1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3 
4 /* ethtool support for e1000 */
5 
6 #include "e1000.h"
7 #include <linux/jiffies.h>
8 #include <linux/uaccess.h>
9 
10 enum {NETDEV_STATS, E1000_STATS};
11 
12 struct e1000_stats {
13 	char stat_string[ETH_GSTRING_LEN];
14 	int type;
15 	int sizeof_stat;
16 	int stat_offset;
17 };
18 
19 #define E1000_STAT(m)		E1000_STATS, \
20 				sizeof(((struct e1000_adapter *)0)->m), \
21 				offsetof(struct e1000_adapter, m)
22 #define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
23 				sizeof(((struct net_device *)0)->m), \
24 				offsetof(struct net_device, m)
25 
26 static const struct e1000_stats e1000_gstrings_stats[] = {
27 	{ "rx_packets", E1000_STAT(stats.gprc) },
28 	{ "tx_packets", E1000_STAT(stats.gptc) },
29 	{ "rx_bytes", E1000_STAT(stats.gorcl) },
30 	{ "tx_bytes", E1000_STAT(stats.gotcl) },
31 	{ "rx_broadcast", E1000_STAT(stats.bprc) },
32 	{ "tx_broadcast", E1000_STAT(stats.bptc) },
33 	{ "rx_multicast", E1000_STAT(stats.mprc) },
34 	{ "tx_multicast", E1000_STAT(stats.mptc) },
35 	{ "rx_errors", E1000_STAT(stats.rxerrc) },
36 	{ "tx_errors", E1000_STAT(stats.txerrc) },
37 	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
38 	{ "multicast", E1000_STAT(stats.mprc) },
39 	{ "collisions", E1000_STAT(stats.colc) },
40 	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
41 	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
42 	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
43 	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
44 	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
45 	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
46 	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
47 	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
48 	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
49 	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
50 	{ "tx_window_errors", E1000_STAT(stats.latecol) },
51 	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
52 	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
53 	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
54 	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
55 	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
56 	{ "tx_restart_queue", E1000_STAT(restart_queue) },
57 	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
58 	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
59 	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
60 	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
61 	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
62 	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
63 	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
64 	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
65 	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
66 	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
67 	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
68 	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
69 	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
70 	{ "tx_smbus", E1000_STAT(stats.mgptc) },
71 	{ "rx_smbus", E1000_STAT(stats.mgprc) },
72 	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
73 };
74 
75 #define E1000_QUEUE_STATS_LEN 0
76 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
77 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
78 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
79 	"Register test  (offline)", "Eeprom test    (offline)",
80 	"Interrupt test (offline)", "Loopback test  (offline)",
81 	"Link test   (on/offline)"
82 };
83 
84 #define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
85 
86 static int e1000_get_link_ksettings(struct net_device *netdev,
87 				    struct ethtool_link_ksettings *cmd)
88 {
89 	struct e1000_adapter *adapter = netdev_priv(netdev);
90 	struct e1000_hw *hw = &adapter->hw;
91 	u32 supported, advertising;
92 
93 	if (hw->media_type == e1000_media_type_copper) {
94 		supported = (SUPPORTED_10baseT_Half |
95 			     SUPPORTED_10baseT_Full |
96 			     SUPPORTED_100baseT_Half |
97 			     SUPPORTED_100baseT_Full |
98 			     SUPPORTED_1000baseT_Full|
99 			     SUPPORTED_Autoneg |
100 			     SUPPORTED_TP);
101 		advertising = ADVERTISED_TP;
102 
103 		if (hw->autoneg == 1) {
104 			advertising |= ADVERTISED_Autoneg;
105 			/* the e1000 autoneg seems to match ethtool nicely */
106 			advertising |= hw->autoneg_advertised;
107 		}
108 
109 		cmd->base.port = PORT_TP;
110 		cmd->base.phy_address = hw->phy_addr;
111 	} else {
112 		supported   = (SUPPORTED_1000baseT_Full |
113 			       SUPPORTED_FIBRE |
114 			       SUPPORTED_Autoneg);
115 
116 		advertising = (ADVERTISED_1000baseT_Full |
117 			       ADVERTISED_FIBRE |
118 			       ADVERTISED_Autoneg);
119 
120 		cmd->base.port = PORT_FIBRE;
121 	}
122 
123 	if (er32(STATUS) & E1000_STATUS_LU) {
124 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
125 					   &adapter->link_duplex);
126 		cmd->base.speed = adapter->link_speed;
127 
128 		/* unfortunately FULL_DUPLEX != DUPLEX_FULL
129 		 * and HALF_DUPLEX != DUPLEX_HALF
130 		 */
131 		if (adapter->link_duplex == FULL_DUPLEX)
132 			cmd->base.duplex = DUPLEX_FULL;
133 		else
134 			cmd->base.duplex = DUPLEX_HALF;
135 	} else {
136 		cmd->base.speed = SPEED_UNKNOWN;
137 		cmd->base.duplex = DUPLEX_UNKNOWN;
138 	}
139 
140 	cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
141 			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
142 
143 	/* MDI-X => 1; MDI => 0 */
144 	if ((hw->media_type == e1000_media_type_copper) &&
145 	    netif_carrier_ok(netdev))
146 		cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
147 				     ETH_TP_MDI_X : ETH_TP_MDI);
148 	else
149 		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
150 
151 	if (hw->mdix == AUTO_ALL_MODES)
152 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
153 	else
154 		cmd->base.eth_tp_mdix_ctrl = hw->mdix;
155 
156 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
157 						supported);
158 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
159 						advertising);
160 
161 	return 0;
162 }
163 
164 static int e1000_set_link_ksettings(struct net_device *netdev,
165 				    const struct ethtool_link_ksettings *cmd)
166 {
167 	struct e1000_adapter *adapter = netdev_priv(netdev);
168 	struct e1000_hw *hw = &adapter->hw;
169 	u32 advertising;
170 
171 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
172 						cmd->link_modes.advertising);
173 
174 	/* MDI setting is only allowed when autoneg enabled because
175 	 * some hardware doesn't allow MDI setting when speed or
176 	 * duplex is forced.
177 	 */
178 	if (cmd->base.eth_tp_mdix_ctrl) {
179 		if (hw->media_type != e1000_media_type_copper)
180 			return -EOPNOTSUPP;
181 
182 		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
183 		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
184 			e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
185 			return -EINVAL;
186 		}
187 	}
188 
189 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
190 		msleep(1);
191 
192 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
193 		hw->autoneg = 1;
194 		if (hw->media_type == e1000_media_type_fiber)
195 			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
196 						 ADVERTISED_FIBRE |
197 						 ADVERTISED_Autoneg;
198 		else
199 			hw->autoneg_advertised = advertising |
200 						 ADVERTISED_TP |
201 						 ADVERTISED_Autoneg;
202 	} else {
203 		u32 speed = cmd->base.speed;
204 		/* calling this overrides forced MDI setting */
205 		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
206 			clear_bit(__E1000_RESETTING, &adapter->flags);
207 			return -EINVAL;
208 		}
209 	}
210 
211 	/* MDI-X => 2; MDI => 1; Auto => 3 */
212 	if (cmd->base.eth_tp_mdix_ctrl) {
213 		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
214 			hw->mdix = AUTO_ALL_MODES;
215 		else
216 			hw->mdix = cmd->base.eth_tp_mdix_ctrl;
217 	}
218 
219 	/* reset the link */
220 
221 	if (netif_running(adapter->netdev)) {
222 		e1000_down(adapter);
223 		e1000_up(adapter);
224 	} else {
225 		e1000_reset(adapter);
226 	}
227 	clear_bit(__E1000_RESETTING, &adapter->flags);
228 	return 0;
229 }
230 
231 static u32 e1000_get_link(struct net_device *netdev)
232 {
233 	struct e1000_adapter *adapter = netdev_priv(netdev);
234 
235 	/* If the link is not reported up to netdev, interrupts are disabled,
236 	 * and so the physical link state may have changed since we last
237 	 * looked. Set get_link_status to make sure that the true link
238 	 * state is interrogated, rather than pulling a cached and possibly
239 	 * stale link state from the driver.
240 	 */
241 	if (!netif_carrier_ok(netdev))
242 		adapter->hw.get_link_status = 1;
243 
244 	return e1000_has_link(adapter);
245 }
246 
247 static void e1000_get_pauseparam(struct net_device *netdev,
248 				 struct ethtool_pauseparam *pause)
249 {
250 	struct e1000_adapter *adapter = netdev_priv(netdev);
251 	struct e1000_hw *hw = &adapter->hw;
252 
253 	pause->autoneg =
254 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
255 
256 	if (hw->fc == E1000_FC_RX_PAUSE) {
257 		pause->rx_pause = 1;
258 	} else if (hw->fc == E1000_FC_TX_PAUSE) {
259 		pause->tx_pause = 1;
260 	} else if (hw->fc == E1000_FC_FULL) {
261 		pause->rx_pause = 1;
262 		pause->tx_pause = 1;
263 	}
264 }
265 
266 static int e1000_set_pauseparam(struct net_device *netdev,
267 				struct ethtool_pauseparam *pause)
268 {
269 	struct e1000_adapter *adapter = netdev_priv(netdev);
270 	struct e1000_hw *hw = &adapter->hw;
271 	int retval = 0;
272 
273 	adapter->fc_autoneg = pause->autoneg;
274 
275 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
276 		msleep(1);
277 
278 	if (pause->rx_pause && pause->tx_pause)
279 		hw->fc = E1000_FC_FULL;
280 	else if (pause->rx_pause && !pause->tx_pause)
281 		hw->fc = E1000_FC_RX_PAUSE;
282 	else if (!pause->rx_pause && pause->tx_pause)
283 		hw->fc = E1000_FC_TX_PAUSE;
284 	else if (!pause->rx_pause && !pause->tx_pause)
285 		hw->fc = E1000_FC_NONE;
286 
287 	hw->original_fc = hw->fc;
288 
289 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
290 		if (netif_running(adapter->netdev)) {
291 			e1000_down(adapter);
292 			e1000_up(adapter);
293 		} else {
294 			e1000_reset(adapter);
295 		}
296 	} else
297 		retval = ((hw->media_type == e1000_media_type_fiber) ?
298 			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
299 
300 	clear_bit(__E1000_RESETTING, &adapter->flags);
301 	return retval;
302 }
303 
304 static u32 e1000_get_msglevel(struct net_device *netdev)
305 {
306 	struct e1000_adapter *adapter = netdev_priv(netdev);
307 
308 	return adapter->msg_enable;
309 }
310 
311 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
312 {
313 	struct e1000_adapter *adapter = netdev_priv(netdev);
314 
315 	adapter->msg_enable = data;
316 }
317 
318 static int e1000_get_regs_len(struct net_device *netdev)
319 {
320 #define E1000_REGS_LEN 32
321 	return E1000_REGS_LEN * sizeof(u32);
322 }
323 
324 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
325 			   void *p)
326 {
327 	struct e1000_adapter *adapter = netdev_priv(netdev);
328 	struct e1000_hw *hw = &adapter->hw;
329 	u32 *regs_buff = p;
330 	u16 phy_data;
331 
332 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
333 
334 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
335 
336 	regs_buff[0]  = er32(CTRL);
337 	regs_buff[1]  = er32(STATUS);
338 
339 	regs_buff[2]  = er32(RCTL);
340 	regs_buff[3]  = er32(RDLEN);
341 	regs_buff[4]  = er32(RDH);
342 	regs_buff[5]  = er32(RDT);
343 	regs_buff[6]  = er32(RDTR);
344 
345 	regs_buff[7]  = er32(TCTL);
346 	regs_buff[8]  = er32(TDLEN);
347 	regs_buff[9]  = er32(TDH);
348 	regs_buff[10] = er32(TDT);
349 	regs_buff[11] = er32(TIDV);
350 
351 	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
352 	if (hw->phy_type == e1000_phy_igp) {
353 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
354 				    IGP01E1000_PHY_AGC_A);
355 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
356 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
357 		regs_buff[13] = (u32)phy_data; /* cable length */
358 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
359 				    IGP01E1000_PHY_AGC_B);
360 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
361 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
362 		regs_buff[14] = (u32)phy_data; /* cable length */
363 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
364 				    IGP01E1000_PHY_AGC_C);
365 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
366 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
367 		regs_buff[15] = (u32)phy_data; /* cable length */
368 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
369 				    IGP01E1000_PHY_AGC_D);
370 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
371 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
372 		regs_buff[16] = (u32)phy_data; /* cable length */
373 		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
374 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
375 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
376 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
377 		regs_buff[18] = (u32)phy_data; /* cable polarity */
378 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
379 				    IGP01E1000_PHY_PCS_INIT_REG);
380 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
381 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
382 		regs_buff[19] = (u32)phy_data; /* cable polarity */
383 		regs_buff[20] = 0; /* polarity correction enabled (always) */
384 		regs_buff[22] = 0; /* phy receive errors (unavailable) */
385 		regs_buff[23] = regs_buff[18]; /* mdix mode */
386 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
387 	} else {
388 		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
389 		regs_buff[13] = (u32)phy_data; /* cable length */
390 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
391 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
392 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
393 		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
394 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
395 		regs_buff[18] = regs_buff[13]; /* cable polarity */
396 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
397 		regs_buff[20] = regs_buff[17]; /* polarity correction */
398 		/* phy receive errors */
399 		regs_buff[22] = adapter->phy_stats.receive_errors;
400 		regs_buff[23] = regs_buff[13]; /* mdix mode */
401 	}
402 	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
403 	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
404 	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
405 	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
406 	if (hw->mac_type >= e1000_82540 &&
407 	    hw->media_type == e1000_media_type_copper) {
408 		regs_buff[26] = er32(MANC);
409 	}
410 }
411 
412 static int e1000_get_eeprom_len(struct net_device *netdev)
413 {
414 	struct e1000_adapter *adapter = netdev_priv(netdev);
415 	struct e1000_hw *hw = &adapter->hw;
416 
417 	return hw->eeprom.word_size * 2;
418 }
419 
420 static int e1000_get_eeprom(struct net_device *netdev,
421 			    struct ethtool_eeprom *eeprom, u8 *bytes)
422 {
423 	struct e1000_adapter *adapter = netdev_priv(netdev);
424 	struct e1000_hw *hw = &adapter->hw;
425 	u16 *eeprom_buff;
426 	int first_word, last_word;
427 	int ret_val = 0;
428 	u16 i;
429 
430 	if (eeprom->len == 0)
431 		return -EINVAL;
432 
433 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
434 
435 	first_word = eeprom->offset >> 1;
436 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
437 
438 	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
439 				    GFP_KERNEL);
440 	if (!eeprom_buff)
441 		return -ENOMEM;
442 
443 	if (hw->eeprom.type == e1000_eeprom_spi)
444 		ret_val = e1000_read_eeprom(hw, first_word,
445 					    last_word - first_word + 1,
446 					    eeprom_buff);
447 	else {
448 		for (i = 0; i < last_word - first_word + 1; i++) {
449 			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
450 						    &eeprom_buff[i]);
451 			if (ret_val)
452 				break;
453 		}
454 	}
455 
456 	/* Device's eeprom is always little-endian, word addressable */
457 	for (i = 0; i < last_word - first_word + 1; i++)
458 		le16_to_cpus(&eeprom_buff[i]);
459 
460 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
461 	       eeprom->len);
462 	kfree(eeprom_buff);
463 
464 	return ret_val;
465 }
466 
467 static int e1000_set_eeprom(struct net_device *netdev,
468 			    struct ethtool_eeprom *eeprom, u8 *bytes)
469 {
470 	struct e1000_adapter *adapter = netdev_priv(netdev);
471 	struct e1000_hw *hw = &adapter->hw;
472 	u16 *eeprom_buff;
473 	void *ptr;
474 	int max_len, first_word, last_word, ret_val = 0;
475 	u16 i;
476 
477 	if (eeprom->len == 0)
478 		return -EOPNOTSUPP;
479 
480 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
481 		return -EFAULT;
482 
483 	max_len = hw->eeprom.word_size * 2;
484 
485 	first_word = eeprom->offset >> 1;
486 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
487 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
488 	if (!eeprom_buff)
489 		return -ENOMEM;
490 
491 	ptr = (void *)eeprom_buff;
492 
493 	if (eeprom->offset & 1) {
494 		/* need read/modify/write of first changed EEPROM word
495 		 * only the second byte of the word is being modified
496 		 */
497 		ret_val = e1000_read_eeprom(hw, first_word, 1,
498 					    &eeprom_buff[0]);
499 		ptr++;
500 	}
501 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
502 		/* need read/modify/write of last changed EEPROM word
503 		 * only the first byte of the word is being modified
504 		 */
505 		ret_val = e1000_read_eeprom(hw, last_word, 1,
506 					    &eeprom_buff[last_word - first_word]);
507 	}
508 
509 	/* Device's eeprom is always little-endian, word addressable */
510 	for (i = 0; i < last_word - first_word + 1; i++)
511 		le16_to_cpus(&eeprom_buff[i]);
512 
513 	memcpy(ptr, bytes, eeprom->len);
514 
515 	for (i = 0; i < last_word - first_word + 1; i++)
516 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
517 
518 	ret_val = e1000_write_eeprom(hw, first_word,
519 				     last_word - first_word + 1, eeprom_buff);
520 
521 	/* Update the checksum over the first part of the EEPROM if needed */
522 	if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
523 		e1000_update_eeprom_checksum(hw);
524 
525 	kfree(eeprom_buff);
526 	return ret_val;
527 }
528 
529 static void e1000_get_drvinfo(struct net_device *netdev,
530 			      struct ethtool_drvinfo *drvinfo)
531 {
532 	struct e1000_adapter *adapter = netdev_priv(netdev);
533 
534 	strlcpy(drvinfo->driver,  e1000_driver_name,
535 		sizeof(drvinfo->driver));
536 	strlcpy(drvinfo->version, e1000_driver_version,
537 		sizeof(drvinfo->version));
538 
539 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
540 		sizeof(drvinfo->bus_info));
541 }
542 
543 static void e1000_get_ringparam(struct net_device *netdev,
544 				struct ethtool_ringparam *ring)
545 {
546 	struct e1000_adapter *adapter = netdev_priv(netdev);
547 	struct e1000_hw *hw = &adapter->hw;
548 	e1000_mac_type mac_type = hw->mac_type;
549 	struct e1000_tx_ring *txdr = adapter->tx_ring;
550 	struct e1000_rx_ring *rxdr = adapter->rx_ring;
551 
552 	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
553 		E1000_MAX_82544_RXD;
554 	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
555 		E1000_MAX_82544_TXD;
556 	ring->rx_pending = rxdr->count;
557 	ring->tx_pending = txdr->count;
558 }
559 
560 static int e1000_set_ringparam(struct net_device *netdev,
561 			       struct ethtool_ringparam *ring)
562 {
563 	struct e1000_adapter *adapter = netdev_priv(netdev);
564 	struct e1000_hw *hw = &adapter->hw;
565 	e1000_mac_type mac_type = hw->mac_type;
566 	struct e1000_tx_ring *txdr, *tx_old;
567 	struct e1000_rx_ring *rxdr, *rx_old;
568 	int i, err;
569 
570 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
571 		return -EINVAL;
572 
573 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
574 		msleep(1);
575 
576 	if (netif_running(adapter->netdev))
577 		e1000_down(adapter);
578 
579 	tx_old = adapter->tx_ring;
580 	rx_old = adapter->rx_ring;
581 
582 	err = -ENOMEM;
583 	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
584 		       GFP_KERNEL);
585 	if (!txdr)
586 		goto err_alloc_tx;
587 
588 	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
589 		       GFP_KERNEL);
590 	if (!rxdr)
591 		goto err_alloc_rx;
592 
593 	adapter->tx_ring = txdr;
594 	adapter->rx_ring = rxdr;
595 
596 	rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
597 	rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
598 			  E1000_MAX_RXD : E1000_MAX_82544_RXD));
599 	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
600 	txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
601 	txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
602 			  E1000_MAX_TXD : E1000_MAX_82544_TXD));
603 	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
604 
605 	for (i = 0; i < adapter->num_tx_queues; i++)
606 		txdr[i].count = txdr->count;
607 	for (i = 0; i < adapter->num_rx_queues; i++)
608 		rxdr[i].count = rxdr->count;
609 
610 	if (netif_running(adapter->netdev)) {
611 		/* Try to get new resources before deleting old */
612 		err = e1000_setup_all_rx_resources(adapter);
613 		if (err)
614 			goto err_setup_rx;
615 		err = e1000_setup_all_tx_resources(adapter);
616 		if (err)
617 			goto err_setup_tx;
618 
619 		/* save the new, restore the old in order to free it,
620 		 * then restore the new back again
621 		 */
622 
623 		adapter->rx_ring = rx_old;
624 		adapter->tx_ring = tx_old;
625 		e1000_free_all_rx_resources(adapter);
626 		e1000_free_all_tx_resources(adapter);
627 		kfree(tx_old);
628 		kfree(rx_old);
629 		adapter->rx_ring = rxdr;
630 		adapter->tx_ring = txdr;
631 		err = e1000_up(adapter);
632 		if (err)
633 			goto err_setup;
634 	}
635 
636 	clear_bit(__E1000_RESETTING, &adapter->flags);
637 	return 0;
638 err_setup_tx:
639 	e1000_free_all_rx_resources(adapter);
640 err_setup_rx:
641 	adapter->rx_ring = rx_old;
642 	adapter->tx_ring = tx_old;
643 	kfree(rxdr);
644 err_alloc_rx:
645 	kfree(txdr);
646 err_alloc_tx:
647 	e1000_up(adapter);
648 err_setup:
649 	clear_bit(__E1000_RESETTING, &adapter->flags);
650 	return err;
651 }
652 
653 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
654 			     u32 mask, u32 write)
655 {
656 	struct e1000_hw *hw = &adapter->hw;
657 	static const u32 test[] = {
658 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
659 	};
660 	u8 __iomem *address = hw->hw_addr + reg;
661 	u32 read;
662 	int i;
663 
664 	for (i = 0; i < ARRAY_SIZE(test); i++) {
665 		writel(write & test[i], address);
666 		read = readl(address);
667 		if (read != (write & test[i] & mask)) {
668 			e_err(drv, "pattern test reg %04X failed: "
669 			      "got 0x%08X expected 0x%08X\n",
670 			      reg, read, (write & test[i] & mask));
671 			*data = reg;
672 			return true;
673 		}
674 	}
675 	return false;
676 }
677 
678 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
679 			      u32 mask, u32 write)
680 {
681 	struct e1000_hw *hw = &adapter->hw;
682 	u8 __iomem *address = hw->hw_addr + reg;
683 	u32 read;
684 
685 	writel(write & mask, address);
686 	read = readl(address);
687 	if ((read & mask) != (write & mask)) {
688 		e_err(drv, "set/check reg %04X test failed: "
689 		      "got 0x%08X expected 0x%08X\n",
690 		      reg, (read & mask), (write & mask));
691 		*data = reg;
692 		return true;
693 	}
694 	return false;
695 }
696 
697 #define REG_PATTERN_TEST(reg, mask, write)			     \
698 	do {							     \
699 		if (reg_pattern_test(adapter, data,		     \
700 			     (hw->mac_type >= e1000_82543)   \
701 			     ? E1000_##reg : E1000_82542_##reg,	     \
702 			     mask, write))			     \
703 			return 1;				     \
704 	} while (0)
705 
706 #define REG_SET_AND_CHECK(reg, mask, write)			     \
707 	do {							     \
708 		if (reg_set_and_check(adapter, data,		     \
709 			      (hw->mac_type >= e1000_82543)  \
710 			      ? E1000_##reg : E1000_82542_##reg,     \
711 			      mask, write))			     \
712 			return 1;				     \
713 	} while (0)
714 
715 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
716 {
717 	u32 value, before, after;
718 	u32 i, toggle;
719 	struct e1000_hw *hw = &adapter->hw;
720 
721 	/* The status register is Read Only, so a write should fail.
722 	 * Some bits that get toggled are ignored.
723 	 */
724 
725 	/* there are several bits on newer hardware that are r/w */
726 	toggle = 0xFFFFF833;
727 
728 	before = er32(STATUS);
729 	value = (er32(STATUS) & toggle);
730 	ew32(STATUS, toggle);
731 	after = er32(STATUS) & toggle;
732 	if (value != after) {
733 		e_err(drv, "failed STATUS register test got: "
734 		      "0x%08X expected: 0x%08X\n", after, value);
735 		*data = 1;
736 		return 1;
737 	}
738 	/* restore previous status */
739 	ew32(STATUS, before);
740 
741 	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
742 	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
743 	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
744 	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
745 
746 	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
747 	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
748 	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
749 	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
750 	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
751 	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
752 	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
753 	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
754 	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
755 	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
756 
757 	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
758 
759 	before = 0x06DFB3FE;
760 	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
761 	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
762 
763 	if (hw->mac_type >= e1000_82543) {
764 		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
765 		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
766 		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
767 		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
768 		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
769 		value = E1000_RAR_ENTRIES;
770 		for (i = 0; i < value; i++) {
771 			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
772 					 0x8003FFFF, 0xFFFFFFFF);
773 		}
774 	} else {
775 		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
776 		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
777 		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
778 		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
779 	}
780 
781 	value = E1000_MC_TBL_SIZE;
782 	for (i = 0; i < value; i++)
783 		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
784 
785 	*data = 0;
786 	return 0;
787 }
788 
789 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
790 {
791 	struct e1000_hw *hw = &adapter->hw;
792 	u16 temp;
793 	u16 checksum = 0;
794 	u16 i;
795 
796 	*data = 0;
797 	/* Read and add up the contents of the EEPROM */
798 	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
799 		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
800 			*data = 1;
801 			break;
802 		}
803 		checksum += temp;
804 	}
805 
806 	/* If Checksum is not Correct return error else test passed */
807 	if ((checksum != (u16)EEPROM_SUM) && !(*data))
808 		*data = 2;
809 
810 	return *data;
811 }
812 
813 static irqreturn_t e1000_test_intr(int irq, void *data)
814 {
815 	struct net_device *netdev = (struct net_device *)data;
816 	struct e1000_adapter *adapter = netdev_priv(netdev);
817 	struct e1000_hw *hw = &adapter->hw;
818 
819 	adapter->test_icr |= er32(ICR);
820 
821 	return IRQ_HANDLED;
822 }
823 
824 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
825 {
826 	struct net_device *netdev = adapter->netdev;
827 	u32 mask, i = 0;
828 	bool shared_int = true;
829 	u32 irq = adapter->pdev->irq;
830 	struct e1000_hw *hw = &adapter->hw;
831 
832 	*data = 0;
833 
834 	/* NOTE: we don't test MSI interrupts here, yet
835 	 * Hook up test interrupt handler just for this test
836 	 */
837 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
838 			 netdev))
839 		shared_int = false;
840 	else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
841 			     netdev->name, netdev)) {
842 		*data = 1;
843 		return -1;
844 	}
845 	e_info(hw, "testing %s interrupt\n", (shared_int ?
846 	       "shared" : "unshared"));
847 
848 	/* Disable all the interrupts */
849 	ew32(IMC, 0xFFFFFFFF);
850 	E1000_WRITE_FLUSH();
851 	msleep(10);
852 
853 	/* Test each interrupt */
854 	for (; i < 10; i++) {
855 		/* Interrupt to test */
856 		mask = 1 << i;
857 
858 		if (!shared_int) {
859 			/* Disable the interrupt to be reported in
860 			 * the cause register and then force the same
861 			 * interrupt and see if one gets posted.  If
862 			 * an interrupt was posted to the bus, the
863 			 * test failed.
864 			 */
865 			adapter->test_icr = 0;
866 			ew32(IMC, mask);
867 			ew32(ICS, mask);
868 			E1000_WRITE_FLUSH();
869 			msleep(10);
870 
871 			if (adapter->test_icr & mask) {
872 				*data = 3;
873 				break;
874 			}
875 		}
876 
877 		/* Enable the interrupt to be reported in
878 		 * the cause register and then force the same
879 		 * interrupt and see if one gets posted.  If
880 		 * an interrupt was not posted to the bus, the
881 		 * test failed.
882 		 */
883 		adapter->test_icr = 0;
884 		ew32(IMS, mask);
885 		ew32(ICS, mask);
886 		E1000_WRITE_FLUSH();
887 		msleep(10);
888 
889 		if (!(adapter->test_icr & mask)) {
890 			*data = 4;
891 			break;
892 		}
893 
894 		if (!shared_int) {
895 			/* Disable the other interrupts to be reported in
896 			 * the cause register and then force the other
897 			 * interrupts and see if any get posted.  If
898 			 * an interrupt was posted to the bus, the
899 			 * test failed.
900 			 */
901 			adapter->test_icr = 0;
902 			ew32(IMC, ~mask & 0x00007FFF);
903 			ew32(ICS, ~mask & 0x00007FFF);
904 			E1000_WRITE_FLUSH();
905 			msleep(10);
906 
907 			if (adapter->test_icr) {
908 				*data = 5;
909 				break;
910 			}
911 		}
912 	}
913 
914 	/* Disable all the interrupts */
915 	ew32(IMC, 0xFFFFFFFF);
916 	E1000_WRITE_FLUSH();
917 	msleep(10);
918 
919 	/* Unhook test interrupt handler */
920 	free_irq(irq, netdev);
921 
922 	return *data;
923 }
924 
925 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
926 {
927 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
928 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
929 	struct pci_dev *pdev = adapter->pdev;
930 	int i;
931 
932 	if (txdr->desc && txdr->buffer_info) {
933 		for (i = 0; i < txdr->count; i++) {
934 			if (txdr->buffer_info[i].dma)
935 				dma_unmap_single(&pdev->dev,
936 						 txdr->buffer_info[i].dma,
937 						 txdr->buffer_info[i].length,
938 						 DMA_TO_DEVICE);
939 			if (txdr->buffer_info[i].skb)
940 				dev_kfree_skb(txdr->buffer_info[i].skb);
941 		}
942 	}
943 
944 	if (rxdr->desc && rxdr->buffer_info) {
945 		for (i = 0; i < rxdr->count; i++) {
946 			if (rxdr->buffer_info[i].dma)
947 				dma_unmap_single(&pdev->dev,
948 						 rxdr->buffer_info[i].dma,
949 						 E1000_RXBUFFER_2048,
950 						 DMA_FROM_DEVICE);
951 			kfree(rxdr->buffer_info[i].rxbuf.data);
952 		}
953 	}
954 
955 	if (txdr->desc) {
956 		dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
957 				  txdr->dma);
958 		txdr->desc = NULL;
959 	}
960 	if (rxdr->desc) {
961 		dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
962 				  rxdr->dma);
963 		rxdr->desc = NULL;
964 	}
965 
966 	kfree(txdr->buffer_info);
967 	txdr->buffer_info = NULL;
968 	kfree(rxdr->buffer_info);
969 	rxdr->buffer_info = NULL;
970 }
971 
972 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
973 {
974 	struct e1000_hw *hw = &adapter->hw;
975 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
976 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
977 	struct pci_dev *pdev = adapter->pdev;
978 	u32 rctl;
979 	int i, ret_val;
980 
981 	/* Setup Tx descriptor ring and Tx buffers */
982 
983 	if (!txdr->count)
984 		txdr->count = E1000_DEFAULT_TXD;
985 
986 	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
987 				    GFP_KERNEL);
988 	if (!txdr->buffer_info) {
989 		ret_val = 1;
990 		goto err_nomem;
991 	}
992 
993 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
994 	txdr->size = ALIGN(txdr->size, 4096);
995 	txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
996 					 GFP_KERNEL);
997 	if (!txdr->desc) {
998 		ret_val = 2;
999 		goto err_nomem;
1000 	}
1001 	txdr->next_to_use = txdr->next_to_clean = 0;
1002 
1003 	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1004 	ew32(TDBAH, ((u64)txdr->dma >> 32));
1005 	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1006 	ew32(TDH, 0);
1007 	ew32(TDT, 0);
1008 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1009 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1010 	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1011 
1012 	for (i = 0; i < txdr->count; i++) {
1013 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1014 		struct sk_buff *skb;
1015 		unsigned int size = 1024;
1016 
1017 		skb = alloc_skb(size, GFP_KERNEL);
1018 		if (!skb) {
1019 			ret_val = 3;
1020 			goto err_nomem;
1021 		}
1022 		skb_put(skb, size);
1023 		txdr->buffer_info[i].skb = skb;
1024 		txdr->buffer_info[i].length = skb->len;
1025 		txdr->buffer_info[i].dma =
1026 			dma_map_single(&pdev->dev, skb->data, skb->len,
1027 				       DMA_TO_DEVICE);
1028 		if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1029 			ret_val = 4;
1030 			goto err_nomem;
1031 		}
1032 		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1033 		tx_desc->lower.data = cpu_to_le32(skb->len);
1034 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1035 						   E1000_TXD_CMD_IFCS |
1036 						   E1000_TXD_CMD_RPS);
1037 		tx_desc->upper.data = 0;
1038 	}
1039 
1040 	/* Setup Rx descriptor ring and Rx buffers */
1041 
1042 	if (!rxdr->count)
1043 		rxdr->count = E1000_DEFAULT_RXD;
1044 
1045 	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1046 				    GFP_KERNEL);
1047 	if (!rxdr->buffer_info) {
1048 		ret_val = 5;
1049 		goto err_nomem;
1050 	}
1051 
1052 	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1053 	rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1054 					 GFP_KERNEL);
1055 	if (!rxdr->desc) {
1056 		ret_val = 6;
1057 		goto err_nomem;
1058 	}
1059 	rxdr->next_to_use = rxdr->next_to_clean = 0;
1060 
1061 	rctl = er32(RCTL);
1062 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1063 	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1064 	ew32(RDBAH, ((u64)rxdr->dma >> 32));
1065 	ew32(RDLEN, rxdr->size);
1066 	ew32(RDH, 0);
1067 	ew32(RDT, 0);
1068 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1069 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1070 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1071 	ew32(RCTL, rctl);
1072 
1073 	for (i = 0; i < rxdr->count; i++) {
1074 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1075 		u8 *buf;
1076 
1077 		buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1078 			      GFP_KERNEL);
1079 		if (!buf) {
1080 			ret_val = 7;
1081 			goto err_nomem;
1082 		}
1083 		rxdr->buffer_info[i].rxbuf.data = buf;
1084 
1085 		rxdr->buffer_info[i].dma =
1086 			dma_map_single(&pdev->dev,
1087 				       buf + NET_SKB_PAD + NET_IP_ALIGN,
1088 				       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1089 		if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1090 			ret_val = 8;
1091 			goto err_nomem;
1092 		}
1093 		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1094 	}
1095 
1096 	return 0;
1097 
1098 err_nomem:
1099 	e1000_free_desc_rings(adapter);
1100 	return ret_val;
1101 }
1102 
1103 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1104 {
1105 	struct e1000_hw *hw = &adapter->hw;
1106 
1107 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1108 	e1000_write_phy_reg(hw, 29, 0x001F);
1109 	e1000_write_phy_reg(hw, 30, 0x8FFC);
1110 	e1000_write_phy_reg(hw, 29, 0x001A);
1111 	e1000_write_phy_reg(hw, 30, 0x8FF0);
1112 }
1113 
1114 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1115 {
1116 	struct e1000_hw *hw = &adapter->hw;
1117 	u16 phy_reg;
1118 
1119 	/* Because we reset the PHY above, we need to re-force TX_CLK in the
1120 	 * Extended PHY Specific Control Register to 25MHz clock.  This
1121 	 * value defaults back to a 2.5MHz clock when the PHY is reset.
1122 	 */
1123 	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1124 	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1125 	e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1126 
1127 	/* In addition, because of the s/w reset above, we need to enable
1128 	 * CRS on TX.  This must be set for both full and half duplex
1129 	 * operation.
1130 	 */
1131 	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1132 	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1133 	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1134 }
1135 
1136 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1137 {
1138 	struct e1000_hw *hw = &adapter->hw;
1139 	u32 ctrl_reg;
1140 	u16 phy_reg;
1141 
1142 	/* Setup the Device Control Register for PHY loopback test. */
1143 
1144 	ctrl_reg = er32(CTRL);
1145 	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
1146 		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
1147 		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
1148 		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
1149 		     E1000_CTRL_FD);		/* Force Duplex to FULL */
1150 
1151 	ew32(CTRL, ctrl_reg);
1152 
1153 	/* Read the PHY Specific Control Register (0x10) */
1154 	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1155 
1156 	/* Clear Auto-Crossover bits in PHY Specific Control Register
1157 	 * (bits 6:5).
1158 	 */
1159 	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1160 	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1161 
1162 	/* Perform software reset on the PHY */
1163 	e1000_phy_reset(hw);
1164 
1165 	/* Have to setup TX_CLK and TX_CRS after software reset */
1166 	e1000_phy_reset_clk_and_crs(adapter);
1167 
1168 	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1169 
1170 	/* Wait for reset to complete. */
1171 	udelay(500);
1172 
1173 	/* Have to setup TX_CLK and TX_CRS after software reset */
1174 	e1000_phy_reset_clk_and_crs(adapter);
1175 
1176 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1177 	e1000_phy_disable_receiver(adapter);
1178 
1179 	/* Set the loopback bit in the PHY control register. */
1180 	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1181 	phy_reg |= MII_CR_LOOPBACK;
1182 	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1183 
1184 	/* Setup TX_CLK and TX_CRS one more time. */
1185 	e1000_phy_reset_clk_and_crs(adapter);
1186 
1187 	/* Check Phy Configuration */
1188 	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1189 	if (phy_reg != 0x4100)
1190 		return 9;
1191 
1192 	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1193 	if (phy_reg != 0x0070)
1194 		return 10;
1195 
1196 	e1000_read_phy_reg(hw, 29, &phy_reg);
1197 	if (phy_reg != 0x001A)
1198 		return 11;
1199 
1200 	return 0;
1201 }
1202 
1203 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1204 {
1205 	struct e1000_hw *hw = &adapter->hw;
1206 	u32 ctrl_reg = 0;
1207 	u32 stat_reg = 0;
1208 
1209 	hw->autoneg = false;
1210 
1211 	if (hw->phy_type == e1000_phy_m88) {
1212 		/* Auto-MDI/MDIX Off */
1213 		e1000_write_phy_reg(hw,
1214 				    M88E1000_PHY_SPEC_CTRL, 0x0808);
1215 		/* reset to update Auto-MDI/MDIX */
1216 		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1217 		/* autoneg off */
1218 		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1219 	}
1220 
1221 	ctrl_reg = er32(CTRL);
1222 
1223 	/* force 1000, set loopback */
1224 	e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1225 
1226 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1227 	ctrl_reg = er32(CTRL);
1228 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1229 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1230 			E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1231 			E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1232 			E1000_CTRL_FD); /* Force Duplex to FULL */
1233 
1234 	if (hw->media_type == e1000_media_type_copper &&
1235 	    hw->phy_type == e1000_phy_m88)
1236 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1237 	else {
1238 		/* Set the ILOS bit on the fiber Nic is half
1239 		 * duplex link is detected.
1240 		 */
1241 		stat_reg = er32(STATUS);
1242 		if ((stat_reg & E1000_STATUS_FD) == 0)
1243 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1244 	}
1245 
1246 	ew32(CTRL, ctrl_reg);
1247 
1248 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1249 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1250 	 */
1251 	if (hw->phy_type == e1000_phy_m88)
1252 		e1000_phy_disable_receiver(adapter);
1253 
1254 	udelay(500);
1255 
1256 	return 0;
1257 }
1258 
1259 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1260 {
1261 	struct e1000_hw *hw = &adapter->hw;
1262 	u16 phy_reg = 0;
1263 	u16 count = 0;
1264 
1265 	switch (hw->mac_type) {
1266 	case e1000_82543:
1267 		if (hw->media_type == e1000_media_type_copper) {
1268 			/* Attempt to setup Loopback mode on Non-integrated PHY.
1269 			 * Some PHY registers get corrupted at random, so
1270 			 * attempt this 10 times.
1271 			 */
1272 			while (e1000_nonintegrated_phy_loopback(adapter) &&
1273 			       count++ < 10);
1274 			if (count < 11)
1275 				return 0;
1276 		}
1277 		break;
1278 
1279 	case e1000_82544:
1280 	case e1000_82540:
1281 	case e1000_82545:
1282 	case e1000_82545_rev_3:
1283 	case e1000_82546:
1284 	case e1000_82546_rev_3:
1285 	case e1000_82541:
1286 	case e1000_82541_rev_2:
1287 	case e1000_82547:
1288 	case e1000_82547_rev_2:
1289 		return e1000_integrated_phy_loopback(adapter);
1290 	default:
1291 		/* Default PHY loopback work is to read the MII
1292 		 * control register and assert bit 14 (loopback mode).
1293 		 */
1294 		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1295 		phy_reg |= MII_CR_LOOPBACK;
1296 		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1297 		return 0;
1298 	}
1299 
1300 	return 8;
1301 }
1302 
1303 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1304 {
1305 	struct e1000_hw *hw = &adapter->hw;
1306 	u32 rctl;
1307 
1308 	if (hw->media_type == e1000_media_type_fiber ||
1309 	    hw->media_type == e1000_media_type_internal_serdes) {
1310 		switch (hw->mac_type) {
1311 		case e1000_82545:
1312 		case e1000_82546:
1313 		case e1000_82545_rev_3:
1314 		case e1000_82546_rev_3:
1315 			return e1000_set_phy_loopback(adapter);
1316 		default:
1317 			rctl = er32(RCTL);
1318 			rctl |= E1000_RCTL_LBM_TCVR;
1319 			ew32(RCTL, rctl);
1320 			return 0;
1321 		}
1322 	} else if (hw->media_type == e1000_media_type_copper) {
1323 		return e1000_set_phy_loopback(adapter);
1324 	}
1325 
1326 	return 7;
1327 }
1328 
1329 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1330 {
1331 	struct e1000_hw *hw = &adapter->hw;
1332 	u32 rctl;
1333 	u16 phy_reg;
1334 
1335 	rctl = er32(RCTL);
1336 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1337 	ew32(RCTL, rctl);
1338 
1339 	switch (hw->mac_type) {
1340 	case e1000_82545:
1341 	case e1000_82546:
1342 	case e1000_82545_rev_3:
1343 	case e1000_82546_rev_3:
1344 	default:
1345 		hw->autoneg = true;
1346 		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1347 		if (phy_reg & MII_CR_LOOPBACK) {
1348 			phy_reg &= ~MII_CR_LOOPBACK;
1349 			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1350 			e1000_phy_reset(hw);
1351 		}
1352 		break;
1353 	}
1354 }
1355 
1356 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1357 				      unsigned int frame_size)
1358 {
1359 	memset(skb->data, 0xFF, frame_size);
1360 	frame_size &= ~1;
1361 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1362 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1363 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1364 }
1365 
1366 static int e1000_check_lbtest_frame(const unsigned char *data,
1367 				    unsigned int frame_size)
1368 {
1369 	frame_size &= ~1;
1370 	if (*(data + 3) == 0xFF) {
1371 		if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1372 		    (*(data + frame_size / 2 + 12) == 0xAF)) {
1373 			return 0;
1374 		}
1375 	}
1376 	return 13;
1377 }
1378 
1379 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1380 {
1381 	struct e1000_hw *hw = &adapter->hw;
1382 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1383 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1384 	struct pci_dev *pdev = adapter->pdev;
1385 	int i, j, k, l, lc, good_cnt, ret_val = 0;
1386 	unsigned long time;
1387 
1388 	ew32(RDT, rxdr->count - 1);
1389 
1390 	/* Calculate the loop count based on the largest descriptor ring
1391 	 * The idea is to wrap the largest ring a number of times using 64
1392 	 * send/receive pairs during each loop
1393 	 */
1394 
1395 	if (rxdr->count <= txdr->count)
1396 		lc = ((txdr->count / 64) * 2) + 1;
1397 	else
1398 		lc = ((rxdr->count / 64) * 2) + 1;
1399 
1400 	k = l = 0;
1401 	for (j = 0; j <= lc; j++) { /* loop count loop */
1402 		for (i = 0; i < 64; i++) { /* send the packets */
1403 			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1404 						  1024);
1405 			dma_sync_single_for_device(&pdev->dev,
1406 						   txdr->buffer_info[k].dma,
1407 						   txdr->buffer_info[k].length,
1408 						   DMA_TO_DEVICE);
1409 			if (unlikely(++k == txdr->count))
1410 				k = 0;
1411 		}
1412 		ew32(TDT, k);
1413 		E1000_WRITE_FLUSH();
1414 		msleep(200);
1415 		time = jiffies; /* set the start time for the receive */
1416 		good_cnt = 0;
1417 		do { /* receive the sent packets */
1418 			dma_sync_single_for_cpu(&pdev->dev,
1419 						rxdr->buffer_info[l].dma,
1420 						E1000_RXBUFFER_2048,
1421 						DMA_FROM_DEVICE);
1422 
1423 			ret_val = e1000_check_lbtest_frame(
1424 					rxdr->buffer_info[l].rxbuf.data +
1425 					NET_SKB_PAD + NET_IP_ALIGN,
1426 					1024);
1427 			if (!ret_val)
1428 				good_cnt++;
1429 			if (unlikely(++l == rxdr->count))
1430 				l = 0;
1431 			/* time + 20 msecs (200 msecs on 2.4) is more than
1432 			 * enough time to complete the receives, if it's
1433 			 * exceeded, break and error off
1434 			 */
1435 		} while (good_cnt < 64 && time_after(time + 20, jiffies));
1436 
1437 		if (good_cnt != 64) {
1438 			ret_val = 13; /* ret_val is the same as mis-compare */
1439 			break;
1440 		}
1441 		if (time_after_eq(jiffies, time + 2)) {
1442 			ret_val = 14; /* error code for time out error */
1443 			break;
1444 		}
1445 	} /* end loop count loop */
1446 	return ret_val;
1447 }
1448 
1449 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1450 {
1451 	*data = e1000_setup_desc_rings(adapter);
1452 	if (*data)
1453 		goto out;
1454 	*data = e1000_setup_loopback_test(adapter);
1455 	if (*data)
1456 		goto err_loopback;
1457 	*data = e1000_run_loopback_test(adapter);
1458 	e1000_loopback_cleanup(adapter);
1459 
1460 err_loopback:
1461 	e1000_free_desc_rings(adapter);
1462 out:
1463 	return *data;
1464 }
1465 
1466 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1467 {
1468 	struct e1000_hw *hw = &adapter->hw;
1469 	*data = 0;
1470 	if (hw->media_type == e1000_media_type_internal_serdes) {
1471 		int i = 0;
1472 
1473 		hw->serdes_has_link = false;
1474 
1475 		/* On some blade server designs, link establishment
1476 		 * could take as long as 2-3 minutes
1477 		 */
1478 		do {
1479 			e1000_check_for_link(hw);
1480 			if (hw->serdes_has_link)
1481 				return *data;
1482 			msleep(20);
1483 		} while (i++ < 3750);
1484 
1485 		*data = 1;
1486 	} else {
1487 		e1000_check_for_link(hw);
1488 		if (hw->autoneg)  /* if auto_neg is set wait for it */
1489 			msleep(4000);
1490 
1491 		if (!(er32(STATUS) & E1000_STATUS_LU))
1492 			*data = 1;
1493 	}
1494 	return *data;
1495 }
1496 
1497 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1498 {
1499 	switch (sset) {
1500 	case ETH_SS_TEST:
1501 		return E1000_TEST_LEN;
1502 	case ETH_SS_STATS:
1503 		return E1000_STATS_LEN;
1504 	default:
1505 		return -EOPNOTSUPP;
1506 	}
1507 }
1508 
1509 static void e1000_diag_test(struct net_device *netdev,
1510 			    struct ethtool_test *eth_test, u64 *data)
1511 {
1512 	struct e1000_adapter *adapter = netdev_priv(netdev);
1513 	struct e1000_hw *hw = &adapter->hw;
1514 	bool if_running = netif_running(netdev);
1515 
1516 	set_bit(__E1000_TESTING, &adapter->flags);
1517 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1518 		/* Offline tests */
1519 
1520 		/* save speed, duplex, autoneg settings */
1521 		u16 autoneg_advertised = hw->autoneg_advertised;
1522 		u8 forced_speed_duplex = hw->forced_speed_duplex;
1523 		u8 autoneg = hw->autoneg;
1524 
1525 		e_info(hw, "offline testing starting\n");
1526 
1527 		/* Link test performed before hardware reset so autoneg doesn't
1528 		 * interfere with test result
1529 		 */
1530 		if (e1000_link_test(adapter, &data[4]))
1531 			eth_test->flags |= ETH_TEST_FL_FAILED;
1532 
1533 		if (if_running)
1534 			/* indicate we're in test mode */
1535 			e1000_close(netdev);
1536 		else
1537 			e1000_reset(adapter);
1538 
1539 		if (e1000_reg_test(adapter, &data[0]))
1540 			eth_test->flags |= ETH_TEST_FL_FAILED;
1541 
1542 		e1000_reset(adapter);
1543 		if (e1000_eeprom_test(adapter, &data[1]))
1544 			eth_test->flags |= ETH_TEST_FL_FAILED;
1545 
1546 		e1000_reset(adapter);
1547 		if (e1000_intr_test(adapter, &data[2]))
1548 			eth_test->flags |= ETH_TEST_FL_FAILED;
1549 
1550 		e1000_reset(adapter);
1551 		/* make sure the phy is powered up */
1552 		e1000_power_up_phy(adapter);
1553 		if (e1000_loopback_test(adapter, &data[3]))
1554 			eth_test->flags |= ETH_TEST_FL_FAILED;
1555 
1556 		/* restore speed, duplex, autoneg settings */
1557 		hw->autoneg_advertised = autoneg_advertised;
1558 		hw->forced_speed_duplex = forced_speed_duplex;
1559 		hw->autoneg = autoneg;
1560 
1561 		e1000_reset(adapter);
1562 		clear_bit(__E1000_TESTING, &adapter->flags);
1563 		if (if_running)
1564 			e1000_open(netdev);
1565 	} else {
1566 		e_info(hw, "online testing starting\n");
1567 		/* Online tests */
1568 		if (e1000_link_test(adapter, &data[4]))
1569 			eth_test->flags |= ETH_TEST_FL_FAILED;
1570 
1571 		/* Online tests aren't run; pass by default */
1572 		data[0] = 0;
1573 		data[1] = 0;
1574 		data[2] = 0;
1575 		data[3] = 0;
1576 
1577 		clear_bit(__E1000_TESTING, &adapter->flags);
1578 	}
1579 	msleep_interruptible(4 * 1000);
1580 }
1581 
1582 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1583 			       struct ethtool_wolinfo *wol)
1584 {
1585 	struct e1000_hw *hw = &adapter->hw;
1586 	int retval = 1; /* fail by default */
1587 
1588 	switch (hw->device_id) {
1589 	case E1000_DEV_ID_82542:
1590 	case E1000_DEV_ID_82543GC_FIBER:
1591 	case E1000_DEV_ID_82543GC_COPPER:
1592 	case E1000_DEV_ID_82544EI_FIBER:
1593 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1594 	case E1000_DEV_ID_82545EM_FIBER:
1595 	case E1000_DEV_ID_82545EM_COPPER:
1596 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1597 	case E1000_DEV_ID_82546GB_PCIE:
1598 		/* these don't support WoL at all */
1599 		wol->supported = 0;
1600 		break;
1601 	case E1000_DEV_ID_82546EB_FIBER:
1602 	case E1000_DEV_ID_82546GB_FIBER:
1603 		/* Wake events not supported on port B */
1604 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1605 			wol->supported = 0;
1606 			break;
1607 		}
1608 		/* return success for non excluded adapter ports */
1609 		retval = 0;
1610 		break;
1611 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1612 		/* quad port adapters only support WoL on port A */
1613 		if (!adapter->quad_port_a) {
1614 			wol->supported = 0;
1615 			break;
1616 		}
1617 		/* return success for non excluded adapter ports */
1618 		retval = 0;
1619 		break;
1620 	default:
1621 		/* dual port cards only support WoL on port A from now on
1622 		 * unless it was enabled in the eeprom for port B
1623 		 * so exclude FUNC_1 ports from having WoL enabled
1624 		 */
1625 		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1626 		    !adapter->eeprom_wol) {
1627 			wol->supported = 0;
1628 			break;
1629 		}
1630 
1631 		retval = 0;
1632 	}
1633 
1634 	return retval;
1635 }
1636 
1637 static void e1000_get_wol(struct net_device *netdev,
1638 			  struct ethtool_wolinfo *wol)
1639 {
1640 	struct e1000_adapter *adapter = netdev_priv(netdev);
1641 	struct e1000_hw *hw = &adapter->hw;
1642 
1643 	wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1644 	wol->wolopts = 0;
1645 
1646 	/* this function will set ->supported = 0 and return 1 if wol is not
1647 	 * supported by this hardware
1648 	 */
1649 	if (e1000_wol_exclusion(adapter, wol) ||
1650 	    !device_can_wakeup(&adapter->pdev->dev))
1651 		return;
1652 
1653 	/* apply any specific unsupported masks here */
1654 	switch (hw->device_id) {
1655 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1656 		/* KSP3 does not support UCAST wake-ups */
1657 		wol->supported &= ~WAKE_UCAST;
1658 
1659 		if (adapter->wol & E1000_WUFC_EX)
1660 			e_err(drv, "Interface does not support directed "
1661 			      "(unicast) frame wake-up packets\n");
1662 		break;
1663 	default:
1664 		break;
1665 	}
1666 
1667 	if (adapter->wol & E1000_WUFC_EX)
1668 		wol->wolopts |= WAKE_UCAST;
1669 	if (adapter->wol & E1000_WUFC_MC)
1670 		wol->wolopts |= WAKE_MCAST;
1671 	if (adapter->wol & E1000_WUFC_BC)
1672 		wol->wolopts |= WAKE_BCAST;
1673 	if (adapter->wol & E1000_WUFC_MAG)
1674 		wol->wolopts |= WAKE_MAGIC;
1675 }
1676 
1677 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1678 {
1679 	struct e1000_adapter *adapter = netdev_priv(netdev);
1680 	struct e1000_hw *hw = &adapter->hw;
1681 
1682 	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1683 		return -EOPNOTSUPP;
1684 
1685 	if (e1000_wol_exclusion(adapter, wol) ||
1686 	    !device_can_wakeup(&adapter->pdev->dev))
1687 		return wol->wolopts ? -EOPNOTSUPP : 0;
1688 
1689 	switch (hw->device_id) {
1690 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1691 		if (wol->wolopts & WAKE_UCAST) {
1692 			e_err(drv, "Interface does not support directed "
1693 			      "(unicast) frame wake-up packets\n");
1694 			return -EOPNOTSUPP;
1695 		}
1696 		break;
1697 	default:
1698 		break;
1699 	}
1700 
1701 	/* these settings will always override what we currently have */
1702 	adapter->wol = 0;
1703 
1704 	if (wol->wolopts & WAKE_UCAST)
1705 		adapter->wol |= E1000_WUFC_EX;
1706 	if (wol->wolopts & WAKE_MCAST)
1707 		adapter->wol |= E1000_WUFC_MC;
1708 	if (wol->wolopts & WAKE_BCAST)
1709 		adapter->wol |= E1000_WUFC_BC;
1710 	if (wol->wolopts & WAKE_MAGIC)
1711 		adapter->wol |= E1000_WUFC_MAG;
1712 
1713 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1714 
1715 	return 0;
1716 }
1717 
1718 static int e1000_set_phys_id(struct net_device *netdev,
1719 			     enum ethtool_phys_id_state state)
1720 {
1721 	struct e1000_adapter *adapter = netdev_priv(netdev);
1722 	struct e1000_hw *hw = &adapter->hw;
1723 
1724 	switch (state) {
1725 	case ETHTOOL_ID_ACTIVE:
1726 		e1000_setup_led(hw);
1727 		return 2;
1728 
1729 	case ETHTOOL_ID_ON:
1730 		e1000_led_on(hw);
1731 		break;
1732 
1733 	case ETHTOOL_ID_OFF:
1734 		e1000_led_off(hw);
1735 		break;
1736 
1737 	case ETHTOOL_ID_INACTIVE:
1738 		e1000_cleanup_led(hw);
1739 	}
1740 
1741 	return 0;
1742 }
1743 
1744 static int e1000_get_coalesce(struct net_device *netdev,
1745 			      struct ethtool_coalesce *ec)
1746 {
1747 	struct e1000_adapter *adapter = netdev_priv(netdev);
1748 
1749 	if (adapter->hw.mac_type < e1000_82545)
1750 		return -EOPNOTSUPP;
1751 
1752 	if (adapter->itr_setting <= 4)
1753 		ec->rx_coalesce_usecs = adapter->itr_setting;
1754 	else
1755 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1756 
1757 	return 0;
1758 }
1759 
1760 static int e1000_set_coalesce(struct net_device *netdev,
1761 			      struct ethtool_coalesce *ec)
1762 {
1763 	struct e1000_adapter *adapter = netdev_priv(netdev);
1764 	struct e1000_hw *hw = &adapter->hw;
1765 
1766 	if (hw->mac_type < e1000_82545)
1767 		return -EOPNOTSUPP;
1768 
1769 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1770 	    ((ec->rx_coalesce_usecs > 4) &&
1771 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1772 	    (ec->rx_coalesce_usecs == 2))
1773 		return -EINVAL;
1774 
1775 	if (ec->rx_coalesce_usecs == 4) {
1776 		adapter->itr = adapter->itr_setting = 4;
1777 	} else if (ec->rx_coalesce_usecs <= 3) {
1778 		adapter->itr = 20000;
1779 		adapter->itr_setting = ec->rx_coalesce_usecs;
1780 	} else {
1781 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1782 		adapter->itr_setting = adapter->itr & ~3;
1783 	}
1784 
1785 	if (adapter->itr_setting != 0)
1786 		ew32(ITR, 1000000000 / (adapter->itr * 256));
1787 	else
1788 		ew32(ITR, 0);
1789 
1790 	return 0;
1791 }
1792 
1793 static int e1000_nway_reset(struct net_device *netdev)
1794 {
1795 	struct e1000_adapter *adapter = netdev_priv(netdev);
1796 
1797 	if (netif_running(netdev))
1798 		e1000_reinit_locked(adapter);
1799 	return 0;
1800 }
1801 
1802 static void e1000_get_ethtool_stats(struct net_device *netdev,
1803 				    struct ethtool_stats *stats, u64 *data)
1804 {
1805 	struct e1000_adapter *adapter = netdev_priv(netdev);
1806 	int i;
1807 	const struct e1000_stats *stat = e1000_gstrings_stats;
1808 
1809 	e1000_update_stats(adapter);
1810 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) {
1811 		char *p;
1812 
1813 		switch (stat->type) {
1814 		case NETDEV_STATS:
1815 			p = (char *)netdev + stat->stat_offset;
1816 			break;
1817 		case E1000_STATS:
1818 			p = (char *)adapter + stat->stat_offset;
1819 			break;
1820 		default:
1821 			netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n",
1822 					 stat->type, i);
1823 			continue;
1824 		}
1825 
1826 		if (stat->sizeof_stat == sizeof(u64))
1827 			data[i] = *(u64 *)p;
1828 		else
1829 			data[i] = *(u32 *)p;
1830 	}
1831 /* BUG_ON(i != E1000_STATS_LEN); */
1832 }
1833 
1834 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1835 			      u8 *data)
1836 {
1837 	u8 *p = data;
1838 	int i;
1839 
1840 	switch (stringset) {
1841 	case ETH_SS_TEST:
1842 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1843 		break;
1844 	case ETH_SS_STATS:
1845 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1846 			memcpy(p, e1000_gstrings_stats[i].stat_string,
1847 			       ETH_GSTRING_LEN);
1848 			p += ETH_GSTRING_LEN;
1849 		}
1850 		/* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1851 		break;
1852 	}
1853 }
1854 
1855 static const struct ethtool_ops e1000_ethtool_ops = {
1856 	.get_drvinfo		= e1000_get_drvinfo,
1857 	.get_regs_len		= e1000_get_regs_len,
1858 	.get_regs		= e1000_get_regs,
1859 	.get_wol		= e1000_get_wol,
1860 	.set_wol		= e1000_set_wol,
1861 	.get_msglevel		= e1000_get_msglevel,
1862 	.set_msglevel		= e1000_set_msglevel,
1863 	.nway_reset		= e1000_nway_reset,
1864 	.get_link		= e1000_get_link,
1865 	.get_eeprom_len		= e1000_get_eeprom_len,
1866 	.get_eeprom		= e1000_get_eeprom,
1867 	.set_eeprom		= e1000_set_eeprom,
1868 	.get_ringparam		= e1000_get_ringparam,
1869 	.set_ringparam		= e1000_set_ringparam,
1870 	.get_pauseparam		= e1000_get_pauseparam,
1871 	.set_pauseparam		= e1000_set_pauseparam,
1872 	.self_test		= e1000_diag_test,
1873 	.get_strings		= e1000_get_strings,
1874 	.set_phys_id		= e1000_set_phys_id,
1875 	.get_ethtool_stats	= e1000_get_ethtool_stats,
1876 	.get_sset_count		= e1000_get_sset_count,
1877 	.get_coalesce		= e1000_get_coalesce,
1878 	.set_coalesce		= e1000_set_coalesce,
1879 	.get_ts_info		= ethtool_op_get_ts_info,
1880 	.get_link_ksettings	= e1000_get_link_ksettings,
1881 	.set_link_ksettings	= e1000_set_link_ksettings,
1882 };
1883 
1884 void e1000_set_ethtool_ops(struct net_device *netdev)
1885 {
1886 	netdev->ethtool_ops = &e1000_ethtool_ops;
1887 }
1888