xref: /openbmc/linux/drivers/net/ethernet/intel/e1000/e1000_hw.c (revision 7a846d3c43b0b6d04300be9ba666b102b57a391a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3 
4 /* e1000_hw.c
5  * Shared functions for accessing and configuring the MAC
6  */
7 
8 #include "e1000.h"
9 
10 static s32 e1000_check_downshift(struct e1000_hw *hw);
11 static s32 e1000_check_polarity(struct e1000_hw *hw,
12 				e1000_rev_polarity *polarity);
13 static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
14 static void e1000_clear_vfta(struct e1000_hw *hw);
15 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
16 					      bool link_up);
17 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
18 static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
19 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
20 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
21 				  u16 *max_length);
22 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
23 static s32 e1000_id_led_init(struct e1000_hw *hw);
24 static void e1000_init_rx_addrs(struct e1000_hw *hw);
25 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
26 				  struct e1000_phy_info *phy_info);
27 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
28 				  struct e1000_phy_info *phy_info);
29 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
30 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
31 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
32 static s32 e1000_set_phy_type(struct e1000_hw *hw);
33 static void e1000_phy_init_script(struct e1000_hw *hw);
34 static s32 e1000_setup_copper_link(struct e1000_hw *hw);
35 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
36 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
37 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
38 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
39 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
40 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
41 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
42 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
43 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
44 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
45 				  u16 words, u16 *data);
46 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
47 					u16 words, u16 *data);
48 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
49 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
50 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
51 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
52 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
53 				  u16 phy_data);
54 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
55 				 u16 *phy_data);
56 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
57 static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
58 static void e1000_release_eeprom(struct e1000_hw *hw);
59 static void e1000_standby_eeprom(struct e1000_hw *hw);
60 static s32 e1000_set_vco_speed(struct e1000_hw *hw);
61 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
62 static s32 e1000_set_phy_mode(struct e1000_hw *hw);
63 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
64 				u16 *data);
65 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
66 				 u16 *data);
67 
68 /* IGP cable length table */
69 static const
70 u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
71 	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
72 	5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
73 	25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
74 	40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
75 	60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
76 	90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
77 	    100,
78 	100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
79 	    110, 110,
80 	110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
81 	    120, 120
82 };
83 
84 static DEFINE_MUTEX(e1000_eeprom_lock);
85 static DEFINE_SPINLOCK(e1000_phy_lock);
86 
87 /**
88  * e1000_set_phy_type - Set the phy type member in the hw struct.
89  * @hw: Struct containing variables accessed by shared code
90  */
91 static s32 e1000_set_phy_type(struct e1000_hw *hw)
92 {
93 	if (hw->mac_type == e1000_undefined)
94 		return -E1000_ERR_PHY_TYPE;
95 
96 	switch (hw->phy_id) {
97 	case M88E1000_E_PHY_ID:
98 	case M88E1000_I_PHY_ID:
99 	case M88E1011_I_PHY_ID:
100 	case M88E1111_I_PHY_ID:
101 	case M88E1118_E_PHY_ID:
102 		hw->phy_type = e1000_phy_m88;
103 		break;
104 	case IGP01E1000_I_PHY_ID:
105 		if (hw->mac_type == e1000_82541 ||
106 		    hw->mac_type == e1000_82541_rev_2 ||
107 		    hw->mac_type == e1000_82547 ||
108 		    hw->mac_type == e1000_82547_rev_2)
109 			hw->phy_type = e1000_phy_igp;
110 		break;
111 	case RTL8211B_PHY_ID:
112 		hw->phy_type = e1000_phy_8211;
113 		break;
114 	case RTL8201N_PHY_ID:
115 		hw->phy_type = e1000_phy_8201;
116 		break;
117 	default:
118 		/* Should never have loaded on this device */
119 		hw->phy_type = e1000_phy_undefined;
120 		return -E1000_ERR_PHY_TYPE;
121 	}
122 
123 	return E1000_SUCCESS;
124 }
125 
126 /**
127  * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
128  * @hw: Struct containing variables accessed by shared code
129  */
130 static void e1000_phy_init_script(struct e1000_hw *hw)
131 {
132 	u32 ret_val;
133 	u16 phy_saved_data;
134 
135 	if (hw->phy_init_script) {
136 		msleep(20);
137 
138 		/* Save off the current value of register 0x2F5B to be restored
139 		 * at the end of this routine.
140 		 */
141 		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
142 
143 		/* Disabled the PHY transmitter */
144 		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
145 		msleep(20);
146 
147 		e1000_write_phy_reg(hw, 0x0000, 0x0140);
148 		msleep(5);
149 
150 		switch (hw->mac_type) {
151 		case e1000_82541:
152 		case e1000_82547:
153 			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
154 			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
155 			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
156 			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
157 			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
158 			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
159 			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
160 			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
161 			e1000_write_phy_reg(hw, 0x2010, 0x0008);
162 			break;
163 
164 		case e1000_82541_rev_2:
165 		case e1000_82547_rev_2:
166 			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
167 			break;
168 		default:
169 			break;
170 		}
171 
172 		e1000_write_phy_reg(hw, 0x0000, 0x3300);
173 		msleep(20);
174 
175 		/* Now enable the transmitter */
176 		e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
177 
178 		if (hw->mac_type == e1000_82547) {
179 			u16 fused, fine, coarse;
180 
181 			/* Move to analog registers page */
182 			e1000_read_phy_reg(hw,
183 					   IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
184 					   &fused);
185 
186 			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
187 				e1000_read_phy_reg(hw,
188 						   IGP01E1000_ANALOG_FUSE_STATUS,
189 						   &fused);
190 
191 				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
192 				coarse =
193 				    fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
194 
195 				if (coarse >
196 				    IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
197 					coarse -=
198 					    IGP01E1000_ANALOG_FUSE_COARSE_10;
199 					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
200 				} else if (coarse ==
201 					   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
202 					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
203 
204 				fused =
205 				    (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
206 				    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
207 				    (coarse &
208 				     IGP01E1000_ANALOG_FUSE_COARSE_MASK);
209 
210 				e1000_write_phy_reg(hw,
211 						    IGP01E1000_ANALOG_FUSE_CONTROL,
212 						    fused);
213 				e1000_write_phy_reg(hw,
214 						    IGP01E1000_ANALOG_FUSE_BYPASS,
215 						    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
216 			}
217 		}
218 	}
219 }
220 
221 /**
222  * e1000_set_mac_type - Set the mac type member in the hw struct.
223  * @hw: Struct containing variables accessed by shared code
224  */
225 s32 e1000_set_mac_type(struct e1000_hw *hw)
226 {
227 	switch (hw->device_id) {
228 	case E1000_DEV_ID_82542:
229 		switch (hw->revision_id) {
230 		case E1000_82542_2_0_REV_ID:
231 			hw->mac_type = e1000_82542_rev2_0;
232 			break;
233 		case E1000_82542_2_1_REV_ID:
234 			hw->mac_type = e1000_82542_rev2_1;
235 			break;
236 		default:
237 			/* Invalid 82542 revision ID */
238 			return -E1000_ERR_MAC_TYPE;
239 		}
240 		break;
241 	case E1000_DEV_ID_82543GC_FIBER:
242 	case E1000_DEV_ID_82543GC_COPPER:
243 		hw->mac_type = e1000_82543;
244 		break;
245 	case E1000_DEV_ID_82544EI_COPPER:
246 	case E1000_DEV_ID_82544EI_FIBER:
247 	case E1000_DEV_ID_82544GC_COPPER:
248 	case E1000_DEV_ID_82544GC_LOM:
249 		hw->mac_type = e1000_82544;
250 		break;
251 	case E1000_DEV_ID_82540EM:
252 	case E1000_DEV_ID_82540EM_LOM:
253 	case E1000_DEV_ID_82540EP:
254 	case E1000_DEV_ID_82540EP_LOM:
255 	case E1000_DEV_ID_82540EP_LP:
256 		hw->mac_type = e1000_82540;
257 		break;
258 	case E1000_DEV_ID_82545EM_COPPER:
259 	case E1000_DEV_ID_82545EM_FIBER:
260 		hw->mac_type = e1000_82545;
261 		break;
262 	case E1000_DEV_ID_82545GM_COPPER:
263 	case E1000_DEV_ID_82545GM_FIBER:
264 	case E1000_DEV_ID_82545GM_SERDES:
265 		hw->mac_type = e1000_82545_rev_3;
266 		break;
267 	case E1000_DEV_ID_82546EB_COPPER:
268 	case E1000_DEV_ID_82546EB_FIBER:
269 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
270 		hw->mac_type = e1000_82546;
271 		break;
272 	case E1000_DEV_ID_82546GB_COPPER:
273 	case E1000_DEV_ID_82546GB_FIBER:
274 	case E1000_DEV_ID_82546GB_SERDES:
275 	case E1000_DEV_ID_82546GB_PCIE:
276 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
277 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
278 		hw->mac_type = e1000_82546_rev_3;
279 		break;
280 	case E1000_DEV_ID_82541EI:
281 	case E1000_DEV_ID_82541EI_MOBILE:
282 	case E1000_DEV_ID_82541ER_LOM:
283 		hw->mac_type = e1000_82541;
284 		break;
285 	case E1000_DEV_ID_82541ER:
286 	case E1000_DEV_ID_82541GI:
287 	case E1000_DEV_ID_82541GI_LF:
288 	case E1000_DEV_ID_82541GI_MOBILE:
289 		hw->mac_type = e1000_82541_rev_2;
290 		break;
291 	case E1000_DEV_ID_82547EI:
292 	case E1000_DEV_ID_82547EI_MOBILE:
293 		hw->mac_type = e1000_82547;
294 		break;
295 	case E1000_DEV_ID_82547GI:
296 		hw->mac_type = e1000_82547_rev_2;
297 		break;
298 	case E1000_DEV_ID_INTEL_CE4100_GBE:
299 		hw->mac_type = e1000_ce4100;
300 		break;
301 	default:
302 		/* Should never have loaded on this device */
303 		return -E1000_ERR_MAC_TYPE;
304 	}
305 
306 	switch (hw->mac_type) {
307 	case e1000_82541:
308 	case e1000_82547:
309 	case e1000_82541_rev_2:
310 	case e1000_82547_rev_2:
311 		hw->asf_firmware_present = true;
312 		break;
313 	default:
314 		break;
315 	}
316 
317 	/* The 82543 chip does not count tx_carrier_errors properly in
318 	 * FD mode
319 	 */
320 	if (hw->mac_type == e1000_82543)
321 		hw->bad_tx_carr_stats_fd = true;
322 
323 	if (hw->mac_type > e1000_82544)
324 		hw->has_smbus = true;
325 
326 	return E1000_SUCCESS;
327 }
328 
329 /**
330  * e1000_set_media_type - Set media type and TBI compatibility.
331  * @hw: Struct containing variables accessed by shared code
332  */
333 void e1000_set_media_type(struct e1000_hw *hw)
334 {
335 	u32 status;
336 
337 	if (hw->mac_type != e1000_82543) {
338 		/* tbi_compatibility is only valid on 82543 */
339 		hw->tbi_compatibility_en = false;
340 	}
341 
342 	switch (hw->device_id) {
343 	case E1000_DEV_ID_82545GM_SERDES:
344 	case E1000_DEV_ID_82546GB_SERDES:
345 		hw->media_type = e1000_media_type_internal_serdes;
346 		break;
347 	default:
348 		switch (hw->mac_type) {
349 		case e1000_82542_rev2_0:
350 		case e1000_82542_rev2_1:
351 			hw->media_type = e1000_media_type_fiber;
352 			break;
353 		case e1000_ce4100:
354 			hw->media_type = e1000_media_type_copper;
355 			break;
356 		default:
357 			status = er32(STATUS);
358 			if (status & E1000_STATUS_TBIMODE) {
359 				hw->media_type = e1000_media_type_fiber;
360 				/* tbi_compatibility not valid on fiber */
361 				hw->tbi_compatibility_en = false;
362 			} else {
363 				hw->media_type = e1000_media_type_copper;
364 			}
365 			break;
366 		}
367 	}
368 }
369 
370 /**
371  * e1000_reset_hw - reset the hardware completely
372  * @hw: Struct containing variables accessed by shared code
373  *
374  * Reset the transmit and receive units; mask and clear all interrupts.
375  */
376 s32 e1000_reset_hw(struct e1000_hw *hw)
377 {
378 	u32 ctrl;
379 	u32 ctrl_ext;
380 	u32 icr;
381 	u32 manc;
382 	u32 led_ctrl;
383 	s32 ret_val;
384 
385 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
386 	if (hw->mac_type == e1000_82542_rev2_0) {
387 		e_dbg("Disabling MWI on 82542 rev 2.0\n");
388 		e1000_pci_clear_mwi(hw);
389 	}
390 
391 	/* Clear interrupt mask to stop board from generating interrupts */
392 	e_dbg("Masking off all interrupts\n");
393 	ew32(IMC, 0xffffffff);
394 
395 	/* Disable the Transmit and Receive units.  Then delay to allow
396 	 * any pending transactions to complete before we hit the MAC with
397 	 * the global reset.
398 	 */
399 	ew32(RCTL, 0);
400 	ew32(TCTL, E1000_TCTL_PSP);
401 	E1000_WRITE_FLUSH();
402 
403 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
404 	hw->tbi_compatibility_on = false;
405 
406 	/* Delay to allow any outstanding PCI transactions to complete before
407 	 * resetting the device
408 	 */
409 	msleep(10);
410 
411 	ctrl = er32(CTRL);
412 
413 	/* Must reset the PHY before resetting the MAC */
414 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
415 		ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
416 		E1000_WRITE_FLUSH();
417 		msleep(5);
418 	}
419 
420 	/* Issue a global reset to the MAC.  This will reset the chip's
421 	 * transmit, receive, DMA, and link units.  It will not effect
422 	 * the current PCI configuration.  The global reset bit is self-
423 	 * clearing, and should clear within a microsecond.
424 	 */
425 	e_dbg("Issuing a global reset to MAC\n");
426 
427 	switch (hw->mac_type) {
428 	case e1000_82544:
429 	case e1000_82540:
430 	case e1000_82545:
431 	case e1000_82546:
432 	case e1000_82541:
433 	case e1000_82541_rev_2:
434 		/* These controllers can't ack the 64-bit write when issuing the
435 		 * reset, so use IO-mapping as a workaround to issue the reset
436 		 */
437 		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
438 		break;
439 	case e1000_82545_rev_3:
440 	case e1000_82546_rev_3:
441 		/* Reset is performed on a shadow of the control register */
442 		ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
443 		break;
444 	case e1000_ce4100:
445 	default:
446 		ew32(CTRL, (ctrl | E1000_CTRL_RST));
447 		break;
448 	}
449 
450 	/* After MAC reset, force reload of EEPROM to restore power-on settings
451 	 * to device.  Later controllers reload the EEPROM automatically, so
452 	 * just wait for reload to complete.
453 	 */
454 	switch (hw->mac_type) {
455 	case e1000_82542_rev2_0:
456 	case e1000_82542_rev2_1:
457 	case e1000_82543:
458 	case e1000_82544:
459 		/* Wait for reset to complete */
460 		udelay(10);
461 		ctrl_ext = er32(CTRL_EXT);
462 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
463 		ew32(CTRL_EXT, ctrl_ext);
464 		E1000_WRITE_FLUSH();
465 		/* Wait for EEPROM reload */
466 		msleep(2);
467 		break;
468 	case e1000_82541:
469 	case e1000_82541_rev_2:
470 	case e1000_82547:
471 	case e1000_82547_rev_2:
472 		/* Wait for EEPROM reload */
473 		msleep(20);
474 		break;
475 	default:
476 		/* Auto read done will delay 5ms or poll based on mac type */
477 		ret_val = e1000_get_auto_rd_done(hw);
478 		if (ret_val)
479 			return ret_val;
480 		break;
481 	}
482 
483 	/* Disable HW ARPs on ASF enabled adapters */
484 	if (hw->mac_type >= e1000_82540) {
485 		manc = er32(MANC);
486 		manc &= ~(E1000_MANC_ARP_EN);
487 		ew32(MANC, manc);
488 	}
489 
490 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
491 		e1000_phy_init_script(hw);
492 
493 		/* Configure activity LED after PHY reset */
494 		led_ctrl = er32(LEDCTL);
495 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
496 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
497 		ew32(LEDCTL, led_ctrl);
498 	}
499 
500 	/* Clear interrupt mask to stop board from generating interrupts */
501 	e_dbg("Masking off all interrupts\n");
502 	ew32(IMC, 0xffffffff);
503 
504 	/* Clear any pending interrupt events. */
505 	icr = er32(ICR);
506 
507 	/* If MWI was previously enabled, reenable it. */
508 	if (hw->mac_type == e1000_82542_rev2_0) {
509 		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
510 			e1000_pci_set_mwi(hw);
511 	}
512 
513 	return E1000_SUCCESS;
514 }
515 
516 /**
517  * e1000_init_hw - Performs basic configuration of the adapter.
518  * @hw: Struct containing variables accessed by shared code
519  *
520  * Assumes that the controller has previously been reset and is in a
521  * post-reset uninitialized state. Initializes the receive address registers,
522  * multicast table, and VLAN filter table. Calls routines to setup link
523  * configuration and flow control settings. Clears all on-chip counters. Leaves
524  * the transmit and receive units disabled and uninitialized.
525  */
526 s32 e1000_init_hw(struct e1000_hw *hw)
527 {
528 	u32 ctrl;
529 	u32 i;
530 	s32 ret_val;
531 	u32 mta_size;
532 	u32 ctrl_ext;
533 
534 	/* Initialize Identification LED */
535 	ret_val = e1000_id_led_init(hw);
536 	if (ret_val) {
537 		e_dbg("Error Initializing Identification LED\n");
538 		return ret_val;
539 	}
540 
541 	/* Set the media type and TBI compatibility */
542 	e1000_set_media_type(hw);
543 
544 	/* Disabling VLAN filtering. */
545 	e_dbg("Initializing the IEEE VLAN\n");
546 	if (hw->mac_type < e1000_82545_rev_3)
547 		ew32(VET, 0);
548 	e1000_clear_vfta(hw);
549 
550 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
551 	if (hw->mac_type == e1000_82542_rev2_0) {
552 		e_dbg("Disabling MWI on 82542 rev 2.0\n");
553 		e1000_pci_clear_mwi(hw);
554 		ew32(RCTL, E1000_RCTL_RST);
555 		E1000_WRITE_FLUSH();
556 		msleep(5);
557 	}
558 
559 	/* Setup the receive address. This involves initializing all of the
560 	 * Receive Address Registers (RARs 0 - 15).
561 	 */
562 	e1000_init_rx_addrs(hw);
563 
564 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
565 	if (hw->mac_type == e1000_82542_rev2_0) {
566 		ew32(RCTL, 0);
567 		E1000_WRITE_FLUSH();
568 		msleep(1);
569 		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
570 			e1000_pci_set_mwi(hw);
571 	}
572 
573 	/* Zero out the Multicast HASH table */
574 	e_dbg("Zeroing the MTA\n");
575 	mta_size = E1000_MC_TBL_SIZE;
576 	for (i = 0; i < mta_size; i++) {
577 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
578 		/* use write flush to prevent Memory Write Block (MWB) from
579 		 * occurring when accessing our register space
580 		 */
581 		E1000_WRITE_FLUSH();
582 	}
583 
584 	/* Set the PCI priority bit correctly in the CTRL register.  This
585 	 * determines if the adapter gives priority to receives, or if it
586 	 * gives equal priority to transmits and receives.  Valid only on
587 	 * 82542 and 82543 silicon.
588 	 */
589 	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
590 		ctrl = er32(CTRL);
591 		ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
592 	}
593 
594 	switch (hw->mac_type) {
595 	case e1000_82545_rev_3:
596 	case e1000_82546_rev_3:
597 		break;
598 	default:
599 		/* Workaround for PCI-X problem when BIOS sets MMRBC
600 		 * incorrectly.
601 		 */
602 		if (hw->bus_type == e1000_bus_type_pcix &&
603 		    e1000_pcix_get_mmrbc(hw) > 2048)
604 			e1000_pcix_set_mmrbc(hw, 2048);
605 		break;
606 	}
607 
608 	/* Call a subroutine to configure the link and setup flow control. */
609 	ret_val = e1000_setup_link(hw);
610 
611 	/* Set the transmit descriptor write-back policy */
612 	if (hw->mac_type > e1000_82544) {
613 		ctrl = er32(TXDCTL);
614 		ctrl =
615 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
616 		    E1000_TXDCTL_FULL_TX_DESC_WB;
617 		ew32(TXDCTL, ctrl);
618 	}
619 
620 	/* Clear all of the statistics registers (clear on read).  It is
621 	 * important that we do this after we have tried to establish link
622 	 * because the symbol error count will increment wildly if there
623 	 * is no link.
624 	 */
625 	e1000_clear_hw_cntrs(hw);
626 
627 	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
628 	    hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
629 		ctrl_ext = er32(CTRL_EXT);
630 		/* Relaxed ordering must be disabled to avoid a parity
631 		 * error crash in a PCI slot.
632 		 */
633 		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
634 		ew32(CTRL_EXT, ctrl_ext);
635 	}
636 
637 	return ret_val;
638 }
639 
640 /**
641  * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
642  * @hw: Struct containing variables accessed by shared code.
643  */
644 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
645 {
646 	u16 eeprom_data;
647 	s32 ret_val;
648 
649 	if (hw->media_type != e1000_media_type_internal_serdes)
650 		return E1000_SUCCESS;
651 
652 	switch (hw->mac_type) {
653 	case e1000_82545_rev_3:
654 	case e1000_82546_rev_3:
655 		break;
656 	default:
657 		return E1000_SUCCESS;
658 	}
659 
660 	ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
661 				    &eeprom_data);
662 	if (ret_val)
663 		return ret_val;
664 
665 	if (eeprom_data != EEPROM_RESERVED_WORD) {
666 		/* Adjust SERDES output amplitude only. */
667 		eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
668 		ret_val =
669 		    e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
670 		if (ret_val)
671 			return ret_val;
672 	}
673 
674 	return E1000_SUCCESS;
675 }
676 
677 /**
678  * e1000_setup_link - Configures flow control and link settings.
679  * @hw: Struct containing variables accessed by shared code
680  *
681  * Determines which flow control settings to use. Calls the appropriate media-
682  * specific link configuration function. Configures the flow control settings.
683  * Assuming the adapter has a valid link partner, a valid link should be
684  * established. Assumes the hardware has previously been reset and the
685  * transmitter and receiver are not enabled.
686  */
687 s32 e1000_setup_link(struct e1000_hw *hw)
688 {
689 	u32 ctrl_ext;
690 	s32 ret_val;
691 	u16 eeprom_data;
692 
693 	/* Read and store word 0x0F of the EEPROM. This word contains bits
694 	 * that determine the hardware's default PAUSE (flow control) mode,
695 	 * a bit that determines whether the HW defaults to enabling or
696 	 * disabling auto-negotiation, and the direction of the
697 	 * SW defined pins. If there is no SW over-ride of the flow
698 	 * control setting, then the variable hw->fc will
699 	 * be initialized based on a value in the EEPROM.
700 	 */
701 	if (hw->fc == E1000_FC_DEFAULT) {
702 		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
703 					    1, &eeprom_data);
704 		if (ret_val) {
705 			e_dbg("EEPROM Read Error\n");
706 			return -E1000_ERR_EEPROM;
707 		}
708 		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
709 			hw->fc = E1000_FC_NONE;
710 		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
711 			 EEPROM_WORD0F_ASM_DIR)
712 			hw->fc = E1000_FC_TX_PAUSE;
713 		else
714 			hw->fc = E1000_FC_FULL;
715 	}
716 
717 	/* We want to save off the original Flow Control configuration just
718 	 * in case we get disconnected and then reconnected into a different
719 	 * hub or switch with different Flow Control capabilities.
720 	 */
721 	if (hw->mac_type == e1000_82542_rev2_0)
722 		hw->fc &= (~E1000_FC_TX_PAUSE);
723 
724 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
725 		hw->fc &= (~E1000_FC_RX_PAUSE);
726 
727 	hw->original_fc = hw->fc;
728 
729 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
730 
731 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
732 	 * polarity value for the SW controlled pins, and setup the
733 	 * Extended Device Control reg with that info.
734 	 * This is needed because one of the SW controlled pins is used for
735 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
736 	 * or e1000_phy_setup() is called.
737 	 */
738 	if (hw->mac_type == e1000_82543) {
739 		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
740 					    1, &eeprom_data);
741 		if (ret_val) {
742 			e_dbg("EEPROM Read Error\n");
743 			return -E1000_ERR_EEPROM;
744 		}
745 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
746 			    SWDPIO__EXT_SHIFT);
747 		ew32(CTRL_EXT, ctrl_ext);
748 	}
749 
750 	/* Call the necessary subroutine to configure the link. */
751 	ret_val = (hw->media_type == e1000_media_type_copper) ?
752 	    e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
753 
754 	/* Initialize the flow control address, type, and PAUSE timer
755 	 * registers to their default values.  This is done even if flow
756 	 * control is disabled, because it does not hurt anything to
757 	 * initialize these registers.
758 	 */
759 	e_dbg("Initializing the Flow Control address, type and timer regs\n");
760 
761 	ew32(FCT, FLOW_CONTROL_TYPE);
762 	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
763 	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
764 
765 	ew32(FCTTV, hw->fc_pause_time);
766 
767 	/* Set the flow control receive threshold registers.  Normally,
768 	 * these registers will be set to a default threshold that may be
769 	 * adjusted later by the driver's runtime code.  However, if the
770 	 * ability to transmit pause frames in not enabled, then these
771 	 * registers will be set to 0.
772 	 */
773 	if (!(hw->fc & E1000_FC_TX_PAUSE)) {
774 		ew32(FCRTL, 0);
775 		ew32(FCRTH, 0);
776 	} else {
777 		/* We need to set up the Receive Threshold high and low water
778 		 * marks as well as (optionally) enabling the transmission of
779 		 * XON frames.
780 		 */
781 		if (hw->fc_send_xon) {
782 			ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
783 			ew32(FCRTH, hw->fc_high_water);
784 		} else {
785 			ew32(FCRTL, hw->fc_low_water);
786 			ew32(FCRTH, hw->fc_high_water);
787 		}
788 	}
789 	return ret_val;
790 }
791 
792 /**
793  * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
794  * @hw: Struct containing variables accessed by shared code
795  *
796  * Manipulates Physical Coding Sublayer functions in order to configure
797  * link. Assumes the hardware has been previously reset and the transmitter
798  * and receiver are not enabled.
799  */
800 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
801 {
802 	u32 ctrl;
803 	u32 status;
804 	u32 txcw = 0;
805 	u32 i;
806 	u32 signal = 0;
807 	s32 ret_val;
808 
809 	/* On adapters with a MAC newer than 82544, SWDP 1 will be
810 	 * set when the optics detect a signal. On older adapters, it will be
811 	 * cleared when there is a signal.  This applies to fiber media only.
812 	 * If we're on serdes media, adjust the output amplitude to value
813 	 * set in the EEPROM.
814 	 */
815 	ctrl = er32(CTRL);
816 	if (hw->media_type == e1000_media_type_fiber)
817 		signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
818 
819 	ret_val = e1000_adjust_serdes_amplitude(hw);
820 	if (ret_val)
821 		return ret_val;
822 
823 	/* Take the link out of reset */
824 	ctrl &= ~(E1000_CTRL_LRST);
825 
826 	/* Adjust VCO speed to improve BER performance */
827 	ret_val = e1000_set_vco_speed(hw);
828 	if (ret_val)
829 		return ret_val;
830 
831 	e1000_config_collision_dist(hw);
832 
833 	/* Check for a software override of the flow control settings, and setup
834 	 * the device accordingly.  If auto-negotiation is enabled, then
835 	 * software will have to set the "PAUSE" bits to the correct value in
836 	 * the Tranmsit Config Word Register (TXCW) and re-start
837 	 * auto-negotiation.  However, if auto-negotiation is disabled, then
838 	 * software will have to manually configure the two flow control enable
839 	 * bits in the CTRL register.
840 	 *
841 	 * The possible values of the "fc" parameter are:
842 	 *  0:  Flow control is completely disabled
843 	 *  1:  Rx flow control is enabled (we can receive pause frames, but
844 	 *      not send pause frames).
845 	 *  2:  Tx flow control is enabled (we can send pause frames but we do
846 	 *      not support receiving pause frames).
847 	 *  3:  Both Rx and TX flow control (symmetric) are enabled.
848 	 */
849 	switch (hw->fc) {
850 	case E1000_FC_NONE:
851 		/* Flow ctrl is completely disabled by a software over-ride */
852 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
853 		break;
854 	case E1000_FC_RX_PAUSE:
855 		/* Rx Flow control is enabled and Tx Flow control is disabled by
856 		 * a software over-ride. Since there really isn't a way to
857 		 * advertise that we are capable of Rx Pause ONLY, we will
858 		 * advertise that we support both symmetric and asymmetric Rx
859 		 * PAUSE. Later, we will disable the adapter's ability to send
860 		 * PAUSE frames.
861 		 */
862 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
863 		break;
864 	case E1000_FC_TX_PAUSE:
865 		/* Tx Flow control is enabled, and Rx Flow control is disabled,
866 		 * by a software over-ride.
867 		 */
868 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
869 		break;
870 	case E1000_FC_FULL:
871 		/* Flow control (both Rx and Tx) is enabled by a software
872 		 * over-ride.
873 		 */
874 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
875 		break;
876 	default:
877 		e_dbg("Flow control param set incorrectly\n");
878 		return -E1000_ERR_CONFIG;
879 	}
880 
881 	/* Since auto-negotiation is enabled, take the link out of reset (the
882 	 * link will be in reset, because we previously reset the chip). This
883 	 * will restart auto-negotiation.  If auto-negotiation is successful
884 	 * then the link-up status bit will be set and the flow control enable
885 	 * bits (RFCE and TFCE) will be set according to their negotiated value.
886 	 */
887 	e_dbg("Auto-negotiation enabled\n");
888 
889 	ew32(TXCW, txcw);
890 	ew32(CTRL, ctrl);
891 	E1000_WRITE_FLUSH();
892 
893 	hw->txcw = txcw;
894 	msleep(1);
895 
896 	/* If we have a signal (the cable is plugged in) then poll for a
897 	 * "Link-Up" indication in the Device Status Register.  Time-out if a
898 	 * link isn't seen in 500 milliseconds seconds (Auto-negotiation should
899 	 * complete in less than 500 milliseconds even if the other end is doing
900 	 * it in SW). For internal serdes, we just assume a signal is present,
901 	 * then poll.
902 	 */
903 	if (hw->media_type == e1000_media_type_internal_serdes ||
904 	    (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
905 		e_dbg("Looking for Link\n");
906 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
907 			msleep(10);
908 			status = er32(STATUS);
909 			if (status & E1000_STATUS_LU)
910 				break;
911 		}
912 		if (i == (LINK_UP_TIMEOUT / 10)) {
913 			e_dbg("Never got a valid link from auto-neg!!!\n");
914 			hw->autoneg_failed = 1;
915 			/* AutoNeg failed to achieve a link, so we'll call
916 			 * e1000_check_for_link. This routine will force the
917 			 * link up if we detect a signal. This will allow us to
918 			 * communicate with non-autonegotiating link partners.
919 			 */
920 			ret_val = e1000_check_for_link(hw);
921 			if (ret_val) {
922 				e_dbg("Error while checking for link\n");
923 				return ret_val;
924 			}
925 			hw->autoneg_failed = 0;
926 		} else {
927 			hw->autoneg_failed = 0;
928 			e_dbg("Valid Link Found\n");
929 		}
930 	} else {
931 		e_dbg("No Signal Detected\n");
932 	}
933 	return E1000_SUCCESS;
934 }
935 
936 /**
937  * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
938  * @hw: Struct containing variables accessed by shared code
939  *
940  * Commits changes to PHY configuration by calling e1000_phy_reset().
941  */
942 static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
943 {
944 	s32 ret_val;
945 
946 	/* SW reset the PHY so all changes take effect */
947 	ret_val = e1000_phy_reset(hw);
948 	if (ret_val) {
949 		e_dbg("Error Resetting the PHY\n");
950 		return ret_val;
951 	}
952 
953 	return E1000_SUCCESS;
954 }
955 
956 static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
957 {
958 	s32 ret_val;
959 	u32 ctrl_aux;
960 
961 	switch (hw->phy_type) {
962 	case e1000_phy_8211:
963 		ret_val = e1000_copper_link_rtl_setup(hw);
964 		if (ret_val) {
965 			e_dbg("e1000_copper_link_rtl_setup failed!\n");
966 			return ret_val;
967 		}
968 		break;
969 	case e1000_phy_8201:
970 		/* Set RMII mode */
971 		ctrl_aux = er32(CTL_AUX);
972 		ctrl_aux |= E1000_CTL_AUX_RMII;
973 		ew32(CTL_AUX, ctrl_aux);
974 		E1000_WRITE_FLUSH();
975 
976 		/* Disable the J/K bits required for receive */
977 		ctrl_aux = er32(CTL_AUX);
978 		ctrl_aux |= 0x4;
979 		ctrl_aux &= ~0x2;
980 		ew32(CTL_AUX, ctrl_aux);
981 		E1000_WRITE_FLUSH();
982 		ret_val = e1000_copper_link_rtl_setup(hw);
983 
984 		if (ret_val) {
985 			e_dbg("e1000_copper_link_rtl_setup failed!\n");
986 			return ret_val;
987 		}
988 		break;
989 	default:
990 		e_dbg("Error Resetting the PHY\n");
991 		return E1000_ERR_PHY_TYPE;
992 	}
993 
994 	return E1000_SUCCESS;
995 }
996 
997 /**
998  * e1000_copper_link_preconfig - early configuration for copper
999  * @hw: Struct containing variables accessed by shared code
1000  *
1001  * Make sure we have a valid PHY and change PHY mode before link setup.
1002  */
1003 static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1004 {
1005 	u32 ctrl;
1006 	s32 ret_val;
1007 	u16 phy_data;
1008 
1009 	ctrl = er32(CTRL);
1010 	/* With 82543, we need to force speed and duplex on the MAC equal to
1011 	 * what the PHY speed and duplex configuration is. In addition, we need
1012 	 * to perform a hardware reset on the PHY to take it out of reset.
1013 	 */
1014 	if (hw->mac_type > e1000_82543) {
1015 		ctrl |= E1000_CTRL_SLU;
1016 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1017 		ew32(CTRL, ctrl);
1018 	} else {
1019 		ctrl |=
1020 		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1021 		ew32(CTRL, ctrl);
1022 		ret_val = e1000_phy_hw_reset(hw);
1023 		if (ret_val)
1024 			return ret_val;
1025 	}
1026 
1027 	/* Make sure we have a valid PHY */
1028 	ret_val = e1000_detect_gig_phy(hw);
1029 	if (ret_val) {
1030 		e_dbg("Error, did not detect valid phy.\n");
1031 		return ret_val;
1032 	}
1033 	e_dbg("Phy ID = %x\n", hw->phy_id);
1034 
1035 	/* Set PHY to class A mode (if necessary) */
1036 	ret_val = e1000_set_phy_mode(hw);
1037 	if (ret_val)
1038 		return ret_val;
1039 
1040 	if ((hw->mac_type == e1000_82545_rev_3) ||
1041 	    (hw->mac_type == e1000_82546_rev_3)) {
1042 		ret_val =
1043 		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1044 		phy_data |= 0x00000008;
1045 		ret_val =
1046 		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1047 	}
1048 
1049 	if (hw->mac_type <= e1000_82543 ||
1050 	    hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1051 	    hw->mac_type == e1000_82541_rev_2 ||
1052 	    hw->mac_type == e1000_82547_rev_2)
1053 		hw->phy_reset_disable = false;
1054 
1055 	return E1000_SUCCESS;
1056 }
1057 
1058 /**
1059  * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1060  * @hw: Struct containing variables accessed by shared code
1061  */
1062 static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1063 {
1064 	u32 led_ctrl;
1065 	s32 ret_val;
1066 	u16 phy_data;
1067 
1068 	if (hw->phy_reset_disable)
1069 		return E1000_SUCCESS;
1070 
1071 	ret_val = e1000_phy_reset(hw);
1072 	if (ret_val) {
1073 		e_dbg("Error Resetting the PHY\n");
1074 		return ret_val;
1075 	}
1076 
1077 	/* Wait 15ms for MAC to configure PHY from eeprom settings */
1078 	msleep(15);
1079 	/* Configure activity LED after PHY reset */
1080 	led_ctrl = er32(LEDCTL);
1081 	led_ctrl &= IGP_ACTIVITY_LED_MASK;
1082 	led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1083 	ew32(LEDCTL, led_ctrl);
1084 
1085 	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1086 	if (hw->phy_type == e1000_phy_igp) {
1087 		/* disable lplu d3 during driver init */
1088 		ret_val = e1000_set_d3_lplu_state(hw, false);
1089 		if (ret_val) {
1090 			e_dbg("Error Disabling LPLU D3\n");
1091 			return ret_val;
1092 		}
1093 	}
1094 
1095 	/* Configure mdi-mdix settings */
1096 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1097 	if (ret_val)
1098 		return ret_val;
1099 
1100 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1101 		hw->dsp_config_state = e1000_dsp_config_disabled;
1102 		/* Force MDI for earlier revs of the IGP PHY */
1103 		phy_data &=
1104 		    ~(IGP01E1000_PSCR_AUTO_MDIX |
1105 		      IGP01E1000_PSCR_FORCE_MDI_MDIX);
1106 		hw->mdix = 1;
1107 
1108 	} else {
1109 		hw->dsp_config_state = e1000_dsp_config_enabled;
1110 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1111 
1112 		switch (hw->mdix) {
1113 		case 1:
1114 			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1115 			break;
1116 		case 2:
1117 			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1118 			break;
1119 		case 0:
1120 		default:
1121 			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1122 			break;
1123 		}
1124 	}
1125 	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1126 	if (ret_val)
1127 		return ret_val;
1128 
1129 	/* set auto-master slave resolution settings */
1130 	if (hw->autoneg) {
1131 		e1000_ms_type phy_ms_setting = hw->master_slave;
1132 
1133 		if (hw->ffe_config_state == e1000_ffe_config_active)
1134 			hw->ffe_config_state = e1000_ffe_config_enabled;
1135 
1136 		if (hw->dsp_config_state == e1000_dsp_config_activated)
1137 			hw->dsp_config_state = e1000_dsp_config_enabled;
1138 
1139 		/* when autonegotiation advertisement is only 1000Mbps then we
1140 		 * should disable SmartSpeed and enable Auto MasterSlave
1141 		 * resolution as hardware default.
1142 		 */
1143 		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1144 			/* Disable SmartSpeed */
1145 			ret_val =
1146 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1147 					       &phy_data);
1148 			if (ret_val)
1149 				return ret_val;
1150 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1151 			ret_val =
1152 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1153 						phy_data);
1154 			if (ret_val)
1155 				return ret_val;
1156 			/* Set auto Master/Slave resolution process */
1157 			ret_val =
1158 			    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1159 			if (ret_val)
1160 				return ret_val;
1161 			phy_data &= ~CR_1000T_MS_ENABLE;
1162 			ret_val =
1163 			    e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1164 			if (ret_val)
1165 				return ret_val;
1166 		}
1167 
1168 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1169 		if (ret_val)
1170 			return ret_val;
1171 
1172 		/* load defaults for future use */
1173 		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1174 		    ((phy_data & CR_1000T_MS_VALUE) ?
1175 		     e1000_ms_force_master :
1176 		     e1000_ms_force_slave) : e1000_ms_auto;
1177 
1178 		switch (phy_ms_setting) {
1179 		case e1000_ms_force_master:
1180 			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1181 			break;
1182 		case e1000_ms_force_slave:
1183 			phy_data |= CR_1000T_MS_ENABLE;
1184 			phy_data &= ~(CR_1000T_MS_VALUE);
1185 			break;
1186 		case e1000_ms_auto:
1187 			phy_data &= ~CR_1000T_MS_ENABLE;
1188 		default:
1189 			break;
1190 		}
1191 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1192 		if (ret_val)
1193 			return ret_val;
1194 	}
1195 
1196 	return E1000_SUCCESS;
1197 }
1198 
1199 /**
1200  * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1201  * @hw: Struct containing variables accessed by shared code
1202  */
1203 static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1204 {
1205 	s32 ret_val;
1206 	u16 phy_data;
1207 
1208 	if (hw->phy_reset_disable)
1209 		return E1000_SUCCESS;
1210 
1211 	/* Enable CRS on TX. This must be set for half-duplex operation. */
1212 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1213 	if (ret_val)
1214 		return ret_val;
1215 
1216 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1217 
1218 	/* Options:
1219 	 *   MDI/MDI-X = 0 (default)
1220 	 *   0 - Auto for all speeds
1221 	 *   1 - MDI mode
1222 	 *   2 - MDI-X mode
1223 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1224 	 */
1225 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1226 
1227 	switch (hw->mdix) {
1228 	case 1:
1229 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1230 		break;
1231 	case 2:
1232 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1233 		break;
1234 	case 3:
1235 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1236 		break;
1237 	case 0:
1238 	default:
1239 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1240 		break;
1241 	}
1242 
1243 	/* Options:
1244 	 *   disable_polarity_correction = 0 (default)
1245 	 *       Automatic Correction for Reversed Cable Polarity
1246 	 *   0 - Disabled
1247 	 *   1 - Enabled
1248 	 */
1249 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1250 	if (hw->disable_polarity_correction == 1)
1251 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1252 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1253 	if (ret_val)
1254 		return ret_val;
1255 
1256 	if (hw->phy_revision < M88E1011_I_REV_4) {
1257 		/* Force TX_CLK in the Extended PHY Specific Control Register
1258 		 * to 25MHz clock.
1259 		 */
1260 		ret_val =
1261 		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1262 				       &phy_data);
1263 		if (ret_val)
1264 			return ret_val;
1265 
1266 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1267 
1268 		if ((hw->phy_revision == E1000_REVISION_2) &&
1269 		    (hw->phy_id == M88E1111_I_PHY_ID)) {
1270 			/* Vidalia Phy, set the downshift counter to 5x */
1271 			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1272 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1273 			ret_val = e1000_write_phy_reg(hw,
1274 						      M88E1000_EXT_PHY_SPEC_CTRL,
1275 						      phy_data);
1276 			if (ret_val)
1277 				return ret_val;
1278 		} else {
1279 			/* Configure Master and Slave downshift values */
1280 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1281 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1282 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1283 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1284 			ret_val = e1000_write_phy_reg(hw,
1285 						      M88E1000_EXT_PHY_SPEC_CTRL,
1286 						      phy_data);
1287 			if (ret_val)
1288 				return ret_val;
1289 		}
1290 	}
1291 
1292 	/* SW Reset the PHY so all changes take effect */
1293 	ret_val = e1000_phy_reset(hw);
1294 	if (ret_val) {
1295 		e_dbg("Error Resetting the PHY\n");
1296 		return ret_val;
1297 	}
1298 
1299 	return E1000_SUCCESS;
1300 }
1301 
1302 /**
1303  * e1000_copper_link_autoneg - setup auto-neg
1304  * @hw: Struct containing variables accessed by shared code
1305  *
1306  * Setup auto-negotiation and flow control advertisements,
1307  * and then perform auto-negotiation.
1308  */
1309 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1310 {
1311 	s32 ret_val;
1312 	u16 phy_data;
1313 
1314 	/* Perform some bounds checking on the hw->autoneg_advertised
1315 	 * parameter.  If this variable is zero, then set it to the default.
1316 	 */
1317 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1318 
1319 	/* If autoneg_advertised is zero, we assume it was not defaulted
1320 	 * by the calling code so we set to advertise full capability.
1321 	 */
1322 	if (hw->autoneg_advertised == 0)
1323 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1324 
1325 	/* IFE/RTL8201N PHY only supports 10/100 */
1326 	if (hw->phy_type == e1000_phy_8201)
1327 		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1328 
1329 	e_dbg("Reconfiguring auto-neg advertisement params\n");
1330 	ret_val = e1000_phy_setup_autoneg(hw);
1331 	if (ret_val) {
1332 		e_dbg("Error Setting up Auto-Negotiation\n");
1333 		return ret_val;
1334 	}
1335 	e_dbg("Restarting Auto-Neg\n");
1336 
1337 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1338 	 * the Auto Neg Restart bit in the PHY control register.
1339 	 */
1340 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1341 	if (ret_val)
1342 		return ret_val;
1343 
1344 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1345 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1346 	if (ret_val)
1347 		return ret_val;
1348 
1349 	/* Does the user want to wait for Auto-Neg to complete here, or
1350 	 * check at a later time (for example, callback routine).
1351 	 */
1352 	if (hw->wait_autoneg_complete) {
1353 		ret_val = e1000_wait_autoneg(hw);
1354 		if (ret_val) {
1355 			e_dbg
1356 			    ("Error while waiting for autoneg to complete\n");
1357 			return ret_val;
1358 		}
1359 	}
1360 
1361 	hw->get_link_status = true;
1362 
1363 	return E1000_SUCCESS;
1364 }
1365 
1366 /**
1367  * e1000_copper_link_postconfig - post link setup
1368  * @hw: Struct containing variables accessed by shared code
1369  *
1370  * Config the MAC and the PHY after link is up.
1371  *   1) Set up the MAC to the current PHY speed/duplex
1372  *      if we are on 82543.  If we
1373  *      are on newer silicon, we only need to configure
1374  *      collision distance in the Transmit Control Register.
1375  *   2) Set up flow control on the MAC to that established with
1376  *      the link partner.
1377  *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
1378  */
1379 static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1380 {
1381 	s32 ret_val;
1382 
1383 	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
1384 		e1000_config_collision_dist(hw);
1385 	} else {
1386 		ret_val = e1000_config_mac_to_phy(hw);
1387 		if (ret_val) {
1388 			e_dbg("Error configuring MAC to PHY settings\n");
1389 			return ret_val;
1390 		}
1391 	}
1392 	ret_val = e1000_config_fc_after_link_up(hw);
1393 	if (ret_val) {
1394 		e_dbg("Error Configuring Flow Control\n");
1395 		return ret_val;
1396 	}
1397 
1398 	/* Config DSP to improve Giga link quality */
1399 	if (hw->phy_type == e1000_phy_igp) {
1400 		ret_val = e1000_config_dsp_after_link_change(hw, true);
1401 		if (ret_val) {
1402 			e_dbg("Error Configuring DSP after link up\n");
1403 			return ret_val;
1404 		}
1405 	}
1406 
1407 	return E1000_SUCCESS;
1408 }
1409 
1410 /**
1411  * e1000_setup_copper_link - phy/speed/duplex setting
1412  * @hw: Struct containing variables accessed by shared code
1413  *
1414  * Detects which PHY is present and sets up the speed and duplex
1415  */
1416 static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1417 {
1418 	s32 ret_val;
1419 	u16 i;
1420 	u16 phy_data;
1421 
1422 	/* Check if it is a valid PHY and set PHY mode if necessary. */
1423 	ret_val = e1000_copper_link_preconfig(hw);
1424 	if (ret_val)
1425 		return ret_val;
1426 
1427 	if (hw->phy_type == e1000_phy_igp) {
1428 		ret_val = e1000_copper_link_igp_setup(hw);
1429 		if (ret_val)
1430 			return ret_val;
1431 	} else if (hw->phy_type == e1000_phy_m88) {
1432 		ret_val = e1000_copper_link_mgp_setup(hw);
1433 		if (ret_val)
1434 			return ret_val;
1435 	} else {
1436 		ret_val = gbe_dhg_phy_setup(hw);
1437 		if (ret_val) {
1438 			e_dbg("gbe_dhg_phy_setup failed!\n");
1439 			return ret_val;
1440 		}
1441 	}
1442 
1443 	if (hw->autoneg) {
1444 		/* Setup autoneg and flow control advertisement
1445 		 * and perform autonegotiation
1446 		 */
1447 		ret_val = e1000_copper_link_autoneg(hw);
1448 		if (ret_val)
1449 			return ret_val;
1450 	} else {
1451 		/* PHY will be set to 10H, 10F, 100H,or 100F
1452 		 * depending on value from forced_speed_duplex.
1453 		 */
1454 		e_dbg("Forcing speed and duplex\n");
1455 		ret_val = e1000_phy_force_speed_duplex(hw);
1456 		if (ret_val) {
1457 			e_dbg("Error Forcing Speed and Duplex\n");
1458 			return ret_val;
1459 		}
1460 	}
1461 
1462 	/* Check link status. Wait up to 100 microseconds for link to become
1463 	 * valid.
1464 	 */
1465 	for (i = 0; i < 10; i++) {
1466 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1467 		if (ret_val)
1468 			return ret_val;
1469 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1470 		if (ret_val)
1471 			return ret_val;
1472 
1473 		if (phy_data & MII_SR_LINK_STATUS) {
1474 			/* Config the MAC and PHY after link is up */
1475 			ret_val = e1000_copper_link_postconfig(hw);
1476 			if (ret_val)
1477 				return ret_val;
1478 
1479 			e_dbg("Valid link established!!!\n");
1480 			return E1000_SUCCESS;
1481 		}
1482 		udelay(10);
1483 	}
1484 
1485 	e_dbg("Unable to establish link!!!\n");
1486 	return E1000_SUCCESS;
1487 }
1488 
1489 /**
1490  * e1000_phy_setup_autoneg - phy settings
1491  * @hw: Struct containing variables accessed by shared code
1492  *
1493  * Configures PHY autoneg and flow control advertisement settings
1494  */
1495 s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1496 {
1497 	s32 ret_val;
1498 	u16 mii_autoneg_adv_reg;
1499 	u16 mii_1000t_ctrl_reg;
1500 
1501 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1502 	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1503 	if (ret_val)
1504 		return ret_val;
1505 
1506 	/* Read the MII 1000Base-T Control Register (Address 9). */
1507 	ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1508 	if (ret_val)
1509 		return ret_val;
1510 	else if (hw->phy_type == e1000_phy_8201)
1511 		mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1512 
1513 	/* Need to parse both autoneg_advertised and fc and set up
1514 	 * the appropriate PHY registers.  First we will parse for
1515 	 * autoneg_advertised software override.  Since we can advertise
1516 	 * a plethora of combinations, we need to check each bit
1517 	 * individually.
1518 	 */
1519 
1520 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1521 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1522 	 * the  1000Base-T Control Register (Address 9).
1523 	 */
1524 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1525 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1526 
1527 	e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
1528 
1529 	/* Do we want to advertise 10 Mb Half Duplex? */
1530 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1531 		e_dbg("Advertise 10mb Half duplex\n");
1532 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1533 	}
1534 
1535 	/* Do we want to advertise 10 Mb Full Duplex? */
1536 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1537 		e_dbg("Advertise 10mb Full duplex\n");
1538 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1539 	}
1540 
1541 	/* Do we want to advertise 100 Mb Half Duplex? */
1542 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1543 		e_dbg("Advertise 100mb Half duplex\n");
1544 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1545 	}
1546 
1547 	/* Do we want to advertise 100 Mb Full Duplex? */
1548 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1549 		e_dbg("Advertise 100mb Full duplex\n");
1550 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1551 	}
1552 
1553 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1554 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1555 		e_dbg
1556 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
1557 	}
1558 
1559 	/* Do we want to advertise 1000 Mb Full Duplex? */
1560 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1561 		e_dbg("Advertise 1000mb Full duplex\n");
1562 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1563 	}
1564 
1565 	/* Check for a software override of the flow control settings, and
1566 	 * setup the PHY advertisement registers accordingly.  If
1567 	 * auto-negotiation is enabled, then software will have to set the
1568 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1569 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start
1570 	 * auto-negotiation.
1571 	 *
1572 	 * The possible values of the "fc" parameter are:
1573 	 *      0:  Flow control is completely disabled
1574 	 *      1:  Rx flow control is enabled (we can receive pause frames
1575 	 *          but not send pause frames).
1576 	 *      2:  Tx flow control is enabled (we can send pause frames
1577 	 *          but we do not support receiving pause frames).
1578 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1579 	 *  other:  No software override.  The flow control configuration
1580 	 *          in the EEPROM is used.
1581 	 */
1582 	switch (hw->fc) {
1583 	case E1000_FC_NONE:	/* 0 */
1584 		/* Flow control (RX & TX) is completely disabled by a
1585 		 * software over-ride.
1586 		 */
1587 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1588 		break;
1589 	case E1000_FC_RX_PAUSE:	/* 1 */
1590 		/* RX Flow control is enabled, and TX Flow control is
1591 		 * disabled, by a software over-ride.
1592 		 */
1593 		/* Since there really isn't a way to advertise that we are
1594 		 * capable of RX Pause ONLY, we will advertise that we
1595 		 * support both symmetric and asymmetric RX PAUSE.  Later
1596 		 * (in e1000_config_fc_after_link_up) we will disable the
1597 		 * hw's ability to send PAUSE frames.
1598 		 */
1599 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1600 		break;
1601 	case E1000_FC_TX_PAUSE:	/* 2 */
1602 		/* TX Flow control is enabled, and RX Flow control is
1603 		 * disabled, by a software over-ride.
1604 		 */
1605 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1606 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1607 		break;
1608 	case E1000_FC_FULL:	/* 3 */
1609 		/* Flow control (both RX and TX) is enabled by a software
1610 		 * over-ride.
1611 		 */
1612 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1613 		break;
1614 	default:
1615 		e_dbg("Flow control param set incorrectly\n");
1616 		return -E1000_ERR_CONFIG;
1617 	}
1618 
1619 	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1620 	if (ret_val)
1621 		return ret_val;
1622 
1623 	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1624 
1625 	if (hw->phy_type == e1000_phy_8201) {
1626 		mii_1000t_ctrl_reg = 0;
1627 	} else {
1628 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1629 					      mii_1000t_ctrl_reg);
1630 		if (ret_val)
1631 			return ret_val;
1632 	}
1633 
1634 	return E1000_SUCCESS;
1635 }
1636 
1637 /**
1638  * e1000_phy_force_speed_duplex - force link settings
1639  * @hw: Struct containing variables accessed by shared code
1640  *
1641  * Force PHY speed and duplex settings to hw->forced_speed_duplex
1642  */
1643 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1644 {
1645 	u32 ctrl;
1646 	s32 ret_val;
1647 	u16 mii_ctrl_reg;
1648 	u16 mii_status_reg;
1649 	u16 phy_data;
1650 	u16 i;
1651 
1652 	/* Turn off Flow control if we are forcing speed and duplex. */
1653 	hw->fc = E1000_FC_NONE;
1654 
1655 	e_dbg("hw->fc = %d\n", hw->fc);
1656 
1657 	/* Read the Device Control Register. */
1658 	ctrl = er32(CTRL);
1659 
1660 	/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1661 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1662 	ctrl &= ~(DEVICE_SPEED_MASK);
1663 
1664 	/* Clear the Auto Speed Detect Enable bit. */
1665 	ctrl &= ~E1000_CTRL_ASDE;
1666 
1667 	/* Read the MII Control Register. */
1668 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1669 	if (ret_val)
1670 		return ret_val;
1671 
1672 	/* We need to disable autoneg in order to force link and duplex. */
1673 
1674 	mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1675 
1676 	/* Are we forcing Full or Half Duplex? */
1677 	if (hw->forced_speed_duplex == e1000_100_full ||
1678 	    hw->forced_speed_duplex == e1000_10_full) {
1679 		/* We want to force full duplex so we SET the full duplex bits
1680 		 * in the Device and MII Control Registers.
1681 		 */
1682 		ctrl |= E1000_CTRL_FD;
1683 		mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1684 		e_dbg("Full Duplex\n");
1685 	} else {
1686 		/* We want to force half duplex so we CLEAR the full duplex bits
1687 		 * in the Device and MII Control Registers.
1688 		 */
1689 		ctrl &= ~E1000_CTRL_FD;
1690 		mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1691 		e_dbg("Half Duplex\n");
1692 	}
1693 
1694 	/* Are we forcing 100Mbps??? */
1695 	if (hw->forced_speed_duplex == e1000_100_full ||
1696 	    hw->forced_speed_duplex == e1000_100_half) {
1697 		/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1698 		ctrl |= E1000_CTRL_SPD_100;
1699 		mii_ctrl_reg |= MII_CR_SPEED_100;
1700 		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1701 		e_dbg("Forcing 100mb ");
1702 	} else {
1703 		/* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1704 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1705 		mii_ctrl_reg |= MII_CR_SPEED_10;
1706 		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1707 		e_dbg("Forcing 10mb ");
1708 	}
1709 
1710 	e1000_config_collision_dist(hw);
1711 
1712 	/* Write the configured values back to the Device Control Reg. */
1713 	ew32(CTRL, ctrl);
1714 
1715 	if (hw->phy_type == e1000_phy_m88) {
1716 		ret_val =
1717 		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1718 		if (ret_val)
1719 			return ret_val;
1720 
1721 		/* Clear Auto-Crossover to force MDI manually. M88E1000 requires
1722 		 * MDI forced whenever speed are duplex are forced.
1723 		 */
1724 		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1725 		ret_val =
1726 		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1727 		if (ret_val)
1728 			return ret_val;
1729 
1730 		e_dbg("M88E1000 PSCR: %x\n", phy_data);
1731 
1732 		/* Need to reset the PHY or these changes will be ignored */
1733 		mii_ctrl_reg |= MII_CR_RESET;
1734 
1735 		/* Disable MDI-X support for 10/100 */
1736 	} else {
1737 		/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1738 		 * forced whenever speed or duplex are forced.
1739 		 */
1740 		ret_val =
1741 		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1742 		if (ret_val)
1743 			return ret_val;
1744 
1745 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1746 		phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1747 
1748 		ret_val =
1749 		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1750 		if (ret_val)
1751 			return ret_val;
1752 	}
1753 
1754 	/* Write back the modified PHY MII control register. */
1755 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1756 	if (ret_val)
1757 		return ret_val;
1758 
1759 	udelay(1);
1760 
1761 	/* The wait_autoneg_complete flag may be a little misleading here.
1762 	 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1763 	 * But we do want to delay for a period while forcing only so we
1764 	 * don't generate false No Link messages.  So we will wait here
1765 	 * only if the user has set wait_autoneg_complete to 1, which is
1766 	 * the default.
1767 	 */
1768 	if (hw->wait_autoneg_complete) {
1769 		/* We will wait for autoneg to complete. */
1770 		e_dbg("Waiting for forced speed/duplex link.\n");
1771 		mii_status_reg = 0;
1772 
1773 		/* Wait for autoneg to complete or 4.5 seconds to expire */
1774 		for (i = PHY_FORCE_TIME; i > 0; i--) {
1775 			/* Read the MII Status Register and wait for Auto-Neg
1776 			 * Complete bit to be set.
1777 			 */
1778 			ret_val =
1779 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1780 			if (ret_val)
1781 				return ret_val;
1782 
1783 			ret_val =
1784 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1785 			if (ret_val)
1786 				return ret_val;
1787 
1788 			if (mii_status_reg & MII_SR_LINK_STATUS)
1789 				break;
1790 			msleep(100);
1791 		}
1792 		if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1793 			/* We didn't get link.  Reset the DSP and wait again
1794 			 * for link.
1795 			 */
1796 			ret_val = e1000_phy_reset_dsp(hw);
1797 			if (ret_val) {
1798 				e_dbg("Error Resetting PHY DSP\n");
1799 				return ret_val;
1800 			}
1801 		}
1802 		/* This loop will early-out if the link condition has been
1803 		 * met
1804 		 */
1805 		for (i = PHY_FORCE_TIME; i > 0; i--) {
1806 			if (mii_status_reg & MII_SR_LINK_STATUS)
1807 				break;
1808 			msleep(100);
1809 			/* Read the MII Status Register and wait for Auto-Neg
1810 			 * Complete bit to be set.
1811 			 */
1812 			ret_val =
1813 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1814 			if (ret_val)
1815 				return ret_val;
1816 
1817 			ret_val =
1818 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1819 			if (ret_val)
1820 				return ret_val;
1821 		}
1822 	}
1823 
1824 	if (hw->phy_type == e1000_phy_m88) {
1825 		/* Because we reset the PHY above, we need to re-force TX_CLK in
1826 		 * the Extended PHY Specific Control Register to 25MHz clock.
1827 		 * This value defaults back to a 2.5MHz clock when the PHY is
1828 		 * reset.
1829 		 */
1830 		ret_val =
1831 		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1832 				       &phy_data);
1833 		if (ret_val)
1834 			return ret_val;
1835 
1836 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1837 		ret_val =
1838 		    e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1839 					phy_data);
1840 		if (ret_val)
1841 			return ret_val;
1842 
1843 		/* In addition, because of the s/w reset above, we need to
1844 		 * enable CRS on Tx.  This must be set for both full and half
1845 		 * duplex operation.
1846 		 */
1847 		ret_val =
1848 		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1849 		if (ret_val)
1850 			return ret_val;
1851 
1852 		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1853 		ret_val =
1854 		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1855 		if (ret_val)
1856 			return ret_val;
1857 
1858 		if ((hw->mac_type == e1000_82544 ||
1859 		     hw->mac_type == e1000_82543) &&
1860 		    (!hw->autoneg) &&
1861 		    (hw->forced_speed_duplex == e1000_10_full ||
1862 		     hw->forced_speed_duplex == e1000_10_half)) {
1863 			ret_val = e1000_polarity_reversal_workaround(hw);
1864 			if (ret_val)
1865 				return ret_val;
1866 		}
1867 	}
1868 	return E1000_SUCCESS;
1869 }
1870 
1871 /**
1872  * e1000_config_collision_dist - set collision distance register
1873  * @hw: Struct containing variables accessed by shared code
1874  *
1875  * Sets the collision distance in the Transmit Control register.
1876  * Link should have been established previously. Reads the speed and duplex
1877  * information from the Device Status register.
1878  */
1879 void e1000_config_collision_dist(struct e1000_hw *hw)
1880 {
1881 	u32 tctl, coll_dist;
1882 
1883 	if (hw->mac_type < e1000_82543)
1884 		coll_dist = E1000_COLLISION_DISTANCE_82542;
1885 	else
1886 		coll_dist = E1000_COLLISION_DISTANCE;
1887 
1888 	tctl = er32(TCTL);
1889 
1890 	tctl &= ~E1000_TCTL_COLD;
1891 	tctl |= coll_dist << E1000_COLD_SHIFT;
1892 
1893 	ew32(TCTL, tctl);
1894 	E1000_WRITE_FLUSH();
1895 }
1896 
1897 /**
1898  * e1000_config_mac_to_phy - sync phy and mac settings
1899  * @hw: Struct containing variables accessed by shared code
1900  * @mii_reg: data to write to the MII control register
1901  *
1902  * Sets MAC speed and duplex settings to reflect the those in the PHY
1903  * The contents of the PHY register containing the needed information need to
1904  * be passed in.
1905  */
1906 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1907 {
1908 	u32 ctrl;
1909 	s32 ret_val;
1910 	u16 phy_data;
1911 
1912 	/* 82544 or newer MAC, Auto Speed Detection takes care of
1913 	 * MAC speed/duplex configuration.
1914 	 */
1915 	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
1916 		return E1000_SUCCESS;
1917 
1918 	/* Read the Device Control Register and set the bits to Force Speed
1919 	 * and Duplex.
1920 	 */
1921 	ctrl = er32(CTRL);
1922 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1923 	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1924 
1925 	switch (hw->phy_type) {
1926 	case e1000_phy_8201:
1927 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1928 		if (ret_val)
1929 			return ret_val;
1930 
1931 		if (phy_data & RTL_PHY_CTRL_FD)
1932 			ctrl |= E1000_CTRL_FD;
1933 		else
1934 			ctrl &= ~E1000_CTRL_FD;
1935 
1936 		if (phy_data & RTL_PHY_CTRL_SPD_100)
1937 			ctrl |= E1000_CTRL_SPD_100;
1938 		else
1939 			ctrl |= E1000_CTRL_SPD_10;
1940 
1941 		e1000_config_collision_dist(hw);
1942 		break;
1943 	default:
1944 		/* Set up duplex in the Device Control and Transmit Control
1945 		 * registers depending on negotiated values.
1946 		 */
1947 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1948 					     &phy_data);
1949 		if (ret_val)
1950 			return ret_val;
1951 
1952 		if (phy_data & M88E1000_PSSR_DPLX)
1953 			ctrl |= E1000_CTRL_FD;
1954 		else
1955 			ctrl &= ~E1000_CTRL_FD;
1956 
1957 		e1000_config_collision_dist(hw);
1958 
1959 		/* Set up speed in the Device Control register depending on
1960 		 * negotiated values.
1961 		 */
1962 		if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1963 			ctrl |= E1000_CTRL_SPD_1000;
1964 		else if ((phy_data & M88E1000_PSSR_SPEED) ==
1965 			 M88E1000_PSSR_100MBS)
1966 			ctrl |= E1000_CTRL_SPD_100;
1967 	}
1968 
1969 	/* Write the configured values back to the Device Control Reg. */
1970 	ew32(CTRL, ctrl);
1971 	return E1000_SUCCESS;
1972 }
1973 
1974 /**
1975  * e1000_force_mac_fc - force flow control settings
1976  * @hw: Struct containing variables accessed by shared code
1977  *
1978  * Forces the MAC's flow control settings.
1979  * Sets the TFCE and RFCE bits in the device control register to reflect
1980  * the adapter settings. TFCE and RFCE need to be explicitly set by
1981  * software when a Copper PHY is used because autonegotiation is managed
1982  * by the PHY rather than the MAC. Software must also configure these
1983  * bits when link is forced on a fiber connection.
1984  */
1985 s32 e1000_force_mac_fc(struct e1000_hw *hw)
1986 {
1987 	u32 ctrl;
1988 
1989 	/* Get the current configuration of the Device Control Register */
1990 	ctrl = er32(CTRL);
1991 
1992 	/* Because we didn't get link via the internal auto-negotiation
1993 	 * mechanism (we either forced link or we got link via PHY
1994 	 * auto-neg), we have to manually enable/disable transmit an
1995 	 * receive flow control.
1996 	 *
1997 	 * The "Case" statement below enables/disable flow control
1998 	 * according to the "hw->fc" parameter.
1999 	 *
2000 	 * The possible values of the "fc" parameter are:
2001 	 *      0:  Flow control is completely disabled
2002 	 *      1:  Rx flow control is enabled (we can receive pause
2003 	 *          frames but not send pause frames).
2004 	 *      2:  Tx flow control is enabled (we can send pause frames
2005 	 *          frames but we do not receive pause frames).
2006 	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
2007 	 *  other:  No other values should be possible at this point.
2008 	 */
2009 
2010 	switch (hw->fc) {
2011 	case E1000_FC_NONE:
2012 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2013 		break;
2014 	case E1000_FC_RX_PAUSE:
2015 		ctrl &= (~E1000_CTRL_TFCE);
2016 		ctrl |= E1000_CTRL_RFCE;
2017 		break;
2018 	case E1000_FC_TX_PAUSE:
2019 		ctrl &= (~E1000_CTRL_RFCE);
2020 		ctrl |= E1000_CTRL_TFCE;
2021 		break;
2022 	case E1000_FC_FULL:
2023 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2024 		break;
2025 	default:
2026 		e_dbg("Flow control param set incorrectly\n");
2027 		return -E1000_ERR_CONFIG;
2028 	}
2029 
2030 	/* Disable TX Flow Control for 82542 (rev 2.0) */
2031 	if (hw->mac_type == e1000_82542_rev2_0)
2032 		ctrl &= (~E1000_CTRL_TFCE);
2033 
2034 	ew32(CTRL, ctrl);
2035 	return E1000_SUCCESS;
2036 }
2037 
2038 /**
2039  * e1000_config_fc_after_link_up - configure flow control after autoneg
2040  * @hw: Struct containing variables accessed by shared code
2041  *
2042  * Configures flow control settings after link is established
2043  * Should be called immediately after a valid link has been established.
2044  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2045  * and autonegotiation is enabled, the MAC flow control settings will be set
2046  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2047  * and RFCE bits will be automatically set to the negotiated flow control mode.
2048  */
2049 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2050 {
2051 	s32 ret_val;
2052 	u16 mii_status_reg;
2053 	u16 mii_nway_adv_reg;
2054 	u16 mii_nway_lp_ability_reg;
2055 	u16 speed;
2056 	u16 duplex;
2057 
2058 	/* Check for the case where we have fiber media and auto-neg failed
2059 	 * so we had to force link.  In this case, we need to force the
2060 	 * configuration of the MAC to match the "fc" parameter.
2061 	 */
2062 	if (((hw->media_type == e1000_media_type_fiber) &&
2063 	     (hw->autoneg_failed)) ||
2064 	    ((hw->media_type == e1000_media_type_internal_serdes) &&
2065 	     (hw->autoneg_failed)) ||
2066 	    ((hw->media_type == e1000_media_type_copper) &&
2067 	     (!hw->autoneg))) {
2068 		ret_val = e1000_force_mac_fc(hw);
2069 		if (ret_val) {
2070 			e_dbg("Error forcing flow control settings\n");
2071 			return ret_val;
2072 		}
2073 	}
2074 
2075 	/* Check for the case where we have copper media and auto-neg is
2076 	 * enabled.  In this case, we need to check and see if Auto-Neg
2077 	 * has completed, and if so, how the PHY and link partner has
2078 	 * flow control configured.
2079 	 */
2080 	if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2081 		/* Read the MII Status Register and check to see if AutoNeg
2082 		 * has completed.  We read this twice because this reg has
2083 		 * some "sticky" (latched) bits.
2084 		 */
2085 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2086 		if (ret_val)
2087 			return ret_val;
2088 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2089 		if (ret_val)
2090 			return ret_val;
2091 
2092 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2093 			/* The AutoNeg process has completed, so we now need to
2094 			 * read both the Auto Negotiation Advertisement Register
2095 			 * (Address 4) and the Auto_Negotiation Base Page
2096 			 * Ability Register (Address 5) to determine how flow
2097 			 * control was negotiated.
2098 			 */
2099 			ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2100 						     &mii_nway_adv_reg);
2101 			if (ret_val)
2102 				return ret_val;
2103 			ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2104 						     &mii_nway_lp_ability_reg);
2105 			if (ret_val)
2106 				return ret_val;
2107 
2108 			/* Two bits in the Auto Negotiation Advertisement
2109 			 * Register (Address 4) and two bits in the Auto
2110 			 * Negotiation Base Page Ability Register (Address 5)
2111 			 * determine flow control for both the PHY and the link
2112 			 * partner.  The following table, taken out of the IEEE
2113 			 * 802.3ab/D6.0 dated March 25, 1999, describes these
2114 			 * PAUSE resolution bits and how flow control is
2115 			 * determined based upon these settings.
2116 			 * NOTE:  DC = Don't Care
2117 			 *
2118 			 *   LOCAL DEVICE  |   LINK PARTNER
2119 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2120 			 *-------|---------|-------|---------|------------------
2121 			 *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
2122 			 *   0   |    1    |   0   |   DC    | E1000_FC_NONE
2123 			 *   0   |    1    |   1   |    0    | E1000_FC_NONE
2124 			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2125 			 *   1   |    0    |   0   |   DC    | E1000_FC_NONE
2126 			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2127 			 *   1   |    1    |   0   |    0    | E1000_FC_NONE
2128 			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2129 			 *
2130 			 */
2131 			/* Are both PAUSE bits set to 1?  If so, this implies
2132 			 * Symmetric Flow Control is enabled at both ends.  The
2133 			 * ASM_DIR bits are irrelevant per the spec.
2134 			 *
2135 			 * For Symmetric Flow Control:
2136 			 *
2137 			 *   LOCAL DEVICE  |   LINK PARTNER
2138 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2139 			 *-------|---------|-------|---------|------------------
2140 			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2141 			 *
2142 			 */
2143 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2144 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2145 				/* Now we need to check if the user selected Rx
2146 				 * ONLY of pause frames.  In this case, we had
2147 				 * to advertise FULL flow control because we
2148 				 * could not advertise Rx ONLY. Hence, we must
2149 				 * now check to see if we need to turn OFF the
2150 				 * TRANSMISSION of PAUSE frames.
2151 				 */
2152 				if (hw->original_fc == E1000_FC_FULL) {
2153 					hw->fc = E1000_FC_FULL;
2154 					e_dbg("Flow Control = FULL.\n");
2155 				} else {
2156 					hw->fc = E1000_FC_RX_PAUSE;
2157 					e_dbg
2158 					    ("Flow Control = RX PAUSE frames only.\n");
2159 				}
2160 			}
2161 			/* For receiving PAUSE frames ONLY.
2162 			 *
2163 			 *   LOCAL DEVICE  |   LINK PARTNER
2164 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2165 			 *-------|---------|-------|---------|------------------
2166 			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2167 			 *
2168 			 */
2169 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2170 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2171 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2172 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2173 				hw->fc = E1000_FC_TX_PAUSE;
2174 				e_dbg
2175 				    ("Flow Control = TX PAUSE frames only.\n");
2176 			}
2177 			/* For transmitting PAUSE frames ONLY.
2178 			 *
2179 			 *   LOCAL DEVICE  |   LINK PARTNER
2180 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2181 			 *-------|---------|-------|---------|------------------
2182 			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2183 			 *
2184 			 */
2185 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2186 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2187 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2188 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2189 				hw->fc = E1000_FC_RX_PAUSE;
2190 				e_dbg
2191 				    ("Flow Control = RX PAUSE frames only.\n");
2192 			}
2193 			/* Per the IEEE spec, at this point flow control should
2194 			 * be disabled.  However, we want to consider that we
2195 			 * could be connected to a legacy switch that doesn't
2196 			 * advertise desired flow control, but can be forced on
2197 			 * the link partner.  So if we advertised no flow
2198 			 * control, that is what we will resolve to.  If we
2199 			 * advertised some kind of receive capability (Rx Pause
2200 			 * Only or Full Flow Control) and the link partner
2201 			 * advertised none, we will configure ourselves to
2202 			 * enable Rx Flow Control only.  We can do this safely
2203 			 * for two reasons:  If the link partner really
2204 			 * didn't want flow control enabled, and we enable Rx,
2205 			 * no harm done since we won't be receiving any PAUSE
2206 			 * frames anyway.  If the intent on the link partner was
2207 			 * to have flow control enabled, then by us enabling Rx
2208 			 * only, we can at least receive pause frames and
2209 			 * process them. This is a good idea because in most
2210 			 * cases, since we are predominantly a server NIC, more
2211 			 * times than not we will be asked to delay transmission
2212 			 * of packets than asking our link partner to pause
2213 			 * transmission of frames.
2214 			 */
2215 			else if ((hw->original_fc == E1000_FC_NONE ||
2216 				  hw->original_fc == E1000_FC_TX_PAUSE) ||
2217 				 hw->fc_strict_ieee) {
2218 				hw->fc = E1000_FC_NONE;
2219 				e_dbg("Flow Control = NONE.\n");
2220 			} else {
2221 				hw->fc = E1000_FC_RX_PAUSE;
2222 				e_dbg
2223 				    ("Flow Control = RX PAUSE frames only.\n");
2224 			}
2225 
2226 			/* Now we need to do one last check...  If we auto-
2227 			 * negotiated to HALF DUPLEX, flow control should not be
2228 			 * enabled per IEEE 802.3 spec.
2229 			 */
2230 			ret_val =
2231 			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2232 			if (ret_val) {
2233 				e_dbg
2234 				    ("Error getting link speed and duplex\n");
2235 				return ret_val;
2236 			}
2237 
2238 			if (duplex == HALF_DUPLEX)
2239 				hw->fc = E1000_FC_NONE;
2240 
2241 			/* Now we call a subroutine to actually force the MAC
2242 			 * controller to use the correct flow control settings.
2243 			 */
2244 			ret_val = e1000_force_mac_fc(hw);
2245 			if (ret_val) {
2246 				e_dbg
2247 				    ("Error forcing flow control settings\n");
2248 				return ret_val;
2249 			}
2250 		} else {
2251 			e_dbg
2252 			    ("Copper PHY and Auto Neg has not completed.\n");
2253 		}
2254 	}
2255 	return E1000_SUCCESS;
2256 }
2257 
2258 /**
2259  * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2260  * @hw: pointer to the HW structure
2261  *
2262  * Checks for link up on the hardware.  If link is not up and we have
2263  * a signal, then we need to force link up.
2264  */
2265 static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
2266 {
2267 	u32 rxcw;
2268 	u32 ctrl;
2269 	u32 status;
2270 	s32 ret_val = E1000_SUCCESS;
2271 
2272 	ctrl = er32(CTRL);
2273 	status = er32(STATUS);
2274 	rxcw = er32(RXCW);
2275 
2276 	/* If we don't have link (auto-negotiation failed or link partner
2277 	 * cannot auto-negotiate), and our link partner is not trying to
2278 	 * auto-negotiate with us (we are receiving idles or data),
2279 	 * we need to force link up. We also need to give auto-negotiation
2280 	 * time to complete.
2281 	 */
2282 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2283 	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2284 		if (hw->autoneg_failed == 0) {
2285 			hw->autoneg_failed = 1;
2286 			goto out;
2287 		}
2288 		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
2289 
2290 		/* Disable auto-negotiation in the TXCW register */
2291 		ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2292 
2293 		/* Force link-up and also force full-duplex. */
2294 		ctrl = er32(CTRL);
2295 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2296 		ew32(CTRL, ctrl);
2297 
2298 		/* Configure Flow Control after forcing link up. */
2299 		ret_val = e1000_config_fc_after_link_up(hw);
2300 		if (ret_val) {
2301 			e_dbg("Error configuring flow control\n");
2302 			goto out;
2303 		}
2304 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2305 		/* If we are forcing link and we are receiving /C/ ordered
2306 		 * sets, re-enable auto-negotiation in the TXCW register
2307 		 * and disable forced link in the Device Control register
2308 		 * in an attempt to auto-negotiate with our link partner.
2309 		 */
2310 		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
2311 		ew32(TXCW, hw->txcw);
2312 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2313 
2314 		hw->serdes_has_link = true;
2315 	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2316 		/* If we force link for non-auto-negotiation switch, check
2317 		 * link status based on MAC synchronization for internal
2318 		 * serdes media type.
2319 		 */
2320 		/* SYNCH bit and IV bit are sticky. */
2321 		udelay(10);
2322 		rxcw = er32(RXCW);
2323 		if (rxcw & E1000_RXCW_SYNCH) {
2324 			if (!(rxcw & E1000_RXCW_IV)) {
2325 				hw->serdes_has_link = true;
2326 				e_dbg("SERDES: Link up - forced.\n");
2327 			}
2328 		} else {
2329 			hw->serdes_has_link = false;
2330 			e_dbg("SERDES: Link down - force failed.\n");
2331 		}
2332 	}
2333 
2334 	if (E1000_TXCW_ANE & er32(TXCW)) {
2335 		status = er32(STATUS);
2336 		if (status & E1000_STATUS_LU) {
2337 			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
2338 			udelay(10);
2339 			rxcw = er32(RXCW);
2340 			if (rxcw & E1000_RXCW_SYNCH) {
2341 				if (!(rxcw & E1000_RXCW_IV)) {
2342 					hw->serdes_has_link = true;
2343 					e_dbg("SERDES: Link up - autoneg "
2344 						 "completed successfully.\n");
2345 				} else {
2346 					hw->serdes_has_link = false;
2347 					e_dbg("SERDES: Link down - invalid"
2348 						 "codewords detected in autoneg.\n");
2349 				}
2350 			} else {
2351 				hw->serdes_has_link = false;
2352 				e_dbg("SERDES: Link down - no sync.\n");
2353 			}
2354 		} else {
2355 			hw->serdes_has_link = false;
2356 			e_dbg("SERDES: Link down - autoneg failed\n");
2357 		}
2358 	}
2359 
2360       out:
2361 	return ret_val;
2362 }
2363 
2364 /**
2365  * e1000_check_for_link
2366  * @hw: Struct containing variables accessed by shared code
2367  *
2368  * Checks to see if the link status of the hardware has changed.
2369  * Called by any function that needs to check the link status of the adapter.
2370  */
2371 s32 e1000_check_for_link(struct e1000_hw *hw)
2372 {
2373 	u32 rxcw = 0;
2374 	u32 ctrl;
2375 	u32 status;
2376 	u32 rctl;
2377 	u32 icr;
2378 	u32 signal = 0;
2379 	s32 ret_val;
2380 	u16 phy_data;
2381 
2382 	ctrl = er32(CTRL);
2383 	status = er32(STATUS);
2384 
2385 	/* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2386 	 * set when the optics detect a signal. On older adapters, it will be
2387 	 * cleared when there is a signal.  This applies to fiber media only.
2388 	 */
2389 	if ((hw->media_type == e1000_media_type_fiber) ||
2390 	    (hw->media_type == e1000_media_type_internal_serdes)) {
2391 		rxcw = er32(RXCW);
2392 
2393 		if (hw->media_type == e1000_media_type_fiber) {
2394 			signal =
2395 			    (hw->mac_type >
2396 			     e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2397 			if (status & E1000_STATUS_LU)
2398 				hw->get_link_status = false;
2399 		}
2400 	}
2401 
2402 	/* If we have a copper PHY then we only want to go out to the PHY
2403 	 * registers to see if Auto-Neg has completed and/or if our link
2404 	 * status has changed.  The get_link_status flag will be set if we
2405 	 * receive a Link Status Change interrupt or we have Rx Sequence
2406 	 * Errors.
2407 	 */
2408 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2409 		/* First we want to see if the MII Status Register reports
2410 		 * link.  If so, then we want to get the current speed/duplex
2411 		 * of the PHY.
2412 		 * Read the register twice since the link bit is sticky.
2413 		 */
2414 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2415 		if (ret_val)
2416 			return ret_val;
2417 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2418 		if (ret_val)
2419 			return ret_val;
2420 
2421 		if (phy_data & MII_SR_LINK_STATUS) {
2422 			hw->get_link_status = false;
2423 			/* Check if there was DownShift, must be checked
2424 			 * immediately after link-up
2425 			 */
2426 			e1000_check_downshift(hw);
2427 
2428 			/* If we are on 82544 or 82543 silicon and speed/duplex
2429 			 * are forced to 10H or 10F, then we will implement the
2430 			 * polarity reversal workaround.  We disable interrupts
2431 			 * first, and upon returning, place the devices
2432 			 * interrupt state to its previous value except for the
2433 			 * link status change interrupt which will
2434 			 * happen due to the execution of this workaround.
2435 			 */
2436 
2437 			if ((hw->mac_type == e1000_82544 ||
2438 			     hw->mac_type == e1000_82543) &&
2439 			    (!hw->autoneg) &&
2440 			    (hw->forced_speed_duplex == e1000_10_full ||
2441 			     hw->forced_speed_duplex == e1000_10_half)) {
2442 				ew32(IMC, 0xffffffff);
2443 				ret_val =
2444 				    e1000_polarity_reversal_workaround(hw);
2445 				icr = er32(ICR);
2446 				ew32(ICS, (icr & ~E1000_ICS_LSC));
2447 				ew32(IMS, IMS_ENABLE_MASK);
2448 			}
2449 
2450 		} else {
2451 			/* No link detected */
2452 			e1000_config_dsp_after_link_change(hw, false);
2453 			return 0;
2454 		}
2455 
2456 		/* If we are forcing speed/duplex, then we simply return since
2457 		 * we have already determined whether we have link or not.
2458 		 */
2459 		if (!hw->autoneg)
2460 			return -E1000_ERR_CONFIG;
2461 
2462 		/* optimize the dsp settings for the igp phy */
2463 		e1000_config_dsp_after_link_change(hw, true);
2464 
2465 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
2466 		 * have Si on board that is 82544 or newer, Auto
2467 		 * Speed Detection takes care of MAC speed/duplex
2468 		 * configuration.  So we only need to configure Collision
2469 		 * Distance in the MAC.  Otherwise, we need to force
2470 		 * speed/duplex on the MAC to the current PHY speed/duplex
2471 		 * settings.
2472 		 */
2473 		if ((hw->mac_type >= e1000_82544) &&
2474 		    (hw->mac_type != e1000_ce4100))
2475 			e1000_config_collision_dist(hw);
2476 		else {
2477 			ret_val = e1000_config_mac_to_phy(hw);
2478 			if (ret_val) {
2479 				e_dbg
2480 				    ("Error configuring MAC to PHY settings\n");
2481 				return ret_val;
2482 			}
2483 		}
2484 
2485 		/* Configure Flow Control now that Auto-Neg has completed.
2486 		 * First, we need to restore the desired flow control settings
2487 		 * because we may have had to re-autoneg with a different link
2488 		 * partner.
2489 		 */
2490 		ret_val = e1000_config_fc_after_link_up(hw);
2491 		if (ret_val) {
2492 			e_dbg("Error configuring flow control\n");
2493 			return ret_val;
2494 		}
2495 
2496 		/* At this point we know that we are on copper and we have
2497 		 * auto-negotiated link.  These are conditions for checking the
2498 		 * link partner capability register.  We use the link speed to
2499 		 * determine if TBI compatibility needs to be turned on or off.
2500 		 * If the link is not at gigabit speed, then TBI compatibility
2501 		 * is not needed.  If we are at gigabit speed, we turn on TBI
2502 		 * compatibility.
2503 		 */
2504 		if (hw->tbi_compatibility_en) {
2505 			u16 speed, duplex;
2506 
2507 			ret_val =
2508 			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2509 
2510 			if (ret_val) {
2511 				e_dbg
2512 				    ("Error getting link speed and duplex\n");
2513 				return ret_val;
2514 			}
2515 			if (speed != SPEED_1000) {
2516 				/* If link speed is not set to gigabit speed, we
2517 				 * do not need to enable TBI compatibility.
2518 				 */
2519 				if (hw->tbi_compatibility_on) {
2520 					/* If we previously were in the mode,
2521 					 * turn it off.
2522 					 */
2523 					rctl = er32(RCTL);
2524 					rctl &= ~E1000_RCTL_SBP;
2525 					ew32(RCTL, rctl);
2526 					hw->tbi_compatibility_on = false;
2527 				}
2528 			} else {
2529 				/* If TBI compatibility is was previously off,
2530 				 * turn it on. For compatibility with a TBI link
2531 				 * partner, we will store bad packets. Some
2532 				 * frames have an additional byte on the end and
2533 				 * will look like CRC errors to to the hardware.
2534 				 */
2535 				if (!hw->tbi_compatibility_on) {
2536 					hw->tbi_compatibility_on = true;
2537 					rctl = er32(RCTL);
2538 					rctl |= E1000_RCTL_SBP;
2539 					ew32(RCTL, rctl);
2540 				}
2541 			}
2542 		}
2543 	}
2544 
2545 	if ((hw->media_type == e1000_media_type_fiber) ||
2546 	    (hw->media_type == e1000_media_type_internal_serdes))
2547 		e1000_check_for_serdes_link_generic(hw);
2548 
2549 	return E1000_SUCCESS;
2550 }
2551 
2552 /**
2553  * e1000_get_speed_and_duplex
2554  * @hw: Struct containing variables accessed by shared code
2555  * @speed: Speed of the connection
2556  * @duplex: Duplex setting of the connection
2557  *
2558  * Detects the current speed and duplex settings of the hardware.
2559  */
2560 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
2561 {
2562 	u32 status;
2563 	s32 ret_val;
2564 	u16 phy_data;
2565 
2566 	if (hw->mac_type >= e1000_82543) {
2567 		status = er32(STATUS);
2568 		if (status & E1000_STATUS_SPEED_1000) {
2569 			*speed = SPEED_1000;
2570 			e_dbg("1000 Mbs, ");
2571 		} else if (status & E1000_STATUS_SPEED_100) {
2572 			*speed = SPEED_100;
2573 			e_dbg("100 Mbs, ");
2574 		} else {
2575 			*speed = SPEED_10;
2576 			e_dbg("10 Mbs, ");
2577 		}
2578 
2579 		if (status & E1000_STATUS_FD) {
2580 			*duplex = FULL_DUPLEX;
2581 			e_dbg("Full Duplex\n");
2582 		} else {
2583 			*duplex = HALF_DUPLEX;
2584 			e_dbg(" Half Duplex\n");
2585 		}
2586 	} else {
2587 		e_dbg("1000 Mbs, Full Duplex\n");
2588 		*speed = SPEED_1000;
2589 		*duplex = FULL_DUPLEX;
2590 	}
2591 
2592 	/* IGP01 PHY may advertise full duplex operation after speed downgrade
2593 	 * even if it is operating at half duplex.  Here we set the duplex
2594 	 * settings to match the duplex in the link partner's capabilities.
2595 	 */
2596 	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2597 		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2598 		if (ret_val)
2599 			return ret_val;
2600 
2601 		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2602 			*duplex = HALF_DUPLEX;
2603 		else {
2604 			ret_val =
2605 			    e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2606 			if (ret_val)
2607 				return ret_val;
2608 			if ((*speed == SPEED_100 &&
2609 			     !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
2610 			    (*speed == SPEED_10 &&
2611 			     !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2612 				*duplex = HALF_DUPLEX;
2613 		}
2614 	}
2615 
2616 	return E1000_SUCCESS;
2617 }
2618 
2619 /**
2620  * e1000_wait_autoneg
2621  * @hw: Struct containing variables accessed by shared code
2622  *
2623  * Blocks until autoneg completes or times out (~4.5 seconds)
2624  */
2625 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2626 {
2627 	s32 ret_val;
2628 	u16 i;
2629 	u16 phy_data;
2630 
2631 	e_dbg("Waiting for Auto-Neg to complete.\n");
2632 
2633 	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
2634 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2635 		/* Read the MII Status Register and wait for Auto-Neg
2636 		 * Complete bit to be set.
2637 		 */
2638 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2639 		if (ret_val)
2640 			return ret_val;
2641 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2642 		if (ret_val)
2643 			return ret_val;
2644 		if (phy_data & MII_SR_AUTONEG_COMPLETE)
2645 			return E1000_SUCCESS;
2646 
2647 		msleep(100);
2648 	}
2649 	return E1000_SUCCESS;
2650 }
2651 
2652 /**
2653  * e1000_raise_mdi_clk - Raises the Management Data Clock
2654  * @hw: Struct containing variables accessed by shared code
2655  * @ctrl: Device control register's current value
2656  */
2657 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2658 {
2659 	/* Raise the clock input to the Management Data Clock (by setting the
2660 	 * MDC bit), and then delay 10 microseconds.
2661 	 */
2662 	ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2663 	E1000_WRITE_FLUSH();
2664 	udelay(10);
2665 }
2666 
2667 /**
2668  * e1000_lower_mdi_clk - Lowers the Management Data Clock
2669  * @hw: Struct containing variables accessed by shared code
2670  * @ctrl: Device control register's current value
2671  */
2672 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2673 {
2674 	/* Lower the clock input to the Management Data Clock (by clearing the
2675 	 * MDC bit), and then delay 10 microseconds.
2676 	 */
2677 	ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2678 	E1000_WRITE_FLUSH();
2679 	udelay(10);
2680 }
2681 
2682 /**
2683  * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2684  * @hw: Struct containing variables accessed by shared code
2685  * @data: Data to send out to the PHY
2686  * @count: Number of bits to shift out
2687  *
2688  * Bits are shifted out in MSB to LSB order.
2689  */
2690 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
2691 {
2692 	u32 ctrl;
2693 	u32 mask;
2694 
2695 	/* We need to shift "count" number of bits out to the PHY. So, the value
2696 	 * in the "data" parameter will be shifted out to the PHY one bit at a
2697 	 * time. In order to do this, "data" must be broken down into bits.
2698 	 */
2699 	mask = 0x01;
2700 	mask <<= (count - 1);
2701 
2702 	ctrl = er32(CTRL);
2703 
2704 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2705 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2706 
2707 	while (mask) {
2708 		/* A "1" is shifted out to the PHY by setting the MDIO bit to
2709 		 * "1" and then raising and lowering the Management Data Clock.
2710 		 * A "0" is shifted out to the PHY by setting the MDIO bit to
2711 		 * "0" and then raising and lowering the clock.
2712 		 */
2713 		if (data & mask)
2714 			ctrl |= E1000_CTRL_MDIO;
2715 		else
2716 			ctrl &= ~E1000_CTRL_MDIO;
2717 
2718 		ew32(CTRL, ctrl);
2719 		E1000_WRITE_FLUSH();
2720 
2721 		udelay(10);
2722 
2723 		e1000_raise_mdi_clk(hw, &ctrl);
2724 		e1000_lower_mdi_clk(hw, &ctrl);
2725 
2726 		mask = mask >> 1;
2727 	}
2728 }
2729 
2730 /**
2731  * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2732  * @hw: Struct containing variables accessed by shared code
2733  *
2734  * Bits are shifted in in MSB to LSB order.
2735  */
2736 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2737 {
2738 	u32 ctrl;
2739 	u16 data = 0;
2740 	u8 i;
2741 
2742 	/* In order to read a register from the PHY, we need to shift in a total
2743 	 * of 18 bits from the PHY. The first two bit (turnaround) times are
2744 	 * used to avoid contention on the MDIO pin when a read operation is
2745 	 * performed. These two bits are ignored by us and thrown away. Bits are
2746 	 * "shifted in" by raising the input to the Management Data Clock
2747 	 * (setting the MDC bit), and then reading the value of the MDIO bit.
2748 	 */
2749 	ctrl = er32(CTRL);
2750 
2751 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
2752 	 * input.
2753 	 */
2754 	ctrl &= ~E1000_CTRL_MDIO_DIR;
2755 	ctrl &= ~E1000_CTRL_MDIO;
2756 
2757 	ew32(CTRL, ctrl);
2758 	E1000_WRITE_FLUSH();
2759 
2760 	/* Raise and Lower the clock before reading in the data. This accounts
2761 	 * for the turnaround bits. The first clock occurred when we clocked out
2762 	 * the last bit of the Register Address.
2763 	 */
2764 	e1000_raise_mdi_clk(hw, &ctrl);
2765 	e1000_lower_mdi_clk(hw, &ctrl);
2766 
2767 	for (data = 0, i = 0; i < 16; i++) {
2768 		data = data << 1;
2769 		e1000_raise_mdi_clk(hw, &ctrl);
2770 		ctrl = er32(CTRL);
2771 		/* Check to see if we shifted in a "1". */
2772 		if (ctrl & E1000_CTRL_MDIO)
2773 			data |= 1;
2774 		e1000_lower_mdi_clk(hw, &ctrl);
2775 	}
2776 
2777 	e1000_raise_mdi_clk(hw, &ctrl);
2778 	e1000_lower_mdi_clk(hw, &ctrl);
2779 
2780 	return data;
2781 }
2782 
2783 /**
2784  * e1000_read_phy_reg - read a phy register
2785  * @hw: Struct containing variables accessed by shared code
2786  * @reg_addr: address of the PHY register to read
2787  * @phy_data: pointer to the value on the PHY register
2788  *
2789  * Reads the value from a PHY register, if the value is on a specific non zero
2790  * page, sets the page first.
2791  */
2792 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
2793 {
2794 	u32 ret_val;
2795 	unsigned long flags;
2796 
2797 	spin_lock_irqsave(&e1000_phy_lock, flags);
2798 
2799 	if ((hw->phy_type == e1000_phy_igp) &&
2800 	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2801 		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2802 						 (u16) reg_addr);
2803 		if (ret_val)
2804 			goto out;
2805 	}
2806 
2807 	ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2808 					phy_data);
2809 out:
2810 	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2811 
2812 	return ret_val;
2813 }
2814 
2815 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2816 				 u16 *phy_data)
2817 {
2818 	u32 i;
2819 	u32 mdic = 0;
2820 	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2821 
2822 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2823 		e_dbg("PHY Address %d is out of range\n", reg_addr);
2824 		return -E1000_ERR_PARAM;
2825 	}
2826 
2827 	if (hw->mac_type > e1000_82543) {
2828 		/* Set up Op-code, Phy Address, and register address in the MDI
2829 		 * Control register.  The MAC will take care of interfacing with
2830 		 * the PHY to retrieve the desired data.
2831 		 */
2832 		if (hw->mac_type == e1000_ce4100) {
2833 			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2834 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2835 				(INTEL_CE_GBE_MDIC_OP_READ) |
2836 				(INTEL_CE_GBE_MDIC_GO));
2837 
2838 			writel(mdic, E1000_MDIO_CMD);
2839 
2840 			/* Poll the ready bit to see if the MDI read
2841 			 * completed
2842 			 */
2843 			for (i = 0; i < 64; i++) {
2844 				udelay(50);
2845 				mdic = readl(E1000_MDIO_CMD);
2846 				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2847 					break;
2848 			}
2849 
2850 			if (mdic & INTEL_CE_GBE_MDIC_GO) {
2851 				e_dbg("MDI Read did not complete\n");
2852 				return -E1000_ERR_PHY;
2853 			}
2854 
2855 			mdic = readl(E1000_MDIO_STS);
2856 			if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2857 				e_dbg("MDI Read Error\n");
2858 				return -E1000_ERR_PHY;
2859 			}
2860 			*phy_data = (u16)mdic;
2861 		} else {
2862 			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2863 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2864 				(E1000_MDIC_OP_READ));
2865 
2866 			ew32(MDIC, mdic);
2867 
2868 			/* Poll the ready bit to see if the MDI read
2869 			 * completed
2870 			 */
2871 			for (i = 0; i < 64; i++) {
2872 				udelay(50);
2873 				mdic = er32(MDIC);
2874 				if (mdic & E1000_MDIC_READY)
2875 					break;
2876 			}
2877 			if (!(mdic & E1000_MDIC_READY)) {
2878 				e_dbg("MDI Read did not complete\n");
2879 				return -E1000_ERR_PHY;
2880 			}
2881 			if (mdic & E1000_MDIC_ERROR) {
2882 				e_dbg("MDI Error\n");
2883 				return -E1000_ERR_PHY;
2884 			}
2885 			*phy_data = (u16)mdic;
2886 		}
2887 	} else {
2888 		/* We must first send a preamble through the MDIO pin to signal
2889 		 * the beginning of an MII instruction.  This is done by sending
2890 		 * 32 consecutive "1" bits.
2891 		 */
2892 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2893 
2894 		/* Now combine the next few fields that are required for a read
2895 		 * operation.  We use this method instead of calling the
2896 		 * e1000_shift_out_mdi_bits routine five different times. The
2897 		 * format of a MII read instruction consists of a shift out of
2898 		 * 14 bits and is defined as follows:
2899 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2900 		 * followed by a shift in of 18 bits.  This first two bits
2901 		 * shifted in are TurnAround bits used to avoid contention on
2902 		 * the MDIO pin when a READ operation is performed.  These two
2903 		 * bits are thrown away followed by a shift in of 16 bits which
2904 		 * contains the desired data.
2905 		 */
2906 		mdic = ((reg_addr) | (phy_addr << 5) |
2907 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
2908 
2909 		e1000_shift_out_mdi_bits(hw, mdic, 14);
2910 
2911 		/* Now that we've shifted out the read command to the MII, we
2912 		 * need to "shift in" the 16-bit value (18 total bits) of the
2913 		 * requested PHY register address.
2914 		 */
2915 		*phy_data = e1000_shift_in_mdi_bits(hw);
2916 	}
2917 	return E1000_SUCCESS;
2918 }
2919 
2920 /**
2921  * e1000_write_phy_reg - write a phy register
2922  *
2923  * @hw: Struct containing variables accessed by shared code
2924  * @reg_addr: address of the PHY register to write
2925  * @data: data to write to the PHY
2926  *
2927  * Writes a value to a PHY register
2928  */
2929 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
2930 {
2931 	u32 ret_val;
2932 	unsigned long flags;
2933 
2934 	spin_lock_irqsave(&e1000_phy_lock, flags);
2935 
2936 	if ((hw->phy_type == e1000_phy_igp) &&
2937 	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2938 		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2939 						 (u16)reg_addr);
2940 		if (ret_val) {
2941 			spin_unlock_irqrestore(&e1000_phy_lock, flags);
2942 			return ret_val;
2943 		}
2944 	}
2945 
2946 	ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2947 					 phy_data);
2948 	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2949 
2950 	return ret_val;
2951 }
2952 
2953 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2954 				  u16 phy_data)
2955 {
2956 	u32 i;
2957 	u32 mdic = 0;
2958 	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2959 
2960 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2961 		e_dbg("PHY Address %d is out of range\n", reg_addr);
2962 		return -E1000_ERR_PARAM;
2963 	}
2964 
2965 	if (hw->mac_type > e1000_82543) {
2966 		/* Set up Op-code, Phy Address, register address, and data
2967 		 * intended for the PHY register in the MDI Control register.
2968 		 * The MAC will take care of interfacing with the PHY to send
2969 		 * the desired data.
2970 		 */
2971 		if (hw->mac_type == e1000_ce4100) {
2972 			mdic = (((u32)phy_data) |
2973 				(reg_addr << E1000_MDIC_REG_SHIFT) |
2974 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2975 				(INTEL_CE_GBE_MDIC_OP_WRITE) |
2976 				(INTEL_CE_GBE_MDIC_GO));
2977 
2978 			writel(mdic, E1000_MDIO_CMD);
2979 
2980 			/* Poll the ready bit to see if the MDI read
2981 			 * completed
2982 			 */
2983 			for (i = 0; i < 640; i++) {
2984 				udelay(5);
2985 				mdic = readl(E1000_MDIO_CMD);
2986 				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2987 					break;
2988 			}
2989 			if (mdic & INTEL_CE_GBE_MDIC_GO) {
2990 				e_dbg("MDI Write did not complete\n");
2991 				return -E1000_ERR_PHY;
2992 			}
2993 		} else {
2994 			mdic = (((u32)phy_data) |
2995 				(reg_addr << E1000_MDIC_REG_SHIFT) |
2996 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2997 				(E1000_MDIC_OP_WRITE));
2998 
2999 			ew32(MDIC, mdic);
3000 
3001 			/* Poll the ready bit to see if the MDI read
3002 			 * completed
3003 			 */
3004 			for (i = 0; i < 641; i++) {
3005 				udelay(5);
3006 				mdic = er32(MDIC);
3007 				if (mdic & E1000_MDIC_READY)
3008 					break;
3009 			}
3010 			if (!(mdic & E1000_MDIC_READY)) {
3011 				e_dbg("MDI Write did not complete\n");
3012 				return -E1000_ERR_PHY;
3013 			}
3014 		}
3015 	} else {
3016 		/* We'll need to use the SW defined pins to shift the write
3017 		 * command out to the PHY. We first send a preamble to the PHY
3018 		 * to signal the beginning of the MII instruction.  This is done
3019 		 * by sending 32 consecutive "1" bits.
3020 		 */
3021 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3022 
3023 		/* Now combine the remaining required fields that will indicate
3024 		 * a write operation. We use this method instead of calling the
3025 		 * e1000_shift_out_mdi_bits routine for each field in the
3026 		 * command. The format of a MII write instruction is as follows:
3027 		 * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>.
3028 		 */
3029 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3030 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3031 		mdic <<= 16;
3032 		mdic |= (u32)phy_data;
3033 
3034 		e1000_shift_out_mdi_bits(hw, mdic, 32);
3035 	}
3036 
3037 	return E1000_SUCCESS;
3038 }
3039 
3040 /**
3041  * e1000_phy_hw_reset - reset the phy, hardware style
3042  * @hw: Struct containing variables accessed by shared code
3043  *
3044  * Returns the PHY to the power-on reset state
3045  */
3046 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3047 {
3048 	u32 ctrl, ctrl_ext;
3049 	u32 led_ctrl;
3050 
3051 	e_dbg("Resetting Phy...\n");
3052 
3053 	if (hw->mac_type > e1000_82543) {
3054 		/* Read the device control register and assert the
3055 		 * E1000_CTRL_PHY_RST bit. Then, take it out of reset.
3056 		 * For e1000 hardware, we delay for 10ms between the assert
3057 		 * and de-assert.
3058 		 */
3059 		ctrl = er32(CTRL);
3060 		ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3061 		E1000_WRITE_FLUSH();
3062 
3063 		msleep(10);
3064 
3065 		ew32(CTRL, ctrl);
3066 		E1000_WRITE_FLUSH();
3067 
3068 	} else {
3069 		/* Read the Extended Device Control Register, assert the
3070 		 * PHY_RESET_DIR bit to put the PHY into reset. Then, take it
3071 		 * out of reset.
3072 		 */
3073 		ctrl_ext = er32(CTRL_EXT);
3074 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3075 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3076 		ew32(CTRL_EXT, ctrl_ext);
3077 		E1000_WRITE_FLUSH();
3078 		msleep(10);
3079 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3080 		ew32(CTRL_EXT, ctrl_ext);
3081 		E1000_WRITE_FLUSH();
3082 	}
3083 	udelay(150);
3084 
3085 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3086 		/* Configure activity LED after PHY reset */
3087 		led_ctrl = er32(LEDCTL);
3088 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
3089 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3090 		ew32(LEDCTL, led_ctrl);
3091 	}
3092 
3093 	/* Wait for FW to finish PHY configuration. */
3094 	return e1000_get_phy_cfg_done(hw);
3095 }
3096 
3097 /**
3098  * e1000_phy_reset - reset the phy to commit settings
3099  * @hw: Struct containing variables accessed by shared code
3100  *
3101  * Resets the PHY
3102  * Sets bit 15 of the MII Control register
3103  */
3104 s32 e1000_phy_reset(struct e1000_hw *hw)
3105 {
3106 	s32 ret_val;
3107 	u16 phy_data;
3108 
3109 	switch (hw->phy_type) {
3110 	case e1000_phy_igp:
3111 		ret_val = e1000_phy_hw_reset(hw);
3112 		if (ret_val)
3113 			return ret_val;
3114 		break;
3115 	default:
3116 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3117 		if (ret_val)
3118 			return ret_val;
3119 
3120 		phy_data |= MII_CR_RESET;
3121 		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3122 		if (ret_val)
3123 			return ret_val;
3124 
3125 		udelay(1);
3126 		break;
3127 	}
3128 
3129 	if (hw->phy_type == e1000_phy_igp)
3130 		e1000_phy_init_script(hw);
3131 
3132 	return E1000_SUCCESS;
3133 }
3134 
3135 /**
3136  * e1000_detect_gig_phy - check the phy type
3137  * @hw: Struct containing variables accessed by shared code
3138  *
3139  * Probes the expected PHY address for known PHY IDs
3140  */
3141 static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
3142 {
3143 	s32 phy_init_status, ret_val;
3144 	u16 phy_id_high, phy_id_low;
3145 	bool match = false;
3146 
3147 	if (hw->phy_id != 0)
3148 		return E1000_SUCCESS;
3149 
3150 	/* Read the PHY ID Registers to identify which PHY is onboard. */
3151 	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3152 	if (ret_val)
3153 		return ret_val;
3154 
3155 	hw->phy_id = (u32)(phy_id_high << 16);
3156 	udelay(20);
3157 	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3158 	if (ret_val)
3159 		return ret_val;
3160 
3161 	hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK);
3162 	hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK;
3163 
3164 	switch (hw->mac_type) {
3165 	case e1000_82543:
3166 		if (hw->phy_id == M88E1000_E_PHY_ID)
3167 			match = true;
3168 		break;
3169 	case e1000_82544:
3170 		if (hw->phy_id == M88E1000_I_PHY_ID)
3171 			match = true;
3172 		break;
3173 	case e1000_82540:
3174 	case e1000_82545:
3175 	case e1000_82545_rev_3:
3176 	case e1000_82546:
3177 	case e1000_82546_rev_3:
3178 		if (hw->phy_id == M88E1011_I_PHY_ID)
3179 			match = true;
3180 		break;
3181 	case e1000_ce4100:
3182 		if ((hw->phy_id == RTL8211B_PHY_ID) ||
3183 		    (hw->phy_id == RTL8201N_PHY_ID) ||
3184 		    (hw->phy_id == M88E1118_E_PHY_ID))
3185 			match = true;
3186 		break;
3187 	case e1000_82541:
3188 	case e1000_82541_rev_2:
3189 	case e1000_82547:
3190 	case e1000_82547_rev_2:
3191 		if (hw->phy_id == IGP01E1000_I_PHY_ID)
3192 			match = true;
3193 		break;
3194 	default:
3195 		e_dbg("Invalid MAC type %d\n", hw->mac_type);
3196 		return -E1000_ERR_CONFIG;
3197 	}
3198 	phy_init_status = e1000_set_phy_type(hw);
3199 
3200 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
3201 		e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
3202 		return E1000_SUCCESS;
3203 	}
3204 	e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
3205 	return -E1000_ERR_PHY;
3206 }
3207 
3208 /**
3209  * e1000_phy_reset_dsp - reset DSP
3210  * @hw: Struct containing variables accessed by shared code
3211  *
3212  * Resets the PHY's DSP
3213  */
3214 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
3215 {
3216 	s32 ret_val;
3217 
3218 	do {
3219 		ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3220 		if (ret_val)
3221 			break;
3222 		ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3223 		if (ret_val)
3224 			break;
3225 		ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3226 		if (ret_val)
3227 			break;
3228 		ret_val = E1000_SUCCESS;
3229 	} while (0);
3230 
3231 	return ret_val;
3232 }
3233 
3234 /**
3235  * e1000_phy_igp_get_info - get igp specific registers
3236  * @hw: Struct containing variables accessed by shared code
3237  * @phy_info: PHY information structure
3238  *
3239  * Get PHY information from various PHY registers for igp PHY only.
3240  */
3241 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3242 				  struct e1000_phy_info *phy_info)
3243 {
3244 	s32 ret_val;
3245 	u16 phy_data, min_length, max_length, average;
3246 	e1000_rev_polarity polarity;
3247 
3248 	/* The downshift status is checked only once, after link is established,
3249 	 * and it stored in the hw->speed_downgraded parameter.
3250 	 */
3251 	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3252 
3253 	/* IGP01E1000 does not need to support it. */
3254 	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3255 
3256 	/* IGP01E1000 always correct polarity reversal */
3257 	phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3258 
3259 	/* Check polarity status */
3260 	ret_val = e1000_check_polarity(hw, &polarity);
3261 	if (ret_val)
3262 		return ret_val;
3263 
3264 	phy_info->cable_polarity = polarity;
3265 
3266 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3267 	if (ret_val)
3268 		return ret_val;
3269 
3270 	phy_info->mdix_mode =
3271 	    (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
3272 				 IGP01E1000_PSSR_MDIX_SHIFT);
3273 
3274 	if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3275 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
3276 		/* Local/Remote Receiver Information are only valid @ 1000
3277 		 * Mbps
3278 		 */
3279 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3280 		if (ret_val)
3281 			return ret_val;
3282 
3283 		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3284 				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3285 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3286 		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3287 				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3288 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3289 
3290 		/* Get cable length */
3291 		ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3292 		if (ret_val)
3293 			return ret_val;
3294 
3295 		/* Translate to old method */
3296 		average = (max_length + min_length) / 2;
3297 
3298 		if (average <= e1000_igp_cable_length_50)
3299 			phy_info->cable_length = e1000_cable_length_50;
3300 		else if (average <= e1000_igp_cable_length_80)
3301 			phy_info->cable_length = e1000_cable_length_50_80;
3302 		else if (average <= e1000_igp_cable_length_110)
3303 			phy_info->cable_length = e1000_cable_length_80_110;
3304 		else if (average <= e1000_igp_cable_length_140)
3305 			phy_info->cable_length = e1000_cable_length_110_140;
3306 		else
3307 			phy_info->cable_length = e1000_cable_length_140;
3308 	}
3309 
3310 	return E1000_SUCCESS;
3311 }
3312 
3313 /**
3314  * e1000_phy_m88_get_info - get m88 specific registers
3315  * @hw: Struct containing variables accessed by shared code
3316  * @phy_info: PHY information structure
3317  *
3318  * Get PHY information from various PHY registers for m88 PHY only.
3319  */
3320 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3321 				  struct e1000_phy_info *phy_info)
3322 {
3323 	s32 ret_val;
3324 	u16 phy_data;
3325 	e1000_rev_polarity polarity;
3326 
3327 	/* The downshift status is checked only once, after link is established,
3328 	 * and it stored in the hw->speed_downgraded parameter.
3329 	 */
3330 	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3331 
3332 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3333 	if (ret_val)
3334 		return ret_val;
3335 
3336 	phy_info->extended_10bt_distance =
3337 	    ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3338 	     M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
3339 	    e1000_10bt_ext_dist_enable_lower :
3340 	    e1000_10bt_ext_dist_enable_normal;
3341 
3342 	phy_info->polarity_correction =
3343 	    ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3344 	     M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
3345 	    e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
3346 
3347 	/* Check polarity status */
3348 	ret_val = e1000_check_polarity(hw, &polarity);
3349 	if (ret_val)
3350 		return ret_val;
3351 	phy_info->cable_polarity = polarity;
3352 
3353 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3354 	if (ret_val)
3355 		return ret_val;
3356 
3357 	phy_info->mdix_mode =
3358 	    (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
3359 				 M88E1000_PSSR_MDIX_SHIFT);
3360 
3361 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3362 		/* Cable Length Estimation and Local/Remote Receiver Information
3363 		 * are only valid at 1000 Mbps.
3364 		 */
3365 		phy_info->cable_length =
3366 		    (e1000_cable_length) ((phy_data &
3367 					   M88E1000_PSSR_CABLE_LENGTH) >>
3368 					  M88E1000_PSSR_CABLE_LENGTH_SHIFT);
3369 
3370 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3371 		if (ret_val)
3372 			return ret_val;
3373 
3374 		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3375 				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3376 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3377 		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3378 				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3379 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3380 	}
3381 
3382 	return E1000_SUCCESS;
3383 }
3384 
3385 /**
3386  * e1000_phy_get_info - request phy info
3387  * @hw: Struct containing variables accessed by shared code
3388  * @phy_info: PHY information structure
3389  *
3390  * Get PHY information from various PHY registers
3391  */
3392 s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
3393 {
3394 	s32 ret_val;
3395 	u16 phy_data;
3396 
3397 	phy_info->cable_length = e1000_cable_length_undefined;
3398 	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3399 	phy_info->cable_polarity = e1000_rev_polarity_undefined;
3400 	phy_info->downshift = e1000_downshift_undefined;
3401 	phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3402 	phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3403 	phy_info->local_rx = e1000_1000t_rx_status_undefined;
3404 	phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3405 
3406 	if (hw->media_type != e1000_media_type_copper) {
3407 		e_dbg("PHY info is only valid for copper media\n");
3408 		return -E1000_ERR_CONFIG;
3409 	}
3410 
3411 	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3412 	if (ret_val)
3413 		return ret_val;
3414 
3415 	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3416 	if (ret_val)
3417 		return ret_val;
3418 
3419 	if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3420 		e_dbg("PHY info is only valid if link is up\n");
3421 		return -E1000_ERR_CONFIG;
3422 	}
3423 
3424 	if (hw->phy_type == e1000_phy_igp)
3425 		return e1000_phy_igp_get_info(hw, phy_info);
3426 	else if ((hw->phy_type == e1000_phy_8211) ||
3427 		 (hw->phy_type == e1000_phy_8201))
3428 		return E1000_SUCCESS;
3429 	else
3430 		return e1000_phy_m88_get_info(hw, phy_info);
3431 }
3432 
3433 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
3434 {
3435 	if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3436 		e_dbg("Invalid MDI setting detected\n");
3437 		hw->mdix = 1;
3438 		return -E1000_ERR_CONFIG;
3439 	}
3440 	return E1000_SUCCESS;
3441 }
3442 
3443 /**
3444  * e1000_init_eeprom_params - initialize sw eeprom vars
3445  * @hw: Struct containing variables accessed by shared code
3446  *
3447  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
3448  * is configured.
3449  */
3450 s32 e1000_init_eeprom_params(struct e1000_hw *hw)
3451 {
3452 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3453 	u32 eecd = er32(EECD);
3454 	s32 ret_val = E1000_SUCCESS;
3455 	u16 eeprom_size;
3456 
3457 	switch (hw->mac_type) {
3458 	case e1000_82542_rev2_0:
3459 	case e1000_82542_rev2_1:
3460 	case e1000_82543:
3461 	case e1000_82544:
3462 		eeprom->type = e1000_eeprom_microwire;
3463 		eeprom->word_size = 64;
3464 		eeprom->opcode_bits = 3;
3465 		eeprom->address_bits = 6;
3466 		eeprom->delay_usec = 50;
3467 		break;
3468 	case e1000_82540:
3469 	case e1000_82545:
3470 	case e1000_82545_rev_3:
3471 	case e1000_82546:
3472 	case e1000_82546_rev_3:
3473 		eeprom->type = e1000_eeprom_microwire;
3474 		eeprom->opcode_bits = 3;
3475 		eeprom->delay_usec = 50;
3476 		if (eecd & E1000_EECD_SIZE) {
3477 			eeprom->word_size = 256;
3478 			eeprom->address_bits = 8;
3479 		} else {
3480 			eeprom->word_size = 64;
3481 			eeprom->address_bits = 6;
3482 		}
3483 		break;
3484 	case e1000_82541:
3485 	case e1000_82541_rev_2:
3486 	case e1000_82547:
3487 	case e1000_82547_rev_2:
3488 		if (eecd & E1000_EECD_TYPE) {
3489 			eeprom->type = e1000_eeprom_spi;
3490 			eeprom->opcode_bits = 8;
3491 			eeprom->delay_usec = 1;
3492 			if (eecd & E1000_EECD_ADDR_BITS) {
3493 				eeprom->page_size = 32;
3494 				eeprom->address_bits = 16;
3495 			} else {
3496 				eeprom->page_size = 8;
3497 				eeprom->address_bits = 8;
3498 			}
3499 		} else {
3500 			eeprom->type = e1000_eeprom_microwire;
3501 			eeprom->opcode_bits = 3;
3502 			eeprom->delay_usec = 50;
3503 			if (eecd & E1000_EECD_ADDR_BITS) {
3504 				eeprom->word_size = 256;
3505 				eeprom->address_bits = 8;
3506 			} else {
3507 				eeprom->word_size = 64;
3508 				eeprom->address_bits = 6;
3509 			}
3510 		}
3511 		break;
3512 	default:
3513 		break;
3514 	}
3515 
3516 	if (eeprom->type == e1000_eeprom_spi) {
3517 		/* eeprom_size will be an enum [0..8] that maps to eeprom sizes
3518 		 * 128B to 32KB (incremented by powers of 2).
3519 		 */
3520 		/* Set to default value for initial eeprom read. */
3521 		eeprom->word_size = 64;
3522 		ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3523 		if (ret_val)
3524 			return ret_val;
3525 		eeprom_size =
3526 		    (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3527 		/* 256B eeprom size was not supported in earlier hardware, so we
3528 		 * bump eeprom_size up one to ensure that "1" (which maps to
3529 		 * 256B) is never the result used in the shifting logic below.
3530 		 */
3531 		if (eeprom_size)
3532 			eeprom_size++;
3533 
3534 		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3535 	}
3536 	return ret_val;
3537 }
3538 
3539 /**
3540  * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3541  * @hw: Struct containing variables accessed by shared code
3542  * @eecd: EECD's current value
3543  */
3544 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
3545 {
3546 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
3547 	 * wait <delay> microseconds.
3548 	 */
3549 	*eecd = *eecd | E1000_EECD_SK;
3550 	ew32(EECD, *eecd);
3551 	E1000_WRITE_FLUSH();
3552 	udelay(hw->eeprom.delay_usec);
3553 }
3554 
3555 /**
3556  * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3557  * @hw: Struct containing variables accessed by shared code
3558  * @eecd: EECD's current value
3559  */
3560 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
3561 {
3562 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and
3563 	 * then wait 50 microseconds.
3564 	 */
3565 	*eecd = *eecd & ~E1000_EECD_SK;
3566 	ew32(EECD, *eecd);
3567 	E1000_WRITE_FLUSH();
3568 	udelay(hw->eeprom.delay_usec);
3569 }
3570 
3571 /**
3572  * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3573  * @hw: Struct containing variables accessed by shared code
3574  * @data: data to send to the EEPROM
3575  * @count: number of bits to shift out
3576  */
3577 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
3578 {
3579 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3580 	u32 eecd;
3581 	u32 mask;
3582 
3583 	/* We need to shift "count" bits out to the EEPROM. So, value in the
3584 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3585 	 * In order to do this, "data" must be broken down into bits.
3586 	 */
3587 	mask = 0x01 << (count - 1);
3588 	eecd = er32(EECD);
3589 	if (eeprom->type == e1000_eeprom_microwire)
3590 		eecd &= ~E1000_EECD_DO;
3591 	else if (eeprom->type == e1000_eeprom_spi)
3592 		eecd |= E1000_EECD_DO;
3593 
3594 	do {
3595 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a
3596 		 * "1", and then raising and then lowering the clock (the SK bit
3597 		 * controls the clock input to the EEPROM).  A "0" is shifted
3598 		 * out to the EEPROM by setting "DI" to "0" and then raising and
3599 		 * then lowering the clock.
3600 		 */
3601 		eecd &= ~E1000_EECD_DI;
3602 
3603 		if (data & mask)
3604 			eecd |= E1000_EECD_DI;
3605 
3606 		ew32(EECD, eecd);
3607 		E1000_WRITE_FLUSH();
3608 
3609 		udelay(eeprom->delay_usec);
3610 
3611 		e1000_raise_ee_clk(hw, &eecd);
3612 		e1000_lower_ee_clk(hw, &eecd);
3613 
3614 		mask = mask >> 1;
3615 
3616 	} while (mask);
3617 
3618 	/* We leave the "DI" bit set to "0" when we leave this routine. */
3619 	eecd &= ~E1000_EECD_DI;
3620 	ew32(EECD, eecd);
3621 }
3622 
3623 /**
3624  * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3625  * @hw: Struct containing variables accessed by shared code
3626  * @count: number of bits to shift in
3627  */
3628 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
3629 {
3630 	u32 eecd;
3631 	u32 i;
3632 	u16 data;
3633 
3634 	/* In order to read a register from the EEPROM, we need to shift 'count'
3635 	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3636 	 * input to the EEPROM (setting the SK bit), and then reading the value
3637 	 * of the "DO" bit.  During this "shifting in" process the "DI" bit
3638 	 * should always be clear.
3639 	 */
3640 
3641 	eecd = er32(EECD);
3642 
3643 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3644 	data = 0;
3645 
3646 	for (i = 0; i < count; i++) {
3647 		data = data << 1;
3648 		e1000_raise_ee_clk(hw, &eecd);
3649 
3650 		eecd = er32(EECD);
3651 
3652 		eecd &= ~(E1000_EECD_DI);
3653 		if (eecd & E1000_EECD_DO)
3654 			data |= 1;
3655 
3656 		e1000_lower_ee_clk(hw, &eecd);
3657 	}
3658 
3659 	return data;
3660 }
3661 
3662 /**
3663  * e1000_acquire_eeprom - Prepares EEPROM for access
3664  * @hw: Struct containing variables accessed by shared code
3665  *
3666  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3667  * function should be called before issuing a command to the EEPROM.
3668  */
3669 static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
3670 {
3671 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3672 	u32 eecd, i = 0;
3673 
3674 	eecd = er32(EECD);
3675 
3676 	/* Request EEPROM Access */
3677 	if (hw->mac_type > e1000_82544) {
3678 		eecd |= E1000_EECD_REQ;
3679 		ew32(EECD, eecd);
3680 		eecd = er32(EECD);
3681 		while ((!(eecd & E1000_EECD_GNT)) &&
3682 		       (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3683 			i++;
3684 			udelay(5);
3685 			eecd = er32(EECD);
3686 		}
3687 		if (!(eecd & E1000_EECD_GNT)) {
3688 			eecd &= ~E1000_EECD_REQ;
3689 			ew32(EECD, eecd);
3690 			e_dbg("Could not acquire EEPROM grant\n");
3691 			return -E1000_ERR_EEPROM;
3692 		}
3693 	}
3694 
3695 	/* Setup EEPROM for Read/Write */
3696 
3697 	if (eeprom->type == e1000_eeprom_microwire) {
3698 		/* Clear SK and DI */
3699 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3700 		ew32(EECD, eecd);
3701 
3702 		/* Set CS */
3703 		eecd |= E1000_EECD_CS;
3704 		ew32(EECD, eecd);
3705 	} else if (eeprom->type == e1000_eeprom_spi) {
3706 		/* Clear SK and CS */
3707 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3708 		ew32(EECD, eecd);
3709 		E1000_WRITE_FLUSH();
3710 		udelay(1);
3711 	}
3712 
3713 	return E1000_SUCCESS;
3714 }
3715 
3716 /**
3717  * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3718  * @hw: Struct containing variables accessed by shared code
3719  */
3720 static void e1000_standby_eeprom(struct e1000_hw *hw)
3721 {
3722 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3723 	u32 eecd;
3724 
3725 	eecd = er32(EECD);
3726 
3727 	if (eeprom->type == e1000_eeprom_microwire) {
3728 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3729 		ew32(EECD, eecd);
3730 		E1000_WRITE_FLUSH();
3731 		udelay(eeprom->delay_usec);
3732 
3733 		/* Clock high */
3734 		eecd |= E1000_EECD_SK;
3735 		ew32(EECD, eecd);
3736 		E1000_WRITE_FLUSH();
3737 		udelay(eeprom->delay_usec);
3738 
3739 		/* Select EEPROM */
3740 		eecd |= E1000_EECD_CS;
3741 		ew32(EECD, eecd);
3742 		E1000_WRITE_FLUSH();
3743 		udelay(eeprom->delay_usec);
3744 
3745 		/* Clock low */
3746 		eecd &= ~E1000_EECD_SK;
3747 		ew32(EECD, eecd);
3748 		E1000_WRITE_FLUSH();
3749 		udelay(eeprom->delay_usec);
3750 	} else if (eeprom->type == e1000_eeprom_spi) {
3751 		/* Toggle CS to flush commands */
3752 		eecd |= E1000_EECD_CS;
3753 		ew32(EECD, eecd);
3754 		E1000_WRITE_FLUSH();
3755 		udelay(eeprom->delay_usec);
3756 		eecd &= ~E1000_EECD_CS;
3757 		ew32(EECD, eecd);
3758 		E1000_WRITE_FLUSH();
3759 		udelay(eeprom->delay_usec);
3760 	}
3761 }
3762 
3763 /**
3764  * e1000_release_eeprom - drop chip select
3765  * @hw: Struct containing variables accessed by shared code
3766  *
3767  * Terminates a command by inverting the EEPROM's chip select pin
3768  */
3769 static void e1000_release_eeprom(struct e1000_hw *hw)
3770 {
3771 	u32 eecd;
3772 
3773 	eecd = er32(EECD);
3774 
3775 	if (hw->eeprom.type == e1000_eeprom_spi) {
3776 		eecd |= E1000_EECD_CS;	/* Pull CS high */
3777 		eecd &= ~E1000_EECD_SK;	/* Lower SCK */
3778 
3779 		ew32(EECD, eecd);
3780 		E1000_WRITE_FLUSH();
3781 
3782 		udelay(hw->eeprom.delay_usec);
3783 	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
3784 		/* cleanup eeprom */
3785 
3786 		/* CS on Microwire is active-high */
3787 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3788 
3789 		ew32(EECD, eecd);
3790 
3791 		/* Rising edge of clock */
3792 		eecd |= E1000_EECD_SK;
3793 		ew32(EECD, eecd);
3794 		E1000_WRITE_FLUSH();
3795 		udelay(hw->eeprom.delay_usec);
3796 
3797 		/* Falling edge of clock */
3798 		eecd &= ~E1000_EECD_SK;
3799 		ew32(EECD, eecd);
3800 		E1000_WRITE_FLUSH();
3801 		udelay(hw->eeprom.delay_usec);
3802 	}
3803 
3804 	/* Stop requesting EEPROM access */
3805 	if (hw->mac_type > e1000_82544) {
3806 		eecd &= ~E1000_EECD_REQ;
3807 		ew32(EECD, eecd);
3808 	}
3809 }
3810 
3811 /**
3812  * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3813  * @hw: Struct containing variables accessed by shared code
3814  */
3815 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3816 {
3817 	u16 retry_count = 0;
3818 	u8 spi_stat_reg;
3819 
3820 	/* Read "Status Register" repeatedly until the LSB is cleared.  The
3821 	 * EEPROM will signal that the command has been completed by clearing
3822 	 * bit 0 of the internal status register.  If it's not cleared within
3823 	 * 5 milliseconds, then error out.
3824 	 */
3825 	retry_count = 0;
3826 	do {
3827 		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3828 					hw->eeprom.opcode_bits);
3829 		spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8);
3830 		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3831 			break;
3832 
3833 		udelay(5);
3834 		retry_count += 5;
3835 
3836 		e1000_standby_eeprom(hw);
3837 	} while (retry_count < EEPROM_MAX_RETRY_SPI);
3838 
3839 	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3840 	 * only 0-5mSec on 5V devices)
3841 	 */
3842 	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
3843 		e_dbg("SPI EEPROM Status error\n");
3844 		return -E1000_ERR_EEPROM;
3845 	}
3846 
3847 	return E1000_SUCCESS;
3848 }
3849 
3850 /**
3851  * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3852  * @hw: Struct containing variables accessed by shared code
3853  * @offset: offset of  word in the EEPROM to read
3854  * @data: word read from the EEPROM
3855  * @words: number of words to read
3856  */
3857 s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3858 {
3859 	s32 ret;
3860 
3861 	mutex_lock(&e1000_eeprom_lock);
3862 	ret = e1000_do_read_eeprom(hw, offset, words, data);
3863 	mutex_unlock(&e1000_eeprom_lock);
3864 	return ret;
3865 }
3866 
3867 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3868 				u16 *data)
3869 {
3870 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3871 	u32 i = 0;
3872 
3873 	if (hw->mac_type == e1000_ce4100) {
3874 		GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3875 				      data);
3876 		return E1000_SUCCESS;
3877 	}
3878 
3879 	/* A check for invalid values:  offset too large, too many words, and
3880 	 * not enough words.
3881 	 */
3882 	if ((offset >= eeprom->word_size) ||
3883 	    (words > eeprom->word_size - offset) ||
3884 	    (words == 0)) {
3885 		e_dbg("\"words\" parameter out of bounds. Words = %d,"
3886 		      "size = %d\n", offset, eeprom->word_size);
3887 		return -E1000_ERR_EEPROM;
3888 	}
3889 
3890 	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3891 	 * directly. In this case, we need to acquire the EEPROM so that
3892 	 * FW or other port software does not interrupt.
3893 	 */
3894 	/* Prepare the EEPROM for bit-bang reading */
3895 	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3896 		return -E1000_ERR_EEPROM;
3897 
3898 	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
3899 	 * acquired the EEPROM at this point, so any returns should release it
3900 	 */
3901 	if (eeprom->type == e1000_eeprom_spi) {
3902 		u16 word_in;
3903 		u8 read_opcode = EEPROM_READ_OPCODE_SPI;
3904 
3905 		if (e1000_spi_eeprom_ready(hw)) {
3906 			e1000_release_eeprom(hw);
3907 			return -E1000_ERR_EEPROM;
3908 		}
3909 
3910 		e1000_standby_eeprom(hw);
3911 
3912 		/* Some SPI eeproms use the 8th address bit embedded in the
3913 		 * opcode
3914 		 */
3915 		if ((eeprom->address_bits == 8) && (offset >= 128))
3916 			read_opcode |= EEPROM_A8_OPCODE_SPI;
3917 
3918 		/* Send the READ command (opcode + addr)  */
3919 		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3920 		e1000_shift_out_ee_bits(hw, (u16)(offset * 2),
3921 					eeprom->address_bits);
3922 
3923 		/* Read the data.  The address of the eeprom internally
3924 		 * increments with each byte (spi) being read, saving on the
3925 		 * overhead of eeprom setup and tear-down.  The address counter
3926 		 * will roll over if reading beyond the size of the eeprom, thus
3927 		 * allowing the entire memory to be read starting from any
3928 		 * offset.
3929 		 */
3930 		for (i = 0; i < words; i++) {
3931 			word_in = e1000_shift_in_ee_bits(hw, 16);
3932 			data[i] = (word_in >> 8) | (word_in << 8);
3933 		}
3934 	} else if (eeprom->type == e1000_eeprom_microwire) {
3935 		for (i = 0; i < words; i++) {
3936 			/* Send the READ command (opcode + addr)  */
3937 			e1000_shift_out_ee_bits(hw,
3938 						EEPROM_READ_OPCODE_MICROWIRE,
3939 						eeprom->opcode_bits);
3940 			e1000_shift_out_ee_bits(hw, (u16)(offset + i),
3941 						eeprom->address_bits);
3942 
3943 			/* Read the data.  For microwire, each word requires the
3944 			 * overhead of eeprom setup and tear-down.
3945 			 */
3946 			data[i] = e1000_shift_in_ee_bits(hw, 16);
3947 			e1000_standby_eeprom(hw);
3948 			cond_resched();
3949 		}
3950 	}
3951 
3952 	/* End this read operation */
3953 	e1000_release_eeprom(hw);
3954 
3955 	return E1000_SUCCESS;
3956 }
3957 
3958 /**
3959  * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
3960  * @hw: Struct containing variables accessed by shared code
3961  *
3962  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
3963  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
3964  * valid.
3965  */
3966 s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
3967 {
3968 	u16 checksum = 0;
3969 	u16 i, eeprom_data;
3970 
3971 	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
3972 		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3973 			e_dbg("EEPROM Read Error\n");
3974 			return -E1000_ERR_EEPROM;
3975 		}
3976 		checksum += eeprom_data;
3977 	}
3978 
3979 #ifdef CONFIG_PARISC
3980 	/* This is a signature and not a checksum on HP c8000 */
3981 	if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
3982 		return E1000_SUCCESS;
3983 
3984 #endif
3985 	if (checksum == (u16)EEPROM_SUM)
3986 		return E1000_SUCCESS;
3987 	else {
3988 		e_dbg("EEPROM Checksum Invalid\n");
3989 		return -E1000_ERR_EEPROM;
3990 	}
3991 }
3992 
3993 /**
3994  * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
3995  * @hw: Struct containing variables accessed by shared code
3996  *
3997  * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
3998  * Writes the difference to word offset 63 of the EEPROM.
3999  */
4000 s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
4001 {
4002 	u16 checksum = 0;
4003 	u16 i, eeprom_data;
4004 
4005 	for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
4006 		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4007 			e_dbg("EEPROM Read Error\n");
4008 			return -E1000_ERR_EEPROM;
4009 		}
4010 		checksum += eeprom_data;
4011 	}
4012 	checksum = (u16)EEPROM_SUM - checksum;
4013 	if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4014 		e_dbg("EEPROM Write Error\n");
4015 		return -E1000_ERR_EEPROM;
4016 	}
4017 	return E1000_SUCCESS;
4018 }
4019 
4020 /**
4021  * e1000_write_eeprom - write words to the different EEPROM types.
4022  * @hw: Struct containing variables accessed by shared code
4023  * @offset: offset within the EEPROM to be written to
4024  * @words: number of words to write
4025  * @data: 16 bit word to be written to the EEPROM
4026  *
4027  * If e1000_update_eeprom_checksum is not called after this function, the
4028  * EEPROM will most likely contain an invalid checksum.
4029  */
4030 s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4031 {
4032 	s32 ret;
4033 
4034 	mutex_lock(&e1000_eeprom_lock);
4035 	ret = e1000_do_write_eeprom(hw, offset, words, data);
4036 	mutex_unlock(&e1000_eeprom_lock);
4037 	return ret;
4038 }
4039 
4040 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4041 				 u16 *data)
4042 {
4043 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4044 	s32 status = 0;
4045 
4046 	if (hw->mac_type == e1000_ce4100) {
4047 		GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4048 				       data);
4049 		return E1000_SUCCESS;
4050 	}
4051 
4052 	/* A check for invalid values:  offset too large, too many words, and
4053 	 * not enough words.
4054 	 */
4055 	if ((offset >= eeprom->word_size) ||
4056 	    (words > eeprom->word_size - offset) ||
4057 	    (words == 0)) {
4058 		e_dbg("\"words\" parameter out of bounds\n");
4059 		return -E1000_ERR_EEPROM;
4060 	}
4061 
4062 	/* Prepare the EEPROM for writing  */
4063 	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4064 		return -E1000_ERR_EEPROM;
4065 
4066 	if (eeprom->type == e1000_eeprom_microwire) {
4067 		status = e1000_write_eeprom_microwire(hw, offset, words, data);
4068 	} else {
4069 		status = e1000_write_eeprom_spi(hw, offset, words, data);
4070 		msleep(10);
4071 	}
4072 
4073 	/* Done with writing */
4074 	e1000_release_eeprom(hw);
4075 
4076 	return status;
4077 }
4078 
4079 /**
4080  * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4081  * @hw: Struct containing variables accessed by shared code
4082  * @offset: offset within the EEPROM to be written to
4083  * @words: number of words to write
4084  * @data: pointer to array of 8 bit words to be written to the EEPROM
4085  */
4086 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4087 				  u16 *data)
4088 {
4089 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4090 	u16 widx = 0;
4091 
4092 	while (widx < words) {
4093 		u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
4094 
4095 		if (e1000_spi_eeprom_ready(hw))
4096 			return -E1000_ERR_EEPROM;
4097 
4098 		e1000_standby_eeprom(hw);
4099 		cond_resched();
4100 
4101 		/*  Send the WRITE ENABLE command (8 bit opcode )  */
4102 		e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4103 					eeprom->opcode_bits);
4104 
4105 		e1000_standby_eeprom(hw);
4106 
4107 		/* Some SPI eeproms use the 8th address bit embedded in the
4108 		 * opcode
4109 		 */
4110 		if ((eeprom->address_bits == 8) && (offset >= 128))
4111 			write_opcode |= EEPROM_A8_OPCODE_SPI;
4112 
4113 		/* Send the Write command (8-bit opcode + addr) */
4114 		e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4115 
4116 		e1000_shift_out_ee_bits(hw, (u16)((offset + widx) * 2),
4117 					eeprom->address_bits);
4118 
4119 		/* Send the data */
4120 
4121 		/* Loop to allow for up to whole page write (32 bytes) of
4122 		 * eeprom
4123 		 */
4124 		while (widx < words) {
4125 			u16 word_out = data[widx];
4126 
4127 			word_out = (word_out >> 8) | (word_out << 8);
4128 			e1000_shift_out_ee_bits(hw, word_out, 16);
4129 			widx++;
4130 
4131 			/* Some larger eeprom sizes are capable of a 32-byte
4132 			 * PAGE WRITE operation, while the smaller eeproms are
4133 			 * capable of an 8-byte PAGE WRITE operation.  Break the
4134 			 * inner loop to pass new address
4135 			 */
4136 			if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4137 				e1000_standby_eeprom(hw);
4138 				break;
4139 			}
4140 		}
4141 	}
4142 
4143 	return E1000_SUCCESS;
4144 }
4145 
4146 /**
4147  * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4148  * @hw: Struct containing variables accessed by shared code
4149  * @offset: offset within the EEPROM to be written to
4150  * @words: number of words to write
4151  * @data: pointer to array of 8 bit words to be written to the EEPROM
4152  */
4153 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4154 					u16 words, u16 *data)
4155 {
4156 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4157 	u32 eecd;
4158 	u16 words_written = 0;
4159 	u16 i = 0;
4160 
4161 	/* Send the write enable command to the EEPROM (3-bit opcode plus
4162 	 * 6/8-bit dummy address beginning with 11).  It's less work to include
4163 	 * the 11 of the dummy address as part of the opcode than it is to shift
4164 	 * it over the correct number of bits for the address.  This puts the
4165 	 * EEPROM into write/erase mode.
4166 	 */
4167 	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4168 				(u16)(eeprom->opcode_bits + 2));
4169 
4170 	e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4171 
4172 	/* Prepare the EEPROM */
4173 	e1000_standby_eeprom(hw);
4174 
4175 	while (words_written < words) {
4176 		/* Send the Write command (3-bit opcode + addr) */
4177 		e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4178 					eeprom->opcode_bits);
4179 
4180 		e1000_shift_out_ee_bits(hw, (u16)(offset + words_written),
4181 					eeprom->address_bits);
4182 
4183 		/* Send the data */
4184 		e1000_shift_out_ee_bits(hw, data[words_written], 16);
4185 
4186 		/* Toggle the CS line.  This in effect tells the EEPROM to
4187 		 * execute the previous command.
4188 		 */
4189 		e1000_standby_eeprom(hw);
4190 
4191 		/* Read DO repeatedly until it is high (equal to '1').  The
4192 		 * EEPROM will signal that the command has been completed by
4193 		 * raising the DO signal. If DO does not go high in 10
4194 		 * milliseconds, then error out.
4195 		 */
4196 		for (i = 0; i < 200; i++) {
4197 			eecd = er32(EECD);
4198 			if (eecd & E1000_EECD_DO)
4199 				break;
4200 			udelay(50);
4201 		}
4202 		if (i == 200) {
4203 			e_dbg("EEPROM Write did not complete\n");
4204 			return -E1000_ERR_EEPROM;
4205 		}
4206 
4207 		/* Recover from write */
4208 		e1000_standby_eeprom(hw);
4209 		cond_resched();
4210 
4211 		words_written++;
4212 	}
4213 
4214 	/* Send the write disable command to the EEPROM (3-bit opcode plus
4215 	 * 6/8-bit dummy address beginning with 10).  It's less work to include
4216 	 * the 10 of the dummy address as part of the opcode than it is to shift
4217 	 * it over the correct number of bits for the address.  This takes the
4218 	 * EEPROM out of write/erase mode.
4219 	 */
4220 	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4221 				(u16)(eeprom->opcode_bits + 2));
4222 
4223 	e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4224 
4225 	return E1000_SUCCESS;
4226 }
4227 
4228 /**
4229  * e1000_read_mac_addr - read the adapters MAC from eeprom
4230  * @hw: Struct containing variables accessed by shared code
4231  *
4232  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4233  * second function of dual function devices
4234  */
4235 s32 e1000_read_mac_addr(struct e1000_hw *hw)
4236 {
4237 	u16 offset;
4238 	u16 eeprom_data, i;
4239 
4240 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4241 		offset = i >> 1;
4242 		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4243 			e_dbg("EEPROM Read Error\n");
4244 			return -E1000_ERR_EEPROM;
4245 		}
4246 		hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF);
4247 		hw->perm_mac_addr[i + 1] = (u8)(eeprom_data >> 8);
4248 	}
4249 
4250 	switch (hw->mac_type) {
4251 	default:
4252 		break;
4253 	case e1000_82546:
4254 	case e1000_82546_rev_3:
4255 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
4256 			hw->perm_mac_addr[5] ^= 0x01;
4257 		break;
4258 	}
4259 
4260 	for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4261 		hw->mac_addr[i] = hw->perm_mac_addr[i];
4262 	return E1000_SUCCESS;
4263 }
4264 
4265 /**
4266  * e1000_init_rx_addrs - Initializes receive address filters.
4267  * @hw: Struct containing variables accessed by shared code
4268  *
4269  * Places the MAC address in receive address register 0 and clears the rest
4270  * of the receive address registers. Clears the multicast table. Assumes
4271  * the receiver is in reset when the routine is called.
4272  */
4273 static void e1000_init_rx_addrs(struct e1000_hw *hw)
4274 {
4275 	u32 i;
4276 	u32 rar_num;
4277 
4278 	/* Setup the receive address. */
4279 	e_dbg("Programming MAC Address into RAR[0]\n");
4280 
4281 	e1000_rar_set(hw, hw->mac_addr, 0);
4282 
4283 	rar_num = E1000_RAR_ENTRIES;
4284 
4285 	/* Zero out the following 14 receive addresses. RAR[15] is for
4286 	 * manageability
4287 	 */
4288 	e_dbg("Clearing RAR[1-14]\n");
4289 	for (i = 1; i < rar_num; i++) {
4290 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4291 		E1000_WRITE_FLUSH();
4292 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4293 		E1000_WRITE_FLUSH();
4294 	}
4295 }
4296 
4297 /**
4298  * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4299  * @hw: Struct containing variables accessed by shared code
4300  * @mc_addr: the multicast address to hash
4301  */
4302 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4303 {
4304 	u32 hash_value = 0;
4305 
4306 	/* The portion of the address that is used for the hash table is
4307 	 * determined by the mc_filter_type setting.
4308 	 */
4309 	switch (hw->mc_filter_type) {
4310 		/* [0] [1] [2] [3] [4] [5]
4311 		 * 01  AA  00  12  34  56
4312 		 * LSB                 MSB
4313 		 */
4314 	case 0:
4315 		/* [47:36] i.e. 0x563 for above example address */
4316 		hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
4317 		break;
4318 	case 1:
4319 		/* [46:35] i.e. 0xAC6 for above example address */
4320 		hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
4321 		break;
4322 	case 2:
4323 		/* [45:34] i.e. 0x5D8 for above example address */
4324 		hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
4325 		break;
4326 	case 3:
4327 		/* [43:32] i.e. 0x634 for above example address */
4328 		hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
4329 		break;
4330 	}
4331 
4332 	hash_value &= 0xFFF;
4333 	return hash_value;
4334 }
4335 
4336 /**
4337  * e1000_rar_set - Puts an ethernet address into a receive address register.
4338  * @hw: Struct containing variables accessed by shared code
4339  * @addr: Address to put into receive address register
4340  * @index: Receive address register to write
4341  */
4342 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
4343 {
4344 	u32 rar_low, rar_high;
4345 
4346 	/* HW expects these in little endian so we reverse the byte order
4347 	 * from network order (big endian) to little endian
4348 	 */
4349 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
4350 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
4351 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
4352 
4353 	/* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4354 	 * unit hang.
4355 	 *
4356 	 * Description:
4357 	 * If there are any Rx frames queued up or otherwise present in the HW
4358 	 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4359 	 * hang.  To work around this issue, we have to disable receives and
4360 	 * flush out all Rx frames before we enable RSS. To do so, we modify we
4361 	 * redirect all Rx traffic to manageability and then reset the HW.
4362 	 * This flushes away Rx frames, and (since the redirections to
4363 	 * manageability persists across resets) keeps new ones from coming in
4364 	 * while we work.  Then, we clear the Address Valid AV bit for all MAC
4365 	 * addresses and undo the re-direction to manageability.
4366 	 * Now, frames are coming in again, but the MAC won't accept them, so
4367 	 * far so good.  We now proceed to initialize RSS (if necessary) and
4368 	 * configure the Rx unit.  Last, we re-enable the AV bits and continue
4369 	 * on our merry way.
4370 	 */
4371 	switch (hw->mac_type) {
4372 	default:
4373 		/* Indicate to hardware the Address is Valid. */
4374 		rar_high |= E1000_RAH_AV;
4375 		break;
4376 	}
4377 
4378 	E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4379 	E1000_WRITE_FLUSH();
4380 	E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4381 	E1000_WRITE_FLUSH();
4382 }
4383 
4384 /**
4385  * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4386  * @hw: Struct containing variables accessed by shared code
4387  * @offset: Offset in VLAN filer table to write
4388  * @value: Value to write into VLAN filter table
4389  */
4390 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
4391 {
4392 	u32 temp;
4393 
4394 	if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4395 		temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4396 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4397 		E1000_WRITE_FLUSH();
4398 		E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4399 		E1000_WRITE_FLUSH();
4400 	} else {
4401 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4402 		E1000_WRITE_FLUSH();
4403 	}
4404 }
4405 
4406 /**
4407  * e1000_clear_vfta - Clears the VLAN filer table
4408  * @hw: Struct containing variables accessed by shared code
4409  */
4410 static void e1000_clear_vfta(struct e1000_hw *hw)
4411 {
4412 	u32 offset;
4413 	u32 vfta_value = 0;
4414 	u32 vfta_offset = 0;
4415 	u32 vfta_bit_in_reg = 0;
4416 
4417 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4418 		/* If the offset we want to clear is the same offset of the
4419 		 * manageability VLAN ID, then clear all bits except that of the
4420 		 * manageability unit
4421 		 */
4422 		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
4423 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
4424 		E1000_WRITE_FLUSH();
4425 	}
4426 }
4427 
4428 static s32 e1000_id_led_init(struct e1000_hw *hw)
4429 {
4430 	u32 ledctl;
4431 	const u32 ledctl_mask = 0x000000FF;
4432 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4433 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4434 	u16 eeprom_data, i, temp;
4435 	const u16 led_mask = 0x0F;
4436 
4437 	if (hw->mac_type < e1000_82540) {
4438 		/* Nothing to do */
4439 		return E1000_SUCCESS;
4440 	}
4441 
4442 	ledctl = er32(LEDCTL);
4443 	hw->ledctl_default = ledctl;
4444 	hw->ledctl_mode1 = hw->ledctl_default;
4445 	hw->ledctl_mode2 = hw->ledctl_default;
4446 
4447 	if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4448 		e_dbg("EEPROM Read Error\n");
4449 		return -E1000_ERR_EEPROM;
4450 	}
4451 
4452 	if ((eeprom_data == ID_LED_RESERVED_0000) ||
4453 	    (eeprom_data == ID_LED_RESERVED_FFFF)) {
4454 		eeprom_data = ID_LED_DEFAULT;
4455 	}
4456 
4457 	for (i = 0; i < 4; i++) {
4458 		temp = (eeprom_data >> (i << 2)) & led_mask;
4459 		switch (temp) {
4460 		case ID_LED_ON1_DEF2:
4461 		case ID_LED_ON1_ON2:
4462 		case ID_LED_ON1_OFF2:
4463 			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4464 			hw->ledctl_mode1 |= ledctl_on << (i << 3);
4465 			break;
4466 		case ID_LED_OFF1_DEF2:
4467 		case ID_LED_OFF1_ON2:
4468 		case ID_LED_OFF1_OFF2:
4469 			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4470 			hw->ledctl_mode1 |= ledctl_off << (i << 3);
4471 			break;
4472 		default:
4473 			/* Do nothing */
4474 			break;
4475 		}
4476 		switch (temp) {
4477 		case ID_LED_DEF1_ON2:
4478 		case ID_LED_ON1_ON2:
4479 		case ID_LED_OFF1_ON2:
4480 			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4481 			hw->ledctl_mode2 |= ledctl_on << (i << 3);
4482 			break;
4483 		case ID_LED_DEF1_OFF2:
4484 		case ID_LED_ON1_OFF2:
4485 		case ID_LED_OFF1_OFF2:
4486 			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4487 			hw->ledctl_mode2 |= ledctl_off << (i << 3);
4488 			break;
4489 		default:
4490 			/* Do nothing */
4491 			break;
4492 		}
4493 	}
4494 	return E1000_SUCCESS;
4495 }
4496 
4497 /**
4498  * e1000_setup_led
4499  * @hw: Struct containing variables accessed by shared code
4500  *
4501  * Prepares SW controlable LED for use and saves the current state of the LED.
4502  */
4503 s32 e1000_setup_led(struct e1000_hw *hw)
4504 {
4505 	u32 ledctl;
4506 	s32 ret_val = E1000_SUCCESS;
4507 
4508 	switch (hw->mac_type) {
4509 	case e1000_82542_rev2_0:
4510 	case e1000_82542_rev2_1:
4511 	case e1000_82543:
4512 	case e1000_82544:
4513 		/* No setup necessary */
4514 		break;
4515 	case e1000_82541:
4516 	case e1000_82547:
4517 	case e1000_82541_rev_2:
4518 	case e1000_82547_rev_2:
4519 		/* Turn off PHY Smart Power Down (if enabled) */
4520 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4521 					     &hw->phy_spd_default);
4522 		if (ret_val)
4523 			return ret_val;
4524 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4525 					      (u16)(hw->phy_spd_default &
4526 						     ~IGP01E1000_GMII_SPD));
4527 		if (ret_val)
4528 			return ret_val;
4529 		/* Fall Through */
4530 	default:
4531 		if (hw->media_type == e1000_media_type_fiber) {
4532 			ledctl = er32(LEDCTL);
4533 			/* Save current LEDCTL settings */
4534 			hw->ledctl_default = ledctl;
4535 			/* Turn off LED0 */
4536 			ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4537 				    E1000_LEDCTL_LED0_BLINK |
4538 				    E1000_LEDCTL_LED0_MODE_MASK);
4539 			ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4540 				   E1000_LEDCTL_LED0_MODE_SHIFT);
4541 			ew32(LEDCTL, ledctl);
4542 		} else if (hw->media_type == e1000_media_type_copper)
4543 			ew32(LEDCTL, hw->ledctl_mode1);
4544 		break;
4545 	}
4546 
4547 	return E1000_SUCCESS;
4548 }
4549 
4550 /**
4551  * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4552  * @hw: Struct containing variables accessed by shared code
4553  */
4554 s32 e1000_cleanup_led(struct e1000_hw *hw)
4555 {
4556 	s32 ret_val = E1000_SUCCESS;
4557 
4558 	switch (hw->mac_type) {
4559 	case e1000_82542_rev2_0:
4560 	case e1000_82542_rev2_1:
4561 	case e1000_82543:
4562 	case e1000_82544:
4563 		/* No cleanup necessary */
4564 		break;
4565 	case e1000_82541:
4566 	case e1000_82547:
4567 	case e1000_82541_rev_2:
4568 	case e1000_82547_rev_2:
4569 		/* Turn on PHY Smart Power Down (if previously enabled) */
4570 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4571 					      hw->phy_spd_default);
4572 		if (ret_val)
4573 			return ret_val;
4574 		/* Fall Through */
4575 	default:
4576 		/* Restore LEDCTL settings */
4577 		ew32(LEDCTL, hw->ledctl_default);
4578 		break;
4579 	}
4580 
4581 	return E1000_SUCCESS;
4582 }
4583 
4584 /**
4585  * e1000_led_on - Turns on the software controllable LED
4586  * @hw: Struct containing variables accessed by shared code
4587  */
4588 s32 e1000_led_on(struct e1000_hw *hw)
4589 {
4590 	u32 ctrl = er32(CTRL);
4591 
4592 	switch (hw->mac_type) {
4593 	case e1000_82542_rev2_0:
4594 	case e1000_82542_rev2_1:
4595 	case e1000_82543:
4596 		/* Set SW Defineable Pin 0 to turn on the LED */
4597 		ctrl |= E1000_CTRL_SWDPIN0;
4598 		ctrl |= E1000_CTRL_SWDPIO0;
4599 		break;
4600 	case e1000_82544:
4601 		if (hw->media_type == e1000_media_type_fiber) {
4602 			/* Set SW Defineable Pin 0 to turn on the LED */
4603 			ctrl |= E1000_CTRL_SWDPIN0;
4604 			ctrl |= E1000_CTRL_SWDPIO0;
4605 		} else {
4606 			/* Clear SW Defineable Pin 0 to turn on the LED */
4607 			ctrl &= ~E1000_CTRL_SWDPIN0;
4608 			ctrl |= E1000_CTRL_SWDPIO0;
4609 		}
4610 		break;
4611 	default:
4612 		if (hw->media_type == e1000_media_type_fiber) {
4613 			/* Clear SW Defineable Pin 0 to turn on the LED */
4614 			ctrl &= ~E1000_CTRL_SWDPIN0;
4615 			ctrl |= E1000_CTRL_SWDPIO0;
4616 		} else if (hw->media_type == e1000_media_type_copper) {
4617 			ew32(LEDCTL, hw->ledctl_mode2);
4618 			return E1000_SUCCESS;
4619 		}
4620 		break;
4621 	}
4622 
4623 	ew32(CTRL, ctrl);
4624 
4625 	return E1000_SUCCESS;
4626 }
4627 
4628 /**
4629  * e1000_led_off - Turns off the software controllable LED
4630  * @hw: Struct containing variables accessed by shared code
4631  */
4632 s32 e1000_led_off(struct e1000_hw *hw)
4633 {
4634 	u32 ctrl = er32(CTRL);
4635 
4636 	switch (hw->mac_type) {
4637 	case e1000_82542_rev2_0:
4638 	case e1000_82542_rev2_1:
4639 	case e1000_82543:
4640 		/* Clear SW Defineable Pin 0 to turn off the LED */
4641 		ctrl &= ~E1000_CTRL_SWDPIN0;
4642 		ctrl |= E1000_CTRL_SWDPIO0;
4643 		break;
4644 	case e1000_82544:
4645 		if (hw->media_type == e1000_media_type_fiber) {
4646 			/* Clear SW Defineable Pin 0 to turn off the LED */
4647 			ctrl &= ~E1000_CTRL_SWDPIN0;
4648 			ctrl |= E1000_CTRL_SWDPIO0;
4649 		} else {
4650 			/* Set SW Defineable Pin 0 to turn off the LED */
4651 			ctrl |= E1000_CTRL_SWDPIN0;
4652 			ctrl |= E1000_CTRL_SWDPIO0;
4653 		}
4654 		break;
4655 	default:
4656 		if (hw->media_type == e1000_media_type_fiber) {
4657 			/* Set SW Defineable Pin 0 to turn off the LED */
4658 			ctrl |= E1000_CTRL_SWDPIN0;
4659 			ctrl |= E1000_CTRL_SWDPIO0;
4660 		} else if (hw->media_type == e1000_media_type_copper) {
4661 			ew32(LEDCTL, hw->ledctl_mode1);
4662 			return E1000_SUCCESS;
4663 		}
4664 		break;
4665 	}
4666 
4667 	ew32(CTRL, ctrl);
4668 
4669 	return E1000_SUCCESS;
4670 }
4671 
4672 /**
4673  * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4674  * @hw: Struct containing variables accessed by shared code
4675  */
4676 static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
4677 {
4678 	volatile u32 temp;
4679 
4680 	temp = er32(CRCERRS);
4681 	temp = er32(SYMERRS);
4682 	temp = er32(MPC);
4683 	temp = er32(SCC);
4684 	temp = er32(ECOL);
4685 	temp = er32(MCC);
4686 	temp = er32(LATECOL);
4687 	temp = er32(COLC);
4688 	temp = er32(DC);
4689 	temp = er32(SEC);
4690 	temp = er32(RLEC);
4691 	temp = er32(XONRXC);
4692 	temp = er32(XONTXC);
4693 	temp = er32(XOFFRXC);
4694 	temp = er32(XOFFTXC);
4695 	temp = er32(FCRUC);
4696 
4697 	temp = er32(PRC64);
4698 	temp = er32(PRC127);
4699 	temp = er32(PRC255);
4700 	temp = er32(PRC511);
4701 	temp = er32(PRC1023);
4702 	temp = er32(PRC1522);
4703 
4704 	temp = er32(GPRC);
4705 	temp = er32(BPRC);
4706 	temp = er32(MPRC);
4707 	temp = er32(GPTC);
4708 	temp = er32(GORCL);
4709 	temp = er32(GORCH);
4710 	temp = er32(GOTCL);
4711 	temp = er32(GOTCH);
4712 	temp = er32(RNBC);
4713 	temp = er32(RUC);
4714 	temp = er32(RFC);
4715 	temp = er32(ROC);
4716 	temp = er32(RJC);
4717 	temp = er32(TORL);
4718 	temp = er32(TORH);
4719 	temp = er32(TOTL);
4720 	temp = er32(TOTH);
4721 	temp = er32(TPR);
4722 	temp = er32(TPT);
4723 
4724 	temp = er32(PTC64);
4725 	temp = er32(PTC127);
4726 	temp = er32(PTC255);
4727 	temp = er32(PTC511);
4728 	temp = er32(PTC1023);
4729 	temp = er32(PTC1522);
4730 
4731 	temp = er32(MPTC);
4732 	temp = er32(BPTC);
4733 
4734 	if (hw->mac_type < e1000_82543)
4735 		return;
4736 
4737 	temp = er32(ALGNERRC);
4738 	temp = er32(RXERRC);
4739 	temp = er32(TNCRS);
4740 	temp = er32(CEXTERR);
4741 	temp = er32(TSCTC);
4742 	temp = er32(TSCTFC);
4743 
4744 	if (hw->mac_type <= e1000_82544)
4745 		return;
4746 
4747 	temp = er32(MGTPRC);
4748 	temp = er32(MGTPDC);
4749 	temp = er32(MGTPTC);
4750 }
4751 
4752 /**
4753  * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4754  * @hw: Struct containing variables accessed by shared code
4755  *
4756  * Call this after e1000_init_hw. You may override the IFS defaults by setting
4757  * hw->ifs_params_forced to true. However, you must initialize hw->
4758  * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4759  * before calling this function.
4760  */
4761 void e1000_reset_adaptive(struct e1000_hw *hw)
4762 {
4763 	if (hw->adaptive_ifs) {
4764 		if (!hw->ifs_params_forced) {
4765 			hw->current_ifs_val = 0;
4766 			hw->ifs_min_val = IFS_MIN;
4767 			hw->ifs_max_val = IFS_MAX;
4768 			hw->ifs_step_size = IFS_STEP;
4769 			hw->ifs_ratio = IFS_RATIO;
4770 		}
4771 		hw->in_ifs_mode = false;
4772 		ew32(AIT, 0);
4773 	} else {
4774 		e_dbg("Not in Adaptive IFS mode!\n");
4775 	}
4776 }
4777 
4778 /**
4779  * e1000_update_adaptive - update adaptive IFS
4780  * @hw: Struct containing variables accessed by shared code
4781  * @tx_packets: Number of transmits since last callback
4782  * @total_collisions: Number of collisions since last callback
4783  *
4784  * Called during the callback/watchdog routine to update IFS value based on
4785  * the ratio of transmits to collisions.
4786  */
4787 void e1000_update_adaptive(struct e1000_hw *hw)
4788 {
4789 	if (hw->adaptive_ifs) {
4790 		if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
4791 			if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4792 				hw->in_ifs_mode = true;
4793 				if (hw->current_ifs_val < hw->ifs_max_val) {
4794 					if (hw->current_ifs_val == 0)
4795 						hw->current_ifs_val =
4796 						    hw->ifs_min_val;
4797 					else
4798 						hw->current_ifs_val +=
4799 						    hw->ifs_step_size;
4800 					ew32(AIT, hw->current_ifs_val);
4801 				}
4802 			}
4803 		} else {
4804 			if (hw->in_ifs_mode &&
4805 			    (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4806 				hw->current_ifs_val = 0;
4807 				hw->in_ifs_mode = false;
4808 				ew32(AIT, 0);
4809 			}
4810 		}
4811 	} else {
4812 		e_dbg("Not in Adaptive IFS mode!\n");
4813 	}
4814 }
4815 
4816 /**
4817  * e1000_get_bus_info
4818  * @hw: Struct containing variables accessed by shared code
4819  *
4820  * Gets the current PCI bus type, speed, and width of the hardware
4821  */
4822 void e1000_get_bus_info(struct e1000_hw *hw)
4823 {
4824 	u32 status;
4825 
4826 	switch (hw->mac_type) {
4827 	case e1000_82542_rev2_0:
4828 	case e1000_82542_rev2_1:
4829 		hw->bus_type = e1000_bus_type_pci;
4830 		hw->bus_speed = e1000_bus_speed_unknown;
4831 		hw->bus_width = e1000_bus_width_unknown;
4832 		break;
4833 	default:
4834 		status = er32(STATUS);
4835 		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4836 		    e1000_bus_type_pcix : e1000_bus_type_pci;
4837 
4838 		if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4839 			hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4840 			    e1000_bus_speed_66 : e1000_bus_speed_120;
4841 		} else if (hw->bus_type == e1000_bus_type_pci) {
4842 			hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4843 			    e1000_bus_speed_66 : e1000_bus_speed_33;
4844 		} else {
4845 			switch (status & E1000_STATUS_PCIX_SPEED) {
4846 			case E1000_STATUS_PCIX_SPEED_66:
4847 				hw->bus_speed = e1000_bus_speed_66;
4848 				break;
4849 			case E1000_STATUS_PCIX_SPEED_100:
4850 				hw->bus_speed = e1000_bus_speed_100;
4851 				break;
4852 			case E1000_STATUS_PCIX_SPEED_133:
4853 				hw->bus_speed = e1000_bus_speed_133;
4854 				break;
4855 			default:
4856 				hw->bus_speed = e1000_bus_speed_reserved;
4857 				break;
4858 			}
4859 		}
4860 		hw->bus_width = (status & E1000_STATUS_BUS64) ?
4861 		    e1000_bus_width_64 : e1000_bus_width_32;
4862 		break;
4863 	}
4864 }
4865 
4866 /**
4867  * e1000_write_reg_io
4868  * @hw: Struct containing variables accessed by shared code
4869  * @offset: offset to write to
4870  * @value: value to write
4871  *
4872  * Writes a value to one of the devices registers using port I/O (as opposed to
4873  * memory mapped I/O). Only 82544 and newer devices support port I/O.
4874  */
4875 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
4876 {
4877 	unsigned long io_addr = hw->io_base;
4878 	unsigned long io_data = hw->io_base + 4;
4879 
4880 	e1000_io_write(hw, io_addr, offset);
4881 	e1000_io_write(hw, io_data, value);
4882 }
4883 
4884 /**
4885  * e1000_get_cable_length - Estimates the cable length.
4886  * @hw: Struct containing variables accessed by shared code
4887  * @min_length: The estimated minimum length
4888  * @max_length: The estimated maximum length
4889  *
4890  * returns: - E1000_ERR_XXX
4891  *            E1000_SUCCESS
4892  *
4893  * This function always returns a ranged length (minimum & maximum).
4894  * So for M88 phy's, this function interprets the one value returned from the
4895  * register to the minimum and maximum range.
4896  * For IGP phy's, the function calculates the range by the AGC registers.
4897  */
4898 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
4899 				  u16 *max_length)
4900 {
4901 	s32 ret_val;
4902 	u16 agc_value = 0;
4903 	u16 i, phy_data;
4904 	u16 cable_length;
4905 
4906 	*min_length = *max_length = 0;
4907 
4908 	/* Use old method for Phy older than IGP */
4909 	if (hw->phy_type == e1000_phy_m88) {
4910 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
4911 					     &phy_data);
4912 		if (ret_val)
4913 			return ret_val;
4914 		cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
4915 		    M88E1000_PSSR_CABLE_LENGTH_SHIFT;
4916 
4917 		/* Convert the enum value to ranged values */
4918 		switch (cable_length) {
4919 		case e1000_cable_length_50:
4920 			*min_length = 0;
4921 			*max_length = e1000_igp_cable_length_50;
4922 			break;
4923 		case e1000_cable_length_50_80:
4924 			*min_length = e1000_igp_cable_length_50;
4925 			*max_length = e1000_igp_cable_length_80;
4926 			break;
4927 		case e1000_cable_length_80_110:
4928 			*min_length = e1000_igp_cable_length_80;
4929 			*max_length = e1000_igp_cable_length_110;
4930 			break;
4931 		case e1000_cable_length_110_140:
4932 			*min_length = e1000_igp_cable_length_110;
4933 			*max_length = e1000_igp_cable_length_140;
4934 			break;
4935 		case e1000_cable_length_140:
4936 			*min_length = e1000_igp_cable_length_140;
4937 			*max_length = e1000_igp_cable_length_170;
4938 			break;
4939 		default:
4940 			return -E1000_ERR_PHY;
4941 		}
4942 	} else if (hw->phy_type == e1000_phy_igp) {	/* For IGP PHY */
4943 		u16 cur_agc_value;
4944 		u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
4945 		static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
4946 		       IGP01E1000_PHY_AGC_A,
4947 		       IGP01E1000_PHY_AGC_B,
4948 		       IGP01E1000_PHY_AGC_C,
4949 		       IGP01E1000_PHY_AGC_D
4950 		};
4951 		/* Read the AGC registers for all channels */
4952 		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
4953 			ret_val =
4954 			    e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
4955 			if (ret_val)
4956 				return ret_val;
4957 
4958 			cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
4959 
4960 			/* Value bound check. */
4961 			if ((cur_agc_value >=
4962 			     IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
4963 			    (cur_agc_value == 0))
4964 				return -E1000_ERR_PHY;
4965 
4966 			agc_value += cur_agc_value;
4967 
4968 			/* Update minimal AGC value. */
4969 			if (min_agc_value > cur_agc_value)
4970 				min_agc_value = cur_agc_value;
4971 		}
4972 
4973 		/* Remove the minimal AGC result for length < 50m */
4974 		if (agc_value <
4975 		    IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
4976 			agc_value -= min_agc_value;
4977 
4978 			/* Get the average length of the remaining 3 channels */
4979 			agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
4980 		} else {
4981 			/* Get the average length of all the 4 channels. */
4982 			agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
4983 		}
4984 
4985 		/* Set the range of the calculated length. */
4986 		*min_length = ((e1000_igp_cable_length_table[agc_value] -
4987 				IGP01E1000_AGC_RANGE) > 0) ?
4988 		    (e1000_igp_cable_length_table[agc_value] -
4989 		     IGP01E1000_AGC_RANGE) : 0;
4990 		*max_length = e1000_igp_cable_length_table[agc_value] +
4991 		    IGP01E1000_AGC_RANGE;
4992 	}
4993 
4994 	return E1000_SUCCESS;
4995 }
4996 
4997 /**
4998  * e1000_check_polarity - Check the cable polarity
4999  * @hw: Struct containing variables accessed by shared code
5000  * @polarity: output parameter : 0 - Polarity is not reversed
5001  *                               1 - Polarity is reversed.
5002  *
5003  * returns: - E1000_ERR_XXX
5004  *            E1000_SUCCESS
5005  *
5006  * For phy's older than IGP, this function simply reads the polarity bit in the
5007  * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
5008  * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
5009  * return 0.  If the link speed is 1000 Mbps the polarity status is in the
5010  * IGP01E1000_PHY_PCS_INIT_REG.
5011  */
5012 static s32 e1000_check_polarity(struct e1000_hw *hw,
5013 				e1000_rev_polarity *polarity)
5014 {
5015 	s32 ret_val;
5016 	u16 phy_data;
5017 
5018 	if (hw->phy_type == e1000_phy_m88) {
5019 		/* return the Polarity bit in the Status register. */
5020 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5021 					     &phy_data);
5022 		if (ret_val)
5023 			return ret_val;
5024 		*polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
5025 			     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
5026 		    e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
5027 
5028 	} else if (hw->phy_type == e1000_phy_igp) {
5029 		/* Read the Status register to check the speed */
5030 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5031 					     &phy_data);
5032 		if (ret_val)
5033 			return ret_val;
5034 
5035 		/* If speed is 1000 Mbps, must read the
5036 		 * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status
5037 		 */
5038 		if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5039 		    IGP01E1000_PSSR_SPEED_1000MBPS) {
5040 			/* Read the GIG initialization PCS register (0x00B4) */
5041 			ret_val =
5042 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5043 					       &phy_data);
5044 			if (ret_val)
5045 				return ret_val;
5046 
5047 			/* Check the polarity bits */
5048 			*polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5049 			    e1000_rev_polarity_reversed :
5050 			    e1000_rev_polarity_normal;
5051 		} else {
5052 			/* For 10 Mbps, read the polarity bit in the status
5053 			 * register. (for 100 Mbps this bit is always 0)
5054 			 */
5055 			*polarity =
5056 			    (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5057 			    e1000_rev_polarity_reversed :
5058 			    e1000_rev_polarity_normal;
5059 		}
5060 	}
5061 	return E1000_SUCCESS;
5062 }
5063 
5064 /**
5065  * e1000_check_downshift - Check if Downshift occurred
5066  * @hw: Struct containing variables accessed by shared code
5067  * @downshift: output parameter : 0 - No Downshift occurred.
5068  *                                1 - Downshift occurred.
5069  *
5070  * returns: - E1000_ERR_XXX
5071  *            E1000_SUCCESS
5072  *
5073  * For phy's older than IGP, this function reads the Downshift bit in the Phy
5074  * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
5075  * Link Health register.  In IGP this bit is latched high, so the driver must
5076  * read it immediately after link is established.
5077  */
5078 static s32 e1000_check_downshift(struct e1000_hw *hw)
5079 {
5080 	s32 ret_val;
5081 	u16 phy_data;
5082 
5083 	if (hw->phy_type == e1000_phy_igp) {
5084 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5085 					     &phy_data);
5086 		if (ret_val)
5087 			return ret_val;
5088 
5089 		hw->speed_downgraded =
5090 		    (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5091 	} else if (hw->phy_type == e1000_phy_m88) {
5092 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5093 					     &phy_data);
5094 		if (ret_val)
5095 			return ret_val;
5096 
5097 		hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5098 		    M88E1000_PSSR_DOWNSHIFT_SHIFT;
5099 	}
5100 
5101 	return E1000_SUCCESS;
5102 }
5103 
5104 static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5105 	IGP01E1000_PHY_AGC_PARAM_A,
5106 	IGP01E1000_PHY_AGC_PARAM_B,
5107 	IGP01E1000_PHY_AGC_PARAM_C,
5108 	IGP01E1000_PHY_AGC_PARAM_D
5109 };
5110 
5111 static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5112 {
5113 	u16 min_length, max_length;
5114 	u16 phy_data, i;
5115 	s32 ret_val;
5116 
5117 	ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5118 	if (ret_val)
5119 		return ret_val;
5120 
5121 	if (hw->dsp_config_state != e1000_dsp_config_enabled)
5122 		return 0;
5123 
5124 	if (min_length >= e1000_igp_cable_length_50) {
5125 		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5126 			ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5127 						     &phy_data);
5128 			if (ret_val)
5129 				return ret_val;
5130 
5131 			phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5132 
5133 			ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5134 						      phy_data);
5135 			if (ret_val)
5136 				return ret_val;
5137 		}
5138 		hw->dsp_config_state = e1000_dsp_config_activated;
5139 	} else {
5140 		u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5141 		u32 idle_errs = 0;
5142 
5143 		/* clear previous idle error counts */
5144 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5145 		if (ret_val)
5146 			return ret_val;
5147 
5148 		for (i = 0; i < ffe_idle_err_timeout; i++) {
5149 			udelay(1000);
5150 			ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5151 						     &phy_data);
5152 			if (ret_val)
5153 				return ret_val;
5154 
5155 			idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5156 			if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5157 				hw->ffe_config_state = e1000_ffe_config_active;
5158 
5159 				ret_val = e1000_write_phy_reg(hw,
5160 							      IGP01E1000_PHY_DSP_FFE,
5161 							      IGP01E1000_PHY_DSP_FFE_CM_CP);
5162 				if (ret_val)
5163 					return ret_val;
5164 				break;
5165 			}
5166 
5167 			if (idle_errs)
5168 				ffe_idle_err_timeout =
5169 					    FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5170 		}
5171 	}
5172 
5173 	return 0;
5174 }
5175 
5176 /**
5177  * e1000_config_dsp_after_link_change
5178  * @hw: Struct containing variables accessed by shared code
5179  * @link_up: was link up at the time this was called
5180  *
5181  * returns: - E1000_ERR_PHY if fail to read/write the PHY
5182  *            E1000_SUCCESS at any other case.
5183  *
5184  * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5185  * gigabit link is achieved to improve link quality.
5186  */
5187 
5188 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
5189 {
5190 	s32 ret_val;
5191 	u16 phy_data, phy_saved_data, speed, duplex, i;
5192 
5193 	if (hw->phy_type != e1000_phy_igp)
5194 		return E1000_SUCCESS;
5195 
5196 	if (link_up) {
5197 		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5198 		if (ret_val) {
5199 			e_dbg("Error getting link speed and duplex\n");
5200 			return ret_val;
5201 		}
5202 
5203 		if (speed == SPEED_1000) {
5204 			ret_val = e1000_1000Mb_check_cable_length(hw);
5205 			if (ret_val)
5206 				return ret_val;
5207 		}
5208 	} else {
5209 		if (hw->dsp_config_state == e1000_dsp_config_activated) {
5210 			/* Save off the current value of register 0x2F5B to be
5211 			 * restored at the end of the routines.
5212 			 */
5213 			ret_val =
5214 			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5215 
5216 			if (ret_val)
5217 				return ret_val;
5218 
5219 			/* Disable the PHY transmitter */
5220 			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5221 
5222 			if (ret_val)
5223 				return ret_val;
5224 
5225 			msleep(20);
5226 
5227 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5228 						      IGP01E1000_IEEE_FORCE_GIGA);
5229 			if (ret_val)
5230 				return ret_val;
5231 			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5232 				ret_val =
5233 				    e1000_read_phy_reg(hw, dsp_reg_array[i],
5234 						       &phy_data);
5235 				if (ret_val)
5236 					return ret_val;
5237 
5238 				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5239 				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5240 
5241 				ret_val =
5242 				    e1000_write_phy_reg(hw, dsp_reg_array[i],
5243 							phy_data);
5244 				if (ret_val)
5245 					return ret_val;
5246 			}
5247 
5248 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5249 						      IGP01E1000_IEEE_RESTART_AUTONEG);
5250 			if (ret_val)
5251 				return ret_val;
5252 
5253 			msleep(20);
5254 
5255 			/* Now enable the transmitter */
5256 			ret_val =
5257 			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5258 
5259 			if (ret_val)
5260 				return ret_val;
5261 
5262 			hw->dsp_config_state = e1000_dsp_config_enabled;
5263 		}
5264 
5265 		if (hw->ffe_config_state == e1000_ffe_config_active) {
5266 			/* Save off the current value of register 0x2F5B to be
5267 			 * restored at the end of the routines.
5268 			 */
5269 			ret_val =
5270 			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5271 
5272 			if (ret_val)
5273 				return ret_val;
5274 
5275 			/* Disable the PHY transmitter */
5276 			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5277 
5278 			if (ret_val)
5279 				return ret_val;
5280 
5281 			msleep(20);
5282 
5283 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5284 						      IGP01E1000_IEEE_FORCE_GIGA);
5285 			if (ret_val)
5286 				return ret_val;
5287 			ret_val =
5288 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5289 						IGP01E1000_PHY_DSP_FFE_DEFAULT);
5290 			if (ret_val)
5291 				return ret_val;
5292 
5293 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5294 						      IGP01E1000_IEEE_RESTART_AUTONEG);
5295 			if (ret_val)
5296 				return ret_val;
5297 
5298 			msleep(20);
5299 
5300 			/* Now enable the transmitter */
5301 			ret_val =
5302 			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5303 
5304 			if (ret_val)
5305 				return ret_val;
5306 
5307 			hw->ffe_config_state = e1000_ffe_config_enabled;
5308 		}
5309 	}
5310 	return E1000_SUCCESS;
5311 }
5312 
5313 /**
5314  * e1000_set_phy_mode - Set PHY to class A mode
5315  * @hw: Struct containing variables accessed by shared code
5316  *
5317  * Assumes the following operations will follow to enable the new class mode.
5318  *  1. Do a PHY soft reset
5319  *  2. Restart auto-negotiation or force link.
5320  */
5321 static s32 e1000_set_phy_mode(struct e1000_hw *hw)
5322 {
5323 	s32 ret_val;
5324 	u16 eeprom_data;
5325 
5326 	if ((hw->mac_type == e1000_82545_rev_3) &&
5327 	    (hw->media_type == e1000_media_type_copper)) {
5328 		ret_val =
5329 		    e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5330 				      &eeprom_data);
5331 		if (ret_val)
5332 			return ret_val;
5333 
5334 		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5335 		    (eeprom_data & EEPROM_PHY_CLASS_A)) {
5336 			ret_val =
5337 			    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5338 						0x000B);
5339 			if (ret_val)
5340 				return ret_val;
5341 			ret_val =
5342 			    e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5343 						0x8104);
5344 			if (ret_val)
5345 				return ret_val;
5346 
5347 			hw->phy_reset_disable = false;
5348 		}
5349 	}
5350 
5351 	return E1000_SUCCESS;
5352 }
5353 
5354 /**
5355  * e1000_set_d3_lplu_state - set d3 link power state
5356  * @hw: Struct containing variables accessed by shared code
5357  * @active: true to enable lplu false to disable lplu.
5358  *
5359  * This function sets the lplu state according to the active flag.  When
5360  * activating lplu this function also disables smart speed and vise versa.
5361  * lplu will not be activated unless the device autonegotiation advertisement
5362  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5363  *
5364  * returns: - E1000_ERR_PHY if fail to read/write the PHY
5365  *            E1000_SUCCESS at any other case.
5366  */
5367 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
5368 {
5369 	s32 ret_val;
5370 	u16 phy_data;
5371 
5372 	if (hw->phy_type != e1000_phy_igp)
5373 		return E1000_SUCCESS;
5374 
5375 	/* During driver activity LPLU should not be used or it will attain link
5376 	 * from the lowest speeds starting from 10Mbps. The capability is used
5377 	 * for Dx transitions and states
5378 	 */
5379 	if (hw->mac_type == e1000_82541_rev_2 ||
5380 	    hw->mac_type == e1000_82547_rev_2) {
5381 		ret_val =
5382 		    e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5383 		if (ret_val)
5384 			return ret_val;
5385 	}
5386 
5387 	if (!active) {
5388 		if (hw->mac_type == e1000_82541_rev_2 ||
5389 		    hw->mac_type == e1000_82547_rev_2) {
5390 			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5391 			ret_val =
5392 			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5393 						phy_data);
5394 			if (ret_val)
5395 				return ret_val;
5396 		}
5397 
5398 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
5399 		 * during Dx states where the power conservation is most
5400 		 * important.  During driver activity we should enable
5401 		 * SmartSpeed, so performance is maintained.
5402 		 */
5403 		if (hw->smart_speed == e1000_smart_speed_on) {
5404 			ret_val =
5405 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5406 					       &phy_data);
5407 			if (ret_val)
5408 				return ret_val;
5409 
5410 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5411 			ret_val =
5412 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5413 						phy_data);
5414 			if (ret_val)
5415 				return ret_val;
5416 		} else if (hw->smart_speed == e1000_smart_speed_off) {
5417 			ret_val =
5418 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5419 					       &phy_data);
5420 			if (ret_val)
5421 				return ret_val;
5422 
5423 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5424 			ret_val =
5425 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5426 						phy_data);
5427 			if (ret_val)
5428 				return ret_val;
5429 		}
5430 	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
5431 		   (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
5432 		   (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
5433 		if (hw->mac_type == e1000_82541_rev_2 ||
5434 		    hw->mac_type == e1000_82547_rev_2) {
5435 			phy_data |= IGP01E1000_GMII_FLEX_SPD;
5436 			ret_val =
5437 			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5438 						phy_data);
5439 			if (ret_val)
5440 				return ret_val;
5441 		}
5442 
5443 		/* When LPLU is enabled we should disable SmartSpeed */
5444 		ret_val =
5445 		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5446 				       &phy_data);
5447 		if (ret_val)
5448 			return ret_val;
5449 
5450 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5451 		ret_val =
5452 		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5453 					phy_data);
5454 		if (ret_val)
5455 			return ret_val;
5456 	}
5457 	return E1000_SUCCESS;
5458 }
5459 
5460 /**
5461  * e1000_set_vco_speed
5462  * @hw: Struct containing variables accessed by shared code
5463  *
5464  * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5465  */
5466 static s32 e1000_set_vco_speed(struct e1000_hw *hw)
5467 {
5468 	s32 ret_val;
5469 	u16 default_page = 0;
5470 	u16 phy_data;
5471 
5472 	switch (hw->mac_type) {
5473 	case e1000_82545_rev_3:
5474 	case e1000_82546_rev_3:
5475 		break;
5476 	default:
5477 		return E1000_SUCCESS;
5478 	}
5479 
5480 	/* Set PHY register 30, page 5, bit 8 to 0 */
5481 
5482 	ret_val =
5483 	    e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5484 	if (ret_val)
5485 		return ret_val;
5486 
5487 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5488 	if (ret_val)
5489 		return ret_val;
5490 
5491 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5492 	if (ret_val)
5493 		return ret_val;
5494 
5495 	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5496 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5497 	if (ret_val)
5498 		return ret_val;
5499 
5500 	/* Set PHY register 30, page 4, bit 11 to 1 */
5501 
5502 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5503 	if (ret_val)
5504 		return ret_val;
5505 
5506 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5507 	if (ret_val)
5508 		return ret_val;
5509 
5510 	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5511 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5512 	if (ret_val)
5513 		return ret_val;
5514 
5515 	ret_val =
5516 	    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5517 	if (ret_val)
5518 		return ret_val;
5519 
5520 	return E1000_SUCCESS;
5521 }
5522 
5523 /**
5524  * e1000_enable_mng_pass_thru - check for bmc pass through
5525  * @hw: Struct containing variables accessed by shared code
5526  *
5527  * Verifies the hardware needs to allow ARPs to be processed by the host
5528  * returns: - true/false
5529  */
5530 u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
5531 {
5532 	u32 manc;
5533 
5534 	if (hw->asf_firmware_present) {
5535 		manc = er32(MANC);
5536 
5537 		if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5538 		    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5539 			return false;
5540 		if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5541 			return true;
5542 	}
5543 	return false;
5544 }
5545 
5546 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
5547 {
5548 	s32 ret_val;
5549 	u16 mii_status_reg;
5550 	u16 i;
5551 
5552 	/* Polarity reversal workaround for forced 10F/10H links. */
5553 
5554 	/* Disable the transmitter on the PHY */
5555 
5556 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5557 	if (ret_val)
5558 		return ret_val;
5559 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5560 	if (ret_val)
5561 		return ret_val;
5562 
5563 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5564 	if (ret_val)
5565 		return ret_val;
5566 
5567 	/* This loop will early-out if the NO link condition has been met. */
5568 	for (i = PHY_FORCE_TIME; i > 0; i--) {
5569 		/* Read the MII Status Register and wait for Link Status bit
5570 		 * to be clear.
5571 		 */
5572 
5573 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5574 		if (ret_val)
5575 			return ret_val;
5576 
5577 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5578 		if (ret_val)
5579 			return ret_val;
5580 
5581 		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5582 			break;
5583 		msleep(100);
5584 	}
5585 
5586 	/* Recommended delay time after link has been lost */
5587 	msleep(1000);
5588 
5589 	/* Now we will re-enable th transmitter on the PHY */
5590 
5591 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5592 	if (ret_val)
5593 		return ret_val;
5594 	msleep(50);
5595 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5596 	if (ret_val)
5597 		return ret_val;
5598 	msleep(50);
5599 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5600 	if (ret_val)
5601 		return ret_val;
5602 	msleep(50);
5603 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5604 	if (ret_val)
5605 		return ret_val;
5606 
5607 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5608 	if (ret_val)
5609 		return ret_val;
5610 
5611 	/* This loop will early-out if the link condition has been met. */
5612 	for (i = PHY_FORCE_TIME; i > 0; i--) {
5613 		/* Read the MII Status Register and wait for Link Status bit
5614 		 * to be set.
5615 		 */
5616 
5617 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5618 		if (ret_val)
5619 			return ret_val;
5620 
5621 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5622 		if (ret_val)
5623 			return ret_val;
5624 
5625 		if (mii_status_reg & MII_SR_LINK_STATUS)
5626 			break;
5627 		msleep(100);
5628 	}
5629 	return E1000_SUCCESS;
5630 }
5631 
5632 /**
5633  * e1000_get_auto_rd_done
5634  * @hw: Struct containing variables accessed by shared code
5635  *
5636  * Check for EEPROM Auto Read bit done.
5637  * returns: - E1000_ERR_RESET if fail to reset MAC
5638  *            E1000_SUCCESS at any other case.
5639  */
5640 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
5641 {
5642 	msleep(5);
5643 	return E1000_SUCCESS;
5644 }
5645 
5646 /**
5647  * e1000_get_phy_cfg_done
5648  * @hw: Struct containing variables accessed by shared code
5649  *
5650  * Checks if the PHY configuration is done
5651  * returns: - E1000_ERR_RESET if fail to reset MAC
5652  *            E1000_SUCCESS at any other case.
5653  */
5654 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
5655 {
5656 	msleep(10);
5657 	return E1000_SUCCESS;
5658 }
5659