1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2006 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 /* ethtool support for e1000 */ 30 31 #include "e1000.h" 32 #include <asm/uaccess.h> 33 34 enum {NETDEV_STATS, E1000_STATS}; 35 36 struct e1000_stats { 37 char stat_string[ETH_GSTRING_LEN]; 38 int type; 39 int sizeof_stat; 40 int stat_offset; 41 }; 42 43 #define E1000_STAT(m) E1000_STATS, \ 44 sizeof(((struct e1000_adapter *)0)->m), \ 45 offsetof(struct e1000_adapter, m) 46 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \ 47 sizeof(((struct net_device *)0)->m), \ 48 offsetof(struct net_device, m) 49 50 static const struct e1000_stats e1000_gstrings_stats[] = { 51 { "rx_packets", E1000_STAT(stats.gprc) }, 52 { "tx_packets", E1000_STAT(stats.gptc) }, 53 { "rx_bytes", E1000_STAT(stats.gorcl) }, 54 { "tx_bytes", E1000_STAT(stats.gotcl) }, 55 { "rx_broadcast", E1000_STAT(stats.bprc) }, 56 { "tx_broadcast", E1000_STAT(stats.bptc) }, 57 { "rx_multicast", E1000_STAT(stats.mprc) }, 58 { "tx_multicast", E1000_STAT(stats.mptc) }, 59 { "rx_errors", E1000_STAT(stats.rxerrc) }, 60 { "tx_errors", E1000_STAT(stats.txerrc) }, 61 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) }, 62 { "multicast", E1000_STAT(stats.mprc) }, 63 { "collisions", E1000_STAT(stats.colc) }, 64 { "rx_length_errors", E1000_STAT(stats.rlerrc) }, 65 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) }, 66 { "rx_crc_errors", E1000_STAT(stats.crcerrs) }, 67 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) }, 68 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, 69 { "rx_missed_errors", E1000_STAT(stats.mpc) }, 70 { "tx_aborted_errors", E1000_STAT(stats.ecol) }, 71 { "tx_carrier_errors", E1000_STAT(stats.tncrs) }, 72 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) }, 73 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) }, 74 { "tx_window_errors", E1000_STAT(stats.latecol) }, 75 { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, 76 { "tx_deferred_ok", E1000_STAT(stats.dc) }, 77 { "tx_single_coll_ok", E1000_STAT(stats.scc) }, 78 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, 79 { "tx_timeout_count", E1000_STAT(tx_timeout_count) }, 80 { "tx_restart_queue", E1000_STAT(restart_queue) }, 81 { "rx_long_length_errors", E1000_STAT(stats.roc) }, 82 { "rx_short_length_errors", E1000_STAT(stats.ruc) }, 83 { "rx_align_errors", E1000_STAT(stats.algnerrc) }, 84 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, 85 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, 86 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, 87 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, 88 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, 89 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, 90 { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, 91 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, 92 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }, 93 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) }, 94 { "tx_smbus", E1000_STAT(stats.mgptc) }, 95 { "rx_smbus", E1000_STAT(stats.mgprc) }, 96 { "dropped_smbus", E1000_STAT(stats.mgpdc) }, 97 }; 98 99 #define E1000_QUEUE_STATS_LEN 0 100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN) 102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 103 "Register test (offline)", "Eeprom test (offline)", 104 "Interrupt test (offline)", "Loopback test (offline)", 105 "Link test (on/offline)" 106 }; 107 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 108 109 static int e1000_get_settings(struct net_device *netdev, 110 struct ethtool_cmd *ecmd) 111 { 112 struct e1000_adapter *adapter = netdev_priv(netdev); 113 struct e1000_hw *hw = &adapter->hw; 114 115 if (hw->media_type == e1000_media_type_copper) { 116 117 ecmd->supported = (SUPPORTED_10baseT_Half | 118 SUPPORTED_10baseT_Full | 119 SUPPORTED_100baseT_Half | 120 SUPPORTED_100baseT_Full | 121 SUPPORTED_1000baseT_Full| 122 SUPPORTED_Autoneg | 123 SUPPORTED_TP); 124 ecmd->advertising = ADVERTISED_TP; 125 126 if (hw->autoneg == 1) { 127 ecmd->advertising |= ADVERTISED_Autoneg; 128 /* the e1000 autoneg seems to match ethtool nicely */ 129 ecmd->advertising |= hw->autoneg_advertised; 130 } 131 132 ecmd->port = PORT_TP; 133 ecmd->phy_address = hw->phy_addr; 134 135 if (hw->mac_type == e1000_82543) 136 ecmd->transceiver = XCVR_EXTERNAL; 137 else 138 ecmd->transceiver = XCVR_INTERNAL; 139 140 } else { 141 ecmd->supported = (SUPPORTED_1000baseT_Full | 142 SUPPORTED_FIBRE | 143 SUPPORTED_Autoneg); 144 145 ecmd->advertising = (ADVERTISED_1000baseT_Full | 146 ADVERTISED_FIBRE | 147 ADVERTISED_Autoneg); 148 149 ecmd->port = PORT_FIBRE; 150 151 if (hw->mac_type >= e1000_82545) 152 ecmd->transceiver = XCVR_INTERNAL; 153 else 154 ecmd->transceiver = XCVR_EXTERNAL; 155 } 156 157 if (er32(STATUS) & E1000_STATUS_LU) { 158 159 e1000_get_speed_and_duplex(hw, &adapter->link_speed, 160 &adapter->link_duplex); 161 ethtool_cmd_speed_set(ecmd, adapter->link_speed); 162 163 /* unfortunately FULL_DUPLEX != DUPLEX_FULL 164 * and HALF_DUPLEX != DUPLEX_HALF */ 165 166 if (adapter->link_duplex == FULL_DUPLEX) 167 ecmd->duplex = DUPLEX_FULL; 168 else 169 ecmd->duplex = DUPLEX_HALF; 170 } else { 171 ethtool_cmd_speed_set(ecmd, -1); 172 ecmd->duplex = -1; 173 } 174 175 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || 176 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 177 return 0; 178 } 179 180 static int e1000_set_settings(struct net_device *netdev, 181 struct ethtool_cmd *ecmd) 182 { 183 struct e1000_adapter *adapter = netdev_priv(netdev); 184 struct e1000_hw *hw = &adapter->hw; 185 186 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 187 msleep(1); 188 189 if (ecmd->autoneg == AUTONEG_ENABLE) { 190 hw->autoneg = 1; 191 if (hw->media_type == e1000_media_type_fiber) 192 hw->autoneg_advertised = ADVERTISED_1000baseT_Full | 193 ADVERTISED_FIBRE | 194 ADVERTISED_Autoneg; 195 else 196 hw->autoneg_advertised = ecmd->advertising | 197 ADVERTISED_TP | 198 ADVERTISED_Autoneg; 199 ecmd->advertising = hw->autoneg_advertised; 200 } else { 201 u32 speed = ethtool_cmd_speed(ecmd); 202 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { 203 clear_bit(__E1000_RESETTING, &adapter->flags); 204 return -EINVAL; 205 } 206 } 207 208 /* reset the link */ 209 210 if (netif_running(adapter->netdev)) { 211 e1000_down(adapter); 212 e1000_up(adapter); 213 } else 214 e1000_reset(adapter); 215 216 clear_bit(__E1000_RESETTING, &adapter->flags); 217 return 0; 218 } 219 220 static u32 e1000_get_link(struct net_device *netdev) 221 { 222 struct e1000_adapter *adapter = netdev_priv(netdev); 223 224 /* 225 * If the link is not reported up to netdev, interrupts are disabled, 226 * and so the physical link state may have changed since we last 227 * looked. Set get_link_status to make sure that the true link 228 * state is interrogated, rather than pulling a cached and possibly 229 * stale link state from the driver. 230 */ 231 if (!netif_carrier_ok(netdev)) 232 adapter->hw.get_link_status = 1; 233 234 return e1000_has_link(adapter); 235 } 236 237 static void e1000_get_pauseparam(struct net_device *netdev, 238 struct ethtool_pauseparam *pause) 239 { 240 struct e1000_adapter *adapter = netdev_priv(netdev); 241 struct e1000_hw *hw = &adapter->hw; 242 243 pause->autoneg = 244 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 245 246 if (hw->fc == E1000_FC_RX_PAUSE) 247 pause->rx_pause = 1; 248 else if (hw->fc == E1000_FC_TX_PAUSE) 249 pause->tx_pause = 1; 250 else if (hw->fc == E1000_FC_FULL) { 251 pause->rx_pause = 1; 252 pause->tx_pause = 1; 253 } 254 } 255 256 static int e1000_set_pauseparam(struct net_device *netdev, 257 struct ethtool_pauseparam *pause) 258 { 259 struct e1000_adapter *adapter = netdev_priv(netdev); 260 struct e1000_hw *hw = &adapter->hw; 261 int retval = 0; 262 263 adapter->fc_autoneg = pause->autoneg; 264 265 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 266 msleep(1); 267 268 if (pause->rx_pause && pause->tx_pause) 269 hw->fc = E1000_FC_FULL; 270 else if (pause->rx_pause && !pause->tx_pause) 271 hw->fc = E1000_FC_RX_PAUSE; 272 else if (!pause->rx_pause && pause->tx_pause) 273 hw->fc = E1000_FC_TX_PAUSE; 274 else if (!pause->rx_pause && !pause->tx_pause) 275 hw->fc = E1000_FC_NONE; 276 277 hw->original_fc = hw->fc; 278 279 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 280 if (netif_running(adapter->netdev)) { 281 e1000_down(adapter); 282 e1000_up(adapter); 283 } else 284 e1000_reset(adapter); 285 } else 286 retval = ((hw->media_type == e1000_media_type_fiber) ? 287 e1000_setup_link(hw) : e1000_force_mac_fc(hw)); 288 289 clear_bit(__E1000_RESETTING, &adapter->flags); 290 return retval; 291 } 292 293 static u32 e1000_get_msglevel(struct net_device *netdev) 294 { 295 struct e1000_adapter *adapter = netdev_priv(netdev); 296 return adapter->msg_enable; 297 } 298 299 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 300 { 301 struct e1000_adapter *adapter = netdev_priv(netdev); 302 adapter->msg_enable = data; 303 } 304 305 static int e1000_get_regs_len(struct net_device *netdev) 306 { 307 #define E1000_REGS_LEN 32 308 return E1000_REGS_LEN * sizeof(u32); 309 } 310 311 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs, 312 void *p) 313 { 314 struct e1000_adapter *adapter = netdev_priv(netdev); 315 struct e1000_hw *hw = &adapter->hw; 316 u32 *regs_buff = p; 317 u16 phy_data; 318 319 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 320 321 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; 322 323 regs_buff[0] = er32(CTRL); 324 regs_buff[1] = er32(STATUS); 325 326 regs_buff[2] = er32(RCTL); 327 regs_buff[3] = er32(RDLEN); 328 regs_buff[4] = er32(RDH); 329 regs_buff[5] = er32(RDT); 330 regs_buff[6] = er32(RDTR); 331 332 regs_buff[7] = er32(TCTL); 333 regs_buff[8] = er32(TDLEN); 334 regs_buff[9] = er32(TDH); 335 regs_buff[10] = er32(TDT); 336 regs_buff[11] = er32(TIDV); 337 338 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */ 339 if (hw->phy_type == e1000_phy_igp) { 340 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 341 IGP01E1000_PHY_AGC_A); 342 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & 343 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 344 regs_buff[13] = (u32)phy_data; /* cable length */ 345 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 346 IGP01E1000_PHY_AGC_B); 347 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & 348 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 349 regs_buff[14] = (u32)phy_data; /* cable length */ 350 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 351 IGP01E1000_PHY_AGC_C); 352 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & 353 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 354 regs_buff[15] = (u32)phy_data; /* cable length */ 355 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 356 IGP01E1000_PHY_AGC_D); 357 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & 358 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 359 regs_buff[16] = (u32)phy_data; /* cable length */ 360 regs_buff[17] = 0; /* extended 10bt distance (not needed) */ 361 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); 362 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & 363 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 364 regs_buff[18] = (u32)phy_data; /* cable polarity */ 365 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 366 IGP01E1000_PHY_PCS_INIT_REG); 367 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & 368 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 369 regs_buff[19] = (u32)phy_data; /* cable polarity */ 370 regs_buff[20] = 0; /* polarity correction enabled (always) */ 371 regs_buff[22] = 0; /* phy receive errors (unavailable) */ 372 regs_buff[23] = regs_buff[18]; /* mdix mode */ 373 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); 374 } else { 375 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 376 regs_buff[13] = (u32)phy_data; /* cable length */ 377 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 378 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 379 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 380 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 381 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 382 regs_buff[18] = regs_buff[13]; /* cable polarity */ 383 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 384 regs_buff[20] = regs_buff[17]; /* polarity correction */ 385 /* phy receive errors */ 386 regs_buff[22] = adapter->phy_stats.receive_errors; 387 regs_buff[23] = regs_buff[13]; /* mdix mode */ 388 } 389 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ 390 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); 391 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 392 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 393 if (hw->mac_type >= e1000_82540 && 394 hw->media_type == e1000_media_type_copper) { 395 regs_buff[26] = er32(MANC); 396 } 397 } 398 399 static int e1000_get_eeprom_len(struct net_device *netdev) 400 { 401 struct e1000_adapter *adapter = netdev_priv(netdev); 402 struct e1000_hw *hw = &adapter->hw; 403 404 return hw->eeprom.word_size * 2; 405 } 406 407 static int e1000_get_eeprom(struct net_device *netdev, 408 struct ethtool_eeprom *eeprom, u8 *bytes) 409 { 410 struct e1000_adapter *adapter = netdev_priv(netdev); 411 struct e1000_hw *hw = &adapter->hw; 412 u16 *eeprom_buff; 413 int first_word, last_word; 414 int ret_val = 0; 415 u16 i; 416 417 if (eeprom->len == 0) 418 return -EINVAL; 419 420 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 421 422 first_word = eeprom->offset >> 1; 423 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 424 425 eeprom_buff = kmalloc(sizeof(u16) * 426 (last_word - first_word + 1), GFP_KERNEL); 427 if (!eeprom_buff) 428 return -ENOMEM; 429 430 if (hw->eeprom.type == e1000_eeprom_spi) 431 ret_val = e1000_read_eeprom(hw, first_word, 432 last_word - first_word + 1, 433 eeprom_buff); 434 else { 435 for (i = 0; i < last_word - first_word + 1; i++) { 436 ret_val = e1000_read_eeprom(hw, first_word + i, 1, 437 &eeprom_buff[i]); 438 if (ret_val) 439 break; 440 } 441 } 442 443 /* Device's eeprom is always little-endian, word addressable */ 444 for (i = 0; i < last_word - first_word + 1; i++) 445 le16_to_cpus(&eeprom_buff[i]); 446 447 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), 448 eeprom->len); 449 kfree(eeprom_buff); 450 451 return ret_val; 452 } 453 454 static int e1000_set_eeprom(struct net_device *netdev, 455 struct ethtool_eeprom *eeprom, u8 *bytes) 456 { 457 struct e1000_adapter *adapter = netdev_priv(netdev); 458 struct e1000_hw *hw = &adapter->hw; 459 u16 *eeprom_buff; 460 void *ptr; 461 int max_len, first_word, last_word, ret_val = 0; 462 u16 i; 463 464 if (eeprom->len == 0) 465 return -EOPNOTSUPP; 466 467 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) 468 return -EFAULT; 469 470 max_len = hw->eeprom.word_size * 2; 471 472 first_word = eeprom->offset >> 1; 473 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 474 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 475 if (!eeprom_buff) 476 return -ENOMEM; 477 478 ptr = (void *)eeprom_buff; 479 480 if (eeprom->offset & 1) { 481 /* need read/modify/write of first changed EEPROM word */ 482 /* only the second byte of the word is being modified */ 483 ret_val = e1000_read_eeprom(hw, first_word, 1, 484 &eeprom_buff[0]); 485 ptr++; 486 } 487 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { 488 /* need read/modify/write of last changed EEPROM word */ 489 /* only the first byte of the word is being modified */ 490 ret_val = e1000_read_eeprom(hw, last_word, 1, 491 &eeprom_buff[last_word - first_word]); 492 } 493 494 /* Device's eeprom is always little-endian, word addressable */ 495 for (i = 0; i < last_word - first_word + 1; i++) 496 le16_to_cpus(&eeprom_buff[i]); 497 498 memcpy(ptr, bytes, eeprom->len); 499 500 for (i = 0; i < last_word - first_word + 1; i++) 501 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); 502 503 ret_val = e1000_write_eeprom(hw, first_word, 504 last_word - first_word + 1, eeprom_buff); 505 506 /* Update the checksum over the first part of the EEPROM if needed */ 507 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG)) 508 e1000_update_eeprom_checksum(hw); 509 510 kfree(eeprom_buff); 511 return ret_val; 512 } 513 514 static void e1000_get_drvinfo(struct net_device *netdev, 515 struct ethtool_drvinfo *drvinfo) 516 { 517 struct e1000_adapter *adapter = netdev_priv(netdev); 518 519 strlcpy(drvinfo->driver, e1000_driver_name, 520 sizeof(drvinfo->driver)); 521 strlcpy(drvinfo->version, e1000_driver_version, 522 sizeof(drvinfo->version)); 523 524 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 525 sizeof(drvinfo->bus_info)); 526 drvinfo->regdump_len = e1000_get_regs_len(netdev); 527 drvinfo->eedump_len = e1000_get_eeprom_len(netdev); 528 } 529 530 static void e1000_get_ringparam(struct net_device *netdev, 531 struct ethtool_ringparam *ring) 532 { 533 struct e1000_adapter *adapter = netdev_priv(netdev); 534 struct e1000_hw *hw = &adapter->hw; 535 e1000_mac_type mac_type = hw->mac_type; 536 struct e1000_tx_ring *txdr = adapter->tx_ring; 537 struct e1000_rx_ring *rxdr = adapter->rx_ring; 538 539 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : 540 E1000_MAX_82544_RXD; 541 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : 542 E1000_MAX_82544_TXD; 543 ring->rx_pending = rxdr->count; 544 ring->tx_pending = txdr->count; 545 } 546 547 static int e1000_set_ringparam(struct net_device *netdev, 548 struct ethtool_ringparam *ring) 549 { 550 struct e1000_adapter *adapter = netdev_priv(netdev); 551 struct e1000_hw *hw = &adapter->hw; 552 e1000_mac_type mac_type = hw->mac_type; 553 struct e1000_tx_ring *txdr, *tx_old; 554 struct e1000_rx_ring *rxdr, *rx_old; 555 int i, err; 556 557 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 558 return -EINVAL; 559 560 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 561 msleep(1); 562 563 if (netif_running(adapter->netdev)) 564 e1000_down(adapter); 565 566 tx_old = adapter->tx_ring; 567 rx_old = adapter->rx_ring; 568 569 err = -ENOMEM; 570 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL); 571 if (!txdr) 572 goto err_alloc_tx; 573 574 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL); 575 if (!rxdr) 576 goto err_alloc_rx; 577 578 adapter->tx_ring = txdr; 579 adapter->rx_ring = rxdr; 580 581 rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD); 582 rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ? 583 E1000_MAX_RXD : E1000_MAX_82544_RXD)); 584 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); 585 586 txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD); 587 txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ? 588 E1000_MAX_TXD : E1000_MAX_82544_TXD)); 589 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); 590 591 for (i = 0; i < adapter->num_tx_queues; i++) 592 txdr[i].count = txdr->count; 593 for (i = 0; i < adapter->num_rx_queues; i++) 594 rxdr[i].count = rxdr->count; 595 596 if (netif_running(adapter->netdev)) { 597 /* Try to get new resources before deleting old */ 598 err = e1000_setup_all_rx_resources(adapter); 599 if (err) 600 goto err_setup_rx; 601 err = e1000_setup_all_tx_resources(adapter); 602 if (err) 603 goto err_setup_tx; 604 605 /* save the new, restore the old in order to free it, 606 * then restore the new back again */ 607 608 adapter->rx_ring = rx_old; 609 adapter->tx_ring = tx_old; 610 e1000_free_all_rx_resources(adapter); 611 e1000_free_all_tx_resources(adapter); 612 kfree(tx_old); 613 kfree(rx_old); 614 adapter->rx_ring = rxdr; 615 adapter->tx_ring = txdr; 616 err = e1000_up(adapter); 617 if (err) 618 goto err_setup; 619 } 620 621 clear_bit(__E1000_RESETTING, &adapter->flags); 622 return 0; 623 err_setup_tx: 624 e1000_free_all_rx_resources(adapter); 625 err_setup_rx: 626 adapter->rx_ring = rx_old; 627 adapter->tx_ring = tx_old; 628 kfree(rxdr); 629 err_alloc_rx: 630 kfree(txdr); 631 err_alloc_tx: 632 e1000_up(adapter); 633 err_setup: 634 clear_bit(__E1000_RESETTING, &adapter->flags); 635 return err; 636 } 637 638 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg, 639 u32 mask, u32 write) 640 { 641 struct e1000_hw *hw = &adapter->hw; 642 static const u32 test[] = 643 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; 644 u8 __iomem *address = hw->hw_addr + reg; 645 u32 read; 646 int i; 647 648 for (i = 0; i < ARRAY_SIZE(test); i++) { 649 writel(write & test[i], address); 650 read = readl(address); 651 if (read != (write & test[i] & mask)) { 652 e_err(drv, "pattern test reg %04X failed: " 653 "got 0x%08X expected 0x%08X\n", 654 reg, read, (write & test[i] & mask)); 655 *data = reg; 656 return true; 657 } 658 } 659 return false; 660 } 661 662 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg, 663 u32 mask, u32 write) 664 { 665 struct e1000_hw *hw = &adapter->hw; 666 u8 __iomem *address = hw->hw_addr + reg; 667 u32 read; 668 669 writel(write & mask, address); 670 read = readl(address); 671 if ((read & mask) != (write & mask)) { 672 e_err(drv, "set/check reg %04X test failed: " 673 "got 0x%08X expected 0x%08X\n", 674 reg, (read & mask), (write & mask)); 675 *data = reg; 676 return true; 677 } 678 return false; 679 } 680 681 #define REG_PATTERN_TEST(reg, mask, write) \ 682 do { \ 683 if (reg_pattern_test(adapter, data, \ 684 (hw->mac_type >= e1000_82543) \ 685 ? E1000_##reg : E1000_82542_##reg, \ 686 mask, write)) \ 687 return 1; \ 688 } while (0) 689 690 #define REG_SET_AND_CHECK(reg, mask, write) \ 691 do { \ 692 if (reg_set_and_check(adapter, data, \ 693 (hw->mac_type >= e1000_82543) \ 694 ? E1000_##reg : E1000_82542_##reg, \ 695 mask, write)) \ 696 return 1; \ 697 } while (0) 698 699 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 700 { 701 u32 value, before, after; 702 u32 i, toggle; 703 struct e1000_hw *hw = &adapter->hw; 704 705 /* The status register is Read Only, so a write should fail. 706 * Some bits that get toggled are ignored. 707 */ 708 709 /* there are several bits on newer hardware that are r/w */ 710 toggle = 0xFFFFF833; 711 712 before = er32(STATUS); 713 value = (er32(STATUS) & toggle); 714 ew32(STATUS, toggle); 715 after = er32(STATUS) & toggle; 716 if (value != after) { 717 e_err(drv, "failed STATUS register test got: " 718 "0x%08X expected: 0x%08X\n", after, value); 719 *data = 1; 720 return 1; 721 } 722 /* restore previous status */ 723 ew32(STATUS, before); 724 725 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 726 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); 727 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); 728 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); 729 730 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); 731 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); 732 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); 733 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); 734 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); 735 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); 736 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); 737 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 738 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); 739 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); 740 741 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); 742 743 before = 0x06DFB3FE; 744 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB); 745 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); 746 747 if (hw->mac_type >= e1000_82543) { 748 749 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF); 750 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 751 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); 752 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 753 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); 754 value = E1000_RAR_ENTRIES; 755 for (i = 0; i < value; i++) { 756 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, 757 0xFFFFFFFF); 758 } 759 760 } else { 761 762 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); 763 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); 764 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); 765 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); 766 767 } 768 769 value = E1000_MC_TBL_SIZE; 770 for (i = 0; i < value; i++) 771 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); 772 773 *data = 0; 774 return 0; 775 } 776 777 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 778 { 779 struct e1000_hw *hw = &adapter->hw; 780 u16 temp; 781 u16 checksum = 0; 782 u16 i; 783 784 *data = 0; 785 /* Read and add up the contents of the EEPROM */ 786 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { 787 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) { 788 *data = 1; 789 break; 790 } 791 checksum += temp; 792 } 793 794 /* If Checksum is not Correct return error else test passed */ 795 if ((checksum != (u16)EEPROM_SUM) && !(*data)) 796 *data = 2; 797 798 return *data; 799 } 800 801 static irqreturn_t e1000_test_intr(int irq, void *data) 802 { 803 struct net_device *netdev = (struct net_device *)data; 804 struct e1000_adapter *adapter = netdev_priv(netdev); 805 struct e1000_hw *hw = &adapter->hw; 806 807 adapter->test_icr |= er32(ICR); 808 809 return IRQ_HANDLED; 810 } 811 812 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 813 { 814 struct net_device *netdev = adapter->netdev; 815 u32 mask, i = 0; 816 bool shared_int = true; 817 u32 irq = adapter->pdev->irq; 818 struct e1000_hw *hw = &adapter->hw; 819 820 *data = 0; 821 822 /* NOTE: we don't test MSI interrupts here, yet */ 823 /* Hook up test interrupt handler just for this test */ 824 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 825 netdev)) 826 shared_int = false; 827 else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, 828 netdev->name, netdev)) { 829 *data = 1; 830 return -1; 831 } 832 e_info(hw, "testing %s interrupt\n", (shared_int ? 833 "shared" : "unshared")); 834 835 /* Disable all the interrupts */ 836 ew32(IMC, 0xFFFFFFFF); 837 E1000_WRITE_FLUSH(); 838 msleep(10); 839 840 /* Test each interrupt */ 841 for (; i < 10; i++) { 842 843 /* Interrupt to test */ 844 mask = 1 << i; 845 846 if (!shared_int) { 847 /* Disable the interrupt to be reported in 848 * the cause register and then force the same 849 * interrupt and see if one gets posted. If 850 * an interrupt was posted to the bus, the 851 * test failed. 852 */ 853 adapter->test_icr = 0; 854 ew32(IMC, mask); 855 ew32(ICS, mask); 856 E1000_WRITE_FLUSH(); 857 msleep(10); 858 859 if (adapter->test_icr & mask) { 860 *data = 3; 861 break; 862 } 863 } 864 865 /* Enable the interrupt to be reported in 866 * the cause register and then force the same 867 * interrupt and see if one gets posted. If 868 * an interrupt was not posted to the bus, the 869 * test failed. 870 */ 871 adapter->test_icr = 0; 872 ew32(IMS, mask); 873 ew32(ICS, mask); 874 E1000_WRITE_FLUSH(); 875 msleep(10); 876 877 if (!(adapter->test_icr & mask)) { 878 *data = 4; 879 break; 880 } 881 882 if (!shared_int) { 883 /* Disable the other interrupts to be reported in 884 * the cause register and then force the other 885 * interrupts and see if any get posted. If 886 * an interrupt was posted to the bus, the 887 * test failed. 888 */ 889 adapter->test_icr = 0; 890 ew32(IMC, ~mask & 0x00007FFF); 891 ew32(ICS, ~mask & 0x00007FFF); 892 E1000_WRITE_FLUSH(); 893 msleep(10); 894 895 if (adapter->test_icr) { 896 *data = 5; 897 break; 898 } 899 } 900 } 901 902 /* Disable all the interrupts */ 903 ew32(IMC, 0xFFFFFFFF); 904 E1000_WRITE_FLUSH(); 905 msleep(10); 906 907 /* Unhook test interrupt handler */ 908 free_irq(irq, netdev); 909 910 return *data; 911 } 912 913 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 914 { 915 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 916 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 917 struct pci_dev *pdev = adapter->pdev; 918 int i; 919 920 if (txdr->desc && txdr->buffer_info) { 921 for (i = 0; i < txdr->count; i++) { 922 if (txdr->buffer_info[i].dma) 923 dma_unmap_single(&pdev->dev, 924 txdr->buffer_info[i].dma, 925 txdr->buffer_info[i].length, 926 DMA_TO_DEVICE); 927 if (txdr->buffer_info[i].skb) 928 dev_kfree_skb(txdr->buffer_info[i].skb); 929 } 930 } 931 932 if (rxdr->desc && rxdr->buffer_info) { 933 for (i = 0; i < rxdr->count; i++) { 934 if (rxdr->buffer_info[i].dma) 935 dma_unmap_single(&pdev->dev, 936 rxdr->buffer_info[i].dma, 937 rxdr->buffer_info[i].length, 938 DMA_FROM_DEVICE); 939 if (rxdr->buffer_info[i].skb) 940 dev_kfree_skb(rxdr->buffer_info[i].skb); 941 } 942 } 943 944 if (txdr->desc) { 945 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, 946 txdr->dma); 947 txdr->desc = NULL; 948 } 949 if (rxdr->desc) { 950 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, 951 rxdr->dma); 952 rxdr->desc = NULL; 953 } 954 955 kfree(txdr->buffer_info); 956 txdr->buffer_info = NULL; 957 kfree(rxdr->buffer_info); 958 rxdr->buffer_info = NULL; 959 } 960 961 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 962 { 963 struct e1000_hw *hw = &adapter->hw; 964 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 965 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 966 struct pci_dev *pdev = adapter->pdev; 967 u32 rctl; 968 int i, ret_val; 969 970 /* Setup Tx descriptor ring and Tx buffers */ 971 972 if (!txdr->count) 973 txdr->count = E1000_DEFAULT_TXD; 974 975 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer), 976 GFP_KERNEL); 977 if (!txdr->buffer_info) { 978 ret_val = 1; 979 goto err_nomem; 980 } 981 982 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 983 txdr->size = ALIGN(txdr->size, 4096); 984 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, 985 GFP_KERNEL); 986 if (!txdr->desc) { 987 ret_val = 2; 988 goto err_nomem; 989 } 990 memset(txdr->desc, 0, txdr->size); 991 txdr->next_to_use = txdr->next_to_clean = 0; 992 993 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF)); 994 ew32(TDBAH, ((u64)txdr->dma >> 32)); 995 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc)); 996 ew32(TDH, 0); 997 ew32(TDT, 0); 998 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | 999 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1000 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1001 1002 for (i = 0; i < txdr->count; i++) { 1003 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); 1004 struct sk_buff *skb; 1005 unsigned int size = 1024; 1006 1007 skb = alloc_skb(size, GFP_KERNEL); 1008 if (!skb) { 1009 ret_val = 3; 1010 goto err_nomem; 1011 } 1012 skb_put(skb, size); 1013 txdr->buffer_info[i].skb = skb; 1014 txdr->buffer_info[i].length = skb->len; 1015 txdr->buffer_info[i].dma = 1016 dma_map_single(&pdev->dev, skb->data, skb->len, 1017 DMA_TO_DEVICE); 1018 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); 1019 tx_desc->lower.data = cpu_to_le32(skb->len); 1020 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1021 E1000_TXD_CMD_IFCS | 1022 E1000_TXD_CMD_RPS); 1023 tx_desc->upper.data = 0; 1024 } 1025 1026 /* Setup Rx descriptor ring and Rx buffers */ 1027 1028 if (!rxdr->count) 1029 rxdr->count = E1000_DEFAULT_RXD; 1030 1031 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer), 1032 GFP_KERNEL); 1033 if (!rxdr->buffer_info) { 1034 ret_val = 4; 1035 goto err_nomem; 1036 } 1037 1038 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); 1039 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, 1040 GFP_KERNEL); 1041 if (!rxdr->desc) { 1042 ret_val = 5; 1043 goto err_nomem; 1044 } 1045 memset(rxdr->desc, 0, rxdr->size); 1046 rxdr->next_to_use = rxdr->next_to_clean = 0; 1047 1048 rctl = er32(RCTL); 1049 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1050 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF)); 1051 ew32(RDBAH, ((u64)rxdr->dma >> 32)); 1052 ew32(RDLEN, rxdr->size); 1053 ew32(RDH, 0); 1054 ew32(RDT, 0); 1055 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1056 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1057 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); 1058 ew32(RCTL, rctl); 1059 1060 for (i = 0; i < rxdr->count; i++) { 1061 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); 1062 struct sk_buff *skb; 1063 1064 skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL); 1065 if (!skb) { 1066 ret_val = 6; 1067 goto err_nomem; 1068 } 1069 skb_reserve(skb, NET_IP_ALIGN); 1070 rxdr->buffer_info[i].skb = skb; 1071 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048; 1072 rxdr->buffer_info[i].dma = 1073 dma_map_single(&pdev->dev, skb->data, 1074 E1000_RXBUFFER_2048, DMA_FROM_DEVICE); 1075 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); 1076 memset(skb->data, 0x00, skb->len); 1077 } 1078 1079 return 0; 1080 1081 err_nomem: 1082 e1000_free_desc_rings(adapter); 1083 return ret_val; 1084 } 1085 1086 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1087 { 1088 struct e1000_hw *hw = &adapter->hw; 1089 1090 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1091 e1000_write_phy_reg(hw, 29, 0x001F); 1092 e1000_write_phy_reg(hw, 30, 0x8FFC); 1093 e1000_write_phy_reg(hw, 29, 0x001A); 1094 e1000_write_phy_reg(hw, 30, 0x8FF0); 1095 } 1096 1097 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) 1098 { 1099 struct e1000_hw *hw = &adapter->hw; 1100 u16 phy_reg; 1101 1102 /* Because we reset the PHY above, we need to re-force TX_CLK in the 1103 * Extended PHY Specific Control Register to 25MHz clock. This 1104 * value defaults back to a 2.5MHz clock when the PHY is reset. 1105 */ 1106 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); 1107 phy_reg |= M88E1000_EPSCR_TX_CLK_25; 1108 e1000_write_phy_reg(hw, 1109 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); 1110 1111 /* In addition, because of the s/w reset above, we need to enable 1112 * CRS on TX. This must be set for both full and half duplex 1113 * operation. 1114 */ 1115 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); 1116 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 1117 e1000_write_phy_reg(hw, 1118 M88E1000_PHY_SPEC_CTRL, phy_reg); 1119 } 1120 1121 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) 1122 { 1123 struct e1000_hw *hw = &adapter->hw; 1124 u32 ctrl_reg; 1125 u16 phy_reg; 1126 1127 /* Setup the Device Control Register for PHY loopback test. */ 1128 1129 ctrl_reg = er32(CTRL); 1130 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */ 1131 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1132 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1133 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ 1134 E1000_CTRL_FD); /* Force Duplex to FULL */ 1135 1136 ew32(CTRL, ctrl_reg); 1137 1138 /* Read the PHY Specific Control Register (0x10) */ 1139 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); 1140 1141 /* Clear Auto-Crossover bits in PHY Specific Control Register 1142 * (bits 6:5). 1143 */ 1144 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; 1145 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg); 1146 1147 /* Perform software reset on the PHY */ 1148 e1000_phy_reset(hw); 1149 1150 /* Have to setup TX_CLK and TX_CRS after software reset */ 1151 e1000_phy_reset_clk_and_crs(adapter); 1152 1153 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100); 1154 1155 /* Wait for reset to complete. */ 1156 udelay(500); 1157 1158 /* Have to setup TX_CLK and TX_CRS after software reset */ 1159 e1000_phy_reset_clk_and_crs(adapter); 1160 1161 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1162 e1000_phy_disable_receiver(adapter); 1163 1164 /* Set the loopback bit in the PHY control register. */ 1165 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1166 phy_reg |= MII_CR_LOOPBACK; 1167 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1168 1169 /* Setup TX_CLK and TX_CRS one more time. */ 1170 e1000_phy_reset_clk_and_crs(adapter); 1171 1172 /* Check Phy Configuration */ 1173 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1174 if (phy_reg != 0x4100) 1175 return 9; 1176 1177 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); 1178 if (phy_reg != 0x0070) 1179 return 10; 1180 1181 e1000_read_phy_reg(hw, 29, &phy_reg); 1182 if (phy_reg != 0x001A) 1183 return 11; 1184 1185 return 0; 1186 } 1187 1188 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1189 { 1190 struct e1000_hw *hw = &adapter->hw; 1191 u32 ctrl_reg = 0; 1192 u32 stat_reg = 0; 1193 1194 hw->autoneg = false; 1195 1196 if (hw->phy_type == e1000_phy_m88) { 1197 /* Auto-MDI/MDIX Off */ 1198 e1000_write_phy_reg(hw, 1199 M88E1000_PHY_SPEC_CTRL, 0x0808); 1200 /* reset to update Auto-MDI/MDIX */ 1201 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140); 1202 /* autoneg off */ 1203 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140); 1204 } 1205 1206 ctrl_reg = er32(CTRL); 1207 1208 /* force 1000, set loopback */ 1209 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140); 1210 1211 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1212 ctrl_reg = er32(CTRL); 1213 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1214 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1215 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1216 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1217 E1000_CTRL_FD); /* Force Duplex to FULL */ 1218 1219 if (hw->media_type == e1000_media_type_copper && 1220 hw->phy_type == e1000_phy_m88) 1221 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1222 else { 1223 /* Set the ILOS bit on the fiber Nic is half 1224 * duplex link is detected. */ 1225 stat_reg = er32(STATUS); 1226 if ((stat_reg & E1000_STATUS_FD) == 0) 1227 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1228 } 1229 1230 ew32(CTRL, ctrl_reg); 1231 1232 /* Disable the receiver on the PHY so when a cable is plugged in, the 1233 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1234 */ 1235 if (hw->phy_type == e1000_phy_m88) 1236 e1000_phy_disable_receiver(adapter); 1237 1238 udelay(500); 1239 1240 return 0; 1241 } 1242 1243 static int e1000_set_phy_loopback(struct e1000_adapter *adapter) 1244 { 1245 struct e1000_hw *hw = &adapter->hw; 1246 u16 phy_reg = 0; 1247 u16 count = 0; 1248 1249 switch (hw->mac_type) { 1250 case e1000_82543: 1251 if (hw->media_type == e1000_media_type_copper) { 1252 /* Attempt to setup Loopback mode on Non-integrated PHY. 1253 * Some PHY registers get corrupted at random, so 1254 * attempt this 10 times. 1255 */ 1256 while (e1000_nonintegrated_phy_loopback(adapter) && 1257 count++ < 10); 1258 if (count < 11) 1259 return 0; 1260 } 1261 break; 1262 1263 case e1000_82544: 1264 case e1000_82540: 1265 case e1000_82545: 1266 case e1000_82545_rev_3: 1267 case e1000_82546: 1268 case e1000_82546_rev_3: 1269 case e1000_82541: 1270 case e1000_82541_rev_2: 1271 case e1000_82547: 1272 case e1000_82547_rev_2: 1273 return e1000_integrated_phy_loopback(adapter); 1274 break; 1275 default: 1276 /* Default PHY loopback work is to read the MII 1277 * control register and assert bit 14 (loopback mode). 1278 */ 1279 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1280 phy_reg |= MII_CR_LOOPBACK; 1281 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1282 return 0; 1283 break; 1284 } 1285 1286 return 8; 1287 } 1288 1289 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1290 { 1291 struct e1000_hw *hw = &adapter->hw; 1292 u32 rctl; 1293 1294 if (hw->media_type == e1000_media_type_fiber || 1295 hw->media_type == e1000_media_type_internal_serdes) { 1296 switch (hw->mac_type) { 1297 case e1000_82545: 1298 case e1000_82546: 1299 case e1000_82545_rev_3: 1300 case e1000_82546_rev_3: 1301 return e1000_set_phy_loopback(adapter); 1302 break; 1303 default: 1304 rctl = er32(RCTL); 1305 rctl |= E1000_RCTL_LBM_TCVR; 1306 ew32(RCTL, rctl); 1307 return 0; 1308 } 1309 } else if (hw->media_type == e1000_media_type_copper) 1310 return e1000_set_phy_loopback(adapter); 1311 1312 return 7; 1313 } 1314 1315 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1316 { 1317 struct e1000_hw *hw = &adapter->hw; 1318 u32 rctl; 1319 u16 phy_reg; 1320 1321 rctl = er32(RCTL); 1322 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1323 ew32(RCTL, rctl); 1324 1325 switch (hw->mac_type) { 1326 case e1000_82545: 1327 case e1000_82546: 1328 case e1000_82545_rev_3: 1329 case e1000_82546_rev_3: 1330 default: 1331 hw->autoneg = true; 1332 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1333 if (phy_reg & MII_CR_LOOPBACK) { 1334 phy_reg &= ~MII_CR_LOOPBACK; 1335 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1336 e1000_phy_reset(hw); 1337 } 1338 break; 1339 } 1340 } 1341 1342 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1343 unsigned int frame_size) 1344 { 1345 memset(skb->data, 0xFF, frame_size); 1346 frame_size &= ~1; 1347 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1348 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1349 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1350 } 1351 1352 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1353 unsigned int frame_size) 1354 { 1355 frame_size &= ~1; 1356 if (*(skb->data + 3) == 0xFF) { 1357 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1358 (*(skb->data + frame_size / 2 + 12) == 0xAF)) { 1359 return 0; 1360 } 1361 } 1362 return 13; 1363 } 1364 1365 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1366 { 1367 struct e1000_hw *hw = &adapter->hw; 1368 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 1369 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 1370 struct pci_dev *pdev = adapter->pdev; 1371 int i, j, k, l, lc, good_cnt, ret_val=0; 1372 unsigned long time; 1373 1374 ew32(RDT, rxdr->count - 1); 1375 1376 /* Calculate the loop count based on the largest descriptor ring 1377 * The idea is to wrap the largest ring a number of times using 64 1378 * send/receive pairs during each loop 1379 */ 1380 1381 if (rxdr->count <= txdr->count) 1382 lc = ((txdr->count / 64) * 2) + 1; 1383 else 1384 lc = ((rxdr->count / 64) * 2) + 1; 1385 1386 k = l = 0; 1387 for (j = 0; j <= lc; j++) { /* loop count loop */ 1388 for (i = 0; i < 64; i++) { /* send the packets */ 1389 e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 1390 1024); 1391 dma_sync_single_for_device(&pdev->dev, 1392 txdr->buffer_info[k].dma, 1393 txdr->buffer_info[k].length, 1394 DMA_TO_DEVICE); 1395 if (unlikely(++k == txdr->count)) k = 0; 1396 } 1397 ew32(TDT, k); 1398 E1000_WRITE_FLUSH(); 1399 msleep(200); 1400 time = jiffies; /* set the start time for the receive */ 1401 good_cnt = 0; 1402 do { /* receive the sent packets */ 1403 dma_sync_single_for_cpu(&pdev->dev, 1404 rxdr->buffer_info[l].dma, 1405 rxdr->buffer_info[l].length, 1406 DMA_FROM_DEVICE); 1407 1408 ret_val = e1000_check_lbtest_frame( 1409 rxdr->buffer_info[l].skb, 1410 1024); 1411 if (!ret_val) 1412 good_cnt++; 1413 if (unlikely(++l == rxdr->count)) l = 0; 1414 /* time + 20 msecs (200 msecs on 2.4) is more than 1415 * enough time to complete the receives, if it's 1416 * exceeded, break and error off 1417 */ 1418 } while (good_cnt < 64 && jiffies < (time + 20)); 1419 if (good_cnt != 64) { 1420 ret_val = 13; /* ret_val is the same as mis-compare */ 1421 break; 1422 } 1423 if (jiffies >= (time + 2)) { 1424 ret_val = 14; /* error code for time out error */ 1425 break; 1426 } 1427 } /* end loop count loop */ 1428 return ret_val; 1429 } 1430 1431 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1432 { 1433 *data = e1000_setup_desc_rings(adapter); 1434 if (*data) 1435 goto out; 1436 *data = e1000_setup_loopback_test(adapter); 1437 if (*data) 1438 goto err_loopback; 1439 *data = e1000_run_loopback_test(adapter); 1440 e1000_loopback_cleanup(adapter); 1441 1442 err_loopback: 1443 e1000_free_desc_rings(adapter); 1444 out: 1445 return *data; 1446 } 1447 1448 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1449 { 1450 struct e1000_hw *hw = &adapter->hw; 1451 *data = 0; 1452 if (hw->media_type == e1000_media_type_internal_serdes) { 1453 int i = 0; 1454 hw->serdes_has_link = false; 1455 1456 /* On some blade server designs, link establishment 1457 * could take as long as 2-3 minutes */ 1458 do { 1459 e1000_check_for_link(hw); 1460 if (hw->serdes_has_link) 1461 return *data; 1462 msleep(20); 1463 } while (i++ < 3750); 1464 1465 *data = 1; 1466 } else { 1467 e1000_check_for_link(hw); 1468 if (hw->autoneg) /* if auto_neg is set wait for it */ 1469 msleep(4000); 1470 1471 if (!(er32(STATUS) & E1000_STATUS_LU)) { 1472 *data = 1; 1473 } 1474 } 1475 return *data; 1476 } 1477 1478 static int e1000_get_sset_count(struct net_device *netdev, int sset) 1479 { 1480 switch (sset) { 1481 case ETH_SS_TEST: 1482 return E1000_TEST_LEN; 1483 case ETH_SS_STATS: 1484 return E1000_STATS_LEN; 1485 default: 1486 return -EOPNOTSUPP; 1487 } 1488 } 1489 1490 static void e1000_diag_test(struct net_device *netdev, 1491 struct ethtool_test *eth_test, u64 *data) 1492 { 1493 struct e1000_adapter *adapter = netdev_priv(netdev); 1494 struct e1000_hw *hw = &adapter->hw; 1495 bool if_running = netif_running(netdev); 1496 1497 set_bit(__E1000_TESTING, &adapter->flags); 1498 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1499 /* Offline tests */ 1500 1501 /* save speed, duplex, autoneg settings */ 1502 u16 autoneg_advertised = hw->autoneg_advertised; 1503 u8 forced_speed_duplex = hw->forced_speed_duplex; 1504 u8 autoneg = hw->autoneg; 1505 1506 e_info(hw, "offline testing starting\n"); 1507 1508 /* Link test performed before hardware reset so autoneg doesn't 1509 * interfere with test result */ 1510 if (e1000_link_test(adapter, &data[4])) 1511 eth_test->flags |= ETH_TEST_FL_FAILED; 1512 1513 if (if_running) 1514 /* indicate we're in test mode */ 1515 dev_close(netdev); 1516 else 1517 e1000_reset(adapter); 1518 1519 if (e1000_reg_test(adapter, &data[0])) 1520 eth_test->flags |= ETH_TEST_FL_FAILED; 1521 1522 e1000_reset(adapter); 1523 if (e1000_eeprom_test(adapter, &data[1])) 1524 eth_test->flags |= ETH_TEST_FL_FAILED; 1525 1526 e1000_reset(adapter); 1527 if (e1000_intr_test(adapter, &data[2])) 1528 eth_test->flags |= ETH_TEST_FL_FAILED; 1529 1530 e1000_reset(adapter); 1531 /* make sure the phy is powered up */ 1532 e1000_power_up_phy(adapter); 1533 if (e1000_loopback_test(adapter, &data[3])) 1534 eth_test->flags |= ETH_TEST_FL_FAILED; 1535 1536 /* restore speed, duplex, autoneg settings */ 1537 hw->autoneg_advertised = autoneg_advertised; 1538 hw->forced_speed_duplex = forced_speed_duplex; 1539 hw->autoneg = autoneg; 1540 1541 e1000_reset(adapter); 1542 clear_bit(__E1000_TESTING, &adapter->flags); 1543 if (if_running) 1544 dev_open(netdev); 1545 } else { 1546 e_info(hw, "online testing starting\n"); 1547 /* Online tests */ 1548 if (e1000_link_test(adapter, &data[4])) 1549 eth_test->flags |= ETH_TEST_FL_FAILED; 1550 1551 /* Online tests aren't run; pass by default */ 1552 data[0] = 0; 1553 data[1] = 0; 1554 data[2] = 0; 1555 data[3] = 0; 1556 1557 clear_bit(__E1000_TESTING, &adapter->flags); 1558 } 1559 msleep_interruptible(4 * 1000); 1560 } 1561 1562 static int e1000_wol_exclusion(struct e1000_adapter *adapter, 1563 struct ethtool_wolinfo *wol) 1564 { 1565 struct e1000_hw *hw = &adapter->hw; 1566 int retval = 1; /* fail by default */ 1567 1568 switch (hw->device_id) { 1569 case E1000_DEV_ID_82542: 1570 case E1000_DEV_ID_82543GC_FIBER: 1571 case E1000_DEV_ID_82543GC_COPPER: 1572 case E1000_DEV_ID_82544EI_FIBER: 1573 case E1000_DEV_ID_82546EB_QUAD_COPPER: 1574 case E1000_DEV_ID_82545EM_FIBER: 1575 case E1000_DEV_ID_82545EM_COPPER: 1576 case E1000_DEV_ID_82546GB_QUAD_COPPER: 1577 case E1000_DEV_ID_82546GB_PCIE: 1578 /* these don't support WoL at all */ 1579 wol->supported = 0; 1580 break; 1581 case E1000_DEV_ID_82546EB_FIBER: 1582 case E1000_DEV_ID_82546GB_FIBER: 1583 /* Wake events not supported on port B */ 1584 if (er32(STATUS) & E1000_STATUS_FUNC_1) { 1585 wol->supported = 0; 1586 break; 1587 } 1588 /* return success for non excluded adapter ports */ 1589 retval = 0; 1590 break; 1591 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1592 /* quad port adapters only support WoL on port A */ 1593 if (!adapter->quad_port_a) { 1594 wol->supported = 0; 1595 break; 1596 } 1597 /* return success for non excluded adapter ports */ 1598 retval = 0; 1599 break; 1600 default: 1601 /* dual port cards only support WoL on port A from now on 1602 * unless it was enabled in the eeprom for port B 1603 * so exclude FUNC_1 ports from having WoL enabled */ 1604 if (er32(STATUS) & E1000_STATUS_FUNC_1 && 1605 !adapter->eeprom_wol) { 1606 wol->supported = 0; 1607 break; 1608 } 1609 1610 retval = 0; 1611 } 1612 1613 return retval; 1614 } 1615 1616 static void e1000_get_wol(struct net_device *netdev, 1617 struct ethtool_wolinfo *wol) 1618 { 1619 struct e1000_adapter *adapter = netdev_priv(netdev); 1620 struct e1000_hw *hw = &adapter->hw; 1621 1622 wol->supported = WAKE_UCAST | WAKE_MCAST | 1623 WAKE_BCAST | WAKE_MAGIC; 1624 wol->wolopts = 0; 1625 1626 /* this function will set ->supported = 0 and return 1 if wol is not 1627 * supported by this hardware */ 1628 if (e1000_wol_exclusion(adapter, wol) || 1629 !device_can_wakeup(&adapter->pdev->dev)) 1630 return; 1631 1632 /* apply any specific unsupported masks here */ 1633 switch (hw->device_id) { 1634 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1635 /* KSP3 does not suppport UCAST wake-ups */ 1636 wol->supported &= ~WAKE_UCAST; 1637 1638 if (adapter->wol & E1000_WUFC_EX) 1639 e_err(drv, "Interface does not support directed " 1640 "(unicast) frame wake-up packets\n"); 1641 break; 1642 default: 1643 break; 1644 } 1645 1646 if (adapter->wol & E1000_WUFC_EX) 1647 wol->wolopts |= WAKE_UCAST; 1648 if (adapter->wol & E1000_WUFC_MC) 1649 wol->wolopts |= WAKE_MCAST; 1650 if (adapter->wol & E1000_WUFC_BC) 1651 wol->wolopts |= WAKE_BCAST; 1652 if (adapter->wol & E1000_WUFC_MAG) 1653 wol->wolopts |= WAKE_MAGIC; 1654 } 1655 1656 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1657 { 1658 struct e1000_adapter *adapter = netdev_priv(netdev); 1659 struct e1000_hw *hw = &adapter->hw; 1660 1661 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) 1662 return -EOPNOTSUPP; 1663 1664 if (e1000_wol_exclusion(adapter, wol) || 1665 !device_can_wakeup(&adapter->pdev->dev)) 1666 return wol->wolopts ? -EOPNOTSUPP : 0; 1667 1668 switch (hw->device_id) { 1669 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1670 if (wol->wolopts & WAKE_UCAST) { 1671 e_err(drv, "Interface does not support directed " 1672 "(unicast) frame wake-up packets\n"); 1673 return -EOPNOTSUPP; 1674 } 1675 break; 1676 default: 1677 break; 1678 } 1679 1680 /* these settings will always override what we currently have */ 1681 adapter->wol = 0; 1682 1683 if (wol->wolopts & WAKE_UCAST) 1684 adapter->wol |= E1000_WUFC_EX; 1685 if (wol->wolopts & WAKE_MCAST) 1686 adapter->wol |= E1000_WUFC_MC; 1687 if (wol->wolopts & WAKE_BCAST) 1688 adapter->wol |= E1000_WUFC_BC; 1689 if (wol->wolopts & WAKE_MAGIC) 1690 adapter->wol |= E1000_WUFC_MAG; 1691 1692 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1693 1694 return 0; 1695 } 1696 1697 static int e1000_set_phys_id(struct net_device *netdev, 1698 enum ethtool_phys_id_state state) 1699 { 1700 struct e1000_adapter *adapter = netdev_priv(netdev); 1701 struct e1000_hw *hw = &adapter->hw; 1702 1703 switch (state) { 1704 case ETHTOOL_ID_ACTIVE: 1705 e1000_setup_led(hw); 1706 return 2; 1707 1708 case ETHTOOL_ID_ON: 1709 e1000_led_on(hw); 1710 break; 1711 1712 case ETHTOOL_ID_OFF: 1713 e1000_led_off(hw); 1714 break; 1715 1716 case ETHTOOL_ID_INACTIVE: 1717 e1000_cleanup_led(hw); 1718 } 1719 1720 return 0; 1721 } 1722 1723 static int e1000_get_coalesce(struct net_device *netdev, 1724 struct ethtool_coalesce *ec) 1725 { 1726 struct e1000_adapter *adapter = netdev_priv(netdev); 1727 1728 if (adapter->hw.mac_type < e1000_82545) 1729 return -EOPNOTSUPP; 1730 1731 if (adapter->itr_setting <= 4) 1732 ec->rx_coalesce_usecs = adapter->itr_setting; 1733 else 1734 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1735 1736 return 0; 1737 } 1738 1739 static int e1000_set_coalesce(struct net_device *netdev, 1740 struct ethtool_coalesce *ec) 1741 { 1742 struct e1000_adapter *adapter = netdev_priv(netdev); 1743 struct e1000_hw *hw = &adapter->hw; 1744 1745 if (hw->mac_type < e1000_82545) 1746 return -EOPNOTSUPP; 1747 1748 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 1749 ((ec->rx_coalesce_usecs > 4) && 1750 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 1751 (ec->rx_coalesce_usecs == 2)) 1752 return -EINVAL; 1753 1754 if (ec->rx_coalesce_usecs == 4) { 1755 adapter->itr = adapter->itr_setting = 4; 1756 } else if (ec->rx_coalesce_usecs <= 3) { 1757 adapter->itr = 20000; 1758 adapter->itr_setting = ec->rx_coalesce_usecs; 1759 } else { 1760 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 1761 adapter->itr_setting = adapter->itr & ~3; 1762 } 1763 1764 if (adapter->itr_setting != 0) 1765 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1766 else 1767 ew32(ITR, 0); 1768 1769 return 0; 1770 } 1771 1772 static int e1000_nway_reset(struct net_device *netdev) 1773 { 1774 struct e1000_adapter *adapter = netdev_priv(netdev); 1775 if (netif_running(netdev)) 1776 e1000_reinit_locked(adapter); 1777 return 0; 1778 } 1779 1780 static void e1000_get_ethtool_stats(struct net_device *netdev, 1781 struct ethtool_stats *stats, u64 *data) 1782 { 1783 struct e1000_adapter *adapter = netdev_priv(netdev); 1784 int i; 1785 char *p = NULL; 1786 1787 e1000_update_stats(adapter); 1788 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1789 switch (e1000_gstrings_stats[i].type) { 1790 case NETDEV_STATS: 1791 p = (char *) netdev + 1792 e1000_gstrings_stats[i].stat_offset; 1793 break; 1794 case E1000_STATS: 1795 p = (char *) adapter + 1796 e1000_gstrings_stats[i].stat_offset; 1797 break; 1798 } 1799 1800 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 1801 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 1802 } 1803 /* BUG_ON(i != E1000_STATS_LEN); */ 1804 } 1805 1806 static void e1000_get_strings(struct net_device *netdev, u32 stringset, 1807 u8 *data) 1808 { 1809 u8 *p = data; 1810 int i; 1811 1812 switch (stringset) { 1813 case ETH_SS_TEST: 1814 memcpy(data, *e1000_gstrings_test, 1815 sizeof(e1000_gstrings_test)); 1816 break; 1817 case ETH_SS_STATS: 1818 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1819 memcpy(p, e1000_gstrings_stats[i].stat_string, 1820 ETH_GSTRING_LEN); 1821 p += ETH_GSTRING_LEN; 1822 } 1823 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */ 1824 break; 1825 } 1826 } 1827 1828 static const struct ethtool_ops e1000_ethtool_ops = { 1829 .get_settings = e1000_get_settings, 1830 .set_settings = e1000_set_settings, 1831 .get_drvinfo = e1000_get_drvinfo, 1832 .get_regs_len = e1000_get_regs_len, 1833 .get_regs = e1000_get_regs, 1834 .get_wol = e1000_get_wol, 1835 .set_wol = e1000_set_wol, 1836 .get_msglevel = e1000_get_msglevel, 1837 .set_msglevel = e1000_set_msglevel, 1838 .nway_reset = e1000_nway_reset, 1839 .get_link = e1000_get_link, 1840 .get_eeprom_len = e1000_get_eeprom_len, 1841 .get_eeprom = e1000_get_eeprom, 1842 .set_eeprom = e1000_set_eeprom, 1843 .get_ringparam = e1000_get_ringparam, 1844 .set_ringparam = e1000_set_ringparam, 1845 .get_pauseparam = e1000_get_pauseparam, 1846 .set_pauseparam = e1000_set_pauseparam, 1847 .self_test = e1000_diag_test, 1848 .get_strings = e1000_get_strings, 1849 .set_phys_id = e1000_set_phys_id, 1850 .get_ethtool_stats = e1000_get_ethtool_stats, 1851 .get_sset_count = e1000_get_sset_count, 1852 .get_coalesce = e1000_get_coalesce, 1853 .set_coalesce = e1000_set_coalesce, 1854 .get_ts_info = ethtool_op_get_ts_info, 1855 }; 1856 1857 void e1000_set_ethtool_ops(struct net_device *netdev) 1858 { 1859 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); 1860 } 1861