - reset DSP 3235 * @hw: Struct containing variables accessed by shared code 3236 * 3237 * Resets the PHY's DSP 3238 */ 3239 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw) 3240 { 3241 s32 ret_val; 3242 3243 do { 3244 ret_val = e1000_write_phy_reg(hw, 29, 0x001d); 3245 if (ret_val) 3246 break; 3247 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); 3248 if (ret_val) 3249 break; 3250 ret_val = e1000_write_phy_reg(hw, 30, 0x0000); 3251 if (ret_val) 3252 break; 3253 ret_val = E1000_SUCCESS; 3254 } while (0); 3255 3256 return ret_val; 3257 } 3258 3259 /** 3260 * e1000_phy_igp_get_info - get igp specific registers 3261 * @hw: Struct containing variables accessed by shared code 3262 * @phy_info: PHY information structure 3263 * 3264 * Get PHY information from various PHY registers for igp PHY only. 3265 */ 3266 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, 3267 struct e1000_phy_info *phy_info) 3268 { 3269 s32 ret_val; 3270 u16 phy_data, min_length, max_length, average; 3271 e1000_rev_polarity polarity; 3272 3273 /* The downshift status is checked only once, after link is established, 3274 * and it stored in the hw->speed_downgraded parameter. 3275 */ 3276 phy_info->downshift = (e1000_downshift) hw->speed_downgraded; 3277 3278 /* IGP01E1000 does not need to support it. */ 3279 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; 3280 3281 /* IGP01E1000 always correct polarity reversal */ 3282 phy_info->polarity_correction = e1000_polarity_reversal_enabled; 3283 3284 /* Check polarity status */ 3285 ret_val = e1000_check_polarity(hw, &polarity); 3286 if (ret_val) 3287 return ret_val; 3288 3289 phy_info->cable_polarity = polarity; 3290 3291 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); 3292 if (ret_val) 3293 return ret_val; 3294 3295 phy_info->mdix_mode = 3296 (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >> 3297 IGP01E1000_PSSR_MDIX_SHIFT); 3298 3299 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == 3300 IGP01E1000_PSSR_SPEED_1000MBPS) { 3301 /* Local/Remote Receiver Information are only valid @ 1000 3302 * Mbps 3303 */ 3304 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); 3305 if (ret_val) 3306 return ret_val; 3307 3308 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> 3309 SR_1000T_LOCAL_RX_STATUS_SHIFT) ? 3310 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 3311 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> 3312 SR_1000T_REMOTE_RX_STATUS_SHIFT) ? 3313 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 3314 3315 /* Get cable length */ 3316 ret_val = e1000_get_cable_length(hw, &min_length, &max_length); 3317 if (ret_val) 3318 return ret_val; 3319 3320 /* Translate to old method */ 3321 average = (max_length + min_length) / 2; 3322 3323 if (average <= e1000_igp_cable_length_50) 3324 phy_info->cable_length = e1000_cable_length_50; 3325 else if (average <= e1000_igp_cable_length_80) 3326 phy_info->cable_length = e1000_cable_length_50_80; 3327 else if (average <= e1000_igp_cable_length_110) 3328 phy_info->cable_length = e1000_cable_length_80_110; 3329 else if (average <= e1000_igp_cable_length_140) 3330 phy_info->cable_length = e1000_cable_length_110_140; 3331 else 3332 phy_info->cable_length = e1000_cable_length_140; 3333 } 3334 3335 return E1000_SUCCESS; 3336 } 3337 3338 /** 3339 * e1000_phy_m88_get_info - get m88 specific registers 3340 * @hw: Struct containing variables accessed by shared code 3341 * @phy_info: PHY information structure 3342 * 3343 * Get PHY information from various PHY registers for m88 PHY only. 3344 */ 3345 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, 3346 struct e1000_phy_info *phy_info) 3347 { 3348 s32 ret_val; 3349 u16 phy_data; 3350 e1000_rev_polarity polarity; 3351 3352 /* The downshift status is checked only once, after link is established, 3353 * and it stored in the hw->speed_downgraded parameter. 3354 */ 3355 phy_info->downshift = (e1000_downshift) hw->speed_downgraded; 3356 3357 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 3358 if (ret_val) 3359 return ret_val; 3360 3361 phy_info->extended_10bt_distance = 3362 ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> 3363 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ? 3364 e1000_10bt_ext_dist_enable_lower : 3365 e1000_10bt_ext_dist_enable_normal; 3366 3367 phy_info->polarity_correction = 3368 ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> 3369 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ? 3370 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; 3371 3372 /* Check polarity status */ 3373 ret_val = e1000_check_polarity(hw, &polarity); 3374 if (ret_val) 3375 return ret_val; 3376 phy_info->cable_polarity = polarity; 3377 3378 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 3379 if (ret_val) 3380 return ret_val; 3381 3382 phy_info->mdix_mode = 3383 (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >> 3384 M88E1000_PSSR_MDIX_SHIFT); 3385 3386 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { 3387 /* Cable Length Estimation and Local/Remote Receiver Information 3388 * are only valid at 1000 Mbps. 3389 */ 3390 phy_info->cable_length = 3391 (e1000_cable_length) ((phy_data & 3392 M88E1000_PSSR_CABLE_LENGTH) >> 3393 M88E1000_PSSR_CABLE_LENGTH_SHIFT); 3394 3395 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); 3396 if (ret_val) 3397 return ret_val; 3398 3399 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> 3400 SR_1000T_LOCAL_RX_STATUS_SHIFT) ? 3401 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 3402 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> 3403 SR_1000T_REMOTE_RX_STATUS_SHIFT) ? 3404 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; 3405 } 3406 3407 return E1000_SUCCESS; 3408 } 3409 3410 /** 3411 * e1000_phy_get_info - request phy info 3412 * @hw: Struct containing variables accessed by shared code 3413 * @phy_info: PHY information structure 3414 * 3415 * Get PHY information from various PHY registers 3416 */ 3417 s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info) 3418 { 3419 s32 ret_val; 3420 u16 phy_data; 3421 3422 phy_info->cable_length = e1000_cable_length_undefined; 3423 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; 3424 phy_info->cable_polarity = e1000_rev_polarity_undefined; 3425 phy_info->downshift = e1000_downshift_undefined; 3426 phy_info->polarity_correction = e1000_polarity_reversal_undefined; 3427 phy_info->mdix_mode = e1000_auto_x_mode_undefined; 3428 phy_info->local_rx = e1000_1000t_rx_status_undefined; 3429 phy_info->remote_rx = e1000_1000t_rx_status_undefined; 3430 3431 if (hw->media_type != e1000_media_type_copper) { 3432 e_dbg("PHY info is only valid for copper media\n"); 3433 return -E1000_ERR_CONFIG; 3434 } 3435 3436 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); 3437 if (ret_val) 3438 return ret_val; 3439 3440 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); 3441 if (ret_val) 3442 return ret_val; 3443 3444 if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { 3445 e_dbg("PHY info is only valid if link is up\n"); 3446 return -E1000_ERR_CONFIG; 3447 } 3448 3449 if (hw->phy_type == e1000_phy_igp) 3450 return e1000_phy_igp_get_info(hw, phy_info); 3451 else if ((hw->phy_type == e1000_phy_8211) || 3452 (hw->phy_type == e1000_phy_8201)) 3453 return E1000_SUCCESS; 3454 else 3455 return e1000_phy_m88_get_info(hw, phy_info); 3456 } 3457 3458 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 3459 { 3460 if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { 3461 e_dbg("Invalid MDI setting detected\n"); 3462 hw->mdix = 1; 3463 return -E1000_ERR_CONFIG; 3464 } 3465 return E1000_SUCCESS; 3466 } 3467 3468 /** 3469 * e1000_init_eeprom_params - initialize sw eeprom vars 3470 * @hw: Struct containing variables accessed by shared code 3471 * 3472 * Sets up eeprom variables in the hw struct. Must be called after mac_type 3473 * is configured. 3474 */ 3475 s32 e1000_init_eeprom_params(struct e1000_hw *hw) 3476 { 3477 struct e1000_eeprom_info *eeprom = &hw->eeprom; 3478 u32 eecd = er32(EECD); 3479 s32 ret_val = E1000_SUCCESS; 3480 u16 eeprom_size; 3481 3482 switch (hw->mac_type) { 3483 case e1000_82542_rev2_0: 3484 case e1000_82542_rev2_1: 3485 case e1000_82543: 3486 case e1000_82544: 3487 eeprom->type = e1000_eeprom_microwire; 3488 eeprom->word_size = 64; 3489 eeprom->opcode_bits = 3; 3490 eeprom->address_bits = 6; 3491 eeprom->delay_usec = 50; 3492 break; 3493 case e1000_82540: 3494 case e1000_82545: 3495 case e1000_82545_rev_3: 3496 case e1000_82546: 3497 case e1000_82546_rev_3: 3498 eeprom->type = e1000_eeprom_microwire; 3499 eeprom->opcode_bits = 3; 3500 eeprom->delay_usec = 50; 3501 if (eecd & E1000_EECD_SIZE) { 3502 eeprom->word_size = 256; 3503 eeprom->address_bits = 8; 3504 } else { 3505 eeprom->word_size = 64; 3506 eeprom->address_bits = 6; 3507 } 3508 break; 3509 case e1000_82541: 3510 case e1000_82541_rev_2: 3511 case e1000_82547: 3512 case e1000_82547_rev_2: 3513 if (eecd & E1000_EECD_TYPE) { 3514 eeprom->type = e1000_eeprom_spi; 3515 eeprom->opcode_bits = 8; 3516 eeprom->delay_usec = 1; 3517 if (eecd & E1000_EECD_ADDR_BITS) { 3518 eeprom->page_size = 32; 3519 eeprom->address_bits = 16; 3520 } else { 3521 eeprom->page_size = 8; 3522 eeprom->address_bits = 8; 3523 } 3524 } else { 3525 eeprom->type = e1000_eeprom_microwire; 3526 eeprom->opcode_bits = 3; 3527 eeprom->delay_usec = 50; 3528 if (eecd & E1000_EECD_ADDR_BITS) { 3529 eeprom->word_size = 256; 3530 eeprom->address_bits = 8; 3531 } else { 3532 eeprom->word_size = 64; 3533 eeprom->address_bits = 6; 3534 } 3535 } 3536 break; 3537 default: 3538 break; 3539 } 3540 3541 if (eeprom->type == e1000_eeprom_spi) { 3542 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 3543 * 128B to 32KB (incremented by powers of 2). 3544 */ 3545 /* Set to default value for initial eeprom read. */ 3546 eeprom->word_size = 64; 3547 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); 3548 if (ret_val) 3549 return ret_val; 3550 eeprom_size = 3551 (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; 3552 /* 256B eeprom size was not supported in earlier hardware, so we 3553 * bump eeprom_size up one to ensure that "1" (which maps to 3554 * 256B) is never the result used in the shifting logic below. 3555 */ 3556 if (eeprom_size) 3557 eeprom_size++; 3558 3559 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); 3560 } 3561 return ret_val; 3562 } 3563 3564 /** 3565 * e1000_raise_ee_clk - Raises the EEPROM's clock input. 3566 * @hw: Struct containing variables accessed by shared code 3567 * @eecd: EECD's current value 3568 */ 3569 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd) 3570 { 3571 /* Raise the clock input to the EEPROM (by setting the SK bit), and then 3572 * wait <delay> microseconds. 3573 */ 3574 *eecd = *eecd | E1000_EECD_SK; 3575 ew32(EECD, *eecd); 3576 E1000_WRITE_FLUSH(); 3577 udelay(hw->eeprom.delay_usec); 3578 } 3579 3580 /** 3581 * e1000_lower_ee_clk - Lowers the EEPROM's clock input. 3582 * @hw: Struct containing variables accessed by shared code 3583 * @eecd: EECD's current value 3584 */ 3585 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd) 3586 { 3587 /* Lower the clock input to the EEPROM (by clearing the SK bit), and 3588 * then wait 50 microseconds. 3589 */ 3590 *eecd = *eecd & ~E1000_EECD_SK; 3591 ew32(EECD, *eecd); 3592 E1000_WRITE_FLUSH(); 3593 udelay(hw->eeprom.delay_usec); 3594 } 3595 3596 /** 3597 * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM. 3598 * @hw: Struct containing variables accessed by shared code 3599 * @data: data to send to the EEPROM 3600 * @count: number of bits to shift out 3601 */ 3602 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count) 3603 { 3604 struct e1000_eeprom_info *eeprom = &hw->eeprom; 3605 u32 eecd; 3606 u32 mask; 3607 3608 /* We need to shift "count" bits out to the EEPROM. So, value in the 3609 * "data" parameter will be shifted out to the EEPROM one bit at a time. 3610 * In order to do this, "data" must be broken down into bits. 3611 */ 3612 mask = 0x01 << (count - 1); 3613 eecd = er32(EECD); 3614 if (eeprom->type == e1000_eeprom_microwire) 3615 eecd &= ~E1000_EECD_DO; 3616 else if (eeprom->type == e1000_eeprom_spi) 3617 eecd |= E1000_EECD_DO; 3618 3619 do { 3620 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a 3621 * "1", and then raising and then lowering the clock (the SK bit 3622 * controls the clock input to the EEPROM). A "0" is shifted 3623 * out to the EEPROM by setting "DI" to "0" and then raising and 3624 * then lowering the clock. 3625 */ 3626 eecd &= ~E1000_EECD_DI; 3627 3628 if (data & mask) 3629 eecd |= E1000_EECD_DI; 3630 3631 ew32(EECD, eecd); 3632 E1000_WRITE_FLUSH(); 3633 3634 udelay(eeprom->delay_usec); 3635 3636 e1000_raise_ee_clk(hw, &eecd); 3637 e1000_lower_ee_clk(hw, &eecd); 3638 3639 mask = mask >> 1; 3640 3641 } while (mask); 3642 3643 /* We leave the "DI" bit set to "0" when we leave this routine. */ 3644 eecd &= ~E1000_EECD_DI; 3645 ew32(EECD, eecd); 3646 } 3647 3648 /** 3649 * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM 3650 * @hw: Struct containing variables accessed by shared code 3651 * @count: number of bits to shift in 3652 */ 3653 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count) 3654 { 3655 u32 eecd; 3656 u32 i; 3657 u16 data; 3658 3659 /* In order to read a register from the EEPROM, we need to shift 'count' 3660 * bits in from the EEPROM. Bits are "shifted in" by raising the clock 3661 * input to the EEPROM (setting the SK bit), and then reading the value 3662 * of the "DO" bit. During this "shifting in" process the "DI" bit 3663 * should always be clear. 3664 */ 3665 3666 eecd = er32(EECD); 3667 3668 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); 3669 data = 0; 3670 3671 for (i = 0; i < count; i++) { 3672 data = data << 1; 3673 e1000_raise_ee_clk(hw, &eecd); 3674 3675 eecd = er32(EECD); 3676 3677 eecd &= ~(E1000_EECD_DI); 3678 if (eecd & E1000_EECD_DO) 3679 data |= 1; 3680 3681 e1000_lower_ee_clk(hw, &eecd); 3682 } 3683 3684 return data; 3685 } 3686 3687 /** 3688 * e1000_acquire_eeprom - Prepares EEPROM for access 3689 * @hw: Struct containing variables accessed by shared code 3690 * 3691 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This 3692 * function should be called before issuing a command to the EEPROM. 3693 */ 3694 static s32 e1000_acquire_eeprom(struct e1000_hw *hw) 3695 { 3696 struct e1000_eeprom_info *eeprom = &hw->eeprom; 3697 u32 eecd, i = 0; 3698 3699 eecd = er32(EECD); 3700 3701 /* Request EEPROM Access */ 3702 if (hw->mac_type > e1000_82544) { 3703 eecd |= E1000_EECD_REQ; 3704 ew32(EECD, eecd); 3705 eecd = er32(EECD); 3706 while ((!(eecd & E1000_EECD_GNT)) && 3707 (i < E1000_EEPROM_GRANT_ATTEMPTS)) { 3708 i++; 3709 udelay(5); 3710 eecd = er32(EECD); 3711 } 3712 if (!(eecd & E1000_EECD_GNT)) { 3713 eecd &= ~E1000_EECD_REQ; 3714 ew32(EECD, eecd); 3715 e_dbg("Could not acquire EEPROM grant\n"); 3716 return -E1000_ERR_EEPROM; 3717 } 3718 } 3719 3720 /* Setup EEPROM for Read/Write */ 3721 3722 if (eeprom->type == e1000_eeprom_microwire) { 3723 /* Clear SK and DI */ 3724 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); 3725 ew32(EECD, eecd); 3726 3727 /* Set CS */ 3728 eecd |= E1000_EECD_CS; 3729 ew32(EECD, eecd); 3730 } else if (eeprom->type == e1000_eeprom_spi) { 3731 /* Clear SK and CS */ 3732 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); 3733 ew32(EECD, eecd); 3734 E1000_WRITE_FLUSH(); 3735 udelay(1); 3736 } 3737 3738 return E1000_SUCCESS; 3739 } 3740 3741 /** 3742 * e1000_standby_eeprom - Returns EEPROM to a "standby" state 3743 * @hw: Struct containing variables accessed by shared code 3744 */ 3745 static void e1000_standby_eeprom(struct e1000_hw *hw) 3746 { 3747 struct e1000_eeprom_info *eeprom = &hw->eeprom; 3748 u32 eecd; 3749 3750 eecd = er32(EECD); 3751 3752 if (eeprom->type == e1000_eeprom_microwire) { 3753 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); 3754 ew32(EECD, eecd); 3755 E1000_WRITE_FLUSH(); 3756 udelay(eeprom->delay_usec); 3757 3758 /* Clock high */ 3759 eecd |= E1000_EECD_SK; 3760 ew32(EECD, eecd); 3761 E1000_WRITE_FLUSH(); 3762 udelay(eeprom->delay_usec); 3763 3764 /* Select EEPROM */ 3765 eecd |= E1000_EECD_CS; 3766 ew32(EECD, eecd); 3767 E1000_WRITE_FLUSH(); 3768 udelay(eeprom->delay_usec); 3769 3770 /* Clock low */ 3771 eecd &= ~E1000_EECD_SK; 3772 ew32(EECD, eecd); 3773 E1000_WRITE_FLUSH(); 3774 udelay(eeprom->delay_usec); 3775 } else if (eeprom->type == e1000_eeprom_spi) { 3776 /* Toggle CS to flush commands */ 3777 eecd |= E1000_EECD_CS; 3778 ew32(EECD, eecd); 3779 E1000_WRITE_FLUSH(); 3780 udelay(eeprom->delay_usec); 3781 eecd &= ~E1000_EECD_CS; 3782 ew32(EECD, eecd); 3783 E1000_WRITE_FLUSH(); 3784 udelay(eeprom->delay_usec); 3785 } 3786 } 3787 3788 /** 3789 * e1000_release_eeprom - drop chip select 3790 * @hw: Struct containing variables accessed by shared code 3791 * 3792 * Terminates a command by inverting the EEPROM's chip select pin 3793 */ 3794 static void e1000_release_eeprom(struct e1000_hw *hw) 3795 { 3796 u32 eecd; 3797 3798 eecd = er32(EECD); 3799 3800 if (hw->eeprom.type == e1000_eeprom_spi) { 3801 eecd |= E1000_EECD_CS; /* Pull CS high */ 3802 eecd &= ~E1000_EECD_SK; /* Lower SCK */ 3803 3804 ew32(EECD, eecd); 3805 E1000_WRITE_FLUSH(); 3806 3807 udelay(hw->eeprom.delay_usec); 3808 } else if (hw->eeprom.type == e1000_eeprom_microwire) { 3809 /* cleanup eeprom */ 3810 3811 /* CS on Microwire is active-high */ 3812 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); 3813 3814 ew32(EECD, eecd); 3815 3816 /* Rising edge of clock */ 3817 eecd |= E1000_EECD_SK; 3818 ew32(EECD, eecd); 3819 E1000_WRITE_FLUSH(); 3820 udelay(hw->eeprom.delay_usec); 3821 3822 /* Falling edge of clock */ 3823 eecd &= ~E1000_EECD_SK; 3824 ew32(EECD, eecd); 3825 E1000_WRITE_FLUSH(); 3826 udelay(hw->eeprom.delay_usec); 3827 } 3828 3829 /* Stop requesting EEPROM access */ 3830 if (hw->mac_type > e1000_82544) { 3831 eecd &= ~E1000_EECD_REQ; 3832 ew32(EECD, eecd); 3833 } 3834 } 3835 3836 /** 3837 * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM. 3838 * @hw: Struct containing variables accessed by shared code 3839 */ 3840 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw) 3841 { 3842 u16 retry_count = 0; 3843 u8 spi_stat_reg; 3844 3845 /* Read "Status Register" repeatedly until the LSB is cleared. The 3846 * EEPROM will signal that the command has been completed by clearing 3847 * bit 0 of the internal status register. If it's not cleared within 3848 * 5 milliseconds, then error out. 3849 */ 3850 retry_count = 0; 3851 do { 3852 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, 3853 hw->eeprom.opcode_bits); 3854 spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8); 3855 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) 3856 break; 3857 3858 udelay(5); 3859 retry_count += 5; 3860 3861 e1000_standby_eeprom(hw); 3862 } while (retry_count < EEPROM_MAX_RETRY_SPI); 3863 3864 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and 3865 * only 0-5mSec on 5V devices) 3866 */ 3867 if (retry_count >= EEPROM_MAX_RETRY_SPI) { 3868 e_dbg("SPI EEPROM Status error\n"); 3869 return -E1000_ERR_EEPROM; 3870 } 3871 3872 return E1000_SUCCESS; 3873 } 3874 3875 /** 3876 * e1000_read_eeprom - Reads a 16 bit word from the EEPROM. 3877 * @hw: Struct containing variables accessed by shared code 3878 * @offset: offset of word in the EEPROM to read 3879 * @data: word read from the EEPROM 3880 * @words: number of words to read 3881 */ 3882 s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 3883 { 3884 s32 ret; 3885 3886 mutex_lock(&e1000_eeprom_lock); 3887 ret = e1000_do_read_eeprom(hw, offset, words, data); 3888 mutex_unlock(&e1000_eeprom_lock); 3889 return ret; 3890 } 3891 3892 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, 3893 u16 *data) 3894 { 3895 struct e1000_eeprom_info *eeprom = &hw->eeprom; 3896 u32 i = 0; 3897 3898 if (hw->mac_type == e1000_ce4100) { 3899 GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words, 3900 data); 3901 return E1000_SUCCESS; 3902 } 3903 3904 /* A check for invalid values: offset too large, too many words, and 3905 * not enough words. 3906 */ 3907 if ((offset >= eeprom->word_size) || 3908 (words > eeprom->word_size - offset) || 3909 (words == 0)) { 3910 e_dbg("\"words\" parameter out of bounds. Words = %d," 3911 "size = %d\n", offset, eeprom->word_size); 3912 return -E1000_ERR_EEPROM; 3913 } 3914 3915 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI 3916 * directly. In this case, we need to acquire the EEPROM so that 3917 * FW or other port software does not interrupt. 3918 */ 3919 /* Prepare the EEPROM for bit-bang reading */ 3920 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) 3921 return -E1000_ERR_EEPROM; 3922 3923 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have 3924 * acquired the EEPROM at this point, so any returns should release it 3925 */ 3926 if (eeprom->type == e1000_eeprom_spi) { 3927 u16 word_in; 3928 u8 read_opcode = EEPROM_READ_OPCODE_SPI; 3929 3930 if (e1000_spi_eeprom_ready(hw)) { 3931 e1000_release_eeprom(hw); 3932 return -E1000_ERR_EEPROM; 3933 } 3934 3935 e1000_standby_eeprom(hw); 3936 3937 /* Some SPI eeproms use the 8th address bit embedded in the 3938 * opcode 3939 */ 3940 if ((eeprom->address_bits == 8) && (offset >= 128)) 3941 read_opcode |= EEPROM_A8_OPCODE_SPI; 3942 3943 /* Send the READ command (opcode + addr) */ 3944 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); 3945 e1000_shift_out_ee_bits(hw, (u16)(offset * 2), 3946 eeprom->address_bits); 3947 3948 /* Read the data. The address of the eeprom internally 3949 * increments with each byte (spi) being read, saving on the 3950 * overhead of eeprom setup and tear-down. The address counter 3951 * will roll over if reading beyond the size of the eeprom, thus 3952 * allowing the entire memory to be read starting from any 3953 * offset. 3954 */ 3955 for (i = 0; i < words; i++) { 3956 word_in = e1000_shift_in_ee_bits(hw, 16); 3957 data[i] = (word_in >> 8) | (word_in << 8); 3958 } 3959 } else if (eeprom->type == e1000_eeprom_microwire) { 3960 for (i = 0; i < words; i++) { 3961 /* Send the READ command (opcode + addr) */ 3962 e1000_shift_out_ee_bits(hw, 3963 EEPROM_READ_OPCODE_MICROWIRE, 3964 eeprom->opcode_bits); 3965 e1000_shift_out_ee_bits(hw, (u16)(offset + i), 3966 eeprom->address_bits); 3967 3968 /* Read the data. For microwire, each word requires the 3969 * overhead of eeprom setup and tear-down. 3970 */ 3971 data[i] = e1000_shift_in_ee_bits(hw, 16); 3972 e1000_standby_eeprom(hw); 3973 cond_resched(); 3974 } 3975 } 3976 3977 /* End this read operation */ 3978 e1000_release_eeprom(hw); 3979 3980 return E1000_SUCCESS; 3981 } 3982 3983 /** 3984 * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum 3985 * @hw: Struct containing variables accessed by shared code 3986 * 3987 * Reads the first 64 16 bit words of the EEPROM and sums the values read. 3988 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is 3989 * valid. 3990 */ 3991 s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw) 3992 { 3993 u16 checksum = 0; 3994 u16 i, eeprom_data; 3995 3996 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { 3997 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { 3998 e_dbg("EEPROM Read Error\n"); 3999 return -E1000_ERR_EEPROM; 4000 } 4001 checksum += eeprom_data; 4002 } 4003 4004 #ifdef CONFIG_PARISC 4005 /* This is a signature and not a checksum on HP c8000 */ 4006 if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6)) 4007 return E1000_SUCCESS; 4008 4009 #endif 4010 if (checksum == (u16)EEPROM_SUM) 4011 return E1000_SUCCESS; 4012 else { 4013 e_dbg("EEPROM Checksum Invalid\n"); 4014 return -E1000_ERR_EEPROM; 4015 } 4016 } 4017 4018 /** 4019 * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum 4020 * @hw: Struct containing variables accessed by shared code 4021 * 4022 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. 4023 * Writes the difference to word offset 63 of the EEPROM. 4024 */ 4025 s32 e1000_update_eeprom_checksum(struct e1000_hw *hw) 4026 { 4027 u16 checksum = 0; 4028 u16 i, eeprom_data; 4029 4030 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { 4031 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { 4032 e_dbg("EEPROM Read Error\n"); 4033 return -E1000_ERR_EEPROM; 4034 } 4035 checksum += eeprom_data; 4036 } 4037 checksum = (u16)EEPROM_SUM - checksum; 4038 if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { 4039 e_dbg("EEPROM Write Error\n"); 4040 return -E1000_ERR_EEPROM; 4041 } 4042 return E1000_SUCCESS; 4043 } 4044 4045 /** 4046 * e1000_write_eeprom - write words to the different EEPROM types. 4047 * @hw: Struct containing variables accessed by shared code 4048 * @offset: offset within the EEPROM to be written to 4049 * @words: number of words to write 4050 * @data: 16 bit word to be written to the EEPROM 4051 * 4052 * If e1000_update_eeprom_checksum is not called after this function, the 4053 * EEPROM will most likely contain an invalid checksum. 4054 */ 4055 s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 4056 { 4057 s32 ret; 4058 4059 mutex_lock(&e1000_eeprom_lock); 4060 ret = e1000_do_write_eeprom(hw, offset, words, data); 4061 mutex_unlock(&e1000_eeprom_lock); 4062 return ret; 4063 } 4064 4065 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, 4066 u16 *data) 4067 { 4068 struct e1000_eeprom_info *eeprom = &hw->eeprom; 4069 s32 status = 0; 4070 4071 if (hw->mac_type == e1000_ce4100) { 4072 GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words, 4073 data); 4074 return E1000_SUCCESS; 4075 } 4076 4077 /* A check for invalid values: offset too large, too many words, and 4078 * not enough words. 4079 */ 4080 if ((offset >= eeprom->word_size) || 4081 (words > eeprom->word_size - offset) || 4082 (words == 0)) { 4083 e_dbg("\"words\" parameter out of bounds\n"); 4084 return -E1000_ERR_EEPROM; 4085 } 4086 4087 /* Prepare the EEPROM for writing */ 4088 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) 4089 return -E1000_ERR_EEPROM; 4090 4091 if (eeprom->type == e1000_eeprom_microwire) { 4092 status = e1000_write_eeprom_microwire(hw, offset, words, data); 4093 } else { 4094 status = e1000_write_eeprom_spi(hw, offset, words, data); 4095 msleep(10); 4096 } 4097 4098 /* Done with writing */ 4099 e1000_release_eeprom(hw); 4100 4101 return status; 4102 } 4103 4104 /** 4105 * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM. 4106 * @hw: Struct containing variables accessed by shared code 4107 * @offset: offset within the EEPROM to be written to 4108 * @words: number of words to write 4109 * @data: pointer to array of 8 bit words to be written to the EEPROM 4110 */ 4111 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words, 4112 u16 *data) 4113 { 4114 struct e1000_eeprom_info *eeprom = &hw->eeprom; 4115 u16 widx = 0; 4116 4117 while (widx < words) { 4118 u8 write_opcode = EEPROM_WRITE_OPCODE_SPI; 4119 4120 if (e1000_spi_eeprom_ready(hw)) 4121 return -E1000_ERR_EEPROM; 4122 4123 e1000_standby_eeprom(hw); 4124 cond_resched(); 4125 4126 /* Send the WRITE ENABLE command (8 bit opcode ) */ 4127 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, 4128 eeprom->opcode_bits); 4129 4130 e1000_standby_eeprom(hw); 4131 4132 /* Some SPI eeproms use the 8th address bit embedded in the 4133 * opcode 4134 */ 4135 if ((eeprom->address_bits == 8) && (offset >= 128)) 4136 write_opcode |= EEPROM_A8_OPCODE_SPI; 4137 4138 /* Send the Write command (8-bit opcode + addr) */ 4139 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); 4140 4141 e1000_shift_out_ee_bits(hw, (u16)((offset + widx) * 2), 4142 eeprom->address_bits); 4143 4144 /* Send the data */ 4145 4146 /* Loop to allow for up to whole page write (32 bytes) of 4147 * eeprom 4148 */ 4149 while (widx < words) { 4150 u16 word_out = data[widx]; 4151 4152 word_out = (word_out >> 8) | (word_out << 8); 4153 e1000_shift_out_ee_bits(hw, word_out, 16); 4154 widx++; 4155 4156 /* Some larger eeprom sizes are capable of a 32-byte 4157 * PAGE WRITE operation, while the smaller eeproms are 4158 * capable of an 8-byte PAGE WRITE operation. Break the 4159 * inner loop to pass new address 4160 */ 4161 if ((((offset + widx) * 2) % eeprom->page_size) == 0) { 4162 e1000_standby_eeprom(hw); 4163 break; 4164 } 4165 } 4166 } 4167 4168 return E1000_SUCCESS; 4169 } 4170 4171 /** 4172 * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM. 4173 * @hw: Struct containing variables accessed by shared code 4174 * @offset: offset within the EEPROM to be written to 4175 * @words: number of words to write 4176 * @data: pointer to array of 8 bit words to be written to the EEPROM 4177 */ 4178 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, 4179 u16 words, u16 *data) 4180 { 4181 struct e1000_eeprom_info *eeprom = &hw->eeprom; 4182 u32 eecd; 4183 u16 words_written = 0; 4184 u16 i = 0; 4185 4186 /* Send the write enable command to the EEPROM (3-bit opcode plus 4187 * 6/8-bit dummy address beginning with 11). It's less work to include 4188 * the 11 of the dummy address as part of the opcode than it is to shift 4189 * it over the correct number of bits for the address. This puts the 4190 * EEPROM into write/erase mode. 4191 */ 4192 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, 4193 (u16)(eeprom->opcode_bits + 2)); 4194 4195 e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2)); 4196 4197 /* Prepare the EEPROM */ 4198 e1000_standby_eeprom(hw); 4199 4200 while (words_written < words) { 4201 /* Send the Write command (3-bit opcode + addr) */ 4202 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, 4203 eeprom->opcode_bits); 4204 4205 e1000_shift_out_ee_bits(hw, (u16)(offset + words_written), 4206 eeprom->address_bits); 4207 4208 /* Send the data */ 4209 e1000_shift_out_ee_bits(hw, data[words_written], 16); 4210 4211 /* Toggle the CS line. This in effect tells the EEPROM to 4212 * execute the previous command. 4213 */ 4214 e1000_standby_eeprom(hw); 4215 4216 /* Read DO repeatedly until it is high (equal to '1'). The 4217 * EEPROM will signal that the command has been completed by 4218 * raising the DO signal. If DO does not go high in 10 4219 * milliseconds, then error out. 4220 */ 4221 for (i = 0; i < 200; i++) { 4222 eecd = er32(EECD); 4223 if (eecd & E1000_EECD_DO) 4224 break; 4225 udelay(50); 4226 } 4227 if (i == 200) { 4228 e_dbg("EEPROM Write did not complete\n"); 4229 return -E1000_ERR_EEPROM; 4230 } 4231 4232 /* Recover from write */ 4233 e1000_standby_eeprom(hw); 4234 cond_resched(); 4235 4236 words_written++; 4237 } 4238 4239 /* Send the write disable command to the EEPROM (3-bit opcode plus 4240 * 6/8-bit dummy address beginning with 10). It's less work to include 4241 * the 10 of the dummy address as part of the opcode than it is to shift 4242 * it over the correct number of bits for the address. This takes the 4243 * EEPROM out of write/erase mode. 4244 */ 4245 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, 4246 (u16)(eeprom->opcode_bits + 2)); 4247 4248 e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2)); 4249 4250 return E1000_SUCCESS; 4251 } 4252 4253 /** 4254 * e1000_read_mac_addr - read the adapters MAC from eeprom 4255 * @hw: Struct containing variables accessed by shared code 4256 * 4257 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the 4258 * second function of dual function devices 4259 */ 4260 s32 e1000_read_mac_addr(struct e1000_hw *hw) 4261 { 4262 u16 offset; 4263 u16 eeprom_data, i; 4264 4265 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { 4266 offset = i >> 1; 4267 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { 4268 e_dbg("EEPROM Read Error\n"); 4269 return -E1000_ERR_EEPROM; 4270 } 4271 hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF); 4272 hw->perm_mac_addr[i + 1] = (u8)(eeprom_data >> 8); 4273 } 4274 4275 switch (hw->mac_type) { 4276 default: 4277 break; 4278 case e1000_82546: 4279 case e1000_82546_rev_3: 4280 if (er32(STATUS) & E1000_STATUS_FUNC_1) 4281 hw->perm_mac_addr[5] ^= 0x01; 4282 break; 4283 } 4284 4285 for (i = 0; i < NODE_ADDRESS_SIZE; i++) 4286 hw->mac_addr[i] = hw->perm_mac_addr[i]; 4287 return E1000_SUCCESS; 4288 } 4289 4290 /** 4291 * e1000_init_rx_addrs - Initializes receive address filters. 4292 * @hw: Struct containing variables accessed by shared code 4293 * 4294 * Places the MAC address in receive address register 0 and clears the rest 4295 * of the receive address registers. Clears the multicast table. Assumes 4296 * the receiver is in reset when the routine is called. 4297 */ 4298 static void e1000_init_rx_addrs(struct e1000_hw *hw) 4299 { 4300 u32 i; 4301 u32 rar_num; 4302 4303 /* Setup the receive address. */ 4304 e_dbg("Programming MAC Address into RAR[0]\n"); 4305 4306 e1000_rar_set(hw, hw->mac_addr, 0); 4307 4308 rar_num = E1000_RAR_ENTRIES; 4309 4310 /* Zero out the following 14 receive addresses. RAR[15] is for 4311 * manageability 4312 */ 4313 e_dbg("Clearing RAR[1-14]\n"); 4314 for (i = 1; i < rar_num; i++) { 4315 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); 4316 E1000_WRITE_FLUSH(); 4317 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); 4318 E1000_WRITE_FLUSH(); 4319 } 4320 } 4321 4322 /** 4323 * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table 4324 * @hw: Struct containing variables accessed by shared code 4325 * @mc_addr: the multicast address to hash 4326 */ 4327 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 4328 { 4329 u32 hash_value = 0; 4330 4331 /* The portion of the address that is used for the hash table is 4332 * determined by the mc_filter_type setting. 4333 */ 4334 switch (hw->mc_filter_type) { 4335 /* [0] [1] [2] [3] [4] [5] 4336 * 01 AA 00 12 34 56 4337 * LSB MSB 4338 */ 4339 case 0: 4340 /* [47:36] i.e. 0x563 for above example address */ 4341 hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); 4342 break; 4343 case 1: 4344 /* [46:35] i.e. 0xAC6 for above example address */ 4345 hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); 4346 break; 4347 case 2: 4348 /* [45:34] i.e. 0x5D8 for above example address */ 4349 hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); 4350 break; 4351 case 3: 4352 /* [43:32] i.e. 0x634 for above example address */ 4353 hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); 4354 break; 4355 } 4356 4357 hash_value &= 0xFFF; 4358 return hash_value; 4359 } 4360 4361 /** 4362 * e1000_rar_set - Puts an ethernet address into a receive address register. 4363 * @hw: Struct containing variables accessed by shared code 4364 * @addr: Address to put into receive address register 4365 * @index: Receive address register to write 4366 */ 4367 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 4368 { 4369 u32 rar_low, rar_high; 4370 4371 /* HW expects these in little endian so we reverse the byte order 4372 * from network order (big endian) to little endian 4373 */ 4374 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | 4375 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 4376 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 4377 4378 /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx 4379 * unit hang. 4380 * 4381 * Description: 4382 * If there are any Rx frames queued up or otherwise present in the HW 4383 * before RSS is enabled, and then we enable RSS, the HW Rx unit will 4384 * hang. To work around this issue, we have to disable receives and 4385 * flush out all Rx frames before we enable RSS. To do so, we modify we 4386 * redirect all Rx traffic to manageability and then reset the HW. 4387 * This flushes away Rx frames, and (since the redirections to 4388 * manageability persists across resets) keeps new ones from coming in 4389 * while we work. Then, we clear the Address Valid AV bit for all MAC 4390 * addresses and undo the re-direction to manageability. 4391 * Now, frames are coming in again, but the MAC won't accept them, so 4392 * far so good. We now proceed to initialize RSS (if necessary) and 4393 * configure the Rx unit. Last, we re-enable the AV bits and continue 4394 * on our merry way. 4395 */ 4396 switch (hw->mac_type) { 4397 default: 4398 /* Indicate to hardware the Address is Valid. */ 4399 rar_high |= E1000_RAH_AV; 4400 break; 4401 } 4402 4403 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); 4404 E1000_WRITE_FLUSH(); 4405 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); 4406 E1000_WRITE_FLUSH(); 4407 } 4408 4409 /** 4410 * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table. 4411 * @hw: Struct containing variables accessed by shared code 4412 * @offset: Offset in VLAN filer table to write 4413 * @value: Value to write into VLAN filter table 4414 */ 4415 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 4416 { 4417 u32 temp; 4418 4419 if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { 4420 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); 4421 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); 4422 E1000_WRITE_FLUSH(); 4423 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); 4424 E1000_WRITE_FLUSH(); 4425 } else { 4426 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); 4427 E1000_WRITE_FLUSH(); 4428 } 4429 } 4430 4431 /** 4432 * e1000_clear_vfta - Clears the VLAN filer table 4433 * @hw: Struct containing variables accessed by shared code 4434 */ 4435 static void e1000_clear_vfta(struct e1000_hw *hw) 4436 { 4437 u32 offset; 4438 u32 vfta_value = 0; 4439 u32 vfta_offset = 0; 4440 u32 vfta_bit_in_reg = 0; 4441 4442 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { 4443 /* If the offset we want to clear is the same offset of the 4444 * manageability VLAN ID, then clear all bits except that of the 4445 * manageability unit 4446 */ 4447 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; 4448 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); 4449 E1000_WRITE_FLUSH(); 4450 } 4451 } 4452 4453 static s32 e1000_id_led_init(struct e1000_hw *hw) 4454 { 4455 u32 ledctl; 4456 const u32 ledctl_mask = 0x000000FF; 4457 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; 4458 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; 4459 u16 eeprom_data, i, temp; 4460 const u16 led_mask = 0x0F; 4461 4462 if (hw->mac_type < e1000_82540) { 4463 /* Nothing to do */ 4464 return E1000_SUCCESS; 4465 } 4466 4467 ledctl = er32(LEDCTL); 4468 hw->ledctl_default = ledctl; 4469 hw->ledctl_mode1 = hw->ledctl_default; 4470 hw->ledctl_mode2 = hw->ledctl_default; 4471 4472 if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { 4473 e_dbg("EEPROM Read Error\n"); 4474 return -E1000_ERR_EEPROM; 4475 } 4476 4477 if ((eeprom_data == ID_LED_RESERVED_0000) || 4478 (eeprom_data == ID_LED_RESERVED_FFFF)) { 4479 eeprom_data = ID_LED_DEFAULT; 4480 } 4481 4482 for (i = 0; i < 4; i++) { 4483 temp = (eeprom_data >> (i << 2)) & led_mask; 4484 switch (temp) { 4485 case ID_LED_ON1_DEF2: 4486 case ID_LED_ON1_ON2: 4487 case ID_LED_ON1_OFF2: 4488 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); 4489 hw->ledctl_mode1 |= ledctl_on << (i << 3); 4490 break; 4491 case ID_LED_OFF1_DEF2: 4492 case ID_LED_OFF1_ON2: 4493 case ID_LED_OFF1_OFF2: 4494 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); 4495 hw->ledctl_mode1 |= ledctl_off << (i << 3); 4496 break; 4497 default: 4498 /* Do nothing */ 4499 break; 4500 } 4501 switch (temp) { 4502 case ID_LED_DEF1_ON2: 4503 case ID_LED_ON1_ON2: 4504 case ID_LED_OFF1_ON2: 4505 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); 4506 hw->ledctl_mode2 |= ledctl_on << (i << 3); 4507 break; 4508 case ID_LED_DEF1_OFF2: 4509 case ID_LED_ON1_OFF2: 4510 case ID_LED_OFF1_OFF2: 4511 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); 4512 hw->ledctl_mode2 |= ledctl_off << (i << 3); 4513 break; 4514 default: 4515 /* Do nothing */ 4516 break; 4517 } 4518 } 4519 return E1000_SUCCESS; 4520 } 4521 4522 /** 4523 * e1000_setup_led 4524 * @hw: Struct containing variables accessed by shared code 4525 * 4526 * Prepares SW controlable LED for use and saves the current state of the LED. 4527 */ 4528 s32 e1000_setup_led(struct e1000_hw *hw) 4529 { 4530 u32 ledctl; 4531 s32 ret_val = E1000_SUCCESS; 4532 4533 switch (hw->mac_type) { 4534 case e1000_82542_rev2_0: 4535 case e1000_82542_rev2_1: 4536 case e1000_82543: 4537 case e1000_82544: 4538 /* No setup necessary */ 4539 break; 4540 case e1000_82541: 4541 case e1000_82547: 4542 case e1000_82541_rev_2: 4543 case e1000_82547_rev_2: 4544 /* Turn off PHY Smart Power Down (if enabled) */ 4545 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, 4546 &hw->phy_spd_default); 4547 if (ret_val) 4548 return ret_val; 4549 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, 4550 (u16)(hw->phy_spd_default & 4551 ~IGP01E1000_GMII_SPD)); 4552 if (ret_val) 4553 return ret_val; 4554 /* Fall Through */ 4555 default: 4556 if (hw->media_type == e1000_media_type_fiber) { 4557 ledctl = er32(LEDCTL); 4558 /* Save current LEDCTL settings */ 4559 hw->ledctl_default = ledctl; 4560 /* Turn off LED0 */ 4561 ledctl &= ~(E1000_LEDCTL_LED0_IVRT | 4562 E1000_LEDCTL_LED0_BLINK | 4563 E1000_LEDCTL_LED0_MODE_MASK); 4564 ledctl |= (E1000_LEDCTL_MODE_LED_OFF << 4565 E1000_LEDCTL_LED0_MODE_SHIFT); 4566 ew32(LEDCTL, ledctl); 4567 } else if (hw->media_type == e1000_media_type_copper) 4568 ew32(LEDCTL, hw->ledctl_mode1); 4569 break; 4570 } 4571 4572 return E1000_SUCCESS; 4573 } 4574 4575 /** 4576 * e1000_cleanup_led - Restores the saved state of the SW controlable LED. 4577 * @hw: Struct containing variables accessed by shared code 4578 */ 4579 s32 e1000_cleanup_led(struct e1000_hw *hw) 4580 { 4581 s32 ret_val = E1000_SUCCESS; 4582 4583 switch (hw->mac_type) { 4584 case e1000_82542_rev2_0: 4585 case e1000_82542_rev2_1: 4586 case e1000_82543: 4587 case e1000_82544: 4588 /* No cleanup necessary */ 4589 break; 4590 case e1000_82541: 4591 case e1000_82547: 4592 case e1000_82541_rev_2: 4593 case e1000_82547_rev_2: 4594 /* Turn on PHY Smart Power Down (if previously enabled) */ 4595 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, 4596 hw->phy_spd_default); 4597 if (ret_val) 4598 return ret_val; 4599 /* Fall Through */ 4600 default: 4601 /* Restore LEDCTL settings */ 4602 ew32(LEDCTL, hw->ledctl_default); 4603 break; 4604 } 4605 4606 return E1000_SUCCESS; 4607 } 4608 4609 /** 4610 * e1000_led_on - Turns on the software controllable LED 4611 * @hw: Struct containing variables accessed by shared code 4612 */ 4613 s32 e1000_led_on(struct e1000_hw *hw) 4614 { 4615 u32 ctrl = er32(CTRL); 4616 4617 switch (hw->mac_type) { 4618 case e1000_82542_rev2_0: 4619 case e1000_82542_rev2_1: 4620 case e1000_82543: 4621 /* Set SW Defineable Pin 0 to turn on the LED */ 4622 ctrl |= E1000_CTRL_SWDPIN0; 4623 ctrl |= E1000_CTRL_SWDPIO0; 4624 break; 4625 case e1000_82544: 4626 if (hw->media_type == e1000_media_type_fiber) { 4627 /* Set SW Defineable Pin 0 to turn on the LED */ 4628 ctrl |= E1000_CTRL_SWDPIN0; 4629 ctrl |= E1000_CTRL_SWDPIO0; 4630 } else { 4631 /* Clear SW Defineable Pin 0 to turn on the LED */ 4632 ctrl &= ~E1000_CTRL_SWDPIN0; 4633 ctrl |= E1000_CTRL_SWDPIO0; 4634 } 4635 break; 4636 default: 4637 if (hw->media_type == e1000_media_type_fiber) { 4638 /* Clear SW Defineable Pin 0 to turn on the LED */ 4639 ctrl &= ~E1000_CTRL_SWDPIN0; 4640 ctrl |= E1000_CTRL_SWDPIO0; 4641 } else if (hw->media_type == e1000_media_type_copper) { 4642 ew32(LEDCTL, hw->ledctl_mode2); 4643 return E1000_SUCCESS; 4644 } 4645 break; 4646 } 4647 4648 ew32(CTRL, ctrl); 4649 4650 return E1000_SUCCESS; 4651 } 4652 4653 /** 4654 * e1000_led_off - Turns off the software controllable LED 4655 * @hw: Struct containing variables accessed by shared code 4656 */ 4657 s32 e1000_led_off(struct e1000_hw *hw) 4658 { 4659 u32 ctrl = er32(CTRL); 4660 4661 switch (hw->mac_type) { 4662 case e1000_82542_rev2_0: 4663 case e1000_82542_rev2_1: 4664 case e1000_82543: 4665 /* Clear SW Defineable Pin 0 to turn off the LED */ 4666 ctrl &= ~E1000_CTRL_SWDPIN0; 4667 ctrl |= E1000_CTRL_SWDPIO0; 4668 break; 4669 case e1000_82544: 4670 if (hw->media_type == e1000_media_type_fiber) { 4671 /* Clear SW Defineable Pin 0 to turn off the LED */ 4672 ctrl &= ~E1000_CTRL_SWDPIN0; 4673 ctrl |= E1000_CTRL_SWDPIO0; 4674 } else { 4675 /* Set SW Defineable Pin 0 to turn off the LED */ 4676 ctrl |= E1000_CTRL_SWDPIN0; 4677 ctrl |= E1000_CTRL_SWDPIO0; 4678 } 4679 break; 4680 default: 4681 if (hw->media_type == e1000_media_type_fiber) { 4682 /* Set SW Defineable Pin 0 to turn off the LED */ 4683 ctrl |= E1000_CTRL_SWDPIN0; 4684 ctrl |= E1000_CTRL_SWDPIO0; 4685 } else if (hw->media_type == e1000_media_type_copper) { 4686 ew32(LEDCTL, hw->ledctl_mode1); 4687 return E1000_SUCCESS; 4688 } 4689 break; 4690 } 4691 4692 ew32(CTRL, ctrl); 4693 4694 return E1000_SUCCESS; 4695 } 4696 4697 /** 4698 * e1000_clear_hw_cntrs - Clears all hardware statistics counters. 4699 * @hw: Struct containing variables accessed by shared code 4700 */ 4701 static void e1000_clear_hw_cntrs(struct e1000_hw *hw) 4702 { 4703 volatile u32 temp; 4704 4705 temp = er32(CRCERRS); 4706 temp = er32(SYMERRS); 4707 temp = er32(MPC); 4708 temp = er32(SCC); 4709 temp = er32(ECOL); 4710 temp = er32(MCC); 4711 temp = er32(LATECOL); 4712 temp = er32(COLC); 4713 temp = er32(DC); 4714 temp = er32(SEC); 4715 temp = er32(RLEC); 4716 temp = er32(XONRXC); 4717 temp = er32(XONTXC); 4718 temp = er32(XOFFRXC); 4719 temp = er32(XOFFTXC); 4720 temp = er32(FCRUC); 4721 4722 temp = er32(PRC64); 4723 temp = er32(PRC127); 4724 temp = er32(PRC255); 4725 temp = er32(PRC511); 4726 temp = er32(PRC1023); 4727 temp = er32(PRC1522); 4728 4729 temp = er32(GPRC); 4730 temp = er32(BPRC); 4731 temp = er32(MPRC); 4732 temp = er32(GPTC); 4733 temp = er32(GORCL); 4734 temp = er32(GORCH); 4735 temp = er32(GOTCL); 4736 temp = er32(GOTCH); 4737 temp = er32(RNBC); 4738 temp = er32(RUC); 4739 temp = er32(RFC); 4740 temp = er32(ROC); 4741 temp = er32(RJC); 4742 temp = er32(TORL); 4743 temp = er32(TORH); 4744 temp = er32(TOTL); 4745 temp = er32(TOTH); 4746 temp = er32(TPR); 4747 temp = er32(TPT); 4748 4749 temp = er32(PTC64); 4750 temp = er32(PTC127); 4751 temp = er32(PTC255); 4752 temp = er32(PTC511); 4753 temp = er32(PTC1023); 4754 temp = er32(PTC1522); 4755 4756 temp = er32(MPTC); 4757 temp = er32(BPTC); 4758 4759 if (hw->mac_type < e1000_82543) 4760 return; 4761 4762 temp = er32(ALGNERRC); 4763 temp = er32(RXERRC); 4764 temp = er32(TNCRS); 4765 temp = er32(CEXTERR); 4766 temp = er32(TSCTC); 4767 temp = er32(TSCTFC); 4768 4769 if (hw->mac_type <= e1000_82544) 4770 return; 4771 4772 temp = er32(MGTPRC); 4773 temp = er32(MGTPDC); 4774 temp = er32(MGTPTC); 4775 } 4776 4777 /** 4778 * e1000_reset_adaptive - Resets Adaptive IFS to its default state. 4779 * @hw: Struct containing variables accessed by shared code 4780 * 4781 * Call this after e1000_init_hw. You may override the IFS defaults by setting 4782 * hw->ifs_params_forced to true. However, you must initialize hw-> 4783 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio 4784 * before calling this function. 4785 */ 4786 void e1000_reset_adaptive(struct e1000_hw *hw) 4787 { 4788 if (hw->adaptive_ifs) { 4789 if (!hw->ifs_params_forced) { 4790 hw->current_ifs_val = 0; 4791 hw->ifs_min_val = IFS_MIN; 4792 hw->ifs_max_val = IFS_MAX; 4793 hw->ifs_step_size = IFS_STEP; 4794 hw->ifs_ratio = IFS_RATIO; 4795 } 4796 hw->in_ifs_mode = false; 4797 ew32(AIT, 0); 4798 } else { 4799 e_dbg("Not in Adaptive IFS mode!\n"); 4800 } 4801 } 4802 4803 /** 4804 * e1000_update_adaptive - update adaptive IFS 4805 * @hw: Struct containing variables accessed by shared code 4806 * @tx_packets: Number of transmits since last callback 4807 * @total_collisions: Number of collisions since last callback 4808 * 4809 * Called during the callback/watchdog routine to update IFS value based on 4810 * the ratio of transmits to collisions. 4811 */ 4812 void e1000_update_adaptive(struct e1000_hw *hw) 4813 { 4814 if (hw->adaptive_ifs) { 4815 if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) { 4816 if (hw->tx_packet_delta > MIN_NUM_XMITS) { 4817 hw->in_ifs_mode = true; 4818 if (hw->current_ifs_val < hw->ifs_max_val) { 4819 if (hw->current_ifs_val == 0) 4820 hw->current_ifs_val = 4821 hw->ifs_min_val; 4822 else 4823 hw->current_ifs_val += 4824 hw->ifs_step_size; 4825 ew32(AIT, hw->current_ifs_val); 4826 } 4827 } 4828 } else { 4829 if (hw->in_ifs_mode && 4830 (hw->tx_packet_delta <= MIN_NUM_XMITS)) { 4831 hw->current_ifs_val = 0; 4832 hw->in_ifs_mode = false; 4833 ew32(AIT, 0); 4834 } 4835 } 4836 } else { 4837 e_dbg("Not in Adaptive IFS mode!\n"); 4838 } 4839 } 4840 4841 /** 4842 * e1000_get_bus_info 4843 * @hw: Struct containing variables accessed by shared code 4844 * 4845 * Gets the current PCI bus type, speed, and width of the hardware 4846 */ 4847 void e1000_get_bus_info(struct e1000_hw *hw) 4848 { 4849 u32 status; 4850 4851 switch (hw->mac_type) { 4852 case e1000_82542_rev2_0: 4853 case e1000_82542_rev2_1: 4854 hw->bus_type = e1000_bus_type_pci; 4855 hw->bus_speed = e1000_bus_speed_unknown; 4856 hw->bus_width = e1000_bus_width_unknown; 4857 break; 4858 default: 4859 status = er32(STATUS); 4860 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? 4861 e1000_bus_type_pcix : e1000_bus_type_pci; 4862 4863 if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { 4864 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? 4865 e1000_bus_speed_66 : e1000_bus_speed_120; 4866 } else if (hw->bus_type == e1000_bus_type_pci) { 4867 hw->bus_speed = (status & E1000_STATUS_PCI66) ? 4868 e1000_bus_speed_66 : e1000_bus_speed_33; 4869 } else { 4870 switch (status & E1000_STATUS_PCIX_SPEED) { 4871 case E1000_STATUS_PCIX_SPEED_66: 4872 hw->bus_speed = e1000_bus_speed_66; 4873 break; 4874 case E1000_STATUS_PCIX_SPEED_100: 4875 hw->bus_speed = e1000_bus_speed_100; 4876 break; 4877 case E1000_STATUS_PCIX_SPEED_133: 4878 hw->bus_speed = e1000_bus_speed_133; 4879 break; 4880 default: 4881 hw->bus_speed = e1000_bus_speed_reserved; 4882 break; 4883 } 4884 } 4885 hw->bus_width = (status & E1000_STATUS_BUS64) ? 4886 e1000_bus_width_64 : e1000_bus_width_32; 4887 break; 4888 } 4889 } 4890 4891 /** 4892 * e1000_write_reg_io 4893 * @hw: Struct containing variables accessed by shared code 4894 * @offset: offset to write to 4895 * @value: value to write 4896 * 4897 * Writes a value to one of the devices registers using port I/O (as opposed to 4898 * memory mapped I/O). Only 82544 and newer devices support port I/O. 4899 */ 4900 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value) 4901 { 4902 unsigned long io_addr = hw->io_base; 4903 unsigned long io_data = hw->io_base + 4; 4904 4905 e1000_io_write(hw, io_addr, offset); 4906 e1000_io_write(hw, io_data, value); 4907 } 4908 4909 /** 4910 * e1000_get_cable_length - Estimates the cable length. 4911 * @hw: Struct containing variables accessed by shared code 4912 * @min_length: The estimated minimum length 4913 * @max_length: The estimated maximum length 4914 * 4915 * returns: - E1000_ERR_XXX 4916 * E1000_SUCCESS 4917 * 4918 * This function always returns a ranged length (minimum & maximum). 4919 * So for M88 phy's, this function interprets the one value returned from the 4920 * register to the minimum and maximum range. 4921 * For IGP phy's, the function calculates the range by the AGC registers. 4922 */ 4923 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, 4924 u16 *max_length) 4925 { 4926 s32 ret_val; 4927 u16 agc_value = 0; 4928 u16 i, phy_data; 4929 u16 cable_length; 4930 4931 *min_length = *max_length = 0; 4932 4933 /* Use old method for Phy older than IGP */ 4934 if (hw->phy_type == e1000_phy_m88) { 4935 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, 4936 &phy_data); 4937 if (ret_val) 4938 return ret_val; 4939 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> 4940 M88E1000_PSSR_CABLE_LENGTH_SHIFT; 4941 4942 /* Convert the enum value to ranged values */ 4943 switch (cable_length) { 4944 case e1000_cable_length_50: 4945 *min_length = 0; 4946 *max_length = e1000_igp_cable_length_50; 4947 break; 4948 case e1000_cable_length_50_80: 4949 *min_length = e1000_igp_cable_length_50; 4950 *max_length = e1000_igp_cable_length_80; 4951 break; 4952 case e1000_cable_length_80_110: 4953 *min_length = e1000_igp_cable_length_80; 4954 *max_length = e1000_igp_cable_length_110; 4955 break; 4956 case e1000_cable_length_110_140: 4957 *min_length = e1000_igp_cable_length_110; 4958 *max_length = e1000_igp_cable_length_140; 4959 break; 4960 case e1000_cable_length_140: 4961 *min_length = e1000_igp_cable_length_140; 4962 *max_length = e1000_igp_cable_length_170; 4963 break; 4964 default: 4965 return -E1000_ERR_PHY; 4966 } 4967 } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ 4968 u16 cur_agc_value; 4969 u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; 4970 static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = { 4971 IGP01E1000_PHY_AGC_A, 4972 IGP01E1000_PHY_AGC_B, 4973 IGP01E1000_PHY_AGC_C, 4974 IGP01E1000_PHY_AGC_D 4975 }; 4976 /* Read the AGC registers for all channels */ 4977 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { 4978 ret_val = 4979 e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); 4980 if (ret_val) 4981 return ret_val; 4982 4983 cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; 4984 4985 /* Value bound check. */ 4986 if ((cur_agc_value >= 4987 IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || 4988 (cur_agc_value == 0)) 4989 return -E1000_ERR_PHY; 4990 4991 agc_value += cur_agc_value; 4992 4993 /* Update minimal AGC value. */ 4994 if (min_agc_value > cur_agc_value) 4995 min_agc_value = cur_agc_value; 4996 } 4997 4998 /* Remove the minimal AGC result for length < 50m */ 4999 if (agc_value < 5000 IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { 5001 agc_value -= min_agc_value; 5002 5003 /* Get the average length of the remaining 3 channels */ 5004 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); 5005 } else { 5006 /* Get the average length of all the 4 channels. */ 5007 agc_value /= IGP01E1000_PHY_CHANNEL_NUM; 5008 } 5009 5010 /* Set the range of the calculated length. */ 5011 *min_length = ((e1000_igp_cable_length_table[agc_value] - 5012 IGP01E1000_AGC_RANGE) > 0) ? 5013 (e1000_igp_cable_length_table[agc_value] - 5014 IGP01E1000_AGC_RANGE) : 0; 5015 *max_length = e1000_igp_cable_length_table[agc_value] + 5016 IGP01E1000_AGC_RANGE; 5017 } 5018 5019 return E1000_SUCCESS; 5020 } 5021 5022 /** 5023 * e1000_check_polarity - Check the cable polarity 5024 * @hw: Struct containing variables accessed by shared code 5025 * @polarity: output parameter : 0 - Polarity is not reversed 5026 * 1 - Polarity is reversed. 5027 * 5028 * returns: - E1000_ERR_XXX 5029 * E1000_SUCCESS 5030 * 5031 * For phy's older than IGP, this function simply reads the polarity bit in the 5032 * Phy Status register. For IGP phy's, this bit is valid only if link speed is 5033 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will 5034 * return 0. If the link speed is 1000 Mbps the polarity status is in the 5035 * IGP01E1000_PHY_PCS_INIT_REG. 5036 */ 5037 static s32 e1000_check_polarity(struct e1000_hw *hw, 5038 e1000_rev_polarity *polarity) 5039 { 5040 s32 ret_val; 5041 u16 phy_data; 5042 5043 if (hw->phy_type == e1000_phy_m88) { 5044 /* return the Polarity bit in the Status register. */ 5045 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, 5046 &phy_data); 5047 if (ret_val) 5048 return ret_val; 5049 *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >> 5050 M88E1000_PSSR_REV_POLARITY_SHIFT) ? 5051 e1000_rev_polarity_reversed : e1000_rev_polarity_normal; 5052 5053 } else if (hw->phy_type == e1000_phy_igp) { 5054 /* Read the Status register to check the speed */ 5055 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, 5056 &phy_data); 5057 if (ret_val) 5058 return ret_val; 5059 5060 /* If speed is 1000 Mbps, must read the 5061 * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status 5062 */ 5063 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == 5064 IGP01E1000_PSSR_SPEED_1000MBPS) { 5065 /* Read the GIG initialization PCS register (0x00B4) */ 5066 ret_val = 5067 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, 5068 &phy_data); 5069 if (ret_val) 5070 return ret_val; 5071 5072 /* Check the polarity bits */ 5073 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 5074 e1000_rev_polarity_reversed : 5075 e1000_rev_polarity_normal; 5076 } else { 5077 /* For 10 Mbps, read the polarity bit in the status 5078 * register. (for 100 Mbps this bit is always 0) 5079 */ 5080 *polarity = 5081 (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? 5082 e1000_rev_polarity_reversed : 5083 e1000_rev_polarity_normal; 5084 } 5085 } 5086 return E1000_SUCCESS; 5087 } 5088 5089 /** 5090 * e1000_check_downshift - Check if Downshift occurred 5091 * @hw: Struct containing variables accessed by shared code 5092 * @downshift: output parameter : 0 - No Downshift occurred. 5093 * 1 - Downshift occurred. 5094 * 5095 * returns: - E1000_ERR_XXX 5096 * E1000_SUCCESS 5097 * 5098 * For phy's older than IGP, this function reads the Downshift bit in the Phy 5099 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the 5100 * Link Health register. In IGP this bit is latched high, so the driver must 5101 * read it immediately after link is established. 5102 */ 5103 static s32 e1000_check_downshift(struct e1000_hw *hw) 5104 { 5105 s32 ret_val; 5106 u16 phy_data; 5107 5108 if (hw->phy_type == e1000_phy_igp) { 5109 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, 5110 &phy_data); 5111 if (ret_val) 5112 return ret_val; 5113 5114 hw->speed_downgraded = 5115 (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; 5116 } else if (hw->phy_type == e1000_phy_m88) { 5117 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, 5118 &phy_data); 5119 if (ret_val) 5120 return ret_val; 5121 5122 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> 5123 M88E1000_PSSR_DOWNSHIFT_SHIFT; 5124 } 5125 5126 return E1000_SUCCESS; 5127 } 5128 5129 static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = { 5130 IGP01E1000_PHY_AGC_PARAM_A, 5131 IGP01E1000_PHY_AGC_PARAM_B, 5132 IGP01E1000_PHY_AGC_PARAM_C, 5133 IGP01E1000_PHY_AGC_PARAM_D 5134 }; 5135 5136 static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw) 5137 { 5138 u16 min_length, max_length; 5139 u16 phy_data, i; 5140 s32 ret_val; 5141 5142 ret_val = e1000_get_cable_length(hw, &min_length, &max_length); 5143 if (ret_val) 5144 return ret_val; 5145 5146 if (hw->dsp_config_state != e1000_dsp_config_enabled) 5147 return 0; 5148 5149 if (min_length >= e1000_igp_cable_length_50) { 5150 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { 5151 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], 5152 &phy_data); 5153 if (ret_val) 5154 return ret_val; 5155 5156 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; 5157 5158 ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i], 5159 phy_data); 5160 if (ret_val) 5161 return ret_val; 5162 } 5163 hw->dsp_config_state = e1000_dsp_config_activated; 5164 } else { 5165 u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; 5166 u32 idle_errs = 0; 5167 5168 /* clear previous idle error counts */ 5169 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); 5170 if (ret_val) 5171 return ret_val; 5172 5173 for (i = 0; i < ffe_idle_err_timeout; i++) { 5174 udelay(1000); 5175 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, 5176 &phy_data); 5177 if (ret_val) 5178 return ret_val; 5179 5180 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); 5181 if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { 5182 hw->ffe_config_state = e1000_ffe_config_active; 5183 5184 ret_val = e1000_write_phy_reg(hw, 5185 IGP01E1000_PHY_DSP_FFE, 5186 IGP01E1000_PHY_DSP_FFE_CM_CP); 5187 if (ret_val) 5188 return ret_val; 5189 break; 5190 } 5191 5192 if (idle_errs) 5193 ffe_idle_err_timeout = 5194 FFE_IDLE_ERR_COUNT_TIMEOUT_100; 5195 } 5196 } 5197 5198 return 0; 5199 } 5200 5201 /** 5202 * e1000_config_dsp_after_link_change 5203 * @hw: Struct containing variables accessed by shared code 5204 * @link_up: was link up at the time this was called 5205 * 5206 * returns: - E1000_ERR_PHY if fail to read/write the PHY 5207 * E1000_SUCCESS at any other case. 5208 * 5209 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a 5210 * gigabit link is achieved to improve link quality. 5211 */ 5212 5213 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up) 5214 { 5215 s32 ret_val; 5216 u16 phy_data, phy_saved_data, speed, duplex, i; 5217 5218 if (hw->phy_type != e1000_phy_igp) 5219 return E1000_SUCCESS; 5220 5221 if (link_up) { 5222 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); 5223 if (ret_val) { 5224 e_dbg("Error getting link speed and duplex\n"); 5225 return ret_val; 5226 } 5227 5228 if (speed == SPEED_1000) { 5229 ret_val = e1000_1000Mb_check_cable_length(hw); 5230 if (ret_val) 5231 return ret_val; 5232 } 5233 } else { 5234 if (hw->dsp_config_state == e1000_dsp_config_activated) { 5235 /* Save off the current value of register 0x2F5B to be 5236 * restored at the end of the routines. 5237 */ 5238 ret_val = 5239 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); 5240 5241 if (ret_val) 5242 return ret_val; 5243 5244 /* Disable the PHY transmitter */ 5245 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); 5246 5247 if (ret_val) 5248 return ret_val; 5249 5250 msleep(20); 5251 5252 ret_val = e1000_write_phy_reg(hw, 0x0000, 5253 IGP01E1000_IEEE_FORCE_GIGA); 5254 if (ret_val) 5255 return ret_val; 5256 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { 5257 ret_val = 5258 e1000_read_phy_reg(hw, dsp_reg_array[i], 5259 &phy_data); 5260 if (ret_val) 5261 return ret_val; 5262 5263 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; 5264 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; 5265 5266 ret_val = 5267 e1000_write_phy_reg(hw, dsp_reg_array[i], 5268 phy_data); 5269 if (ret_val) 5270 return ret_val; 5271 } 5272 5273 ret_val = e1000_write_phy_reg(hw, 0x0000, 5274 IGP01E1000_IEEE_RESTART_AUTONEG); 5275 if (ret_val) 5276 return ret_val; 5277 5278 msleep(20); 5279 5280 /* Now enable the transmitter */ 5281 ret_val = 5282 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); 5283 5284 if (ret_val) 5285 return ret_val; 5286 5287 hw->dsp_config_state = e1000_dsp_config_enabled; 5288 } 5289 5290 if (hw->ffe_config_state == e1000_ffe_config_active) { 5291 /* Save off the current value of register 0x2F5B to be 5292 * restored at the end of the routines. 5293 */ 5294 ret_val = 5295 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); 5296 5297 if (ret_val) 5298 return ret_val; 5299 5300 /* Disable the PHY transmitter */ 5301 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); 5302 5303 if (ret_val) 5304 return ret_val; 5305 5306 msleep(20); 5307 5308 ret_val = e1000_write_phy_reg(hw, 0x0000, 5309 IGP01E1000_IEEE_FORCE_GIGA); 5310 if (ret_val) 5311 return ret_val; 5312 ret_val = 5313 e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, 5314 IGP01E1000_PHY_DSP_FFE_DEFAULT); 5315 if (ret_val) 5316 return ret_val; 5317 5318 ret_val = e1000_write_phy_reg(hw, 0x0000, 5319 IGP01E1000_IEEE_RESTART_AUTONEG); 5320 if (ret_val) 5321 return ret_val; 5322 5323 msleep(20); 5324 5325 /* Now enable the transmitter */ 5326 ret_val = 5327 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); 5328 5329 if (ret_val) 5330 return ret_val; 5331 5332 hw->ffe_config_state = e1000_ffe_config_enabled; 5333 } 5334 } 5335 return E1000_SUCCESS; 5336 } 5337 5338 /** 5339 * e1000_set_phy_mode - Set PHY to class A mode 5340 * @hw: Struct containing variables accessed by shared code 5341 * 5342 * Assumes the following operations will follow to enable the new class mode. 5343 * 1. Do a PHY soft reset 5344 * 2. Restart auto-negotiation or force link. 5345 */ 5346 static s32 e1000_set_phy_mode(struct e1000_hw *hw) 5347 { 5348 s32 ret_val; 5349 u16 eeprom_data; 5350 5351 if ((hw->mac_type == e1000_82545_rev_3) && 5352 (hw->media_type == e1000_media_type_copper)) { 5353 ret_val = 5354 e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, 5355 &eeprom_data); 5356 if (ret_val) 5357 return ret_val; 5358 5359 if ((eeprom_data != EEPROM_RESERVED_WORD) && 5360 (eeprom_data & EEPROM_PHY_CLASS_A)) { 5361 ret_val = 5362 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 5363 0x000B); 5364 if (ret_val) 5365 return ret_val; 5366 ret_val = 5367 e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 5368 0x8104); 5369 if (ret_val) 5370 return ret_val; 5371 5372 hw->phy_reset_disable = false; 5373 } 5374 } 5375 5376 return E1000_SUCCESS; 5377 } 5378 5379 /** 5380 * e1000_set_d3_lplu_state - set d3 link power state 5381 * @hw: Struct containing variables accessed by shared code 5382 * @active: true to enable lplu false to disable lplu. 5383 * 5384 * This function sets the lplu state according to the active flag. When 5385 * activating lplu this function also disables smart speed and vise versa. 5386 * lplu will not be activated unless the device autonegotiation advertisement 5387 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. 5388 * 5389 * returns: - E1000_ERR_PHY if fail to read/write the PHY 5390 * E1000_SUCCESS at any other case. 5391 */ 5392 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 5393 { 5394 s32 ret_val; 5395 u16 phy_data; 5396 5397 if (hw->phy_type != e1000_phy_igp) 5398 return E1000_SUCCESS; 5399 5400 /* During driver activity LPLU should not be used or it will attain link 5401 * from the lowest speeds starting from 10Mbps. The capability is used 5402 * for Dx transitions and states 5403 */ 5404 if (hw->mac_type == e1000_82541_rev_2 || 5405 hw->mac_type == e1000_82547_rev_2) { 5406 ret_val = 5407 e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); 5408 if (ret_val) 5409 return ret_val; 5410 } 5411 5412 if (!active) { 5413 if (hw->mac_type == e1000_82541_rev_2 || 5414 hw->mac_type == e1000_82547_rev_2) { 5415 phy_data &= ~IGP01E1000_GMII_FLEX_SPD; 5416 ret_val = 5417 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, 5418 phy_data); 5419 if (ret_val) 5420 return ret_val; 5421 } 5422 5423 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 5424 * during Dx states where the power conservation is most 5425 * important. During driver activity we should enable 5426 * SmartSpeed, so performance is maintained. 5427 */ 5428 if (hw->smart_speed == e1000_smart_speed_on) { 5429 ret_val = 5430 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 5431 &phy_data); 5432 if (ret_val) 5433 return ret_val; 5434 5435 phy_data |= IGP01E1000_PSCFR_SMART_SPEED; 5436 ret_val = 5437 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 5438 phy_data); 5439 if (ret_val) 5440 return ret_val; 5441 } else if (hw->smart_speed == e1000_smart_speed_off) { 5442 ret_val = 5443 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 5444 &phy_data); 5445 if (ret_val) 5446 return ret_val; 5447 5448 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; 5449 ret_val = 5450 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 5451 phy_data); 5452 if (ret_val) 5453 return ret_val; 5454 } 5455 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || 5456 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) || 5457 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { 5458 if (hw->mac_type == e1000_82541_rev_2 || 5459 hw->mac_type == e1000_82547_rev_2) { 5460 phy_data |= IGP01E1000_GMII_FLEX_SPD; 5461 ret_val = 5462 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, 5463 phy_data); 5464 if (ret_val) 5465 return ret_val; 5466 } 5467 5468 /* When LPLU is enabled we should disable SmartSpeed */ 5469 ret_val = 5470 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 5471 &phy_data); 5472 if (ret_val) 5473 return ret_val; 5474 5475 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; 5476 ret_val = 5477 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 5478 phy_data); 5479 if (ret_val) 5480 return ret_val; 5481 } 5482 return E1000_SUCCESS; 5483 } 5484 5485 /** 5486 * e1000_set_vco_speed 5487 * @hw: Struct containing variables accessed by shared code 5488 * 5489 * Change VCO speed register to improve Bit Error Rate performance of SERDES. 5490 */ 5491 static s32 e1000_set_vco_speed(struct e1000_hw *hw) 5492 { 5493 s32 ret_val; 5494 u16 default_page = 0; 5495 u16 phy_data; 5496 5497 switch (hw->mac_type) { 5498 case e1000_82545_rev_3: 5499 case e1000_82546_rev_3: 5500 break; 5501 default: 5502 return E1000_SUCCESS; 5503 } 5504 5505 /* Set PHY register 30, page 5, bit 8 to 0 */ 5506 5507 ret_val = 5508 e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); 5509 if (ret_val) 5510 return ret_val; 5511 5512 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); 5513 if (ret_val) 5514 return ret_val; 5515 5516 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); 5517 if (ret_val) 5518 return ret_val; 5519 5520 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; 5521 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); 5522 if (ret_val) 5523 return ret_val; 5524 5525 /* Set PHY register 30, page 4, bit 11 to 1 */ 5526 5527 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); 5528 if (ret_val) 5529 return ret_val; 5530 5531 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); 5532 if (ret_val) 5533 return ret_val; 5534 5535 phy_data |= M88E1000_PHY_VCO_REG_BIT11; 5536 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); 5537 if (ret_val) 5538 return ret_val; 5539 5540 ret_val = 5541 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); 5542 if (ret_val) 5543 return ret_val; 5544 5545 return E1000_SUCCESS; 5546 } 5547 5548 /** 5549 * e1000_enable_mng_pass_thru - check for bmc pass through 5550 * @hw: Struct containing variables accessed by shared code 5551 * 5552 * Verifies the hardware needs to allow ARPs to be processed by the host 5553 * returns: - true/false 5554 */ 5555 u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw) 5556 { 5557 u32 manc; 5558 5559 if (hw->asf_firmware_present) { 5560 manc = er32(MANC); 5561 5562 if (!(manc & E1000_MANC_RCV_TCO_EN) || 5563 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) 5564 return false; 5565 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) 5566 return true; 5567 } 5568 return false; 5569 } 5570 5571 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw) 5572 { 5573 s32 ret_val; 5574 u16 mii_status_reg; 5575 u16 i; 5576 5577 /* Polarity reversal workaround for forced 10F/10H links. */ 5578 5579 /* Disable the transmitter on the PHY */ 5580 5581 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); 5582 if (ret_val) 5583 return ret_val; 5584 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); 5585 if (ret_val) 5586 return ret_val; 5587 5588 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); 5589 if (ret_val) 5590 return ret_val; 5591 5592 /* This loop will early-out if the NO link condition has been met. */ 5593 for (i = PHY_FORCE_TIME; i > 0; i--) { 5594 /* Read the MII Status Register and wait for Link Status bit 5595 * to be clear. 5596 */ 5597 5598 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); 5599 if (ret_val) 5600 return ret_val; 5601 5602 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); 5603 if (ret_val) 5604 return ret_val; 5605 5606 if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) 5607 break; 5608 msleep(100); 5609 } 5610 5611 /* Recommended delay time after link has been lost */ 5612 msleep(1000); 5613 5614 /* Now we will re-enable th transmitter on the PHY */ 5615 5616 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); 5617 if (ret_val) 5618 return ret_val; 5619 msleep(50); 5620 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); 5621 if (ret_val) 5622 return ret_val; 5623 msleep(50); 5624 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); 5625 if (ret_val) 5626 return ret_val; 5627 msleep(50); 5628 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); 5629 if (ret_val) 5630 return ret_val; 5631 5632 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); 5633 if (ret_val) 5634 return ret_val; 5635 5636 /* This loop will early-out if the link condition has been met. */ 5637 for (i = PHY_FORCE_TIME; i > 0; i--) { 5638 /* Read the MII Status Register and wait for Link Status bit 5639 * to be set. 5640 */ 5641 5642 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); 5643 if (ret_val) 5644 return ret_val; 5645 5646 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); 5647 if (ret_val) 5648 return ret_val; 5649 5650 if (mii_status_reg & MII_SR_LINK_STATUS) 5651 break; 5652 msleep(100); 5653 } 5654 return E1000_SUCCESS; 5655 } 5656 5657 /** 5658 * e1000_get_auto_rd_done 5659 * @hw: Struct containing variables accessed by shared code 5660 * 5661 * Check for EEPROM Auto Read bit done. 5662 * returns: - E1000_ERR_RESET if fail to reset MAC 5663 * E1000_SUCCESS at any other case. 5664 */ 5665 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw) 5666 { 5667 msleep(5); 5668 return E1000_SUCCESS; 5669 } 5670 5671 /** 5672 * e1000_get_phy_cfg_done 5673 * @hw: Struct containing variables accessed by shared code 5674 * 5675 * Checks if the PHY configuration is done 5676 * returns: - E1000_ERR_RESET if fail to reset MAC 5677 * E1000_SUCCESS at any other case. 5678 */ 5679 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) 5680 { 5681 msleep(10); 5682 return E1000_SUCCESS; 5683 } 5684