1 /******************************************************************************* 2 * Intel PRO/1000 Linux driver 3 * Copyright(c) 1999 - 2006 Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * The full GNU General Public License is included in this distribution in 15 * the file called "COPYING". 16 * 17 * Contact Information: 18 * Linux NICS <linux.nics@intel.com> 19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 21 * 22 ******************************************************************************/ 23 24 /* ethtool support for e1000 */ 25 26 #include "e1000.h" 27 #include <linux/uaccess.h> 28 29 enum {NETDEV_STATS, E1000_STATS}; 30 31 struct e1000_stats { 32 char stat_string[ETH_GSTRING_LEN]; 33 int type; 34 int sizeof_stat; 35 int stat_offset; 36 }; 37 38 #define E1000_STAT(m) E1000_STATS, \ 39 sizeof(((struct e1000_adapter *)0)->m), \ 40 offsetof(struct e1000_adapter, m) 41 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \ 42 sizeof(((struct net_device *)0)->m), \ 43 offsetof(struct net_device, m) 44 45 static const struct e1000_stats e1000_gstrings_stats[] = { 46 { "rx_packets", E1000_STAT(stats.gprc) }, 47 { "tx_packets", E1000_STAT(stats.gptc) }, 48 { "rx_bytes", E1000_STAT(stats.gorcl) }, 49 { "tx_bytes", E1000_STAT(stats.gotcl) }, 50 { "rx_broadcast", E1000_STAT(stats.bprc) }, 51 { "tx_broadcast", E1000_STAT(stats.bptc) }, 52 { "rx_multicast", E1000_STAT(stats.mprc) }, 53 { "tx_multicast", E1000_STAT(stats.mptc) }, 54 { "rx_errors", E1000_STAT(stats.rxerrc) }, 55 { "tx_errors", E1000_STAT(stats.txerrc) }, 56 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) }, 57 { "multicast", E1000_STAT(stats.mprc) }, 58 { "collisions", E1000_STAT(stats.colc) }, 59 { "rx_length_errors", E1000_STAT(stats.rlerrc) }, 60 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) }, 61 { "rx_crc_errors", E1000_STAT(stats.crcerrs) }, 62 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) }, 63 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, 64 { "rx_missed_errors", E1000_STAT(stats.mpc) }, 65 { "tx_aborted_errors", E1000_STAT(stats.ecol) }, 66 { "tx_carrier_errors", E1000_STAT(stats.tncrs) }, 67 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) }, 68 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) }, 69 { "tx_window_errors", E1000_STAT(stats.latecol) }, 70 { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, 71 { "tx_deferred_ok", E1000_STAT(stats.dc) }, 72 { "tx_single_coll_ok", E1000_STAT(stats.scc) }, 73 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, 74 { "tx_timeout_count", E1000_STAT(tx_timeout_count) }, 75 { "tx_restart_queue", E1000_STAT(restart_queue) }, 76 { "rx_long_length_errors", E1000_STAT(stats.roc) }, 77 { "rx_short_length_errors", E1000_STAT(stats.ruc) }, 78 { "rx_align_errors", E1000_STAT(stats.algnerrc) }, 79 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, 80 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, 81 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, 82 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, 83 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, 84 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, 85 { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, 86 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, 87 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }, 88 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) }, 89 { "tx_smbus", E1000_STAT(stats.mgptc) }, 90 { "rx_smbus", E1000_STAT(stats.mgprc) }, 91 { "dropped_smbus", E1000_STAT(stats.mgpdc) }, 92 }; 93 94 #define E1000_QUEUE_STATS_LEN 0 95 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 96 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN) 97 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 98 "Register test (offline)", "Eeprom test (offline)", 99 "Interrupt test (offline)", "Loopback test (offline)", 100 "Link test (on/offline)" 101 }; 102 103 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 104 105 static int e1000_get_settings(struct net_device *netdev, 106 struct ethtool_cmd *ecmd) 107 { 108 struct e1000_adapter *adapter = netdev_priv(netdev); 109 struct e1000_hw *hw = &adapter->hw; 110 111 if (hw->media_type == e1000_media_type_copper) { 112 ecmd->supported = (SUPPORTED_10baseT_Half | 113 SUPPORTED_10baseT_Full | 114 SUPPORTED_100baseT_Half | 115 SUPPORTED_100baseT_Full | 116 SUPPORTED_1000baseT_Full| 117 SUPPORTED_Autoneg | 118 SUPPORTED_TP); 119 ecmd->advertising = ADVERTISED_TP; 120 121 if (hw->autoneg == 1) { 122 ecmd->advertising |= ADVERTISED_Autoneg; 123 /* the e1000 autoneg seems to match ethtool nicely */ 124 ecmd->advertising |= hw->autoneg_advertised; 125 } 126 127 ecmd->port = PORT_TP; 128 ecmd->phy_address = hw->phy_addr; 129 130 if (hw->mac_type == e1000_82543) 131 ecmd->transceiver = XCVR_EXTERNAL; 132 else 133 ecmd->transceiver = XCVR_INTERNAL; 134 135 } else { 136 ecmd->supported = (SUPPORTED_1000baseT_Full | 137 SUPPORTED_FIBRE | 138 SUPPORTED_Autoneg); 139 140 ecmd->advertising = (ADVERTISED_1000baseT_Full | 141 ADVERTISED_FIBRE | 142 ADVERTISED_Autoneg); 143 144 ecmd->port = PORT_FIBRE; 145 146 if (hw->mac_type >= e1000_82545) 147 ecmd->transceiver = XCVR_INTERNAL; 148 else 149 ecmd->transceiver = XCVR_EXTERNAL; 150 } 151 152 if (er32(STATUS) & E1000_STATUS_LU) { 153 e1000_get_speed_and_duplex(hw, &adapter->link_speed, 154 &adapter->link_duplex); 155 ethtool_cmd_speed_set(ecmd, adapter->link_speed); 156 157 /* unfortunately FULL_DUPLEX != DUPLEX_FULL 158 * and HALF_DUPLEX != DUPLEX_HALF 159 */ 160 if (adapter->link_duplex == FULL_DUPLEX) 161 ecmd->duplex = DUPLEX_FULL; 162 else 163 ecmd->duplex = DUPLEX_HALF; 164 } else { 165 ethtool_cmd_speed_set(ecmd, SPEED_UNKNOWN); 166 ecmd->duplex = DUPLEX_UNKNOWN; 167 } 168 169 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || 170 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 171 172 /* MDI-X => 1; MDI => 0 */ 173 if ((hw->media_type == e1000_media_type_copper) && 174 netif_carrier_ok(netdev)) 175 ecmd->eth_tp_mdix = (!!adapter->phy_info.mdix_mode ? 176 ETH_TP_MDI_X : ETH_TP_MDI); 177 else 178 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 179 180 if (hw->mdix == AUTO_ALL_MODES) 181 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 182 else 183 ecmd->eth_tp_mdix_ctrl = hw->mdix; 184 return 0; 185 } 186 187 static int e1000_set_settings(struct net_device *netdev, 188 struct ethtool_cmd *ecmd) 189 { 190 struct e1000_adapter *adapter = netdev_priv(netdev); 191 struct e1000_hw *hw = &adapter->hw; 192 193 /* MDI setting is only allowed when autoneg enabled because 194 * some hardware doesn't allow MDI setting when speed or 195 * duplex is forced. 196 */ 197 if (ecmd->eth_tp_mdix_ctrl) { 198 if (hw->media_type != e1000_media_type_copper) 199 return -EOPNOTSUPP; 200 201 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 202 (ecmd->autoneg != AUTONEG_ENABLE)) { 203 e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 204 return -EINVAL; 205 } 206 } 207 208 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 209 msleep(1); 210 211 if (ecmd->autoneg == AUTONEG_ENABLE) { 212 hw->autoneg = 1; 213 if (hw->media_type == e1000_media_type_fiber) 214 hw->autoneg_advertised = ADVERTISED_1000baseT_Full | 215 ADVERTISED_FIBRE | 216 ADVERTISED_Autoneg; 217 else 218 hw->autoneg_advertised = ecmd->advertising | 219 ADVERTISED_TP | 220 ADVERTISED_Autoneg; 221 ecmd->advertising = hw->autoneg_advertised; 222 } else { 223 u32 speed = ethtool_cmd_speed(ecmd); 224 /* calling this overrides forced MDI setting */ 225 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { 226 clear_bit(__E1000_RESETTING, &adapter->flags); 227 return -EINVAL; 228 } 229 } 230 231 /* MDI-X => 2; MDI => 1; Auto => 3 */ 232 if (ecmd->eth_tp_mdix_ctrl) { 233 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 234 hw->mdix = AUTO_ALL_MODES; 235 else 236 hw->mdix = ecmd->eth_tp_mdix_ctrl; 237 } 238 239 /* reset the link */ 240 241 if (netif_running(adapter->netdev)) { 242 e1000_down(adapter); 243 e1000_up(adapter); 244 } else { 245 e1000_reset(adapter); 246 } 247 clear_bit(__E1000_RESETTING, &adapter->flags); 248 return 0; 249 } 250 251 static u32 e1000_get_link(struct net_device *netdev) 252 { 253 struct e1000_adapter *adapter = netdev_priv(netdev); 254 255 /* If the link is not reported up to netdev, interrupts are disabled, 256 * and so the physical link state may have changed since we last 257 * looked. Set get_link_status to make sure that the true link 258 * state is interrogated, rather than pulling a cached and possibly 259 * stale link state from the driver. 260 */ 261 if (!netif_carrier_ok(netdev)) 262 adapter->hw.get_link_status = 1; 263 264 return e1000_has_link(adapter); 265 } 266 267 static void e1000_get_pauseparam(struct net_device *netdev, 268 struct ethtool_pauseparam *pause) 269 { 270 struct e1000_adapter *adapter = netdev_priv(netdev); 271 struct e1000_hw *hw = &adapter->hw; 272 273 pause->autoneg = 274 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 275 276 if (hw->fc == E1000_FC_RX_PAUSE) { 277 pause->rx_pause = 1; 278 } else if (hw->fc == E1000_FC_TX_PAUSE) { 279 pause->tx_pause = 1; 280 } else if (hw->fc == E1000_FC_FULL) { 281 pause->rx_pause = 1; 282 pause->tx_pause = 1; 283 } 284 } 285 286 static int e1000_set_pauseparam(struct net_device *netdev, 287 struct ethtool_pauseparam *pause) 288 { 289 struct e1000_adapter *adapter = netdev_priv(netdev); 290 struct e1000_hw *hw = &adapter->hw; 291 int retval = 0; 292 293 adapter->fc_autoneg = pause->autoneg; 294 295 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 296 msleep(1); 297 298 if (pause->rx_pause && pause->tx_pause) 299 hw->fc = E1000_FC_FULL; 300 else if (pause->rx_pause && !pause->tx_pause) 301 hw->fc = E1000_FC_RX_PAUSE; 302 else if (!pause->rx_pause && pause->tx_pause) 303 hw->fc = E1000_FC_TX_PAUSE; 304 else if (!pause->rx_pause && !pause->tx_pause) 305 hw->fc = E1000_FC_NONE; 306 307 hw->original_fc = hw->fc; 308 309 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 310 if (netif_running(adapter->netdev)) { 311 e1000_down(adapter); 312 e1000_up(adapter); 313 } else { 314 e1000_reset(adapter); 315 } 316 } else 317 retval = ((hw->media_type == e1000_media_type_fiber) ? 318 e1000_setup_link(hw) : e1000_force_mac_fc(hw)); 319 320 clear_bit(__E1000_RESETTING, &adapter->flags); 321 return retval; 322 } 323 324 static u32 e1000_get_msglevel(struct net_device *netdev) 325 { 326 struct e1000_adapter *adapter = netdev_priv(netdev); 327 328 return adapter->msg_enable; 329 } 330 331 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 332 { 333 struct e1000_adapter *adapter = netdev_priv(netdev); 334 335 adapter->msg_enable = data; 336 } 337 338 static int e1000_get_regs_len(struct net_device *netdev) 339 { 340 #define E1000_REGS_LEN 32 341 return E1000_REGS_LEN * sizeof(u32); 342 } 343 344 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs, 345 void *p) 346 { 347 struct e1000_adapter *adapter = netdev_priv(netdev); 348 struct e1000_hw *hw = &adapter->hw; 349 u32 *regs_buff = p; 350 u16 phy_data; 351 352 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 353 354 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; 355 356 regs_buff[0] = er32(CTRL); 357 regs_buff[1] = er32(STATUS); 358 359 regs_buff[2] = er32(RCTL); 360 regs_buff[3] = er32(RDLEN); 361 regs_buff[4] = er32(RDH); 362 regs_buff[5] = er32(RDT); 363 regs_buff[6] = er32(RDTR); 364 365 regs_buff[7] = er32(TCTL); 366 regs_buff[8] = er32(TDLEN); 367 regs_buff[9] = er32(TDH); 368 regs_buff[10] = er32(TDT); 369 regs_buff[11] = er32(TIDV); 370 371 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */ 372 if (hw->phy_type == e1000_phy_igp) { 373 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 374 IGP01E1000_PHY_AGC_A); 375 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & 376 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 377 regs_buff[13] = (u32)phy_data; /* cable length */ 378 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 379 IGP01E1000_PHY_AGC_B); 380 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & 381 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 382 regs_buff[14] = (u32)phy_data; /* cable length */ 383 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 384 IGP01E1000_PHY_AGC_C); 385 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & 386 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 387 regs_buff[15] = (u32)phy_data; /* cable length */ 388 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 389 IGP01E1000_PHY_AGC_D); 390 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & 391 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 392 regs_buff[16] = (u32)phy_data; /* cable length */ 393 regs_buff[17] = 0; /* extended 10bt distance (not needed) */ 394 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); 395 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & 396 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 397 regs_buff[18] = (u32)phy_data; /* cable polarity */ 398 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 399 IGP01E1000_PHY_PCS_INIT_REG); 400 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & 401 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 402 regs_buff[19] = (u32)phy_data; /* cable polarity */ 403 regs_buff[20] = 0; /* polarity correction enabled (always) */ 404 regs_buff[22] = 0; /* phy receive errors (unavailable) */ 405 regs_buff[23] = regs_buff[18]; /* mdix mode */ 406 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); 407 } else { 408 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 409 regs_buff[13] = (u32)phy_data; /* cable length */ 410 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 411 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 412 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 413 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 414 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 415 regs_buff[18] = regs_buff[13]; /* cable polarity */ 416 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 417 regs_buff[20] = regs_buff[17]; /* polarity correction */ 418 /* phy receive errors */ 419 regs_buff[22] = adapter->phy_stats.receive_errors; 420 regs_buff[23] = regs_buff[13]; /* mdix mode */ 421 } 422 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ 423 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); 424 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 425 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 426 if (hw->mac_type >= e1000_82540 && 427 hw->media_type == e1000_media_type_copper) { 428 regs_buff[26] = er32(MANC); 429 } 430 } 431 432 static int e1000_get_eeprom_len(struct net_device *netdev) 433 { 434 struct e1000_adapter *adapter = netdev_priv(netdev); 435 struct e1000_hw *hw = &adapter->hw; 436 437 return hw->eeprom.word_size * 2; 438 } 439 440 static int e1000_get_eeprom(struct net_device *netdev, 441 struct ethtool_eeprom *eeprom, u8 *bytes) 442 { 443 struct e1000_adapter *adapter = netdev_priv(netdev); 444 struct e1000_hw *hw = &adapter->hw; 445 u16 *eeprom_buff; 446 int first_word, last_word; 447 int ret_val = 0; 448 u16 i; 449 450 if (eeprom->len == 0) 451 return -EINVAL; 452 453 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 454 455 first_word = eeprom->offset >> 1; 456 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 457 458 eeprom_buff = kmalloc(sizeof(u16) * 459 (last_word - first_word + 1), GFP_KERNEL); 460 if (!eeprom_buff) 461 return -ENOMEM; 462 463 if (hw->eeprom.type == e1000_eeprom_spi) 464 ret_val = e1000_read_eeprom(hw, first_word, 465 last_word - first_word + 1, 466 eeprom_buff); 467 else { 468 for (i = 0; i < last_word - first_word + 1; i++) { 469 ret_val = e1000_read_eeprom(hw, first_word + i, 1, 470 &eeprom_buff[i]); 471 if (ret_val) 472 break; 473 } 474 } 475 476 /* Device's eeprom is always little-endian, word addressable */ 477 for (i = 0; i < last_word - first_word + 1; i++) 478 le16_to_cpus(&eeprom_buff[i]); 479 480 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), 481 eeprom->len); 482 kfree(eeprom_buff); 483 484 return ret_val; 485 } 486 487 static int e1000_set_eeprom(struct net_device *netdev, 488 struct ethtool_eeprom *eeprom, u8 *bytes) 489 { 490 struct e1000_adapter *adapter = netdev_priv(netdev); 491 struct e1000_hw *hw = &adapter->hw; 492 u16 *eeprom_buff; 493 void *ptr; 494 int max_len, first_word, last_word, ret_val = 0; 495 u16 i; 496 497 if (eeprom->len == 0) 498 return -EOPNOTSUPP; 499 500 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) 501 return -EFAULT; 502 503 max_len = hw->eeprom.word_size * 2; 504 505 first_word = eeprom->offset >> 1; 506 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 507 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 508 if (!eeprom_buff) 509 return -ENOMEM; 510 511 ptr = (void *)eeprom_buff; 512 513 if (eeprom->offset & 1) { 514 /* need read/modify/write of first changed EEPROM word 515 * only the second byte of the word is being modified 516 */ 517 ret_val = e1000_read_eeprom(hw, first_word, 1, 518 &eeprom_buff[0]); 519 ptr++; 520 } 521 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { 522 /* need read/modify/write of last changed EEPROM word 523 * only the first byte of the word is being modified 524 */ 525 ret_val = e1000_read_eeprom(hw, last_word, 1, 526 &eeprom_buff[last_word - first_word]); 527 } 528 529 /* Device's eeprom is always little-endian, word addressable */ 530 for (i = 0; i < last_word - first_word + 1; i++) 531 le16_to_cpus(&eeprom_buff[i]); 532 533 memcpy(ptr, bytes, eeprom->len); 534 535 for (i = 0; i < last_word - first_word + 1; i++) 536 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); 537 538 ret_val = e1000_write_eeprom(hw, first_word, 539 last_word - first_word + 1, eeprom_buff); 540 541 /* Update the checksum over the first part of the EEPROM if needed */ 542 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG)) 543 e1000_update_eeprom_checksum(hw); 544 545 kfree(eeprom_buff); 546 return ret_val; 547 } 548 549 static void e1000_get_drvinfo(struct net_device *netdev, 550 struct ethtool_drvinfo *drvinfo) 551 { 552 struct e1000_adapter *adapter = netdev_priv(netdev); 553 554 strlcpy(drvinfo->driver, e1000_driver_name, 555 sizeof(drvinfo->driver)); 556 strlcpy(drvinfo->version, e1000_driver_version, 557 sizeof(drvinfo->version)); 558 559 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 560 sizeof(drvinfo->bus_info)); 561 drvinfo->regdump_len = e1000_get_regs_len(netdev); 562 drvinfo->eedump_len = e1000_get_eeprom_len(netdev); 563 } 564 565 static void e1000_get_ringparam(struct net_device *netdev, 566 struct ethtool_ringparam *ring) 567 { 568 struct e1000_adapter *adapter = netdev_priv(netdev); 569 struct e1000_hw *hw = &adapter->hw; 570 e1000_mac_type mac_type = hw->mac_type; 571 struct e1000_tx_ring *txdr = adapter->tx_ring; 572 struct e1000_rx_ring *rxdr = adapter->rx_ring; 573 574 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : 575 E1000_MAX_82544_RXD; 576 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : 577 E1000_MAX_82544_TXD; 578 ring->rx_pending = rxdr->count; 579 ring->tx_pending = txdr->count; 580 } 581 582 static int e1000_set_ringparam(struct net_device *netdev, 583 struct ethtool_ringparam *ring) 584 { 585 struct e1000_adapter *adapter = netdev_priv(netdev); 586 struct e1000_hw *hw = &adapter->hw; 587 e1000_mac_type mac_type = hw->mac_type; 588 struct e1000_tx_ring *txdr, *tx_old; 589 struct e1000_rx_ring *rxdr, *rx_old; 590 int i, err; 591 592 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 593 return -EINVAL; 594 595 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 596 msleep(1); 597 598 if (netif_running(adapter->netdev)) 599 e1000_down(adapter); 600 601 tx_old = adapter->tx_ring; 602 rx_old = adapter->rx_ring; 603 604 err = -ENOMEM; 605 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), 606 GFP_KERNEL); 607 if (!txdr) 608 goto err_alloc_tx; 609 610 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), 611 GFP_KERNEL); 612 if (!rxdr) 613 goto err_alloc_rx; 614 615 adapter->tx_ring = txdr; 616 adapter->rx_ring = rxdr; 617 618 rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD); 619 rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ? 620 E1000_MAX_RXD : E1000_MAX_82544_RXD)); 621 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); 622 txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD); 623 txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ? 624 E1000_MAX_TXD : E1000_MAX_82544_TXD)); 625 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); 626 627 for (i = 0; i < adapter->num_tx_queues; i++) 628 txdr[i].count = txdr->count; 629 for (i = 0; i < adapter->num_rx_queues; i++) 630 rxdr[i].count = rxdr->count; 631 632 if (netif_running(adapter->netdev)) { 633 /* Try to get new resources before deleting old */ 634 err = e1000_setup_all_rx_resources(adapter); 635 if (err) 636 goto err_setup_rx; 637 err = e1000_setup_all_tx_resources(adapter); 638 if (err) 639 goto err_setup_tx; 640 641 /* save the new, restore the old in order to free it, 642 * then restore the new back again 643 */ 644 645 adapter->rx_ring = rx_old; 646 adapter->tx_ring = tx_old; 647 e1000_free_all_rx_resources(adapter); 648 e1000_free_all_tx_resources(adapter); 649 kfree(tx_old); 650 kfree(rx_old); 651 adapter->rx_ring = rxdr; 652 adapter->tx_ring = txdr; 653 err = e1000_up(adapter); 654 if (err) 655 goto err_setup; 656 } 657 658 clear_bit(__E1000_RESETTING, &adapter->flags); 659 return 0; 660 err_setup_tx: 661 e1000_free_all_rx_resources(adapter); 662 err_setup_rx: 663 adapter->rx_ring = rx_old; 664 adapter->tx_ring = tx_old; 665 kfree(rxdr); 666 err_alloc_rx: 667 kfree(txdr); 668 err_alloc_tx: 669 e1000_up(adapter); 670 err_setup: 671 clear_bit(__E1000_RESETTING, &adapter->flags); 672 return err; 673 } 674 675 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg, 676 u32 mask, u32 write) 677 { 678 struct e1000_hw *hw = &adapter->hw; 679 static const u32 test[] = { 680 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 681 }; 682 u8 __iomem *address = hw->hw_addr + reg; 683 u32 read; 684 int i; 685 686 for (i = 0; i < ARRAY_SIZE(test); i++) { 687 writel(write & test[i], address); 688 read = readl(address); 689 if (read != (write & test[i] & mask)) { 690 e_err(drv, "pattern test reg %04X failed: " 691 "got 0x%08X expected 0x%08X\n", 692 reg, read, (write & test[i] & mask)); 693 *data = reg; 694 return true; 695 } 696 } 697 return false; 698 } 699 700 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg, 701 u32 mask, u32 write) 702 { 703 struct e1000_hw *hw = &adapter->hw; 704 u8 __iomem *address = hw->hw_addr + reg; 705 u32 read; 706 707 writel(write & mask, address); 708 read = readl(address); 709 if ((read & mask) != (write & mask)) { 710 e_err(drv, "set/check reg %04X test failed: " 711 "got 0x%08X expected 0x%08X\n", 712 reg, (read & mask), (write & mask)); 713 *data = reg; 714 return true; 715 } 716 return false; 717 } 718 719 #define REG_PATTERN_TEST(reg, mask, write) \ 720 do { \ 721 if (reg_pattern_test(adapter, data, \ 722 (hw->mac_type >= e1000_82543) \ 723 ? E1000_##reg : E1000_82542_##reg, \ 724 mask, write)) \ 725 return 1; \ 726 } while (0) 727 728 #define REG_SET_AND_CHECK(reg, mask, write) \ 729 do { \ 730 if (reg_set_and_check(adapter, data, \ 731 (hw->mac_type >= e1000_82543) \ 732 ? E1000_##reg : E1000_82542_##reg, \ 733 mask, write)) \ 734 return 1; \ 735 } while (0) 736 737 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 738 { 739 u32 value, before, after; 740 u32 i, toggle; 741 struct e1000_hw *hw = &adapter->hw; 742 743 /* The status register is Read Only, so a write should fail. 744 * Some bits that get toggled are ignored. 745 */ 746 747 /* there are several bits on newer hardware that are r/w */ 748 toggle = 0xFFFFF833; 749 750 before = er32(STATUS); 751 value = (er32(STATUS) & toggle); 752 ew32(STATUS, toggle); 753 after = er32(STATUS) & toggle; 754 if (value != after) { 755 e_err(drv, "failed STATUS register test got: " 756 "0x%08X expected: 0x%08X\n", after, value); 757 *data = 1; 758 return 1; 759 } 760 /* restore previous status */ 761 ew32(STATUS, before); 762 763 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 764 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); 765 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); 766 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); 767 768 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); 769 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); 770 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); 771 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); 772 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); 773 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); 774 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); 775 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 776 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); 777 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); 778 779 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); 780 781 before = 0x06DFB3FE; 782 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB); 783 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); 784 785 if (hw->mac_type >= e1000_82543) { 786 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF); 787 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 788 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); 789 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 790 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); 791 value = E1000_RAR_ENTRIES; 792 for (i = 0; i < value; i++) { 793 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 794 0x8003FFFF, 0xFFFFFFFF); 795 } 796 } else { 797 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); 798 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); 799 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); 800 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); 801 } 802 803 value = E1000_MC_TBL_SIZE; 804 for (i = 0; i < value; i++) 805 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); 806 807 *data = 0; 808 return 0; 809 } 810 811 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 812 { 813 struct e1000_hw *hw = &adapter->hw; 814 u16 temp; 815 u16 checksum = 0; 816 u16 i; 817 818 *data = 0; 819 /* Read and add up the contents of the EEPROM */ 820 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { 821 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) { 822 *data = 1; 823 break; 824 } 825 checksum += temp; 826 } 827 828 /* If Checksum is not Correct return error else test passed */ 829 if ((checksum != (u16)EEPROM_SUM) && !(*data)) 830 *data = 2; 831 832 return *data; 833 } 834 835 static irqreturn_t e1000_test_intr(int irq, void *data) 836 { 837 struct net_device *netdev = (struct net_device *)data; 838 struct e1000_adapter *adapter = netdev_priv(netdev); 839 struct e1000_hw *hw = &adapter->hw; 840 841 adapter->test_icr |= er32(ICR); 842 843 return IRQ_HANDLED; 844 } 845 846 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 847 { 848 struct net_device *netdev = adapter->netdev; 849 u32 mask, i = 0; 850 bool shared_int = true; 851 u32 irq = adapter->pdev->irq; 852 struct e1000_hw *hw = &adapter->hw; 853 854 *data = 0; 855 856 /* NOTE: we don't test MSI interrupts here, yet 857 * Hook up test interrupt handler just for this test 858 */ 859 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 860 netdev)) 861 shared_int = false; 862 else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, 863 netdev->name, netdev)) { 864 *data = 1; 865 return -1; 866 } 867 e_info(hw, "testing %s interrupt\n", (shared_int ? 868 "shared" : "unshared")); 869 870 /* Disable all the interrupts */ 871 ew32(IMC, 0xFFFFFFFF); 872 E1000_WRITE_FLUSH(); 873 msleep(10); 874 875 /* Test each interrupt */ 876 for (; i < 10; i++) { 877 /* Interrupt to test */ 878 mask = 1 << i; 879 880 if (!shared_int) { 881 /* Disable the interrupt to be reported in 882 * the cause register and then force the same 883 * interrupt and see if one gets posted. If 884 * an interrupt was posted to the bus, the 885 * test failed. 886 */ 887 adapter->test_icr = 0; 888 ew32(IMC, mask); 889 ew32(ICS, mask); 890 E1000_WRITE_FLUSH(); 891 msleep(10); 892 893 if (adapter->test_icr & mask) { 894 *data = 3; 895 break; 896 } 897 } 898 899 /* Enable the interrupt to be reported in 900 * the cause register and then force the same 901 * interrupt and see if one gets posted. If 902 * an interrupt was not posted to the bus, the 903 * test failed. 904 */ 905 adapter->test_icr = 0; 906 ew32(IMS, mask); 907 ew32(ICS, mask); 908 E1000_WRITE_FLUSH(); 909 msleep(10); 910 911 if (!(adapter->test_icr & mask)) { 912 *data = 4; 913 break; 914 } 915 916 if (!shared_int) { 917 /* Disable the other interrupts to be reported in 918 * the cause register and then force the other 919 * interrupts and see if any get posted. If 920 * an interrupt was posted to the bus, the 921 * test failed. 922 */ 923 adapter->test_icr = 0; 924 ew32(IMC, ~mask & 0x00007FFF); 925 ew32(ICS, ~mask & 0x00007FFF); 926 E1000_WRITE_FLUSH(); 927 msleep(10); 928 929 if (adapter->test_icr) { 930 *data = 5; 931 break; 932 } 933 } 934 } 935 936 /* Disable all the interrupts */ 937 ew32(IMC, 0xFFFFFFFF); 938 E1000_WRITE_FLUSH(); 939 msleep(10); 940 941 /* Unhook test interrupt handler */ 942 free_irq(irq, netdev); 943 944 return *data; 945 } 946 947 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 948 { 949 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 950 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 951 struct pci_dev *pdev = adapter->pdev; 952 int i; 953 954 if (txdr->desc && txdr->buffer_info) { 955 for (i = 0; i < txdr->count; i++) { 956 if (txdr->buffer_info[i].dma) 957 dma_unmap_single(&pdev->dev, 958 txdr->buffer_info[i].dma, 959 txdr->buffer_info[i].length, 960 DMA_TO_DEVICE); 961 if (txdr->buffer_info[i].skb) 962 dev_kfree_skb(txdr->buffer_info[i].skb); 963 } 964 } 965 966 if (rxdr->desc && rxdr->buffer_info) { 967 for (i = 0; i < rxdr->count; i++) { 968 if (rxdr->buffer_info[i].dma) 969 dma_unmap_single(&pdev->dev, 970 rxdr->buffer_info[i].dma, 971 E1000_RXBUFFER_2048, 972 DMA_FROM_DEVICE); 973 kfree(rxdr->buffer_info[i].rxbuf.data); 974 } 975 } 976 977 if (txdr->desc) { 978 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, 979 txdr->dma); 980 txdr->desc = NULL; 981 } 982 if (rxdr->desc) { 983 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, 984 rxdr->dma); 985 rxdr->desc = NULL; 986 } 987 988 kfree(txdr->buffer_info); 989 txdr->buffer_info = NULL; 990 kfree(rxdr->buffer_info); 991 rxdr->buffer_info = NULL; 992 } 993 994 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 995 { 996 struct e1000_hw *hw = &adapter->hw; 997 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 998 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 999 struct pci_dev *pdev = adapter->pdev; 1000 u32 rctl; 1001 int i, ret_val; 1002 1003 /* Setup Tx descriptor ring and Tx buffers */ 1004 1005 if (!txdr->count) 1006 txdr->count = E1000_DEFAULT_TXD; 1007 1008 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer), 1009 GFP_KERNEL); 1010 if (!txdr->buffer_info) { 1011 ret_val = 1; 1012 goto err_nomem; 1013 } 1014 1015 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 1016 txdr->size = ALIGN(txdr->size, 4096); 1017 txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma, 1018 GFP_KERNEL); 1019 if (!txdr->desc) { 1020 ret_val = 2; 1021 goto err_nomem; 1022 } 1023 txdr->next_to_use = txdr->next_to_clean = 0; 1024 1025 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF)); 1026 ew32(TDBAH, ((u64)txdr->dma >> 32)); 1027 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc)); 1028 ew32(TDH, 0); 1029 ew32(TDT, 0); 1030 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | 1031 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1032 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1033 1034 for (i = 0; i < txdr->count; i++) { 1035 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); 1036 struct sk_buff *skb; 1037 unsigned int size = 1024; 1038 1039 skb = alloc_skb(size, GFP_KERNEL); 1040 if (!skb) { 1041 ret_val = 3; 1042 goto err_nomem; 1043 } 1044 skb_put(skb, size); 1045 txdr->buffer_info[i].skb = skb; 1046 txdr->buffer_info[i].length = skb->len; 1047 txdr->buffer_info[i].dma = 1048 dma_map_single(&pdev->dev, skb->data, skb->len, 1049 DMA_TO_DEVICE); 1050 if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) { 1051 ret_val = 4; 1052 goto err_nomem; 1053 } 1054 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); 1055 tx_desc->lower.data = cpu_to_le32(skb->len); 1056 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1057 E1000_TXD_CMD_IFCS | 1058 E1000_TXD_CMD_RPS); 1059 tx_desc->upper.data = 0; 1060 } 1061 1062 /* Setup Rx descriptor ring and Rx buffers */ 1063 1064 if (!rxdr->count) 1065 rxdr->count = E1000_DEFAULT_RXD; 1066 1067 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer), 1068 GFP_KERNEL); 1069 if (!rxdr->buffer_info) { 1070 ret_val = 5; 1071 goto err_nomem; 1072 } 1073 1074 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); 1075 rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, 1076 GFP_KERNEL); 1077 if (!rxdr->desc) { 1078 ret_val = 6; 1079 goto err_nomem; 1080 } 1081 rxdr->next_to_use = rxdr->next_to_clean = 0; 1082 1083 rctl = er32(RCTL); 1084 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1085 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF)); 1086 ew32(RDBAH, ((u64)rxdr->dma >> 32)); 1087 ew32(RDLEN, rxdr->size); 1088 ew32(RDH, 0); 1089 ew32(RDT, 0); 1090 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1091 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1092 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); 1093 ew32(RCTL, rctl); 1094 1095 for (i = 0; i < rxdr->count; i++) { 1096 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); 1097 u8 *buf; 1098 1099 buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN, 1100 GFP_KERNEL); 1101 if (!buf) { 1102 ret_val = 7; 1103 goto err_nomem; 1104 } 1105 rxdr->buffer_info[i].rxbuf.data = buf; 1106 1107 rxdr->buffer_info[i].dma = 1108 dma_map_single(&pdev->dev, 1109 buf + NET_SKB_PAD + NET_IP_ALIGN, 1110 E1000_RXBUFFER_2048, DMA_FROM_DEVICE); 1111 if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) { 1112 ret_val = 8; 1113 goto err_nomem; 1114 } 1115 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); 1116 } 1117 1118 return 0; 1119 1120 err_nomem: 1121 e1000_free_desc_rings(adapter); 1122 return ret_val; 1123 } 1124 1125 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1126 { 1127 struct e1000_hw *hw = &adapter->hw; 1128 1129 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1130 e1000_write_phy_reg(hw, 29, 0x001F); 1131 e1000_write_phy_reg(hw, 30, 0x8FFC); 1132 e1000_write_phy_reg(hw, 29, 0x001A); 1133 e1000_write_phy_reg(hw, 30, 0x8FF0); 1134 } 1135 1136 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) 1137 { 1138 struct e1000_hw *hw = &adapter->hw; 1139 u16 phy_reg; 1140 1141 /* Because we reset the PHY above, we need to re-force TX_CLK in the 1142 * Extended PHY Specific Control Register to 25MHz clock. This 1143 * value defaults back to a 2.5MHz clock when the PHY is reset. 1144 */ 1145 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); 1146 phy_reg |= M88E1000_EPSCR_TX_CLK_25; 1147 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); 1148 1149 /* In addition, because of the s/w reset above, we need to enable 1150 * CRS on TX. This must be set for both full and half duplex 1151 * operation. 1152 */ 1153 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); 1154 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 1155 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg); 1156 } 1157 1158 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) 1159 { 1160 struct e1000_hw *hw = &adapter->hw; 1161 u32 ctrl_reg; 1162 u16 phy_reg; 1163 1164 /* Setup the Device Control Register for PHY loopback test. */ 1165 1166 ctrl_reg = er32(CTRL); 1167 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */ 1168 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1169 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1170 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ 1171 E1000_CTRL_FD); /* Force Duplex to FULL */ 1172 1173 ew32(CTRL, ctrl_reg); 1174 1175 /* Read the PHY Specific Control Register (0x10) */ 1176 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); 1177 1178 /* Clear Auto-Crossover bits in PHY Specific Control Register 1179 * (bits 6:5). 1180 */ 1181 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; 1182 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg); 1183 1184 /* Perform software reset on the PHY */ 1185 e1000_phy_reset(hw); 1186 1187 /* Have to setup TX_CLK and TX_CRS after software reset */ 1188 e1000_phy_reset_clk_and_crs(adapter); 1189 1190 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100); 1191 1192 /* Wait for reset to complete. */ 1193 udelay(500); 1194 1195 /* Have to setup TX_CLK and TX_CRS after software reset */ 1196 e1000_phy_reset_clk_and_crs(adapter); 1197 1198 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1199 e1000_phy_disable_receiver(adapter); 1200 1201 /* Set the loopback bit in the PHY control register. */ 1202 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1203 phy_reg |= MII_CR_LOOPBACK; 1204 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1205 1206 /* Setup TX_CLK and TX_CRS one more time. */ 1207 e1000_phy_reset_clk_and_crs(adapter); 1208 1209 /* Check Phy Configuration */ 1210 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1211 if (phy_reg != 0x4100) 1212 return 9; 1213 1214 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); 1215 if (phy_reg != 0x0070) 1216 return 10; 1217 1218 e1000_read_phy_reg(hw, 29, &phy_reg); 1219 if (phy_reg != 0x001A) 1220 return 11; 1221 1222 return 0; 1223 } 1224 1225 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1226 { 1227 struct e1000_hw *hw = &adapter->hw; 1228 u32 ctrl_reg = 0; 1229 u32 stat_reg = 0; 1230 1231 hw->autoneg = false; 1232 1233 if (hw->phy_type == e1000_phy_m88) { 1234 /* Auto-MDI/MDIX Off */ 1235 e1000_write_phy_reg(hw, 1236 M88E1000_PHY_SPEC_CTRL, 0x0808); 1237 /* reset to update Auto-MDI/MDIX */ 1238 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140); 1239 /* autoneg off */ 1240 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140); 1241 } 1242 1243 ctrl_reg = er32(CTRL); 1244 1245 /* force 1000, set loopback */ 1246 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140); 1247 1248 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1249 ctrl_reg = er32(CTRL); 1250 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1251 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1252 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1253 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1254 E1000_CTRL_FD); /* Force Duplex to FULL */ 1255 1256 if (hw->media_type == e1000_media_type_copper && 1257 hw->phy_type == e1000_phy_m88) 1258 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1259 else { 1260 /* Set the ILOS bit on the fiber Nic is half 1261 * duplex link is detected. 1262 */ 1263 stat_reg = er32(STATUS); 1264 if ((stat_reg & E1000_STATUS_FD) == 0) 1265 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1266 } 1267 1268 ew32(CTRL, ctrl_reg); 1269 1270 /* Disable the receiver on the PHY so when a cable is plugged in, the 1271 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1272 */ 1273 if (hw->phy_type == e1000_phy_m88) 1274 e1000_phy_disable_receiver(adapter); 1275 1276 udelay(500); 1277 1278 return 0; 1279 } 1280 1281 static int e1000_set_phy_loopback(struct e1000_adapter *adapter) 1282 { 1283 struct e1000_hw *hw = &adapter->hw; 1284 u16 phy_reg = 0; 1285 u16 count = 0; 1286 1287 switch (hw->mac_type) { 1288 case e1000_82543: 1289 if (hw->media_type == e1000_media_type_copper) { 1290 /* Attempt to setup Loopback mode on Non-integrated PHY. 1291 * Some PHY registers get corrupted at random, so 1292 * attempt this 10 times. 1293 */ 1294 while (e1000_nonintegrated_phy_loopback(adapter) && 1295 count++ < 10); 1296 if (count < 11) 1297 return 0; 1298 } 1299 break; 1300 1301 case e1000_82544: 1302 case e1000_82540: 1303 case e1000_82545: 1304 case e1000_82545_rev_3: 1305 case e1000_82546: 1306 case e1000_82546_rev_3: 1307 case e1000_82541: 1308 case e1000_82541_rev_2: 1309 case e1000_82547: 1310 case e1000_82547_rev_2: 1311 return e1000_integrated_phy_loopback(adapter); 1312 default: 1313 /* Default PHY loopback work is to read the MII 1314 * control register and assert bit 14 (loopback mode). 1315 */ 1316 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1317 phy_reg |= MII_CR_LOOPBACK; 1318 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1319 return 0; 1320 } 1321 1322 return 8; 1323 } 1324 1325 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1326 { 1327 struct e1000_hw *hw = &adapter->hw; 1328 u32 rctl; 1329 1330 if (hw->media_type == e1000_media_type_fiber || 1331 hw->media_type == e1000_media_type_internal_serdes) { 1332 switch (hw->mac_type) { 1333 case e1000_82545: 1334 case e1000_82546: 1335 case e1000_82545_rev_3: 1336 case e1000_82546_rev_3: 1337 return e1000_set_phy_loopback(adapter); 1338 default: 1339 rctl = er32(RCTL); 1340 rctl |= E1000_RCTL_LBM_TCVR; 1341 ew32(RCTL, rctl); 1342 return 0; 1343 } 1344 } else if (hw->media_type == e1000_media_type_copper) { 1345 return e1000_set_phy_loopback(adapter); 1346 } 1347 1348 return 7; 1349 } 1350 1351 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1352 { 1353 struct e1000_hw *hw = &adapter->hw; 1354 u32 rctl; 1355 u16 phy_reg; 1356 1357 rctl = er32(RCTL); 1358 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1359 ew32(RCTL, rctl); 1360 1361 switch (hw->mac_type) { 1362 case e1000_82545: 1363 case e1000_82546: 1364 case e1000_82545_rev_3: 1365 case e1000_82546_rev_3: 1366 default: 1367 hw->autoneg = true; 1368 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1369 if (phy_reg & MII_CR_LOOPBACK) { 1370 phy_reg &= ~MII_CR_LOOPBACK; 1371 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1372 e1000_phy_reset(hw); 1373 } 1374 break; 1375 } 1376 } 1377 1378 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1379 unsigned int frame_size) 1380 { 1381 memset(skb->data, 0xFF, frame_size); 1382 frame_size &= ~1; 1383 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1384 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1385 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1386 } 1387 1388 static int e1000_check_lbtest_frame(const unsigned char *data, 1389 unsigned int frame_size) 1390 { 1391 frame_size &= ~1; 1392 if (*(data + 3) == 0xFF) { 1393 if ((*(data + frame_size / 2 + 10) == 0xBE) && 1394 (*(data + frame_size / 2 + 12) == 0xAF)) { 1395 return 0; 1396 } 1397 } 1398 return 13; 1399 } 1400 1401 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1402 { 1403 struct e1000_hw *hw = &adapter->hw; 1404 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 1405 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 1406 struct pci_dev *pdev = adapter->pdev; 1407 int i, j, k, l, lc, good_cnt, ret_val = 0; 1408 unsigned long time; 1409 1410 ew32(RDT, rxdr->count - 1); 1411 1412 /* Calculate the loop count based on the largest descriptor ring 1413 * The idea is to wrap the largest ring a number of times using 64 1414 * send/receive pairs during each loop 1415 */ 1416 1417 if (rxdr->count <= txdr->count) 1418 lc = ((txdr->count / 64) * 2) + 1; 1419 else 1420 lc = ((rxdr->count / 64) * 2) + 1; 1421 1422 k = l = 0; 1423 for (j = 0; j <= lc; j++) { /* loop count loop */ 1424 for (i = 0; i < 64; i++) { /* send the packets */ 1425 e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 1426 1024); 1427 dma_sync_single_for_device(&pdev->dev, 1428 txdr->buffer_info[k].dma, 1429 txdr->buffer_info[k].length, 1430 DMA_TO_DEVICE); 1431 if (unlikely(++k == txdr->count)) 1432 k = 0; 1433 } 1434 ew32(TDT, k); 1435 E1000_WRITE_FLUSH(); 1436 msleep(200); 1437 time = jiffies; /* set the start time for the receive */ 1438 good_cnt = 0; 1439 do { /* receive the sent packets */ 1440 dma_sync_single_for_cpu(&pdev->dev, 1441 rxdr->buffer_info[l].dma, 1442 E1000_RXBUFFER_2048, 1443 DMA_FROM_DEVICE); 1444 1445 ret_val = e1000_check_lbtest_frame( 1446 rxdr->buffer_info[l].rxbuf.data + 1447 NET_SKB_PAD + NET_IP_ALIGN, 1448 1024); 1449 if (!ret_val) 1450 good_cnt++; 1451 if (unlikely(++l == rxdr->count)) 1452 l = 0; 1453 /* time + 20 msecs (200 msecs on 2.4) is more than 1454 * enough time to complete the receives, if it's 1455 * exceeded, break and error off 1456 */ 1457 } while (good_cnt < 64 && time_after(time + 20, jiffies)); 1458 1459 if (good_cnt != 64) { 1460 ret_val = 13; /* ret_val is the same as mis-compare */ 1461 break; 1462 } 1463 if (jiffies >= (time + 2)) { 1464 ret_val = 14; /* error code for time out error */ 1465 break; 1466 } 1467 } /* end loop count loop */ 1468 return ret_val; 1469 } 1470 1471 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1472 { 1473 *data = e1000_setup_desc_rings(adapter); 1474 if (*data) 1475 goto out; 1476 *data = e1000_setup_loopback_test(adapter); 1477 if (*data) 1478 goto err_loopback; 1479 *data = e1000_run_loopback_test(adapter); 1480 e1000_loopback_cleanup(adapter); 1481 1482 err_loopback: 1483 e1000_free_desc_rings(adapter); 1484 out: 1485 return *data; 1486 } 1487 1488 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1489 { 1490 struct e1000_hw *hw = &adapter->hw; 1491 *data = 0; 1492 if (hw->media_type == e1000_media_type_internal_serdes) { 1493 int i = 0; 1494 1495 hw->serdes_has_link = false; 1496 1497 /* On some blade server designs, link establishment 1498 * could take as long as 2-3 minutes 1499 */ 1500 do { 1501 e1000_check_for_link(hw); 1502 if (hw->serdes_has_link) 1503 return *data; 1504 msleep(20); 1505 } while (i++ < 3750); 1506 1507 *data = 1; 1508 } else { 1509 e1000_check_for_link(hw); 1510 if (hw->autoneg) /* if auto_neg is set wait for it */ 1511 msleep(4000); 1512 1513 if (!(er32(STATUS) & E1000_STATUS_LU)) 1514 *data = 1; 1515 } 1516 return *data; 1517 } 1518 1519 static int e1000_get_sset_count(struct net_device *netdev, int sset) 1520 { 1521 switch (sset) { 1522 case ETH_SS_TEST: 1523 return E1000_TEST_LEN; 1524 case ETH_SS_STATS: 1525 return E1000_STATS_LEN; 1526 default: 1527 return -EOPNOTSUPP; 1528 } 1529 } 1530 1531 static void e1000_diag_test(struct net_device *netdev, 1532 struct ethtool_test *eth_test, u64 *data) 1533 { 1534 struct e1000_adapter *adapter = netdev_priv(netdev); 1535 struct e1000_hw *hw = &adapter->hw; 1536 bool if_running = netif_running(netdev); 1537 1538 set_bit(__E1000_TESTING, &adapter->flags); 1539 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1540 /* Offline tests */ 1541 1542 /* save speed, duplex, autoneg settings */ 1543 u16 autoneg_advertised = hw->autoneg_advertised; 1544 u8 forced_speed_duplex = hw->forced_speed_duplex; 1545 u8 autoneg = hw->autoneg; 1546 1547 e_info(hw, "offline testing starting\n"); 1548 1549 /* Link test performed before hardware reset so autoneg doesn't 1550 * interfere with test result 1551 */ 1552 if (e1000_link_test(adapter, &data[4])) 1553 eth_test->flags |= ETH_TEST_FL_FAILED; 1554 1555 if (if_running) 1556 /* indicate we're in test mode */ 1557 dev_close(netdev); 1558 else 1559 e1000_reset(adapter); 1560 1561 if (e1000_reg_test(adapter, &data[0])) 1562 eth_test->flags |= ETH_TEST_FL_FAILED; 1563 1564 e1000_reset(adapter); 1565 if (e1000_eeprom_test(adapter, &data[1])) 1566 eth_test->flags |= ETH_TEST_FL_FAILED; 1567 1568 e1000_reset(adapter); 1569 if (e1000_intr_test(adapter, &data[2])) 1570 eth_test->flags |= ETH_TEST_FL_FAILED; 1571 1572 e1000_reset(adapter); 1573 /* make sure the phy is powered up */ 1574 e1000_power_up_phy(adapter); 1575 if (e1000_loopback_test(adapter, &data[3])) 1576 eth_test->flags |= ETH_TEST_FL_FAILED; 1577 1578 /* restore speed, duplex, autoneg settings */ 1579 hw->autoneg_advertised = autoneg_advertised; 1580 hw->forced_speed_duplex = forced_speed_duplex; 1581 hw->autoneg = autoneg; 1582 1583 e1000_reset(adapter); 1584 clear_bit(__E1000_TESTING, &adapter->flags); 1585 if (if_running) 1586 dev_open(netdev); 1587 } else { 1588 e_info(hw, "online testing starting\n"); 1589 /* Online tests */ 1590 if (e1000_link_test(adapter, &data[4])) 1591 eth_test->flags |= ETH_TEST_FL_FAILED; 1592 1593 /* Online tests aren't run; pass by default */ 1594 data[0] = 0; 1595 data[1] = 0; 1596 data[2] = 0; 1597 data[3] = 0; 1598 1599 clear_bit(__E1000_TESTING, &adapter->flags); 1600 } 1601 msleep_interruptible(4 * 1000); 1602 } 1603 1604 static int e1000_wol_exclusion(struct e1000_adapter *adapter, 1605 struct ethtool_wolinfo *wol) 1606 { 1607 struct e1000_hw *hw = &adapter->hw; 1608 int retval = 1; /* fail by default */ 1609 1610 switch (hw->device_id) { 1611 case E1000_DEV_ID_82542: 1612 case E1000_DEV_ID_82543GC_FIBER: 1613 case E1000_DEV_ID_82543GC_COPPER: 1614 case E1000_DEV_ID_82544EI_FIBER: 1615 case E1000_DEV_ID_82546EB_QUAD_COPPER: 1616 case E1000_DEV_ID_82545EM_FIBER: 1617 case E1000_DEV_ID_82545EM_COPPER: 1618 case E1000_DEV_ID_82546GB_QUAD_COPPER: 1619 case E1000_DEV_ID_82546GB_PCIE: 1620 /* these don't support WoL at all */ 1621 wol->supported = 0; 1622 break; 1623 case E1000_DEV_ID_82546EB_FIBER: 1624 case E1000_DEV_ID_82546GB_FIBER: 1625 /* Wake events not supported on port B */ 1626 if (er32(STATUS) & E1000_STATUS_FUNC_1) { 1627 wol->supported = 0; 1628 break; 1629 } 1630 /* return success for non excluded adapter ports */ 1631 retval = 0; 1632 break; 1633 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1634 /* quad port adapters only support WoL on port A */ 1635 if (!adapter->quad_port_a) { 1636 wol->supported = 0; 1637 break; 1638 } 1639 /* return success for non excluded adapter ports */ 1640 retval = 0; 1641 break; 1642 default: 1643 /* dual port cards only support WoL on port A from now on 1644 * unless it was enabled in the eeprom for port B 1645 * so exclude FUNC_1 ports from having WoL enabled 1646 */ 1647 if (er32(STATUS) & E1000_STATUS_FUNC_1 && 1648 !adapter->eeprom_wol) { 1649 wol->supported = 0; 1650 break; 1651 } 1652 1653 retval = 0; 1654 } 1655 1656 return retval; 1657 } 1658 1659 static void e1000_get_wol(struct net_device *netdev, 1660 struct ethtool_wolinfo *wol) 1661 { 1662 struct e1000_adapter *adapter = netdev_priv(netdev); 1663 struct e1000_hw *hw = &adapter->hw; 1664 1665 wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC; 1666 wol->wolopts = 0; 1667 1668 /* this function will set ->supported = 0 and return 1 if wol is not 1669 * supported by this hardware 1670 */ 1671 if (e1000_wol_exclusion(adapter, wol) || 1672 !device_can_wakeup(&adapter->pdev->dev)) 1673 return; 1674 1675 /* apply any specific unsupported masks here */ 1676 switch (hw->device_id) { 1677 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1678 /* KSP3 does not support UCAST wake-ups */ 1679 wol->supported &= ~WAKE_UCAST; 1680 1681 if (adapter->wol & E1000_WUFC_EX) 1682 e_err(drv, "Interface does not support directed " 1683 "(unicast) frame wake-up packets\n"); 1684 break; 1685 default: 1686 break; 1687 } 1688 1689 if (adapter->wol & E1000_WUFC_EX) 1690 wol->wolopts |= WAKE_UCAST; 1691 if (adapter->wol & E1000_WUFC_MC) 1692 wol->wolopts |= WAKE_MCAST; 1693 if (adapter->wol & E1000_WUFC_BC) 1694 wol->wolopts |= WAKE_BCAST; 1695 if (adapter->wol & E1000_WUFC_MAG) 1696 wol->wolopts |= WAKE_MAGIC; 1697 } 1698 1699 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1700 { 1701 struct e1000_adapter *adapter = netdev_priv(netdev); 1702 struct e1000_hw *hw = &adapter->hw; 1703 1704 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) 1705 return -EOPNOTSUPP; 1706 1707 if (e1000_wol_exclusion(adapter, wol) || 1708 !device_can_wakeup(&adapter->pdev->dev)) 1709 return wol->wolopts ? -EOPNOTSUPP : 0; 1710 1711 switch (hw->device_id) { 1712 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1713 if (wol->wolopts & WAKE_UCAST) { 1714 e_err(drv, "Interface does not support directed " 1715 "(unicast) frame wake-up packets\n"); 1716 return -EOPNOTSUPP; 1717 } 1718 break; 1719 default: 1720 break; 1721 } 1722 1723 /* these settings will always override what we currently have */ 1724 adapter->wol = 0; 1725 1726 if (wol->wolopts & WAKE_UCAST) 1727 adapter->wol |= E1000_WUFC_EX; 1728 if (wol->wolopts & WAKE_MCAST) 1729 adapter->wol |= E1000_WUFC_MC; 1730 if (wol->wolopts & WAKE_BCAST) 1731 adapter->wol |= E1000_WUFC_BC; 1732 if (wol->wolopts & WAKE_MAGIC) 1733 adapter->wol |= E1000_WUFC_MAG; 1734 1735 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1736 1737 return 0; 1738 } 1739 1740 static int e1000_set_phys_id(struct net_device *netdev, 1741 enum ethtool_phys_id_state state) 1742 { 1743 struct e1000_adapter *adapter = netdev_priv(netdev); 1744 struct e1000_hw *hw = &adapter->hw; 1745 1746 switch (state) { 1747 case ETHTOOL_ID_ACTIVE: 1748 e1000_setup_led(hw); 1749 return 2; 1750 1751 case ETHTOOL_ID_ON: 1752 e1000_led_on(hw); 1753 break; 1754 1755 case ETHTOOL_ID_OFF: 1756 e1000_led_off(hw); 1757 break; 1758 1759 case ETHTOOL_ID_INACTIVE: 1760 e1000_cleanup_led(hw); 1761 } 1762 1763 return 0; 1764 } 1765 1766 static int e1000_get_coalesce(struct net_device *netdev, 1767 struct ethtool_coalesce *ec) 1768 { 1769 struct e1000_adapter *adapter = netdev_priv(netdev); 1770 1771 if (adapter->hw.mac_type < e1000_82545) 1772 return -EOPNOTSUPP; 1773 1774 if (adapter->itr_setting <= 4) 1775 ec->rx_coalesce_usecs = adapter->itr_setting; 1776 else 1777 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1778 1779 return 0; 1780 } 1781 1782 static int e1000_set_coalesce(struct net_device *netdev, 1783 struct ethtool_coalesce *ec) 1784 { 1785 struct e1000_adapter *adapter = netdev_priv(netdev); 1786 struct e1000_hw *hw = &adapter->hw; 1787 1788 if (hw->mac_type < e1000_82545) 1789 return -EOPNOTSUPP; 1790 1791 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 1792 ((ec->rx_coalesce_usecs > 4) && 1793 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 1794 (ec->rx_coalesce_usecs == 2)) 1795 return -EINVAL; 1796 1797 if (ec->rx_coalesce_usecs == 4) { 1798 adapter->itr = adapter->itr_setting = 4; 1799 } else if (ec->rx_coalesce_usecs <= 3) { 1800 adapter->itr = 20000; 1801 adapter->itr_setting = ec->rx_coalesce_usecs; 1802 } else { 1803 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 1804 adapter->itr_setting = adapter->itr & ~3; 1805 } 1806 1807 if (adapter->itr_setting != 0) 1808 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1809 else 1810 ew32(ITR, 0); 1811 1812 return 0; 1813 } 1814 1815 static int e1000_nway_reset(struct net_device *netdev) 1816 { 1817 struct e1000_adapter *adapter = netdev_priv(netdev); 1818 1819 if (netif_running(netdev)) 1820 e1000_reinit_locked(adapter); 1821 return 0; 1822 } 1823 1824 static void e1000_get_ethtool_stats(struct net_device *netdev, 1825 struct ethtool_stats *stats, u64 *data) 1826 { 1827 struct e1000_adapter *adapter = netdev_priv(netdev); 1828 int i; 1829 char *p = NULL; 1830 const struct e1000_stats *stat = e1000_gstrings_stats; 1831 1832 e1000_update_stats(adapter); 1833 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1834 switch (stat->type) { 1835 case NETDEV_STATS: 1836 p = (char *)netdev + stat->stat_offset; 1837 break; 1838 case E1000_STATS: 1839 p = (char *)adapter + stat->stat_offset; 1840 break; 1841 default: 1842 WARN_ONCE(1, "Invalid E1000 stat type: %u index %d\n", 1843 stat->type, i); 1844 break; 1845 } 1846 1847 if (stat->sizeof_stat == sizeof(u64)) 1848 data[i] = *(u64 *)p; 1849 else 1850 data[i] = *(u32 *)p; 1851 1852 stat++; 1853 } 1854 /* BUG_ON(i != E1000_STATS_LEN); */ 1855 } 1856 1857 static void e1000_get_strings(struct net_device *netdev, u32 stringset, 1858 u8 *data) 1859 { 1860 u8 *p = data; 1861 int i; 1862 1863 switch (stringset) { 1864 case ETH_SS_TEST: 1865 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 1866 break; 1867 case ETH_SS_STATS: 1868 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1869 memcpy(p, e1000_gstrings_stats[i].stat_string, 1870 ETH_GSTRING_LEN); 1871 p += ETH_GSTRING_LEN; 1872 } 1873 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */ 1874 break; 1875 } 1876 } 1877 1878 static const struct ethtool_ops e1000_ethtool_ops = { 1879 .get_settings = e1000_get_settings, 1880 .set_settings = e1000_set_settings, 1881 .get_drvinfo = e1000_get_drvinfo, 1882 .get_regs_len = e1000_get_regs_len, 1883 .get_regs = e1000_get_regs, 1884 .get_wol = e1000_get_wol, 1885 .set_wol = e1000_set_wol, 1886 .get_msglevel = e1000_get_msglevel, 1887 .set_msglevel = e1000_set_msglevel, 1888 .nway_reset = e1000_nway_reset, 1889 .get_link = e1000_get_link, 1890 .get_eeprom_len = e1000_get_eeprom_len, 1891 .get_eeprom = e1000_get_eeprom, 1892 .set_eeprom = e1000_set_eeprom, 1893 .get_ringparam = e1000_get_ringparam, 1894 .set_ringparam = e1000_set_ringparam, 1895 .get_pauseparam = e1000_get_pauseparam, 1896 .set_pauseparam = e1000_set_pauseparam, 1897 .self_test = e1000_diag_test, 1898 .get_strings = e1000_get_strings, 1899 .set_phys_id = e1000_set_phys_id, 1900 .get_ethtool_stats = e1000_get_ethtool_stats, 1901 .get_sset_count = e1000_get_sset_count, 1902 .get_coalesce = e1000_get_coalesce, 1903 .set_coalesce = e1000_set_coalesce, 1904 .get_ts_info = ethtool_op_get_ts_info, 1905 }; 1906 1907 void e1000_set_ethtool_ops(struct net_device *netdev) 1908 { 1909 netdev->ethtool_ops = &e1000_ethtool_ops; 1910 } 1911