1 /******************************************************************************* 2 * Intel PRO/1000 Linux driver 3 * Copyright(c) 1999 - 2006 Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * The full GNU General Public License is included in this distribution in 15 * the file called "COPYING". 16 * 17 * Contact Information: 18 * Linux NICS <linux.nics@intel.com> 19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 21 * 22 ******************************************************************************/ 23 24 /* ethtool support for e1000 */ 25 26 #include "e1000.h" 27 #include <linux/jiffies.h> 28 #include <linux/uaccess.h> 29 30 enum {NETDEV_STATS, E1000_STATS}; 31 32 struct e1000_stats { 33 char stat_string[ETH_GSTRING_LEN]; 34 int type; 35 int sizeof_stat; 36 int stat_offset; 37 }; 38 39 #define E1000_STAT(m) E1000_STATS, \ 40 sizeof(((struct e1000_adapter *)0)->m), \ 41 offsetof(struct e1000_adapter, m) 42 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \ 43 sizeof(((struct net_device *)0)->m), \ 44 offsetof(struct net_device, m) 45 46 static const struct e1000_stats e1000_gstrings_stats[] = { 47 { "rx_packets", E1000_STAT(stats.gprc) }, 48 { "tx_packets", E1000_STAT(stats.gptc) }, 49 { "rx_bytes", E1000_STAT(stats.gorcl) }, 50 { "tx_bytes", E1000_STAT(stats.gotcl) }, 51 { "rx_broadcast", E1000_STAT(stats.bprc) }, 52 { "tx_broadcast", E1000_STAT(stats.bptc) }, 53 { "rx_multicast", E1000_STAT(stats.mprc) }, 54 { "tx_multicast", E1000_STAT(stats.mptc) }, 55 { "rx_errors", E1000_STAT(stats.rxerrc) }, 56 { "tx_errors", E1000_STAT(stats.txerrc) }, 57 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) }, 58 { "multicast", E1000_STAT(stats.mprc) }, 59 { "collisions", E1000_STAT(stats.colc) }, 60 { "rx_length_errors", E1000_STAT(stats.rlerrc) }, 61 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) }, 62 { "rx_crc_errors", E1000_STAT(stats.crcerrs) }, 63 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) }, 64 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, 65 { "rx_missed_errors", E1000_STAT(stats.mpc) }, 66 { "tx_aborted_errors", E1000_STAT(stats.ecol) }, 67 { "tx_carrier_errors", E1000_STAT(stats.tncrs) }, 68 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) }, 69 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) }, 70 { "tx_window_errors", E1000_STAT(stats.latecol) }, 71 { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, 72 { "tx_deferred_ok", E1000_STAT(stats.dc) }, 73 { "tx_single_coll_ok", E1000_STAT(stats.scc) }, 74 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, 75 { "tx_timeout_count", E1000_STAT(tx_timeout_count) }, 76 { "tx_restart_queue", E1000_STAT(restart_queue) }, 77 { "rx_long_length_errors", E1000_STAT(stats.roc) }, 78 { "rx_short_length_errors", E1000_STAT(stats.ruc) }, 79 { "rx_align_errors", E1000_STAT(stats.algnerrc) }, 80 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, 81 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, 82 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, 83 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, 84 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, 85 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, 86 { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, 87 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, 88 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }, 89 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) }, 90 { "tx_smbus", E1000_STAT(stats.mgptc) }, 91 { "rx_smbus", E1000_STAT(stats.mgprc) }, 92 { "dropped_smbus", E1000_STAT(stats.mgpdc) }, 93 }; 94 95 #define E1000_QUEUE_STATS_LEN 0 96 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 97 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN) 98 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 99 "Register test (offline)", "Eeprom test (offline)", 100 "Interrupt test (offline)", "Loopback test (offline)", 101 "Link test (on/offline)" 102 }; 103 104 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 105 106 static int e1000_get_settings(struct net_device *netdev, 107 struct ethtool_cmd *ecmd) 108 { 109 struct e1000_adapter *adapter = netdev_priv(netdev); 110 struct e1000_hw *hw = &adapter->hw; 111 112 if (hw->media_type == e1000_media_type_copper) { 113 ecmd->supported = (SUPPORTED_10baseT_Half | 114 SUPPORTED_10baseT_Full | 115 SUPPORTED_100baseT_Half | 116 SUPPORTED_100baseT_Full | 117 SUPPORTED_1000baseT_Full| 118 SUPPORTED_Autoneg | 119 SUPPORTED_TP); 120 ecmd->advertising = ADVERTISED_TP; 121 122 if (hw->autoneg == 1) { 123 ecmd->advertising |= ADVERTISED_Autoneg; 124 /* the e1000 autoneg seems to match ethtool nicely */ 125 ecmd->advertising |= hw->autoneg_advertised; 126 } 127 128 ecmd->port = PORT_TP; 129 ecmd->phy_address = hw->phy_addr; 130 131 if (hw->mac_type == e1000_82543) 132 ecmd->transceiver = XCVR_EXTERNAL; 133 else 134 ecmd->transceiver = XCVR_INTERNAL; 135 136 } else { 137 ecmd->supported = (SUPPORTED_1000baseT_Full | 138 SUPPORTED_FIBRE | 139 SUPPORTED_Autoneg); 140 141 ecmd->advertising = (ADVERTISED_1000baseT_Full | 142 ADVERTISED_FIBRE | 143 ADVERTISED_Autoneg); 144 145 ecmd->port = PORT_FIBRE; 146 147 if (hw->mac_type >= e1000_82545) 148 ecmd->transceiver = XCVR_INTERNAL; 149 else 150 ecmd->transceiver = XCVR_EXTERNAL; 151 } 152 153 if (er32(STATUS) & E1000_STATUS_LU) { 154 e1000_get_speed_and_duplex(hw, &adapter->link_speed, 155 &adapter->link_duplex); 156 ethtool_cmd_speed_set(ecmd, adapter->link_speed); 157 158 /* unfortunately FULL_DUPLEX != DUPLEX_FULL 159 * and HALF_DUPLEX != DUPLEX_HALF 160 */ 161 if (adapter->link_duplex == FULL_DUPLEX) 162 ecmd->duplex = DUPLEX_FULL; 163 else 164 ecmd->duplex = DUPLEX_HALF; 165 } else { 166 ethtool_cmd_speed_set(ecmd, SPEED_UNKNOWN); 167 ecmd->duplex = DUPLEX_UNKNOWN; 168 } 169 170 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || 171 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 172 173 /* MDI-X => 1; MDI => 0 */ 174 if ((hw->media_type == e1000_media_type_copper) && 175 netif_carrier_ok(netdev)) 176 ecmd->eth_tp_mdix = (!!adapter->phy_info.mdix_mode ? 177 ETH_TP_MDI_X : ETH_TP_MDI); 178 else 179 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 180 181 if (hw->mdix == AUTO_ALL_MODES) 182 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 183 else 184 ecmd->eth_tp_mdix_ctrl = hw->mdix; 185 return 0; 186 } 187 188 static int e1000_set_settings(struct net_device *netdev, 189 struct ethtool_cmd *ecmd) 190 { 191 struct e1000_adapter *adapter = netdev_priv(netdev); 192 struct e1000_hw *hw = &adapter->hw; 193 194 /* MDI setting is only allowed when autoneg enabled because 195 * some hardware doesn't allow MDI setting when speed or 196 * duplex is forced. 197 */ 198 if (ecmd->eth_tp_mdix_ctrl) { 199 if (hw->media_type != e1000_media_type_copper) 200 return -EOPNOTSUPP; 201 202 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 203 (ecmd->autoneg != AUTONEG_ENABLE)) { 204 e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 205 return -EINVAL; 206 } 207 } 208 209 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 210 msleep(1); 211 212 if (ecmd->autoneg == AUTONEG_ENABLE) { 213 hw->autoneg = 1; 214 if (hw->media_type == e1000_media_type_fiber) 215 hw->autoneg_advertised = ADVERTISED_1000baseT_Full | 216 ADVERTISED_FIBRE | 217 ADVERTISED_Autoneg; 218 else 219 hw->autoneg_advertised = ecmd->advertising | 220 ADVERTISED_TP | 221 ADVERTISED_Autoneg; 222 ecmd->advertising = hw->autoneg_advertised; 223 } else { 224 u32 speed = ethtool_cmd_speed(ecmd); 225 /* calling this overrides forced MDI setting */ 226 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { 227 clear_bit(__E1000_RESETTING, &adapter->flags); 228 return -EINVAL; 229 } 230 } 231 232 /* MDI-X => 2; MDI => 1; Auto => 3 */ 233 if (ecmd->eth_tp_mdix_ctrl) { 234 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 235 hw->mdix = AUTO_ALL_MODES; 236 else 237 hw->mdix = ecmd->eth_tp_mdix_ctrl; 238 } 239 240 /* reset the link */ 241 242 if (netif_running(adapter->netdev)) { 243 e1000_down(adapter); 244 e1000_up(adapter); 245 } else { 246 e1000_reset(adapter); 247 } 248 clear_bit(__E1000_RESETTING, &adapter->flags); 249 return 0; 250 } 251 252 static u32 e1000_get_link(struct net_device *netdev) 253 { 254 struct e1000_adapter *adapter = netdev_priv(netdev); 255 256 /* If the link is not reported up to netdev, interrupts are disabled, 257 * and so the physical link state may have changed since we last 258 * looked. Set get_link_status to make sure that the true link 259 * state is interrogated, rather than pulling a cached and possibly 260 * stale link state from the driver. 261 */ 262 if (!netif_carrier_ok(netdev)) 263 adapter->hw.get_link_status = 1; 264 265 return e1000_has_link(adapter); 266 } 267 268 static void e1000_get_pauseparam(struct net_device *netdev, 269 struct ethtool_pauseparam *pause) 270 { 271 struct e1000_adapter *adapter = netdev_priv(netdev); 272 struct e1000_hw *hw = &adapter->hw; 273 274 pause->autoneg = 275 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 276 277 if (hw->fc == E1000_FC_RX_PAUSE) { 278 pause->rx_pause = 1; 279 } else if (hw->fc == E1000_FC_TX_PAUSE) { 280 pause->tx_pause = 1; 281 } else if (hw->fc == E1000_FC_FULL) { 282 pause->rx_pause = 1; 283 pause->tx_pause = 1; 284 } 285 } 286 287 static int e1000_set_pauseparam(struct net_device *netdev, 288 struct ethtool_pauseparam *pause) 289 { 290 struct e1000_adapter *adapter = netdev_priv(netdev); 291 struct e1000_hw *hw = &adapter->hw; 292 int retval = 0; 293 294 adapter->fc_autoneg = pause->autoneg; 295 296 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 297 msleep(1); 298 299 if (pause->rx_pause && pause->tx_pause) 300 hw->fc = E1000_FC_FULL; 301 else if (pause->rx_pause && !pause->tx_pause) 302 hw->fc = E1000_FC_RX_PAUSE; 303 else if (!pause->rx_pause && pause->tx_pause) 304 hw->fc = E1000_FC_TX_PAUSE; 305 else if (!pause->rx_pause && !pause->tx_pause) 306 hw->fc = E1000_FC_NONE; 307 308 hw->original_fc = hw->fc; 309 310 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 311 if (netif_running(adapter->netdev)) { 312 e1000_down(adapter); 313 e1000_up(adapter); 314 } else { 315 e1000_reset(adapter); 316 } 317 } else 318 retval = ((hw->media_type == e1000_media_type_fiber) ? 319 e1000_setup_link(hw) : e1000_force_mac_fc(hw)); 320 321 clear_bit(__E1000_RESETTING, &adapter->flags); 322 return retval; 323 } 324 325 static u32 e1000_get_msglevel(struct net_device *netdev) 326 { 327 struct e1000_adapter *adapter = netdev_priv(netdev); 328 329 return adapter->msg_enable; 330 } 331 332 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 333 { 334 struct e1000_adapter *adapter = netdev_priv(netdev); 335 336 adapter->msg_enable = data; 337 } 338 339 static int e1000_get_regs_len(struct net_device *netdev) 340 { 341 #define E1000_REGS_LEN 32 342 return E1000_REGS_LEN * sizeof(u32); 343 } 344 345 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs, 346 void *p) 347 { 348 struct e1000_adapter *adapter = netdev_priv(netdev); 349 struct e1000_hw *hw = &adapter->hw; 350 u32 *regs_buff = p; 351 u16 phy_data; 352 353 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 354 355 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; 356 357 regs_buff[0] = er32(CTRL); 358 regs_buff[1] = er32(STATUS); 359 360 regs_buff[2] = er32(RCTL); 361 regs_buff[3] = er32(RDLEN); 362 regs_buff[4] = er32(RDH); 363 regs_buff[5] = er32(RDT); 364 regs_buff[6] = er32(RDTR); 365 366 regs_buff[7] = er32(TCTL); 367 regs_buff[8] = er32(TDLEN); 368 regs_buff[9] = er32(TDH); 369 regs_buff[10] = er32(TDT); 370 regs_buff[11] = er32(TIDV); 371 372 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */ 373 if (hw->phy_type == e1000_phy_igp) { 374 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 375 IGP01E1000_PHY_AGC_A); 376 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & 377 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 378 regs_buff[13] = (u32)phy_data; /* cable length */ 379 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 380 IGP01E1000_PHY_AGC_B); 381 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & 382 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 383 regs_buff[14] = (u32)phy_data; /* cable length */ 384 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 385 IGP01E1000_PHY_AGC_C); 386 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & 387 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 388 regs_buff[15] = (u32)phy_data; /* cable length */ 389 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 390 IGP01E1000_PHY_AGC_D); 391 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & 392 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 393 regs_buff[16] = (u32)phy_data; /* cable length */ 394 regs_buff[17] = 0; /* extended 10bt distance (not needed) */ 395 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); 396 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & 397 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 398 regs_buff[18] = (u32)phy_data; /* cable polarity */ 399 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 400 IGP01E1000_PHY_PCS_INIT_REG); 401 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & 402 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 403 regs_buff[19] = (u32)phy_data; /* cable polarity */ 404 regs_buff[20] = 0; /* polarity correction enabled (always) */ 405 regs_buff[22] = 0; /* phy receive errors (unavailable) */ 406 regs_buff[23] = regs_buff[18]; /* mdix mode */ 407 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); 408 } else { 409 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 410 regs_buff[13] = (u32)phy_data; /* cable length */ 411 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 412 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 413 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 414 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 415 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 416 regs_buff[18] = regs_buff[13]; /* cable polarity */ 417 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 418 regs_buff[20] = regs_buff[17]; /* polarity correction */ 419 /* phy receive errors */ 420 regs_buff[22] = adapter->phy_stats.receive_errors; 421 regs_buff[23] = regs_buff[13]; /* mdix mode */ 422 } 423 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ 424 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); 425 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 426 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 427 if (hw->mac_type >= e1000_82540 && 428 hw->media_type == e1000_media_type_copper) { 429 regs_buff[26] = er32(MANC); 430 } 431 } 432 433 static int e1000_get_eeprom_len(struct net_device *netdev) 434 { 435 struct e1000_adapter *adapter = netdev_priv(netdev); 436 struct e1000_hw *hw = &adapter->hw; 437 438 return hw->eeprom.word_size * 2; 439 } 440 441 static int e1000_get_eeprom(struct net_device *netdev, 442 struct ethtool_eeprom *eeprom, u8 *bytes) 443 { 444 struct e1000_adapter *adapter = netdev_priv(netdev); 445 struct e1000_hw *hw = &adapter->hw; 446 u16 *eeprom_buff; 447 int first_word, last_word; 448 int ret_val = 0; 449 u16 i; 450 451 if (eeprom->len == 0) 452 return -EINVAL; 453 454 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 455 456 first_word = eeprom->offset >> 1; 457 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 458 459 eeprom_buff = kmalloc(sizeof(u16) * 460 (last_word - first_word + 1), GFP_KERNEL); 461 if (!eeprom_buff) 462 return -ENOMEM; 463 464 if (hw->eeprom.type == e1000_eeprom_spi) 465 ret_val = e1000_read_eeprom(hw, first_word, 466 last_word - first_word + 1, 467 eeprom_buff); 468 else { 469 for (i = 0; i < last_word - first_word + 1; i++) { 470 ret_val = e1000_read_eeprom(hw, first_word + i, 1, 471 &eeprom_buff[i]); 472 if (ret_val) 473 break; 474 } 475 } 476 477 /* Device's eeprom is always little-endian, word addressable */ 478 for (i = 0; i < last_word - first_word + 1; i++) 479 le16_to_cpus(&eeprom_buff[i]); 480 481 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), 482 eeprom->len); 483 kfree(eeprom_buff); 484 485 return ret_val; 486 } 487 488 static int e1000_set_eeprom(struct net_device *netdev, 489 struct ethtool_eeprom *eeprom, u8 *bytes) 490 { 491 struct e1000_adapter *adapter = netdev_priv(netdev); 492 struct e1000_hw *hw = &adapter->hw; 493 u16 *eeprom_buff; 494 void *ptr; 495 int max_len, first_word, last_word, ret_val = 0; 496 u16 i; 497 498 if (eeprom->len == 0) 499 return -EOPNOTSUPP; 500 501 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) 502 return -EFAULT; 503 504 max_len = hw->eeprom.word_size * 2; 505 506 first_word = eeprom->offset >> 1; 507 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 508 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 509 if (!eeprom_buff) 510 return -ENOMEM; 511 512 ptr = (void *)eeprom_buff; 513 514 if (eeprom->offset & 1) { 515 /* need read/modify/write of first changed EEPROM word 516 * only the second byte of the word is being modified 517 */ 518 ret_val = e1000_read_eeprom(hw, first_word, 1, 519 &eeprom_buff[0]); 520 ptr++; 521 } 522 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { 523 /* need read/modify/write of last changed EEPROM word 524 * only the first byte of the word is being modified 525 */ 526 ret_val = e1000_read_eeprom(hw, last_word, 1, 527 &eeprom_buff[last_word - first_word]); 528 } 529 530 /* Device's eeprom is always little-endian, word addressable */ 531 for (i = 0; i < last_word - first_word + 1; i++) 532 le16_to_cpus(&eeprom_buff[i]); 533 534 memcpy(ptr, bytes, eeprom->len); 535 536 for (i = 0; i < last_word - first_word + 1; i++) 537 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); 538 539 ret_val = e1000_write_eeprom(hw, first_word, 540 last_word - first_word + 1, eeprom_buff); 541 542 /* Update the checksum over the first part of the EEPROM if needed */ 543 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG)) 544 e1000_update_eeprom_checksum(hw); 545 546 kfree(eeprom_buff); 547 return ret_val; 548 } 549 550 static void e1000_get_drvinfo(struct net_device *netdev, 551 struct ethtool_drvinfo *drvinfo) 552 { 553 struct e1000_adapter *adapter = netdev_priv(netdev); 554 555 strlcpy(drvinfo->driver, e1000_driver_name, 556 sizeof(drvinfo->driver)); 557 strlcpy(drvinfo->version, e1000_driver_version, 558 sizeof(drvinfo->version)); 559 560 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 561 sizeof(drvinfo->bus_info)); 562 drvinfo->regdump_len = e1000_get_regs_len(netdev); 563 drvinfo->eedump_len = e1000_get_eeprom_len(netdev); 564 } 565 566 static void e1000_get_ringparam(struct net_device *netdev, 567 struct ethtool_ringparam *ring) 568 { 569 struct e1000_adapter *adapter = netdev_priv(netdev); 570 struct e1000_hw *hw = &adapter->hw; 571 e1000_mac_type mac_type = hw->mac_type; 572 struct e1000_tx_ring *txdr = adapter->tx_ring; 573 struct e1000_rx_ring *rxdr = adapter->rx_ring; 574 575 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : 576 E1000_MAX_82544_RXD; 577 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : 578 E1000_MAX_82544_TXD; 579 ring->rx_pending = rxdr->count; 580 ring->tx_pending = txdr->count; 581 } 582 583 static int e1000_set_ringparam(struct net_device *netdev, 584 struct ethtool_ringparam *ring) 585 { 586 struct e1000_adapter *adapter = netdev_priv(netdev); 587 struct e1000_hw *hw = &adapter->hw; 588 e1000_mac_type mac_type = hw->mac_type; 589 struct e1000_tx_ring *txdr, *tx_old; 590 struct e1000_rx_ring *rxdr, *rx_old; 591 int i, err; 592 593 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 594 return -EINVAL; 595 596 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 597 msleep(1); 598 599 if (netif_running(adapter->netdev)) 600 e1000_down(adapter); 601 602 tx_old = adapter->tx_ring; 603 rx_old = adapter->rx_ring; 604 605 err = -ENOMEM; 606 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), 607 GFP_KERNEL); 608 if (!txdr) 609 goto err_alloc_tx; 610 611 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), 612 GFP_KERNEL); 613 if (!rxdr) 614 goto err_alloc_rx; 615 616 adapter->tx_ring = txdr; 617 adapter->rx_ring = rxdr; 618 619 rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD); 620 rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ? 621 E1000_MAX_RXD : E1000_MAX_82544_RXD)); 622 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); 623 txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD); 624 txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ? 625 E1000_MAX_TXD : E1000_MAX_82544_TXD)); 626 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); 627 628 for (i = 0; i < adapter->num_tx_queues; i++) 629 txdr[i].count = txdr->count; 630 for (i = 0; i < adapter->num_rx_queues; i++) 631 rxdr[i].count = rxdr->count; 632 633 if (netif_running(adapter->netdev)) { 634 /* Try to get new resources before deleting old */ 635 err = e1000_setup_all_rx_resources(adapter); 636 if (err) 637 goto err_setup_rx; 638 err = e1000_setup_all_tx_resources(adapter); 639 if (err) 640 goto err_setup_tx; 641 642 /* save the new, restore the old in order to free it, 643 * then restore the new back again 644 */ 645 646 adapter->rx_ring = rx_old; 647 adapter->tx_ring = tx_old; 648 e1000_free_all_rx_resources(adapter); 649 e1000_free_all_tx_resources(adapter); 650 kfree(tx_old); 651 kfree(rx_old); 652 adapter->rx_ring = rxdr; 653 adapter->tx_ring = txdr; 654 err = e1000_up(adapter); 655 if (err) 656 goto err_setup; 657 } 658 659 clear_bit(__E1000_RESETTING, &adapter->flags); 660 return 0; 661 err_setup_tx: 662 e1000_free_all_rx_resources(adapter); 663 err_setup_rx: 664 adapter->rx_ring = rx_old; 665 adapter->tx_ring = tx_old; 666 kfree(rxdr); 667 err_alloc_rx: 668 kfree(txdr); 669 err_alloc_tx: 670 e1000_up(adapter); 671 err_setup: 672 clear_bit(__E1000_RESETTING, &adapter->flags); 673 return err; 674 } 675 676 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg, 677 u32 mask, u32 write) 678 { 679 struct e1000_hw *hw = &adapter->hw; 680 static const u32 test[] = { 681 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 682 }; 683 u8 __iomem *address = hw->hw_addr + reg; 684 u32 read; 685 int i; 686 687 for (i = 0; i < ARRAY_SIZE(test); i++) { 688 writel(write & test[i], address); 689 read = readl(address); 690 if (read != (write & test[i] & mask)) { 691 e_err(drv, "pattern test reg %04X failed: " 692 "got 0x%08X expected 0x%08X\n", 693 reg, read, (write & test[i] & mask)); 694 *data = reg; 695 return true; 696 } 697 } 698 return false; 699 } 700 701 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg, 702 u32 mask, u32 write) 703 { 704 struct e1000_hw *hw = &adapter->hw; 705 u8 __iomem *address = hw->hw_addr + reg; 706 u32 read; 707 708 writel(write & mask, address); 709 read = readl(address); 710 if ((read & mask) != (write & mask)) { 711 e_err(drv, "set/check reg %04X test failed: " 712 "got 0x%08X expected 0x%08X\n", 713 reg, (read & mask), (write & mask)); 714 *data = reg; 715 return true; 716 } 717 return false; 718 } 719 720 #define REG_PATTERN_TEST(reg, mask, write) \ 721 do { \ 722 if (reg_pattern_test(adapter, data, \ 723 (hw->mac_type >= e1000_82543) \ 724 ? E1000_##reg : E1000_82542_##reg, \ 725 mask, write)) \ 726 return 1; \ 727 } while (0) 728 729 #define REG_SET_AND_CHECK(reg, mask, write) \ 730 do { \ 731 if (reg_set_and_check(adapter, data, \ 732 (hw->mac_type >= e1000_82543) \ 733 ? E1000_##reg : E1000_82542_##reg, \ 734 mask, write)) \ 735 return 1; \ 736 } while (0) 737 738 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 739 { 740 u32 value, before, after; 741 u32 i, toggle; 742 struct e1000_hw *hw = &adapter->hw; 743 744 /* The status register is Read Only, so a write should fail. 745 * Some bits that get toggled are ignored. 746 */ 747 748 /* there are several bits on newer hardware that are r/w */ 749 toggle = 0xFFFFF833; 750 751 before = er32(STATUS); 752 value = (er32(STATUS) & toggle); 753 ew32(STATUS, toggle); 754 after = er32(STATUS) & toggle; 755 if (value != after) { 756 e_err(drv, "failed STATUS register test got: " 757 "0x%08X expected: 0x%08X\n", after, value); 758 *data = 1; 759 return 1; 760 } 761 /* restore previous status */ 762 ew32(STATUS, before); 763 764 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 765 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); 766 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); 767 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); 768 769 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); 770 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); 771 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); 772 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); 773 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); 774 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); 775 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); 776 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 777 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); 778 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); 779 780 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); 781 782 before = 0x06DFB3FE; 783 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB); 784 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); 785 786 if (hw->mac_type >= e1000_82543) { 787 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF); 788 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 789 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); 790 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 791 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); 792 value = E1000_RAR_ENTRIES; 793 for (i = 0; i < value; i++) { 794 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 795 0x8003FFFF, 0xFFFFFFFF); 796 } 797 } else { 798 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); 799 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); 800 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); 801 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); 802 } 803 804 value = E1000_MC_TBL_SIZE; 805 for (i = 0; i < value; i++) 806 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); 807 808 *data = 0; 809 return 0; 810 } 811 812 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 813 { 814 struct e1000_hw *hw = &adapter->hw; 815 u16 temp; 816 u16 checksum = 0; 817 u16 i; 818 819 *data = 0; 820 /* Read and add up the contents of the EEPROM */ 821 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { 822 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) { 823 *data = 1; 824 break; 825 } 826 checksum += temp; 827 } 828 829 /* If Checksum is not Correct return error else test passed */ 830 if ((checksum != (u16)EEPROM_SUM) && !(*data)) 831 *data = 2; 832 833 return *data; 834 } 835 836 static irqreturn_t e1000_test_intr(int irq, void *data) 837 { 838 struct net_device *netdev = (struct net_device *)data; 839 struct e1000_adapter *adapter = netdev_priv(netdev); 840 struct e1000_hw *hw = &adapter->hw; 841 842 adapter->test_icr |= er32(ICR); 843 844 return IRQ_HANDLED; 845 } 846 847 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 848 { 849 struct net_device *netdev = adapter->netdev; 850 u32 mask, i = 0; 851 bool shared_int = true; 852 u32 irq = adapter->pdev->irq; 853 struct e1000_hw *hw = &adapter->hw; 854 855 *data = 0; 856 857 /* NOTE: we don't test MSI interrupts here, yet 858 * Hook up test interrupt handler just for this test 859 */ 860 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 861 netdev)) 862 shared_int = false; 863 else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, 864 netdev->name, netdev)) { 865 *data = 1; 866 return -1; 867 } 868 e_info(hw, "testing %s interrupt\n", (shared_int ? 869 "shared" : "unshared")); 870 871 /* Disable all the interrupts */ 872 ew32(IMC, 0xFFFFFFFF); 873 E1000_WRITE_FLUSH(); 874 msleep(10); 875 876 /* Test each interrupt */ 877 for (; i < 10; i++) { 878 /* Interrupt to test */ 879 mask = 1 << i; 880 881 if (!shared_int) { 882 /* Disable the interrupt to be reported in 883 * the cause register and then force the same 884 * interrupt and see if one gets posted. If 885 * an interrupt was posted to the bus, the 886 * test failed. 887 */ 888 adapter->test_icr = 0; 889 ew32(IMC, mask); 890 ew32(ICS, mask); 891 E1000_WRITE_FLUSH(); 892 msleep(10); 893 894 if (adapter->test_icr & mask) { 895 *data = 3; 896 break; 897 } 898 } 899 900 /* Enable the interrupt to be reported in 901 * the cause register and then force the same 902 * interrupt and see if one gets posted. If 903 * an interrupt was not posted to the bus, the 904 * test failed. 905 */ 906 adapter->test_icr = 0; 907 ew32(IMS, mask); 908 ew32(ICS, mask); 909 E1000_WRITE_FLUSH(); 910 msleep(10); 911 912 if (!(adapter->test_icr & mask)) { 913 *data = 4; 914 break; 915 } 916 917 if (!shared_int) { 918 /* Disable the other interrupts to be reported in 919 * the cause register and then force the other 920 * interrupts and see if any get posted. If 921 * an interrupt was posted to the bus, the 922 * test failed. 923 */ 924 adapter->test_icr = 0; 925 ew32(IMC, ~mask & 0x00007FFF); 926 ew32(ICS, ~mask & 0x00007FFF); 927 E1000_WRITE_FLUSH(); 928 msleep(10); 929 930 if (adapter->test_icr) { 931 *data = 5; 932 break; 933 } 934 } 935 } 936 937 /* Disable all the interrupts */ 938 ew32(IMC, 0xFFFFFFFF); 939 E1000_WRITE_FLUSH(); 940 msleep(10); 941 942 /* Unhook test interrupt handler */ 943 free_irq(irq, netdev); 944 945 return *data; 946 } 947 948 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 949 { 950 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 951 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 952 struct pci_dev *pdev = adapter->pdev; 953 int i; 954 955 if (txdr->desc && txdr->buffer_info) { 956 for (i = 0; i < txdr->count; i++) { 957 if (txdr->buffer_info[i].dma) 958 dma_unmap_single(&pdev->dev, 959 txdr->buffer_info[i].dma, 960 txdr->buffer_info[i].length, 961 DMA_TO_DEVICE); 962 if (txdr->buffer_info[i].skb) 963 dev_kfree_skb(txdr->buffer_info[i].skb); 964 } 965 } 966 967 if (rxdr->desc && rxdr->buffer_info) { 968 for (i = 0; i < rxdr->count; i++) { 969 if (rxdr->buffer_info[i].dma) 970 dma_unmap_single(&pdev->dev, 971 rxdr->buffer_info[i].dma, 972 E1000_RXBUFFER_2048, 973 DMA_FROM_DEVICE); 974 kfree(rxdr->buffer_info[i].rxbuf.data); 975 } 976 } 977 978 if (txdr->desc) { 979 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, 980 txdr->dma); 981 txdr->desc = NULL; 982 } 983 if (rxdr->desc) { 984 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, 985 rxdr->dma); 986 rxdr->desc = NULL; 987 } 988 989 kfree(txdr->buffer_info); 990 txdr->buffer_info = NULL; 991 kfree(rxdr->buffer_info); 992 rxdr->buffer_info = NULL; 993 } 994 995 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 996 { 997 struct e1000_hw *hw = &adapter->hw; 998 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 999 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 1000 struct pci_dev *pdev = adapter->pdev; 1001 u32 rctl; 1002 int i, ret_val; 1003 1004 /* Setup Tx descriptor ring and Tx buffers */ 1005 1006 if (!txdr->count) 1007 txdr->count = E1000_DEFAULT_TXD; 1008 1009 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer), 1010 GFP_KERNEL); 1011 if (!txdr->buffer_info) { 1012 ret_val = 1; 1013 goto err_nomem; 1014 } 1015 1016 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 1017 txdr->size = ALIGN(txdr->size, 4096); 1018 txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma, 1019 GFP_KERNEL); 1020 if (!txdr->desc) { 1021 ret_val = 2; 1022 goto err_nomem; 1023 } 1024 txdr->next_to_use = txdr->next_to_clean = 0; 1025 1026 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF)); 1027 ew32(TDBAH, ((u64)txdr->dma >> 32)); 1028 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc)); 1029 ew32(TDH, 0); 1030 ew32(TDT, 0); 1031 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | 1032 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1033 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1034 1035 for (i = 0; i < txdr->count; i++) { 1036 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); 1037 struct sk_buff *skb; 1038 unsigned int size = 1024; 1039 1040 skb = alloc_skb(size, GFP_KERNEL); 1041 if (!skb) { 1042 ret_val = 3; 1043 goto err_nomem; 1044 } 1045 skb_put(skb, size); 1046 txdr->buffer_info[i].skb = skb; 1047 txdr->buffer_info[i].length = skb->len; 1048 txdr->buffer_info[i].dma = 1049 dma_map_single(&pdev->dev, skb->data, skb->len, 1050 DMA_TO_DEVICE); 1051 if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) { 1052 ret_val = 4; 1053 goto err_nomem; 1054 } 1055 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); 1056 tx_desc->lower.data = cpu_to_le32(skb->len); 1057 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1058 E1000_TXD_CMD_IFCS | 1059 E1000_TXD_CMD_RPS); 1060 tx_desc->upper.data = 0; 1061 } 1062 1063 /* Setup Rx descriptor ring and Rx buffers */ 1064 1065 if (!rxdr->count) 1066 rxdr->count = E1000_DEFAULT_RXD; 1067 1068 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer), 1069 GFP_KERNEL); 1070 if (!rxdr->buffer_info) { 1071 ret_val = 5; 1072 goto err_nomem; 1073 } 1074 1075 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); 1076 rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, 1077 GFP_KERNEL); 1078 if (!rxdr->desc) { 1079 ret_val = 6; 1080 goto err_nomem; 1081 } 1082 rxdr->next_to_use = rxdr->next_to_clean = 0; 1083 1084 rctl = er32(RCTL); 1085 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1086 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF)); 1087 ew32(RDBAH, ((u64)rxdr->dma >> 32)); 1088 ew32(RDLEN, rxdr->size); 1089 ew32(RDH, 0); 1090 ew32(RDT, 0); 1091 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1092 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1093 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); 1094 ew32(RCTL, rctl); 1095 1096 for (i = 0; i < rxdr->count; i++) { 1097 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); 1098 u8 *buf; 1099 1100 buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN, 1101 GFP_KERNEL); 1102 if (!buf) { 1103 ret_val = 7; 1104 goto err_nomem; 1105 } 1106 rxdr->buffer_info[i].rxbuf.data = buf; 1107 1108 rxdr->buffer_info[i].dma = 1109 dma_map_single(&pdev->dev, 1110 buf + NET_SKB_PAD + NET_IP_ALIGN, 1111 E1000_RXBUFFER_2048, DMA_FROM_DEVICE); 1112 if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) { 1113 ret_val = 8; 1114 goto err_nomem; 1115 } 1116 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); 1117 } 1118 1119 return 0; 1120 1121 err_nomem: 1122 e1000_free_desc_rings(adapter); 1123 return ret_val; 1124 } 1125 1126 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1127 { 1128 struct e1000_hw *hw = &adapter->hw; 1129 1130 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1131 e1000_write_phy_reg(hw, 29, 0x001F); 1132 e1000_write_phy_reg(hw, 30, 0x8FFC); 1133 e1000_write_phy_reg(hw, 29, 0x001A); 1134 e1000_write_phy_reg(hw, 30, 0x8FF0); 1135 } 1136 1137 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) 1138 { 1139 struct e1000_hw *hw = &adapter->hw; 1140 u16 phy_reg; 1141 1142 /* Because we reset the PHY above, we need to re-force TX_CLK in the 1143 * Extended PHY Specific Control Register to 25MHz clock. This 1144 * value defaults back to a 2.5MHz clock when the PHY is reset. 1145 */ 1146 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); 1147 phy_reg |= M88E1000_EPSCR_TX_CLK_25; 1148 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); 1149 1150 /* In addition, because of the s/w reset above, we need to enable 1151 * CRS on TX. This must be set for both full and half duplex 1152 * operation. 1153 */ 1154 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); 1155 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 1156 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg); 1157 } 1158 1159 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) 1160 { 1161 struct e1000_hw *hw = &adapter->hw; 1162 u32 ctrl_reg; 1163 u16 phy_reg; 1164 1165 /* Setup the Device Control Register for PHY loopback test. */ 1166 1167 ctrl_reg = er32(CTRL); 1168 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */ 1169 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1170 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1171 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ 1172 E1000_CTRL_FD); /* Force Duplex to FULL */ 1173 1174 ew32(CTRL, ctrl_reg); 1175 1176 /* Read the PHY Specific Control Register (0x10) */ 1177 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); 1178 1179 /* Clear Auto-Crossover bits in PHY Specific Control Register 1180 * (bits 6:5). 1181 */ 1182 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; 1183 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg); 1184 1185 /* Perform software reset on the PHY */ 1186 e1000_phy_reset(hw); 1187 1188 /* Have to setup TX_CLK and TX_CRS after software reset */ 1189 e1000_phy_reset_clk_and_crs(adapter); 1190 1191 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100); 1192 1193 /* Wait for reset to complete. */ 1194 udelay(500); 1195 1196 /* Have to setup TX_CLK and TX_CRS after software reset */ 1197 e1000_phy_reset_clk_and_crs(adapter); 1198 1199 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1200 e1000_phy_disable_receiver(adapter); 1201 1202 /* Set the loopback bit in the PHY control register. */ 1203 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1204 phy_reg |= MII_CR_LOOPBACK; 1205 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1206 1207 /* Setup TX_CLK and TX_CRS one more time. */ 1208 e1000_phy_reset_clk_and_crs(adapter); 1209 1210 /* Check Phy Configuration */ 1211 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1212 if (phy_reg != 0x4100) 1213 return 9; 1214 1215 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); 1216 if (phy_reg != 0x0070) 1217 return 10; 1218 1219 e1000_read_phy_reg(hw, 29, &phy_reg); 1220 if (phy_reg != 0x001A) 1221 return 11; 1222 1223 return 0; 1224 } 1225 1226 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1227 { 1228 struct e1000_hw *hw = &adapter->hw; 1229 u32 ctrl_reg = 0; 1230 u32 stat_reg = 0; 1231 1232 hw->autoneg = false; 1233 1234 if (hw->phy_type == e1000_phy_m88) { 1235 /* Auto-MDI/MDIX Off */ 1236 e1000_write_phy_reg(hw, 1237 M88E1000_PHY_SPEC_CTRL, 0x0808); 1238 /* reset to update Auto-MDI/MDIX */ 1239 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140); 1240 /* autoneg off */ 1241 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140); 1242 } 1243 1244 ctrl_reg = er32(CTRL); 1245 1246 /* force 1000, set loopback */ 1247 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140); 1248 1249 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1250 ctrl_reg = er32(CTRL); 1251 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1252 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1253 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1254 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1255 E1000_CTRL_FD); /* Force Duplex to FULL */ 1256 1257 if (hw->media_type == e1000_media_type_copper && 1258 hw->phy_type == e1000_phy_m88) 1259 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1260 else { 1261 /* Set the ILOS bit on the fiber Nic is half 1262 * duplex link is detected. 1263 */ 1264 stat_reg = er32(STATUS); 1265 if ((stat_reg & E1000_STATUS_FD) == 0) 1266 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1267 } 1268 1269 ew32(CTRL, ctrl_reg); 1270 1271 /* Disable the receiver on the PHY so when a cable is plugged in, the 1272 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1273 */ 1274 if (hw->phy_type == e1000_phy_m88) 1275 e1000_phy_disable_receiver(adapter); 1276 1277 udelay(500); 1278 1279 return 0; 1280 } 1281 1282 static int e1000_set_phy_loopback(struct e1000_adapter *adapter) 1283 { 1284 struct e1000_hw *hw = &adapter->hw; 1285 u16 phy_reg = 0; 1286 u16 count = 0; 1287 1288 switch (hw->mac_type) { 1289 case e1000_82543: 1290 if (hw->media_type == e1000_media_type_copper) { 1291 /* Attempt to setup Loopback mode on Non-integrated PHY. 1292 * Some PHY registers get corrupted at random, so 1293 * attempt this 10 times. 1294 */ 1295 while (e1000_nonintegrated_phy_loopback(adapter) && 1296 count++ < 10); 1297 if (count < 11) 1298 return 0; 1299 } 1300 break; 1301 1302 case e1000_82544: 1303 case e1000_82540: 1304 case e1000_82545: 1305 case e1000_82545_rev_3: 1306 case e1000_82546: 1307 case e1000_82546_rev_3: 1308 case e1000_82541: 1309 case e1000_82541_rev_2: 1310 case e1000_82547: 1311 case e1000_82547_rev_2: 1312 return e1000_integrated_phy_loopback(adapter); 1313 default: 1314 /* Default PHY loopback work is to read the MII 1315 * control register and assert bit 14 (loopback mode). 1316 */ 1317 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1318 phy_reg |= MII_CR_LOOPBACK; 1319 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1320 return 0; 1321 } 1322 1323 return 8; 1324 } 1325 1326 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1327 { 1328 struct e1000_hw *hw = &adapter->hw; 1329 u32 rctl; 1330 1331 if (hw->media_type == e1000_media_type_fiber || 1332 hw->media_type == e1000_media_type_internal_serdes) { 1333 switch (hw->mac_type) { 1334 case e1000_82545: 1335 case e1000_82546: 1336 case e1000_82545_rev_3: 1337 case e1000_82546_rev_3: 1338 return e1000_set_phy_loopback(adapter); 1339 default: 1340 rctl = er32(RCTL); 1341 rctl |= E1000_RCTL_LBM_TCVR; 1342 ew32(RCTL, rctl); 1343 return 0; 1344 } 1345 } else if (hw->media_type == e1000_media_type_copper) { 1346 return e1000_set_phy_loopback(adapter); 1347 } 1348 1349 return 7; 1350 } 1351 1352 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1353 { 1354 struct e1000_hw *hw = &adapter->hw; 1355 u32 rctl; 1356 u16 phy_reg; 1357 1358 rctl = er32(RCTL); 1359 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1360 ew32(RCTL, rctl); 1361 1362 switch (hw->mac_type) { 1363 case e1000_82545: 1364 case e1000_82546: 1365 case e1000_82545_rev_3: 1366 case e1000_82546_rev_3: 1367 default: 1368 hw->autoneg = true; 1369 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1370 if (phy_reg & MII_CR_LOOPBACK) { 1371 phy_reg &= ~MII_CR_LOOPBACK; 1372 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1373 e1000_phy_reset(hw); 1374 } 1375 break; 1376 } 1377 } 1378 1379 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1380 unsigned int frame_size) 1381 { 1382 memset(skb->data, 0xFF, frame_size); 1383 frame_size &= ~1; 1384 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1385 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1386 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1387 } 1388 1389 static int e1000_check_lbtest_frame(const unsigned char *data, 1390 unsigned int frame_size) 1391 { 1392 frame_size &= ~1; 1393 if (*(data + 3) == 0xFF) { 1394 if ((*(data + frame_size / 2 + 10) == 0xBE) && 1395 (*(data + frame_size / 2 + 12) == 0xAF)) { 1396 return 0; 1397 } 1398 } 1399 return 13; 1400 } 1401 1402 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1403 { 1404 struct e1000_hw *hw = &adapter->hw; 1405 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 1406 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 1407 struct pci_dev *pdev = adapter->pdev; 1408 int i, j, k, l, lc, good_cnt, ret_val = 0; 1409 unsigned long time; 1410 1411 ew32(RDT, rxdr->count - 1); 1412 1413 /* Calculate the loop count based on the largest descriptor ring 1414 * The idea is to wrap the largest ring a number of times using 64 1415 * send/receive pairs during each loop 1416 */ 1417 1418 if (rxdr->count <= txdr->count) 1419 lc = ((txdr->count / 64) * 2) + 1; 1420 else 1421 lc = ((rxdr->count / 64) * 2) + 1; 1422 1423 k = l = 0; 1424 for (j = 0; j <= lc; j++) { /* loop count loop */ 1425 for (i = 0; i < 64; i++) { /* send the packets */ 1426 e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 1427 1024); 1428 dma_sync_single_for_device(&pdev->dev, 1429 txdr->buffer_info[k].dma, 1430 txdr->buffer_info[k].length, 1431 DMA_TO_DEVICE); 1432 if (unlikely(++k == txdr->count)) 1433 k = 0; 1434 } 1435 ew32(TDT, k); 1436 E1000_WRITE_FLUSH(); 1437 msleep(200); 1438 time = jiffies; /* set the start time for the receive */ 1439 good_cnt = 0; 1440 do { /* receive the sent packets */ 1441 dma_sync_single_for_cpu(&pdev->dev, 1442 rxdr->buffer_info[l].dma, 1443 E1000_RXBUFFER_2048, 1444 DMA_FROM_DEVICE); 1445 1446 ret_val = e1000_check_lbtest_frame( 1447 rxdr->buffer_info[l].rxbuf.data + 1448 NET_SKB_PAD + NET_IP_ALIGN, 1449 1024); 1450 if (!ret_val) 1451 good_cnt++; 1452 if (unlikely(++l == rxdr->count)) 1453 l = 0; 1454 /* time + 20 msecs (200 msecs on 2.4) is more than 1455 * enough time to complete the receives, if it's 1456 * exceeded, break and error off 1457 */ 1458 } while (good_cnt < 64 && time_after(time + 20, jiffies)); 1459 1460 if (good_cnt != 64) { 1461 ret_val = 13; /* ret_val is the same as mis-compare */ 1462 break; 1463 } 1464 if (time_after_eq(jiffies, time + 2)) { 1465 ret_val = 14; /* error code for time out error */ 1466 break; 1467 } 1468 } /* end loop count loop */ 1469 return ret_val; 1470 } 1471 1472 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1473 { 1474 *data = e1000_setup_desc_rings(adapter); 1475 if (*data) 1476 goto out; 1477 *data = e1000_setup_loopback_test(adapter); 1478 if (*data) 1479 goto err_loopback; 1480 *data = e1000_run_loopback_test(adapter); 1481 e1000_loopback_cleanup(adapter); 1482 1483 err_loopback: 1484 e1000_free_desc_rings(adapter); 1485 out: 1486 return *data; 1487 } 1488 1489 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1490 { 1491 struct e1000_hw *hw = &adapter->hw; 1492 *data = 0; 1493 if (hw->media_type == e1000_media_type_internal_serdes) { 1494 int i = 0; 1495 1496 hw->serdes_has_link = false; 1497 1498 /* On some blade server designs, link establishment 1499 * could take as long as 2-3 minutes 1500 */ 1501 do { 1502 e1000_check_for_link(hw); 1503 if (hw->serdes_has_link) 1504 return *data; 1505 msleep(20); 1506 } while (i++ < 3750); 1507 1508 *data = 1; 1509 } else { 1510 e1000_check_for_link(hw); 1511 if (hw->autoneg) /* if auto_neg is set wait for it */ 1512 msleep(4000); 1513 1514 if (!(er32(STATUS) & E1000_STATUS_LU)) 1515 *data = 1; 1516 } 1517 return *data; 1518 } 1519 1520 static int e1000_get_sset_count(struct net_device *netdev, int sset) 1521 { 1522 switch (sset) { 1523 case ETH_SS_TEST: 1524 return E1000_TEST_LEN; 1525 case ETH_SS_STATS: 1526 return E1000_STATS_LEN; 1527 default: 1528 return -EOPNOTSUPP; 1529 } 1530 } 1531 1532 static void e1000_diag_test(struct net_device *netdev, 1533 struct ethtool_test *eth_test, u64 *data) 1534 { 1535 struct e1000_adapter *adapter = netdev_priv(netdev); 1536 struct e1000_hw *hw = &adapter->hw; 1537 bool if_running = netif_running(netdev); 1538 1539 set_bit(__E1000_TESTING, &adapter->flags); 1540 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1541 /* Offline tests */ 1542 1543 /* save speed, duplex, autoneg settings */ 1544 u16 autoneg_advertised = hw->autoneg_advertised; 1545 u8 forced_speed_duplex = hw->forced_speed_duplex; 1546 u8 autoneg = hw->autoneg; 1547 1548 e_info(hw, "offline testing starting\n"); 1549 1550 /* Link test performed before hardware reset so autoneg doesn't 1551 * interfere with test result 1552 */ 1553 if (e1000_link_test(adapter, &data[4])) 1554 eth_test->flags |= ETH_TEST_FL_FAILED; 1555 1556 if (if_running) 1557 /* indicate we're in test mode */ 1558 dev_close(netdev); 1559 else 1560 e1000_reset(adapter); 1561 1562 if (e1000_reg_test(adapter, &data[0])) 1563 eth_test->flags |= ETH_TEST_FL_FAILED; 1564 1565 e1000_reset(adapter); 1566 if (e1000_eeprom_test(adapter, &data[1])) 1567 eth_test->flags |= ETH_TEST_FL_FAILED; 1568 1569 e1000_reset(adapter); 1570 if (e1000_intr_test(adapter, &data[2])) 1571 eth_test->flags |= ETH_TEST_FL_FAILED; 1572 1573 e1000_reset(adapter); 1574 /* make sure the phy is powered up */ 1575 e1000_power_up_phy(adapter); 1576 if (e1000_loopback_test(adapter, &data[3])) 1577 eth_test->flags |= ETH_TEST_FL_FAILED; 1578 1579 /* restore speed, duplex, autoneg settings */ 1580 hw->autoneg_advertised = autoneg_advertised; 1581 hw->forced_speed_duplex = forced_speed_duplex; 1582 hw->autoneg = autoneg; 1583 1584 e1000_reset(adapter); 1585 clear_bit(__E1000_TESTING, &adapter->flags); 1586 if (if_running) 1587 dev_open(netdev); 1588 } else { 1589 e_info(hw, "online testing starting\n"); 1590 /* Online tests */ 1591 if (e1000_link_test(adapter, &data[4])) 1592 eth_test->flags |= ETH_TEST_FL_FAILED; 1593 1594 /* Online tests aren't run; pass by default */ 1595 data[0] = 0; 1596 data[1] = 0; 1597 data[2] = 0; 1598 data[3] = 0; 1599 1600 clear_bit(__E1000_TESTING, &adapter->flags); 1601 } 1602 msleep_interruptible(4 * 1000); 1603 } 1604 1605 static int e1000_wol_exclusion(struct e1000_adapter *adapter, 1606 struct ethtool_wolinfo *wol) 1607 { 1608 struct e1000_hw *hw = &adapter->hw; 1609 int retval = 1; /* fail by default */ 1610 1611 switch (hw->device_id) { 1612 case E1000_DEV_ID_82542: 1613 case E1000_DEV_ID_82543GC_FIBER: 1614 case E1000_DEV_ID_82543GC_COPPER: 1615 case E1000_DEV_ID_82544EI_FIBER: 1616 case E1000_DEV_ID_82546EB_QUAD_COPPER: 1617 case E1000_DEV_ID_82545EM_FIBER: 1618 case E1000_DEV_ID_82545EM_COPPER: 1619 case E1000_DEV_ID_82546GB_QUAD_COPPER: 1620 case E1000_DEV_ID_82546GB_PCIE: 1621 /* these don't support WoL at all */ 1622 wol->supported = 0; 1623 break; 1624 case E1000_DEV_ID_82546EB_FIBER: 1625 case E1000_DEV_ID_82546GB_FIBER: 1626 /* Wake events not supported on port B */ 1627 if (er32(STATUS) & E1000_STATUS_FUNC_1) { 1628 wol->supported = 0; 1629 break; 1630 } 1631 /* return success for non excluded adapter ports */ 1632 retval = 0; 1633 break; 1634 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1635 /* quad port adapters only support WoL on port A */ 1636 if (!adapter->quad_port_a) { 1637 wol->supported = 0; 1638 break; 1639 } 1640 /* return success for non excluded adapter ports */ 1641 retval = 0; 1642 break; 1643 default: 1644 /* dual port cards only support WoL on port A from now on 1645 * unless it was enabled in the eeprom for port B 1646 * so exclude FUNC_1 ports from having WoL enabled 1647 */ 1648 if (er32(STATUS) & E1000_STATUS_FUNC_1 && 1649 !adapter->eeprom_wol) { 1650 wol->supported = 0; 1651 break; 1652 } 1653 1654 retval = 0; 1655 } 1656 1657 return retval; 1658 } 1659 1660 static void e1000_get_wol(struct net_device *netdev, 1661 struct ethtool_wolinfo *wol) 1662 { 1663 struct e1000_adapter *adapter = netdev_priv(netdev); 1664 struct e1000_hw *hw = &adapter->hw; 1665 1666 wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC; 1667 wol->wolopts = 0; 1668 1669 /* this function will set ->supported = 0 and return 1 if wol is not 1670 * supported by this hardware 1671 */ 1672 if (e1000_wol_exclusion(adapter, wol) || 1673 !device_can_wakeup(&adapter->pdev->dev)) 1674 return; 1675 1676 /* apply any specific unsupported masks here */ 1677 switch (hw->device_id) { 1678 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1679 /* KSP3 does not support UCAST wake-ups */ 1680 wol->supported &= ~WAKE_UCAST; 1681 1682 if (adapter->wol & E1000_WUFC_EX) 1683 e_err(drv, "Interface does not support directed " 1684 "(unicast) frame wake-up packets\n"); 1685 break; 1686 default: 1687 break; 1688 } 1689 1690 if (adapter->wol & E1000_WUFC_EX) 1691 wol->wolopts |= WAKE_UCAST; 1692 if (adapter->wol & E1000_WUFC_MC) 1693 wol->wolopts |= WAKE_MCAST; 1694 if (adapter->wol & E1000_WUFC_BC) 1695 wol->wolopts |= WAKE_BCAST; 1696 if (adapter->wol & E1000_WUFC_MAG) 1697 wol->wolopts |= WAKE_MAGIC; 1698 } 1699 1700 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1701 { 1702 struct e1000_adapter *adapter = netdev_priv(netdev); 1703 struct e1000_hw *hw = &adapter->hw; 1704 1705 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) 1706 return -EOPNOTSUPP; 1707 1708 if (e1000_wol_exclusion(adapter, wol) || 1709 !device_can_wakeup(&adapter->pdev->dev)) 1710 return wol->wolopts ? -EOPNOTSUPP : 0; 1711 1712 switch (hw->device_id) { 1713 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1714 if (wol->wolopts & WAKE_UCAST) { 1715 e_err(drv, "Interface does not support directed " 1716 "(unicast) frame wake-up packets\n"); 1717 return -EOPNOTSUPP; 1718 } 1719 break; 1720 default: 1721 break; 1722 } 1723 1724 /* these settings will always override what we currently have */ 1725 adapter->wol = 0; 1726 1727 if (wol->wolopts & WAKE_UCAST) 1728 adapter->wol |= E1000_WUFC_EX; 1729 if (wol->wolopts & WAKE_MCAST) 1730 adapter->wol |= E1000_WUFC_MC; 1731 if (wol->wolopts & WAKE_BCAST) 1732 adapter->wol |= E1000_WUFC_BC; 1733 if (wol->wolopts & WAKE_MAGIC) 1734 adapter->wol |= E1000_WUFC_MAG; 1735 1736 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1737 1738 return 0; 1739 } 1740 1741 static int e1000_set_phys_id(struct net_device *netdev, 1742 enum ethtool_phys_id_state state) 1743 { 1744 struct e1000_adapter *adapter = netdev_priv(netdev); 1745 struct e1000_hw *hw = &adapter->hw; 1746 1747 switch (state) { 1748 case ETHTOOL_ID_ACTIVE: 1749 e1000_setup_led(hw); 1750 return 2; 1751 1752 case ETHTOOL_ID_ON: 1753 e1000_led_on(hw); 1754 break; 1755 1756 case ETHTOOL_ID_OFF: 1757 e1000_led_off(hw); 1758 break; 1759 1760 case ETHTOOL_ID_INACTIVE: 1761 e1000_cleanup_led(hw); 1762 } 1763 1764 return 0; 1765 } 1766 1767 static int e1000_get_coalesce(struct net_device *netdev, 1768 struct ethtool_coalesce *ec) 1769 { 1770 struct e1000_adapter *adapter = netdev_priv(netdev); 1771 1772 if (adapter->hw.mac_type < e1000_82545) 1773 return -EOPNOTSUPP; 1774 1775 if (adapter->itr_setting <= 4) 1776 ec->rx_coalesce_usecs = adapter->itr_setting; 1777 else 1778 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1779 1780 return 0; 1781 } 1782 1783 static int e1000_set_coalesce(struct net_device *netdev, 1784 struct ethtool_coalesce *ec) 1785 { 1786 struct e1000_adapter *adapter = netdev_priv(netdev); 1787 struct e1000_hw *hw = &adapter->hw; 1788 1789 if (hw->mac_type < e1000_82545) 1790 return -EOPNOTSUPP; 1791 1792 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 1793 ((ec->rx_coalesce_usecs > 4) && 1794 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 1795 (ec->rx_coalesce_usecs == 2)) 1796 return -EINVAL; 1797 1798 if (ec->rx_coalesce_usecs == 4) { 1799 adapter->itr = adapter->itr_setting = 4; 1800 } else if (ec->rx_coalesce_usecs <= 3) { 1801 adapter->itr = 20000; 1802 adapter->itr_setting = ec->rx_coalesce_usecs; 1803 } else { 1804 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 1805 adapter->itr_setting = adapter->itr & ~3; 1806 } 1807 1808 if (adapter->itr_setting != 0) 1809 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1810 else 1811 ew32(ITR, 0); 1812 1813 return 0; 1814 } 1815 1816 static int e1000_nway_reset(struct net_device *netdev) 1817 { 1818 struct e1000_adapter *adapter = netdev_priv(netdev); 1819 1820 if (netif_running(netdev)) 1821 e1000_reinit_locked(adapter); 1822 return 0; 1823 } 1824 1825 static void e1000_get_ethtool_stats(struct net_device *netdev, 1826 struct ethtool_stats *stats, u64 *data) 1827 { 1828 struct e1000_adapter *adapter = netdev_priv(netdev); 1829 int i; 1830 char *p = NULL; 1831 const struct e1000_stats *stat = e1000_gstrings_stats; 1832 1833 e1000_update_stats(adapter); 1834 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1835 switch (stat->type) { 1836 case NETDEV_STATS: 1837 p = (char *)netdev + stat->stat_offset; 1838 break; 1839 case E1000_STATS: 1840 p = (char *)adapter + stat->stat_offset; 1841 break; 1842 default: 1843 WARN_ONCE(1, "Invalid E1000 stat type: %u index %d\n", 1844 stat->type, i); 1845 break; 1846 } 1847 1848 if (stat->sizeof_stat == sizeof(u64)) 1849 data[i] = *(u64 *)p; 1850 else 1851 data[i] = *(u32 *)p; 1852 1853 stat++; 1854 } 1855 /* BUG_ON(i != E1000_STATS_LEN); */ 1856 } 1857 1858 static void e1000_get_strings(struct net_device *netdev, u32 stringset, 1859 u8 *data) 1860 { 1861 u8 *p = data; 1862 int i; 1863 1864 switch (stringset) { 1865 case ETH_SS_TEST: 1866 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 1867 break; 1868 case ETH_SS_STATS: 1869 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1870 memcpy(p, e1000_gstrings_stats[i].stat_string, 1871 ETH_GSTRING_LEN); 1872 p += ETH_GSTRING_LEN; 1873 } 1874 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */ 1875 break; 1876 } 1877 } 1878 1879 static const struct ethtool_ops e1000_ethtool_ops = { 1880 .get_settings = e1000_get_settings, 1881 .set_settings = e1000_set_settings, 1882 .get_drvinfo = e1000_get_drvinfo, 1883 .get_regs_len = e1000_get_regs_len, 1884 .get_regs = e1000_get_regs, 1885 .get_wol = e1000_get_wol, 1886 .set_wol = e1000_set_wol, 1887 .get_msglevel = e1000_get_msglevel, 1888 .set_msglevel = e1000_set_msglevel, 1889 .nway_reset = e1000_nway_reset, 1890 .get_link = e1000_get_link, 1891 .get_eeprom_len = e1000_get_eeprom_len, 1892 .get_eeprom = e1000_get_eeprom, 1893 .set_eeprom = e1000_set_eeprom, 1894 .get_ringparam = e1000_get_ringparam, 1895 .set_ringparam = e1000_set_ringparam, 1896 .get_pauseparam = e1000_get_pauseparam, 1897 .set_pauseparam = e1000_set_pauseparam, 1898 .self_test = e1000_diag_test, 1899 .get_strings = e1000_get_strings, 1900 .set_phys_id = e1000_set_phys_id, 1901 .get_ethtool_stats = e1000_get_ethtool_stats, 1902 .get_sset_count = e1000_get_sset_count, 1903 .get_coalesce = e1000_get_coalesce, 1904 .set_coalesce = e1000_set_coalesce, 1905 .get_ts_info = ethtool_op_get_ts_info, 1906 }; 1907 1908 void e1000_set_ethtool_ops(struct net_device *netdev) 1909 { 1910 netdev->ethtool_ops = &e1000_ethtool_ops; 1911 } 1912