1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27  */
28 
29 /* e1000_hw.c
30  * Shared functions for accessing and configuring the MAC
31  */
32 
33 #include "e1000.h"
34 
35 static s32 e1000_check_downshift(struct e1000_hw *hw);
36 static s32 e1000_check_polarity(struct e1000_hw *hw,
37 				e1000_rev_polarity *polarity);
38 static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
39 static void e1000_clear_vfta(struct e1000_hw *hw);
40 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
41 					      bool link_up);
42 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
43 static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
44 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
45 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
46 				  u16 *max_length);
47 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
48 static s32 e1000_id_led_init(struct e1000_hw *hw);
49 static void e1000_init_rx_addrs(struct e1000_hw *hw);
50 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
51 				  struct e1000_phy_info *phy_info);
52 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
53 				  struct e1000_phy_info *phy_info);
54 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
55 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
56 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
57 static s32 e1000_set_phy_type(struct e1000_hw *hw);
58 static void e1000_phy_init_script(struct e1000_hw *hw);
59 static s32 e1000_setup_copper_link(struct e1000_hw *hw);
60 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
61 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
62 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
63 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
64 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
65 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
66 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
67 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
68 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
69 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
70 				  u16 words, u16 *data);
71 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
72 					u16 words, u16 *data);
73 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
74 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
75 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
76 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
77 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
78 				  u16 phy_data);
79 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
80 				 u16 *phy_data);
81 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
82 static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
83 static void e1000_release_eeprom(struct e1000_hw *hw);
84 static void e1000_standby_eeprom(struct e1000_hw *hw);
85 static s32 e1000_set_vco_speed(struct e1000_hw *hw);
86 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
87 static s32 e1000_set_phy_mode(struct e1000_hw *hw);
88 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
89 				u16 *data);
90 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
91 				 u16 *data);
92 
93 /* IGP cable length table */
94 static const
95 u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
96 	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
97 	5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
98 	25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
99 	40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
100 	60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
101 	90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
102 	    100,
103 	100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
104 	    110, 110,
105 	110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
106 	    120, 120
107 };
108 
109 static DEFINE_SPINLOCK(e1000_eeprom_lock);
110 static DEFINE_SPINLOCK(e1000_phy_lock);
111 
112 /**
113  * e1000_set_phy_type - Set the phy type member in the hw struct.
114  * @hw: Struct containing variables accessed by shared code
115  */
116 static s32 e1000_set_phy_type(struct e1000_hw *hw)
117 {
118 	if (hw->mac_type == e1000_undefined)
119 		return -E1000_ERR_PHY_TYPE;
120 
121 	switch (hw->phy_id) {
122 	case M88E1000_E_PHY_ID:
123 	case M88E1000_I_PHY_ID:
124 	case M88E1011_I_PHY_ID:
125 	case M88E1111_I_PHY_ID:
126 	case M88E1118_E_PHY_ID:
127 		hw->phy_type = e1000_phy_m88;
128 		break;
129 	case IGP01E1000_I_PHY_ID:
130 		if (hw->mac_type == e1000_82541 ||
131 		    hw->mac_type == e1000_82541_rev_2 ||
132 		    hw->mac_type == e1000_82547 ||
133 		    hw->mac_type == e1000_82547_rev_2)
134 			hw->phy_type = e1000_phy_igp;
135 		break;
136 	case RTL8211B_PHY_ID:
137 		hw->phy_type = e1000_phy_8211;
138 		break;
139 	case RTL8201N_PHY_ID:
140 		hw->phy_type = e1000_phy_8201;
141 		break;
142 	default:
143 		/* Should never have loaded on this device */
144 		hw->phy_type = e1000_phy_undefined;
145 		return -E1000_ERR_PHY_TYPE;
146 	}
147 
148 	return E1000_SUCCESS;
149 }
150 
151 /**
152  * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
153  * @hw: Struct containing variables accessed by shared code
154  */
155 static void e1000_phy_init_script(struct e1000_hw *hw)
156 {
157 	u32 ret_val;
158 	u16 phy_saved_data;
159 
160 	if (hw->phy_init_script) {
161 		msleep(20);
162 
163 		/* Save off the current value of register 0x2F5B to be restored
164 		 * at the end of this routine.
165 		 */
166 		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
167 
168 		/* Disabled the PHY transmitter */
169 		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
170 		msleep(20);
171 
172 		e1000_write_phy_reg(hw, 0x0000, 0x0140);
173 		msleep(5);
174 
175 		switch (hw->mac_type) {
176 		case e1000_82541:
177 		case e1000_82547:
178 			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
179 			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
180 			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
181 			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
182 			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
183 			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
184 			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
185 			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
186 			e1000_write_phy_reg(hw, 0x2010, 0x0008);
187 			break;
188 
189 		case e1000_82541_rev_2:
190 		case e1000_82547_rev_2:
191 			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
192 			break;
193 		default:
194 			break;
195 		}
196 
197 		e1000_write_phy_reg(hw, 0x0000, 0x3300);
198 		msleep(20);
199 
200 		/* Now enable the transmitter */
201 		e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
202 
203 		if (hw->mac_type == e1000_82547) {
204 			u16 fused, fine, coarse;
205 
206 			/* Move to analog registers page */
207 			e1000_read_phy_reg(hw,
208 					   IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
209 					   &fused);
210 
211 			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
212 				e1000_read_phy_reg(hw,
213 						   IGP01E1000_ANALOG_FUSE_STATUS,
214 						   &fused);
215 
216 				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
217 				coarse =
218 				    fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
219 
220 				if (coarse >
221 				    IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
222 					coarse -=
223 					    IGP01E1000_ANALOG_FUSE_COARSE_10;
224 					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
225 				} else if (coarse ==
226 					   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
227 					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
228 
229 				fused =
230 				    (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
231 				    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
232 				    (coarse &
233 				     IGP01E1000_ANALOG_FUSE_COARSE_MASK);
234 
235 				e1000_write_phy_reg(hw,
236 						    IGP01E1000_ANALOG_FUSE_CONTROL,
237 						    fused);
238 				e1000_write_phy_reg(hw,
239 						    IGP01E1000_ANALOG_FUSE_BYPASS,
240 						    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
241 			}
242 		}
243 	}
244 }
245 
246 /**
247  * e1000_set_mac_type - Set the mac type member in the hw struct.
248  * @hw: Struct containing variables accessed by shared code
249  */
250 s32 e1000_set_mac_type(struct e1000_hw *hw)
251 {
252 	switch (hw->device_id) {
253 	case E1000_DEV_ID_82542:
254 		switch (hw->revision_id) {
255 		case E1000_82542_2_0_REV_ID:
256 			hw->mac_type = e1000_82542_rev2_0;
257 			break;
258 		case E1000_82542_2_1_REV_ID:
259 			hw->mac_type = e1000_82542_rev2_1;
260 			break;
261 		default:
262 			/* Invalid 82542 revision ID */
263 			return -E1000_ERR_MAC_TYPE;
264 		}
265 		break;
266 	case E1000_DEV_ID_82543GC_FIBER:
267 	case E1000_DEV_ID_82543GC_COPPER:
268 		hw->mac_type = e1000_82543;
269 		break;
270 	case E1000_DEV_ID_82544EI_COPPER:
271 	case E1000_DEV_ID_82544EI_FIBER:
272 	case E1000_DEV_ID_82544GC_COPPER:
273 	case E1000_DEV_ID_82544GC_LOM:
274 		hw->mac_type = e1000_82544;
275 		break;
276 	case E1000_DEV_ID_82540EM:
277 	case E1000_DEV_ID_82540EM_LOM:
278 	case E1000_DEV_ID_82540EP:
279 	case E1000_DEV_ID_82540EP_LOM:
280 	case E1000_DEV_ID_82540EP_LP:
281 		hw->mac_type = e1000_82540;
282 		break;
283 	case E1000_DEV_ID_82545EM_COPPER:
284 	case E1000_DEV_ID_82545EM_FIBER:
285 		hw->mac_type = e1000_82545;
286 		break;
287 	case E1000_DEV_ID_82545GM_COPPER:
288 	case E1000_DEV_ID_82545GM_FIBER:
289 	case E1000_DEV_ID_82545GM_SERDES:
290 		hw->mac_type = e1000_82545_rev_3;
291 		break;
292 	case E1000_DEV_ID_82546EB_COPPER:
293 	case E1000_DEV_ID_82546EB_FIBER:
294 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
295 		hw->mac_type = e1000_82546;
296 		break;
297 	case E1000_DEV_ID_82546GB_COPPER:
298 	case E1000_DEV_ID_82546GB_FIBER:
299 	case E1000_DEV_ID_82546GB_SERDES:
300 	case E1000_DEV_ID_82546GB_PCIE:
301 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
302 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
303 		hw->mac_type = e1000_82546_rev_3;
304 		break;
305 	case E1000_DEV_ID_82541EI:
306 	case E1000_DEV_ID_82541EI_MOBILE:
307 	case E1000_DEV_ID_82541ER_LOM:
308 		hw->mac_type = e1000_82541;
309 		break;
310 	case E1000_DEV_ID_82541ER:
311 	case E1000_DEV_ID_82541GI:
312 	case E1000_DEV_ID_82541GI_LF:
313 	case E1000_DEV_ID_82541GI_MOBILE:
314 		hw->mac_type = e1000_82541_rev_2;
315 		break;
316 	case E1000_DEV_ID_82547EI:
317 	case E1000_DEV_ID_82547EI_MOBILE:
318 		hw->mac_type = e1000_82547;
319 		break;
320 	case E1000_DEV_ID_82547GI:
321 		hw->mac_type = e1000_82547_rev_2;
322 		break;
323 	case E1000_DEV_ID_INTEL_CE4100_GBE:
324 		hw->mac_type = e1000_ce4100;
325 		break;
326 	default:
327 		/* Should never have loaded on this device */
328 		return -E1000_ERR_MAC_TYPE;
329 	}
330 
331 	switch (hw->mac_type) {
332 	case e1000_82541:
333 	case e1000_82547:
334 	case e1000_82541_rev_2:
335 	case e1000_82547_rev_2:
336 		hw->asf_firmware_present = true;
337 		break;
338 	default:
339 		break;
340 	}
341 
342 	/* The 82543 chip does not count tx_carrier_errors properly in
343 	 * FD mode
344 	 */
345 	if (hw->mac_type == e1000_82543)
346 		hw->bad_tx_carr_stats_fd = true;
347 
348 	if (hw->mac_type > e1000_82544)
349 		hw->has_smbus = true;
350 
351 	return E1000_SUCCESS;
352 }
353 
354 /**
355  * e1000_set_media_type - Set media type and TBI compatibility.
356  * @hw: Struct containing variables accessed by shared code
357  */
358 void e1000_set_media_type(struct e1000_hw *hw)
359 {
360 	u32 status;
361 
362 	if (hw->mac_type != e1000_82543) {
363 		/* tbi_compatibility is only valid on 82543 */
364 		hw->tbi_compatibility_en = false;
365 	}
366 
367 	switch (hw->device_id) {
368 	case E1000_DEV_ID_82545GM_SERDES:
369 	case E1000_DEV_ID_82546GB_SERDES:
370 		hw->media_type = e1000_media_type_internal_serdes;
371 		break;
372 	default:
373 		switch (hw->mac_type) {
374 		case e1000_82542_rev2_0:
375 		case e1000_82542_rev2_1:
376 			hw->media_type = e1000_media_type_fiber;
377 			break;
378 		case e1000_ce4100:
379 			hw->media_type = e1000_media_type_copper;
380 			break;
381 		default:
382 			status = er32(STATUS);
383 			if (status & E1000_STATUS_TBIMODE) {
384 				hw->media_type = e1000_media_type_fiber;
385 				/* tbi_compatibility not valid on fiber */
386 				hw->tbi_compatibility_en = false;
387 			} else {
388 				hw->media_type = e1000_media_type_copper;
389 			}
390 			break;
391 		}
392 	}
393 }
394 
395 /**
396  * e1000_reset_hw - reset the hardware completely
397  * @hw: Struct containing variables accessed by shared code
398  *
399  * Reset the transmit and receive units; mask and clear all interrupts.
400  */
401 s32 e1000_reset_hw(struct e1000_hw *hw)
402 {
403 	u32 ctrl;
404 	u32 ctrl_ext;
405 	u32 icr;
406 	u32 manc;
407 	u32 led_ctrl;
408 	s32 ret_val;
409 
410 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
411 	if (hw->mac_type == e1000_82542_rev2_0) {
412 		e_dbg("Disabling MWI on 82542 rev 2.0\n");
413 		e1000_pci_clear_mwi(hw);
414 	}
415 
416 	/* Clear interrupt mask to stop board from generating interrupts */
417 	e_dbg("Masking off all interrupts\n");
418 	ew32(IMC, 0xffffffff);
419 
420 	/* Disable the Transmit and Receive units.  Then delay to allow
421 	 * any pending transactions to complete before we hit the MAC with
422 	 * the global reset.
423 	 */
424 	ew32(RCTL, 0);
425 	ew32(TCTL, E1000_TCTL_PSP);
426 	E1000_WRITE_FLUSH();
427 
428 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
429 	hw->tbi_compatibility_on = false;
430 
431 	/* Delay to allow any outstanding PCI transactions to complete before
432 	 * resetting the device
433 	 */
434 	msleep(10);
435 
436 	ctrl = er32(CTRL);
437 
438 	/* Must reset the PHY before resetting the MAC */
439 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
440 		ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
441 		E1000_WRITE_FLUSH();
442 		msleep(5);
443 	}
444 
445 	/* Issue a global reset to the MAC.  This will reset the chip's
446 	 * transmit, receive, DMA, and link units.  It will not effect
447 	 * the current PCI configuration.  The global reset bit is self-
448 	 * clearing, and should clear within a microsecond.
449 	 */
450 	e_dbg("Issuing a global reset to MAC\n");
451 
452 	switch (hw->mac_type) {
453 	case e1000_82544:
454 	case e1000_82540:
455 	case e1000_82545:
456 	case e1000_82546:
457 	case e1000_82541:
458 	case e1000_82541_rev_2:
459 		/* These controllers can't ack the 64-bit write when issuing the
460 		 * reset, so use IO-mapping as a workaround to issue the reset
461 		 */
462 		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
463 		break;
464 	case e1000_82545_rev_3:
465 	case e1000_82546_rev_3:
466 		/* Reset is performed on a shadow of the control register */
467 		ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
468 		break;
469 	case e1000_ce4100:
470 	default:
471 		ew32(CTRL, (ctrl | E1000_CTRL_RST));
472 		break;
473 	}
474 
475 	/* After MAC reset, force reload of EEPROM to restore power-on settings
476 	 * to device.  Later controllers reload the EEPROM automatically, so
477 	 * just wait for reload to complete.
478 	 */
479 	switch (hw->mac_type) {
480 	case e1000_82542_rev2_0:
481 	case e1000_82542_rev2_1:
482 	case e1000_82543:
483 	case e1000_82544:
484 		/* Wait for reset to complete */
485 		udelay(10);
486 		ctrl_ext = er32(CTRL_EXT);
487 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
488 		ew32(CTRL_EXT, ctrl_ext);
489 		E1000_WRITE_FLUSH();
490 		/* Wait for EEPROM reload */
491 		msleep(2);
492 		break;
493 	case e1000_82541:
494 	case e1000_82541_rev_2:
495 	case e1000_82547:
496 	case e1000_82547_rev_2:
497 		/* Wait for EEPROM reload */
498 		msleep(20);
499 		break;
500 	default:
501 		/* Auto read done will delay 5ms or poll based on mac type */
502 		ret_val = e1000_get_auto_rd_done(hw);
503 		if (ret_val)
504 			return ret_val;
505 		break;
506 	}
507 
508 	/* Disable HW ARPs on ASF enabled adapters */
509 	if (hw->mac_type >= e1000_82540) {
510 		manc = er32(MANC);
511 		manc &= ~(E1000_MANC_ARP_EN);
512 		ew32(MANC, manc);
513 	}
514 
515 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
516 		e1000_phy_init_script(hw);
517 
518 		/* Configure activity LED after PHY reset */
519 		led_ctrl = er32(LEDCTL);
520 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
521 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
522 		ew32(LEDCTL, led_ctrl);
523 	}
524 
525 	/* Clear interrupt mask to stop board from generating interrupts */
526 	e_dbg("Masking off all interrupts\n");
527 	ew32(IMC, 0xffffffff);
528 
529 	/* Clear any pending interrupt events. */
530 	icr = er32(ICR);
531 
532 	/* If MWI was previously enabled, reenable it. */
533 	if (hw->mac_type == e1000_82542_rev2_0) {
534 		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
535 			e1000_pci_set_mwi(hw);
536 	}
537 
538 	return E1000_SUCCESS;
539 }
540 
541 /**
542  * e1000_init_hw - Performs basic configuration of the adapter.
543  * @hw: Struct containing variables accessed by shared code
544  *
545  * Assumes that the controller has previously been reset and is in a
546  * post-reset uninitialized state. Initializes the receive address registers,
547  * multicast table, and VLAN filter table. Calls routines to setup link
548  * configuration and flow control settings. Clears all on-chip counters. Leaves
549  * the transmit and receive units disabled and uninitialized.
550  */
551 s32 e1000_init_hw(struct e1000_hw *hw)
552 {
553 	u32 ctrl;
554 	u32 i;
555 	s32 ret_val;
556 	u32 mta_size;
557 	u32 ctrl_ext;
558 
559 	/* Initialize Identification LED */
560 	ret_val = e1000_id_led_init(hw);
561 	if (ret_val) {
562 		e_dbg("Error Initializing Identification LED\n");
563 		return ret_val;
564 	}
565 
566 	/* Set the media type and TBI compatibility */
567 	e1000_set_media_type(hw);
568 
569 	/* Disabling VLAN filtering. */
570 	e_dbg("Initializing the IEEE VLAN\n");
571 	if (hw->mac_type < e1000_82545_rev_3)
572 		ew32(VET, 0);
573 	e1000_clear_vfta(hw);
574 
575 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
576 	if (hw->mac_type == e1000_82542_rev2_0) {
577 		e_dbg("Disabling MWI on 82542 rev 2.0\n");
578 		e1000_pci_clear_mwi(hw);
579 		ew32(RCTL, E1000_RCTL_RST);
580 		E1000_WRITE_FLUSH();
581 		msleep(5);
582 	}
583 
584 	/* Setup the receive address. This involves initializing all of the
585 	 * Receive Address Registers (RARs 0 - 15).
586 	 */
587 	e1000_init_rx_addrs(hw);
588 
589 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
590 	if (hw->mac_type == e1000_82542_rev2_0) {
591 		ew32(RCTL, 0);
592 		E1000_WRITE_FLUSH();
593 		msleep(1);
594 		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
595 			e1000_pci_set_mwi(hw);
596 	}
597 
598 	/* Zero out the Multicast HASH table */
599 	e_dbg("Zeroing the MTA\n");
600 	mta_size = E1000_MC_TBL_SIZE;
601 	for (i = 0; i < mta_size; i++) {
602 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
603 		/* use write flush to prevent Memory Write Block (MWB) from
604 		 * occurring when accessing our register space
605 		 */
606 		E1000_WRITE_FLUSH();
607 	}
608 
609 	/* Set the PCI priority bit correctly in the CTRL register.  This
610 	 * determines if the adapter gives priority to receives, or if it
611 	 * gives equal priority to transmits and receives.  Valid only on
612 	 * 82542 and 82543 silicon.
613 	 */
614 	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
615 		ctrl = er32(CTRL);
616 		ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
617 	}
618 
619 	switch (hw->mac_type) {
620 	case e1000_82545_rev_3:
621 	case e1000_82546_rev_3:
622 		break;
623 	default:
624 		/* Workaround for PCI-X problem when BIOS sets MMRBC
625 		 * incorrectly.
626 		 */
627 		if (hw->bus_type == e1000_bus_type_pcix
628 		    && e1000_pcix_get_mmrbc(hw) > 2048)
629 			e1000_pcix_set_mmrbc(hw, 2048);
630 		break;
631 	}
632 
633 	/* Call a subroutine to configure the link and setup flow control. */
634 	ret_val = e1000_setup_link(hw);
635 
636 	/* Set the transmit descriptor write-back policy */
637 	if (hw->mac_type > e1000_82544) {
638 		ctrl = er32(TXDCTL);
639 		ctrl =
640 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
641 		    E1000_TXDCTL_FULL_TX_DESC_WB;
642 		ew32(TXDCTL, ctrl);
643 	}
644 
645 	/* Clear all of the statistics registers (clear on read).  It is
646 	 * important that we do this after we have tried to establish link
647 	 * because the symbol error count will increment wildly if there
648 	 * is no link.
649 	 */
650 	e1000_clear_hw_cntrs(hw);
651 
652 	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
653 	    hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
654 		ctrl_ext = er32(CTRL_EXT);
655 		/* Relaxed ordering must be disabled to avoid a parity
656 		 * error crash in a PCI slot.
657 		 */
658 		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
659 		ew32(CTRL_EXT, ctrl_ext);
660 	}
661 
662 	return ret_val;
663 }
664 
665 /**
666  * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
667  * @hw: Struct containing variables accessed by shared code.
668  */
669 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
670 {
671 	u16 eeprom_data;
672 	s32 ret_val;
673 
674 	if (hw->media_type != e1000_media_type_internal_serdes)
675 		return E1000_SUCCESS;
676 
677 	switch (hw->mac_type) {
678 	case e1000_82545_rev_3:
679 	case e1000_82546_rev_3:
680 		break;
681 	default:
682 		return E1000_SUCCESS;
683 	}
684 
685 	ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
686 	                            &eeprom_data);
687 	if (ret_val) {
688 		return ret_val;
689 	}
690 
691 	if (eeprom_data != EEPROM_RESERVED_WORD) {
692 		/* Adjust SERDES output amplitude only. */
693 		eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
694 		ret_val =
695 		    e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
696 		if (ret_val)
697 			return ret_val;
698 	}
699 
700 	return E1000_SUCCESS;
701 }
702 
703 /**
704  * e1000_setup_link - Configures flow control and link settings.
705  * @hw: Struct containing variables accessed by shared code
706  *
707  * Determines which flow control settings to use. Calls the appropriate media-
708  * specific link configuration function. Configures the flow control settings.
709  * Assuming the adapter has a valid link partner, a valid link should be
710  * established. Assumes the hardware has previously been reset and the
711  * transmitter and receiver are not enabled.
712  */
713 s32 e1000_setup_link(struct e1000_hw *hw)
714 {
715 	u32 ctrl_ext;
716 	s32 ret_val;
717 	u16 eeprom_data;
718 
719 	/* Read and store word 0x0F of the EEPROM. This word contains bits
720 	 * that determine the hardware's default PAUSE (flow control) mode,
721 	 * a bit that determines whether the HW defaults to enabling or
722 	 * disabling auto-negotiation, and the direction of the
723 	 * SW defined pins. If there is no SW over-ride of the flow
724 	 * control setting, then the variable hw->fc will
725 	 * be initialized based on a value in the EEPROM.
726 	 */
727 	if (hw->fc == E1000_FC_DEFAULT) {
728 		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
729 					    1, &eeprom_data);
730 		if (ret_val) {
731 			e_dbg("EEPROM Read Error\n");
732 			return -E1000_ERR_EEPROM;
733 		}
734 		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
735 			hw->fc = E1000_FC_NONE;
736 		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
737 			 EEPROM_WORD0F_ASM_DIR)
738 			hw->fc = E1000_FC_TX_PAUSE;
739 		else
740 			hw->fc = E1000_FC_FULL;
741 	}
742 
743 	/* We want to save off the original Flow Control configuration just
744 	 * in case we get disconnected and then reconnected into a different
745 	 * hub or switch with different Flow Control capabilities.
746 	 */
747 	if (hw->mac_type == e1000_82542_rev2_0)
748 		hw->fc &= (~E1000_FC_TX_PAUSE);
749 
750 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
751 		hw->fc &= (~E1000_FC_RX_PAUSE);
752 
753 	hw->original_fc = hw->fc;
754 
755 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
756 
757 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
758 	 * polarity value for the SW controlled pins, and setup the
759 	 * Extended Device Control reg with that info.
760 	 * This is needed because one of the SW controlled pins is used for
761 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
762 	 * or e1000_phy_setup() is called.
763 	 */
764 	if (hw->mac_type == e1000_82543) {
765 		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
766 					    1, &eeprom_data);
767 		if (ret_val) {
768 			e_dbg("EEPROM Read Error\n");
769 			return -E1000_ERR_EEPROM;
770 		}
771 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
772 			    SWDPIO__EXT_SHIFT);
773 		ew32(CTRL_EXT, ctrl_ext);
774 	}
775 
776 	/* Call the necessary subroutine to configure the link. */
777 	ret_val = (hw->media_type == e1000_media_type_copper) ?
778 	    e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
779 
780 	/* Initialize the flow control address, type, and PAUSE timer
781 	 * registers to their default values.  This is done even if flow
782 	 * control is disabled, because it does not hurt anything to
783 	 * initialize these registers.
784 	 */
785 	e_dbg("Initializing the Flow Control address, type and timer regs\n");
786 
787 	ew32(FCT, FLOW_CONTROL_TYPE);
788 	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
789 	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
790 
791 	ew32(FCTTV, hw->fc_pause_time);
792 
793 	/* Set the flow control receive threshold registers.  Normally,
794 	 * these registers will be set to a default threshold that may be
795 	 * adjusted later by the driver's runtime code.  However, if the
796 	 * ability to transmit pause frames in not enabled, then these
797 	 * registers will be set to 0.
798 	 */
799 	if (!(hw->fc & E1000_FC_TX_PAUSE)) {
800 		ew32(FCRTL, 0);
801 		ew32(FCRTH, 0);
802 	} else {
803 		/* We need to set up the Receive Threshold high and low water
804 		 * marks as well as (optionally) enabling the transmission of
805 		 * XON frames.
806 		 */
807 		if (hw->fc_send_xon) {
808 			ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
809 			ew32(FCRTH, hw->fc_high_water);
810 		} else {
811 			ew32(FCRTL, hw->fc_low_water);
812 			ew32(FCRTH, hw->fc_high_water);
813 		}
814 	}
815 	return ret_val;
816 }
817 
818 /**
819  * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
820  * @hw: Struct containing variables accessed by shared code
821  *
822  * Manipulates Physical Coding Sublayer functions in order to configure
823  * link. Assumes the hardware has been previously reset and the transmitter
824  * and receiver are not enabled.
825  */
826 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
827 {
828 	u32 ctrl;
829 	u32 status;
830 	u32 txcw = 0;
831 	u32 i;
832 	u32 signal = 0;
833 	s32 ret_val;
834 
835 	/* On adapters with a MAC newer than 82544, SWDP 1 will be
836 	 * set when the optics detect a signal. On older adapters, it will be
837 	 * cleared when there is a signal.  This applies to fiber media only.
838 	 * If we're on serdes media, adjust the output amplitude to value
839 	 * set in the EEPROM.
840 	 */
841 	ctrl = er32(CTRL);
842 	if (hw->media_type == e1000_media_type_fiber)
843 		signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
844 
845 	ret_val = e1000_adjust_serdes_amplitude(hw);
846 	if (ret_val)
847 		return ret_val;
848 
849 	/* Take the link out of reset */
850 	ctrl &= ~(E1000_CTRL_LRST);
851 
852 	/* Adjust VCO speed to improve BER performance */
853 	ret_val = e1000_set_vco_speed(hw);
854 	if (ret_val)
855 		return ret_val;
856 
857 	e1000_config_collision_dist(hw);
858 
859 	/* Check for a software override of the flow control settings, and setup
860 	 * the device accordingly.  If auto-negotiation is enabled, then
861 	 * software will have to set the "PAUSE" bits to the correct value in
862 	 * the Tranmsit Config Word Register (TXCW) and re-start
863 	 * auto-negotiation.  However, if auto-negotiation is disabled, then
864 	 * software will have to manually configure the two flow control enable
865 	 * bits in the CTRL register.
866 	 *
867 	 * The possible values of the "fc" parameter are:
868 	 *  0:  Flow control is completely disabled
869 	 *  1:  Rx flow control is enabled (we can receive pause frames, but
870 	 *      not send pause frames).
871 	 *  2:  Tx flow control is enabled (we can send pause frames but we do
872 	 *      not support receiving pause frames).
873 	 *  3:  Both Rx and TX flow control (symmetric) are enabled.
874 	 */
875 	switch (hw->fc) {
876 	case E1000_FC_NONE:
877 		/* Flow ctrl is completely disabled by a software over-ride */
878 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
879 		break;
880 	case E1000_FC_RX_PAUSE:
881 		/* Rx Flow control is enabled and Tx Flow control is disabled by
882 		 * a software over-ride. Since there really isn't a way to
883 		 * advertise that we are capable of Rx Pause ONLY, we will
884 		 * advertise that we support both symmetric and asymmetric Rx
885 		 * PAUSE. Later, we will disable the adapter's ability to send
886 		 * PAUSE frames.
887 		 */
888 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
889 		break;
890 	case E1000_FC_TX_PAUSE:
891 		/* Tx Flow control is enabled, and Rx Flow control is disabled,
892 		 * by a software over-ride.
893 		 */
894 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
895 		break;
896 	case E1000_FC_FULL:
897 		/* Flow control (both Rx and Tx) is enabled by a software
898 		 * over-ride.
899 		 */
900 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
901 		break;
902 	default:
903 		e_dbg("Flow control param set incorrectly\n");
904 		return -E1000_ERR_CONFIG;
905 	}
906 
907 	/* Since auto-negotiation is enabled, take the link out of reset (the
908 	 * link will be in reset, because we previously reset the chip). This
909 	 * will restart auto-negotiation.  If auto-negotiation is successful
910 	 * then the link-up status bit will be set and the flow control enable
911 	 * bits (RFCE and TFCE) will be set according to their negotiated value.
912 	 */
913 	e_dbg("Auto-negotiation enabled\n");
914 
915 	ew32(TXCW, txcw);
916 	ew32(CTRL, ctrl);
917 	E1000_WRITE_FLUSH();
918 
919 	hw->txcw = txcw;
920 	msleep(1);
921 
922 	/* If we have a signal (the cable is plugged in) then poll for a
923 	 * "Link-Up" indication in the Device Status Register.  Time-out if a
924 	 * link isn't seen in 500 milliseconds seconds (Auto-negotiation should
925 	 * complete in less than 500 milliseconds even if the other end is doing
926 	 * it in SW). For internal serdes, we just assume a signal is present,
927 	 * then poll.
928 	 */
929 	if (hw->media_type == e1000_media_type_internal_serdes ||
930 	    (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
931 		e_dbg("Looking for Link\n");
932 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
933 			msleep(10);
934 			status = er32(STATUS);
935 			if (status & E1000_STATUS_LU)
936 				break;
937 		}
938 		if (i == (LINK_UP_TIMEOUT / 10)) {
939 			e_dbg("Never got a valid link from auto-neg!!!\n");
940 			hw->autoneg_failed = 1;
941 			/* AutoNeg failed to achieve a link, so we'll call
942 			 * e1000_check_for_link. This routine will force the
943 			 * link up if we detect a signal. This will allow us to
944 			 * communicate with non-autonegotiating link partners.
945 			 */
946 			ret_val = e1000_check_for_link(hw);
947 			if (ret_val) {
948 				e_dbg("Error while checking for link\n");
949 				return ret_val;
950 			}
951 			hw->autoneg_failed = 0;
952 		} else {
953 			hw->autoneg_failed = 0;
954 			e_dbg("Valid Link Found\n");
955 		}
956 	} else {
957 		e_dbg("No Signal Detected\n");
958 	}
959 	return E1000_SUCCESS;
960 }
961 
962 /**
963  * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
964  * @hw: Struct containing variables accessed by shared code
965  *
966  * Commits changes to PHY configuration by calling e1000_phy_reset().
967  */
968 static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
969 {
970 	s32 ret_val;
971 
972 	/* SW reset the PHY so all changes take effect */
973 	ret_val = e1000_phy_reset(hw);
974 	if (ret_val) {
975 		e_dbg("Error Resetting the PHY\n");
976 		return ret_val;
977 	}
978 
979 	return E1000_SUCCESS;
980 }
981 
982 static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
983 {
984 	s32 ret_val;
985 	u32 ctrl_aux;
986 
987 	switch (hw->phy_type) {
988 	case e1000_phy_8211:
989 		ret_val = e1000_copper_link_rtl_setup(hw);
990 		if (ret_val) {
991 			e_dbg("e1000_copper_link_rtl_setup failed!\n");
992 			return ret_val;
993 		}
994 		break;
995 	case e1000_phy_8201:
996 		/* Set RMII mode */
997 		ctrl_aux = er32(CTL_AUX);
998 		ctrl_aux |= E1000_CTL_AUX_RMII;
999 		ew32(CTL_AUX, ctrl_aux);
1000 		E1000_WRITE_FLUSH();
1001 
1002 		/* Disable the J/K bits required for receive */
1003 		ctrl_aux = er32(CTL_AUX);
1004 		ctrl_aux |= 0x4;
1005 		ctrl_aux &= ~0x2;
1006 		ew32(CTL_AUX, ctrl_aux);
1007 		E1000_WRITE_FLUSH();
1008 		ret_val = e1000_copper_link_rtl_setup(hw);
1009 
1010 		if (ret_val) {
1011 			e_dbg("e1000_copper_link_rtl_setup failed!\n");
1012 			return ret_val;
1013 		}
1014 		break;
1015 	default:
1016 		e_dbg("Error Resetting the PHY\n");
1017 		return E1000_ERR_PHY_TYPE;
1018 	}
1019 
1020 	return E1000_SUCCESS;
1021 }
1022 
1023 /**
1024  * e1000_copper_link_preconfig - early configuration for copper
1025  * @hw: Struct containing variables accessed by shared code
1026  *
1027  * Make sure we have a valid PHY and change PHY mode before link setup.
1028  */
1029 static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1030 {
1031 	u32 ctrl;
1032 	s32 ret_val;
1033 	u16 phy_data;
1034 
1035 	ctrl = er32(CTRL);
1036 	/* With 82543, we need to force speed and duplex on the MAC equal to
1037 	 * what the PHY speed and duplex configuration is. In addition, we need
1038 	 * to perform a hardware reset on the PHY to take it out of reset.
1039 	 */
1040 	if (hw->mac_type > e1000_82543) {
1041 		ctrl |= E1000_CTRL_SLU;
1042 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1043 		ew32(CTRL, ctrl);
1044 	} else {
1045 		ctrl |=
1046 		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1047 		ew32(CTRL, ctrl);
1048 		ret_val = e1000_phy_hw_reset(hw);
1049 		if (ret_val)
1050 			return ret_val;
1051 	}
1052 
1053 	/* Make sure we have a valid PHY */
1054 	ret_val = e1000_detect_gig_phy(hw);
1055 	if (ret_val) {
1056 		e_dbg("Error, did not detect valid phy.\n");
1057 		return ret_val;
1058 	}
1059 	e_dbg("Phy ID = %x\n", hw->phy_id);
1060 
1061 	/* Set PHY to class A mode (if necessary) */
1062 	ret_val = e1000_set_phy_mode(hw);
1063 	if (ret_val)
1064 		return ret_val;
1065 
1066 	if ((hw->mac_type == e1000_82545_rev_3) ||
1067 	    (hw->mac_type == e1000_82546_rev_3)) {
1068 		ret_val =
1069 		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1070 		phy_data |= 0x00000008;
1071 		ret_val =
1072 		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1073 	}
1074 
1075 	if (hw->mac_type <= e1000_82543 ||
1076 	    hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1077 	    hw->mac_type == e1000_82541_rev_2
1078 	    || hw->mac_type == e1000_82547_rev_2)
1079 		hw->phy_reset_disable = false;
1080 
1081 	return E1000_SUCCESS;
1082 }
1083 
1084 /**
1085  * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1086  * @hw: Struct containing variables accessed by shared code
1087  */
1088 static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1089 {
1090 	u32 led_ctrl;
1091 	s32 ret_val;
1092 	u16 phy_data;
1093 
1094 	if (hw->phy_reset_disable)
1095 		return E1000_SUCCESS;
1096 
1097 	ret_val = e1000_phy_reset(hw);
1098 	if (ret_val) {
1099 		e_dbg("Error Resetting the PHY\n");
1100 		return ret_val;
1101 	}
1102 
1103 	/* Wait 15ms for MAC to configure PHY from eeprom settings */
1104 	msleep(15);
1105 	/* Configure activity LED after PHY reset */
1106 	led_ctrl = er32(LEDCTL);
1107 	led_ctrl &= IGP_ACTIVITY_LED_MASK;
1108 	led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1109 	ew32(LEDCTL, led_ctrl);
1110 
1111 	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1112 	if (hw->phy_type == e1000_phy_igp) {
1113 		/* disable lplu d3 during driver init */
1114 		ret_val = e1000_set_d3_lplu_state(hw, false);
1115 		if (ret_val) {
1116 			e_dbg("Error Disabling LPLU D3\n");
1117 			return ret_val;
1118 		}
1119 	}
1120 
1121 	/* Configure mdi-mdix settings */
1122 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1123 	if (ret_val)
1124 		return ret_val;
1125 
1126 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1127 		hw->dsp_config_state = e1000_dsp_config_disabled;
1128 		/* Force MDI for earlier revs of the IGP PHY */
1129 		phy_data &=
1130 		    ~(IGP01E1000_PSCR_AUTO_MDIX |
1131 		      IGP01E1000_PSCR_FORCE_MDI_MDIX);
1132 		hw->mdix = 1;
1133 
1134 	} else {
1135 		hw->dsp_config_state = e1000_dsp_config_enabled;
1136 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1137 
1138 		switch (hw->mdix) {
1139 		case 1:
1140 			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1141 			break;
1142 		case 2:
1143 			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1144 			break;
1145 		case 0:
1146 		default:
1147 			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1148 			break;
1149 		}
1150 	}
1151 	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1152 	if (ret_val)
1153 		return ret_val;
1154 
1155 	/* set auto-master slave resolution settings */
1156 	if (hw->autoneg) {
1157 		e1000_ms_type phy_ms_setting = hw->master_slave;
1158 
1159 		if (hw->ffe_config_state == e1000_ffe_config_active)
1160 			hw->ffe_config_state = e1000_ffe_config_enabled;
1161 
1162 		if (hw->dsp_config_state == e1000_dsp_config_activated)
1163 			hw->dsp_config_state = e1000_dsp_config_enabled;
1164 
1165 		/* when autonegotiation advertisement is only 1000Mbps then we
1166 		 * should disable SmartSpeed and enable Auto MasterSlave
1167 		 * resolution as hardware default.
1168 		 */
1169 		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1170 			/* Disable SmartSpeed */
1171 			ret_val =
1172 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1173 					       &phy_data);
1174 			if (ret_val)
1175 				return ret_val;
1176 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1177 			ret_val =
1178 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1179 						phy_data);
1180 			if (ret_val)
1181 				return ret_val;
1182 			/* Set auto Master/Slave resolution process */
1183 			ret_val =
1184 			    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1185 			if (ret_val)
1186 				return ret_val;
1187 			phy_data &= ~CR_1000T_MS_ENABLE;
1188 			ret_val =
1189 			    e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1190 			if (ret_val)
1191 				return ret_val;
1192 		}
1193 
1194 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1195 		if (ret_val)
1196 			return ret_val;
1197 
1198 		/* load defaults for future use */
1199 		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1200 		    ((phy_data & CR_1000T_MS_VALUE) ?
1201 		     e1000_ms_force_master :
1202 		     e1000_ms_force_slave) : e1000_ms_auto;
1203 
1204 		switch (phy_ms_setting) {
1205 		case e1000_ms_force_master:
1206 			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1207 			break;
1208 		case e1000_ms_force_slave:
1209 			phy_data |= CR_1000T_MS_ENABLE;
1210 			phy_data &= ~(CR_1000T_MS_VALUE);
1211 			break;
1212 		case e1000_ms_auto:
1213 			phy_data &= ~CR_1000T_MS_ENABLE;
1214 		default:
1215 			break;
1216 		}
1217 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1218 		if (ret_val)
1219 			return ret_val;
1220 	}
1221 
1222 	return E1000_SUCCESS;
1223 }
1224 
1225 /**
1226  * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1227  * @hw: Struct containing variables accessed by shared code
1228  */
1229 static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1230 {
1231 	s32 ret_val;
1232 	u16 phy_data;
1233 
1234 	if (hw->phy_reset_disable)
1235 		return E1000_SUCCESS;
1236 
1237 	/* Enable CRS on TX. This must be set for half-duplex operation. */
1238 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1239 	if (ret_val)
1240 		return ret_val;
1241 
1242 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1243 
1244 	/* Options:
1245 	 *   MDI/MDI-X = 0 (default)
1246 	 *   0 - Auto for all speeds
1247 	 *   1 - MDI mode
1248 	 *   2 - MDI-X mode
1249 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1250 	 */
1251 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1252 
1253 	switch (hw->mdix) {
1254 	case 1:
1255 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1256 		break;
1257 	case 2:
1258 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1259 		break;
1260 	case 3:
1261 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1262 		break;
1263 	case 0:
1264 	default:
1265 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1266 		break;
1267 	}
1268 
1269 	/* Options:
1270 	 *   disable_polarity_correction = 0 (default)
1271 	 *       Automatic Correction for Reversed Cable Polarity
1272 	 *   0 - Disabled
1273 	 *   1 - Enabled
1274 	 */
1275 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1276 	if (hw->disable_polarity_correction == 1)
1277 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1278 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1279 	if (ret_val)
1280 		return ret_val;
1281 
1282 	if (hw->phy_revision < M88E1011_I_REV_4) {
1283 		/* Force TX_CLK in the Extended PHY Specific Control Register
1284 		 * to 25MHz clock.
1285 		 */
1286 		ret_val =
1287 		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1288 				       &phy_data);
1289 		if (ret_val)
1290 			return ret_val;
1291 
1292 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1293 
1294 		if ((hw->phy_revision == E1000_REVISION_2) &&
1295 		    (hw->phy_id == M88E1111_I_PHY_ID)) {
1296 			/* Vidalia Phy, set the downshift counter to 5x */
1297 			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1298 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1299 			ret_val = e1000_write_phy_reg(hw,
1300 						      M88E1000_EXT_PHY_SPEC_CTRL,
1301 						      phy_data);
1302 			if (ret_val)
1303 				return ret_val;
1304 		} else {
1305 			/* Configure Master and Slave downshift values */
1306 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1307 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1308 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1309 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1310 			ret_val = e1000_write_phy_reg(hw,
1311 						      M88E1000_EXT_PHY_SPEC_CTRL,
1312 						      phy_data);
1313 			if (ret_val)
1314 				return ret_val;
1315 		}
1316 	}
1317 
1318 	/* SW Reset the PHY so all changes take effect */
1319 	ret_val = e1000_phy_reset(hw);
1320 	if (ret_val) {
1321 		e_dbg("Error Resetting the PHY\n");
1322 		return ret_val;
1323 	}
1324 
1325 	return E1000_SUCCESS;
1326 }
1327 
1328 /**
1329  * e1000_copper_link_autoneg - setup auto-neg
1330  * @hw: Struct containing variables accessed by shared code
1331  *
1332  * Setup auto-negotiation and flow control advertisements,
1333  * and then perform auto-negotiation.
1334  */
1335 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1336 {
1337 	s32 ret_val;
1338 	u16 phy_data;
1339 
1340 	/* Perform some bounds checking on the hw->autoneg_advertised
1341 	 * parameter.  If this variable is zero, then set it to the default.
1342 	 */
1343 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1344 
1345 	/* If autoneg_advertised is zero, we assume it was not defaulted
1346 	 * by the calling code so we set to advertise full capability.
1347 	 */
1348 	if (hw->autoneg_advertised == 0)
1349 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1350 
1351 	/* IFE/RTL8201N PHY only supports 10/100 */
1352 	if (hw->phy_type == e1000_phy_8201)
1353 		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1354 
1355 	e_dbg("Reconfiguring auto-neg advertisement params\n");
1356 	ret_val = e1000_phy_setup_autoneg(hw);
1357 	if (ret_val) {
1358 		e_dbg("Error Setting up Auto-Negotiation\n");
1359 		return ret_val;
1360 	}
1361 	e_dbg("Restarting Auto-Neg\n");
1362 
1363 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1364 	 * the Auto Neg Restart bit in the PHY control register.
1365 	 */
1366 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1367 	if (ret_val)
1368 		return ret_val;
1369 
1370 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1371 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1372 	if (ret_val)
1373 		return ret_val;
1374 
1375 	/* Does the user want to wait for Auto-Neg to complete here, or
1376 	 * check at a later time (for example, callback routine).
1377 	 */
1378 	if (hw->wait_autoneg_complete) {
1379 		ret_val = e1000_wait_autoneg(hw);
1380 		if (ret_val) {
1381 			e_dbg
1382 			    ("Error while waiting for autoneg to complete\n");
1383 			return ret_val;
1384 		}
1385 	}
1386 
1387 	hw->get_link_status = true;
1388 
1389 	return E1000_SUCCESS;
1390 }
1391 
1392 /**
1393  * e1000_copper_link_postconfig - post link setup
1394  * @hw: Struct containing variables accessed by shared code
1395  *
1396  * Config the MAC and the PHY after link is up.
1397  *   1) Set up the MAC to the current PHY speed/duplex
1398  *      if we are on 82543.  If we
1399  *      are on newer silicon, we only need to configure
1400  *      collision distance in the Transmit Control Register.
1401  *   2) Set up flow control on the MAC to that established with
1402  *      the link partner.
1403  *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
1404  */
1405 static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1406 {
1407 	s32 ret_val;
1408 
1409 	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
1410 		e1000_config_collision_dist(hw);
1411 	} else {
1412 		ret_val = e1000_config_mac_to_phy(hw);
1413 		if (ret_val) {
1414 			e_dbg("Error configuring MAC to PHY settings\n");
1415 			return ret_val;
1416 		}
1417 	}
1418 	ret_val = e1000_config_fc_after_link_up(hw);
1419 	if (ret_val) {
1420 		e_dbg("Error Configuring Flow Control\n");
1421 		return ret_val;
1422 	}
1423 
1424 	/* Config DSP to improve Giga link quality */
1425 	if (hw->phy_type == e1000_phy_igp) {
1426 		ret_val = e1000_config_dsp_after_link_change(hw, true);
1427 		if (ret_val) {
1428 			e_dbg("Error Configuring DSP after link up\n");
1429 			return ret_val;
1430 		}
1431 	}
1432 
1433 	return E1000_SUCCESS;
1434 }
1435 
1436 /**
1437  * e1000_setup_copper_link - phy/speed/duplex setting
1438  * @hw: Struct containing variables accessed by shared code
1439  *
1440  * Detects which PHY is present and sets up the speed and duplex
1441  */
1442 static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1443 {
1444 	s32 ret_val;
1445 	u16 i;
1446 	u16 phy_data;
1447 
1448 	/* Check if it is a valid PHY and set PHY mode if necessary. */
1449 	ret_val = e1000_copper_link_preconfig(hw);
1450 	if (ret_val)
1451 		return ret_val;
1452 
1453 	if (hw->phy_type == e1000_phy_igp) {
1454 		ret_val = e1000_copper_link_igp_setup(hw);
1455 		if (ret_val)
1456 			return ret_val;
1457 	} else if (hw->phy_type == e1000_phy_m88) {
1458 		ret_val = e1000_copper_link_mgp_setup(hw);
1459 		if (ret_val)
1460 			return ret_val;
1461 	} else {
1462 		ret_val = gbe_dhg_phy_setup(hw);
1463 		if (ret_val) {
1464 			e_dbg("gbe_dhg_phy_setup failed!\n");
1465 			return ret_val;
1466 		}
1467 	}
1468 
1469 	if (hw->autoneg) {
1470 		/* Setup autoneg and flow control advertisement
1471 		 * and perform autonegotiation
1472 		 */
1473 		ret_val = e1000_copper_link_autoneg(hw);
1474 		if (ret_val)
1475 			return ret_val;
1476 	} else {
1477 		/* PHY will be set to 10H, 10F, 100H,or 100F
1478 		 * depending on value from forced_speed_duplex.
1479 		 */
1480 		e_dbg("Forcing speed and duplex\n");
1481 		ret_val = e1000_phy_force_speed_duplex(hw);
1482 		if (ret_val) {
1483 			e_dbg("Error Forcing Speed and Duplex\n");
1484 			return ret_val;
1485 		}
1486 	}
1487 
1488 	/* Check link status. Wait up to 100 microseconds for link to become
1489 	 * valid.
1490 	 */
1491 	for (i = 0; i < 10; i++) {
1492 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1493 		if (ret_val)
1494 			return ret_val;
1495 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1496 		if (ret_val)
1497 			return ret_val;
1498 
1499 		if (phy_data & MII_SR_LINK_STATUS) {
1500 			/* Config the MAC and PHY after link is up */
1501 			ret_val = e1000_copper_link_postconfig(hw);
1502 			if (ret_val)
1503 				return ret_val;
1504 
1505 			e_dbg("Valid link established!!!\n");
1506 			return E1000_SUCCESS;
1507 		}
1508 		udelay(10);
1509 	}
1510 
1511 	e_dbg("Unable to establish link!!!\n");
1512 	return E1000_SUCCESS;
1513 }
1514 
1515 /**
1516  * e1000_phy_setup_autoneg - phy settings
1517  * @hw: Struct containing variables accessed by shared code
1518  *
1519  * Configures PHY autoneg and flow control advertisement settings
1520  */
1521 s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1522 {
1523 	s32 ret_val;
1524 	u16 mii_autoneg_adv_reg;
1525 	u16 mii_1000t_ctrl_reg;
1526 
1527 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1528 	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1529 	if (ret_val)
1530 		return ret_val;
1531 
1532 	/* Read the MII 1000Base-T Control Register (Address 9). */
1533 	ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1534 	if (ret_val)
1535 		return ret_val;
1536 	else if (hw->phy_type == e1000_phy_8201)
1537 		mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1538 
1539 	/* Need to parse both autoneg_advertised and fc and set up
1540 	 * the appropriate PHY registers.  First we will parse for
1541 	 * autoneg_advertised software override.  Since we can advertise
1542 	 * a plethora of combinations, we need to check each bit
1543 	 * individually.
1544 	 */
1545 
1546 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1547 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1548 	 * the  1000Base-T Control Register (Address 9).
1549 	 */
1550 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1551 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1552 
1553 	e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
1554 
1555 	/* Do we want to advertise 10 Mb Half Duplex? */
1556 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1557 		e_dbg("Advertise 10mb Half duplex\n");
1558 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1559 	}
1560 
1561 	/* Do we want to advertise 10 Mb Full Duplex? */
1562 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1563 		e_dbg("Advertise 10mb Full duplex\n");
1564 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1565 	}
1566 
1567 	/* Do we want to advertise 100 Mb Half Duplex? */
1568 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1569 		e_dbg("Advertise 100mb Half duplex\n");
1570 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1571 	}
1572 
1573 	/* Do we want to advertise 100 Mb Full Duplex? */
1574 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1575 		e_dbg("Advertise 100mb Full duplex\n");
1576 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1577 	}
1578 
1579 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1580 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1581 		e_dbg
1582 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
1583 	}
1584 
1585 	/* Do we want to advertise 1000 Mb Full Duplex? */
1586 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1587 		e_dbg("Advertise 1000mb Full duplex\n");
1588 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1589 	}
1590 
1591 	/* Check for a software override of the flow control settings, and
1592 	 * setup the PHY advertisement registers accordingly.  If
1593 	 * auto-negotiation is enabled, then software will have to set the
1594 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1595 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start
1596 	 * auto-negotiation.
1597 	 *
1598 	 * The possible values of the "fc" parameter are:
1599 	 *      0:  Flow control is completely disabled
1600 	 *      1:  Rx flow control is enabled (we can receive pause frames
1601 	 *          but not send pause frames).
1602 	 *      2:  Tx flow control is enabled (we can send pause frames
1603 	 *          but we do not support receiving pause frames).
1604 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1605 	 *  other:  No software override.  The flow control configuration
1606 	 *          in the EEPROM is used.
1607 	 */
1608 	switch (hw->fc) {
1609 	case E1000_FC_NONE:	/* 0 */
1610 		/* Flow control (RX & TX) is completely disabled by a
1611 		 * software over-ride.
1612 		 */
1613 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1614 		break;
1615 	case E1000_FC_RX_PAUSE:	/* 1 */
1616 		/* RX Flow control is enabled, and TX Flow control is
1617 		 * disabled, by a software over-ride.
1618 		 */
1619 		/* Since there really isn't a way to advertise that we are
1620 		 * capable of RX Pause ONLY, we will advertise that we
1621 		 * support both symmetric and asymmetric RX PAUSE.  Later
1622 		 * (in e1000_config_fc_after_link_up) we will disable the
1623 		 * hw's ability to send PAUSE frames.
1624 		 */
1625 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1626 		break;
1627 	case E1000_FC_TX_PAUSE:	/* 2 */
1628 		/* TX Flow control is enabled, and RX Flow control is
1629 		 * disabled, by a software over-ride.
1630 		 */
1631 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1632 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1633 		break;
1634 	case E1000_FC_FULL:	/* 3 */
1635 		/* Flow control (both RX and TX) is enabled by a software
1636 		 * over-ride.
1637 		 */
1638 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1639 		break;
1640 	default:
1641 		e_dbg("Flow control param set incorrectly\n");
1642 		return -E1000_ERR_CONFIG;
1643 	}
1644 
1645 	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1646 	if (ret_val)
1647 		return ret_val;
1648 
1649 	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1650 
1651 	if (hw->phy_type == e1000_phy_8201) {
1652 		mii_1000t_ctrl_reg = 0;
1653 	} else {
1654 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1655 		                              mii_1000t_ctrl_reg);
1656 		if (ret_val)
1657 			return ret_val;
1658 	}
1659 
1660 	return E1000_SUCCESS;
1661 }
1662 
1663 /**
1664  * e1000_phy_force_speed_duplex - force link settings
1665  * @hw: Struct containing variables accessed by shared code
1666  *
1667  * Force PHY speed and duplex settings to hw->forced_speed_duplex
1668  */
1669 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1670 {
1671 	u32 ctrl;
1672 	s32 ret_val;
1673 	u16 mii_ctrl_reg;
1674 	u16 mii_status_reg;
1675 	u16 phy_data;
1676 	u16 i;
1677 
1678 	/* Turn off Flow control if we are forcing speed and duplex. */
1679 	hw->fc = E1000_FC_NONE;
1680 
1681 	e_dbg("hw->fc = %d\n", hw->fc);
1682 
1683 	/* Read the Device Control Register. */
1684 	ctrl = er32(CTRL);
1685 
1686 	/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1687 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1688 	ctrl &= ~(DEVICE_SPEED_MASK);
1689 
1690 	/* Clear the Auto Speed Detect Enable bit. */
1691 	ctrl &= ~E1000_CTRL_ASDE;
1692 
1693 	/* Read the MII Control Register. */
1694 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1695 	if (ret_val)
1696 		return ret_val;
1697 
1698 	/* We need to disable autoneg in order to force link and duplex. */
1699 
1700 	mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1701 
1702 	/* Are we forcing Full or Half Duplex? */
1703 	if (hw->forced_speed_duplex == e1000_100_full ||
1704 	    hw->forced_speed_duplex == e1000_10_full) {
1705 		/* We want to force full duplex so we SET the full duplex bits
1706 		 * in the Device and MII Control Registers.
1707 		 */
1708 		ctrl |= E1000_CTRL_FD;
1709 		mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1710 		e_dbg("Full Duplex\n");
1711 	} else {
1712 		/* We want to force half duplex so we CLEAR the full duplex bits
1713 		 * in the Device and MII Control Registers.
1714 		 */
1715 		ctrl &= ~E1000_CTRL_FD;
1716 		mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1717 		e_dbg("Half Duplex\n");
1718 	}
1719 
1720 	/* Are we forcing 100Mbps??? */
1721 	if (hw->forced_speed_duplex == e1000_100_full ||
1722 	    hw->forced_speed_duplex == e1000_100_half) {
1723 		/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1724 		ctrl |= E1000_CTRL_SPD_100;
1725 		mii_ctrl_reg |= MII_CR_SPEED_100;
1726 		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1727 		e_dbg("Forcing 100mb ");
1728 	} else {
1729 		/* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1730 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1731 		mii_ctrl_reg |= MII_CR_SPEED_10;
1732 		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1733 		e_dbg("Forcing 10mb ");
1734 	}
1735 
1736 	e1000_config_collision_dist(hw);
1737 
1738 	/* Write the configured values back to the Device Control Reg. */
1739 	ew32(CTRL, ctrl);
1740 
1741 	if (hw->phy_type == e1000_phy_m88) {
1742 		ret_val =
1743 		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1744 		if (ret_val)
1745 			return ret_val;
1746 
1747 		/* Clear Auto-Crossover to force MDI manually. M88E1000 requires
1748 		 * MDI forced whenever speed are duplex are forced.
1749 		 */
1750 		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1751 		ret_val =
1752 		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1753 		if (ret_val)
1754 			return ret_val;
1755 
1756 		e_dbg("M88E1000 PSCR: %x\n", phy_data);
1757 
1758 		/* Need to reset the PHY or these changes will be ignored */
1759 		mii_ctrl_reg |= MII_CR_RESET;
1760 
1761 		/* Disable MDI-X support for 10/100 */
1762 	} else {
1763 		/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1764 		 * forced whenever speed or duplex are forced.
1765 		 */
1766 		ret_val =
1767 		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1768 		if (ret_val)
1769 			return ret_val;
1770 
1771 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1772 		phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1773 
1774 		ret_val =
1775 		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1776 		if (ret_val)
1777 			return ret_val;
1778 	}
1779 
1780 	/* Write back the modified PHY MII control register. */
1781 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1782 	if (ret_val)
1783 		return ret_val;
1784 
1785 	udelay(1);
1786 
1787 	/* The wait_autoneg_complete flag may be a little misleading here.
1788 	 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1789 	 * But we do want to delay for a period while forcing only so we
1790 	 * don't generate false No Link messages.  So we will wait here
1791 	 * only if the user has set wait_autoneg_complete to 1, which is
1792 	 * the default.
1793 	 */
1794 	if (hw->wait_autoneg_complete) {
1795 		/* We will wait for autoneg to complete. */
1796 		e_dbg("Waiting for forced speed/duplex link.\n");
1797 		mii_status_reg = 0;
1798 
1799 		/* Wait for autoneg to complete or 4.5 seconds to expire */
1800 		for (i = PHY_FORCE_TIME; i > 0; i--) {
1801 			/* Read the MII Status Register and wait for Auto-Neg
1802 			 * Complete bit to be set.
1803 			 */
1804 			ret_val =
1805 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1806 			if (ret_val)
1807 				return ret_val;
1808 
1809 			ret_val =
1810 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1811 			if (ret_val)
1812 				return ret_val;
1813 
1814 			if (mii_status_reg & MII_SR_LINK_STATUS)
1815 				break;
1816 			msleep(100);
1817 		}
1818 		if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1819 			/* We didn't get link.  Reset the DSP and wait again
1820 			 * for link.
1821 			 */
1822 			ret_val = e1000_phy_reset_dsp(hw);
1823 			if (ret_val) {
1824 				e_dbg("Error Resetting PHY DSP\n");
1825 				return ret_val;
1826 			}
1827 		}
1828 		/* This loop will early-out if the link condition has been
1829 		 * met
1830 		 */
1831 		for (i = PHY_FORCE_TIME; i > 0; i--) {
1832 			if (mii_status_reg & MII_SR_LINK_STATUS)
1833 				break;
1834 			msleep(100);
1835 			/* Read the MII Status Register and wait for Auto-Neg
1836 			 * Complete bit to be set.
1837 			 */
1838 			ret_val =
1839 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1840 			if (ret_val)
1841 				return ret_val;
1842 
1843 			ret_val =
1844 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1845 			if (ret_val)
1846 				return ret_val;
1847 		}
1848 	}
1849 
1850 	if (hw->phy_type == e1000_phy_m88) {
1851 		/* Because we reset the PHY above, we need to re-force TX_CLK in
1852 		 * the Extended PHY Specific Control Register to 25MHz clock.
1853 		 * This value defaults back to a 2.5MHz clock when the PHY is
1854 		 * reset.
1855 		 */
1856 		ret_val =
1857 		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1858 				       &phy_data);
1859 		if (ret_val)
1860 			return ret_val;
1861 
1862 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1863 		ret_val =
1864 		    e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1865 					phy_data);
1866 		if (ret_val)
1867 			return ret_val;
1868 
1869 		/* In addition, because of the s/w reset above, we need to
1870 		 * enable CRS on Tx.  This must be set for both full and half
1871 		 * duplex operation.
1872 		 */
1873 		ret_val =
1874 		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1875 		if (ret_val)
1876 			return ret_val;
1877 
1878 		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1879 		ret_val =
1880 		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1881 		if (ret_val)
1882 			return ret_val;
1883 
1884 		if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543)
1885 		    && (!hw->autoneg)
1886 		    && (hw->forced_speed_duplex == e1000_10_full
1887 			|| hw->forced_speed_duplex == e1000_10_half)) {
1888 			ret_val = e1000_polarity_reversal_workaround(hw);
1889 			if (ret_val)
1890 				return ret_val;
1891 		}
1892 	}
1893 	return E1000_SUCCESS;
1894 }
1895 
1896 /**
1897  * e1000_config_collision_dist - set collision distance register
1898  * @hw: Struct containing variables accessed by shared code
1899  *
1900  * Sets the collision distance in the Transmit Control register.
1901  * Link should have been established previously. Reads the speed and duplex
1902  * information from the Device Status register.
1903  */
1904 void e1000_config_collision_dist(struct e1000_hw *hw)
1905 {
1906 	u32 tctl, coll_dist;
1907 
1908 	if (hw->mac_type < e1000_82543)
1909 		coll_dist = E1000_COLLISION_DISTANCE_82542;
1910 	else
1911 		coll_dist = E1000_COLLISION_DISTANCE;
1912 
1913 	tctl = er32(TCTL);
1914 
1915 	tctl &= ~E1000_TCTL_COLD;
1916 	tctl |= coll_dist << E1000_COLD_SHIFT;
1917 
1918 	ew32(TCTL, tctl);
1919 	E1000_WRITE_FLUSH();
1920 }
1921 
1922 /**
1923  * e1000_config_mac_to_phy - sync phy and mac settings
1924  * @hw: Struct containing variables accessed by shared code
1925  * @mii_reg: data to write to the MII control register
1926  *
1927  * Sets MAC speed and duplex settings to reflect the those in the PHY
1928  * The contents of the PHY register containing the needed information need to
1929  * be passed in.
1930  */
1931 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1932 {
1933 	u32 ctrl;
1934 	s32 ret_val;
1935 	u16 phy_data;
1936 
1937 	/* 82544 or newer MAC, Auto Speed Detection takes care of
1938 	 * MAC speed/duplex configuration.
1939 	 */
1940 	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
1941 		return E1000_SUCCESS;
1942 
1943 	/* Read the Device Control Register and set the bits to Force Speed
1944 	 * and Duplex.
1945 	 */
1946 	ctrl = er32(CTRL);
1947 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1948 	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1949 
1950 	switch (hw->phy_type) {
1951 	case e1000_phy_8201:
1952 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1953 		if (ret_val)
1954 			return ret_val;
1955 
1956 		if (phy_data & RTL_PHY_CTRL_FD)
1957 			ctrl |= E1000_CTRL_FD;
1958 		else
1959 			ctrl &= ~E1000_CTRL_FD;
1960 
1961 		if (phy_data & RTL_PHY_CTRL_SPD_100)
1962 			ctrl |= E1000_CTRL_SPD_100;
1963 		else
1964 			ctrl |= E1000_CTRL_SPD_10;
1965 
1966 		e1000_config_collision_dist(hw);
1967 		break;
1968 	default:
1969 		/* Set up duplex in the Device Control and Transmit Control
1970 		 * registers depending on negotiated values.
1971 		 */
1972 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1973 					     &phy_data);
1974 		if (ret_val)
1975 			return ret_val;
1976 
1977 		if (phy_data & M88E1000_PSSR_DPLX)
1978 			ctrl |= E1000_CTRL_FD;
1979 		else
1980 			ctrl &= ~E1000_CTRL_FD;
1981 
1982 		e1000_config_collision_dist(hw);
1983 
1984 		/* Set up speed in the Device Control register depending on
1985 		 * negotiated values.
1986 		 */
1987 		if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1988 			ctrl |= E1000_CTRL_SPD_1000;
1989 		else if ((phy_data & M88E1000_PSSR_SPEED) ==
1990 			 M88E1000_PSSR_100MBS)
1991 			ctrl |= E1000_CTRL_SPD_100;
1992 	}
1993 
1994 	/* Write the configured values back to the Device Control Reg. */
1995 	ew32(CTRL, ctrl);
1996 	return E1000_SUCCESS;
1997 }
1998 
1999 /**
2000  * e1000_force_mac_fc - force flow control settings
2001  * @hw: Struct containing variables accessed by shared code
2002  *
2003  * Forces the MAC's flow control settings.
2004  * Sets the TFCE and RFCE bits in the device control register to reflect
2005  * the adapter settings. TFCE and RFCE need to be explicitly set by
2006  * software when a Copper PHY is used because autonegotiation is managed
2007  * by the PHY rather than the MAC. Software must also configure these
2008  * bits when link is forced on a fiber connection.
2009  */
2010 s32 e1000_force_mac_fc(struct e1000_hw *hw)
2011 {
2012 	u32 ctrl;
2013 
2014 	/* Get the current configuration of the Device Control Register */
2015 	ctrl = er32(CTRL);
2016 
2017 	/* Because we didn't get link via the internal auto-negotiation
2018 	 * mechanism (we either forced link or we got link via PHY
2019 	 * auto-neg), we have to manually enable/disable transmit an
2020 	 * receive flow control.
2021 	 *
2022 	 * The "Case" statement below enables/disable flow control
2023 	 * according to the "hw->fc" parameter.
2024 	 *
2025 	 * The possible values of the "fc" parameter are:
2026 	 *      0:  Flow control is completely disabled
2027 	 *      1:  Rx flow control is enabled (we can receive pause
2028 	 *          frames but not send pause frames).
2029 	 *      2:  Tx flow control is enabled (we can send pause frames
2030 	 *          frames but we do not receive pause frames).
2031 	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
2032 	 *  other:  No other values should be possible at this point.
2033 	 */
2034 
2035 	switch (hw->fc) {
2036 	case E1000_FC_NONE:
2037 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2038 		break;
2039 	case E1000_FC_RX_PAUSE:
2040 		ctrl &= (~E1000_CTRL_TFCE);
2041 		ctrl |= E1000_CTRL_RFCE;
2042 		break;
2043 	case E1000_FC_TX_PAUSE:
2044 		ctrl &= (~E1000_CTRL_RFCE);
2045 		ctrl |= E1000_CTRL_TFCE;
2046 		break;
2047 	case E1000_FC_FULL:
2048 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2049 		break;
2050 	default:
2051 		e_dbg("Flow control param set incorrectly\n");
2052 		return -E1000_ERR_CONFIG;
2053 	}
2054 
2055 	/* Disable TX Flow Control for 82542 (rev 2.0) */
2056 	if (hw->mac_type == e1000_82542_rev2_0)
2057 		ctrl &= (~E1000_CTRL_TFCE);
2058 
2059 	ew32(CTRL, ctrl);
2060 	return E1000_SUCCESS;
2061 }
2062 
2063 /**
2064  * e1000_config_fc_after_link_up - configure flow control after autoneg
2065  * @hw: Struct containing variables accessed by shared code
2066  *
2067  * Configures flow control settings after link is established
2068  * Should be called immediately after a valid link has been established.
2069  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2070  * and autonegotiation is enabled, the MAC flow control settings will be set
2071  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2072  * and RFCE bits will be automatically set to the negotiated flow control mode.
2073  */
2074 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2075 {
2076 	s32 ret_val;
2077 	u16 mii_status_reg;
2078 	u16 mii_nway_adv_reg;
2079 	u16 mii_nway_lp_ability_reg;
2080 	u16 speed;
2081 	u16 duplex;
2082 
2083 	/* Check for the case where we have fiber media and auto-neg failed
2084 	 * so we had to force link.  In this case, we need to force the
2085 	 * configuration of the MAC to match the "fc" parameter.
2086 	 */
2087 	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
2088 	    || ((hw->media_type == e1000_media_type_internal_serdes)
2089 		&& (hw->autoneg_failed))
2090 	    || ((hw->media_type == e1000_media_type_copper)
2091 		&& (!hw->autoneg))) {
2092 		ret_val = e1000_force_mac_fc(hw);
2093 		if (ret_val) {
2094 			e_dbg("Error forcing flow control settings\n");
2095 			return ret_val;
2096 		}
2097 	}
2098 
2099 	/* Check for the case where we have copper media and auto-neg is
2100 	 * enabled.  In this case, we need to check and see if Auto-Neg
2101 	 * has completed, and if so, how the PHY and link partner has
2102 	 * flow control configured.
2103 	 */
2104 	if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2105 		/* Read the MII Status Register and check to see if AutoNeg
2106 		 * has completed.  We read this twice because this reg has
2107 		 * some "sticky" (latched) bits.
2108 		 */
2109 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2110 		if (ret_val)
2111 			return ret_val;
2112 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2113 		if (ret_val)
2114 			return ret_val;
2115 
2116 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2117 			/* The AutoNeg process has completed, so we now need to
2118 			 * read both the Auto Negotiation Advertisement Register
2119 			 * (Address 4) and the Auto_Negotiation Base Page
2120 			 * Ability Register (Address 5) to determine how flow
2121 			 * control was negotiated.
2122 			 */
2123 			ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2124 						     &mii_nway_adv_reg);
2125 			if (ret_val)
2126 				return ret_val;
2127 			ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2128 						     &mii_nway_lp_ability_reg);
2129 			if (ret_val)
2130 				return ret_val;
2131 
2132 			/* Two bits in the Auto Negotiation Advertisement
2133 			 * Register (Address 4) and two bits in the Auto
2134 			 * Negotiation Base Page Ability Register (Address 5)
2135 			 * determine flow control for both the PHY and the link
2136 			 * partner.  The following table, taken out of the IEEE
2137 			 * 802.3ab/D6.0 dated March 25, 1999, describes these
2138 			 * PAUSE resolution bits and how flow control is
2139 			 * determined based upon these settings.
2140 			 * NOTE:  DC = Don't Care
2141 			 *
2142 			 *   LOCAL DEVICE  |   LINK PARTNER
2143 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2144 			 *-------|---------|-------|---------|------------------
2145 			 *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
2146 			 *   0   |    1    |   0   |   DC    | E1000_FC_NONE
2147 			 *   0   |    1    |   1   |    0    | E1000_FC_NONE
2148 			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2149 			 *   1   |    0    |   0   |   DC    | E1000_FC_NONE
2150 			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2151 			 *   1   |    1    |   0   |    0    | E1000_FC_NONE
2152 			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2153 			 *
2154 			 */
2155 			/* Are both PAUSE bits set to 1?  If so, this implies
2156 			 * Symmetric Flow Control is enabled at both ends.  The
2157 			 * ASM_DIR bits are irrelevant per the spec.
2158 			 *
2159 			 * For Symmetric Flow Control:
2160 			 *
2161 			 *   LOCAL DEVICE  |   LINK PARTNER
2162 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2163 			 *-------|---------|-------|---------|------------------
2164 			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2165 			 *
2166 			 */
2167 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2168 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2169 				/* Now we need to check if the user selected Rx
2170 				 * ONLY of pause frames.  In this case, we had
2171 				 * to advertise FULL flow control because we
2172 				 * could not advertise Rx ONLY. Hence, we must
2173 				 * now check to see if we need to turn OFF the
2174 				 * TRANSMISSION of PAUSE frames.
2175 				 */
2176 				if (hw->original_fc == E1000_FC_FULL) {
2177 					hw->fc = E1000_FC_FULL;
2178 					e_dbg("Flow Control = FULL.\n");
2179 				} else {
2180 					hw->fc = E1000_FC_RX_PAUSE;
2181 					e_dbg
2182 					    ("Flow Control = RX PAUSE frames only.\n");
2183 				}
2184 			}
2185 			/* For receiving PAUSE frames ONLY.
2186 			 *
2187 			 *   LOCAL DEVICE  |   LINK PARTNER
2188 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2189 			 *-------|---------|-------|---------|------------------
2190 			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2191 			 *
2192 			 */
2193 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2194 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2195 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2196 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2197 			{
2198 				hw->fc = E1000_FC_TX_PAUSE;
2199 				e_dbg
2200 				    ("Flow Control = TX PAUSE frames only.\n");
2201 			}
2202 			/* For transmitting PAUSE frames ONLY.
2203 			 *
2204 			 *   LOCAL DEVICE  |   LINK PARTNER
2205 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2206 			 *-------|---------|-------|---------|------------------
2207 			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2208 			 *
2209 			 */
2210 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2211 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2212 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2213 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2214 			{
2215 				hw->fc = E1000_FC_RX_PAUSE;
2216 				e_dbg
2217 				    ("Flow Control = RX PAUSE frames only.\n");
2218 			}
2219 			/* Per the IEEE spec, at this point flow control should
2220 			 * be disabled.  However, we want to consider that we
2221 			 * could be connected to a legacy switch that doesn't
2222 			 * advertise desired flow control, but can be forced on
2223 			 * the link partner.  So if we advertised no flow
2224 			 * control, that is what we will resolve to.  If we
2225 			 * advertised some kind of receive capability (Rx Pause
2226 			 * Only or Full Flow Control) and the link partner
2227 			 * advertised none, we will configure ourselves to
2228 			 * enable Rx Flow Control only.  We can do this safely
2229 			 * for two reasons:  If the link partner really
2230 			 * didn't want flow control enabled, and we enable Rx,
2231 			 * no harm done since we won't be receiving any PAUSE
2232 			 * frames anyway.  If the intent on the link partner was
2233 			 * to have flow control enabled, then by us enabling Rx
2234 			 * only, we can at least receive pause frames and
2235 			 * process them. This is a good idea because in most
2236 			 * cases, since we are predominantly a server NIC, more
2237 			 * times than not we will be asked to delay transmission
2238 			 * of packets than asking our link partner to pause
2239 			 * transmission of frames.
2240 			 */
2241 			else if ((hw->original_fc == E1000_FC_NONE ||
2242 				  hw->original_fc == E1000_FC_TX_PAUSE) ||
2243 				 hw->fc_strict_ieee) {
2244 				hw->fc = E1000_FC_NONE;
2245 				e_dbg("Flow Control = NONE.\n");
2246 			} else {
2247 				hw->fc = E1000_FC_RX_PAUSE;
2248 				e_dbg
2249 				    ("Flow Control = RX PAUSE frames only.\n");
2250 			}
2251 
2252 			/* Now we need to do one last check...  If we auto-
2253 			 * negotiated to HALF DUPLEX, flow control should not be
2254 			 * enabled per IEEE 802.3 spec.
2255 			 */
2256 			ret_val =
2257 			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2258 			if (ret_val) {
2259 				e_dbg
2260 				    ("Error getting link speed and duplex\n");
2261 				return ret_val;
2262 			}
2263 
2264 			if (duplex == HALF_DUPLEX)
2265 				hw->fc = E1000_FC_NONE;
2266 
2267 			/* Now we call a subroutine to actually force the MAC
2268 			 * controller to use the correct flow control settings.
2269 			 */
2270 			ret_val = e1000_force_mac_fc(hw);
2271 			if (ret_val) {
2272 				e_dbg
2273 				    ("Error forcing flow control settings\n");
2274 				return ret_val;
2275 			}
2276 		} else {
2277 			e_dbg
2278 			    ("Copper PHY and Auto Neg has not completed.\n");
2279 		}
2280 	}
2281 	return E1000_SUCCESS;
2282 }
2283 
2284 /**
2285  * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2286  * @hw: pointer to the HW structure
2287  *
2288  * Checks for link up on the hardware.  If link is not up and we have
2289  * a signal, then we need to force link up.
2290  */
2291 static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
2292 {
2293 	u32 rxcw;
2294 	u32 ctrl;
2295 	u32 status;
2296 	s32 ret_val = E1000_SUCCESS;
2297 
2298 	ctrl = er32(CTRL);
2299 	status = er32(STATUS);
2300 	rxcw = er32(RXCW);
2301 
2302 	/* If we don't have link (auto-negotiation failed or link partner
2303 	 * cannot auto-negotiate), and our link partner is not trying to
2304 	 * auto-negotiate with us (we are receiving idles or data),
2305 	 * we need to force link up. We also need to give auto-negotiation
2306 	 * time to complete.
2307 	 */
2308 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2309 	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2310 		if (hw->autoneg_failed == 0) {
2311 			hw->autoneg_failed = 1;
2312 			goto out;
2313 		}
2314 		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
2315 
2316 		/* Disable auto-negotiation in the TXCW register */
2317 		ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2318 
2319 		/* Force link-up and also force full-duplex. */
2320 		ctrl = er32(CTRL);
2321 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2322 		ew32(CTRL, ctrl);
2323 
2324 		/* Configure Flow Control after forcing link up. */
2325 		ret_val = e1000_config_fc_after_link_up(hw);
2326 		if (ret_val) {
2327 			e_dbg("Error configuring flow control\n");
2328 			goto out;
2329 		}
2330 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2331 		/* If we are forcing link and we are receiving /C/ ordered
2332 		 * sets, re-enable auto-negotiation in the TXCW register
2333 		 * and disable forced link in the Device Control register
2334 		 * in an attempt to auto-negotiate with our link partner.
2335 		 */
2336 		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
2337 		ew32(TXCW, hw->txcw);
2338 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2339 
2340 		hw->serdes_has_link = true;
2341 	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2342 		/* If we force link for non-auto-negotiation switch, check
2343 		 * link status based on MAC synchronization for internal
2344 		 * serdes media type.
2345 		 */
2346 		/* SYNCH bit and IV bit are sticky. */
2347 		udelay(10);
2348 		rxcw = er32(RXCW);
2349 		if (rxcw & E1000_RXCW_SYNCH) {
2350 			if (!(rxcw & E1000_RXCW_IV)) {
2351 				hw->serdes_has_link = true;
2352 				e_dbg("SERDES: Link up - forced.\n");
2353 			}
2354 		} else {
2355 			hw->serdes_has_link = false;
2356 			e_dbg("SERDES: Link down - force failed.\n");
2357 		}
2358 	}
2359 
2360 	if (E1000_TXCW_ANE & er32(TXCW)) {
2361 		status = er32(STATUS);
2362 		if (status & E1000_STATUS_LU) {
2363 			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
2364 			udelay(10);
2365 			rxcw = er32(RXCW);
2366 			if (rxcw & E1000_RXCW_SYNCH) {
2367 				if (!(rxcw & E1000_RXCW_IV)) {
2368 					hw->serdes_has_link = true;
2369 					e_dbg("SERDES: Link up - autoneg "
2370 						 "completed successfully.\n");
2371 				} else {
2372 					hw->serdes_has_link = false;
2373 					e_dbg("SERDES: Link down - invalid"
2374 						 "codewords detected in autoneg.\n");
2375 				}
2376 			} else {
2377 				hw->serdes_has_link = false;
2378 				e_dbg("SERDES: Link down - no sync.\n");
2379 			}
2380 		} else {
2381 			hw->serdes_has_link = false;
2382 			e_dbg("SERDES: Link down - autoneg failed\n");
2383 		}
2384 	}
2385 
2386       out:
2387 	return ret_val;
2388 }
2389 
2390 /**
2391  * e1000_check_for_link
2392  * @hw: Struct containing variables accessed by shared code
2393  *
2394  * Checks to see if the link status of the hardware has changed.
2395  * Called by any function that needs to check the link status of the adapter.
2396  */
2397 s32 e1000_check_for_link(struct e1000_hw *hw)
2398 {
2399 	u32 rxcw = 0;
2400 	u32 ctrl;
2401 	u32 status;
2402 	u32 rctl;
2403 	u32 icr;
2404 	u32 signal = 0;
2405 	s32 ret_val;
2406 	u16 phy_data;
2407 
2408 	ctrl = er32(CTRL);
2409 	status = er32(STATUS);
2410 
2411 	/* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2412 	 * set when the optics detect a signal. On older adapters, it will be
2413 	 * cleared when there is a signal.  This applies to fiber media only.
2414 	 */
2415 	if ((hw->media_type == e1000_media_type_fiber) ||
2416 	    (hw->media_type == e1000_media_type_internal_serdes)) {
2417 		rxcw = er32(RXCW);
2418 
2419 		if (hw->media_type == e1000_media_type_fiber) {
2420 			signal =
2421 			    (hw->mac_type >
2422 			     e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2423 			if (status & E1000_STATUS_LU)
2424 				hw->get_link_status = false;
2425 		}
2426 	}
2427 
2428 	/* If we have a copper PHY then we only want to go out to the PHY
2429 	 * registers to see if Auto-Neg has completed and/or if our link
2430 	 * status has changed.  The get_link_status flag will be set if we
2431 	 * receive a Link Status Change interrupt or we have Rx Sequence
2432 	 * Errors.
2433 	 */
2434 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2435 		/* First we want to see if the MII Status Register reports
2436 		 * link.  If so, then we want to get the current speed/duplex
2437 		 * of the PHY.
2438 		 * Read the register twice since the link bit is sticky.
2439 		 */
2440 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2441 		if (ret_val)
2442 			return ret_val;
2443 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2444 		if (ret_val)
2445 			return ret_val;
2446 
2447 		if (phy_data & MII_SR_LINK_STATUS) {
2448 			hw->get_link_status = false;
2449 			/* Check if there was DownShift, must be checked
2450 			 * immediately after link-up
2451 			 */
2452 			e1000_check_downshift(hw);
2453 
2454 			/* If we are on 82544 or 82543 silicon and speed/duplex
2455 			 * are forced to 10H or 10F, then we will implement the
2456 			 * polarity reversal workaround.  We disable interrupts
2457 			 * first, and upon returning, place the devices
2458 			 * interrupt state to its previous value except for the
2459 			 * link status change interrupt which will
2460 			 * happen due to the execution of this workaround.
2461 			 */
2462 
2463 			if ((hw->mac_type == e1000_82544
2464 			     || hw->mac_type == e1000_82543) && (!hw->autoneg)
2465 			    && (hw->forced_speed_duplex == e1000_10_full
2466 				|| hw->forced_speed_duplex == e1000_10_half)) {
2467 				ew32(IMC, 0xffffffff);
2468 				ret_val =
2469 				    e1000_polarity_reversal_workaround(hw);
2470 				icr = er32(ICR);
2471 				ew32(ICS, (icr & ~E1000_ICS_LSC));
2472 				ew32(IMS, IMS_ENABLE_MASK);
2473 			}
2474 
2475 		} else {
2476 			/* No link detected */
2477 			e1000_config_dsp_after_link_change(hw, false);
2478 			return 0;
2479 		}
2480 
2481 		/* If we are forcing speed/duplex, then we simply return since
2482 		 * we have already determined whether we have link or not.
2483 		 */
2484 		if (!hw->autoneg)
2485 			return -E1000_ERR_CONFIG;
2486 
2487 		/* optimize the dsp settings for the igp phy */
2488 		e1000_config_dsp_after_link_change(hw, true);
2489 
2490 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
2491 		 * have Si on board that is 82544 or newer, Auto
2492 		 * Speed Detection takes care of MAC speed/duplex
2493 		 * configuration.  So we only need to configure Collision
2494 		 * Distance in the MAC.  Otherwise, we need to force
2495 		 * speed/duplex on the MAC to the current PHY speed/duplex
2496 		 * settings.
2497 		 */
2498 		if ((hw->mac_type >= e1000_82544) &&
2499 		    (hw->mac_type != e1000_ce4100))
2500 			e1000_config_collision_dist(hw);
2501 		else {
2502 			ret_val = e1000_config_mac_to_phy(hw);
2503 			if (ret_val) {
2504 				e_dbg
2505 				    ("Error configuring MAC to PHY settings\n");
2506 				return ret_val;
2507 			}
2508 		}
2509 
2510 		/* Configure Flow Control now that Auto-Neg has completed.
2511 		 * First, we need to restore the desired flow control settings
2512 		 * because we may have had to re-autoneg with a different link
2513 		 * partner.
2514 		 */
2515 		ret_val = e1000_config_fc_after_link_up(hw);
2516 		if (ret_val) {
2517 			e_dbg("Error configuring flow control\n");
2518 			return ret_val;
2519 		}
2520 
2521 		/* At this point we know that we are on copper and we have
2522 		 * auto-negotiated link.  These are conditions for checking the
2523 		 * link partner capability register.  We use the link speed to
2524 		 * determine if TBI compatibility needs to be turned on or off.
2525 		 * If the link is not at gigabit speed, then TBI compatibility
2526 		 * is not needed.  If we are at gigabit speed, we turn on TBI
2527 		 * compatibility.
2528 		 */
2529 		if (hw->tbi_compatibility_en) {
2530 			u16 speed, duplex;
2531 			ret_val =
2532 			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2533 			if (ret_val) {
2534 				e_dbg
2535 				    ("Error getting link speed and duplex\n");
2536 				return ret_val;
2537 			}
2538 			if (speed != SPEED_1000) {
2539 				/* If link speed is not set to gigabit speed, we
2540 				 * do not need to enable TBI compatibility.
2541 				 */
2542 				if (hw->tbi_compatibility_on) {
2543 					/* If we previously were in the mode,
2544 					 * turn it off.
2545 					 */
2546 					rctl = er32(RCTL);
2547 					rctl &= ~E1000_RCTL_SBP;
2548 					ew32(RCTL, rctl);
2549 					hw->tbi_compatibility_on = false;
2550 				}
2551 			} else {
2552 				/* If TBI compatibility is was previously off,
2553 				 * turn it on. For compatibility with a TBI link
2554 				 * partner, we will store bad packets. Some
2555 				 * frames have an additional byte on the end and
2556 				 * will look like CRC errors to to the hardware.
2557 				 */
2558 				if (!hw->tbi_compatibility_on) {
2559 					hw->tbi_compatibility_on = true;
2560 					rctl = er32(RCTL);
2561 					rctl |= E1000_RCTL_SBP;
2562 					ew32(RCTL, rctl);
2563 				}
2564 			}
2565 		}
2566 	}
2567 
2568 	if ((hw->media_type == e1000_media_type_fiber) ||
2569 	    (hw->media_type == e1000_media_type_internal_serdes))
2570 		e1000_check_for_serdes_link_generic(hw);
2571 
2572 	return E1000_SUCCESS;
2573 }
2574 
2575 /**
2576  * e1000_get_speed_and_duplex
2577  * @hw: Struct containing variables accessed by shared code
2578  * @speed: Speed of the connection
2579  * @duplex: Duplex setting of the connection
2580  *
2581  * Detects the current speed and duplex settings of the hardware.
2582  */
2583 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
2584 {
2585 	u32 status;
2586 	s32 ret_val;
2587 	u16 phy_data;
2588 
2589 	if (hw->mac_type >= e1000_82543) {
2590 		status = er32(STATUS);
2591 		if (status & E1000_STATUS_SPEED_1000) {
2592 			*speed = SPEED_1000;
2593 			e_dbg("1000 Mbs, ");
2594 		} else if (status & E1000_STATUS_SPEED_100) {
2595 			*speed = SPEED_100;
2596 			e_dbg("100 Mbs, ");
2597 		} else {
2598 			*speed = SPEED_10;
2599 			e_dbg("10 Mbs, ");
2600 		}
2601 
2602 		if (status & E1000_STATUS_FD) {
2603 			*duplex = FULL_DUPLEX;
2604 			e_dbg("Full Duplex\n");
2605 		} else {
2606 			*duplex = HALF_DUPLEX;
2607 			e_dbg(" Half Duplex\n");
2608 		}
2609 	} else {
2610 		e_dbg("1000 Mbs, Full Duplex\n");
2611 		*speed = SPEED_1000;
2612 		*duplex = FULL_DUPLEX;
2613 	}
2614 
2615 	/* IGP01 PHY may advertise full duplex operation after speed downgrade
2616 	 * even if it is operating at half duplex.  Here we set the duplex
2617 	 * settings to match the duplex in the link partner's capabilities.
2618 	 */
2619 	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2620 		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2621 		if (ret_val)
2622 			return ret_val;
2623 
2624 		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2625 			*duplex = HALF_DUPLEX;
2626 		else {
2627 			ret_val =
2628 			    e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2629 			if (ret_val)
2630 				return ret_val;
2631 			if ((*speed == SPEED_100
2632 			     && !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
2633 			    || (*speed == SPEED_10
2634 				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2635 				*duplex = HALF_DUPLEX;
2636 		}
2637 	}
2638 
2639 	return E1000_SUCCESS;
2640 }
2641 
2642 /**
2643  * e1000_wait_autoneg
2644  * @hw: Struct containing variables accessed by shared code
2645  *
2646  * Blocks until autoneg completes or times out (~4.5 seconds)
2647  */
2648 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2649 {
2650 	s32 ret_val;
2651 	u16 i;
2652 	u16 phy_data;
2653 
2654 	e_dbg("Waiting for Auto-Neg to complete.\n");
2655 
2656 	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
2657 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2658 		/* Read the MII Status Register and wait for Auto-Neg
2659 		 * Complete bit to be set.
2660 		 */
2661 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2662 		if (ret_val)
2663 			return ret_val;
2664 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2665 		if (ret_val)
2666 			return ret_val;
2667 		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
2668 			return E1000_SUCCESS;
2669 		}
2670 		msleep(100);
2671 	}
2672 	return E1000_SUCCESS;
2673 }
2674 
2675 /**
2676  * e1000_raise_mdi_clk - Raises the Management Data Clock
2677  * @hw: Struct containing variables accessed by shared code
2678  * @ctrl: Device control register's current value
2679  */
2680 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2681 {
2682 	/* Raise the clock input to the Management Data Clock (by setting the
2683 	 * MDC bit), and then delay 10 microseconds.
2684 	 */
2685 	ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2686 	E1000_WRITE_FLUSH();
2687 	udelay(10);
2688 }
2689 
2690 /**
2691  * e1000_lower_mdi_clk - Lowers the Management Data Clock
2692  * @hw: Struct containing variables accessed by shared code
2693  * @ctrl: Device control register's current value
2694  */
2695 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2696 {
2697 	/* Lower the clock input to the Management Data Clock (by clearing the
2698 	 * MDC bit), and then delay 10 microseconds.
2699 	 */
2700 	ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2701 	E1000_WRITE_FLUSH();
2702 	udelay(10);
2703 }
2704 
2705 /**
2706  * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2707  * @hw: Struct containing variables accessed by shared code
2708  * @data: Data to send out to the PHY
2709  * @count: Number of bits to shift out
2710  *
2711  * Bits are shifted out in MSB to LSB order.
2712  */
2713 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
2714 {
2715 	u32 ctrl;
2716 	u32 mask;
2717 
2718 	/* We need to shift "count" number of bits out to the PHY. So, the value
2719 	 * in the "data" parameter will be shifted out to the PHY one bit at a
2720 	 * time. In order to do this, "data" must be broken down into bits.
2721 	 */
2722 	mask = 0x01;
2723 	mask <<= (count - 1);
2724 
2725 	ctrl = er32(CTRL);
2726 
2727 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2728 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2729 
2730 	while (mask) {
2731 		/* A "1" is shifted out to the PHY by setting the MDIO bit to
2732 		 * "1" and then raising and lowering the Management Data Clock.
2733 		 * A "0" is shifted out to the PHY by setting the MDIO bit to
2734 		 * "0" and then raising and lowering the clock.
2735 		 */
2736 		if (data & mask)
2737 			ctrl |= E1000_CTRL_MDIO;
2738 		else
2739 			ctrl &= ~E1000_CTRL_MDIO;
2740 
2741 		ew32(CTRL, ctrl);
2742 		E1000_WRITE_FLUSH();
2743 
2744 		udelay(10);
2745 
2746 		e1000_raise_mdi_clk(hw, &ctrl);
2747 		e1000_lower_mdi_clk(hw, &ctrl);
2748 
2749 		mask = mask >> 1;
2750 	}
2751 }
2752 
2753 /**
2754  * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2755  * @hw: Struct containing variables accessed by shared code
2756  *
2757  * Bits are shifted in in MSB to LSB order.
2758  */
2759 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2760 {
2761 	u32 ctrl;
2762 	u16 data = 0;
2763 	u8 i;
2764 
2765 	/* In order to read a register from the PHY, we need to shift in a total
2766 	 * of 18 bits from the PHY. The first two bit (turnaround) times are
2767 	 * used to avoid contention on the MDIO pin when a read operation is
2768 	 * performed. These two bits are ignored by us and thrown away. Bits are
2769 	 * "shifted in" by raising the input to the Management Data Clock
2770 	 * (setting the MDC bit), and then reading the value of the MDIO bit.
2771 	 */
2772 	ctrl = er32(CTRL);
2773 
2774 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
2775 	 * input.
2776 	 */
2777 	ctrl &= ~E1000_CTRL_MDIO_DIR;
2778 	ctrl &= ~E1000_CTRL_MDIO;
2779 
2780 	ew32(CTRL, ctrl);
2781 	E1000_WRITE_FLUSH();
2782 
2783 	/* Raise and Lower the clock before reading in the data. This accounts
2784 	 * for the turnaround bits. The first clock occurred when we clocked out
2785 	 * the last bit of the Register Address.
2786 	 */
2787 	e1000_raise_mdi_clk(hw, &ctrl);
2788 	e1000_lower_mdi_clk(hw, &ctrl);
2789 
2790 	for (data = 0, i = 0; i < 16; i++) {
2791 		data = data << 1;
2792 		e1000_raise_mdi_clk(hw, &ctrl);
2793 		ctrl = er32(CTRL);
2794 		/* Check to see if we shifted in a "1". */
2795 		if (ctrl & E1000_CTRL_MDIO)
2796 			data |= 1;
2797 		e1000_lower_mdi_clk(hw, &ctrl);
2798 	}
2799 
2800 	e1000_raise_mdi_clk(hw, &ctrl);
2801 	e1000_lower_mdi_clk(hw, &ctrl);
2802 
2803 	return data;
2804 }
2805 
2806 
2807 /**
2808  * e1000_read_phy_reg - read a phy register
2809  * @hw: Struct containing variables accessed by shared code
2810  * @reg_addr: address of the PHY register to read
2811  *
2812  * Reads the value from a PHY register, if the value is on a specific non zero
2813  * page, sets the page first.
2814  */
2815 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
2816 {
2817 	u32 ret_val;
2818 	unsigned long flags;
2819 
2820 	spin_lock_irqsave(&e1000_phy_lock, flags);
2821 
2822 	if ((hw->phy_type == e1000_phy_igp) &&
2823 	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2824 		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2825 						 (u16) reg_addr);
2826 		if (ret_val) {
2827 			spin_unlock_irqrestore(&e1000_phy_lock, flags);
2828 			return ret_val;
2829 		}
2830 	}
2831 
2832 	ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2833 					phy_data);
2834 	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2835 
2836 	return ret_val;
2837 }
2838 
2839 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2840 				 u16 *phy_data)
2841 {
2842 	u32 i;
2843 	u32 mdic = 0;
2844 	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2845 
2846 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2847 		e_dbg("PHY Address %d is out of range\n", reg_addr);
2848 		return -E1000_ERR_PARAM;
2849 	}
2850 
2851 	if (hw->mac_type > e1000_82543) {
2852 		/* Set up Op-code, Phy Address, and register address in the MDI
2853 		 * Control register.  The MAC will take care of interfacing with
2854 		 * the PHY to retrieve the desired data.
2855 		 */
2856 		if (hw->mac_type == e1000_ce4100) {
2857 			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2858 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2859 				(INTEL_CE_GBE_MDIC_OP_READ) |
2860 				(INTEL_CE_GBE_MDIC_GO));
2861 
2862 			writel(mdic, E1000_MDIO_CMD);
2863 
2864 			/* Poll the ready bit to see if the MDI read
2865 			 * completed
2866 			 */
2867 			for (i = 0; i < 64; i++) {
2868 				udelay(50);
2869 				mdic = readl(E1000_MDIO_CMD);
2870 				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2871 					break;
2872 			}
2873 
2874 			if (mdic & INTEL_CE_GBE_MDIC_GO) {
2875 				e_dbg("MDI Read did not complete\n");
2876 				return -E1000_ERR_PHY;
2877 			}
2878 
2879 			mdic = readl(E1000_MDIO_STS);
2880 			if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2881 				e_dbg("MDI Read Error\n");
2882 				return -E1000_ERR_PHY;
2883 			}
2884 			*phy_data = (u16) mdic;
2885 		} else {
2886 			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2887 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2888 				(E1000_MDIC_OP_READ));
2889 
2890 			ew32(MDIC, mdic);
2891 
2892 			/* Poll the ready bit to see if the MDI read
2893 			 * completed
2894 			 */
2895 			for (i = 0; i < 64; i++) {
2896 				udelay(50);
2897 				mdic = er32(MDIC);
2898 				if (mdic & E1000_MDIC_READY)
2899 					break;
2900 			}
2901 			if (!(mdic & E1000_MDIC_READY)) {
2902 				e_dbg("MDI Read did not complete\n");
2903 				return -E1000_ERR_PHY;
2904 			}
2905 			if (mdic & E1000_MDIC_ERROR) {
2906 				e_dbg("MDI Error\n");
2907 				return -E1000_ERR_PHY;
2908 			}
2909 			*phy_data = (u16) mdic;
2910 		}
2911 	} else {
2912 		/* We must first send a preamble through the MDIO pin to signal
2913 		 * the beginning of an MII instruction.  This is done by sending
2914 		 * 32 consecutive "1" bits.
2915 		 */
2916 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2917 
2918 		/* Now combine the next few fields that are required for a read
2919 		 * operation.  We use this method instead of calling the
2920 		 * e1000_shift_out_mdi_bits routine five different times. The
2921 		 * format of a MII read instruction consists of a shift out of
2922 		 * 14 bits and is defined as follows:
2923 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2924 		 * followed by a shift in of 18 bits.  This first two bits
2925 		 * shifted in are TurnAround bits used to avoid contention on
2926 		 * the MDIO pin when a READ operation is performed.  These two
2927 		 * bits are thrown away followed by a shift in of 16 bits which
2928 		 * contains the desired data.
2929 		 */
2930 		mdic = ((reg_addr) | (phy_addr << 5) |
2931 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
2932 
2933 		e1000_shift_out_mdi_bits(hw, mdic, 14);
2934 
2935 		/* Now that we've shifted out the read command to the MII, we
2936 		 * need to "shift in" the 16-bit value (18 total bits) of the
2937 		 * requested PHY register address.
2938 		 */
2939 		*phy_data = e1000_shift_in_mdi_bits(hw);
2940 	}
2941 	return E1000_SUCCESS;
2942 }
2943 
2944 /**
2945  * e1000_write_phy_reg - write a phy register
2946  *
2947  * @hw: Struct containing variables accessed by shared code
2948  * @reg_addr: address of the PHY register to write
2949  * @data: data to write to the PHY
2950  *
2951  * Writes a value to a PHY register
2952  */
2953 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
2954 {
2955 	u32 ret_val;
2956 	unsigned long flags;
2957 
2958 	spin_lock_irqsave(&e1000_phy_lock, flags);
2959 
2960 	if ((hw->phy_type == e1000_phy_igp) &&
2961 	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2962 		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2963 						 (u16) reg_addr);
2964 		if (ret_val) {
2965 			spin_unlock_irqrestore(&e1000_phy_lock, flags);
2966 			return ret_val;
2967 		}
2968 	}
2969 
2970 	ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2971 					 phy_data);
2972 	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2973 
2974 	return ret_val;
2975 }
2976 
2977 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2978 				  u16 phy_data)
2979 {
2980 	u32 i;
2981 	u32 mdic = 0;
2982 	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2983 
2984 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2985 		e_dbg("PHY Address %d is out of range\n", reg_addr);
2986 		return -E1000_ERR_PARAM;
2987 	}
2988 
2989 	if (hw->mac_type > e1000_82543) {
2990 		/* Set up Op-code, Phy Address, register address, and data
2991 		 * intended for the PHY register in the MDI Control register.
2992 		 * The MAC will take care of interfacing with the PHY to send
2993 		 * the desired data.
2994 		 */
2995 		if (hw->mac_type == e1000_ce4100) {
2996 			mdic = (((u32) phy_data) |
2997 				(reg_addr << E1000_MDIC_REG_SHIFT) |
2998 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2999 				(INTEL_CE_GBE_MDIC_OP_WRITE) |
3000 				(INTEL_CE_GBE_MDIC_GO));
3001 
3002 			writel(mdic, E1000_MDIO_CMD);
3003 
3004 			/* Poll the ready bit to see if the MDI read
3005 			 * completed
3006 			 */
3007 			for (i = 0; i < 640; i++) {
3008 				udelay(5);
3009 				mdic = readl(E1000_MDIO_CMD);
3010 				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
3011 					break;
3012 			}
3013 			if (mdic & INTEL_CE_GBE_MDIC_GO) {
3014 				e_dbg("MDI Write did not complete\n");
3015 				return -E1000_ERR_PHY;
3016 			}
3017 		} else {
3018 			mdic = (((u32) phy_data) |
3019 				(reg_addr << E1000_MDIC_REG_SHIFT) |
3020 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
3021 				(E1000_MDIC_OP_WRITE));
3022 
3023 			ew32(MDIC, mdic);
3024 
3025 			/* Poll the ready bit to see if the MDI read
3026 			 * completed
3027 			 */
3028 			for (i = 0; i < 641; i++) {
3029 				udelay(5);
3030 				mdic = er32(MDIC);
3031 				if (mdic & E1000_MDIC_READY)
3032 					break;
3033 			}
3034 			if (!(mdic & E1000_MDIC_READY)) {
3035 				e_dbg("MDI Write did not complete\n");
3036 				return -E1000_ERR_PHY;
3037 			}
3038 		}
3039 	} else {
3040 		/* We'll need to use the SW defined pins to shift the write
3041 		 * command out to the PHY. We first send a preamble to the PHY
3042 		 * to signal the beginning of the MII instruction.  This is done
3043 		 * by sending 32 consecutive "1" bits.
3044 		 */
3045 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3046 
3047 		/* Now combine the remaining required fields that will indicate
3048 		 * a write operation. We use this method instead of calling the
3049 		 * e1000_shift_out_mdi_bits routine for each field in the
3050 		 * command. The format of a MII write instruction is as follows:
3051 		 * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>.
3052 		 */
3053 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3054 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3055 		mdic <<= 16;
3056 		mdic |= (u32) phy_data;
3057 
3058 		e1000_shift_out_mdi_bits(hw, mdic, 32);
3059 	}
3060 
3061 	return E1000_SUCCESS;
3062 }
3063 
3064 /**
3065  * e1000_phy_hw_reset - reset the phy, hardware style
3066  * @hw: Struct containing variables accessed by shared code
3067  *
3068  * Returns the PHY to the power-on reset state
3069  */
3070 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3071 {
3072 	u32 ctrl, ctrl_ext;
3073 	u32 led_ctrl;
3074 
3075 	e_dbg("Resetting Phy...\n");
3076 
3077 	if (hw->mac_type > e1000_82543) {
3078 		/* Read the device control register and assert the
3079 		 * E1000_CTRL_PHY_RST bit. Then, take it out of reset.
3080 		 * For e1000 hardware, we delay for 10ms between the assert
3081 		 * and de-assert.
3082 		 */
3083 		ctrl = er32(CTRL);
3084 		ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3085 		E1000_WRITE_FLUSH();
3086 
3087 		msleep(10);
3088 
3089 		ew32(CTRL, ctrl);
3090 		E1000_WRITE_FLUSH();
3091 
3092 	} else {
3093 		/* Read the Extended Device Control Register, assert the
3094 		 * PHY_RESET_DIR bit to put the PHY into reset. Then, take it
3095 		 * out of reset.
3096 		 */
3097 		ctrl_ext = er32(CTRL_EXT);
3098 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3099 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3100 		ew32(CTRL_EXT, ctrl_ext);
3101 		E1000_WRITE_FLUSH();
3102 		msleep(10);
3103 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3104 		ew32(CTRL_EXT, ctrl_ext);
3105 		E1000_WRITE_FLUSH();
3106 	}
3107 	udelay(150);
3108 
3109 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3110 		/* Configure activity LED after PHY reset */
3111 		led_ctrl = er32(LEDCTL);
3112 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
3113 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3114 		ew32(LEDCTL, led_ctrl);
3115 	}
3116 
3117 	/* Wait for FW to finish PHY configuration. */
3118 	return e1000_get_phy_cfg_done(hw);
3119 }
3120 
3121 /**
3122  * e1000_phy_reset - reset the phy to commit settings
3123  * @hw: Struct containing variables accessed by shared code
3124  *
3125  * Resets the PHY
3126  * Sets bit 15 of the MII Control register
3127  */
3128 s32 e1000_phy_reset(struct e1000_hw *hw)
3129 {
3130 	s32 ret_val;
3131 	u16 phy_data;
3132 
3133 	switch (hw->phy_type) {
3134 	case e1000_phy_igp:
3135 		ret_val = e1000_phy_hw_reset(hw);
3136 		if (ret_val)
3137 			return ret_val;
3138 		break;
3139 	default:
3140 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3141 		if (ret_val)
3142 			return ret_val;
3143 
3144 		phy_data |= MII_CR_RESET;
3145 		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3146 		if (ret_val)
3147 			return ret_val;
3148 
3149 		udelay(1);
3150 		break;
3151 	}
3152 
3153 	if (hw->phy_type == e1000_phy_igp)
3154 		e1000_phy_init_script(hw);
3155 
3156 	return E1000_SUCCESS;
3157 }
3158 
3159 /**
3160  * e1000_detect_gig_phy - check the phy type
3161  * @hw: Struct containing variables accessed by shared code
3162  *
3163  * Probes the expected PHY address for known PHY IDs
3164  */
3165 static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
3166 {
3167 	s32 phy_init_status, ret_val;
3168 	u16 phy_id_high, phy_id_low;
3169 	bool match = false;
3170 
3171 	if (hw->phy_id != 0)
3172 		return E1000_SUCCESS;
3173 
3174 	/* Read the PHY ID Registers to identify which PHY is onboard. */
3175 	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3176 	if (ret_val)
3177 		return ret_val;
3178 
3179 	hw->phy_id = (u32) (phy_id_high << 16);
3180 	udelay(20);
3181 	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3182 	if (ret_val)
3183 		return ret_val;
3184 
3185 	hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK);
3186 	hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK;
3187 
3188 	switch (hw->mac_type) {
3189 	case e1000_82543:
3190 		if (hw->phy_id == M88E1000_E_PHY_ID)
3191 			match = true;
3192 		break;
3193 	case e1000_82544:
3194 		if (hw->phy_id == M88E1000_I_PHY_ID)
3195 			match = true;
3196 		break;
3197 	case e1000_82540:
3198 	case e1000_82545:
3199 	case e1000_82545_rev_3:
3200 	case e1000_82546:
3201 	case e1000_82546_rev_3:
3202 		if (hw->phy_id == M88E1011_I_PHY_ID)
3203 			match = true;
3204 		break;
3205 	case e1000_ce4100:
3206 		if ((hw->phy_id == RTL8211B_PHY_ID) ||
3207 		    (hw->phy_id == RTL8201N_PHY_ID) ||
3208 		    (hw->phy_id == M88E1118_E_PHY_ID))
3209 			match = true;
3210 		break;
3211 	case e1000_82541:
3212 	case e1000_82541_rev_2:
3213 	case e1000_82547:
3214 	case e1000_82547_rev_2:
3215 		if (hw->phy_id == IGP01E1000_I_PHY_ID)
3216 			match = true;
3217 		break;
3218 	default:
3219 		e_dbg("Invalid MAC type %d\n", hw->mac_type);
3220 		return -E1000_ERR_CONFIG;
3221 	}
3222 	phy_init_status = e1000_set_phy_type(hw);
3223 
3224 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
3225 		e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
3226 		return E1000_SUCCESS;
3227 	}
3228 	e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
3229 	return -E1000_ERR_PHY;
3230 }
3231 
3232 /**
3233  * e1000_phy_reset_dsp - reset DSP
3234  * @hw: Struct containing variables accessed by shared code
3235  *
3236  * Resets the PHY's DSP
3237  */
3238 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
3239 {
3240 	s32 ret_val;
3241 
3242 	do {
3243 		ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3244 		if (ret_val)
3245 			break;
3246 		ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3247 		if (ret_val)
3248 			break;
3249 		ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3250 		if (ret_val)
3251 			break;
3252 		ret_val = E1000_SUCCESS;
3253 	} while (0);
3254 
3255 	return ret_val;
3256 }
3257 
3258 /**
3259  * e1000_phy_igp_get_info - get igp specific registers
3260  * @hw: Struct containing variables accessed by shared code
3261  * @phy_info: PHY information structure
3262  *
3263  * Get PHY information from various PHY registers for igp PHY only.
3264  */
3265 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3266 				  struct e1000_phy_info *phy_info)
3267 {
3268 	s32 ret_val;
3269 	u16 phy_data, min_length, max_length, average;
3270 	e1000_rev_polarity polarity;
3271 
3272 	/* The downshift status is checked only once, after link is established,
3273 	 * and it stored in the hw->speed_downgraded parameter.
3274 	 */
3275 	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3276 
3277 	/* IGP01E1000 does not need to support it. */
3278 	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3279 
3280 	/* IGP01E1000 always correct polarity reversal */
3281 	phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3282 
3283 	/* Check polarity status */
3284 	ret_val = e1000_check_polarity(hw, &polarity);
3285 	if (ret_val)
3286 		return ret_val;
3287 
3288 	phy_info->cable_polarity = polarity;
3289 
3290 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3291 	if (ret_val)
3292 		return ret_val;
3293 
3294 	phy_info->mdix_mode =
3295 	    (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
3296 				 IGP01E1000_PSSR_MDIX_SHIFT);
3297 
3298 	if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3299 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
3300 		/* Local/Remote Receiver Information are only valid @ 1000
3301 		 * Mbps
3302 		 */
3303 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3304 		if (ret_val)
3305 			return ret_val;
3306 
3307 		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3308 				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3309 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3310 		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3311 				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3312 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3313 
3314 		/* Get cable length */
3315 		ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3316 		if (ret_val)
3317 			return ret_val;
3318 
3319 		/* Translate to old method */
3320 		average = (max_length + min_length) / 2;
3321 
3322 		if (average <= e1000_igp_cable_length_50)
3323 			phy_info->cable_length = e1000_cable_length_50;
3324 		else if (average <= e1000_igp_cable_length_80)
3325 			phy_info->cable_length = e1000_cable_length_50_80;
3326 		else if (average <= e1000_igp_cable_length_110)
3327 			phy_info->cable_length = e1000_cable_length_80_110;
3328 		else if (average <= e1000_igp_cable_length_140)
3329 			phy_info->cable_length = e1000_cable_length_110_140;
3330 		else
3331 			phy_info->cable_length = e1000_cable_length_140;
3332 	}
3333 
3334 	return E1000_SUCCESS;
3335 }
3336 
3337 /**
3338  * e1000_phy_m88_get_info - get m88 specific registers
3339  * @hw: Struct containing variables accessed by shared code
3340  * @phy_info: PHY information structure
3341  *
3342  * Get PHY information from various PHY registers for m88 PHY only.
3343  */
3344 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3345 				  struct e1000_phy_info *phy_info)
3346 {
3347 	s32 ret_val;
3348 	u16 phy_data;
3349 	e1000_rev_polarity polarity;
3350 
3351 	/* The downshift status is checked only once, after link is established,
3352 	 * and it stored in the hw->speed_downgraded parameter.
3353 	 */
3354 	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3355 
3356 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3357 	if (ret_val)
3358 		return ret_val;
3359 
3360 	phy_info->extended_10bt_distance =
3361 	    ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3362 	     M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
3363 	    e1000_10bt_ext_dist_enable_lower :
3364 	    e1000_10bt_ext_dist_enable_normal;
3365 
3366 	phy_info->polarity_correction =
3367 	    ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3368 	     M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
3369 	    e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
3370 
3371 	/* Check polarity status */
3372 	ret_val = e1000_check_polarity(hw, &polarity);
3373 	if (ret_val)
3374 		return ret_val;
3375 	phy_info->cable_polarity = polarity;
3376 
3377 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3378 	if (ret_val)
3379 		return ret_val;
3380 
3381 	phy_info->mdix_mode =
3382 	    (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
3383 				 M88E1000_PSSR_MDIX_SHIFT);
3384 
3385 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3386 		/* Cable Length Estimation and Local/Remote Receiver Information
3387 		 * are only valid at 1000 Mbps.
3388 		 */
3389 		phy_info->cable_length =
3390 		    (e1000_cable_length) ((phy_data &
3391 					   M88E1000_PSSR_CABLE_LENGTH) >>
3392 					  M88E1000_PSSR_CABLE_LENGTH_SHIFT);
3393 
3394 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3395 		if (ret_val)
3396 			return ret_val;
3397 
3398 		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3399 				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3400 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3401 		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3402 				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3403 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3404 
3405 	}
3406 
3407 	return E1000_SUCCESS;
3408 }
3409 
3410 /**
3411  * e1000_phy_get_info - request phy info
3412  * @hw: Struct containing variables accessed by shared code
3413  * @phy_info: PHY information structure
3414  *
3415  * Get PHY information from various PHY registers
3416  */
3417 s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
3418 {
3419 	s32 ret_val;
3420 	u16 phy_data;
3421 
3422 	phy_info->cable_length = e1000_cable_length_undefined;
3423 	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3424 	phy_info->cable_polarity = e1000_rev_polarity_undefined;
3425 	phy_info->downshift = e1000_downshift_undefined;
3426 	phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3427 	phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3428 	phy_info->local_rx = e1000_1000t_rx_status_undefined;
3429 	phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3430 
3431 	if (hw->media_type != e1000_media_type_copper) {
3432 		e_dbg("PHY info is only valid for copper media\n");
3433 		return -E1000_ERR_CONFIG;
3434 	}
3435 
3436 	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3437 	if (ret_val)
3438 		return ret_val;
3439 
3440 	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3441 	if (ret_val)
3442 		return ret_val;
3443 
3444 	if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3445 		e_dbg("PHY info is only valid if link is up\n");
3446 		return -E1000_ERR_CONFIG;
3447 	}
3448 
3449 	if (hw->phy_type == e1000_phy_igp)
3450 		return e1000_phy_igp_get_info(hw, phy_info);
3451 	else if ((hw->phy_type == e1000_phy_8211) ||
3452 	         (hw->phy_type == e1000_phy_8201))
3453 		return E1000_SUCCESS;
3454 	else
3455 		return e1000_phy_m88_get_info(hw, phy_info);
3456 }
3457 
3458 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
3459 {
3460 	if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3461 		e_dbg("Invalid MDI setting detected\n");
3462 		hw->mdix = 1;
3463 		return -E1000_ERR_CONFIG;
3464 	}
3465 	return E1000_SUCCESS;
3466 }
3467 
3468 /**
3469  * e1000_init_eeprom_params - initialize sw eeprom vars
3470  * @hw: Struct containing variables accessed by shared code
3471  *
3472  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
3473  * is configured.
3474  */
3475 s32 e1000_init_eeprom_params(struct e1000_hw *hw)
3476 {
3477 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3478 	u32 eecd = er32(EECD);
3479 	s32 ret_val = E1000_SUCCESS;
3480 	u16 eeprom_size;
3481 
3482 	switch (hw->mac_type) {
3483 	case e1000_82542_rev2_0:
3484 	case e1000_82542_rev2_1:
3485 	case e1000_82543:
3486 	case e1000_82544:
3487 		eeprom->type = e1000_eeprom_microwire;
3488 		eeprom->word_size = 64;
3489 		eeprom->opcode_bits = 3;
3490 		eeprom->address_bits = 6;
3491 		eeprom->delay_usec = 50;
3492 		break;
3493 	case e1000_82540:
3494 	case e1000_82545:
3495 	case e1000_82545_rev_3:
3496 	case e1000_82546:
3497 	case e1000_82546_rev_3:
3498 		eeprom->type = e1000_eeprom_microwire;
3499 		eeprom->opcode_bits = 3;
3500 		eeprom->delay_usec = 50;
3501 		if (eecd & E1000_EECD_SIZE) {
3502 			eeprom->word_size = 256;
3503 			eeprom->address_bits = 8;
3504 		} else {
3505 			eeprom->word_size = 64;
3506 			eeprom->address_bits = 6;
3507 		}
3508 		break;
3509 	case e1000_82541:
3510 	case e1000_82541_rev_2:
3511 	case e1000_82547:
3512 	case e1000_82547_rev_2:
3513 		if (eecd & E1000_EECD_TYPE) {
3514 			eeprom->type = e1000_eeprom_spi;
3515 			eeprom->opcode_bits = 8;
3516 			eeprom->delay_usec = 1;
3517 			if (eecd & E1000_EECD_ADDR_BITS) {
3518 				eeprom->page_size = 32;
3519 				eeprom->address_bits = 16;
3520 			} else {
3521 				eeprom->page_size = 8;
3522 				eeprom->address_bits = 8;
3523 			}
3524 		} else {
3525 			eeprom->type = e1000_eeprom_microwire;
3526 			eeprom->opcode_bits = 3;
3527 			eeprom->delay_usec = 50;
3528 			if (eecd & E1000_EECD_ADDR_BITS) {
3529 				eeprom->word_size = 256;
3530 				eeprom->address_bits = 8;
3531 			} else {
3532 				eeprom->word_size = 64;
3533 				eeprom->address_bits = 6;
3534 			}
3535 		}
3536 		break;
3537 	default:
3538 		break;
3539 	}
3540 
3541 	if (eeprom->type == e1000_eeprom_spi) {
3542 		/* eeprom_size will be an enum [0..8] that maps to eeprom sizes
3543 		 * 128B to 32KB (incremented by powers of 2).
3544 		 */
3545 		/* Set to default value for initial eeprom read. */
3546 		eeprom->word_size = 64;
3547 		ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3548 		if (ret_val)
3549 			return ret_val;
3550 		eeprom_size =
3551 		    (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3552 		/* 256B eeprom size was not supported in earlier hardware, so we
3553 		 * bump eeprom_size up one to ensure that "1" (which maps to
3554 		 * 256B) is never the result used in the shifting logic below.
3555 		 */
3556 		if (eeprom_size)
3557 			eeprom_size++;
3558 
3559 		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3560 	}
3561 	return ret_val;
3562 }
3563 
3564 /**
3565  * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3566  * @hw: Struct containing variables accessed by shared code
3567  * @eecd: EECD's current value
3568  */
3569 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
3570 {
3571 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
3572 	 * wait <delay> microseconds.
3573 	 */
3574 	*eecd = *eecd | E1000_EECD_SK;
3575 	ew32(EECD, *eecd);
3576 	E1000_WRITE_FLUSH();
3577 	udelay(hw->eeprom.delay_usec);
3578 }
3579 
3580 /**
3581  * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3582  * @hw: Struct containing variables accessed by shared code
3583  * @eecd: EECD's current value
3584  */
3585 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
3586 {
3587 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and
3588 	 * then wait 50 microseconds.
3589 	 */
3590 	*eecd = *eecd & ~E1000_EECD_SK;
3591 	ew32(EECD, *eecd);
3592 	E1000_WRITE_FLUSH();
3593 	udelay(hw->eeprom.delay_usec);
3594 }
3595 
3596 /**
3597  * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3598  * @hw: Struct containing variables accessed by shared code
3599  * @data: data to send to the EEPROM
3600  * @count: number of bits to shift out
3601  */
3602 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
3603 {
3604 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3605 	u32 eecd;
3606 	u32 mask;
3607 
3608 	/* We need to shift "count" bits out to the EEPROM. So, value in the
3609 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3610 	 * In order to do this, "data" must be broken down into bits.
3611 	 */
3612 	mask = 0x01 << (count - 1);
3613 	eecd = er32(EECD);
3614 	if (eeprom->type == e1000_eeprom_microwire) {
3615 		eecd &= ~E1000_EECD_DO;
3616 	} else if (eeprom->type == e1000_eeprom_spi) {
3617 		eecd |= E1000_EECD_DO;
3618 	}
3619 	do {
3620 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a
3621 		 * "1", and then raising and then lowering the clock (the SK bit
3622 		 * controls the clock input to the EEPROM).  A "0" is shifted
3623 		 * out to the EEPROM by setting "DI" to "0" and then raising and
3624 		 * then lowering the clock.
3625 		 */
3626 		eecd &= ~E1000_EECD_DI;
3627 
3628 		if (data & mask)
3629 			eecd |= E1000_EECD_DI;
3630 
3631 		ew32(EECD, eecd);
3632 		E1000_WRITE_FLUSH();
3633 
3634 		udelay(eeprom->delay_usec);
3635 
3636 		e1000_raise_ee_clk(hw, &eecd);
3637 		e1000_lower_ee_clk(hw, &eecd);
3638 
3639 		mask = mask >> 1;
3640 
3641 	} while (mask);
3642 
3643 	/* We leave the "DI" bit set to "0" when we leave this routine. */
3644 	eecd &= ~E1000_EECD_DI;
3645 	ew32(EECD, eecd);
3646 }
3647 
3648 /**
3649  * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3650  * @hw: Struct containing variables accessed by shared code
3651  * @count: number of bits to shift in
3652  */
3653 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
3654 {
3655 	u32 eecd;
3656 	u32 i;
3657 	u16 data;
3658 
3659 	/* In order to read a register from the EEPROM, we need to shift 'count'
3660 	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3661 	 * input to the EEPROM (setting the SK bit), and then reading the value
3662 	 * of the "DO" bit.  During this "shifting in" process the "DI" bit
3663 	 * should always be clear.
3664 	 */
3665 
3666 	eecd = er32(EECD);
3667 
3668 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3669 	data = 0;
3670 
3671 	for (i = 0; i < count; i++) {
3672 		data = data << 1;
3673 		e1000_raise_ee_clk(hw, &eecd);
3674 
3675 		eecd = er32(EECD);
3676 
3677 		eecd &= ~(E1000_EECD_DI);
3678 		if (eecd & E1000_EECD_DO)
3679 			data |= 1;
3680 
3681 		e1000_lower_ee_clk(hw, &eecd);
3682 	}
3683 
3684 	return data;
3685 }
3686 
3687 /**
3688  * e1000_acquire_eeprom - Prepares EEPROM for access
3689  * @hw: Struct containing variables accessed by shared code
3690  *
3691  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3692  * function should be called before issuing a command to the EEPROM.
3693  */
3694 static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
3695 {
3696 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3697 	u32 eecd, i = 0;
3698 
3699 	eecd = er32(EECD);
3700 
3701 	/* Request EEPROM Access */
3702 	if (hw->mac_type > e1000_82544) {
3703 		eecd |= E1000_EECD_REQ;
3704 		ew32(EECD, eecd);
3705 		eecd = er32(EECD);
3706 		while ((!(eecd & E1000_EECD_GNT)) &&
3707 		       (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3708 			i++;
3709 			udelay(5);
3710 			eecd = er32(EECD);
3711 		}
3712 		if (!(eecd & E1000_EECD_GNT)) {
3713 			eecd &= ~E1000_EECD_REQ;
3714 			ew32(EECD, eecd);
3715 			e_dbg("Could not acquire EEPROM grant\n");
3716 			return -E1000_ERR_EEPROM;
3717 		}
3718 	}
3719 
3720 	/* Setup EEPROM for Read/Write */
3721 
3722 	if (eeprom->type == e1000_eeprom_microwire) {
3723 		/* Clear SK and DI */
3724 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3725 		ew32(EECD, eecd);
3726 
3727 		/* Set CS */
3728 		eecd |= E1000_EECD_CS;
3729 		ew32(EECD, eecd);
3730 	} else if (eeprom->type == e1000_eeprom_spi) {
3731 		/* Clear SK and CS */
3732 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3733 		ew32(EECD, eecd);
3734 		E1000_WRITE_FLUSH();
3735 		udelay(1);
3736 	}
3737 
3738 	return E1000_SUCCESS;
3739 }
3740 
3741 /**
3742  * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3743  * @hw: Struct containing variables accessed by shared code
3744  */
3745 static void e1000_standby_eeprom(struct e1000_hw *hw)
3746 {
3747 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3748 	u32 eecd;
3749 
3750 	eecd = er32(EECD);
3751 
3752 	if (eeprom->type == e1000_eeprom_microwire) {
3753 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3754 		ew32(EECD, eecd);
3755 		E1000_WRITE_FLUSH();
3756 		udelay(eeprom->delay_usec);
3757 
3758 		/* Clock high */
3759 		eecd |= E1000_EECD_SK;
3760 		ew32(EECD, eecd);
3761 		E1000_WRITE_FLUSH();
3762 		udelay(eeprom->delay_usec);
3763 
3764 		/* Select EEPROM */
3765 		eecd |= E1000_EECD_CS;
3766 		ew32(EECD, eecd);
3767 		E1000_WRITE_FLUSH();
3768 		udelay(eeprom->delay_usec);
3769 
3770 		/* Clock low */
3771 		eecd &= ~E1000_EECD_SK;
3772 		ew32(EECD, eecd);
3773 		E1000_WRITE_FLUSH();
3774 		udelay(eeprom->delay_usec);
3775 	} else if (eeprom->type == e1000_eeprom_spi) {
3776 		/* Toggle CS to flush commands */
3777 		eecd |= E1000_EECD_CS;
3778 		ew32(EECD, eecd);
3779 		E1000_WRITE_FLUSH();
3780 		udelay(eeprom->delay_usec);
3781 		eecd &= ~E1000_EECD_CS;
3782 		ew32(EECD, eecd);
3783 		E1000_WRITE_FLUSH();
3784 		udelay(eeprom->delay_usec);
3785 	}
3786 }
3787 
3788 /**
3789  * e1000_release_eeprom - drop chip select
3790  * @hw: Struct containing variables accessed by shared code
3791  *
3792  * Terminates a command by inverting the EEPROM's chip select pin
3793  */
3794 static void e1000_release_eeprom(struct e1000_hw *hw)
3795 {
3796 	u32 eecd;
3797 
3798 	eecd = er32(EECD);
3799 
3800 	if (hw->eeprom.type == e1000_eeprom_spi) {
3801 		eecd |= E1000_EECD_CS;	/* Pull CS high */
3802 		eecd &= ~E1000_EECD_SK;	/* Lower SCK */
3803 
3804 		ew32(EECD, eecd);
3805 		E1000_WRITE_FLUSH();
3806 
3807 		udelay(hw->eeprom.delay_usec);
3808 	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
3809 		/* cleanup eeprom */
3810 
3811 		/* CS on Microwire is active-high */
3812 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3813 
3814 		ew32(EECD, eecd);
3815 
3816 		/* Rising edge of clock */
3817 		eecd |= E1000_EECD_SK;
3818 		ew32(EECD, eecd);
3819 		E1000_WRITE_FLUSH();
3820 		udelay(hw->eeprom.delay_usec);
3821 
3822 		/* Falling edge of clock */
3823 		eecd &= ~E1000_EECD_SK;
3824 		ew32(EECD, eecd);
3825 		E1000_WRITE_FLUSH();
3826 		udelay(hw->eeprom.delay_usec);
3827 	}
3828 
3829 	/* Stop requesting EEPROM access */
3830 	if (hw->mac_type > e1000_82544) {
3831 		eecd &= ~E1000_EECD_REQ;
3832 		ew32(EECD, eecd);
3833 	}
3834 }
3835 
3836 /**
3837  * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3838  * @hw: Struct containing variables accessed by shared code
3839  */
3840 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3841 {
3842 	u16 retry_count = 0;
3843 	u8 spi_stat_reg;
3844 
3845 	/* Read "Status Register" repeatedly until the LSB is cleared.  The
3846 	 * EEPROM will signal that the command has been completed by clearing
3847 	 * bit 0 of the internal status register.  If it's not cleared within
3848 	 * 5 milliseconds, then error out.
3849 	 */
3850 	retry_count = 0;
3851 	do {
3852 		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3853 					hw->eeprom.opcode_bits);
3854 		spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8);
3855 		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3856 			break;
3857 
3858 		udelay(5);
3859 		retry_count += 5;
3860 
3861 		e1000_standby_eeprom(hw);
3862 	} while (retry_count < EEPROM_MAX_RETRY_SPI);
3863 
3864 	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3865 	 * only 0-5mSec on 5V devices)
3866 	 */
3867 	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
3868 		e_dbg("SPI EEPROM Status error\n");
3869 		return -E1000_ERR_EEPROM;
3870 	}
3871 
3872 	return E1000_SUCCESS;
3873 }
3874 
3875 /**
3876  * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3877  * @hw: Struct containing variables accessed by shared code
3878  * @offset: offset of  word in the EEPROM to read
3879  * @data: word read from the EEPROM
3880  * @words: number of words to read
3881  */
3882 s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3883 {
3884 	s32 ret;
3885 	spin_lock(&e1000_eeprom_lock);
3886 	ret = e1000_do_read_eeprom(hw, offset, words, data);
3887 	spin_unlock(&e1000_eeprom_lock);
3888 	return ret;
3889 }
3890 
3891 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3892 				u16 *data)
3893 {
3894 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3895 	u32 i = 0;
3896 
3897 	if (hw->mac_type == e1000_ce4100) {
3898 		GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3899 		                      data);
3900 		return E1000_SUCCESS;
3901 	}
3902 
3903 	/* If eeprom is not yet detected, do so now */
3904 	if (eeprom->word_size == 0)
3905 		e1000_init_eeprom_params(hw);
3906 
3907 	/* A check for invalid values:  offset too large, too many words, and
3908 	 * not enough words.
3909 	 */
3910 	if ((offset >= eeprom->word_size)
3911 	    || (words > eeprom->word_size - offset) || (words == 0)) {
3912 		e_dbg("\"words\" parameter out of bounds. Words = %d,"
3913 		      "size = %d\n", offset, eeprom->word_size);
3914 		return -E1000_ERR_EEPROM;
3915 	}
3916 
3917 	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3918 	 * directly. In this case, we need to acquire the EEPROM so that
3919 	 * FW or other port software does not interrupt.
3920 	 */
3921 	/* Prepare the EEPROM for bit-bang reading */
3922 	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3923 		return -E1000_ERR_EEPROM;
3924 
3925 	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
3926 	 * acquired the EEPROM at this point, so any returns should release it
3927 	 */
3928 	if (eeprom->type == e1000_eeprom_spi) {
3929 		u16 word_in;
3930 		u8 read_opcode = EEPROM_READ_OPCODE_SPI;
3931 
3932 		if (e1000_spi_eeprom_ready(hw)) {
3933 			e1000_release_eeprom(hw);
3934 			return -E1000_ERR_EEPROM;
3935 		}
3936 
3937 		e1000_standby_eeprom(hw);
3938 
3939 		/* Some SPI eeproms use the 8th address bit embedded in the
3940 		 * opcode
3941 		 */
3942 		if ((eeprom->address_bits == 8) && (offset >= 128))
3943 			read_opcode |= EEPROM_A8_OPCODE_SPI;
3944 
3945 		/* Send the READ command (opcode + addr)  */
3946 		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3947 		e1000_shift_out_ee_bits(hw, (u16) (offset * 2),
3948 					eeprom->address_bits);
3949 
3950 		/* Read the data.  The address of the eeprom internally
3951 		 * increments with each byte (spi) being read, saving on the
3952 		 * overhead of eeprom setup and tear-down.  The address counter
3953 		 * will roll over if reading beyond the size of the eeprom, thus
3954 		 * allowing the entire memory to be read starting from any
3955 		 * offset.
3956 		 */
3957 		for (i = 0; i < words; i++) {
3958 			word_in = e1000_shift_in_ee_bits(hw, 16);
3959 			data[i] = (word_in >> 8) | (word_in << 8);
3960 		}
3961 	} else if (eeprom->type == e1000_eeprom_microwire) {
3962 		for (i = 0; i < words; i++) {
3963 			/* Send the READ command (opcode + addr)  */
3964 			e1000_shift_out_ee_bits(hw,
3965 						EEPROM_READ_OPCODE_MICROWIRE,
3966 						eeprom->opcode_bits);
3967 			e1000_shift_out_ee_bits(hw, (u16) (offset + i),
3968 						eeprom->address_bits);
3969 
3970 			/* Read the data.  For microwire, each word requires the
3971 			 * overhead of eeprom setup and tear-down.
3972 			 */
3973 			data[i] = e1000_shift_in_ee_bits(hw, 16);
3974 			e1000_standby_eeprom(hw);
3975 		}
3976 	}
3977 
3978 	/* End this read operation */
3979 	e1000_release_eeprom(hw);
3980 
3981 	return E1000_SUCCESS;
3982 }
3983 
3984 /**
3985  * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
3986  * @hw: Struct containing variables accessed by shared code
3987  *
3988  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
3989  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
3990  * valid.
3991  */
3992 s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
3993 {
3994 	u16 checksum = 0;
3995 	u16 i, eeprom_data;
3996 
3997 	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
3998 		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3999 			e_dbg("EEPROM Read Error\n");
4000 			return -E1000_ERR_EEPROM;
4001 		}
4002 		checksum += eeprom_data;
4003 	}
4004 
4005 #ifdef CONFIG_PARISC
4006 	/* This is a signature and not a checksum on HP c8000 */
4007 	if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
4008 		return E1000_SUCCESS;
4009 
4010 #endif
4011 	if (checksum == (u16) EEPROM_SUM)
4012 		return E1000_SUCCESS;
4013 	else {
4014 		e_dbg("EEPROM Checksum Invalid\n");
4015 		return -E1000_ERR_EEPROM;
4016 	}
4017 }
4018 
4019 /**
4020  * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
4021  * @hw: Struct containing variables accessed by shared code
4022  *
4023  * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
4024  * Writes the difference to word offset 63 of the EEPROM.
4025  */
4026 s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
4027 {
4028 	u16 checksum = 0;
4029 	u16 i, eeprom_data;
4030 
4031 	for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
4032 		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4033 			e_dbg("EEPROM Read Error\n");
4034 			return -E1000_ERR_EEPROM;
4035 		}
4036 		checksum += eeprom_data;
4037 	}
4038 	checksum = (u16) EEPROM_SUM - checksum;
4039 	if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4040 		e_dbg("EEPROM Write Error\n");
4041 		return -E1000_ERR_EEPROM;
4042 	}
4043 	return E1000_SUCCESS;
4044 }
4045 
4046 /**
4047  * e1000_write_eeprom - write words to the different EEPROM types.
4048  * @hw: Struct containing variables accessed by shared code
4049  * @offset: offset within the EEPROM to be written to
4050  * @words: number of words to write
4051  * @data: 16 bit word to be written to the EEPROM
4052  *
4053  * If e1000_update_eeprom_checksum is not called after this function, the
4054  * EEPROM will most likely contain an invalid checksum.
4055  */
4056 s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4057 {
4058 	s32 ret;
4059 	spin_lock(&e1000_eeprom_lock);
4060 	ret = e1000_do_write_eeprom(hw, offset, words, data);
4061 	spin_unlock(&e1000_eeprom_lock);
4062 	return ret;
4063 }
4064 
4065 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4066 				 u16 *data)
4067 {
4068 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4069 	s32 status = 0;
4070 
4071 	if (hw->mac_type == e1000_ce4100) {
4072 		GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4073 		                       data);
4074 		return E1000_SUCCESS;
4075 	}
4076 
4077 	/* If eeprom is not yet detected, do so now */
4078 	if (eeprom->word_size == 0)
4079 		e1000_init_eeprom_params(hw);
4080 
4081 	/* A check for invalid values:  offset too large, too many words, and
4082 	 * not enough words.
4083 	 */
4084 	if ((offset >= eeprom->word_size)
4085 	    || (words > eeprom->word_size - offset) || (words == 0)) {
4086 		e_dbg("\"words\" parameter out of bounds\n");
4087 		return -E1000_ERR_EEPROM;
4088 	}
4089 
4090 	/* Prepare the EEPROM for writing  */
4091 	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4092 		return -E1000_ERR_EEPROM;
4093 
4094 	if (eeprom->type == e1000_eeprom_microwire) {
4095 		status = e1000_write_eeprom_microwire(hw, offset, words, data);
4096 	} else {
4097 		status = e1000_write_eeprom_spi(hw, offset, words, data);
4098 		msleep(10);
4099 	}
4100 
4101 	/* Done with writing */
4102 	e1000_release_eeprom(hw);
4103 
4104 	return status;
4105 }
4106 
4107 /**
4108  * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4109  * @hw: Struct containing variables accessed by shared code
4110  * @offset: offset within the EEPROM to be written to
4111  * @words: number of words to write
4112  * @data: pointer to array of 8 bit words to be written to the EEPROM
4113  */
4114 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4115 				  u16 *data)
4116 {
4117 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4118 	u16 widx = 0;
4119 
4120 	while (widx < words) {
4121 		u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
4122 
4123 		if (e1000_spi_eeprom_ready(hw))
4124 			return -E1000_ERR_EEPROM;
4125 
4126 		e1000_standby_eeprom(hw);
4127 
4128 		/*  Send the WRITE ENABLE command (8 bit opcode )  */
4129 		e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4130 					eeprom->opcode_bits);
4131 
4132 		e1000_standby_eeprom(hw);
4133 
4134 		/* Some SPI eeproms use the 8th address bit embedded in the
4135 		 * opcode
4136 		 */
4137 		if ((eeprom->address_bits == 8) && (offset >= 128))
4138 			write_opcode |= EEPROM_A8_OPCODE_SPI;
4139 
4140 		/* Send the Write command (8-bit opcode + addr) */
4141 		e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4142 
4143 		e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2),
4144 					eeprom->address_bits);
4145 
4146 		/* Send the data */
4147 
4148 		/* Loop to allow for up to whole page write (32 bytes) of
4149 		 * eeprom
4150 		 */
4151 		while (widx < words) {
4152 			u16 word_out = data[widx];
4153 			word_out = (word_out >> 8) | (word_out << 8);
4154 			e1000_shift_out_ee_bits(hw, word_out, 16);
4155 			widx++;
4156 
4157 			/* Some larger eeprom sizes are capable of a 32-byte
4158 			 * PAGE WRITE operation, while the smaller eeproms are
4159 			 * capable of an 8-byte PAGE WRITE operation.  Break the
4160 			 * inner loop to pass new address
4161 			 */
4162 			if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4163 				e1000_standby_eeprom(hw);
4164 				break;
4165 			}
4166 		}
4167 	}
4168 
4169 	return E1000_SUCCESS;
4170 }
4171 
4172 /**
4173  * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4174  * @hw: Struct containing variables accessed by shared code
4175  * @offset: offset within the EEPROM to be written to
4176  * @words: number of words to write
4177  * @data: pointer to array of 8 bit words to be written to the EEPROM
4178  */
4179 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4180 					u16 words, u16 *data)
4181 {
4182 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4183 	u32 eecd;
4184 	u16 words_written = 0;
4185 	u16 i = 0;
4186 
4187 	/* Send the write enable command to the EEPROM (3-bit opcode plus
4188 	 * 6/8-bit dummy address beginning with 11).  It's less work to include
4189 	 * the 11 of the dummy address as part of the opcode than it is to shift
4190 	 * it over the correct number of bits for the address.  This puts the
4191 	 * EEPROM into write/erase mode.
4192 	 */
4193 	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4194 				(u16) (eeprom->opcode_bits + 2));
4195 
4196 	e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
4197 
4198 	/* Prepare the EEPROM */
4199 	e1000_standby_eeprom(hw);
4200 
4201 	while (words_written < words) {
4202 		/* Send the Write command (3-bit opcode + addr) */
4203 		e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4204 					eeprom->opcode_bits);
4205 
4206 		e1000_shift_out_ee_bits(hw, (u16) (offset + words_written),
4207 					eeprom->address_bits);
4208 
4209 		/* Send the data */
4210 		e1000_shift_out_ee_bits(hw, data[words_written], 16);
4211 
4212 		/* Toggle the CS line.  This in effect tells the EEPROM to
4213 		 * execute the previous command.
4214 		 */
4215 		e1000_standby_eeprom(hw);
4216 
4217 		/* Read DO repeatedly until it is high (equal to '1').  The
4218 		 * EEPROM will signal that the command has been completed by
4219 		 * raising the DO signal. If DO does not go high in 10
4220 		 * milliseconds, then error out.
4221 		 */
4222 		for (i = 0; i < 200; i++) {
4223 			eecd = er32(EECD);
4224 			if (eecd & E1000_EECD_DO)
4225 				break;
4226 			udelay(50);
4227 		}
4228 		if (i == 200) {
4229 			e_dbg("EEPROM Write did not complete\n");
4230 			return -E1000_ERR_EEPROM;
4231 		}
4232 
4233 		/* Recover from write */
4234 		e1000_standby_eeprom(hw);
4235 
4236 		words_written++;
4237 	}
4238 
4239 	/* Send the write disable command to the EEPROM (3-bit opcode plus
4240 	 * 6/8-bit dummy address beginning with 10).  It's less work to include
4241 	 * the 10 of the dummy address as part of the opcode than it is to shift
4242 	 * it over the correct number of bits for the address.  This takes the
4243 	 * EEPROM out of write/erase mode.
4244 	 */
4245 	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4246 				(u16) (eeprom->opcode_bits + 2));
4247 
4248 	e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
4249 
4250 	return E1000_SUCCESS;
4251 }
4252 
4253 /**
4254  * e1000_read_mac_addr - read the adapters MAC from eeprom
4255  * @hw: Struct containing variables accessed by shared code
4256  *
4257  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4258  * second function of dual function devices
4259  */
4260 s32 e1000_read_mac_addr(struct e1000_hw *hw)
4261 {
4262 	u16 offset;
4263 	u16 eeprom_data, i;
4264 
4265 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4266 		offset = i >> 1;
4267 		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4268 			e_dbg("EEPROM Read Error\n");
4269 			return -E1000_ERR_EEPROM;
4270 		}
4271 		hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF);
4272 		hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8);
4273 	}
4274 
4275 	switch (hw->mac_type) {
4276 	default:
4277 		break;
4278 	case e1000_82546:
4279 	case e1000_82546_rev_3:
4280 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
4281 			hw->perm_mac_addr[5] ^= 0x01;
4282 		break;
4283 	}
4284 
4285 	for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4286 		hw->mac_addr[i] = hw->perm_mac_addr[i];
4287 	return E1000_SUCCESS;
4288 }
4289 
4290 /**
4291  * e1000_init_rx_addrs - Initializes receive address filters.
4292  * @hw: Struct containing variables accessed by shared code
4293  *
4294  * Places the MAC address in receive address register 0 and clears the rest
4295  * of the receive address registers. Clears the multicast table. Assumes
4296  * the receiver is in reset when the routine is called.
4297  */
4298 static void e1000_init_rx_addrs(struct e1000_hw *hw)
4299 {
4300 	u32 i;
4301 	u32 rar_num;
4302 
4303 	/* Setup the receive address. */
4304 	e_dbg("Programming MAC Address into RAR[0]\n");
4305 
4306 	e1000_rar_set(hw, hw->mac_addr, 0);
4307 
4308 	rar_num = E1000_RAR_ENTRIES;
4309 
4310 	/* Zero out the other 15 receive addresses. */
4311 	e_dbg("Clearing RAR[1-15]\n");
4312 	for (i = 1; i < rar_num; i++) {
4313 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4314 		E1000_WRITE_FLUSH();
4315 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4316 		E1000_WRITE_FLUSH();
4317 	}
4318 }
4319 
4320 /**
4321  * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4322  * @hw: Struct containing variables accessed by shared code
4323  * @mc_addr: the multicast address to hash
4324  */
4325 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4326 {
4327 	u32 hash_value = 0;
4328 
4329 	/* The portion of the address that is used for the hash table is
4330 	 * determined by the mc_filter_type setting.
4331 	 */
4332 	switch (hw->mc_filter_type) {
4333 		/* [0] [1] [2] [3] [4] [5]
4334 		 * 01  AA  00  12  34  56
4335 		 * LSB                 MSB
4336 		 */
4337 	case 0:
4338 		/* [47:36] i.e. 0x563 for above example address */
4339 		hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
4340 		break;
4341 	case 1:
4342 		/* [46:35] i.e. 0xAC6 for above example address */
4343 		hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
4344 		break;
4345 	case 2:
4346 		/* [45:34] i.e. 0x5D8 for above example address */
4347 		hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
4348 		break;
4349 	case 3:
4350 		/* [43:32] i.e. 0x634 for above example address */
4351 		hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
4352 		break;
4353 	}
4354 
4355 	hash_value &= 0xFFF;
4356 	return hash_value;
4357 }
4358 
4359 /**
4360  * e1000_rar_set - Puts an ethernet address into a receive address register.
4361  * @hw: Struct containing variables accessed by shared code
4362  * @addr: Address to put into receive address register
4363  * @index: Receive address register to write
4364  */
4365 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
4366 {
4367 	u32 rar_low, rar_high;
4368 
4369 	/* HW expects these in little endian so we reverse the byte order
4370 	 * from network order (big endian) to little endian
4371 	 */
4372 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
4373 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
4374 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
4375 
4376 	/* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4377 	 * unit hang.
4378 	 *
4379 	 * Description:
4380 	 * If there are any Rx frames queued up or otherwise present in the HW
4381 	 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4382 	 * hang.  To work around this issue, we have to disable receives and
4383 	 * flush out all Rx frames before we enable RSS. To do so, we modify we
4384 	 * redirect all Rx traffic to manageability and then reset the HW.
4385 	 * This flushes away Rx frames, and (since the redirections to
4386 	 * manageability persists across resets) keeps new ones from coming in
4387 	 * while we work.  Then, we clear the Address Valid AV bit for all MAC
4388 	 * addresses and undo the re-direction to manageability.
4389 	 * Now, frames are coming in again, but the MAC won't accept them, so
4390 	 * far so good.  We now proceed to initialize RSS (if necessary) and
4391 	 * configure the Rx unit.  Last, we re-enable the AV bits and continue
4392 	 * on our merry way.
4393 	 */
4394 	switch (hw->mac_type) {
4395 	default:
4396 		/* Indicate to hardware the Address is Valid. */
4397 		rar_high |= E1000_RAH_AV;
4398 		break;
4399 	}
4400 
4401 	E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4402 	E1000_WRITE_FLUSH();
4403 	E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4404 	E1000_WRITE_FLUSH();
4405 }
4406 
4407 /**
4408  * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4409  * @hw: Struct containing variables accessed by shared code
4410  * @offset: Offset in VLAN filer table to write
4411  * @value: Value to write into VLAN filter table
4412  */
4413 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
4414 {
4415 	u32 temp;
4416 
4417 	if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4418 		temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4419 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4420 		E1000_WRITE_FLUSH();
4421 		E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4422 		E1000_WRITE_FLUSH();
4423 	} else {
4424 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4425 		E1000_WRITE_FLUSH();
4426 	}
4427 }
4428 
4429 /**
4430  * e1000_clear_vfta - Clears the VLAN filer table
4431  * @hw: Struct containing variables accessed by shared code
4432  */
4433 static void e1000_clear_vfta(struct e1000_hw *hw)
4434 {
4435 	u32 offset;
4436 	u32 vfta_value = 0;
4437 	u32 vfta_offset = 0;
4438 	u32 vfta_bit_in_reg = 0;
4439 
4440 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4441 		/* If the offset we want to clear is the same offset of the
4442 		 * manageability VLAN ID, then clear all bits except that of the
4443 		 * manageability unit
4444 		 */
4445 		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
4446 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
4447 		E1000_WRITE_FLUSH();
4448 	}
4449 }
4450 
4451 static s32 e1000_id_led_init(struct e1000_hw *hw)
4452 {
4453 	u32 ledctl;
4454 	const u32 ledctl_mask = 0x000000FF;
4455 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4456 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4457 	u16 eeprom_data, i, temp;
4458 	const u16 led_mask = 0x0F;
4459 
4460 	if (hw->mac_type < e1000_82540) {
4461 		/* Nothing to do */
4462 		return E1000_SUCCESS;
4463 	}
4464 
4465 	ledctl = er32(LEDCTL);
4466 	hw->ledctl_default = ledctl;
4467 	hw->ledctl_mode1 = hw->ledctl_default;
4468 	hw->ledctl_mode2 = hw->ledctl_default;
4469 
4470 	if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4471 		e_dbg("EEPROM Read Error\n");
4472 		return -E1000_ERR_EEPROM;
4473 	}
4474 
4475 	if ((eeprom_data == ID_LED_RESERVED_0000) ||
4476 	    (eeprom_data == ID_LED_RESERVED_FFFF)) {
4477 		eeprom_data = ID_LED_DEFAULT;
4478 	}
4479 
4480 	for (i = 0; i < 4; i++) {
4481 		temp = (eeprom_data >> (i << 2)) & led_mask;
4482 		switch (temp) {
4483 		case ID_LED_ON1_DEF2:
4484 		case ID_LED_ON1_ON2:
4485 		case ID_LED_ON1_OFF2:
4486 			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4487 			hw->ledctl_mode1 |= ledctl_on << (i << 3);
4488 			break;
4489 		case ID_LED_OFF1_DEF2:
4490 		case ID_LED_OFF1_ON2:
4491 		case ID_LED_OFF1_OFF2:
4492 			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4493 			hw->ledctl_mode1 |= ledctl_off << (i << 3);
4494 			break;
4495 		default:
4496 			/* Do nothing */
4497 			break;
4498 		}
4499 		switch (temp) {
4500 		case ID_LED_DEF1_ON2:
4501 		case ID_LED_ON1_ON2:
4502 		case ID_LED_OFF1_ON2:
4503 			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4504 			hw->ledctl_mode2 |= ledctl_on << (i << 3);
4505 			break;
4506 		case ID_LED_DEF1_OFF2:
4507 		case ID_LED_ON1_OFF2:
4508 		case ID_LED_OFF1_OFF2:
4509 			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4510 			hw->ledctl_mode2 |= ledctl_off << (i << 3);
4511 			break;
4512 		default:
4513 			/* Do nothing */
4514 			break;
4515 		}
4516 	}
4517 	return E1000_SUCCESS;
4518 }
4519 
4520 /**
4521  * e1000_setup_led
4522  * @hw: Struct containing variables accessed by shared code
4523  *
4524  * Prepares SW controlable LED for use and saves the current state of the LED.
4525  */
4526 s32 e1000_setup_led(struct e1000_hw *hw)
4527 {
4528 	u32 ledctl;
4529 	s32 ret_val = E1000_SUCCESS;
4530 
4531 	switch (hw->mac_type) {
4532 	case e1000_82542_rev2_0:
4533 	case e1000_82542_rev2_1:
4534 	case e1000_82543:
4535 	case e1000_82544:
4536 		/* No setup necessary */
4537 		break;
4538 	case e1000_82541:
4539 	case e1000_82547:
4540 	case e1000_82541_rev_2:
4541 	case e1000_82547_rev_2:
4542 		/* Turn off PHY Smart Power Down (if enabled) */
4543 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4544 					     &hw->phy_spd_default);
4545 		if (ret_val)
4546 			return ret_val;
4547 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4548 					      (u16) (hw->phy_spd_default &
4549 						     ~IGP01E1000_GMII_SPD));
4550 		if (ret_val)
4551 			return ret_val;
4552 		/* Fall Through */
4553 	default:
4554 		if (hw->media_type == e1000_media_type_fiber) {
4555 			ledctl = er32(LEDCTL);
4556 			/* Save current LEDCTL settings */
4557 			hw->ledctl_default = ledctl;
4558 			/* Turn off LED0 */
4559 			ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4560 				    E1000_LEDCTL_LED0_BLINK |
4561 				    E1000_LEDCTL_LED0_MODE_MASK);
4562 			ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4563 				   E1000_LEDCTL_LED0_MODE_SHIFT);
4564 			ew32(LEDCTL, ledctl);
4565 		} else if (hw->media_type == e1000_media_type_copper)
4566 			ew32(LEDCTL, hw->ledctl_mode1);
4567 		break;
4568 	}
4569 
4570 	return E1000_SUCCESS;
4571 }
4572 
4573 /**
4574  * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4575  * @hw: Struct containing variables accessed by shared code
4576  */
4577 s32 e1000_cleanup_led(struct e1000_hw *hw)
4578 {
4579 	s32 ret_val = E1000_SUCCESS;
4580 
4581 	switch (hw->mac_type) {
4582 	case e1000_82542_rev2_0:
4583 	case e1000_82542_rev2_1:
4584 	case e1000_82543:
4585 	case e1000_82544:
4586 		/* No cleanup necessary */
4587 		break;
4588 	case e1000_82541:
4589 	case e1000_82547:
4590 	case e1000_82541_rev_2:
4591 	case e1000_82547_rev_2:
4592 		/* Turn on PHY Smart Power Down (if previously enabled) */
4593 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4594 					      hw->phy_spd_default);
4595 		if (ret_val)
4596 			return ret_val;
4597 		/* Fall Through */
4598 	default:
4599 		/* Restore LEDCTL settings */
4600 		ew32(LEDCTL, hw->ledctl_default);
4601 		break;
4602 	}
4603 
4604 	return E1000_SUCCESS;
4605 }
4606 
4607 /**
4608  * e1000_led_on - Turns on the software controllable LED
4609  * @hw: Struct containing variables accessed by shared code
4610  */
4611 s32 e1000_led_on(struct e1000_hw *hw)
4612 {
4613 	u32 ctrl = er32(CTRL);
4614 
4615 	switch (hw->mac_type) {
4616 	case e1000_82542_rev2_0:
4617 	case e1000_82542_rev2_1:
4618 	case e1000_82543:
4619 		/* Set SW Defineable Pin 0 to turn on the LED */
4620 		ctrl |= E1000_CTRL_SWDPIN0;
4621 		ctrl |= E1000_CTRL_SWDPIO0;
4622 		break;
4623 	case e1000_82544:
4624 		if (hw->media_type == e1000_media_type_fiber) {
4625 			/* Set SW Defineable Pin 0 to turn on the LED */
4626 			ctrl |= E1000_CTRL_SWDPIN0;
4627 			ctrl |= E1000_CTRL_SWDPIO0;
4628 		} else {
4629 			/* Clear SW Defineable Pin 0 to turn on the LED */
4630 			ctrl &= ~E1000_CTRL_SWDPIN0;
4631 			ctrl |= E1000_CTRL_SWDPIO0;
4632 		}
4633 		break;
4634 	default:
4635 		if (hw->media_type == e1000_media_type_fiber) {
4636 			/* Clear SW Defineable Pin 0 to turn on the LED */
4637 			ctrl &= ~E1000_CTRL_SWDPIN0;
4638 			ctrl |= E1000_CTRL_SWDPIO0;
4639 		} else if (hw->media_type == e1000_media_type_copper) {
4640 			ew32(LEDCTL, hw->ledctl_mode2);
4641 			return E1000_SUCCESS;
4642 		}
4643 		break;
4644 	}
4645 
4646 	ew32(CTRL, ctrl);
4647 
4648 	return E1000_SUCCESS;
4649 }
4650 
4651 /**
4652  * e1000_led_off - Turns off the software controllable LED
4653  * @hw: Struct containing variables accessed by shared code
4654  */
4655 s32 e1000_led_off(struct e1000_hw *hw)
4656 {
4657 	u32 ctrl = er32(CTRL);
4658 
4659 	switch (hw->mac_type) {
4660 	case e1000_82542_rev2_0:
4661 	case e1000_82542_rev2_1:
4662 	case e1000_82543:
4663 		/* Clear SW Defineable Pin 0 to turn off the LED */
4664 		ctrl &= ~E1000_CTRL_SWDPIN0;
4665 		ctrl |= E1000_CTRL_SWDPIO0;
4666 		break;
4667 	case e1000_82544:
4668 		if (hw->media_type == e1000_media_type_fiber) {
4669 			/* Clear SW Defineable Pin 0 to turn off the LED */
4670 			ctrl &= ~E1000_CTRL_SWDPIN0;
4671 			ctrl |= E1000_CTRL_SWDPIO0;
4672 		} else {
4673 			/* Set SW Defineable Pin 0 to turn off the LED */
4674 			ctrl |= E1000_CTRL_SWDPIN0;
4675 			ctrl |= E1000_CTRL_SWDPIO0;
4676 		}
4677 		break;
4678 	default:
4679 		if (hw->media_type == e1000_media_type_fiber) {
4680 			/* Set SW Defineable Pin 0 to turn off the LED */
4681 			ctrl |= E1000_CTRL_SWDPIN0;
4682 			ctrl |= E1000_CTRL_SWDPIO0;
4683 		} else if (hw->media_type == e1000_media_type_copper) {
4684 			ew32(LEDCTL, hw->ledctl_mode1);
4685 			return E1000_SUCCESS;
4686 		}
4687 		break;
4688 	}
4689 
4690 	ew32(CTRL, ctrl);
4691 
4692 	return E1000_SUCCESS;
4693 }
4694 
4695 /**
4696  * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4697  * @hw: Struct containing variables accessed by shared code
4698  */
4699 static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
4700 {
4701 	volatile u32 temp;
4702 
4703 	temp = er32(CRCERRS);
4704 	temp = er32(SYMERRS);
4705 	temp = er32(MPC);
4706 	temp = er32(SCC);
4707 	temp = er32(ECOL);
4708 	temp = er32(MCC);
4709 	temp = er32(LATECOL);
4710 	temp = er32(COLC);
4711 	temp = er32(DC);
4712 	temp = er32(SEC);
4713 	temp = er32(RLEC);
4714 	temp = er32(XONRXC);
4715 	temp = er32(XONTXC);
4716 	temp = er32(XOFFRXC);
4717 	temp = er32(XOFFTXC);
4718 	temp = er32(FCRUC);
4719 
4720 	temp = er32(PRC64);
4721 	temp = er32(PRC127);
4722 	temp = er32(PRC255);
4723 	temp = er32(PRC511);
4724 	temp = er32(PRC1023);
4725 	temp = er32(PRC1522);
4726 
4727 	temp = er32(GPRC);
4728 	temp = er32(BPRC);
4729 	temp = er32(MPRC);
4730 	temp = er32(GPTC);
4731 	temp = er32(GORCL);
4732 	temp = er32(GORCH);
4733 	temp = er32(GOTCL);
4734 	temp = er32(GOTCH);
4735 	temp = er32(RNBC);
4736 	temp = er32(RUC);
4737 	temp = er32(RFC);
4738 	temp = er32(ROC);
4739 	temp = er32(RJC);
4740 	temp = er32(TORL);
4741 	temp = er32(TORH);
4742 	temp = er32(TOTL);
4743 	temp = er32(TOTH);
4744 	temp = er32(TPR);
4745 	temp = er32(TPT);
4746 
4747 	temp = er32(PTC64);
4748 	temp = er32(PTC127);
4749 	temp = er32(PTC255);
4750 	temp = er32(PTC511);
4751 	temp = er32(PTC1023);
4752 	temp = er32(PTC1522);
4753 
4754 	temp = er32(MPTC);
4755 	temp = er32(BPTC);
4756 
4757 	if (hw->mac_type < e1000_82543)
4758 		return;
4759 
4760 	temp = er32(ALGNERRC);
4761 	temp = er32(RXERRC);
4762 	temp = er32(TNCRS);
4763 	temp = er32(CEXTERR);
4764 	temp = er32(TSCTC);
4765 	temp = er32(TSCTFC);
4766 
4767 	if (hw->mac_type <= e1000_82544)
4768 		return;
4769 
4770 	temp = er32(MGTPRC);
4771 	temp = er32(MGTPDC);
4772 	temp = er32(MGTPTC);
4773 }
4774 
4775 /**
4776  * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4777  * @hw: Struct containing variables accessed by shared code
4778  *
4779  * Call this after e1000_init_hw. You may override the IFS defaults by setting
4780  * hw->ifs_params_forced to true. However, you must initialize hw->
4781  * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4782  * before calling this function.
4783  */
4784 void e1000_reset_adaptive(struct e1000_hw *hw)
4785 {
4786 	if (hw->adaptive_ifs) {
4787 		if (!hw->ifs_params_forced) {
4788 			hw->current_ifs_val = 0;
4789 			hw->ifs_min_val = IFS_MIN;
4790 			hw->ifs_max_val = IFS_MAX;
4791 			hw->ifs_step_size = IFS_STEP;
4792 			hw->ifs_ratio = IFS_RATIO;
4793 		}
4794 		hw->in_ifs_mode = false;
4795 		ew32(AIT, 0);
4796 	} else {
4797 		e_dbg("Not in Adaptive IFS mode!\n");
4798 	}
4799 }
4800 
4801 /**
4802  * e1000_update_adaptive - update adaptive IFS
4803  * @hw: Struct containing variables accessed by shared code
4804  * @tx_packets: Number of transmits since last callback
4805  * @total_collisions: Number of collisions since last callback
4806  *
4807  * Called during the callback/watchdog routine to update IFS value based on
4808  * the ratio of transmits to collisions.
4809  */
4810 void e1000_update_adaptive(struct e1000_hw *hw)
4811 {
4812 	if (hw->adaptive_ifs) {
4813 		if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) {
4814 			if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4815 				hw->in_ifs_mode = true;
4816 				if (hw->current_ifs_val < hw->ifs_max_val) {
4817 					if (hw->current_ifs_val == 0)
4818 						hw->current_ifs_val =
4819 						    hw->ifs_min_val;
4820 					else
4821 						hw->current_ifs_val +=
4822 						    hw->ifs_step_size;
4823 					ew32(AIT, hw->current_ifs_val);
4824 				}
4825 			}
4826 		} else {
4827 			if (hw->in_ifs_mode
4828 			    && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4829 				hw->current_ifs_val = 0;
4830 				hw->in_ifs_mode = false;
4831 				ew32(AIT, 0);
4832 			}
4833 		}
4834 	} else {
4835 		e_dbg("Not in Adaptive IFS mode!\n");
4836 	}
4837 }
4838 
4839 /**
4840  * e1000_tbi_adjust_stats
4841  * @hw: Struct containing variables accessed by shared code
4842  * @frame_len: The length of the frame in question
4843  * @mac_addr: The Ethernet destination address of the frame in question
4844  *
4845  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4846  */
4847 void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
4848 			    u32 frame_len, u8 *mac_addr)
4849 {
4850 	u64 carry_bit;
4851 
4852 	/* First adjust the frame length. */
4853 	frame_len--;
4854 	/* We need to adjust the statistics counters, since the hardware
4855 	 * counters overcount this packet as a CRC error and undercount
4856 	 * the packet as a good packet
4857 	 */
4858 	/* This packet should not be counted as a CRC error. */
4859 	stats->crcerrs--;
4860 	/* This packet does count as a Good Packet Received. */
4861 	stats->gprc++;
4862 
4863 	/* Adjust the Good Octets received counters */
4864 	carry_bit = 0x80000000 & stats->gorcl;
4865 	stats->gorcl += frame_len;
4866 	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4867 	 * Received Count) was one before the addition,
4868 	 * AND it is zero after, then we lost the carry out,
4869 	 * need to add one to Gorch (Good Octets Received Count High).
4870 	 * This could be simplified if all environments supported
4871 	 * 64-bit integers.
4872 	 */
4873 	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4874 		stats->gorch++;
4875 	/* Is this a broadcast or multicast?  Check broadcast first,
4876 	 * since the test for a multicast frame will test positive on
4877 	 * a broadcast frame.
4878 	 */
4879 	if (is_broadcast_ether_addr(mac_addr))
4880 		/* Broadcast packet */
4881 		stats->bprc++;
4882 	else if (is_multicast_ether_addr(mac_addr))
4883 		/* Multicast packet */
4884 		stats->mprc++;
4885 
4886 	if (frame_len == hw->max_frame_size) {
4887 		/* In this case, the hardware has overcounted the number of
4888 		 * oversize frames.
4889 		 */
4890 		if (stats->roc > 0)
4891 			stats->roc--;
4892 	}
4893 
4894 	/* Adjust the bin counters when the extra byte put the frame in the
4895 	 * wrong bin. Remember that the frame_len was adjusted above.
4896 	 */
4897 	if (frame_len == 64) {
4898 		stats->prc64++;
4899 		stats->prc127--;
4900 	} else if (frame_len == 127) {
4901 		stats->prc127++;
4902 		stats->prc255--;
4903 	} else if (frame_len == 255) {
4904 		stats->prc255++;
4905 		stats->prc511--;
4906 	} else if (frame_len == 511) {
4907 		stats->prc511++;
4908 		stats->prc1023--;
4909 	} else if (frame_len == 1023) {
4910 		stats->prc1023++;
4911 		stats->prc1522--;
4912 	} else if (frame_len == 1522) {
4913 		stats->prc1522++;
4914 	}
4915 }
4916 
4917 /**
4918  * e1000_get_bus_info
4919  * @hw: Struct containing variables accessed by shared code
4920  *
4921  * Gets the current PCI bus type, speed, and width of the hardware
4922  */
4923 void e1000_get_bus_info(struct e1000_hw *hw)
4924 {
4925 	u32 status;
4926 
4927 	switch (hw->mac_type) {
4928 	case e1000_82542_rev2_0:
4929 	case e1000_82542_rev2_1:
4930 		hw->bus_type = e1000_bus_type_pci;
4931 		hw->bus_speed = e1000_bus_speed_unknown;
4932 		hw->bus_width = e1000_bus_width_unknown;
4933 		break;
4934 	default:
4935 		status = er32(STATUS);
4936 		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4937 		    e1000_bus_type_pcix : e1000_bus_type_pci;
4938 
4939 		if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4940 			hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4941 			    e1000_bus_speed_66 : e1000_bus_speed_120;
4942 		} else if (hw->bus_type == e1000_bus_type_pci) {
4943 			hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4944 			    e1000_bus_speed_66 : e1000_bus_speed_33;
4945 		} else {
4946 			switch (status & E1000_STATUS_PCIX_SPEED) {
4947 			case E1000_STATUS_PCIX_SPEED_66:
4948 				hw->bus_speed = e1000_bus_speed_66;
4949 				break;
4950 			case E1000_STATUS_PCIX_SPEED_100:
4951 				hw->bus_speed = e1000_bus_speed_100;
4952 				break;
4953 			case E1000_STATUS_PCIX_SPEED_133:
4954 				hw->bus_speed = e1000_bus_speed_133;
4955 				break;
4956 			default:
4957 				hw->bus_speed = e1000_bus_speed_reserved;
4958 				break;
4959 			}
4960 		}
4961 		hw->bus_width = (status & E1000_STATUS_BUS64) ?
4962 		    e1000_bus_width_64 : e1000_bus_width_32;
4963 		break;
4964 	}
4965 }
4966 
4967 /**
4968  * e1000_write_reg_io
4969  * @hw: Struct containing variables accessed by shared code
4970  * @offset: offset to write to
4971  * @value: value to write
4972  *
4973  * Writes a value to one of the devices registers using port I/O (as opposed to
4974  * memory mapped I/O). Only 82544 and newer devices support port I/O.
4975  */
4976 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
4977 {
4978 	unsigned long io_addr = hw->io_base;
4979 	unsigned long io_data = hw->io_base + 4;
4980 
4981 	e1000_io_write(hw, io_addr, offset);
4982 	e1000_io_write(hw, io_data, value);
4983 }
4984 
4985 /**
4986  * e1000_get_cable_length - Estimates the cable length.
4987  * @hw: Struct containing variables accessed by shared code
4988  * @min_length: The estimated minimum length
4989  * @max_length: The estimated maximum length
4990  *
4991  * returns: - E1000_ERR_XXX
4992  *            E1000_SUCCESS
4993  *
4994  * This function always returns a ranged length (minimum & maximum).
4995  * So for M88 phy's, this function interprets the one value returned from the
4996  * register to the minimum and maximum range.
4997  * For IGP phy's, the function calculates the range by the AGC registers.
4998  */
4999 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
5000 				  u16 *max_length)
5001 {
5002 	s32 ret_val;
5003 	u16 agc_value = 0;
5004 	u16 i, phy_data;
5005 	u16 cable_length;
5006 
5007 	*min_length = *max_length = 0;
5008 
5009 	/* Use old method for Phy older than IGP */
5010 	if (hw->phy_type == e1000_phy_m88) {
5011 
5012 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5013 					     &phy_data);
5014 		if (ret_val)
5015 			return ret_val;
5016 		cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
5017 		    M88E1000_PSSR_CABLE_LENGTH_SHIFT;
5018 
5019 		/* Convert the enum value to ranged values */
5020 		switch (cable_length) {
5021 		case e1000_cable_length_50:
5022 			*min_length = 0;
5023 			*max_length = e1000_igp_cable_length_50;
5024 			break;
5025 		case e1000_cable_length_50_80:
5026 			*min_length = e1000_igp_cable_length_50;
5027 			*max_length = e1000_igp_cable_length_80;
5028 			break;
5029 		case e1000_cable_length_80_110:
5030 			*min_length = e1000_igp_cable_length_80;
5031 			*max_length = e1000_igp_cable_length_110;
5032 			break;
5033 		case e1000_cable_length_110_140:
5034 			*min_length = e1000_igp_cable_length_110;
5035 			*max_length = e1000_igp_cable_length_140;
5036 			break;
5037 		case e1000_cable_length_140:
5038 			*min_length = e1000_igp_cable_length_140;
5039 			*max_length = e1000_igp_cable_length_170;
5040 			break;
5041 		default:
5042 			return -E1000_ERR_PHY;
5043 		}
5044 	} else if (hw->phy_type == e1000_phy_igp) {	/* For IGP PHY */
5045 		u16 cur_agc_value;
5046 		u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
5047 		static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5048 		       IGP01E1000_PHY_AGC_A,
5049 		       IGP01E1000_PHY_AGC_B,
5050 		       IGP01E1000_PHY_AGC_C,
5051 		       IGP01E1000_PHY_AGC_D
5052 		};
5053 		/* Read the AGC registers for all channels */
5054 		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5055 
5056 			ret_val =
5057 			    e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
5058 			if (ret_val)
5059 				return ret_val;
5060 
5061 			cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
5062 
5063 			/* Value bound check. */
5064 			if ((cur_agc_value >=
5065 			     IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1)
5066 			    || (cur_agc_value == 0))
5067 				return -E1000_ERR_PHY;
5068 
5069 			agc_value += cur_agc_value;
5070 
5071 			/* Update minimal AGC value. */
5072 			if (min_agc_value > cur_agc_value)
5073 				min_agc_value = cur_agc_value;
5074 		}
5075 
5076 		/* Remove the minimal AGC result for length < 50m */
5077 		if (agc_value <
5078 		    IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
5079 			agc_value -= min_agc_value;
5080 
5081 			/* Get the average length of the remaining 3 channels */
5082 			agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
5083 		} else {
5084 			/* Get the average length of all the 4 channels. */
5085 			agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
5086 		}
5087 
5088 		/* Set the range of the calculated length. */
5089 		*min_length = ((e1000_igp_cable_length_table[agc_value] -
5090 				IGP01E1000_AGC_RANGE) > 0) ?
5091 		    (e1000_igp_cable_length_table[agc_value] -
5092 		     IGP01E1000_AGC_RANGE) : 0;
5093 		*max_length = e1000_igp_cable_length_table[agc_value] +
5094 		    IGP01E1000_AGC_RANGE;
5095 	}
5096 
5097 	return E1000_SUCCESS;
5098 }
5099 
5100 /**
5101  * e1000_check_polarity - Check the cable polarity
5102  * @hw: Struct containing variables accessed by shared code
5103  * @polarity: output parameter : 0 - Polarity is not reversed
5104  *                               1 - Polarity is reversed.
5105  *
5106  * returns: - E1000_ERR_XXX
5107  *            E1000_SUCCESS
5108  *
5109  * For phy's older than IGP, this function simply reads the polarity bit in the
5110  * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
5111  * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
5112  * return 0.  If the link speed is 1000 Mbps the polarity status is in the
5113  * IGP01E1000_PHY_PCS_INIT_REG.
5114  */
5115 static s32 e1000_check_polarity(struct e1000_hw *hw,
5116 				e1000_rev_polarity *polarity)
5117 {
5118 	s32 ret_val;
5119 	u16 phy_data;
5120 
5121 	if (hw->phy_type == e1000_phy_m88) {
5122 		/* return the Polarity bit in the Status register. */
5123 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5124 					     &phy_data);
5125 		if (ret_val)
5126 			return ret_val;
5127 		*polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
5128 			     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
5129 		    e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
5130 
5131 	} else if (hw->phy_type == e1000_phy_igp) {
5132 		/* Read the Status register to check the speed */
5133 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5134 					     &phy_data);
5135 		if (ret_val)
5136 			return ret_val;
5137 
5138 		/* If speed is 1000 Mbps, must read the
5139 		 * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status
5140 		 */
5141 		if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5142 		    IGP01E1000_PSSR_SPEED_1000MBPS) {
5143 
5144 			/* Read the GIG initialization PCS register (0x00B4) */
5145 			ret_val =
5146 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5147 					       &phy_data);
5148 			if (ret_val)
5149 				return ret_val;
5150 
5151 			/* Check the polarity bits */
5152 			*polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5153 			    e1000_rev_polarity_reversed :
5154 			    e1000_rev_polarity_normal;
5155 		} else {
5156 			/* For 10 Mbps, read the polarity bit in the status
5157 			 * register. (for 100 Mbps this bit is always 0)
5158 			 */
5159 			*polarity =
5160 			    (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5161 			    e1000_rev_polarity_reversed :
5162 			    e1000_rev_polarity_normal;
5163 		}
5164 	}
5165 	return E1000_SUCCESS;
5166 }
5167 
5168 /**
5169  * e1000_check_downshift - Check if Downshift occurred
5170  * @hw: Struct containing variables accessed by shared code
5171  * @downshift: output parameter : 0 - No Downshift occurred.
5172  *                                1 - Downshift occurred.
5173  *
5174  * returns: - E1000_ERR_XXX
5175  *            E1000_SUCCESS
5176  *
5177  * For phy's older than IGP, this function reads the Downshift bit in the Phy
5178  * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
5179  * Link Health register.  In IGP this bit is latched high, so the driver must
5180  * read it immediately after link is established.
5181  */
5182 static s32 e1000_check_downshift(struct e1000_hw *hw)
5183 {
5184 	s32 ret_val;
5185 	u16 phy_data;
5186 
5187 	if (hw->phy_type == e1000_phy_igp) {
5188 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5189 					     &phy_data);
5190 		if (ret_val)
5191 			return ret_val;
5192 
5193 		hw->speed_downgraded =
5194 		    (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5195 	} else if (hw->phy_type == e1000_phy_m88) {
5196 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5197 					     &phy_data);
5198 		if (ret_val)
5199 			return ret_val;
5200 
5201 		hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5202 		    M88E1000_PSSR_DOWNSHIFT_SHIFT;
5203 	}
5204 
5205 	return E1000_SUCCESS;
5206 }
5207 
5208 static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5209 	IGP01E1000_PHY_AGC_PARAM_A,
5210 	IGP01E1000_PHY_AGC_PARAM_B,
5211 	IGP01E1000_PHY_AGC_PARAM_C,
5212 	IGP01E1000_PHY_AGC_PARAM_D
5213 };
5214 
5215 static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5216 {
5217 	u16 min_length, max_length;
5218 	u16 phy_data, i;
5219 	s32 ret_val;
5220 
5221 	ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5222 	if (ret_val)
5223 		return ret_val;
5224 
5225 	if (hw->dsp_config_state != e1000_dsp_config_enabled)
5226 		return 0;
5227 
5228 	if (min_length >= e1000_igp_cable_length_50) {
5229 		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5230 			ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5231 						     &phy_data);
5232 			if (ret_val)
5233 				return ret_val;
5234 
5235 			phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5236 
5237 			ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5238 						      phy_data);
5239 			if (ret_val)
5240 				return ret_val;
5241 		}
5242 		hw->dsp_config_state = e1000_dsp_config_activated;
5243 	} else {
5244 		u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5245 		u32 idle_errs = 0;
5246 
5247 		/* clear previous idle error counts */
5248 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5249 		if (ret_val)
5250 			return ret_val;
5251 
5252 		for (i = 0; i < ffe_idle_err_timeout; i++) {
5253 			udelay(1000);
5254 			ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5255 						     &phy_data);
5256 			if (ret_val)
5257 				return ret_val;
5258 
5259 			idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5260 			if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5261 				hw->ffe_config_state = e1000_ffe_config_active;
5262 
5263 				ret_val = e1000_write_phy_reg(hw,
5264 					      IGP01E1000_PHY_DSP_FFE,
5265 					      IGP01E1000_PHY_DSP_FFE_CM_CP);
5266 				if (ret_val)
5267 					return ret_val;
5268 				break;
5269 			}
5270 
5271 			if (idle_errs)
5272 				ffe_idle_err_timeout =
5273 					    FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5274 		}
5275 	}
5276 
5277 	return 0;
5278 }
5279 
5280 /**
5281  * e1000_config_dsp_after_link_change
5282  * @hw: Struct containing variables accessed by shared code
5283  * @link_up: was link up at the time this was called
5284  *
5285  * returns: - E1000_ERR_PHY if fail to read/write the PHY
5286  *            E1000_SUCCESS at any other case.
5287  *
5288  * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5289  * gigabit link is achieved to improve link quality.
5290  */
5291 
5292 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
5293 {
5294 	s32 ret_val;
5295 	u16 phy_data, phy_saved_data, speed, duplex, i;
5296 
5297 	if (hw->phy_type != e1000_phy_igp)
5298 		return E1000_SUCCESS;
5299 
5300 	if (link_up) {
5301 		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5302 		if (ret_val) {
5303 			e_dbg("Error getting link speed and duplex\n");
5304 			return ret_val;
5305 		}
5306 
5307 		if (speed == SPEED_1000) {
5308 			ret_val = e1000_1000Mb_check_cable_length(hw);
5309 			if (ret_val)
5310 				return ret_val;
5311 		}
5312 	} else {
5313 		if (hw->dsp_config_state == e1000_dsp_config_activated) {
5314 			/* Save off the current value of register 0x2F5B to be
5315 			 * restored at the end of the routines.
5316 			 */
5317 			ret_val =
5318 			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5319 
5320 			if (ret_val)
5321 				return ret_val;
5322 
5323 			/* Disable the PHY transmitter */
5324 			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5325 
5326 			if (ret_val)
5327 				return ret_val;
5328 
5329 			msleep(20);
5330 
5331 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5332 						    IGP01E1000_IEEE_FORCE_GIGA);
5333 			if (ret_val)
5334 				return ret_val;
5335 			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5336 				ret_val =
5337 				    e1000_read_phy_reg(hw, dsp_reg_array[i],
5338 						       &phy_data);
5339 				if (ret_val)
5340 					return ret_val;
5341 
5342 				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5343 				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5344 
5345 				ret_val =
5346 				    e1000_write_phy_reg(hw, dsp_reg_array[i],
5347 							phy_data);
5348 				if (ret_val)
5349 					return ret_val;
5350 			}
5351 
5352 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5353 					IGP01E1000_IEEE_RESTART_AUTONEG);
5354 			if (ret_val)
5355 				return ret_val;
5356 
5357 			msleep(20);
5358 
5359 			/* Now enable the transmitter */
5360 			ret_val =
5361 			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5362 
5363 			if (ret_val)
5364 				return ret_val;
5365 
5366 			hw->dsp_config_state = e1000_dsp_config_enabled;
5367 		}
5368 
5369 		if (hw->ffe_config_state == e1000_ffe_config_active) {
5370 			/* Save off the current value of register 0x2F5B to be
5371 			 * restored at the end of the routines.
5372 			 */
5373 			ret_val =
5374 			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5375 
5376 			if (ret_val)
5377 				return ret_val;
5378 
5379 			/* Disable the PHY transmitter */
5380 			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5381 
5382 			if (ret_val)
5383 				return ret_val;
5384 
5385 			msleep(20);
5386 
5387 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5388 						    IGP01E1000_IEEE_FORCE_GIGA);
5389 			if (ret_val)
5390 				return ret_val;
5391 			ret_val =
5392 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5393 						IGP01E1000_PHY_DSP_FFE_DEFAULT);
5394 			if (ret_val)
5395 				return ret_val;
5396 
5397 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5398 					IGP01E1000_IEEE_RESTART_AUTONEG);
5399 			if (ret_val)
5400 				return ret_val;
5401 
5402 			msleep(20);
5403 
5404 			/* Now enable the transmitter */
5405 			ret_val =
5406 			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5407 
5408 			if (ret_val)
5409 				return ret_val;
5410 
5411 			hw->ffe_config_state = e1000_ffe_config_enabled;
5412 		}
5413 	}
5414 	return E1000_SUCCESS;
5415 }
5416 
5417 /**
5418  * e1000_set_phy_mode - Set PHY to class A mode
5419  * @hw: Struct containing variables accessed by shared code
5420  *
5421  * Assumes the following operations will follow to enable the new class mode.
5422  *  1. Do a PHY soft reset
5423  *  2. Restart auto-negotiation or force link.
5424  */
5425 static s32 e1000_set_phy_mode(struct e1000_hw *hw)
5426 {
5427 	s32 ret_val;
5428 	u16 eeprom_data;
5429 
5430 	if ((hw->mac_type == e1000_82545_rev_3) &&
5431 	    (hw->media_type == e1000_media_type_copper)) {
5432 		ret_val =
5433 		    e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5434 				      &eeprom_data);
5435 		if (ret_val) {
5436 			return ret_val;
5437 		}
5438 
5439 		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5440 		    (eeprom_data & EEPROM_PHY_CLASS_A)) {
5441 			ret_val =
5442 			    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5443 						0x000B);
5444 			if (ret_val)
5445 				return ret_val;
5446 			ret_val =
5447 			    e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5448 						0x8104);
5449 			if (ret_val)
5450 				return ret_val;
5451 
5452 			hw->phy_reset_disable = false;
5453 		}
5454 	}
5455 
5456 	return E1000_SUCCESS;
5457 }
5458 
5459 /**
5460  * e1000_set_d3_lplu_state - set d3 link power state
5461  * @hw: Struct containing variables accessed by shared code
5462  * @active: true to enable lplu false to disable lplu.
5463  *
5464  * This function sets the lplu state according to the active flag.  When
5465  * activating lplu this function also disables smart speed and vise versa.
5466  * lplu will not be activated unless the device autonegotiation advertisement
5467  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5468  *
5469  * returns: - E1000_ERR_PHY if fail to read/write the PHY
5470  *            E1000_SUCCESS at any other case.
5471  */
5472 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
5473 {
5474 	s32 ret_val;
5475 	u16 phy_data;
5476 
5477 	if (hw->phy_type != e1000_phy_igp)
5478 		return E1000_SUCCESS;
5479 
5480 	/* During driver activity LPLU should not be used or it will attain link
5481 	 * from the lowest speeds starting from 10Mbps. The capability is used
5482 	 * for Dx transitions and states
5483 	 */
5484 	if (hw->mac_type == e1000_82541_rev_2
5485 	    || hw->mac_type == e1000_82547_rev_2) {
5486 		ret_val =
5487 		    e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5488 		if (ret_val)
5489 			return ret_val;
5490 	}
5491 
5492 	if (!active) {
5493 		if (hw->mac_type == e1000_82541_rev_2 ||
5494 		    hw->mac_type == e1000_82547_rev_2) {
5495 			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5496 			ret_val =
5497 			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5498 						phy_data);
5499 			if (ret_val)
5500 				return ret_val;
5501 		}
5502 
5503 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
5504 		 * during Dx states where the power conservation is most
5505 		 * important.  During driver activity we should enable
5506 		 * SmartSpeed, so performance is maintained.
5507 		 */
5508 		if (hw->smart_speed == e1000_smart_speed_on) {
5509 			ret_val =
5510 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5511 					       &phy_data);
5512 			if (ret_val)
5513 				return ret_val;
5514 
5515 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5516 			ret_val =
5517 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5518 						phy_data);
5519 			if (ret_val)
5520 				return ret_val;
5521 		} else if (hw->smart_speed == e1000_smart_speed_off) {
5522 			ret_val =
5523 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5524 					       &phy_data);
5525 			if (ret_val)
5526 				return ret_val;
5527 
5528 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5529 			ret_val =
5530 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5531 						phy_data);
5532 			if (ret_val)
5533 				return ret_val;
5534 		}
5535 	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
5536 		   || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL)
5537 		   || (hw->autoneg_advertised ==
5538 		       AUTONEG_ADVERTISE_10_100_ALL)) {
5539 
5540 		if (hw->mac_type == e1000_82541_rev_2 ||
5541 		    hw->mac_type == e1000_82547_rev_2) {
5542 			phy_data |= IGP01E1000_GMII_FLEX_SPD;
5543 			ret_val =
5544 			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5545 						phy_data);
5546 			if (ret_val)
5547 				return ret_val;
5548 		}
5549 
5550 		/* When LPLU is enabled we should disable SmartSpeed */
5551 		ret_val =
5552 		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5553 				       &phy_data);
5554 		if (ret_val)
5555 			return ret_val;
5556 
5557 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5558 		ret_val =
5559 		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5560 					phy_data);
5561 		if (ret_val)
5562 			return ret_val;
5563 
5564 	}
5565 	return E1000_SUCCESS;
5566 }
5567 
5568 /**
5569  * e1000_set_vco_speed
5570  * @hw: Struct containing variables accessed by shared code
5571  *
5572  * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5573  */
5574 static s32 e1000_set_vco_speed(struct e1000_hw *hw)
5575 {
5576 	s32 ret_val;
5577 	u16 default_page = 0;
5578 	u16 phy_data;
5579 
5580 	switch (hw->mac_type) {
5581 	case e1000_82545_rev_3:
5582 	case e1000_82546_rev_3:
5583 		break;
5584 	default:
5585 		return E1000_SUCCESS;
5586 	}
5587 
5588 	/* Set PHY register 30, page 5, bit 8 to 0 */
5589 
5590 	ret_val =
5591 	    e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5592 	if (ret_val)
5593 		return ret_val;
5594 
5595 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5596 	if (ret_val)
5597 		return ret_val;
5598 
5599 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5600 	if (ret_val)
5601 		return ret_val;
5602 
5603 	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5604 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5605 	if (ret_val)
5606 		return ret_val;
5607 
5608 	/* Set PHY register 30, page 4, bit 11 to 1 */
5609 
5610 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5611 	if (ret_val)
5612 		return ret_val;
5613 
5614 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5615 	if (ret_val)
5616 		return ret_val;
5617 
5618 	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5619 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5620 	if (ret_val)
5621 		return ret_val;
5622 
5623 	ret_val =
5624 	    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5625 	if (ret_val)
5626 		return ret_val;
5627 
5628 	return E1000_SUCCESS;
5629 }
5630 
5631 
5632 /**
5633  * e1000_enable_mng_pass_thru - check for bmc pass through
5634  * @hw: Struct containing variables accessed by shared code
5635  *
5636  * Verifies the hardware needs to allow ARPs to be processed by the host
5637  * returns: - true/false
5638  */
5639 u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
5640 {
5641 	u32 manc;
5642 
5643 	if (hw->asf_firmware_present) {
5644 		manc = er32(MANC);
5645 
5646 		if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5647 		    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5648 			return false;
5649 		if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5650 			return true;
5651 	}
5652 	return false;
5653 }
5654 
5655 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
5656 {
5657 	s32 ret_val;
5658 	u16 mii_status_reg;
5659 	u16 i;
5660 
5661 	/* Polarity reversal workaround for forced 10F/10H links. */
5662 
5663 	/* Disable the transmitter on the PHY */
5664 
5665 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5666 	if (ret_val)
5667 		return ret_val;
5668 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5669 	if (ret_val)
5670 		return ret_val;
5671 
5672 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5673 	if (ret_val)
5674 		return ret_val;
5675 
5676 	/* This loop will early-out if the NO link condition has been met. */
5677 	for (i = PHY_FORCE_TIME; i > 0; i--) {
5678 		/* Read the MII Status Register and wait for Link Status bit
5679 		 * to be clear.
5680 		 */
5681 
5682 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5683 		if (ret_val)
5684 			return ret_val;
5685 
5686 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5687 		if (ret_val)
5688 			return ret_val;
5689 
5690 		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5691 			break;
5692 		msleep(100);
5693 	}
5694 
5695 	/* Recommended delay time after link has been lost */
5696 	msleep(1000);
5697 
5698 	/* Now we will re-enable th transmitter on the PHY */
5699 
5700 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5701 	if (ret_val)
5702 		return ret_val;
5703 	msleep(50);
5704 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5705 	if (ret_val)
5706 		return ret_val;
5707 	msleep(50);
5708 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5709 	if (ret_val)
5710 		return ret_val;
5711 	msleep(50);
5712 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5713 	if (ret_val)
5714 		return ret_val;
5715 
5716 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5717 	if (ret_val)
5718 		return ret_val;
5719 
5720 	/* This loop will early-out if the link condition has been met. */
5721 	for (i = PHY_FORCE_TIME; i > 0; i--) {
5722 		/* Read the MII Status Register and wait for Link Status bit
5723 		 * to be set.
5724 		 */
5725 
5726 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5727 		if (ret_val)
5728 			return ret_val;
5729 
5730 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5731 		if (ret_val)
5732 			return ret_val;
5733 
5734 		if (mii_status_reg & MII_SR_LINK_STATUS)
5735 			break;
5736 		msleep(100);
5737 	}
5738 	return E1000_SUCCESS;
5739 }
5740 
5741 /**
5742  * e1000_get_auto_rd_done
5743  * @hw: Struct containing variables accessed by shared code
5744  *
5745  * Check for EEPROM Auto Read bit done.
5746  * returns: - E1000_ERR_RESET if fail to reset MAC
5747  *            E1000_SUCCESS at any other case.
5748  */
5749 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
5750 {
5751 	msleep(5);
5752 	return E1000_SUCCESS;
5753 }
5754 
5755 /**
5756  * e1000_get_phy_cfg_done
5757  * @hw: Struct containing variables accessed by shared code
5758  *
5759  * Checks if the PHY configuration is done
5760  * returns: - E1000_ERR_RESET if fail to reset MAC
5761  *            E1000_SUCCESS at any other case.
5762  */
5763 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
5764 {
5765 	msleep(10);
5766 	return E1000_SUCCESS;
5767 }
5768