1 /*******************************************************************************
2  * Intel PRO/1000 Linux driver
3  * Copyright(c) 1999 - 2006 Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in
15  * the file called "COPYING".
16  *
17  * Contact Information:
18  * Linux NICS <linux.nics@intel.com>
19  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21  *
22  ******************************************************************************/
23 
24 /* ethtool support for e1000 */
25 
26 #include "e1000.h"
27 #include <linux/uaccess.h>
28 
29 enum {NETDEV_STATS, E1000_STATS};
30 
31 struct e1000_stats {
32 	char stat_string[ETH_GSTRING_LEN];
33 	int type;
34 	int sizeof_stat;
35 	int stat_offset;
36 };
37 
38 #define E1000_STAT(m)		E1000_STATS, \
39 				sizeof(((struct e1000_adapter *)0)->m), \
40 				offsetof(struct e1000_adapter, m)
41 #define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
42 				sizeof(((struct net_device *)0)->m), \
43 				offsetof(struct net_device, m)
44 
45 static const struct e1000_stats e1000_gstrings_stats[] = {
46 	{ "rx_packets", E1000_STAT(stats.gprc) },
47 	{ "tx_packets", E1000_STAT(stats.gptc) },
48 	{ "rx_bytes", E1000_STAT(stats.gorcl) },
49 	{ "tx_bytes", E1000_STAT(stats.gotcl) },
50 	{ "rx_broadcast", E1000_STAT(stats.bprc) },
51 	{ "tx_broadcast", E1000_STAT(stats.bptc) },
52 	{ "rx_multicast", E1000_STAT(stats.mprc) },
53 	{ "tx_multicast", E1000_STAT(stats.mptc) },
54 	{ "rx_errors", E1000_STAT(stats.rxerrc) },
55 	{ "tx_errors", E1000_STAT(stats.txerrc) },
56 	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
57 	{ "multicast", E1000_STAT(stats.mprc) },
58 	{ "collisions", E1000_STAT(stats.colc) },
59 	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
60 	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
61 	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
62 	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
63 	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
64 	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
65 	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
66 	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
67 	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
68 	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
69 	{ "tx_window_errors", E1000_STAT(stats.latecol) },
70 	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
71 	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
72 	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
73 	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
74 	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
75 	{ "tx_restart_queue", E1000_STAT(restart_queue) },
76 	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
77 	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
78 	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
79 	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
80 	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
81 	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
82 	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
83 	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
84 	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
85 	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
86 	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
87 	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
88 	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
89 	{ "tx_smbus", E1000_STAT(stats.mgptc) },
90 	{ "rx_smbus", E1000_STAT(stats.mgprc) },
91 	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
92 };
93 
94 #define E1000_QUEUE_STATS_LEN 0
95 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
96 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
97 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
98 	"Register test  (offline)", "Eeprom test    (offline)",
99 	"Interrupt test (offline)", "Loopback test  (offline)",
100 	"Link test   (on/offline)"
101 };
102 
103 #define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
104 
105 static int e1000_get_settings(struct net_device *netdev,
106 			      struct ethtool_cmd *ecmd)
107 {
108 	struct e1000_adapter *adapter = netdev_priv(netdev);
109 	struct e1000_hw *hw = &adapter->hw;
110 
111 	if (hw->media_type == e1000_media_type_copper) {
112 		ecmd->supported = (SUPPORTED_10baseT_Half |
113 				   SUPPORTED_10baseT_Full |
114 				   SUPPORTED_100baseT_Half |
115 				   SUPPORTED_100baseT_Full |
116 				   SUPPORTED_1000baseT_Full|
117 				   SUPPORTED_Autoneg |
118 				   SUPPORTED_TP);
119 		ecmd->advertising = ADVERTISED_TP;
120 
121 		if (hw->autoneg == 1) {
122 			ecmd->advertising |= ADVERTISED_Autoneg;
123 			/* the e1000 autoneg seems to match ethtool nicely */
124 			ecmd->advertising |= hw->autoneg_advertised;
125 		}
126 
127 		ecmd->port = PORT_TP;
128 		ecmd->phy_address = hw->phy_addr;
129 
130 		if (hw->mac_type == e1000_82543)
131 			ecmd->transceiver = XCVR_EXTERNAL;
132 		else
133 			ecmd->transceiver = XCVR_INTERNAL;
134 
135 	} else {
136 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
137 				     SUPPORTED_FIBRE |
138 				     SUPPORTED_Autoneg);
139 
140 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
141 				     ADVERTISED_FIBRE |
142 				     ADVERTISED_Autoneg);
143 
144 		ecmd->port = PORT_FIBRE;
145 
146 		if (hw->mac_type >= e1000_82545)
147 			ecmd->transceiver = XCVR_INTERNAL;
148 		else
149 			ecmd->transceiver = XCVR_EXTERNAL;
150 	}
151 
152 	if (er32(STATUS) & E1000_STATUS_LU) {
153 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
154 					   &adapter->link_duplex);
155 		ethtool_cmd_speed_set(ecmd, adapter->link_speed);
156 
157 		/* unfortunately FULL_DUPLEX != DUPLEX_FULL
158 		 * and HALF_DUPLEX != DUPLEX_HALF
159 		 */
160 		if (adapter->link_duplex == FULL_DUPLEX)
161 			ecmd->duplex = DUPLEX_FULL;
162 		else
163 			ecmd->duplex = DUPLEX_HALF;
164 	} else {
165 		ethtool_cmd_speed_set(ecmd, SPEED_UNKNOWN);
166 		ecmd->duplex = DUPLEX_UNKNOWN;
167 	}
168 
169 	ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
170 			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
171 
172 	/* MDI-X => 1; MDI => 0 */
173 	if ((hw->media_type == e1000_media_type_copper) &&
174 	    netif_carrier_ok(netdev))
175 		ecmd->eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
176 				     ETH_TP_MDI_X : ETH_TP_MDI);
177 	else
178 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
179 
180 	if (hw->mdix == AUTO_ALL_MODES)
181 		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
182 	else
183 		ecmd->eth_tp_mdix_ctrl = hw->mdix;
184 	return 0;
185 }
186 
187 static int e1000_set_settings(struct net_device *netdev,
188 			      struct ethtool_cmd *ecmd)
189 {
190 	struct e1000_adapter *adapter = netdev_priv(netdev);
191 	struct e1000_hw *hw = &adapter->hw;
192 
193 	/* MDI setting is only allowed when autoneg enabled because
194 	 * some hardware doesn't allow MDI setting when speed or
195 	 * duplex is forced.
196 	 */
197 	if (ecmd->eth_tp_mdix_ctrl) {
198 		if (hw->media_type != e1000_media_type_copper)
199 			return -EOPNOTSUPP;
200 
201 		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
202 		    (ecmd->autoneg != AUTONEG_ENABLE)) {
203 			e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
204 			return -EINVAL;
205 		}
206 	}
207 
208 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
209 		msleep(1);
210 
211 	if (ecmd->autoneg == AUTONEG_ENABLE) {
212 		hw->autoneg = 1;
213 		if (hw->media_type == e1000_media_type_fiber)
214 			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
215 				     ADVERTISED_FIBRE |
216 				     ADVERTISED_Autoneg;
217 		else
218 			hw->autoneg_advertised = ecmd->advertising |
219 						 ADVERTISED_TP |
220 						 ADVERTISED_Autoneg;
221 		ecmd->advertising = hw->autoneg_advertised;
222 	} else {
223 		u32 speed = ethtool_cmd_speed(ecmd);
224 		/* calling this overrides forced MDI setting */
225 		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
226 			clear_bit(__E1000_RESETTING, &adapter->flags);
227 			return -EINVAL;
228 		}
229 	}
230 
231 	/* MDI-X => 2; MDI => 1; Auto => 3 */
232 	if (ecmd->eth_tp_mdix_ctrl) {
233 		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
234 			hw->mdix = AUTO_ALL_MODES;
235 		else
236 			hw->mdix = ecmd->eth_tp_mdix_ctrl;
237 	}
238 
239 	/* reset the link */
240 
241 	if (netif_running(adapter->netdev)) {
242 		e1000_down(adapter);
243 		e1000_up(adapter);
244 	} else {
245 		e1000_reset(adapter);
246 	}
247 	clear_bit(__E1000_RESETTING, &adapter->flags);
248 	return 0;
249 }
250 
251 static u32 e1000_get_link(struct net_device *netdev)
252 {
253 	struct e1000_adapter *adapter = netdev_priv(netdev);
254 
255 	/* If the link is not reported up to netdev, interrupts are disabled,
256 	 * and so the physical link state may have changed since we last
257 	 * looked. Set get_link_status to make sure that the true link
258 	 * state is interrogated, rather than pulling a cached and possibly
259 	 * stale link state from the driver.
260 	 */
261 	if (!netif_carrier_ok(netdev))
262 		adapter->hw.get_link_status = 1;
263 
264 	return e1000_has_link(adapter);
265 }
266 
267 static void e1000_get_pauseparam(struct net_device *netdev,
268 				 struct ethtool_pauseparam *pause)
269 {
270 	struct e1000_adapter *adapter = netdev_priv(netdev);
271 	struct e1000_hw *hw = &adapter->hw;
272 
273 	pause->autoneg =
274 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
275 
276 	if (hw->fc == E1000_FC_RX_PAUSE) {
277 		pause->rx_pause = 1;
278 	} else if (hw->fc == E1000_FC_TX_PAUSE) {
279 		pause->tx_pause = 1;
280 	} else if (hw->fc == E1000_FC_FULL) {
281 		pause->rx_pause = 1;
282 		pause->tx_pause = 1;
283 	}
284 }
285 
286 static int e1000_set_pauseparam(struct net_device *netdev,
287 				struct ethtool_pauseparam *pause)
288 {
289 	struct e1000_adapter *adapter = netdev_priv(netdev);
290 	struct e1000_hw *hw = &adapter->hw;
291 	int retval = 0;
292 
293 	adapter->fc_autoneg = pause->autoneg;
294 
295 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
296 		msleep(1);
297 
298 	if (pause->rx_pause && pause->tx_pause)
299 		hw->fc = E1000_FC_FULL;
300 	else if (pause->rx_pause && !pause->tx_pause)
301 		hw->fc = E1000_FC_RX_PAUSE;
302 	else if (!pause->rx_pause && pause->tx_pause)
303 		hw->fc = E1000_FC_TX_PAUSE;
304 	else if (!pause->rx_pause && !pause->tx_pause)
305 		hw->fc = E1000_FC_NONE;
306 
307 	hw->original_fc = hw->fc;
308 
309 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
310 		if (netif_running(adapter->netdev)) {
311 			e1000_down(adapter);
312 			e1000_up(adapter);
313 		} else {
314 			e1000_reset(adapter);
315 		}
316 	} else
317 		retval = ((hw->media_type == e1000_media_type_fiber) ?
318 			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
319 
320 	clear_bit(__E1000_RESETTING, &adapter->flags);
321 	return retval;
322 }
323 
324 static u32 e1000_get_msglevel(struct net_device *netdev)
325 {
326 	struct e1000_adapter *adapter = netdev_priv(netdev);
327 
328 	return adapter->msg_enable;
329 }
330 
331 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
332 {
333 	struct e1000_adapter *adapter = netdev_priv(netdev);
334 
335 	adapter->msg_enable = data;
336 }
337 
338 static int e1000_get_regs_len(struct net_device *netdev)
339 {
340 #define E1000_REGS_LEN 32
341 	return E1000_REGS_LEN * sizeof(u32);
342 }
343 
344 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
345 			   void *p)
346 {
347 	struct e1000_adapter *adapter = netdev_priv(netdev);
348 	struct e1000_hw *hw = &adapter->hw;
349 	u32 *regs_buff = p;
350 	u16 phy_data;
351 
352 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
353 
354 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
355 
356 	regs_buff[0]  = er32(CTRL);
357 	regs_buff[1]  = er32(STATUS);
358 
359 	regs_buff[2]  = er32(RCTL);
360 	regs_buff[3]  = er32(RDLEN);
361 	regs_buff[4]  = er32(RDH);
362 	regs_buff[5]  = er32(RDT);
363 	regs_buff[6]  = er32(RDTR);
364 
365 	regs_buff[7]  = er32(TCTL);
366 	regs_buff[8]  = er32(TDLEN);
367 	regs_buff[9]  = er32(TDH);
368 	regs_buff[10] = er32(TDT);
369 	regs_buff[11] = er32(TIDV);
370 
371 	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
372 	if (hw->phy_type == e1000_phy_igp) {
373 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
374 				    IGP01E1000_PHY_AGC_A);
375 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
376 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
377 		regs_buff[13] = (u32)phy_data; /* cable length */
378 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
379 				    IGP01E1000_PHY_AGC_B);
380 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
381 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
382 		regs_buff[14] = (u32)phy_data; /* cable length */
383 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
384 				    IGP01E1000_PHY_AGC_C);
385 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
386 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
387 		regs_buff[15] = (u32)phy_data; /* cable length */
388 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
389 				    IGP01E1000_PHY_AGC_D);
390 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
391 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
392 		regs_buff[16] = (u32)phy_data; /* cable length */
393 		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
394 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
395 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
396 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
397 		regs_buff[18] = (u32)phy_data; /* cable polarity */
398 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
399 				    IGP01E1000_PHY_PCS_INIT_REG);
400 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
401 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
402 		regs_buff[19] = (u32)phy_data; /* cable polarity */
403 		regs_buff[20] = 0; /* polarity correction enabled (always) */
404 		regs_buff[22] = 0; /* phy receive errors (unavailable) */
405 		regs_buff[23] = regs_buff[18]; /* mdix mode */
406 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
407 	} else {
408 		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
409 		regs_buff[13] = (u32)phy_data; /* cable length */
410 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
411 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
412 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
413 		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
414 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
415 		regs_buff[18] = regs_buff[13]; /* cable polarity */
416 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
417 		regs_buff[20] = regs_buff[17]; /* polarity correction */
418 		/* phy receive errors */
419 		regs_buff[22] = adapter->phy_stats.receive_errors;
420 		regs_buff[23] = regs_buff[13]; /* mdix mode */
421 	}
422 	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
423 	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
424 	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
425 	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
426 	if (hw->mac_type >= e1000_82540 &&
427 	    hw->media_type == e1000_media_type_copper) {
428 		regs_buff[26] = er32(MANC);
429 	}
430 }
431 
432 static int e1000_get_eeprom_len(struct net_device *netdev)
433 {
434 	struct e1000_adapter *adapter = netdev_priv(netdev);
435 	struct e1000_hw *hw = &adapter->hw;
436 
437 	return hw->eeprom.word_size * 2;
438 }
439 
440 static int e1000_get_eeprom(struct net_device *netdev,
441 			    struct ethtool_eeprom *eeprom, u8 *bytes)
442 {
443 	struct e1000_adapter *adapter = netdev_priv(netdev);
444 	struct e1000_hw *hw = &adapter->hw;
445 	u16 *eeprom_buff;
446 	int first_word, last_word;
447 	int ret_val = 0;
448 	u16 i;
449 
450 	if (eeprom->len == 0)
451 		return -EINVAL;
452 
453 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
454 
455 	first_word = eeprom->offset >> 1;
456 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
457 
458 	eeprom_buff = kmalloc(sizeof(u16) *
459 			(last_word - first_word + 1), GFP_KERNEL);
460 	if (!eeprom_buff)
461 		return -ENOMEM;
462 
463 	if (hw->eeprom.type == e1000_eeprom_spi)
464 		ret_val = e1000_read_eeprom(hw, first_word,
465 					    last_word - first_word + 1,
466 					    eeprom_buff);
467 	else {
468 		for (i = 0; i < last_word - first_word + 1; i++) {
469 			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
470 						    &eeprom_buff[i]);
471 			if (ret_val)
472 				break;
473 		}
474 	}
475 
476 	/* Device's eeprom is always little-endian, word addressable */
477 	for (i = 0; i < last_word - first_word + 1; i++)
478 		le16_to_cpus(&eeprom_buff[i]);
479 
480 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
481 	       eeprom->len);
482 	kfree(eeprom_buff);
483 
484 	return ret_val;
485 }
486 
487 static int e1000_set_eeprom(struct net_device *netdev,
488 			    struct ethtool_eeprom *eeprom, u8 *bytes)
489 {
490 	struct e1000_adapter *adapter = netdev_priv(netdev);
491 	struct e1000_hw *hw = &adapter->hw;
492 	u16 *eeprom_buff;
493 	void *ptr;
494 	int max_len, first_word, last_word, ret_val = 0;
495 	u16 i;
496 
497 	if (eeprom->len == 0)
498 		return -EOPNOTSUPP;
499 
500 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
501 		return -EFAULT;
502 
503 	max_len = hw->eeprom.word_size * 2;
504 
505 	first_word = eeprom->offset >> 1;
506 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
507 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
508 	if (!eeprom_buff)
509 		return -ENOMEM;
510 
511 	ptr = (void *)eeprom_buff;
512 
513 	if (eeprom->offset & 1) {
514 		/* need read/modify/write of first changed EEPROM word
515 		 * only the second byte of the word is being modified
516 		 */
517 		ret_val = e1000_read_eeprom(hw, first_word, 1,
518 					    &eeprom_buff[0]);
519 		ptr++;
520 	}
521 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
522 		/* need read/modify/write of last changed EEPROM word
523 		 * only the first byte of the word is being modified
524 		 */
525 		ret_val = e1000_read_eeprom(hw, last_word, 1,
526 					    &eeprom_buff[last_word - first_word]);
527 	}
528 
529 	/* Device's eeprom is always little-endian, word addressable */
530 	for (i = 0; i < last_word - first_word + 1; i++)
531 		le16_to_cpus(&eeprom_buff[i]);
532 
533 	memcpy(ptr, bytes, eeprom->len);
534 
535 	for (i = 0; i < last_word - first_word + 1; i++)
536 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
537 
538 	ret_val = e1000_write_eeprom(hw, first_word,
539 				     last_word - first_word + 1, eeprom_buff);
540 
541 	/* Update the checksum over the first part of the EEPROM if needed */
542 	if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
543 		e1000_update_eeprom_checksum(hw);
544 
545 	kfree(eeprom_buff);
546 	return ret_val;
547 }
548 
549 static void e1000_get_drvinfo(struct net_device *netdev,
550 			      struct ethtool_drvinfo *drvinfo)
551 {
552 	struct e1000_adapter *adapter = netdev_priv(netdev);
553 
554 	strlcpy(drvinfo->driver,  e1000_driver_name,
555 		sizeof(drvinfo->driver));
556 	strlcpy(drvinfo->version, e1000_driver_version,
557 		sizeof(drvinfo->version));
558 
559 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
560 		sizeof(drvinfo->bus_info));
561 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
562 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
563 }
564 
565 static void e1000_get_ringparam(struct net_device *netdev,
566 				struct ethtool_ringparam *ring)
567 {
568 	struct e1000_adapter *adapter = netdev_priv(netdev);
569 	struct e1000_hw *hw = &adapter->hw;
570 	e1000_mac_type mac_type = hw->mac_type;
571 	struct e1000_tx_ring *txdr = adapter->tx_ring;
572 	struct e1000_rx_ring *rxdr = adapter->rx_ring;
573 
574 	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
575 		E1000_MAX_82544_RXD;
576 	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
577 		E1000_MAX_82544_TXD;
578 	ring->rx_pending = rxdr->count;
579 	ring->tx_pending = txdr->count;
580 }
581 
582 static int e1000_set_ringparam(struct net_device *netdev,
583 			       struct ethtool_ringparam *ring)
584 {
585 	struct e1000_adapter *adapter = netdev_priv(netdev);
586 	struct e1000_hw *hw = &adapter->hw;
587 	e1000_mac_type mac_type = hw->mac_type;
588 	struct e1000_tx_ring *txdr, *tx_old;
589 	struct e1000_rx_ring *rxdr, *rx_old;
590 	int i, err;
591 
592 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
593 		return -EINVAL;
594 
595 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
596 		msleep(1);
597 
598 	if (netif_running(adapter->netdev))
599 		e1000_down(adapter);
600 
601 	tx_old = adapter->tx_ring;
602 	rx_old = adapter->rx_ring;
603 
604 	err = -ENOMEM;
605 	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
606 		       GFP_KERNEL);
607 	if (!txdr)
608 		goto err_alloc_tx;
609 
610 	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
611 		       GFP_KERNEL);
612 	if (!rxdr)
613 		goto err_alloc_rx;
614 
615 	adapter->tx_ring = txdr;
616 	adapter->rx_ring = rxdr;
617 
618 	rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
619 	rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
620 			  E1000_MAX_RXD : E1000_MAX_82544_RXD));
621 	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
622 	txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
623 	txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
624 			  E1000_MAX_TXD : E1000_MAX_82544_TXD));
625 	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
626 
627 	for (i = 0; i < adapter->num_tx_queues; i++)
628 		txdr[i].count = txdr->count;
629 	for (i = 0; i < adapter->num_rx_queues; i++)
630 		rxdr[i].count = rxdr->count;
631 
632 	if (netif_running(adapter->netdev)) {
633 		/* Try to get new resources before deleting old */
634 		err = e1000_setup_all_rx_resources(adapter);
635 		if (err)
636 			goto err_setup_rx;
637 		err = e1000_setup_all_tx_resources(adapter);
638 		if (err)
639 			goto err_setup_tx;
640 
641 		/* save the new, restore the old in order to free it,
642 		 * then restore the new back again
643 		 */
644 
645 		adapter->rx_ring = rx_old;
646 		adapter->tx_ring = tx_old;
647 		e1000_free_all_rx_resources(adapter);
648 		e1000_free_all_tx_resources(adapter);
649 		kfree(tx_old);
650 		kfree(rx_old);
651 		adapter->rx_ring = rxdr;
652 		adapter->tx_ring = txdr;
653 		err = e1000_up(adapter);
654 		if (err)
655 			goto err_setup;
656 	}
657 
658 	clear_bit(__E1000_RESETTING, &adapter->flags);
659 	return 0;
660 err_setup_tx:
661 	e1000_free_all_rx_resources(adapter);
662 err_setup_rx:
663 	adapter->rx_ring = rx_old;
664 	adapter->tx_ring = tx_old;
665 	kfree(rxdr);
666 err_alloc_rx:
667 	kfree(txdr);
668 err_alloc_tx:
669 	e1000_up(adapter);
670 err_setup:
671 	clear_bit(__E1000_RESETTING, &adapter->flags);
672 	return err;
673 }
674 
675 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
676 			     u32 mask, u32 write)
677 {
678 	struct e1000_hw *hw = &adapter->hw;
679 	static const u32 test[] = {
680 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
681 	};
682 	u8 __iomem *address = hw->hw_addr + reg;
683 	u32 read;
684 	int i;
685 
686 	for (i = 0; i < ARRAY_SIZE(test); i++) {
687 		writel(write & test[i], address);
688 		read = readl(address);
689 		if (read != (write & test[i] & mask)) {
690 			e_err(drv, "pattern test reg %04X failed: "
691 			      "got 0x%08X expected 0x%08X\n",
692 			      reg, read, (write & test[i] & mask));
693 			*data = reg;
694 			return true;
695 		}
696 	}
697 	return false;
698 }
699 
700 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
701 			      u32 mask, u32 write)
702 {
703 	struct e1000_hw *hw = &adapter->hw;
704 	u8 __iomem *address = hw->hw_addr + reg;
705 	u32 read;
706 
707 	writel(write & mask, address);
708 	read = readl(address);
709 	if ((read & mask) != (write & mask)) {
710 		e_err(drv, "set/check reg %04X test failed: "
711 		      "got 0x%08X expected 0x%08X\n",
712 		      reg, (read & mask), (write & mask));
713 		*data = reg;
714 		return true;
715 	}
716 	return false;
717 }
718 
719 #define REG_PATTERN_TEST(reg, mask, write)			     \
720 	do {							     \
721 		if (reg_pattern_test(adapter, data,		     \
722 			     (hw->mac_type >= e1000_82543)   \
723 			     ? E1000_##reg : E1000_82542_##reg,	     \
724 			     mask, write))			     \
725 			return 1;				     \
726 	} while (0)
727 
728 #define REG_SET_AND_CHECK(reg, mask, write)			     \
729 	do {							     \
730 		if (reg_set_and_check(adapter, data,		     \
731 			      (hw->mac_type >= e1000_82543)  \
732 			      ? E1000_##reg : E1000_82542_##reg,     \
733 			      mask, write))			     \
734 			return 1;				     \
735 	} while (0)
736 
737 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
738 {
739 	u32 value, before, after;
740 	u32 i, toggle;
741 	struct e1000_hw *hw = &adapter->hw;
742 
743 	/* The status register is Read Only, so a write should fail.
744 	 * Some bits that get toggled are ignored.
745 	 */
746 
747 	/* there are several bits on newer hardware that are r/w */
748 	toggle = 0xFFFFF833;
749 
750 	before = er32(STATUS);
751 	value = (er32(STATUS) & toggle);
752 	ew32(STATUS, toggle);
753 	after = er32(STATUS) & toggle;
754 	if (value != after) {
755 		e_err(drv, "failed STATUS register test got: "
756 		      "0x%08X expected: 0x%08X\n", after, value);
757 		*data = 1;
758 		return 1;
759 	}
760 	/* restore previous status */
761 	ew32(STATUS, before);
762 
763 	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
764 	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
765 	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
766 	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
767 
768 	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
769 	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
770 	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
771 	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
772 	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
773 	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
774 	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
775 	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
776 	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
777 	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
778 
779 	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
780 
781 	before = 0x06DFB3FE;
782 	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
783 	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
784 
785 	if (hw->mac_type >= e1000_82543) {
786 		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
787 		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
788 		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
789 		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
790 		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
791 		value = E1000_RAR_ENTRIES;
792 		for (i = 0; i < value; i++) {
793 			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
794 					 0x8003FFFF, 0xFFFFFFFF);
795 		}
796 	} else {
797 		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
798 		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
799 		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
800 		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
801 	}
802 
803 	value = E1000_MC_TBL_SIZE;
804 	for (i = 0; i < value; i++)
805 		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
806 
807 	*data = 0;
808 	return 0;
809 }
810 
811 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
812 {
813 	struct e1000_hw *hw = &adapter->hw;
814 	u16 temp;
815 	u16 checksum = 0;
816 	u16 i;
817 
818 	*data = 0;
819 	/* Read and add up the contents of the EEPROM */
820 	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
821 		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
822 			*data = 1;
823 			break;
824 		}
825 		checksum += temp;
826 	}
827 
828 	/* If Checksum is not Correct return error else test passed */
829 	if ((checksum != (u16)EEPROM_SUM) && !(*data))
830 		*data = 2;
831 
832 	return *data;
833 }
834 
835 static irqreturn_t e1000_test_intr(int irq, void *data)
836 {
837 	struct net_device *netdev = (struct net_device *)data;
838 	struct e1000_adapter *adapter = netdev_priv(netdev);
839 	struct e1000_hw *hw = &adapter->hw;
840 
841 	adapter->test_icr |= er32(ICR);
842 
843 	return IRQ_HANDLED;
844 }
845 
846 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
847 {
848 	struct net_device *netdev = adapter->netdev;
849 	u32 mask, i = 0;
850 	bool shared_int = true;
851 	u32 irq = adapter->pdev->irq;
852 	struct e1000_hw *hw = &adapter->hw;
853 
854 	*data = 0;
855 
856 	/* NOTE: we don't test MSI interrupts here, yet
857 	 * Hook up test interrupt handler just for this test
858 	 */
859 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
860 			 netdev))
861 		shared_int = false;
862 	else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
863 			     netdev->name, netdev)) {
864 		*data = 1;
865 		return -1;
866 	}
867 	e_info(hw, "testing %s interrupt\n", (shared_int ?
868 	       "shared" : "unshared"));
869 
870 	/* Disable all the interrupts */
871 	ew32(IMC, 0xFFFFFFFF);
872 	E1000_WRITE_FLUSH();
873 	msleep(10);
874 
875 	/* Test each interrupt */
876 	for (; i < 10; i++) {
877 		/* Interrupt to test */
878 		mask = 1 << i;
879 
880 		if (!shared_int) {
881 			/* Disable the interrupt to be reported in
882 			 * the cause register and then force the same
883 			 * interrupt and see if one gets posted.  If
884 			 * an interrupt was posted to the bus, the
885 			 * test failed.
886 			 */
887 			adapter->test_icr = 0;
888 			ew32(IMC, mask);
889 			ew32(ICS, mask);
890 			E1000_WRITE_FLUSH();
891 			msleep(10);
892 
893 			if (adapter->test_icr & mask) {
894 				*data = 3;
895 				break;
896 			}
897 		}
898 
899 		/* Enable the interrupt to be reported in
900 		 * the cause register and then force the same
901 		 * interrupt and see if one gets posted.  If
902 		 * an interrupt was not posted to the bus, the
903 		 * test failed.
904 		 */
905 		adapter->test_icr = 0;
906 		ew32(IMS, mask);
907 		ew32(ICS, mask);
908 		E1000_WRITE_FLUSH();
909 		msleep(10);
910 
911 		if (!(adapter->test_icr & mask)) {
912 			*data = 4;
913 			break;
914 		}
915 
916 		if (!shared_int) {
917 			/* Disable the other interrupts to be reported in
918 			 * the cause register and then force the other
919 			 * interrupts and see if any get posted.  If
920 			 * an interrupt was posted to the bus, the
921 			 * test failed.
922 			 */
923 			adapter->test_icr = 0;
924 			ew32(IMC, ~mask & 0x00007FFF);
925 			ew32(ICS, ~mask & 0x00007FFF);
926 			E1000_WRITE_FLUSH();
927 			msleep(10);
928 
929 			if (adapter->test_icr) {
930 				*data = 5;
931 				break;
932 			}
933 		}
934 	}
935 
936 	/* Disable all the interrupts */
937 	ew32(IMC, 0xFFFFFFFF);
938 	E1000_WRITE_FLUSH();
939 	msleep(10);
940 
941 	/* Unhook test interrupt handler */
942 	free_irq(irq, netdev);
943 
944 	return *data;
945 }
946 
947 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
948 {
949 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
950 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
951 	struct pci_dev *pdev = adapter->pdev;
952 	int i;
953 
954 	if (txdr->desc && txdr->buffer_info) {
955 		for (i = 0; i < txdr->count; i++) {
956 			if (txdr->buffer_info[i].dma)
957 				dma_unmap_single(&pdev->dev,
958 						 txdr->buffer_info[i].dma,
959 						 txdr->buffer_info[i].length,
960 						 DMA_TO_DEVICE);
961 			if (txdr->buffer_info[i].skb)
962 				dev_kfree_skb(txdr->buffer_info[i].skb);
963 		}
964 	}
965 
966 	if (rxdr->desc && rxdr->buffer_info) {
967 		for (i = 0; i < rxdr->count; i++) {
968 			if (rxdr->buffer_info[i].dma)
969 				dma_unmap_single(&pdev->dev,
970 						 rxdr->buffer_info[i].dma,
971 						 E1000_RXBUFFER_2048,
972 						 DMA_FROM_DEVICE);
973 			kfree(rxdr->buffer_info[i].rxbuf.data);
974 		}
975 	}
976 
977 	if (txdr->desc) {
978 		dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
979 				  txdr->dma);
980 		txdr->desc = NULL;
981 	}
982 	if (rxdr->desc) {
983 		dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
984 				  rxdr->dma);
985 		rxdr->desc = NULL;
986 	}
987 
988 	kfree(txdr->buffer_info);
989 	txdr->buffer_info = NULL;
990 	kfree(rxdr->buffer_info);
991 	rxdr->buffer_info = NULL;
992 }
993 
994 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
995 {
996 	struct e1000_hw *hw = &adapter->hw;
997 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
998 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
999 	struct pci_dev *pdev = adapter->pdev;
1000 	u32 rctl;
1001 	int i, ret_val;
1002 
1003 	/* Setup Tx descriptor ring and Tx buffers */
1004 
1005 	if (!txdr->count)
1006 		txdr->count = E1000_DEFAULT_TXD;
1007 
1008 	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
1009 				    GFP_KERNEL);
1010 	if (!txdr->buffer_info) {
1011 		ret_val = 1;
1012 		goto err_nomem;
1013 	}
1014 
1015 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1016 	txdr->size = ALIGN(txdr->size, 4096);
1017 	txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1018 					 GFP_KERNEL);
1019 	if (!txdr->desc) {
1020 		ret_val = 2;
1021 		goto err_nomem;
1022 	}
1023 	txdr->next_to_use = txdr->next_to_clean = 0;
1024 
1025 	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1026 	ew32(TDBAH, ((u64)txdr->dma >> 32));
1027 	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1028 	ew32(TDH, 0);
1029 	ew32(TDT, 0);
1030 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1031 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1032 	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1033 
1034 	for (i = 0; i < txdr->count; i++) {
1035 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1036 		struct sk_buff *skb;
1037 		unsigned int size = 1024;
1038 
1039 		skb = alloc_skb(size, GFP_KERNEL);
1040 		if (!skb) {
1041 			ret_val = 3;
1042 			goto err_nomem;
1043 		}
1044 		skb_put(skb, size);
1045 		txdr->buffer_info[i].skb = skb;
1046 		txdr->buffer_info[i].length = skb->len;
1047 		txdr->buffer_info[i].dma =
1048 			dma_map_single(&pdev->dev, skb->data, skb->len,
1049 				       DMA_TO_DEVICE);
1050 		if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1051 			ret_val = 4;
1052 			goto err_nomem;
1053 		}
1054 		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1055 		tx_desc->lower.data = cpu_to_le32(skb->len);
1056 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1057 						   E1000_TXD_CMD_IFCS |
1058 						   E1000_TXD_CMD_RPS);
1059 		tx_desc->upper.data = 0;
1060 	}
1061 
1062 	/* Setup Rx descriptor ring and Rx buffers */
1063 
1064 	if (!rxdr->count)
1065 		rxdr->count = E1000_DEFAULT_RXD;
1066 
1067 	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1068 				    GFP_KERNEL);
1069 	if (!rxdr->buffer_info) {
1070 		ret_val = 5;
1071 		goto err_nomem;
1072 	}
1073 
1074 	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1075 	rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1076 					 GFP_KERNEL);
1077 	if (!rxdr->desc) {
1078 		ret_val = 6;
1079 		goto err_nomem;
1080 	}
1081 	rxdr->next_to_use = rxdr->next_to_clean = 0;
1082 
1083 	rctl = er32(RCTL);
1084 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1085 	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1086 	ew32(RDBAH, ((u64)rxdr->dma >> 32));
1087 	ew32(RDLEN, rxdr->size);
1088 	ew32(RDH, 0);
1089 	ew32(RDT, 0);
1090 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1091 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1092 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1093 	ew32(RCTL, rctl);
1094 
1095 	for (i = 0; i < rxdr->count; i++) {
1096 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1097 		u8 *buf;
1098 
1099 		buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1100 			      GFP_KERNEL);
1101 		if (!buf) {
1102 			ret_val = 7;
1103 			goto err_nomem;
1104 		}
1105 		rxdr->buffer_info[i].rxbuf.data = buf;
1106 
1107 		rxdr->buffer_info[i].dma =
1108 			dma_map_single(&pdev->dev,
1109 				       buf + NET_SKB_PAD + NET_IP_ALIGN,
1110 				       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1111 		if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1112 			ret_val = 8;
1113 			goto err_nomem;
1114 		}
1115 		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1116 	}
1117 
1118 	return 0;
1119 
1120 err_nomem:
1121 	e1000_free_desc_rings(adapter);
1122 	return ret_val;
1123 }
1124 
1125 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1126 {
1127 	struct e1000_hw *hw = &adapter->hw;
1128 
1129 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1130 	e1000_write_phy_reg(hw, 29, 0x001F);
1131 	e1000_write_phy_reg(hw, 30, 0x8FFC);
1132 	e1000_write_phy_reg(hw, 29, 0x001A);
1133 	e1000_write_phy_reg(hw, 30, 0x8FF0);
1134 }
1135 
1136 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1137 {
1138 	struct e1000_hw *hw = &adapter->hw;
1139 	u16 phy_reg;
1140 
1141 	/* Because we reset the PHY above, we need to re-force TX_CLK in the
1142 	 * Extended PHY Specific Control Register to 25MHz clock.  This
1143 	 * value defaults back to a 2.5MHz clock when the PHY is reset.
1144 	 */
1145 	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1146 	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1147 	e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1148 
1149 	/* In addition, because of the s/w reset above, we need to enable
1150 	 * CRS on TX.  This must be set for both full and half duplex
1151 	 * operation.
1152 	 */
1153 	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1154 	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1155 	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1156 }
1157 
1158 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1159 {
1160 	struct e1000_hw *hw = &adapter->hw;
1161 	u32 ctrl_reg;
1162 	u16 phy_reg;
1163 
1164 	/* Setup the Device Control Register for PHY loopback test. */
1165 
1166 	ctrl_reg = er32(CTRL);
1167 	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
1168 		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
1169 		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
1170 		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
1171 		     E1000_CTRL_FD);		/* Force Duplex to FULL */
1172 
1173 	ew32(CTRL, ctrl_reg);
1174 
1175 	/* Read the PHY Specific Control Register (0x10) */
1176 	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1177 
1178 	/* Clear Auto-Crossover bits in PHY Specific Control Register
1179 	 * (bits 6:5).
1180 	 */
1181 	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1182 	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1183 
1184 	/* Perform software reset on the PHY */
1185 	e1000_phy_reset(hw);
1186 
1187 	/* Have to setup TX_CLK and TX_CRS after software reset */
1188 	e1000_phy_reset_clk_and_crs(adapter);
1189 
1190 	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1191 
1192 	/* Wait for reset to complete. */
1193 	udelay(500);
1194 
1195 	/* Have to setup TX_CLK and TX_CRS after software reset */
1196 	e1000_phy_reset_clk_and_crs(adapter);
1197 
1198 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1199 	e1000_phy_disable_receiver(adapter);
1200 
1201 	/* Set the loopback bit in the PHY control register. */
1202 	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1203 	phy_reg |= MII_CR_LOOPBACK;
1204 	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1205 
1206 	/* Setup TX_CLK and TX_CRS one more time. */
1207 	e1000_phy_reset_clk_and_crs(adapter);
1208 
1209 	/* Check Phy Configuration */
1210 	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1211 	if (phy_reg != 0x4100)
1212 		return 9;
1213 
1214 	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1215 	if (phy_reg != 0x0070)
1216 		return 10;
1217 
1218 	e1000_read_phy_reg(hw, 29, &phy_reg);
1219 	if (phy_reg != 0x001A)
1220 		return 11;
1221 
1222 	return 0;
1223 }
1224 
1225 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1226 {
1227 	struct e1000_hw *hw = &adapter->hw;
1228 	u32 ctrl_reg = 0;
1229 	u32 stat_reg = 0;
1230 
1231 	hw->autoneg = false;
1232 
1233 	if (hw->phy_type == e1000_phy_m88) {
1234 		/* Auto-MDI/MDIX Off */
1235 		e1000_write_phy_reg(hw,
1236 				    M88E1000_PHY_SPEC_CTRL, 0x0808);
1237 		/* reset to update Auto-MDI/MDIX */
1238 		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1239 		/* autoneg off */
1240 		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1241 	}
1242 
1243 	ctrl_reg = er32(CTRL);
1244 
1245 	/* force 1000, set loopback */
1246 	e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1247 
1248 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1249 	ctrl_reg = er32(CTRL);
1250 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1251 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1252 			E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1253 			E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1254 			E1000_CTRL_FD); /* Force Duplex to FULL */
1255 
1256 	if (hw->media_type == e1000_media_type_copper &&
1257 	    hw->phy_type == e1000_phy_m88)
1258 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1259 	else {
1260 		/* Set the ILOS bit on the fiber Nic is half
1261 		 * duplex link is detected.
1262 		 */
1263 		stat_reg = er32(STATUS);
1264 		if ((stat_reg & E1000_STATUS_FD) == 0)
1265 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1266 	}
1267 
1268 	ew32(CTRL, ctrl_reg);
1269 
1270 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1271 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1272 	 */
1273 	if (hw->phy_type == e1000_phy_m88)
1274 		e1000_phy_disable_receiver(adapter);
1275 
1276 	udelay(500);
1277 
1278 	return 0;
1279 }
1280 
1281 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1282 {
1283 	struct e1000_hw *hw = &adapter->hw;
1284 	u16 phy_reg = 0;
1285 	u16 count = 0;
1286 
1287 	switch (hw->mac_type) {
1288 	case e1000_82543:
1289 		if (hw->media_type == e1000_media_type_copper) {
1290 			/* Attempt to setup Loopback mode on Non-integrated PHY.
1291 			 * Some PHY registers get corrupted at random, so
1292 			 * attempt this 10 times.
1293 			 */
1294 			while (e1000_nonintegrated_phy_loopback(adapter) &&
1295 			       count++ < 10);
1296 			if (count < 11)
1297 				return 0;
1298 		}
1299 		break;
1300 
1301 	case e1000_82544:
1302 	case e1000_82540:
1303 	case e1000_82545:
1304 	case e1000_82545_rev_3:
1305 	case e1000_82546:
1306 	case e1000_82546_rev_3:
1307 	case e1000_82541:
1308 	case e1000_82541_rev_2:
1309 	case e1000_82547:
1310 	case e1000_82547_rev_2:
1311 		return e1000_integrated_phy_loopback(adapter);
1312 	default:
1313 		/* Default PHY loopback work is to read the MII
1314 		 * control register and assert bit 14 (loopback mode).
1315 		 */
1316 		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1317 		phy_reg |= MII_CR_LOOPBACK;
1318 		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1319 		return 0;
1320 	}
1321 
1322 	return 8;
1323 }
1324 
1325 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1326 {
1327 	struct e1000_hw *hw = &adapter->hw;
1328 	u32 rctl;
1329 
1330 	if (hw->media_type == e1000_media_type_fiber ||
1331 	    hw->media_type == e1000_media_type_internal_serdes) {
1332 		switch (hw->mac_type) {
1333 		case e1000_82545:
1334 		case e1000_82546:
1335 		case e1000_82545_rev_3:
1336 		case e1000_82546_rev_3:
1337 			return e1000_set_phy_loopback(adapter);
1338 		default:
1339 			rctl = er32(RCTL);
1340 			rctl |= E1000_RCTL_LBM_TCVR;
1341 			ew32(RCTL, rctl);
1342 			return 0;
1343 		}
1344 	} else if (hw->media_type == e1000_media_type_copper) {
1345 		return e1000_set_phy_loopback(adapter);
1346 	}
1347 
1348 	return 7;
1349 }
1350 
1351 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1352 {
1353 	struct e1000_hw *hw = &adapter->hw;
1354 	u32 rctl;
1355 	u16 phy_reg;
1356 
1357 	rctl = er32(RCTL);
1358 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1359 	ew32(RCTL, rctl);
1360 
1361 	switch (hw->mac_type) {
1362 	case e1000_82545:
1363 	case e1000_82546:
1364 	case e1000_82545_rev_3:
1365 	case e1000_82546_rev_3:
1366 	default:
1367 		hw->autoneg = true;
1368 		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1369 		if (phy_reg & MII_CR_LOOPBACK) {
1370 			phy_reg &= ~MII_CR_LOOPBACK;
1371 			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1372 			e1000_phy_reset(hw);
1373 		}
1374 		break;
1375 	}
1376 }
1377 
1378 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1379 				      unsigned int frame_size)
1380 {
1381 	memset(skb->data, 0xFF, frame_size);
1382 	frame_size &= ~1;
1383 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1384 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1385 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1386 }
1387 
1388 static int e1000_check_lbtest_frame(const unsigned char *data,
1389 				    unsigned int frame_size)
1390 {
1391 	frame_size &= ~1;
1392 	if (*(data + 3) == 0xFF) {
1393 		if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1394 		    (*(data + frame_size / 2 + 12) == 0xAF)) {
1395 			return 0;
1396 		}
1397 	}
1398 	return 13;
1399 }
1400 
1401 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1402 {
1403 	struct e1000_hw *hw = &adapter->hw;
1404 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1405 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1406 	struct pci_dev *pdev = adapter->pdev;
1407 	int i, j, k, l, lc, good_cnt, ret_val = 0;
1408 	unsigned long time;
1409 
1410 	ew32(RDT, rxdr->count - 1);
1411 
1412 	/* Calculate the loop count based on the largest descriptor ring
1413 	 * The idea is to wrap the largest ring a number of times using 64
1414 	 * send/receive pairs during each loop
1415 	 */
1416 
1417 	if (rxdr->count <= txdr->count)
1418 		lc = ((txdr->count / 64) * 2) + 1;
1419 	else
1420 		lc = ((rxdr->count / 64) * 2) + 1;
1421 
1422 	k = l = 0;
1423 	for (j = 0; j <= lc; j++) { /* loop count loop */
1424 		for (i = 0; i < 64; i++) { /* send the packets */
1425 			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1426 						  1024);
1427 			dma_sync_single_for_device(&pdev->dev,
1428 						   txdr->buffer_info[k].dma,
1429 						   txdr->buffer_info[k].length,
1430 						   DMA_TO_DEVICE);
1431 			if (unlikely(++k == txdr->count))
1432 				k = 0;
1433 		}
1434 		ew32(TDT, k);
1435 		E1000_WRITE_FLUSH();
1436 		msleep(200);
1437 		time = jiffies; /* set the start time for the receive */
1438 		good_cnt = 0;
1439 		do { /* receive the sent packets */
1440 			dma_sync_single_for_cpu(&pdev->dev,
1441 						rxdr->buffer_info[l].dma,
1442 						E1000_RXBUFFER_2048,
1443 						DMA_FROM_DEVICE);
1444 
1445 			ret_val = e1000_check_lbtest_frame(
1446 					rxdr->buffer_info[l].rxbuf.data +
1447 					NET_SKB_PAD + NET_IP_ALIGN,
1448 					1024);
1449 			if (!ret_val)
1450 				good_cnt++;
1451 			if (unlikely(++l == rxdr->count))
1452 				l = 0;
1453 			/* time + 20 msecs (200 msecs on 2.4) is more than
1454 			 * enough time to complete the receives, if it's
1455 			 * exceeded, break and error off
1456 			 */
1457 		} while (good_cnt < 64 && time_after(time + 20, jiffies));
1458 
1459 		if (good_cnt != 64) {
1460 			ret_val = 13; /* ret_val is the same as mis-compare */
1461 			break;
1462 		}
1463 		if (jiffies >= (time + 2)) {
1464 			ret_val = 14; /* error code for time out error */
1465 			break;
1466 		}
1467 	} /* end loop count loop */
1468 	return ret_val;
1469 }
1470 
1471 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1472 {
1473 	*data = e1000_setup_desc_rings(adapter);
1474 	if (*data)
1475 		goto out;
1476 	*data = e1000_setup_loopback_test(adapter);
1477 	if (*data)
1478 		goto err_loopback;
1479 	*data = e1000_run_loopback_test(adapter);
1480 	e1000_loopback_cleanup(adapter);
1481 
1482 err_loopback:
1483 	e1000_free_desc_rings(adapter);
1484 out:
1485 	return *data;
1486 }
1487 
1488 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1489 {
1490 	struct e1000_hw *hw = &adapter->hw;
1491 	*data = 0;
1492 	if (hw->media_type == e1000_media_type_internal_serdes) {
1493 		int i = 0;
1494 
1495 		hw->serdes_has_link = false;
1496 
1497 		/* On some blade server designs, link establishment
1498 		 * could take as long as 2-3 minutes
1499 		 */
1500 		do {
1501 			e1000_check_for_link(hw);
1502 			if (hw->serdes_has_link)
1503 				return *data;
1504 			msleep(20);
1505 		} while (i++ < 3750);
1506 
1507 		*data = 1;
1508 	} else {
1509 		e1000_check_for_link(hw);
1510 		if (hw->autoneg)  /* if auto_neg is set wait for it */
1511 			msleep(4000);
1512 
1513 		if (!(er32(STATUS) & E1000_STATUS_LU))
1514 			*data = 1;
1515 	}
1516 	return *data;
1517 }
1518 
1519 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1520 {
1521 	switch (sset) {
1522 	case ETH_SS_TEST:
1523 		return E1000_TEST_LEN;
1524 	case ETH_SS_STATS:
1525 		return E1000_STATS_LEN;
1526 	default:
1527 		return -EOPNOTSUPP;
1528 	}
1529 }
1530 
1531 static void e1000_diag_test(struct net_device *netdev,
1532 			    struct ethtool_test *eth_test, u64 *data)
1533 {
1534 	struct e1000_adapter *adapter = netdev_priv(netdev);
1535 	struct e1000_hw *hw = &adapter->hw;
1536 	bool if_running = netif_running(netdev);
1537 
1538 	set_bit(__E1000_TESTING, &adapter->flags);
1539 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1540 		/* Offline tests */
1541 
1542 		/* save speed, duplex, autoneg settings */
1543 		u16 autoneg_advertised = hw->autoneg_advertised;
1544 		u8 forced_speed_duplex = hw->forced_speed_duplex;
1545 		u8 autoneg = hw->autoneg;
1546 
1547 		e_info(hw, "offline testing starting\n");
1548 
1549 		/* Link test performed before hardware reset so autoneg doesn't
1550 		 * interfere with test result
1551 		 */
1552 		if (e1000_link_test(adapter, &data[4]))
1553 			eth_test->flags |= ETH_TEST_FL_FAILED;
1554 
1555 		if (if_running)
1556 			/* indicate we're in test mode */
1557 			dev_close(netdev);
1558 		else
1559 			e1000_reset(adapter);
1560 
1561 		if (e1000_reg_test(adapter, &data[0]))
1562 			eth_test->flags |= ETH_TEST_FL_FAILED;
1563 
1564 		e1000_reset(adapter);
1565 		if (e1000_eeprom_test(adapter, &data[1]))
1566 			eth_test->flags |= ETH_TEST_FL_FAILED;
1567 
1568 		e1000_reset(adapter);
1569 		if (e1000_intr_test(adapter, &data[2]))
1570 			eth_test->flags |= ETH_TEST_FL_FAILED;
1571 
1572 		e1000_reset(adapter);
1573 		/* make sure the phy is powered up */
1574 		e1000_power_up_phy(adapter);
1575 		if (e1000_loopback_test(adapter, &data[3]))
1576 			eth_test->flags |= ETH_TEST_FL_FAILED;
1577 
1578 		/* restore speed, duplex, autoneg settings */
1579 		hw->autoneg_advertised = autoneg_advertised;
1580 		hw->forced_speed_duplex = forced_speed_duplex;
1581 		hw->autoneg = autoneg;
1582 
1583 		e1000_reset(adapter);
1584 		clear_bit(__E1000_TESTING, &adapter->flags);
1585 		if (if_running)
1586 			dev_open(netdev);
1587 	} else {
1588 		e_info(hw, "online testing starting\n");
1589 		/* Online tests */
1590 		if (e1000_link_test(adapter, &data[4]))
1591 			eth_test->flags |= ETH_TEST_FL_FAILED;
1592 
1593 		/* Online tests aren't run; pass by default */
1594 		data[0] = 0;
1595 		data[1] = 0;
1596 		data[2] = 0;
1597 		data[3] = 0;
1598 
1599 		clear_bit(__E1000_TESTING, &adapter->flags);
1600 	}
1601 	msleep_interruptible(4 * 1000);
1602 }
1603 
1604 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1605 			       struct ethtool_wolinfo *wol)
1606 {
1607 	struct e1000_hw *hw = &adapter->hw;
1608 	int retval = 1; /* fail by default */
1609 
1610 	switch (hw->device_id) {
1611 	case E1000_DEV_ID_82542:
1612 	case E1000_DEV_ID_82543GC_FIBER:
1613 	case E1000_DEV_ID_82543GC_COPPER:
1614 	case E1000_DEV_ID_82544EI_FIBER:
1615 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1616 	case E1000_DEV_ID_82545EM_FIBER:
1617 	case E1000_DEV_ID_82545EM_COPPER:
1618 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1619 	case E1000_DEV_ID_82546GB_PCIE:
1620 		/* these don't support WoL at all */
1621 		wol->supported = 0;
1622 		break;
1623 	case E1000_DEV_ID_82546EB_FIBER:
1624 	case E1000_DEV_ID_82546GB_FIBER:
1625 		/* Wake events not supported on port B */
1626 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1627 			wol->supported = 0;
1628 			break;
1629 		}
1630 		/* return success for non excluded adapter ports */
1631 		retval = 0;
1632 		break;
1633 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1634 		/* quad port adapters only support WoL on port A */
1635 		if (!adapter->quad_port_a) {
1636 			wol->supported = 0;
1637 			break;
1638 		}
1639 		/* return success for non excluded adapter ports */
1640 		retval = 0;
1641 		break;
1642 	default:
1643 		/* dual port cards only support WoL on port A from now on
1644 		 * unless it was enabled in the eeprom for port B
1645 		 * so exclude FUNC_1 ports from having WoL enabled
1646 		 */
1647 		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1648 		    !adapter->eeprom_wol) {
1649 			wol->supported = 0;
1650 			break;
1651 		}
1652 
1653 		retval = 0;
1654 	}
1655 
1656 	return retval;
1657 }
1658 
1659 static void e1000_get_wol(struct net_device *netdev,
1660 			  struct ethtool_wolinfo *wol)
1661 {
1662 	struct e1000_adapter *adapter = netdev_priv(netdev);
1663 	struct e1000_hw *hw = &adapter->hw;
1664 
1665 	wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1666 	wol->wolopts = 0;
1667 
1668 	/* this function will set ->supported = 0 and return 1 if wol is not
1669 	 * supported by this hardware
1670 	 */
1671 	if (e1000_wol_exclusion(adapter, wol) ||
1672 	    !device_can_wakeup(&adapter->pdev->dev))
1673 		return;
1674 
1675 	/* apply any specific unsupported masks here */
1676 	switch (hw->device_id) {
1677 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1678 		/* KSP3 does not support UCAST wake-ups */
1679 		wol->supported &= ~WAKE_UCAST;
1680 
1681 		if (adapter->wol & E1000_WUFC_EX)
1682 			e_err(drv, "Interface does not support directed "
1683 			      "(unicast) frame wake-up packets\n");
1684 		break;
1685 	default:
1686 		break;
1687 	}
1688 
1689 	if (adapter->wol & E1000_WUFC_EX)
1690 		wol->wolopts |= WAKE_UCAST;
1691 	if (adapter->wol & E1000_WUFC_MC)
1692 		wol->wolopts |= WAKE_MCAST;
1693 	if (adapter->wol & E1000_WUFC_BC)
1694 		wol->wolopts |= WAKE_BCAST;
1695 	if (adapter->wol & E1000_WUFC_MAG)
1696 		wol->wolopts |= WAKE_MAGIC;
1697 }
1698 
1699 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1700 {
1701 	struct e1000_adapter *adapter = netdev_priv(netdev);
1702 	struct e1000_hw *hw = &adapter->hw;
1703 
1704 	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1705 		return -EOPNOTSUPP;
1706 
1707 	if (e1000_wol_exclusion(adapter, wol) ||
1708 	    !device_can_wakeup(&adapter->pdev->dev))
1709 		return wol->wolopts ? -EOPNOTSUPP : 0;
1710 
1711 	switch (hw->device_id) {
1712 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1713 		if (wol->wolopts & WAKE_UCAST) {
1714 			e_err(drv, "Interface does not support directed "
1715 			      "(unicast) frame wake-up packets\n");
1716 			return -EOPNOTSUPP;
1717 		}
1718 		break;
1719 	default:
1720 		break;
1721 	}
1722 
1723 	/* these settings will always override what we currently have */
1724 	adapter->wol = 0;
1725 
1726 	if (wol->wolopts & WAKE_UCAST)
1727 		adapter->wol |= E1000_WUFC_EX;
1728 	if (wol->wolopts & WAKE_MCAST)
1729 		adapter->wol |= E1000_WUFC_MC;
1730 	if (wol->wolopts & WAKE_BCAST)
1731 		adapter->wol |= E1000_WUFC_BC;
1732 	if (wol->wolopts & WAKE_MAGIC)
1733 		adapter->wol |= E1000_WUFC_MAG;
1734 
1735 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1736 
1737 	return 0;
1738 }
1739 
1740 static int e1000_set_phys_id(struct net_device *netdev,
1741 			     enum ethtool_phys_id_state state)
1742 {
1743 	struct e1000_adapter *adapter = netdev_priv(netdev);
1744 	struct e1000_hw *hw = &adapter->hw;
1745 
1746 	switch (state) {
1747 	case ETHTOOL_ID_ACTIVE:
1748 		e1000_setup_led(hw);
1749 		return 2;
1750 
1751 	case ETHTOOL_ID_ON:
1752 		e1000_led_on(hw);
1753 		break;
1754 
1755 	case ETHTOOL_ID_OFF:
1756 		e1000_led_off(hw);
1757 		break;
1758 
1759 	case ETHTOOL_ID_INACTIVE:
1760 		e1000_cleanup_led(hw);
1761 	}
1762 
1763 	return 0;
1764 }
1765 
1766 static int e1000_get_coalesce(struct net_device *netdev,
1767 			      struct ethtool_coalesce *ec)
1768 {
1769 	struct e1000_adapter *adapter = netdev_priv(netdev);
1770 
1771 	if (adapter->hw.mac_type < e1000_82545)
1772 		return -EOPNOTSUPP;
1773 
1774 	if (adapter->itr_setting <= 4)
1775 		ec->rx_coalesce_usecs = adapter->itr_setting;
1776 	else
1777 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1778 
1779 	return 0;
1780 }
1781 
1782 static int e1000_set_coalesce(struct net_device *netdev,
1783 			      struct ethtool_coalesce *ec)
1784 {
1785 	struct e1000_adapter *adapter = netdev_priv(netdev);
1786 	struct e1000_hw *hw = &adapter->hw;
1787 
1788 	if (hw->mac_type < e1000_82545)
1789 		return -EOPNOTSUPP;
1790 
1791 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1792 	    ((ec->rx_coalesce_usecs > 4) &&
1793 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1794 	    (ec->rx_coalesce_usecs == 2))
1795 		return -EINVAL;
1796 
1797 	if (ec->rx_coalesce_usecs == 4) {
1798 		adapter->itr = adapter->itr_setting = 4;
1799 	} else if (ec->rx_coalesce_usecs <= 3) {
1800 		adapter->itr = 20000;
1801 		adapter->itr_setting = ec->rx_coalesce_usecs;
1802 	} else {
1803 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1804 		adapter->itr_setting = adapter->itr & ~3;
1805 	}
1806 
1807 	if (adapter->itr_setting != 0)
1808 		ew32(ITR, 1000000000 / (adapter->itr * 256));
1809 	else
1810 		ew32(ITR, 0);
1811 
1812 	return 0;
1813 }
1814 
1815 static int e1000_nway_reset(struct net_device *netdev)
1816 {
1817 	struct e1000_adapter *adapter = netdev_priv(netdev);
1818 
1819 	if (netif_running(netdev))
1820 		e1000_reinit_locked(adapter);
1821 	return 0;
1822 }
1823 
1824 static void e1000_get_ethtool_stats(struct net_device *netdev,
1825 				    struct ethtool_stats *stats, u64 *data)
1826 {
1827 	struct e1000_adapter *adapter = netdev_priv(netdev);
1828 	int i;
1829 	char *p = NULL;
1830 	const struct e1000_stats *stat = e1000_gstrings_stats;
1831 
1832 	e1000_update_stats(adapter);
1833 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1834 		switch (stat->type) {
1835 		case NETDEV_STATS:
1836 			p = (char *)netdev + stat->stat_offset;
1837 			break;
1838 		case E1000_STATS:
1839 			p = (char *)adapter + stat->stat_offset;
1840 			break;
1841 		default:
1842 			WARN_ONCE(1, "Invalid E1000 stat type: %u index %d\n",
1843 				  stat->type, i);
1844 			break;
1845 		}
1846 
1847 		if (stat->sizeof_stat == sizeof(u64))
1848 			data[i] = *(u64 *)p;
1849 		else
1850 			data[i] = *(u32 *)p;
1851 
1852 		stat++;
1853 	}
1854 /* BUG_ON(i != E1000_STATS_LEN); */
1855 }
1856 
1857 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1858 			      u8 *data)
1859 {
1860 	u8 *p = data;
1861 	int i;
1862 
1863 	switch (stringset) {
1864 	case ETH_SS_TEST:
1865 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1866 		break;
1867 	case ETH_SS_STATS:
1868 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1869 			memcpy(p, e1000_gstrings_stats[i].stat_string,
1870 			       ETH_GSTRING_LEN);
1871 			p += ETH_GSTRING_LEN;
1872 		}
1873 		/* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1874 		break;
1875 	}
1876 }
1877 
1878 static const struct ethtool_ops e1000_ethtool_ops = {
1879 	.get_settings		= e1000_get_settings,
1880 	.set_settings		= e1000_set_settings,
1881 	.get_drvinfo		= e1000_get_drvinfo,
1882 	.get_regs_len		= e1000_get_regs_len,
1883 	.get_regs		= e1000_get_regs,
1884 	.get_wol		= e1000_get_wol,
1885 	.set_wol		= e1000_set_wol,
1886 	.get_msglevel		= e1000_get_msglevel,
1887 	.set_msglevel		= e1000_set_msglevel,
1888 	.nway_reset		= e1000_nway_reset,
1889 	.get_link		= e1000_get_link,
1890 	.get_eeprom_len		= e1000_get_eeprom_len,
1891 	.get_eeprom		= e1000_get_eeprom,
1892 	.set_eeprom		= e1000_set_eeprom,
1893 	.get_ringparam		= e1000_get_ringparam,
1894 	.set_ringparam		= e1000_set_ringparam,
1895 	.get_pauseparam		= e1000_get_pauseparam,
1896 	.set_pauseparam		= e1000_set_pauseparam,
1897 	.self_test		= e1000_diag_test,
1898 	.get_strings		= e1000_get_strings,
1899 	.set_phys_id		= e1000_set_phys_id,
1900 	.get_ethtool_stats	= e1000_get_ethtool_stats,
1901 	.get_sset_count		= e1000_get_sset_count,
1902 	.get_coalesce		= e1000_get_coalesce,
1903 	.set_coalesce		= e1000_set_coalesce,
1904 	.get_ts_info		= ethtool_op_get_ts_info,
1905 };
1906 
1907 void e1000_set_ethtool_ops(struct net_device *netdev)
1908 {
1909 	netdev->ethtool_ops = &e1000_ethtool_ops;
1910 }
1911