1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2006 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 /* ethtool support for e1000 */ 30 31 #include "e1000.h" 32 #include <asm/uaccess.h> 33 34 enum {NETDEV_STATS, E1000_STATS}; 35 36 struct e1000_stats { 37 char stat_string[ETH_GSTRING_LEN]; 38 int type; 39 int sizeof_stat; 40 int stat_offset; 41 }; 42 43 #define E1000_STAT(m) E1000_STATS, \ 44 sizeof(((struct e1000_adapter *)0)->m), \ 45 offsetof(struct e1000_adapter, m) 46 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \ 47 sizeof(((struct net_device *)0)->m), \ 48 offsetof(struct net_device, m) 49 50 static const struct e1000_stats e1000_gstrings_stats[] = { 51 { "rx_packets", E1000_STAT(stats.gprc) }, 52 { "tx_packets", E1000_STAT(stats.gptc) }, 53 { "rx_bytes", E1000_STAT(stats.gorcl) }, 54 { "tx_bytes", E1000_STAT(stats.gotcl) }, 55 { "rx_broadcast", E1000_STAT(stats.bprc) }, 56 { "tx_broadcast", E1000_STAT(stats.bptc) }, 57 { "rx_multicast", E1000_STAT(stats.mprc) }, 58 { "tx_multicast", E1000_STAT(stats.mptc) }, 59 { "rx_errors", E1000_STAT(stats.rxerrc) }, 60 { "tx_errors", E1000_STAT(stats.txerrc) }, 61 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) }, 62 { "multicast", E1000_STAT(stats.mprc) }, 63 { "collisions", E1000_STAT(stats.colc) }, 64 { "rx_length_errors", E1000_STAT(stats.rlerrc) }, 65 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) }, 66 { "rx_crc_errors", E1000_STAT(stats.crcerrs) }, 67 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) }, 68 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, 69 { "rx_missed_errors", E1000_STAT(stats.mpc) }, 70 { "tx_aborted_errors", E1000_STAT(stats.ecol) }, 71 { "tx_carrier_errors", E1000_STAT(stats.tncrs) }, 72 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) }, 73 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) }, 74 { "tx_window_errors", E1000_STAT(stats.latecol) }, 75 { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, 76 { "tx_deferred_ok", E1000_STAT(stats.dc) }, 77 { "tx_single_coll_ok", E1000_STAT(stats.scc) }, 78 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, 79 { "tx_timeout_count", E1000_STAT(tx_timeout_count) }, 80 { "tx_restart_queue", E1000_STAT(restart_queue) }, 81 { "rx_long_length_errors", E1000_STAT(stats.roc) }, 82 { "rx_short_length_errors", E1000_STAT(stats.ruc) }, 83 { "rx_align_errors", E1000_STAT(stats.algnerrc) }, 84 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, 85 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, 86 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, 87 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, 88 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, 89 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, 90 { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, 91 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, 92 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }, 93 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) }, 94 { "tx_smbus", E1000_STAT(stats.mgptc) }, 95 { "rx_smbus", E1000_STAT(stats.mgprc) }, 96 { "dropped_smbus", E1000_STAT(stats.mgpdc) }, 97 }; 98 99 #define E1000_QUEUE_STATS_LEN 0 100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN) 102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 103 "Register test (offline)", "Eeprom test (offline)", 104 "Interrupt test (offline)", "Loopback test (offline)", 105 "Link test (on/offline)" 106 }; 107 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 108 109 static int e1000_get_settings(struct net_device *netdev, 110 struct ethtool_cmd *ecmd) 111 { 112 struct e1000_adapter *adapter = netdev_priv(netdev); 113 struct e1000_hw *hw = &adapter->hw; 114 115 if (hw->media_type == e1000_media_type_copper) { 116 117 ecmd->supported = (SUPPORTED_10baseT_Half | 118 SUPPORTED_10baseT_Full | 119 SUPPORTED_100baseT_Half | 120 SUPPORTED_100baseT_Full | 121 SUPPORTED_1000baseT_Full| 122 SUPPORTED_Autoneg | 123 SUPPORTED_TP); 124 ecmd->advertising = ADVERTISED_TP; 125 126 if (hw->autoneg == 1) { 127 ecmd->advertising |= ADVERTISED_Autoneg; 128 /* the e1000 autoneg seems to match ethtool nicely */ 129 ecmd->advertising |= hw->autoneg_advertised; 130 } 131 132 ecmd->port = PORT_TP; 133 ecmd->phy_address = hw->phy_addr; 134 135 if (hw->mac_type == e1000_82543) 136 ecmd->transceiver = XCVR_EXTERNAL; 137 else 138 ecmd->transceiver = XCVR_INTERNAL; 139 140 } else { 141 ecmd->supported = (SUPPORTED_1000baseT_Full | 142 SUPPORTED_FIBRE | 143 SUPPORTED_Autoneg); 144 145 ecmd->advertising = (ADVERTISED_1000baseT_Full | 146 ADVERTISED_FIBRE | 147 ADVERTISED_Autoneg); 148 149 ecmd->port = PORT_FIBRE; 150 151 if (hw->mac_type >= e1000_82545) 152 ecmd->transceiver = XCVR_INTERNAL; 153 else 154 ecmd->transceiver = XCVR_EXTERNAL; 155 } 156 157 if (er32(STATUS) & E1000_STATUS_LU) { 158 159 e1000_get_speed_and_duplex(hw, &adapter->link_speed, 160 &adapter->link_duplex); 161 ethtool_cmd_speed_set(ecmd, adapter->link_speed); 162 163 /* unfortunately FULL_DUPLEX != DUPLEX_FULL 164 * and HALF_DUPLEX != DUPLEX_HALF 165 */ 166 if (adapter->link_duplex == FULL_DUPLEX) 167 ecmd->duplex = DUPLEX_FULL; 168 else 169 ecmd->duplex = DUPLEX_HALF; 170 } else { 171 ethtool_cmd_speed_set(ecmd, SPEED_UNKNOWN); 172 ecmd->duplex = DUPLEX_UNKNOWN; 173 } 174 175 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || 176 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 177 178 /* MDI-X => 1; MDI => 0 */ 179 if ((hw->media_type == e1000_media_type_copper) && 180 netif_carrier_ok(netdev)) 181 ecmd->eth_tp_mdix = (!!adapter->phy_info.mdix_mode ? 182 ETH_TP_MDI_X : ETH_TP_MDI); 183 else 184 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 185 186 if (hw->mdix == AUTO_ALL_MODES) 187 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 188 else 189 ecmd->eth_tp_mdix_ctrl = hw->mdix; 190 return 0; 191 } 192 193 static int e1000_set_settings(struct net_device *netdev, 194 struct ethtool_cmd *ecmd) 195 { 196 struct e1000_adapter *adapter = netdev_priv(netdev); 197 struct e1000_hw *hw = &adapter->hw; 198 199 /* MDI setting is only allowed when autoneg enabled because 200 * some hardware doesn't allow MDI setting when speed or 201 * duplex is forced. 202 */ 203 if (ecmd->eth_tp_mdix_ctrl) { 204 if (hw->media_type != e1000_media_type_copper) 205 return -EOPNOTSUPP; 206 207 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 208 (ecmd->autoneg != AUTONEG_ENABLE)) { 209 e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 210 return -EINVAL; 211 } 212 } 213 214 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 215 msleep(1); 216 217 if (ecmd->autoneg == AUTONEG_ENABLE) { 218 hw->autoneg = 1; 219 if (hw->media_type == e1000_media_type_fiber) 220 hw->autoneg_advertised = ADVERTISED_1000baseT_Full | 221 ADVERTISED_FIBRE | 222 ADVERTISED_Autoneg; 223 else 224 hw->autoneg_advertised = ecmd->advertising | 225 ADVERTISED_TP | 226 ADVERTISED_Autoneg; 227 ecmd->advertising = hw->autoneg_advertised; 228 } else { 229 u32 speed = ethtool_cmd_speed(ecmd); 230 /* calling this overrides forced MDI setting */ 231 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { 232 clear_bit(__E1000_RESETTING, &adapter->flags); 233 return -EINVAL; 234 } 235 } 236 237 /* MDI-X => 2; MDI => 1; Auto => 3 */ 238 if (ecmd->eth_tp_mdix_ctrl) { 239 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 240 hw->mdix = AUTO_ALL_MODES; 241 else 242 hw->mdix = ecmd->eth_tp_mdix_ctrl; 243 } 244 245 /* reset the link */ 246 247 if (netif_running(adapter->netdev)) { 248 e1000_down(adapter); 249 e1000_up(adapter); 250 } else 251 e1000_reset(adapter); 252 253 clear_bit(__E1000_RESETTING, &adapter->flags); 254 return 0; 255 } 256 257 static u32 e1000_get_link(struct net_device *netdev) 258 { 259 struct e1000_adapter *adapter = netdev_priv(netdev); 260 261 /* If the link is not reported up to netdev, interrupts are disabled, 262 * and so the physical link state may have changed since we last 263 * looked. Set get_link_status to make sure that the true link 264 * state is interrogated, rather than pulling a cached and possibly 265 * stale link state from the driver. 266 */ 267 if (!netif_carrier_ok(netdev)) 268 adapter->hw.get_link_status = 1; 269 270 return e1000_has_link(adapter); 271 } 272 273 static void e1000_get_pauseparam(struct net_device *netdev, 274 struct ethtool_pauseparam *pause) 275 { 276 struct e1000_adapter *adapter = netdev_priv(netdev); 277 struct e1000_hw *hw = &adapter->hw; 278 279 pause->autoneg = 280 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 281 282 if (hw->fc == E1000_FC_RX_PAUSE) 283 pause->rx_pause = 1; 284 else if (hw->fc == E1000_FC_TX_PAUSE) 285 pause->tx_pause = 1; 286 else if (hw->fc == E1000_FC_FULL) { 287 pause->rx_pause = 1; 288 pause->tx_pause = 1; 289 } 290 } 291 292 static int e1000_set_pauseparam(struct net_device *netdev, 293 struct ethtool_pauseparam *pause) 294 { 295 struct e1000_adapter *adapter = netdev_priv(netdev); 296 struct e1000_hw *hw = &adapter->hw; 297 int retval = 0; 298 299 adapter->fc_autoneg = pause->autoneg; 300 301 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 302 msleep(1); 303 304 if (pause->rx_pause && pause->tx_pause) 305 hw->fc = E1000_FC_FULL; 306 else if (pause->rx_pause && !pause->tx_pause) 307 hw->fc = E1000_FC_RX_PAUSE; 308 else if (!pause->rx_pause && pause->tx_pause) 309 hw->fc = E1000_FC_TX_PAUSE; 310 else if (!pause->rx_pause && !pause->tx_pause) 311 hw->fc = E1000_FC_NONE; 312 313 hw->original_fc = hw->fc; 314 315 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 316 if (netif_running(adapter->netdev)) { 317 e1000_down(adapter); 318 e1000_up(adapter); 319 } else 320 e1000_reset(adapter); 321 } else 322 retval = ((hw->media_type == e1000_media_type_fiber) ? 323 e1000_setup_link(hw) : e1000_force_mac_fc(hw)); 324 325 clear_bit(__E1000_RESETTING, &adapter->flags); 326 return retval; 327 } 328 329 static u32 e1000_get_msglevel(struct net_device *netdev) 330 { 331 struct e1000_adapter *adapter = netdev_priv(netdev); 332 return adapter->msg_enable; 333 } 334 335 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 336 { 337 struct e1000_adapter *adapter = netdev_priv(netdev); 338 adapter->msg_enable = data; 339 } 340 341 static int e1000_get_regs_len(struct net_device *netdev) 342 { 343 #define E1000_REGS_LEN 32 344 return E1000_REGS_LEN * sizeof(u32); 345 } 346 347 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs, 348 void *p) 349 { 350 struct e1000_adapter *adapter = netdev_priv(netdev); 351 struct e1000_hw *hw = &adapter->hw; 352 u32 *regs_buff = p; 353 u16 phy_data; 354 355 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 356 357 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; 358 359 regs_buff[0] = er32(CTRL); 360 regs_buff[1] = er32(STATUS); 361 362 regs_buff[2] = er32(RCTL); 363 regs_buff[3] = er32(RDLEN); 364 regs_buff[4] = er32(RDH); 365 regs_buff[5] = er32(RDT); 366 regs_buff[6] = er32(RDTR); 367 368 regs_buff[7] = er32(TCTL); 369 regs_buff[8] = er32(TDLEN); 370 regs_buff[9] = er32(TDH); 371 regs_buff[10] = er32(TDT); 372 regs_buff[11] = er32(TIDV); 373 374 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */ 375 if (hw->phy_type == e1000_phy_igp) { 376 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 377 IGP01E1000_PHY_AGC_A); 378 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & 379 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 380 regs_buff[13] = (u32)phy_data; /* cable length */ 381 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 382 IGP01E1000_PHY_AGC_B); 383 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & 384 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 385 regs_buff[14] = (u32)phy_data; /* cable length */ 386 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 387 IGP01E1000_PHY_AGC_C); 388 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & 389 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 390 regs_buff[15] = (u32)phy_data; /* cable length */ 391 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 392 IGP01E1000_PHY_AGC_D); 393 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & 394 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 395 regs_buff[16] = (u32)phy_data; /* cable length */ 396 regs_buff[17] = 0; /* extended 10bt distance (not needed) */ 397 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); 398 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & 399 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 400 regs_buff[18] = (u32)phy_data; /* cable polarity */ 401 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 402 IGP01E1000_PHY_PCS_INIT_REG); 403 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & 404 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 405 regs_buff[19] = (u32)phy_data; /* cable polarity */ 406 regs_buff[20] = 0; /* polarity correction enabled (always) */ 407 regs_buff[22] = 0; /* phy receive errors (unavailable) */ 408 regs_buff[23] = regs_buff[18]; /* mdix mode */ 409 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); 410 } else { 411 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 412 regs_buff[13] = (u32)phy_data; /* cable length */ 413 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 414 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 415 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 416 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 417 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 418 regs_buff[18] = regs_buff[13]; /* cable polarity */ 419 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 420 regs_buff[20] = regs_buff[17]; /* polarity correction */ 421 /* phy receive errors */ 422 regs_buff[22] = adapter->phy_stats.receive_errors; 423 regs_buff[23] = regs_buff[13]; /* mdix mode */ 424 } 425 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ 426 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); 427 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 428 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 429 if (hw->mac_type >= e1000_82540 && 430 hw->media_type == e1000_media_type_copper) { 431 regs_buff[26] = er32(MANC); 432 } 433 } 434 435 static int e1000_get_eeprom_len(struct net_device *netdev) 436 { 437 struct e1000_adapter *adapter = netdev_priv(netdev); 438 struct e1000_hw *hw = &adapter->hw; 439 440 return hw->eeprom.word_size * 2; 441 } 442 443 static int e1000_get_eeprom(struct net_device *netdev, 444 struct ethtool_eeprom *eeprom, u8 *bytes) 445 { 446 struct e1000_adapter *adapter = netdev_priv(netdev); 447 struct e1000_hw *hw = &adapter->hw; 448 u16 *eeprom_buff; 449 int first_word, last_word; 450 int ret_val = 0; 451 u16 i; 452 453 if (eeprom->len == 0) 454 return -EINVAL; 455 456 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 457 458 first_word = eeprom->offset >> 1; 459 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 460 461 eeprom_buff = kmalloc(sizeof(u16) * 462 (last_word - first_word + 1), GFP_KERNEL); 463 if (!eeprom_buff) 464 return -ENOMEM; 465 466 if (hw->eeprom.type == e1000_eeprom_spi) 467 ret_val = e1000_read_eeprom(hw, first_word, 468 last_word - first_word + 1, 469 eeprom_buff); 470 else { 471 for (i = 0; i < last_word - first_word + 1; i++) { 472 ret_val = e1000_read_eeprom(hw, first_word + i, 1, 473 &eeprom_buff[i]); 474 if (ret_val) 475 break; 476 } 477 } 478 479 /* Device's eeprom is always little-endian, word addressable */ 480 for (i = 0; i < last_word - first_word + 1; i++) 481 le16_to_cpus(&eeprom_buff[i]); 482 483 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), 484 eeprom->len); 485 kfree(eeprom_buff); 486 487 return ret_val; 488 } 489 490 static int e1000_set_eeprom(struct net_device *netdev, 491 struct ethtool_eeprom *eeprom, u8 *bytes) 492 { 493 struct e1000_adapter *adapter = netdev_priv(netdev); 494 struct e1000_hw *hw = &adapter->hw; 495 u16 *eeprom_buff; 496 void *ptr; 497 int max_len, first_word, last_word, ret_val = 0; 498 u16 i; 499 500 if (eeprom->len == 0) 501 return -EOPNOTSUPP; 502 503 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) 504 return -EFAULT; 505 506 max_len = hw->eeprom.word_size * 2; 507 508 first_word = eeprom->offset >> 1; 509 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 510 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 511 if (!eeprom_buff) 512 return -ENOMEM; 513 514 ptr = (void *)eeprom_buff; 515 516 if (eeprom->offset & 1) { 517 /* need read/modify/write of first changed EEPROM word 518 * only the second byte of the word is being modified 519 */ 520 ret_val = e1000_read_eeprom(hw, first_word, 1, 521 &eeprom_buff[0]); 522 ptr++; 523 } 524 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { 525 /* need read/modify/write of last changed EEPROM word 526 * only the first byte of the word is being modified 527 */ 528 ret_val = e1000_read_eeprom(hw, last_word, 1, 529 &eeprom_buff[last_word - first_word]); 530 } 531 532 /* Device's eeprom is always little-endian, word addressable */ 533 for (i = 0; i < last_word - first_word + 1; i++) 534 le16_to_cpus(&eeprom_buff[i]); 535 536 memcpy(ptr, bytes, eeprom->len); 537 538 for (i = 0; i < last_word - first_word + 1; i++) 539 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); 540 541 ret_val = e1000_write_eeprom(hw, first_word, 542 last_word - first_word + 1, eeprom_buff); 543 544 /* Update the checksum over the first part of the EEPROM if needed */ 545 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG)) 546 e1000_update_eeprom_checksum(hw); 547 548 kfree(eeprom_buff); 549 return ret_val; 550 } 551 552 static void e1000_get_drvinfo(struct net_device *netdev, 553 struct ethtool_drvinfo *drvinfo) 554 { 555 struct e1000_adapter *adapter = netdev_priv(netdev); 556 557 strlcpy(drvinfo->driver, e1000_driver_name, 558 sizeof(drvinfo->driver)); 559 strlcpy(drvinfo->version, e1000_driver_version, 560 sizeof(drvinfo->version)); 561 562 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 563 sizeof(drvinfo->bus_info)); 564 drvinfo->regdump_len = e1000_get_regs_len(netdev); 565 drvinfo->eedump_len = e1000_get_eeprom_len(netdev); 566 } 567 568 static void e1000_get_ringparam(struct net_device *netdev, 569 struct ethtool_ringparam *ring) 570 { 571 struct e1000_adapter *adapter = netdev_priv(netdev); 572 struct e1000_hw *hw = &adapter->hw; 573 e1000_mac_type mac_type = hw->mac_type; 574 struct e1000_tx_ring *txdr = adapter->tx_ring; 575 struct e1000_rx_ring *rxdr = adapter->rx_ring; 576 577 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : 578 E1000_MAX_82544_RXD; 579 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : 580 E1000_MAX_82544_TXD; 581 ring->rx_pending = rxdr->count; 582 ring->tx_pending = txdr->count; 583 } 584 585 static int e1000_set_ringparam(struct net_device *netdev, 586 struct ethtool_ringparam *ring) 587 { 588 struct e1000_adapter *adapter = netdev_priv(netdev); 589 struct e1000_hw *hw = &adapter->hw; 590 e1000_mac_type mac_type = hw->mac_type; 591 struct e1000_tx_ring *txdr, *tx_old; 592 struct e1000_rx_ring *rxdr, *rx_old; 593 int i, err; 594 595 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 596 return -EINVAL; 597 598 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 599 msleep(1); 600 601 if (netif_running(adapter->netdev)) 602 e1000_down(adapter); 603 604 tx_old = adapter->tx_ring; 605 rx_old = adapter->rx_ring; 606 607 err = -ENOMEM; 608 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), 609 GFP_KERNEL); 610 if (!txdr) 611 goto err_alloc_tx; 612 613 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), 614 GFP_KERNEL); 615 if (!rxdr) 616 goto err_alloc_rx; 617 618 adapter->tx_ring = txdr; 619 adapter->rx_ring = rxdr; 620 621 rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD); 622 rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ? 623 E1000_MAX_RXD : E1000_MAX_82544_RXD)); 624 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); 625 626 txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD); 627 txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ? 628 E1000_MAX_TXD : E1000_MAX_82544_TXD)); 629 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); 630 631 for (i = 0; i < adapter->num_tx_queues; i++) 632 txdr[i].count = txdr->count; 633 for (i = 0; i < adapter->num_rx_queues; i++) 634 rxdr[i].count = rxdr->count; 635 636 if (netif_running(adapter->netdev)) { 637 /* Try to get new resources before deleting old */ 638 err = e1000_setup_all_rx_resources(adapter); 639 if (err) 640 goto err_setup_rx; 641 err = e1000_setup_all_tx_resources(adapter); 642 if (err) 643 goto err_setup_tx; 644 645 /* save the new, restore the old in order to free it, 646 * then restore the new back again 647 */ 648 649 adapter->rx_ring = rx_old; 650 adapter->tx_ring = tx_old; 651 e1000_free_all_rx_resources(adapter); 652 e1000_free_all_tx_resources(adapter); 653 kfree(tx_old); 654 kfree(rx_old); 655 adapter->rx_ring = rxdr; 656 adapter->tx_ring = txdr; 657 err = e1000_up(adapter); 658 if (err) 659 goto err_setup; 660 } 661 662 clear_bit(__E1000_RESETTING, &adapter->flags); 663 return 0; 664 err_setup_tx: 665 e1000_free_all_rx_resources(adapter); 666 err_setup_rx: 667 adapter->rx_ring = rx_old; 668 adapter->tx_ring = tx_old; 669 kfree(rxdr); 670 err_alloc_rx: 671 kfree(txdr); 672 err_alloc_tx: 673 e1000_up(adapter); 674 err_setup: 675 clear_bit(__E1000_RESETTING, &adapter->flags); 676 return err; 677 } 678 679 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg, 680 u32 mask, u32 write) 681 { 682 struct e1000_hw *hw = &adapter->hw; 683 static const u32 test[] = 684 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; 685 u8 __iomem *address = hw->hw_addr + reg; 686 u32 read; 687 int i; 688 689 for (i = 0; i < ARRAY_SIZE(test); i++) { 690 writel(write & test[i], address); 691 read = readl(address); 692 if (read != (write & test[i] & mask)) { 693 e_err(drv, "pattern test reg %04X failed: " 694 "got 0x%08X expected 0x%08X\n", 695 reg, read, (write & test[i] & mask)); 696 *data = reg; 697 return true; 698 } 699 } 700 return false; 701 } 702 703 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg, 704 u32 mask, u32 write) 705 { 706 struct e1000_hw *hw = &adapter->hw; 707 u8 __iomem *address = hw->hw_addr + reg; 708 u32 read; 709 710 writel(write & mask, address); 711 read = readl(address); 712 if ((read & mask) != (write & mask)) { 713 e_err(drv, "set/check reg %04X test failed: " 714 "got 0x%08X expected 0x%08X\n", 715 reg, (read & mask), (write & mask)); 716 *data = reg; 717 return true; 718 } 719 return false; 720 } 721 722 #define REG_PATTERN_TEST(reg, mask, write) \ 723 do { \ 724 if (reg_pattern_test(adapter, data, \ 725 (hw->mac_type >= e1000_82543) \ 726 ? E1000_##reg : E1000_82542_##reg, \ 727 mask, write)) \ 728 return 1; \ 729 } while (0) 730 731 #define REG_SET_AND_CHECK(reg, mask, write) \ 732 do { \ 733 if (reg_set_and_check(adapter, data, \ 734 (hw->mac_type >= e1000_82543) \ 735 ? E1000_##reg : E1000_82542_##reg, \ 736 mask, write)) \ 737 return 1; \ 738 } while (0) 739 740 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 741 { 742 u32 value, before, after; 743 u32 i, toggle; 744 struct e1000_hw *hw = &adapter->hw; 745 746 /* The status register is Read Only, so a write should fail. 747 * Some bits that get toggled are ignored. 748 */ 749 750 /* there are several bits on newer hardware that are r/w */ 751 toggle = 0xFFFFF833; 752 753 before = er32(STATUS); 754 value = (er32(STATUS) & toggle); 755 ew32(STATUS, toggle); 756 after = er32(STATUS) & toggle; 757 if (value != after) { 758 e_err(drv, "failed STATUS register test got: " 759 "0x%08X expected: 0x%08X\n", after, value); 760 *data = 1; 761 return 1; 762 } 763 /* restore previous status */ 764 ew32(STATUS, before); 765 766 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 767 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); 768 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); 769 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); 770 771 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); 772 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); 773 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); 774 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); 775 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); 776 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); 777 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); 778 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 779 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); 780 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); 781 782 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); 783 784 before = 0x06DFB3FE; 785 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB); 786 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); 787 788 if (hw->mac_type >= e1000_82543) { 789 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF); 790 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 791 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); 792 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 793 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); 794 value = E1000_RAR_ENTRIES; 795 for (i = 0; i < value; i++) { 796 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, 797 0xFFFFFFFF); 798 } 799 } else { 800 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); 801 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); 802 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); 803 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); 804 } 805 806 value = E1000_MC_TBL_SIZE; 807 for (i = 0; i < value; i++) 808 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); 809 810 *data = 0; 811 return 0; 812 } 813 814 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 815 { 816 struct e1000_hw *hw = &adapter->hw; 817 u16 temp; 818 u16 checksum = 0; 819 u16 i; 820 821 *data = 0; 822 /* Read and add up the contents of the EEPROM */ 823 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { 824 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) { 825 *data = 1; 826 break; 827 } 828 checksum += temp; 829 } 830 831 /* If Checksum is not Correct return error else test passed */ 832 if ((checksum != (u16)EEPROM_SUM) && !(*data)) 833 *data = 2; 834 835 return *data; 836 } 837 838 static irqreturn_t e1000_test_intr(int irq, void *data) 839 { 840 struct net_device *netdev = (struct net_device *)data; 841 struct e1000_adapter *adapter = netdev_priv(netdev); 842 struct e1000_hw *hw = &adapter->hw; 843 844 adapter->test_icr |= er32(ICR); 845 846 return IRQ_HANDLED; 847 } 848 849 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 850 { 851 struct net_device *netdev = adapter->netdev; 852 u32 mask, i = 0; 853 bool shared_int = true; 854 u32 irq = adapter->pdev->irq; 855 struct e1000_hw *hw = &adapter->hw; 856 857 *data = 0; 858 859 /* NOTE: we don't test MSI interrupts here, yet 860 * Hook up test interrupt handler just for this test 861 */ 862 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 863 netdev)) 864 shared_int = false; 865 else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, 866 netdev->name, netdev)) { 867 *data = 1; 868 return -1; 869 } 870 e_info(hw, "testing %s interrupt\n", (shared_int ? 871 "shared" : "unshared")); 872 873 /* Disable all the interrupts */ 874 ew32(IMC, 0xFFFFFFFF); 875 E1000_WRITE_FLUSH(); 876 msleep(10); 877 878 /* Test each interrupt */ 879 for (; i < 10; i++) { 880 881 /* Interrupt to test */ 882 mask = 1 << i; 883 884 if (!shared_int) { 885 /* Disable the interrupt to be reported in 886 * the cause register and then force the same 887 * interrupt and see if one gets posted. If 888 * an interrupt was posted to the bus, the 889 * test failed. 890 */ 891 adapter->test_icr = 0; 892 ew32(IMC, mask); 893 ew32(ICS, mask); 894 E1000_WRITE_FLUSH(); 895 msleep(10); 896 897 if (adapter->test_icr & mask) { 898 *data = 3; 899 break; 900 } 901 } 902 903 /* Enable the interrupt to be reported in 904 * the cause register and then force the same 905 * interrupt and see if one gets posted. If 906 * an interrupt was not posted to the bus, the 907 * test failed. 908 */ 909 adapter->test_icr = 0; 910 ew32(IMS, mask); 911 ew32(ICS, mask); 912 E1000_WRITE_FLUSH(); 913 msleep(10); 914 915 if (!(adapter->test_icr & mask)) { 916 *data = 4; 917 break; 918 } 919 920 if (!shared_int) { 921 /* Disable the other interrupts to be reported in 922 * the cause register and then force the other 923 * interrupts and see if any get posted. If 924 * an interrupt was posted to the bus, the 925 * test failed. 926 */ 927 adapter->test_icr = 0; 928 ew32(IMC, ~mask & 0x00007FFF); 929 ew32(ICS, ~mask & 0x00007FFF); 930 E1000_WRITE_FLUSH(); 931 msleep(10); 932 933 if (adapter->test_icr) { 934 *data = 5; 935 break; 936 } 937 } 938 } 939 940 /* Disable all the interrupts */ 941 ew32(IMC, 0xFFFFFFFF); 942 E1000_WRITE_FLUSH(); 943 msleep(10); 944 945 /* Unhook test interrupt handler */ 946 free_irq(irq, netdev); 947 948 return *data; 949 } 950 951 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 952 { 953 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 954 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 955 struct pci_dev *pdev = adapter->pdev; 956 int i; 957 958 if (txdr->desc && txdr->buffer_info) { 959 for (i = 0; i < txdr->count; i++) { 960 if (txdr->buffer_info[i].dma) 961 dma_unmap_single(&pdev->dev, 962 txdr->buffer_info[i].dma, 963 txdr->buffer_info[i].length, 964 DMA_TO_DEVICE); 965 if (txdr->buffer_info[i].skb) 966 dev_kfree_skb(txdr->buffer_info[i].skb); 967 } 968 } 969 970 if (rxdr->desc && rxdr->buffer_info) { 971 for (i = 0; i < rxdr->count; i++) { 972 if (rxdr->buffer_info[i].dma) 973 dma_unmap_single(&pdev->dev, 974 rxdr->buffer_info[i].dma, 975 rxdr->buffer_info[i].length, 976 DMA_FROM_DEVICE); 977 if (rxdr->buffer_info[i].skb) 978 dev_kfree_skb(rxdr->buffer_info[i].skb); 979 } 980 } 981 982 if (txdr->desc) { 983 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, 984 txdr->dma); 985 txdr->desc = NULL; 986 } 987 if (rxdr->desc) { 988 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, 989 rxdr->dma); 990 rxdr->desc = NULL; 991 } 992 993 kfree(txdr->buffer_info); 994 txdr->buffer_info = NULL; 995 kfree(rxdr->buffer_info); 996 rxdr->buffer_info = NULL; 997 } 998 999 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1000 { 1001 struct e1000_hw *hw = &adapter->hw; 1002 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 1003 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 1004 struct pci_dev *pdev = adapter->pdev; 1005 u32 rctl; 1006 int i, ret_val; 1007 1008 /* Setup Tx descriptor ring and Tx buffers */ 1009 1010 if (!txdr->count) 1011 txdr->count = E1000_DEFAULT_TXD; 1012 1013 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer), 1014 GFP_KERNEL); 1015 if (!txdr->buffer_info) { 1016 ret_val = 1; 1017 goto err_nomem; 1018 } 1019 1020 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 1021 txdr->size = ALIGN(txdr->size, 4096); 1022 txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma, 1023 GFP_KERNEL); 1024 if (!txdr->desc) { 1025 ret_val = 2; 1026 goto err_nomem; 1027 } 1028 txdr->next_to_use = txdr->next_to_clean = 0; 1029 1030 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF)); 1031 ew32(TDBAH, ((u64)txdr->dma >> 32)); 1032 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc)); 1033 ew32(TDH, 0); 1034 ew32(TDT, 0); 1035 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | 1036 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1037 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1038 1039 for (i = 0; i < txdr->count; i++) { 1040 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); 1041 struct sk_buff *skb; 1042 unsigned int size = 1024; 1043 1044 skb = alloc_skb(size, GFP_KERNEL); 1045 if (!skb) { 1046 ret_val = 3; 1047 goto err_nomem; 1048 } 1049 skb_put(skb, size); 1050 txdr->buffer_info[i].skb = skb; 1051 txdr->buffer_info[i].length = skb->len; 1052 txdr->buffer_info[i].dma = 1053 dma_map_single(&pdev->dev, skb->data, skb->len, 1054 DMA_TO_DEVICE); 1055 if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) { 1056 ret_val = 4; 1057 goto err_nomem; 1058 } 1059 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); 1060 tx_desc->lower.data = cpu_to_le32(skb->len); 1061 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1062 E1000_TXD_CMD_IFCS | 1063 E1000_TXD_CMD_RPS); 1064 tx_desc->upper.data = 0; 1065 } 1066 1067 /* Setup Rx descriptor ring and Rx buffers */ 1068 1069 if (!rxdr->count) 1070 rxdr->count = E1000_DEFAULT_RXD; 1071 1072 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer), 1073 GFP_KERNEL); 1074 if (!rxdr->buffer_info) { 1075 ret_val = 5; 1076 goto err_nomem; 1077 } 1078 1079 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); 1080 rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, 1081 GFP_KERNEL); 1082 if (!rxdr->desc) { 1083 ret_val = 6; 1084 goto err_nomem; 1085 } 1086 rxdr->next_to_use = rxdr->next_to_clean = 0; 1087 1088 rctl = er32(RCTL); 1089 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1090 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF)); 1091 ew32(RDBAH, ((u64)rxdr->dma >> 32)); 1092 ew32(RDLEN, rxdr->size); 1093 ew32(RDH, 0); 1094 ew32(RDT, 0); 1095 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1096 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1097 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); 1098 ew32(RCTL, rctl); 1099 1100 for (i = 0; i < rxdr->count; i++) { 1101 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); 1102 struct sk_buff *skb; 1103 1104 skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL); 1105 if (!skb) { 1106 ret_val = 7; 1107 goto err_nomem; 1108 } 1109 skb_reserve(skb, NET_IP_ALIGN); 1110 rxdr->buffer_info[i].skb = skb; 1111 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048; 1112 rxdr->buffer_info[i].dma = 1113 dma_map_single(&pdev->dev, skb->data, 1114 E1000_RXBUFFER_2048, DMA_FROM_DEVICE); 1115 if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) { 1116 ret_val = 8; 1117 goto err_nomem; 1118 } 1119 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); 1120 memset(skb->data, 0x00, skb->len); 1121 } 1122 1123 return 0; 1124 1125 err_nomem: 1126 e1000_free_desc_rings(adapter); 1127 return ret_val; 1128 } 1129 1130 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1131 { 1132 struct e1000_hw *hw = &adapter->hw; 1133 1134 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1135 e1000_write_phy_reg(hw, 29, 0x001F); 1136 e1000_write_phy_reg(hw, 30, 0x8FFC); 1137 e1000_write_phy_reg(hw, 29, 0x001A); 1138 e1000_write_phy_reg(hw, 30, 0x8FF0); 1139 } 1140 1141 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) 1142 { 1143 struct e1000_hw *hw = &adapter->hw; 1144 u16 phy_reg; 1145 1146 /* Because we reset the PHY above, we need to re-force TX_CLK in the 1147 * Extended PHY Specific Control Register to 25MHz clock. This 1148 * value defaults back to a 2.5MHz clock when the PHY is reset. 1149 */ 1150 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); 1151 phy_reg |= M88E1000_EPSCR_TX_CLK_25; 1152 e1000_write_phy_reg(hw, 1153 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); 1154 1155 /* In addition, because of the s/w reset above, we need to enable 1156 * CRS on TX. This must be set for both full and half duplex 1157 * operation. 1158 */ 1159 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); 1160 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 1161 e1000_write_phy_reg(hw, 1162 M88E1000_PHY_SPEC_CTRL, phy_reg); 1163 } 1164 1165 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) 1166 { 1167 struct e1000_hw *hw = &adapter->hw; 1168 u32 ctrl_reg; 1169 u16 phy_reg; 1170 1171 /* Setup the Device Control Register for PHY loopback test. */ 1172 1173 ctrl_reg = er32(CTRL); 1174 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */ 1175 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1176 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1177 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ 1178 E1000_CTRL_FD); /* Force Duplex to FULL */ 1179 1180 ew32(CTRL, ctrl_reg); 1181 1182 /* Read the PHY Specific Control Register (0x10) */ 1183 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); 1184 1185 /* Clear Auto-Crossover bits in PHY Specific Control Register 1186 * (bits 6:5). 1187 */ 1188 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; 1189 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg); 1190 1191 /* Perform software reset on the PHY */ 1192 e1000_phy_reset(hw); 1193 1194 /* Have to setup TX_CLK and TX_CRS after software reset */ 1195 e1000_phy_reset_clk_and_crs(adapter); 1196 1197 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100); 1198 1199 /* Wait for reset to complete. */ 1200 udelay(500); 1201 1202 /* Have to setup TX_CLK and TX_CRS after software reset */ 1203 e1000_phy_reset_clk_and_crs(adapter); 1204 1205 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1206 e1000_phy_disable_receiver(adapter); 1207 1208 /* Set the loopback bit in the PHY control register. */ 1209 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1210 phy_reg |= MII_CR_LOOPBACK; 1211 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1212 1213 /* Setup TX_CLK and TX_CRS one more time. */ 1214 e1000_phy_reset_clk_and_crs(adapter); 1215 1216 /* Check Phy Configuration */ 1217 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1218 if (phy_reg != 0x4100) 1219 return 9; 1220 1221 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); 1222 if (phy_reg != 0x0070) 1223 return 10; 1224 1225 e1000_read_phy_reg(hw, 29, &phy_reg); 1226 if (phy_reg != 0x001A) 1227 return 11; 1228 1229 return 0; 1230 } 1231 1232 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1233 { 1234 struct e1000_hw *hw = &adapter->hw; 1235 u32 ctrl_reg = 0; 1236 u32 stat_reg = 0; 1237 1238 hw->autoneg = false; 1239 1240 if (hw->phy_type == e1000_phy_m88) { 1241 /* Auto-MDI/MDIX Off */ 1242 e1000_write_phy_reg(hw, 1243 M88E1000_PHY_SPEC_CTRL, 0x0808); 1244 /* reset to update Auto-MDI/MDIX */ 1245 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140); 1246 /* autoneg off */ 1247 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140); 1248 } 1249 1250 ctrl_reg = er32(CTRL); 1251 1252 /* force 1000, set loopback */ 1253 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140); 1254 1255 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1256 ctrl_reg = er32(CTRL); 1257 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1258 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1259 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1260 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1261 E1000_CTRL_FD); /* Force Duplex to FULL */ 1262 1263 if (hw->media_type == e1000_media_type_copper && 1264 hw->phy_type == e1000_phy_m88) 1265 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1266 else { 1267 /* Set the ILOS bit on the fiber Nic is half 1268 * duplex link is detected. 1269 */ 1270 stat_reg = er32(STATUS); 1271 if ((stat_reg & E1000_STATUS_FD) == 0) 1272 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1273 } 1274 1275 ew32(CTRL, ctrl_reg); 1276 1277 /* Disable the receiver on the PHY so when a cable is plugged in, the 1278 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1279 */ 1280 if (hw->phy_type == e1000_phy_m88) 1281 e1000_phy_disable_receiver(adapter); 1282 1283 udelay(500); 1284 1285 return 0; 1286 } 1287 1288 static int e1000_set_phy_loopback(struct e1000_adapter *adapter) 1289 { 1290 struct e1000_hw *hw = &adapter->hw; 1291 u16 phy_reg = 0; 1292 u16 count = 0; 1293 1294 switch (hw->mac_type) { 1295 case e1000_82543: 1296 if (hw->media_type == e1000_media_type_copper) { 1297 /* Attempt to setup Loopback mode on Non-integrated PHY. 1298 * Some PHY registers get corrupted at random, so 1299 * attempt this 10 times. 1300 */ 1301 while (e1000_nonintegrated_phy_loopback(adapter) && 1302 count++ < 10); 1303 if (count < 11) 1304 return 0; 1305 } 1306 break; 1307 1308 case e1000_82544: 1309 case e1000_82540: 1310 case e1000_82545: 1311 case e1000_82545_rev_3: 1312 case e1000_82546: 1313 case e1000_82546_rev_3: 1314 case e1000_82541: 1315 case e1000_82541_rev_2: 1316 case e1000_82547: 1317 case e1000_82547_rev_2: 1318 return e1000_integrated_phy_loopback(adapter); 1319 break; 1320 default: 1321 /* Default PHY loopback work is to read the MII 1322 * control register and assert bit 14 (loopback mode). 1323 */ 1324 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1325 phy_reg |= MII_CR_LOOPBACK; 1326 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1327 return 0; 1328 break; 1329 } 1330 1331 return 8; 1332 } 1333 1334 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1335 { 1336 struct e1000_hw *hw = &adapter->hw; 1337 u32 rctl; 1338 1339 if (hw->media_type == e1000_media_type_fiber || 1340 hw->media_type == e1000_media_type_internal_serdes) { 1341 switch (hw->mac_type) { 1342 case e1000_82545: 1343 case e1000_82546: 1344 case e1000_82545_rev_3: 1345 case e1000_82546_rev_3: 1346 return e1000_set_phy_loopback(adapter); 1347 break; 1348 default: 1349 rctl = er32(RCTL); 1350 rctl |= E1000_RCTL_LBM_TCVR; 1351 ew32(RCTL, rctl); 1352 return 0; 1353 } 1354 } else if (hw->media_type == e1000_media_type_copper) 1355 return e1000_set_phy_loopback(adapter); 1356 1357 return 7; 1358 } 1359 1360 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1361 { 1362 struct e1000_hw *hw = &adapter->hw; 1363 u32 rctl; 1364 u16 phy_reg; 1365 1366 rctl = er32(RCTL); 1367 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1368 ew32(RCTL, rctl); 1369 1370 switch (hw->mac_type) { 1371 case e1000_82545: 1372 case e1000_82546: 1373 case e1000_82545_rev_3: 1374 case e1000_82546_rev_3: 1375 default: 1376 hw->autoneg = true; 1377 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1378 if (phy_reg & MII_CR_LOOPBACK) { 1379 phy_reg &= ~MII_CR_LOOPBACK; 1380 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1381 e1000_phy_reset(hw); 1382 } 1383 break; 1384 } 1385 } 1386 1387 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1388 unsigned int frame_size) 1389 { 1390 memset(skb->data, 0xFF, frame_size); 1391 frame_size &= ~1; 1392 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1393 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1394 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1395 } 1396 1397 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1398 unsigned int frame_size) 1399 { 1400 frame_size &= ~1; 1401 if (*(skb->data + 3) == 0xFF) { 1402 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1403 (*(skb->data + frame_size / 2 + 12) == 0xAF)) { 1404 return 0; 1405 } 1406 } 1407 return 13; 1408 } 1409 1410 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1411 { 1412 struct e1000_hw *hw = &adapter->hw; 1413 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 1414 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 1415 struct pci_dev *pdev = adapter->pdev; 1416 int i, j, k, l, lc, good_cnt, ret_val=0; 1417 unsigned long time; 1418 1419 ew32(RDT, rxdr->count - 1); 1420 1421 /* Calculate the loop count based on the largest descriptor ring 1422 * The idea is to wrap the largest ring a number of times using 64 1423 * send/receive pairs during each loop 1424 */ 1425 1426 if (rxdr->count <= txdr->count) 1427 lc = ((txdr->count / 64) * 2) + 1; 1428 else 1429 lc = ((rxdr->count / 64) * 2) + 1; 1430 1431 k = l = 0; 1432 for (j = 0; j <= lc; j++) { /* loop count loop */ 1433 for (i = 0; i < 64; i++) { /* send the packets */ 1434 e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 1435 1024); 1436 dma_sync_single_for_device(&pdev->dev, 1437 txdr->buffer_info[k].dma, 1438 txdr->buffer_info[k].length, 1439 DMA_TO_DEVICE); 1440 if (unlikely(++k == txdr->count)) k = 0; 1441 } 1442 ew32(TDT, k); 1443 E1000_WRITE_FLUSH(); 1444 msleep(200); 1445 time = jiffies; /* set the start time for the receive */ 1446 good_cnt = 0; 1447 do { /* receive the sent packets */ 1448 dma_sync_single_for_cpu(&pdev->dev, 1449 rxdr->buffer_info[l].dma, 1450 rxdr->buffer_info[l].length, 1451 DMA_FROM_DEVICE); 1452 1453 ret_val = e1000_check_lbtest_frame( 1454 rxdr->buffer_info[l].skb, 1455 1024); 1456 if (!ret_val) 1457 good_cnt++; 1458 if (unlikely(++l == rxdr->count)) l = 0; 1459 /* time + 20 msecs (200 msecs on 2.4) is more than 1460 * enough time to complete the receives, if it's 1461 * exceeded, break and error off 1462 */ 1463 } while (good_cnt < 64 && time_after(time + 20, jiffies)); 1464 1465 if (good_cnt != 64) { 1466 ret_val = 13; /* ret_val is the same as mis-compare */ 1467 break; 1468 } 1469 if (jiffies >= (time + 2)) { 1470 ret_val = 14; /* error code for time out error */ 1471 break; 1472 } 1473 } /* end loop count loop */ 1474 return ret_val; 1475 } 1476 1477 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1478 { 1479 *data = e1000_setup_desc_rings(adapter); 1480 if (*data) 1481 goto out; 1482 *data = e1000_setup_loopback_test(adapter); 1483 if (*data) 1484 goto err_loopback; 1485 *data = e1000_run_loopback_test(adapter); 1486 e1000_loopback_cleanup(adapter); 1487 1488 err_loopback: 1489 e1000_free_desc_rings(adapter); 1490 out: 1491 return *data; 1492 } 1493 1494 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1495 { 1496 struct e1000_hw *hw = &adapter->hw; 1497 *data = 0; 1498 if (hw->media_type == e1000_media_type_internal_serdes) { 1499 int i = 0; 1500 hw->serdes_has_link = false; 1501 1502 /* On some blade server designs, link establishment 1503 * could take as long as 2-3 minutes 1504 */ 1505 do { 1506 e1000_check_for_link(hw); 1507 if (hw->serdes_has_link) 1508 return *data; 1509 msleep(20); 1510 } while (i++ < 3750); 1511 1512 *data = 1; 1513 } else { 1514 e1000_check_for_link(hw); 1515 if (hw->autoneg) /* if auto_neg is set wait for it */ 1516 msleep(4000); 1517 1518 if (!(er32(STATUS) & E1000_STATUS_LU)) { 1519 *data = 1; 1520 } 1521 } 1522 return *data; 1523 } 1524 1525 static int e1000_get_sset_count(struct net_device *netdev, int sset) 1526 { 1527 switch (sset) { 1528 case ETH_SS_TEST: 1529 return E1000_TEST_LEN; 1530 case ETH_SS_STATS: 1531 return E1000_STATS_LEN; 1532 default: 1533 return -EOPNOTSUPP; 1534 } 1535 } 1536 1537 static void e1000_diag_test(struct net_device *netdev, 1538 struct ethtool_test *eth_test, u64 *data) 1539 { 1540 struct e1000_adapter *adapter = netdev_priv(netdev); 1541 struct e1000_hw *hw = &adapter->hw; 1542 bool if_running = netif_running(netdev); 1543 1544 set_bit(__E1000_TESTING, &adapter->flags); 1545 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1546 /* Offline tests */ 1547 1548 /* save speed, duplex, autoneg settings */ 1549 u16 autoneg_advertised = hw->autoneg_advertised; 1550 u8 forced_speed_duplex = hw->forced_speed_duplex; 1551 u8 autoneg = hw->autoneg; 1552 1553 e_info(hw, "offline testing starting\n"); 1554 1555 /* Link test performed before hardware reset so autoneg doesn't 1556 * interfere with test result 1557 */ 1558 if (e1000_link_test(adapter, &data[4])) 1559 eth_test->flags |= ETH_TEST_FL_FAILED; 1560 1561 if (if_running) 1562 /* indicate we're in test mode */ 1563 dev_close(netdev); 1564 else 1565 e1000_reset(adapter); 1566 1567 if (e1000_reg_test(adapter, &data[0])) 1568 eth_test->flags |= ETH_TEST_FL_FAILED; 1569 1570 e1000_reset(adapter); 1571 if (e1000_eeprom_test(adapter, &data[1])) 1572 eth_test->flags |= ETH_TEST_FL_FAILED; 1573 1574 e1000_reset(adapter); 1575 if (e1000_intr_test(adapter, &data[2])) 1576 eth_test->flags |= ETH_TEST_FL_FAILED; 1577 1578 e1000_reset(adapter); 1579 /* make sure the phy is powered up */ 1580 e1000_power_up_phy(adapter); 1581 if (e1000_loopback_test(adapter, &data[3])) 1582 eth_test->flags |= ETH_TEST_FL_FAILED; 1583 1584 /* restore speed, duplex, autoneg settings */ 1585 hw->autoneg_advertised = autoneg_advertised; 1586 hw->forced_speed_duplex = forced_speed_duplex; 1587 hw->autoneg = autoneg; 1588 1589 e1000_reset(adapter); 1590 clear_bit(__E1000_TESTING, &adapter->flags); 1591 if (if_running) 1592 dev_open(netdev); 1593 } else { 1594 e_info(hw, "online testing starting\n"); 1595 /* Online tests */ 1596 if (e1000_link_test(adapter, &data[4])) 1597 eth_test->flags |= ETH_TEST_FL_FAILED; 1598 1599 /* Online tests aren't run; pass by default */ 1600 data[0] = 0; 1601 data[1] = 0; 1602 data[2] = 0; 1603 data[3] = 0; 1604 1605 clear_bit(__E1000_TESTING, &adapter->flags); 1606 } 1607 msleep_interruptible(4 * 1000); 1608 } 1609 1610 static int e1000_wol_exclusion(struct e1000_adapter *adapter, 1611 struct ethtool_wolinfo *wol) 1612 { 1613 struct e1000_hw *hw = &adapter->hw; 1614 int retval = 1; /* fail by default */ 1615 1616 switch (hw->device_id) { 1617 case E1000_DEV_ID_82542: 1618 case E1000_DEV_ID_82543GC_FIBER: 1619 case E1000_DEV_ID_82543GC_COPPER: 1620 case E1000_DEV_ID_82544EI_FIBER: 1621 case E1000_DEV_ID_82546EB_QUAD_COPPER: 1622 case E1000_DEV_ID_82545EM_FIBER: 1623 case E1000_DEV_ID_82545EM_COPPER: 1624 case E1000_DEV_ID_82546GB_QUAD_COPPER: 1625 case E1000_DEV_ID_82546GB_PCIE: 1626 /* these don't support WoL at all */ 1627 wol->supported = 0; 1628 break; 1629 case E1000_DEV_ID_82546EB_FIBER: 1630 case E1000_DEV_ID_82546GB_FIBER: 1631 /* Wake events not supported on port B */ 1632 if (er32(STATUS) & E1000_STATUS_FUNC_1) { 1633 wol->supported = 0; 1634 break; 1635 } 1636 /* return success for non excluded adapter ports */ 1637 retval = 0; 1638 break; 1639 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1640 /* quad port adapters only support WoL on port A */ 1641 if (!adapter->quad_port_a) { 1642 wol->supported = 0; 1643 break; 1644 } 1645 /* return success for non excluded adapter ports */ 1646 retval = 0; 1647 break; 1648 default: 1649 /* dual port cards only support WoL on port A from now on 1650 * unless it was enabled in the eeprom for port B 1651 * so exclude FUNC_1 ports from having WoL enabled 1652 */ 1653 if (er32(STATUS) & E1000_STATUS_FUNC_1 && 1654 !adapter->eeprom_wol) { 1655 wol->supported = 0; 1656 break; 1657 } 1658 1659 retval = 0; 1660 } 1661 1662 return retval; 1663 } 1664 1665 static void e1000_get_wol(struct net_device *netdev, 1666 struct ethtool_wolinfo *wol) 1667 { 1668 struct e1000_adapter *adapter = netdev_priv(netdev); 1669 struct e1000_hw *hw = &adapter->hw; 1670 1671 wol->supported = WAKE_UCAST | WAKE_MCAST | 1672 WAKE_BCAST | WAKE_MAGIC; 1673 wol->wolopts = 0; 1674 1675 /* this function will set ->supported = 0 and return 1 if wol is not 1676 * supported by this hardware 1677 */ 1678 if (e1000_wol_exclusion(adapter, wol) || 1679 !device_can_wakeup(&adapter->pdev->dev)) 1680 return; 1681 1682 /* apply any specific unsupported masks here */ 1683 switch (hw->device_id) { 1684 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1685 /* KSP3 does not support UCAST wake-ups */ 1686 wol->supported &= ~WAKE_UCAST; 1687 1688 if (adapter->wol & E1000_WUFC_EX) 1689 e_err(drv, "Interface does not support directed " 1690 "(unicast) frame wake-up packets\n"); 1691 break; 1692 default: 1693 break; 1694 } 1695 1696 if (adapter->wol & E1000_WUFC_EX) 1697 wol->wolopts |= WAKE_UCAST; 1698 if (adapter->wol & E1000_WUFC_MC) 1699 wol->wolopts |= WAKE_MCAST; 1700 if (adapter->wol & E1000_WUFC_BC) 1701 wol->wolopts |= WAKE_BCAST; 1702 if (adapter->wol & E1000_WUFC_MAG) 1703 wol->wolopts |= WAKE_MAGIC; 1704 } 1705 1706 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1707 { 1708 struct e1000_adapter *adapter = netdev_priv(netdev); 1709 struct e1000_hw *hw = &adapter->hw; 1710 1711 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) 1712 return -EOPNOTSUPP; 1713 1714 if (e1000_wol_exclusion(adapter, wol) || 1715 !device_can_wakeup(&adapter->pdev->dev)) 1716 return wol->wolopts ? -EOPNOTSUPP : 0; 1717 1718 switch (hw->device_id) { 1719 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1720 if (wol->wolopts & WAKE_UCAST) { 1721 e_err(drv, "Interface does not support directed " 1722 "(unicast) frame wake-up packets\n"); 1723 return -EOPNOTSUPP; 1724 } 1725 break; 1726 default: 1727 break; 1728 } 1729 1730 /* these settings will always override what we currently have */ 1731 adapter->wol = 0; 1732 1733 if (wol->wolopts & WAKE_UCAST) 1734 adapter->wol |= E1000_WUFC_EX; 1735 if (wol->wolopts & WAKE_MCAST) 1736 adapter->wol |= E1000_WUFC_MC; 1737 if (wol->wolopts & WAKE_BCAST) 1738 adapter->wol |= E1000_WUFC_BC; 1739 if (wol->wolopts & WAKE_MAGIC) 1740 adapter->wol |= E1000_WUFC_MAG; 1741 1742 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1743 1744 return 0; 1745 } 1746 1747 static int e1000_set_phys_id(struct net_device *netdev, 1748 enum ethtool_phys_id_state state) 1749 { 1750 struct e1000_adapter *adapter = netdev_priv(netdev); 1751 struct e1000_hw *hw = &adapter->hw; 1752 1753 switch (state) { 1754 case ETHTOOL_ID_ACTIVE: 1755 e1000_setup_led(hw); 1756 return 2; 1757 1758 case ETHTOOL_ID_ON: 1759 e1000_led_on(hw); 1760 break; 1761 1762 case ETHTOOL_ID_OFF: 1763 e1000_led_off(hw); 1764 break; 1765 1766 case ETHTOOL_ID_INACTIVE: 1767 e1000_cleanup_led(hw); 1768 } 1769 1770 return 0; 1771 } 1772 1773 static int e1000_get_coalesce(struct net_device *netdev, 1774 struct ethtool_coalesce *ec) 1775 { 1776 struct e1000_adapter *adapter = netdev_priv(netdev); 1777 1778 if (adapter->hw.mac_type < e1000_82545) 1779 return -EOPNOTSUPP; 1780 1781 if (adapter->itr_setting <= 4) 1782 ec->rx_coalesce_usecs = adapter->itr_setting; 1783 else 1784 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1785 1786 return 0; 1787 } 1788 1789 static int e1000_set_coalesce(struct net_device *netdev, 1790 struct ethtool_coalesce *ec) 1791 { 1792 struct e1000_adapter *adapter = netdev_priv(netdev); 1793 struct e1000_hw *hw = &adapter->hw; 1794 1795 if (hw->mac_type < e1000_82545) 1796 return -EOPNOTSUPP; 1797 1798 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 1799 ((ec->rx_coalesce_usecs > 4) && 1800 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 1801 (ec->rx_coalesce_usecs == 2)) 1802 return -EINVAL; 1803 1804 if (ec->rx_coalesce_usecs == 4) { 1805 adapter->itr = adapter->itr_setting = 4; 1806 } else if (ec->rx_coalesce_usecs <= 3) { 1807 adapter->itr = 20000; 1808 adapter->itr_setting = ec->rx_coalesce_usecs; 1809 } else { 1810 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 1811 adapter->itr_setting = adapter->itr & ~3; 1812 } 1813 1814 if (adapter->itr_setting != 0) 1815 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1816 else 1817 ew32(ITR, 0); 1818 1819 return 0; 1820 } 1821 1822 static int e1000_nway_reset(struct net_device *netdev) 1823 { 1824 struct e1000_adapter *adapter = netdev_priv(netdev); 1825 if (netif_running(netdev)) 1826 e1000_reinit_locked(adapter); 1827 return 0; 1828 } 1829 1830 static void e1000_get_ethtool_stats(struct net_device *netdev, 1831 struct ethtool_stats *stats, u64 *data) 1832 { 1833 struct e1000_adapter *adapter = netdev_priv(netdev); 1834 int i; 1835 char *p = NULL; 1836 1837 e1000_update_stats(adapter); 1838 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1839 switch (e1000_gstrings_stats[i].type) { 1840 case NETDEV_STATS: 1841 p = (char *) netdev + 1842 e1000_gstrings_stats[i].stat_offset; 1843 break; 1844 case E1000_STATS: 1845 p = (char *) adapter + 1846 e1000_gstrings_stats[i].stat_offset; 1847 break; 1848 } 1849 1850 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 1851 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 1852 } 1853 /* BUG_ON(i != E1000_STATS_LEN); */ 1854 } 1855 1856 static void e1000_get_strings(struct net_device *netdev, u32 stringset, 1857 u8 *data) 1858 { 1859 u8 *p = data; 1860 int i; 1861 1862 switch (stringset) { 1863 case ETH_SS_TEST: 1864 memcpy(data, *e1000_gstrings_test, 1865 sizeof(e1000_gstrings_test)); 1866 break; 1867 case ETH_SS_STATS: 1868 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1869 memcpy(p, e1000_gstrings_stats[i].stat_string, 1870 ETH_GSTRING_LEN); 1871 p += ETH_GSTRING_LEN; 1872 } 1873 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */ 1874 break; 1875 } 1876 } 1877 1878 static const struct ethtool_ops e1000_ethtool_ops = { 1879 .get_settings = e1000_get_settings, 1880 .set_settings = e1000_set_settings, 1881 .get_drvinfo = e1000_get_drvinfo, 1882 .get_regs_len = e1000_get_regs_len, 1883 .get_regs = e1000_get_regs, 1884 .get_wol = e1000_get_wol, 1885 .set_wol = e1000_set_wol, 1886 .get_msglevel = e1000_get_msglevel, 1887 .set_msglevel = e1000_set_msglevel, 1888 .nway_reset = e1000_nway_reset, 1889 .get_link = e1000_get_link, 1890 .get_eeprom_len = e1000_get_eeprom_len, 1891 .get_eeprom = e1000_get_eeprom, 1892 .set_eeprom = e1000_set_eeprom, 1893 .get_ringparam = e1000_get_ringparam, 1894 .set_ringparam = e1000_set_ringparam, 1895 .get_pauseparam = e1000_get_pauseparam, 1896 .set_pauseparam = e1000_set_pauseparam, 1897 .self_test = e1000_diag_test, 1898 .get_strings = e1000_get_strings, 1899 .set_phys_id = e1000_set_phys_id, 1900 .get_ethtool_stats = e1000_get_ethtool_stats, 1901 .get_sset_count = e1000_get_sset_count, 1902 .get_coalesce = e1000_get_coalesce, 1903 .set_coalesce = e1000_set_coalesce, 1904 .get_ts_info = ethtool_op_get_ts_info, 1905 }; 1906 1907 void e1000_set_ethtool_ops(struct net_device *netdev) 1908 { 1909 netdev->ethtool_ops = &e1000_ethtool_ops; 1910 } 1911