1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /* ethtool support for e1000 */
30 
31 #include "e1000.h"
32 #include <asm/uaccess.h>
33 
34 enum {NETDEV_STATS, E1000_STATS};
35 
36 struct e1000_stats {
37 	char stat_string[ETH_GSTRING_LEN];
38 	int type;
39 	int sizeof_stat;
40 	int stat_offset;
41 };
42 
43 #define E1000_STAT(m)		E1000_STATS, \
44 				sizeof(((struct e1000_adapter *)0)->m), \
45 		      		offsetof(struct e1000_adapter, m)
46 #define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
47 				sizeof(((struct net_device *)0)->m), \
48 				offsetof(struct net_device, m)
49 
50 static const struct e1000_stats e1000_gstrings_stats[] = {
51 	{ "rx_packets", E1000_STAT(stats.gprc) },
52 	{ "tx_packets", E1000_STAT(stats.gptc) },
53 	{ "rx_bytes", E1000_STAT(stats.gorcl) },
54 	{ "tx_bytes", E1000_STAT(stats.gotcl) },
55 	{ "rx_broadcast", E1000_STAT(stats.bprc) },
56 	{ "tx_broadcast", E1000_STAT(stats.bptc) },
57 	{ "rx_multicast", E1000_STAT(stats.mprc) },
58 	{ "tx_multicast", E1000_STAT(stats.mptc) },
59 	{ "rx_errors", E1000_STAT(stats.rxerrc) },
60 	{ "tx_errors", E1000_STAT(stats.txerrc) },
61 	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
62 	{ "multicast", E1000_STAT(stats.mprc) },
63 	{ "collisions", E1000_STAT(stats.colc) },
64 	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
65 	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
66 	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
67 	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
68 	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
69 	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
70 	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
71 	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
72 	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
73 	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
74 	{ "tx_window_errors", E1000_STAT(stats.latecol) },
75 	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
76 	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
77 	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
78 	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
79 	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
80 	{ "tx_restart_queue", E1000_STAT(restart_queue) },
81 	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
82 	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
83 	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
84 	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
85 	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
86 	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
87 	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
88 	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
89 	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
90 	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
91 	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
92 	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
93 	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
94 	{ "tx_smbus", E1000_STAT(stats.mgptc) },
95 	{ "rx_smbus", E1000_STAT(stats.mgprc) },
96 	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
97 };
98 
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103 	"Register test  (offline)", "Eeprom test    (offline)",
104 	"Interrupt test (offline)", "Loopback test  (offline)",
105 	"Link test   (on/offline)"
106 };
107 #define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
108 
109 static int e1000_get_settings(struct net_device *netdev,
110 			      struct ethtool_cmd *ecmd)
111 {
112 	struct e1000_adapter *adapter = netdev_priv(netdev);
113 	struct e1000_hw *hw = &adapter->hw;
114 
115 	if (hw->media_type == e1000_media_type_copper) {
116 
117 		ecmd->supported = (SUPPORTED_10baseT_Half |
118 		                   SUPPORTED_10baseT_Full |
119 		                   SUPPORTED_100baseT_Half |
120 		                   SUPPORTED_100baseT_Full |
121 		                   SUPPORTED_1000baseT_Full|
122 		                   SUPPORTED_Autoneg |
123 		                   SUPPORTED_TP);
124 		ecmd->advertising = ADVERTISED_TP;
125 
126 		if (hw->autoneg == 1) {
127 			ecmd->advertising |= ADVERTISED_Autoneg;
128 			/* the e1000 autoneg seems to match ethtool nicely */
129 			ecmd->advertising |= hw->autoneg_advertised;
130 		}
131 
132 		ecmd->port = PORT_TP;
133 		ecmd->phy_address = hw->phy_addr;
134 
135 		if (hw->mac_type == e1000_82543)
136 			ecmd->transceiver = XCVR_EXTERNAL;
137 		else
138 			ecmd->transceiver = XCVR_INTERNAL;
139 
140 	} else {
141 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
142 				     SUPPORTED_FIBRE |
143 				     SUPPORTED_Autoneg);
144 
145 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
146 				     ADVERTISED_FIBRE |
147 				     ADVERTISED_Autoneg);
148 
149 		ecmd->port = PORT_FIBRE;
150 
151 		if (hw->mac_type >= e1000_82545)
152 			ecmd->transceiver = XCVR_INTERNAL;
153 		else
154 			ecmd->transceiver = XCVR_EXTERNAL;
155 	}
156 
157 	if (er32(STATUS) & E1000_STATUS_LU) {
158 
159 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
160 		                                   &adapter->link_duplex);
161 		ethtool_cmd_speed_set(ecmd, adapter->link_speed);
162 
163 		/* unfortunately FULL_DUPLEX != DUPLEX_FULL
164 		 *          and HALF_DUPLEX != DUPLEX_HALF */
165 
166 		if (adapter->link_duplex == FULL_DUPLEX)
167 			ecmd->duplex = DUPLEX_FULL;
168 		else
169 			ecmd->duplex = DUPLEX_HALF;
170 	} else {
171 		ethtool_cmd_speed_set(ecmd, -1);
172 		ecmd->duplex = -1;
173 	}
174 
175 	ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
176 			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
177 	return 0;
178 }
179 
180 static int e1000_set_settings(struct net_device *netdev,
181 			      struct ethtool_cmd *ecmd)
182 {
183 	struct e1000_adapter *adapter = netdev_priv(netdev);
184 	struct e1000_hw *hw = &adapter->hw;
185 
186 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
187 		msleep(1);
188 
189 	if (ecmd->autoneg == AUTONEG_ENABLE) {
190 		hw->autoneg = 1;
191 		if (hw->media_type == e1000_media_type_fiber)
192 			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
193 				     ADVERTISED_FIBRE |
194 				     ADVERTISED_Autoneg;
195 		else
196 			hw->autoneg_advertised = ecmd->advertising |
197 			                         ADVERTISED_TP |
198 			                         ADVERTISED_Autoneg;
199 		ecmd->advertising = hw->autoneg_advertised;
200 	} else {
201 		u32 speed = ethtool_cmd_speed(ecmd);
202 		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
203 			clear_bit(__E1000_RESETTING, &adapter->flags);
204 			return -EINVAL;
205 		}
206 	}
207 
208 	/* reset the link */
209 
210 	if (netif_running(adapter->netdev)) {
211 		e1000_down(adapter);
212 		e1000_up(adapter);
213 	} else
214 		e1000_reset(adapter);
215 
216 	clear_bit(__E1000_RESETTING, &adapter->flags);
217 	return 0;
218 }
219 
220 static u32 e1000_get_link(struct net_device *netdev)
221 {
222 	struct e1000_adapter *adapter = netdev_priv(netdev);
223 
224 	/*
225 	 * If the link is not reported up to netdev, interrupts are disabled,
226 	 * and so the physical link state may have changed since we last
227 	 * looked. Set get_link_status to make sure that the true link
228 	 * state is interrogated, rather than pulling a cached and possibly
229 	 * stale link state from the driver.
230 	 */
231 	if (!netif_carrier_ok(netdev))
232 		adapter->hw.get_link_status = 1;
233 
234 	return e1000_has_link(adapter);
235 }
236 
237 static void e1000_get_pauseparam(struct net_device *netdev,
238 				 struct ethtool_pauseparam *pause)
239 {
240 	struct e1000_adapter *adapter = netdev_priv(netdev);
241 	struct e1000_hw *hw = &adapter->hw;
242 
243 	pause->autoneg =
244 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
245 
246 	if (hw->fc == E1000_FC_RX_PAUSE)
247 		pause->rx_pause = 1;
248 	else if (hw->fc == E1000_FC_TX_PAUSE)
249 		pause->tx_pause = 1;
250 	else if (hw->fc == E1000_FC_FULL) {
251 		pause->rx_pause = 1;
252 		pause->tx_pause = 1;
253 	}
254 }
255 
256 static int e1000_set_pauseparam(struct net_device *netdev,
257 				struct ethtool_pauseparam *pause)
258 {
259 	struct e1000_adapter *adapter = netdev_priv(netdev);
260 	struct e1000_hw *hw = &adapter->hw;
261 	int retval = 0;
262 
263 	adapter->fc_autoneg = pause->autoneg;
264 
265 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
266 		msleep(1);
267 
268 	if (pause->rx_pause && pause->tx_pause)
269 		hw->fc = E1000_FC_FULL;
270 	else if (pause->rx_pause && !pause->tx_pause)
271 		hw->fc = E1000_FC_RX_PAUSE;
272 	else if (!pause->rx_pause && pause->tx_pause)
273 		hw->fc = E1000_FC_TX_PAUSE;
274 	else if (!pause->rx_pause && !pause->tx_pause)
275 		hw->fc = E1000_FC_NONE;
276 
277 	hw->original_fc = hw->fc;
278 
279 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
280 		if (netif_running(adapter->netdev)) {
281 			e1000_down(adapter);
282 			e1000_up(adapter);
283 		} else
284 			e1000_reset(adapter);
285 	} else
286 		retval = ((hw->media_type == e1000_media_type_fiber) ?
287 			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
288 
289 	clear_bit(__E1000_RESETTING, &adapter->flags);
290 	return retval;
291 }
292 
293 static u32 e1000_get_msglevel(struct net_device *netdev)
294 {
295 	struct e1000_adapter *adapter = netdev_priv(netdev);
296 	return adapter->msg_enable;
297 }
298 
299 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
300 {
301 	struct e1000_adapter *adapter = netdev_priv(netdev);
302 	adapter->msg_enable = data;
303 }
304 
305 static int e1000_get_regs_len(struct net_device *netdev)
306 {
307 #define E1000_REGS_LEN 32
308 	return E1000_REGS_LEN * sizeof(u32);
309 }
310 
311 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
312 			   void *p)
313 {
314 	struct e1000_adapter *adapter = netdev_priv(netdev);
315 	struct e1000_hw *hw = &adapter->hw;
316 	u32 *regs_buff = p;
317 	u16 phy_data;
318 
319 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
320 
321 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
322 
323 	regs_buff[0]  = er32(CTRL);
324 	regs_buff[1]  = er32(STATUS);
325 
326 	regs_buff[2]  = er32(RCTL);
327 	regs_buff[3]  = er32(RDLEN);
328 	regs_buff[4]  = er32(RDH);
329 	regs_buff[5]  = er32(RDT);
330 	regs_buff[6]  = er32(RDTR);
331 
332 	regs_buff[7]  = er32(TCTL);
333 	regs_buff[8]  = er32(TDLEN);
334 	regs_buff[9]  = er32(TDH);
335 	regs_buff[10] = er32(TDT);
336 	regs_buff[11] = er32(TIDV);
337 
338 	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
339 	if (hw->phy_type == e1000_phy_igp) {
340 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
341 				    IGP01E1000_PHY_AGC_A);
342 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
343 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
344 		regs_buff[13] = (u32)phy_data; /* cable length */
345 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
346 				    IGP01E1000_PHY_AGC_B);
347 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
348 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
349 		regs_buff[14] = (u32)phy_data; /* cable length */
350 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
351 				    IGP01E1000_PHY_AGC_C);
352 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
353 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
354 		regs_buff[15] = (u32)phy_data; /* cable length */
355 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
356 				    IGP01E1000_PHY_AGC_D);
357 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
358 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
359 		regs_buff[16] = (u32)phy_data; /* cable length */
360 		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
361 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
362 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
363 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
364 		regs_buff[18] = (u32)phy_data; /* cable polarity */
365 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
366 				    IGP01E1000_PHY_PCS_INIT_REG);
367 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
368 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
369 		regs_buff[19] = (u32)phy_data; /* cable polarity */
370 		regs_buff[20] = 0; /* polarity correction enabled (always) */
371 		regs_buff[22] = 0; /* phy receive errors (unavailable) */
372 		regs_buff[23] = regs_buff[18]; /* mdix mode */
373 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
374 	} else {
375 		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
376 		regs_buff[13] = (u32)phy_data; /* cable length */
377 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
378 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
379 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
380 		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
381 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
382 		regs_buff[18] = regs_buff[13]; /* cable polarity */
383 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
384 		regs_buff[20] = regs_buff[17]; /* polarity correction */
385 		/* phy receive errors */
386 		regs_buff[22] = adapter->phy_stats.receive_errors;
387 		regs_buff[23] = regs_buff[13]; /* mdix mode */
388 	}
389 	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
390 	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
391 	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
392 	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
393 	if (hw->mac_type >= e1000_82540 &&
394 	    hw->media_type == e1000_media_type_copper) {
395 		regs_buff[26] = er32(MANC);
396 	}
397 }
398 
399 static int e1000_get_eeprom_len(struct net_device *netdev)
400 {
401 	struct e1000_adapter *adapter = netdev_priv(netdev);
402 	struct e1000_hw *hw = &adapter->hw;
403 
404 	return hw->eeprom.word_size * 2;
405 }
406 
407 static int e1000_get_eeprom(struct net_device *netdev,
408 			    struct ethtool_eeprom *eeprom, u8 *bytes)
409 {
410 	struct e1000_adapter *adapter = netdev_priv(netdev);
411 	struct e1000_hw *hw = &adapter->hw;
412 	u16 *eeprom_buff;
413 	int first_word, last_word;
414 	int ret_val = 0;
415 	u16 i;
416 
417 	if (eeprom->len == 0)
418 		return -EINVAL;
419 
420 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
421 
422 	first_word = eeprom->offset >> 1;
423 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
424 
425 	eeprom_buff = kmalloc(sizeof(u16) *
426 			(last_word - first_word + 1), GFP_KERNEL);
427 	if (!eeprom_buff)
428 		return -ENOMEM;
429 
430 	if (hw->eeprom.type == e1000_eeprom_spi)
431 		ret_val = e1000_read_eeprom(hw, first_word,
432 					    last_word - first_word + 1,
433 					    eeprom_buff);
434 	else {
435 		for (i = 0; i < last_word - first_word + 1; i++) {
436 			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
437 						    &eeprom_buff[i]);
438 			if (ret_val)
439 				break;
440 		}
441 	}
442 
443 	/* Device's eeprom is always little-endian, word addressable */
444 	for (i = 0; i < last_word - first_word + 1; i++)
445 		le16_to_cpus(&eeprom_buff[i]);
446 
447 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
448 			eeprom->len);
449 	kfree(eeprom_buff);
450 
451 	return ret_val;
452 }
453 
454 static int e1000_set_eeprom(struct net_device *netdev,
455 			    struct ethtool_eeprom *eeprom, u8 *bytes)
456 {
457 	struct e1000_adapter *adapter = netdev_priv(netdev);
458 	struct e1000_hw *hw = &adapter->hw;
459 	u16 *eeprom_buff;
460 	void *ptr;
461 	int max_len, first_word, last_word, ret_val = 0;
462 	u16 i;
463 
464 	if (eeprom->len == 0)
465 		return -EOPNOTSUPP;
466 
467 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
468 		return -EFAULT;
469 
470 	max_len = hw->eeprom.word_size * 2;
471 
472 	first_word = eeprom->offset >> 1;
473 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
474 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
475 	if (!eeprom_buff)
476 		return -ENOMEM;
477 
478 	ptr = (void *)eeprom_buff;
479 
480 	if (eeprom->offset & 1) {
481 		/* need read/modify/write of first changed EEPROM word */
482 		/* only the second byte of the word is being modified */
483 		ret_val = e1000_read_eeprom(hw, first_word, 1,
484 					    &eeprom_buff[0]);
485 		ptr++;
486 	}
487 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
488 		/* need read/modify/write of last changed EEPROM word */
489 		/* only the first byte of the word is being modified */
490 		ret_val = e1000_read_eeprom(hw, last_word, 1,
491 		                  &eeprom_buff[last_word - first_word]);
492 	}
493 
494 	/* Device's eeprom is always little-endian, word addressable */
495 	for (i = 0; i < last_word - first_word + 1; i++)
496 		le16_to_cpus(&eeprom_buff[i]);
497 
498 	memcpy(ptr, bytes, eeprom->len);
499 
500 	for (i = 0; i < last_word - first_word + 1; i++)
501 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
502 
503 	ret_val = e1000_write_eeprom(hw, first_word,
504 				     last_word - first_word + 1, eeprom_buff);
505 
506 	/* Update the checksum over the first part of the EEPROM if needed */
507 	if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
508 		e1000_update_eeprom_checksum(hw);
509 
510 	kfree(eeprom_buff);
511 	return ret_val;
512 }
513 
514 static void e1000_get_drvinfo(struct net_device *netdev,
515 			      struct ethtool_drvinfo *drvinfo)
516 {
517 	struct e1000_adapter *adapter = netdev_priv(netdev);
518 
519 	strlcpy(drvinfo->driver,  e1000_driver_name,
520 		sizeof(drvinfo->driver));
521 	strlcpy(drvinfo->version, e1000_driver_version,
522 		sizeof(drvinfo->version));
523 
524 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
525 		sizeof(drvinfo->bus_info));
526 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
527 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
528 }
529 
530 static void e1000_get_ringparam(struct net_device *netdev,
531 				struct ethtool_ringparam *ring)
532 {
533 	struct e1000_adapter *adapter = netdev_priv(netdev);
534 	struct e1000_hw *hw = &adapter->hw;
535 	e1000_mac_type mac_type = hw->mac_type;
536 	struct e1000_tx_ring *txdr = adapter->tx_ring;
537 	struct e1000_rx_ring *rxdr = adapter->rx_ring;
538 
539 	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
540 		E1000_MAX_82544_RXD;
541 	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
542 		E1000_MAX_82544_TXD;
543 	ring->rx_pending = rxdr->count;
544 	ring->tx_pending = txdr->count;
545 }
546 
547 static int e1000_set_ringparam(struct net_device *netdev,
548 			       struct ethtool_ringparam *ring)
549 {
550 	struct e1000_adapter *adapter = netdev_priv(netdev);
551 	struct e1000_hw *hw = &adapter->hw;
552 	e1000_mac_type mac_type = hw->mac_type;
553 	struct e1000_tx_ring *txdr, *tx_old;
554 	struct e1000_rx_ring *rxdr, *rx_old;
555 	int i, err;
556 
557 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
558 		return -EINVAL;
559 
560 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
561 		msleep(1);
562 
563 	if (netif_running(adapter->netdev))
564 		e1000_down(adapter);
565 
566 	tx_old = adapter->tx_ring;
567 	rx_old = adapter->rx_ring;
568 
569 	err = -ENOMEM;
570 	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
571 	if (!txdr)
572 		goto err_alloc_tx;
573 
574 	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
575 	if (!rxdr)
576 		goto err_alloc_rx;
577 
578 	adapter->tx_ring = txdr;
579 	adapter->rx_ring = rxdr;
580 
581 	rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
582 	rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
583 		E1000_MAX_RXD : E1000_MAX_82544_RXD));
584 	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
585 
586 	txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
587 	txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
588 		E1000_MAX_TXD : E1000_MAX_82544_TXD));
589 	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
590 
591 	for (i = 0; i < adapter->num_tx_queues; i++)
592 		txdr[i].count = txdr->count;
593 	for (i = 0; i < adapter->num_rx_queues; i++)
594 		rxdr[i].count = rxdr->count;
595 
596 	if (netif_running(adapter->netdev)) {
597 		/* Try to get new resources before deleting old */
598 		err = e1000_setup_all_rx_resources(adapter);
599 		if (err)
600 			goto err_setup_rx;
601 		err = e1000_setup_all_tx_resources(adapter);
602 		if (err)
603 			goto err_setup_tx;
604 
605 		/* save the new, restore the old in order to free it,
606 		 * then restore the new back again */
607 
608 		adapter->rx_ring = rx_old;
609 		adapter->tx_ring = tx_old;
610 		e1000_free_all_rx_resources(adapter);
611 		e1000_free_all_tx_resources(adapter);
612 		kfree(tx_old);
613 		kfree(rx_old);
614 		adapter->rx_ring = rxdr;
615 		adapter->tx_ring = txdr;
616 		err = e1000_up(adapter);
617 		if (err)
618 			goto err_setup;
619 	}
620 
621 	clear_bit(__E1000_RESETTING, &adapter->flags);
622 	return 0;
623 err_setup_tx:
624 	e1000_free_all_rx_resources(adapter);
625 err_setup_rx:
626 	adapter->rx_ring = rx_old;
627 	adapter->tx_ring = tx_old;
628 	kfree(rxdr);
629 err_alloc_rx:
630 	kfree(txdr);
631 err_alloc_tx:
632 	e1000_up(adapter);
633 err_setup:
634 	clear_bit(__E1000_RESETTING, &adapter->flags);
635 	return err;
636 }
637 
638 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
639 			     u32 mask, u32 write)
640 {
641 	struct e1000_hw *hw = &adapter->hw;
642 	static const u32 test[] =
643 		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
644 	u8 __iomem *address = hw->hw_addr + reg;
645 	u32 read;
646 	int i;
647 
648 	for (i = 0; i < ARRAY_SIZE(test); i++) {
649 		writel(write & test[i], address);
650 		read = readl(address);
651 		if (read != (write & test[i] & mask)) {
652 			e_err(drv, "pattern test reg %04X failed: "
653 			      "got 0x%08X expected 0x%08X\n",
654 			      reg, read, (write & test[i] & mask));
655 			*data = reg;
656 			return true;
657 		}
658 	}
659 	return false;
660 }
661 
662 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
663 			      u32 mask, u32 write)
664 {
665 	struct e1000_hw *hw = &adapter->hw;
666 	u8 __iomem *address = hw->hw_addr + reg;
667 	u32 read;
668 
669 	writel(write & mask, address);
670 	read = readl(address);
671 	if ((read & mask) != (write & mask)) {
672 		e_err(drv, "set/check reg %04X test failed: "
673 		      "got 0x%08X expected 0x%08X\n",
674 		      reg, (read & mask), (write & mask));
675 		*data = reg;
676 		return true;
677 	}
678 	return false;
679 }
680 
681 #define REG_PATTERN_TEST(reg, mask, write)			     \
682 	do {							     \
683 		if (reg_pattern_test(adapter, data,		     \
684 			     (hw->mac_type >= e1000_82543)   \
685 			     ? E1000_##reg : E1000_82542_##reg,	     \
686 			     mask, write))			     \
687 			return 1;				     \
688 	} while (0)
689 
690 #define REG_SET_AND_CHECK(reg, mask, write)			     \
691 	do {							     \
692 		if (reg_set_and_check(adapter, data,		     \
693 			      (hw->mac_type >= e1000_82543)  \
694 			      ? E1000_##reg : E1000_82542_##reg,     \
695 			      mask, write))			     \
696 			return 1;				     \
697 	} while (0)
698 
699 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
700 {
701 	u32 value, before, after;
702 	u32 i, toggle;
703 	struct e1000_hw *hw = &adapter->hw;
704 
705 	/* The status register is Read Only, so a write should fail.
706 	 * Some bits that get toggled are ignored.
707 	 */
708 
709 	/* there are several bits on newer hardware that are r/w */
710 	toggle = 0xFFFFF833;
711 
712 	before = er32(STATUS);
713 	value = (er32(STATUS) & toggle);
714 	ew32(STATUS, toggle);
715 	after = er32(STATUS) & toggle;
716 	if (value != after) {
717 		e_err(drv, "failed STATUS register test got: "
718 		      "0x%08X expected: 0x%08X\n", after, value);
719 		*data = 1;
720 		return 1;
721 	}
722 	/* restore previous status */
723 	ew32(STATUS, before);
724 
725 	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
726 	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
727 	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
728 	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
729 
730 	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
731 	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
732 	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
733 	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
734 	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
735 	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
736 	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
737 	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
738 	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
739 	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
740 
741 	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
742 
743 	before = 0x06DFB3FE;
744 	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
745 	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
746 
747 	if (hw->mac_type >= e1000_82543) {
748 
749 		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
750 		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
751 		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
752 		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
753 		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
754 		value = E1000_RAR_ENTRIES;
755 		for (i = 0; i < value; i++) {
756 			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
757 			                 0xFFFFFFFF);
758 		}
759 
760 	} else {
761 
762 		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
763 		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
764 		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
765 		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
766 
767 	}
768 
769 	value = E1000_MC_TBL_SIZE;
770 	for (i = 0; i < value; i++)
771 		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
772 
773 	*data = 0;
774 	return 0;
775 }
776 
777 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
778 {
779 	struct e1000_hw *hw = &adapter->hw;
780 	u16 temp;
781 	u16 checksum = 0;
782 	u16 i;
783 
784 	*data = 0;
785 	/* Read and add up the contents of the EEPROM */
786 	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
787 		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
788 			*data = 1;
789 			break;
790 		}
791 		checksum += temp;
792 	}
793 
794 	/* If Checksum is not Correct return error else test passed */
795 	if ((checksum != (u16)EEPROM_SUM) && !(*data))
796 		*data = 2;
797 
798 	return *data;
799 }
800 
801 static irqreturn_t e1000_test_intr(int irq, void *data)
802 {
803 	struct net_device *netdev = (struct net_device *)data;
804 	struct e1000_adapter *adapter = netdev_priv(netdev);
805 	struct e1000_hw *hw = &adapter->hw;
806 
807 	adapter->test_icr |= er32(ICR);
808 
809 	return IRQ_HANDLED;
810 }
811 
812 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
813 {
814 	struct net_device *netdev = adapter->netdev;
815 	u32 mask, i = 0;
816 	bool shared_int = true;
817 	u32 irq = adapter->pdev->irq;
818 	struct e1000_hw *hw = &adapter->hw;
819 
820 	*data = 0;
821 
822 	/* NOTE: we don't test MSI interrupts here, yet */
823 	/* Hook up test interrupt handler just for this test */
824 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
825 	                 netdev))
826 		shared_int = false;
827 	else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
828 	         netdev->name, netdev)) {
829 		*data = 1;
830 		return -1;
831 	}
832 	e_info(hw, "testing %s interrupt\n", (shared_int ?
833 	       "shared" : "unshared"));
834 
835 	/* Disable all the interrupts */
836 	ew32(IMC, 0xFFFFFFFF);
837 	E1000_WRITE_FLUSH();
838 	msleep(10);
839 
840 	/* Test each interrupt */
841 	for (; i < 10; i++) {
842 
843 		/* Interrupt to test */
844 		mask = 1 << i;
845 
846 		if (!shared_int) {
847 			/* Disable the interrupt to be reported in
848 			 * the cause register and then force the same
849 			 * interrupt and see if one gets posted.  If
850 			 * an interrupt was posted to the bus, the
851 			 * test failed.
852 			 */
853 			adapter->test_icr = 0;
854 			ew32(IMC, mask);
855 			ew32(ICS, mask);
856 			E1000_WRITE_FLUSH();
857 			msleep(10);
858 
859 			if (adapter->test_icr & mask) {
860 				*data = 3;
861 				break;
862 			}
863 		}
864 
865 		/* Enable the interrupt to be reported in
866 		 * the cause register and then force the same
867 		 * interrupt and see if one gets posted.  If
868 		 * an interrupt was not posted to the bus, the
869 		 * test failed.
870 		 */
871 		adapter->test_icr = 0;
872 		ew32(IMS, mask);
873 		ew32(ICS, mask);
874 		E1000_WRITE_FLUSH();
875 		msleep(10);
876 
877 		if (!(adapter->test_icr & mask)) {
878 			*data = 4;
879 			break;
880 		}
881 
882 		if (!shared_int) {
883 			/* Disable the other interrupts to be reported in
884 			 * the cause register and then force the other
885 			 * interrupts and see if any get posted.  If
886 			 * an interrupt was posted to the bus, the
887 			 * test failed.
888 			 */
889 			adapter->test_icr = 0;
890 			ew32(IMC, ~mask & 0x00007FFF);
891 			ew32(ICS, ~mask & 0x00007FFF);
892 			E1000_WRITE_FLUSH();
893 			msleep(10);
894 
895 			if (adapter->test_icr) {
896 				*data = 5;
897 				break;
898 			}
899 		}
900 	}
901 
902 	/* Disable all the interrupts */
903 	ew32(IMC, 0xFFFFFFFF);
904 	E1000_WRITE_FLUSH();
905 	msleep(10);
906 
907 	/* Unhook test interrupt handler */
908 	free_irq(irq, netdev);
909 
910 	return *data;
911 }
912 
913 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
914 {
915 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
916 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
917 	struct pci_dev *pdev = adapter->pdev;
918 	int i;
919 
920 	if (txdr->desc && txdr->buffer_info) {
921 		for (i = 0; i < txdr->count; i++) {
922 			if (txdr->buffer_info[i].dma)
923 				dma_unmap_single(&pdev->dev,
924 						 txdr->buffer_info[i].dma,
925 						 txdr->buffer_info[i].length,
926 						 DMA_TO_DEVICE);
927 			if (txdr->buffer_info[i].skb)
928 				dev_kfree_skb(txdr->buffer_info[i].skb);
929 		}
930 	}
931 
932 	if (rxdr->desc && rxdr->buffer_info) {
933 		for (i = 0; i < rxdr->count; i++) {
934 			if (rxdr->buffer_info[i].dma)
935 				dma_unmap_single(&pdev->dev,
936 						 rxdr->buffer_info[i].dma,
937 						 rxdr->buffer_info[i].length,
938 						 DMA_FROM_DEVICE);
939 			if (rxdr->buffer_info[i].skb)
940 				dev_kfree_skb(rxdr->buffer_info[i].skb);
941 		}
942 	}
943 
944 	if (txdr->desc) {
945 		dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
946 				  txdr->dma);
947 		txdr->desc = NULL;
948 	}
949 	if (rxdr->desc) {
950 		dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
951 				  rxdr->dma);
952 		rxdr->desc = NULL;
953 	}
954 
955 	kfree(txdr->buffer_info);
956 	txdr->buffer_info = NULL;
957 	kfree(rxdr->buffer_info);
958 	rxdr->buffer_info = NULL;
959 }
960 
961 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
962 {
963 	struct e1000_hw *hw = &adapter->hw;
964 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
965 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
966 	struct pci_dev *pdev = adapter->pdev;
967 	u32 rctl;
968 	int i, ret_val;
969 
970 	/* Setup Tx descriptor ring and Tx buffers */
971 
972 	if (!txdr->count)
973 		txdr->count = E1000_DEFAULT_TXD;
974 
975 	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
976 				    GFP_KERNEL);
977 	if (!txdr->buffer_info) {
978 		ret_val = 1;
979 		goto err_nomem;
980 	}
981 
982 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
983 	txdr->size = ALIGN(txdr->size, 4096);
984 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
985 					GFP_KERNEL);
986 	if (!txdr->desc) {
987 		ret_val = 2;
988 		goto err_nomem;
989 	}
990 	memset(txdr->desc, 0, txdr->size);
991 	txdr->next_to_use = txdr->next_to_clean = 0;
992 
993 	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
994 	ew32(TDBAH, ((u64)txdr->dma >> 32));
995 	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
996 	ew32(TDH, 0);
997 	ew32(TDT, 0);
998 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
999 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1000 	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1001 
1002 	for (i = 0; i < txdr->count; i++) {
1003 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1004 		struct sk_buff *skb;
1005 		unsigned int size = 1024;
1006 
1007 		skb = alloc_skb(size, GFP_KERNEL);
1008 		if (!skb) {
1009 			ret_val = 3;
1010 			goto err_nomem;
1011 		}
1012 		skb_put(skb, size);
1013 		txdr->buffer_info[i].skb = skb;
1014 		txdr->buffer_info[i].length = skb->len;
1015 		txdr->buffer_info[i].dma =
1016 			dma_map_single(&pdev->dev, skb->data, skb->len,
1017 				       DMA_TO_DEVICE);
1018 		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1019 		tx_desc->lower.data = cpu_to_le32(skb->len);
1020 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1021 						   E1000_TXD_CMD_IFCS |
1022 						   E1000_TXD_CMD_RPS);
1023 		tx_desc->upper.data = 0;
1024 	}
1025 
1026 	/* Setup Rx descriptor ring and Rx buffers */
1027 
1028 	if (!rxdr->count)
1029 		rxdr->count = E1000_DEFAULT_RXD;
1030 
1031 	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1032 				    GFP_KERNEL);
1033 	if (!rxdr->buffer_info) {
1034 		ret_val = 4;
1035 		goto err_nomem;
1036 	}
1037 
1038 	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1039 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1040 					GFP_KERNEL);
1041 	if (!rxdr->desc) {
1042 		ret_val = 5;
1043 		goto err_nomem;
1044 	}
1045 	memset(rxdr->desc, 0, rxdr->size);
1046 	rxdr->next_to_use = rxdr->next_to_clean = 0;
1047 
1048 	rctl = er32(RCTL);
1049 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1050 	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1051 	ew32(RDBAH, ((u64)rxdr->dma >> 32));
1052 	ew32(RDLEN, rxdr->size);
1053 	ew32(RDH, 0);
1054 	ew32(RDT, 0);
1055 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1056 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1057 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1058 	ew32(RCTL, rctl);
1059 
1060 	for (i = 0; i < rxdr->count; i++) {
1061 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1062 		struct sk_buff *skb;
1063 
1064 		skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1065 		if (!skb) {
1066 			ret_val = 6;
1067 			goto err_nomem;
1068 		}
1069 		skb_reserve(skb, NET_IP_ALIGN);
1070 		rxdr->buffer_info[i].skb = skb;
1071 		rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1072 		rxdr->buffer_info[i].dma =
1073 			dma_map_single(&pdev->dev, skb->data,
1074 				       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1075 		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1076 		memset(skb->data, 0x00, skb->len);
1077 	}
1078 
1079 	return 0;
1080 
1081 err_nomem:
1082 	e1000_free_desc_rings(adapter);
1083 	return ret_val;
1084 }
1085 
1086 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1087 {
1088 	struct e1000_hw *hw = &adapter->hw;
1089 
1090 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1091 	e1000_write_phy_reg(hw, 29, 0x001F);
1092 	e1000_write_phy_reg(hw, 30, 0x8FFC);
1093 	e1000_write_phy_reg(hw, 29, 0x001A);
1094 	e1000_write_phy_reg(hw, 30, 0x8FF0);
1095 }
1096 
1097 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1098 {
1099 	struct e1000_hw *hw = &adapter->hw;
1100 	u16 phy_reg;
1101 
1102 	/* Because we reset the PHY above, we need to re-force TX_CLK in the
1103 	 * Extended PHY Specific Control Register to 25MHz clock.  This
1104 	 * value defaults back to a 2.5MHz clock when the PHY is reset.
1105 	 */
1106 	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1107 	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1108 	e1000_write_phy_reg(hw,
1109 		M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1110 
1111 	/* In addition, because of the s/w reset above, we need to enable
1112 	 * CRS on TX.  This must be set for both full and half duplex
1113 	 * operation.
1114 	 */
1115 	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1116 	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1117 	e1000_write_phy_reg(hw,
1118 		M88E1000_PHY_SPEC_CTRL, phy_reg);
1119 }
1120 
1121 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1122 {
1123 	struct e1000_hw *hw = &adapter->hw;
1124 	u32 ctrl_reg;
1125 	u16 phy_reg;
1126 
1127 	/* Setup the Device Control Register for PHY loopback test. */
1128 
1129 	ctrl_reg = er32(CTRL);
1130 	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
1131 		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
1132 		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
1133 		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
1134 		     E1000_CTRL_FD);		/* Force Duplex to FULL */
1135 
1136 	ew32(CTRL, ctrl_reg);
1137 
1138 	/* Read the PHY Specific Control Register (0x10) */
1139 	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1140 
1141 	/* Clear Auto-Crossover bits in PHY Specific Control Register
1142 	 * (bits 6:5).
1143 	 */
1144 	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1145 	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1146 
1147 	/* Perform software reset on the PHY */
1148 	e1000_phy_reset(hw);
1149 
1150 	/* Have to setup TX_CLK and TX_CRS after software reset */
1151 	e1000_phy_reset_clk_and_crs(adapter);
1152 
1153 	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1154 
1155 	/* Wait for reset to complete. */
1156 	udelay(500);
1157 
1158 	/* Have to setup TX_CLK and TX_CRS after software reset */
1159 	e1000_phy_reset_clk_and_crs(adapter);
1160 
1161 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1162 	e1000_phy_disable_receiver(adapter);
1163 
1164 	/* Set the loopback bit in the PHY control register. */
1165 	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1166 	phy_reg |= MII_CR_LOOPBACK;
1167 	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1168 
1169 	/* Setup TX_CLK and TX_CRS one more time. */
1170 	e1000_phy_reset_clk_and_crs(adapter);
1171 
1172 	/* Check Phy Configuration */
1173 	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1174 	if (phy_reg != 0x4100)
1175 		 return 9;
1176 
1177 	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1178 	if (phy_reg != 0x0070)
1179 		return 10;
1180 
1181 	e1000_read_phy_reg(hw, 29, &phy_reg);
1182 	if (phy_reg != 0x001A)
1183 		return 11;
1184 
1185 	return 0;
1186 }
1187 
1188 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1189 {
1190 	struct e1000_hw *hw = &adapter->hw;
1191 	u32 ctrl_reg = 0;
1192 	u32 stat_reg = 0;
1193 
1194 	hw->autoneg = false;
1195 
1196 	if (hw->phy_type == e1000_phy_m88) {
1197 		/* Auto-MDI/MDIX Off */
1198 		e1000_write_phy_reg(hw,
1199 				    M88E1000_PHY_SPEC_CTRL, 0x0808);
1200 		/* reset to update Auto-MDI/MDIX */
1201 		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1202 		/* autoneg off */
1203 		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1204 	}
1205 
1206 	ctrl_reg = er32(CTRL);
1207 
1208 	/* force 1000, set loopback */
1209 	e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1210 
1211 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1212 	ctrl_reg = er32(CTRL);
1213 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1214 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1215 			E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1216 			E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1217 			E1000_CTRL_FD);	 /* Force Duplex to FULL */
1218 
1219 	if (hw->media_type == e1000_media_type_copper &&
1220 	   hw->phy_type == e1000_phy_m88)
1221 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1222 	else {
1223 		/* Set the ILOS bit on the fiber Nic is half
1224 		 * duplex link is detected. */
1225 		stat_reg = er32(STATUS);
1226 		if ((stat_reg & E1000_STATUS_FD) == 0)
1227 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1228 	}
1229 
1230 	ew32(CTRL, ctrl_reg);
1231 
1232 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1233 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1234 	 */
1235 	if (hw->phy_type == e1000_phy_m88)
1236 		e1000_phy_disable_receiver(adapter);
1237 
1238 	udelay(500);
1239 
1240 	return 0;
1241 }
1242 
1243 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1244 {
1245 	struct e1000_hw *hw = &adapter->hw;
1246 	u16 phy_reg = 0;
1247 	u16 count = 0;
1248 
1249 	switch (hw->mac_type) {
1250 	case e1000_82543:
1251 		if (hw->media_type == e1000_media_type_copper) {
1252 			/* Attempt to setup Loopback mode on Non-integrated PHY.
1253 			 * Some PHY registers get corrupted at random, so
1254 			 * attempt this 10 times.
1255 			 */
1256 			while (e1000_nonintegrated_phy_loopback(adapter) &&
1257 			      count++ < 10);
1258 			if (count < 11)
1259 				return 0;
1260 		}
1261 		break;
1262 
1263 	case e1000_82544:
1264 	case e1000_82540:
1265 	case e1000_82545:
1266 	case e1000_82545_rev_3:
1267 	case e1000_82546:
1268 	case e1000_82546_rev_3:
1269 	case e1000_82541:
1270 	case e1000_82541_rev_2:
1271 	case e1000_82547:
1272 	case e1000_82547_rev_2:
1273 		return e1000_integrated_phy_loopback(adapter);
1274 		break;
1275 	default:
1276 		/* Default PHY loopback work is to read the MII
1277 		 * control register and assert bit 14 (loopback mode).
1278 		 */
1279 		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1280 		phy_reg |= MII_CR_LOOPBACK;
1281 		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1282 		return 0;
1283 		break;
1284 	}
1285 
1286 	return 8;
1287 }
1288 
1289 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1290 {
1291 	struct e1000_hw *hw = &adapter->hw;
1292 	u32 rctl;
1293 
1294 	if (hw->media_type == e1000_media_type_fiber ||
1295 	    hw->media_type == e1000_media_type_internal_serdes) {
1296 		switch (hw->mac_type) {
1297 		case e1000_82545:
1298 		case e1000_82546:
1299 		case e1000_82545_rev_3:
1300 		case e1000_82546_rev_3:
1301 			return e1000_set_phy_loopback(adapter);
1302 			break;
1303 		default:
1304 			rctl = er32(RCTL);
1305 			rctl |= E1000_RCTL_LBM_TCVR;
1306 			ew32(RCTL, rctl);
1307 			return 0;
1308 		}
1309 	} else if (hw->media_type == e1000_media_type_copper)
1310 		return e1000_set_phy_loopback(adapter);
1311 
1312 	return 7;
1313 }
1314 
1315 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1316 {
1317 	struct e1000_hw *hw = &adapter->hw;
1318 	u32 rctl;
1319 	u16 phy_reg;
1320 
1321 	rctl = er32(RCTL);
1322 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1323 	ew32(RCTL, rctl);
1324 
1325 	switch (hw->mac_type) {
1326 	case e1000_82545:
1327 	case e1000_82546:
1328 	case e1000_82545_rev_3:
1329 	case e1000_82546_rev_3:
1330 	default:
1331 		hw->autoneg = true;
1332 		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1333 		if (phy_reg & MII_CR_LOOPBACK) {
1334 			phy_reg &= ~MII_CR_LOOPBACK;
1335 			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1336 			e1000_phy_reset(hw);
1337 		}
1338 		break;
1339 	}
1340 }
1341 
1342 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1343 				      unsigned int frame_size)
1344 {
1345 	memset(skb->data, 0xFF, frame_size);
1346 	frame_size &= ~1;
1347 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1348 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1349 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1350 }
1351 
1352 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1353 				    unsigned int frame_size)
1354 {
1355 	frame_size &= ~1;
1356 	if (*(skb->data + 3) == 0xFF) {
1357 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1358 		   (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1359 			return 0;
1360 		}
1361 	}
1362 	return 13;
1363 }
1364 
1365 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1366 {
1367 	struct e1000_hw *hw = &adapter->hw;
1368 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1369 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1370 	struct pci_dev *pdev = adapter->pdev;
1371 	int i, j, k, l, lc, good_cnt, ret_val=0;
1372 	unsigned long time;
1373 
1374 	ew32(RDT, rxdr->count - 1);
1375 
1376 	/* Calculate the loop count based on the largest descriptor ring
1377 	 * The idea is to wrap the largest ring a number of times using 64
1378 	 * send/receive pairs during each loop
1379 	 */
1380 
1381 	if (rxdr->count <= txdr->count)
1382 		lc = ((txdr->count / 64) * 2) + 1;
1383 	else
1384 		lc = ((rxdr->count / 64) * 2) + 1;
1385 
1386 	k = l = 0;
1387 	for (j = 0; j <= lc; j++) { /* loop count loop */
1388 		for (i = 0; i < 64; i++) { /* send the packets */
1389 			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1390 					1024);
1391 			dma_sync_single_for_device(&pdev->dev,
1392 						   txdr->buffer_info[k].dma,
1393 						   txdr->buffer_info[k].length,
1394 						   DMA_TO_DEVICE);
1395 			if (unlikely(++k == txdr->count)) k = 0;
1396 		}
1397 		ew32(TDT, k);
1398 		E1000_WRITE_FLUSH();
1399 		msleep(200);
1400 		time = jiffies; /* set the start time for the receive */
1401 		good_cnt = 0;
1402 		do { /* receive the sent packets */
1403 			dma_sync_single_for_cpu(&pdev->dev,
1404 						rxdr->buffer_info[l].dma,
1405 						rxdr->buffer_info[l].length,
1406 						DMA_FROM_DEVICE);
1407 
1408 			ret_val = e1000_check_lbtest_frame(
1409 					rxdr->buffer_info[l].skb,
1410 				   	1024);
1411 			if (!ret_val)
1412 				good_cnt++;
1413 			if (unlikely(++l == rxdr->count)) l = 0;
1414 			/* time + 20 msecs (200 msecs on 2.4) is more than
1415 			 * enough time to complete the receives, if it's
1416 			 * exceeded, break and error off
1417 			 */
1418 		} while (good_cnt < 64 && jiffies < (time + 20));
1419 		if (good_cnt != 64) {
1420 			ret_val = 13; /* ret_val is the same as mis-compare */
1421 			break;
1422 		}
1423 		if (jiffies >= (time + 2)) {
1424 			ret_val = 14; /* error code for time out error */
1425 			break;
1426 		}
1427 	} /* end loop count loop */
1428 	return ret_val;
1429 }
1430 
1431 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1432 {
1433 	*data = e1000_setup_desc_rings(adapter);
1434 	if (*data)
1435 		goto out;
1436 	*data = e1000_setup_loopback_test(adapter);
1437 	if (*data)
1438 		goto err_loopback;
1439 	*data = e1000_run_loopback_test(adapter);
1440 	e1000_loopback_cleanup(adapter);
1441 
1442 err_loopback:
1443 	e1000_free_desc_rings(adapter);
1444 out:
1445 	return *data;
1446 }
1447 
1448 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1449 {
1450 	struct e1000_hw *hw = &adapter->hw;
1451 	*data = 0;
1452 	if (hw->media_type == e1000_media_type_internal_serdes) {
1453 		int i = 0;
1454 		hw->serdes_has_link = false;
1455 
1456 		/* On some blade server designs, link establishment
1457 		 * could take as long as 2-3 minutes */
1458 		do {
1459 			e1000_check_for_link(hw);
1460 			if (hw->serdes_has_link)
1461 				return *data;
1462 			msleep(20);
1463 		} while (i++ < 3750);
1464 
1465 		*data = 1;
1466 	} else {
1467 		e1000_check_for_link(hw);
1468 		if (hw->autoneg)  /* if auto_neg is set wait for it */
1469 			msleep(4000);
1470 
1471 		if (!(er32(STATUS) & E1000_STATUS_LU)) {
1472 			*data = 1;
1473 		}
1474 	}
1475 	return *data;
1476 }
1477 
1478 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1479 {
1480 	switch (sset) {
1481 	case ETH_SS_TEST:
1482 		return E1000_TEST_LEN;
1483 	case ETH_SS_STATS:
1484 		return E1000_STATS_LEN;
1485 	default:
1486 		return -EOPNOTSUPP;
1487 	}
1488 }
1489 
1490 static void e1000_diag_test(struct net_device *netdev,
1491 			    struct ethtool_test *eth_test, u64 *data)
1492 {
1493 	struct e1000_adapter *adapter = netdev_priv(netdev);
1494 	struct e1000_hw *hw = &adapter->hw;
1495 	bool if_running = netif_running(netdev);
1496 
1497 	set_bit(__E1000_TESTING, &adapter->flags);
1498 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1499 		/* Offline tests */
1500 
1501 		/* save speed, duplex, autoneg settings */
1502 		u16 autoneg_advertised = hw->autoneg_advertised;
1503 		u8 forced_speed_duplex = hw->forced_speed_duplex;
1504 		u8 autoneg = hw->autoneg;
1505 
1506 		e_info(hw, "offline testing starting\n");
1507 
1508 		/* Link test performed before hardware reset so autoneg doesn't
1509 		 * interfere with test result */
1510 		if (e1000_link_test(adapter, &data[4]))
1511 			eth_test->flags |= ETH_TEST_FL_FAILED;
1512 
1513 		if (if_running)
1514 			/* indicate we're in test mode */
1515 			dev_close(netdev);
1516 		else
1517 			e1000_reset(adapter);
1518 
1519 		if (e1000_reg_test(adapter, &data[0]))
1520 			eth_test->flags |= ETH_TEST_FL_FAILED;
1521 
1522 		e1000_reset(adapter);
1523 		if (e1000_eeprom_test(adapter, &data[1]))
1524 			eth_test->flags |= ETH_TEST_FL_FAILED;
1525 
1526 		e1000_reset(adapter);
1527 		if (e1000_intr_test(adapter, &data[2]))
1528 			eth_test->flags |= ETH_TEST_FL_FAILED;
1529 
1530 		e1000_reset(adapter);
1531 		/* make sure the phy is powered up */
1532 		e1000_power_up_phy(adapter);
1533 		if (e1000_loopback_test(adapter, &data[3]))
1534 			eth_test->flags |= ETH_TEST_FL_FAILED;
1535 
1536 		/* restore speed, duplex, autoneg settings */
1537 		hw->autoneg_advertised = autoneg_advertised;
1538 		hw->forced_speed_duplex = forced_speed_duplex;
1539 		hw->autoneg = autoneg;
1540 
1541 		e1000_reset(adapter);
1542 		clear_bit(__E1000_TESTING, &adapter->flags);
1543 		if (if_running)
1544 			dev_open(netdev);
1545 	} else {
1546 		e_info(hw, "online testing starting\n");
1547 		/* Online tests */
1548 		if (e1000_link_test(adapter, &data[4]))
1549 			eth_test->flags |= ETH_TEST_FL_FAILED;
1550 
1551 		/* Online tests aren't run; pass by default */
1552 		data[0] = 0;
1553 		data[1] = 0;
1554 		data[2] = 0;
1555 		data[3] = 0;
1556 
1557 		clear_bit(__E1000_TESTING, &adapter->flags);
1558 	}
1559 	msleep_interruptible(4 * 1000);
1560 }
1561 
1562 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1563 			       struct ethtool_wolinfo *wol)
1564 {
1565 	struct e1000_hw *hw = &adapter->hw;
1566 	int retval = 1; /* fail by default */
1567 
1568 	switch (hw->device_id) {
1569 	case E1000_DEV_ID_82542:
1570 	case E1000_DEV_ID_82543GC_FIBER:
1571 	case E1000_DEV_ID_82543GC_COPPER:
1572 	case E1000_DEV_ID_82544EI_FIBER:
1573 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1574 	case E1000_DEV_ID_82545EM_FIBER:
1575 	case E1000_DEV_ID_82545EM_COPPER:
1576 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1577 	case E1000_DEV_ID_82546GB_PCIE:
1578 		/* these don't support WoL at all */
1579 		wol->supported = 0;
1580 		break;
1581 	case E1000_DEV_ID_82546EB_FIBER:
1582 	case E1000_DEV_ID_82546GB_FIBER:
1583 		/* Wake events not supported on port B */
1584 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1585 			wol->supported = 0;
1586 			break;
1587 		}
1588 		/* return success for non excluded adapter ports */
1589 		retval = 0;
1590 		break;
1591 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1592 		/* quad port adapters only support WoL on port A */
1593 		if (!adapter->quad_port_a) {
1594 			wol->supported = 0;
1595 			break;
1596 		}
1597 		/* return success for non excluded adapter ports */
1598 		retval = 0;
1599 		break;
1600 	default:
1601 		/* dual port cards only support WoL on port A from now on
1602 		 * unless it was enabled in the eeprom for port B
1603 		 * so exclude FUNC_1 ports from having WoL enabled */
1604 		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1605 		    !adapter->eeprom_wol) {
1606 			wol->supported = 0;
1607 			break;
1608 		}
1609 
1610 		retval = 0;
1611 	}
1612 
1613 	return retval;
1614 }
1615 
1616 static void e1000_get_wol(struct net_device *netdev,
1617 			  struct ethtool_wolinfo *wol)
1618 {
1619 	struct e1000_adapter *adapter = netdev_priv(netdev);
1620 	struct e1000_hw *hw = &adapter->hw;
1621 
1622 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1623 	                 WAKE_BCAST | WAKE_MAGIC;
1624 	wol->wolopts = 0;
1625 
1626 	/* this function will set ->supported = 0 and return 1 if wol is not
1627 	 * supported by this hardware */
1628 	if (e1000_wol_exclusion(adapter, wol) ||
1629 	    !device_can_wakeup(&adapter->pdev->dev))
1630 		return;
1631 
1632 	/* apply any specific unsupported masks here */
1633 	switch (hw->device_id) {
1634 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1635 		/* KSP3 does not suppport UCAST wake-ups */
1636 		wol->supported &= ~WAKE_UCAST;
1637 
1638 		if (adapter->wol & E1000_WUFC_EX)
1639 			e_err(drv, "Interface does not support directed "
1640 			      "(unicast) frame wake-up packets\n");
1641 		break;
1642 	default:
1643 		break;
1644 	}
1645 
1646 	if (adapter->wol & E1000_WUFC_EX)
1647 		wol->wolopts |= WAKE_UCAST;
1648 	if (adapter->wol & E1000_WUFC_MC)
1649 		wol->wolopts |= WAKE_MCAST;
1650 	if (adapter->wol & E1000_WUFC_BC)
1651 		wol->wolopts |= WAKE_BCAST;
1652 	if (adapter->wol & E1000_WUFC_MAG)
1653 		wol->wolopts |= WAKE_MAGIC;
1654 }
1655 
1656 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1657 {
1658 	struct e1000_adapter *adapter = netdev_priv(netdev);
1659 	struct e1000_hw *hw = &adapter->hw;
1660 
1661 	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1662 		return -EOPNOTSUPP;
1663 
1664 	if (e1000_wol_exclusion(adapter, wol) ||
1665 	    !device_can_wakeup(&adapter->pdev->dev))
1666 		return wol->wolopts ? -EOPNOTSUPP : 0;
1667 
1668 	switch (hw->device_id) {
1669 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1670 		if (wol->wolopts & WAKE_UCAST) {
1671 			e_err(drv, "Interface does not support directed "
1672 			      "(unicast) frame wake-up packets\n");
1673 			return -EOPNOTSUPP;
1674 		}
1675 		break;
1676 	default:
1677 		break;
1678 	}
1679 
1680 	/* these settings will always override what we currently have */
1681 	adapter->wol = 0;
1682 
1683 	if (wol->wolopts & WAKE_UCAST)
1684 		adapter->wol |= E1000_WUFC_EX;
1685 	if (wol->wolopts & WAKE_MCAST)
1686 		adapter->wol |= E1000_WUFC_MC;
1687 	if (wol->wolopts & WAKE_BCAST)
1688 		adapter->wol |= E1000_WUFC_BC;
1689 	if (wol->wolopts & WAKE_MAGIC)
1690 		adapter->wol |= E1000_WUFC_MAG;
1691 
1692 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1693 
1694 	return 0;
1695 }
1696 
1697 static int e1000_set_phys_id(struct net_device *netdev,
1698 			     enum ethtool_phys_id_state state)
1699 {
1700 	struct e1000_adapter *adapter = netdev_priv(netdev);
1701 	struct e1000_hw *hw = &adapter->hw;
1702 
1703 	switch (state) {
1704 	case ETHTOOL_ID_ACTIVE:
1705 		e1000_setup_led(hw);
1706 		return 2;
1707 
1708 	case ETHTOOL_ID_ON:
1709 		e1000_led_on(hw);
1710 		break;
1711 
1712 	case ETHTOOL_ID_OFF:
1713 		e1000_led_off(hw);
1714 		break;
1715 
1716 	case ETHTOOL_ID_INACTIVE:
1717 		e1000_cleanup_led(hw);
1718 	}
1719 
1720 	return 0;
1721 }
1722 
1723 static int e1000_get_coalesce(struct net_device *netdev,
1724 			      struct ethtool_coalesce *ec)
1725 {
1726 	struct e1000_adapter *adapter = netdev_priv(netdev);
1727 
1728 	if (adapter->hw.mac_type < e1000_82545)
1729 		return -EOPNOTSUPP;
1730 
1731 	if (adapter->itr_setting <= 4)
1732 		ec->rx_coalesce_usecs = adapter->itr_setting;
1733 	else
1734 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1735 
1736 	return 0;
1737 }
1738 
1739 static int e1000_set_coalesce(struct net_device *netdev,
1740 			      struct ethtool_coalesce *ec)
1741 {
1742 	struct e1000_adapter *adapter = netdev_priv(netdev);
1743 	struct e1000_hw *hw = &adapter->hw;
1744 
1745 	if (hw->mac_type < e1000_82545)
1746 		return -EOPNOTSUPP;
1747 
1748 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1749 	    ((ec->rx_coalesce_usecs > 4) &&
1750 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1751 	    (ec->rx_coalesce_usecs == 2))
1752 		return -EINVAL;
1753 
1754 	if (ec->rx_coalesce_usecs == 4) {
1755 		adapter->itr = adapter->itr_setting = 4;
1756 	} else if (ec->rx_coalesce_usecs <= 3) {
1757 		adapter->itr = 20000;
1758 		adapter->itr_setting = ec->rx_coalesce_usecs;
1759 	} else {
1760 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1761 		adapter->itr_setting = adapter->itr & ~3;
1762 	}
1763 
1764 	if (adapter->itr_setting != 0)
1765 		ew32(ITR, 1000000000 / (adapter->itr * 256));
1766 	else
1767 		ew32(ITR, 0);
1768 
1769 	return 0;
1770 }
1771 
1772 static int e1000_nway_reset(struct net_device *netdev)
1773 {
1774 	struct e1000_adapter *adapter = netdev_priv(netdev);
1775 	if (netif_running(netdev))
1776 		e1000_reinit_locked(adapter);
1777 	return 0;
1778 }
1779 
1780 static void e1000_get_ethtool_stats(struct net_device *netdev,
1781 				    struct ethtool_stats *stats, u64 *data)
1782 {
1783 	struct e1000_adapter *adapter = netdev_priv(netdev);
1784 	int i;
1785 	char *p = NULL;
1786 
1787 	e1000_update_stats(adapter);
1788 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1789 		switch (e1000_gstrings_stats[i].type) {
1790 		case NETDEV_STATS:
1791 			p = (char *) netdev +
1792 					e1000_gstrings_stats[i].stat_offset;
1793 			break;
1794 		case E1000_STATS:
1795 			p = (char *) adapter +
1796 					e1000_gstrings_stats[i].stat_offset;
1797 			break;
1798 		}
1799 
1800 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1801 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1802 	}
1803 /*	BUG_ON(i != E1000_STATS_LEN); */
1804 }
1805 
1806 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1807 			      u8 *data)
1808 {
1809 	u8 *p = data;
1810 	int i;
1811 
1812 	switch (stringset) {
1813 	case ETH_SS_TEST:
1814 		memcpy(data, *e1000_gstrings_test,
1815 			sizeof(e1000_gstrings_test));
1816 		break;
1817 	case ETH_SS_STATS:
1818 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1819 			memcpy(p, e1000_gstrings_stats[i].stat_string,
1820 			       ETH_GSTRING_LEN);
1821 			p += ETH_GSTRING_LEN;
1822 		}
1823 /*		BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1824 		break;
1825 	}
1826 }
1827 
1828 static const struct ethtool_ops e1000_ethtool_ops = {
1829 	.get_settings           = e1000_get_settings,
1830 	.set_settings           = e1000_set_settings,
1831 	.get_drvinfo            = e1000_get_drvinfo,
1832 	.get_regs_len           = e1000_get_regs_len,
1833 	.get_regs               = e1000_get_regs,
1834 	.get_wol                = e1000_get_wol,
1835 	.set_wol                = e1000_set_wol,
1836 	.get_msglevel           = e1000_get_msglevel,
1837 	.set_msglevel           = e1000_set_msglevel,
1838 	.nway_reset             = e1000_nway_reset,
1839 	.get_link               = e1000_get_link,
1840 	.get_eeprom_len         = e1000_get_eeprom_len,
1841 	.get_eeprom             = e1000_get_eeprom,
1842 	.set_eeprom             = e1000_set_eeprom,
1843 	.get_ringparam          = e1000_get_ringparam,
1844 	.set_ringparam          = e1000_set_ringparam,
1845 	.get_pauseparam         = e1000_get_pauseparam,
1846 	.set_pauseparam         = e1000_set_pauseparam,
1847 	.self_test              = e1000_diag_test,
1848 	.get_strings            = e1000_get_strings,
1849 	.set_phys_id            = e1000_set_phys_id,
1850 	.get_ethtool_stats      = e1000_get_ethtool_stats,
1851 	.get_sset_count         = e1000_get_sset_count,
1852 	.get_coalesce           = e1000_get_coalesce,
1853 	.set_coalesce           = e1000_set_coalesce,
1854 	.get_ts_info		= ethtool_op_get_ts_info,
1855 };
1856 
1857 void e1000_set_ethtool_ops(struct net_device *netdev)
1858 {
1859 	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1860 }
1861