xref: /openbmc/linux/drivers/net/ethernet/intel/e1000/e1000_ethtool.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*******************************************************************************
2  * Intel PRO/1000 Linux driver
3  * Copyright(c) 1999 - 2006 Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in
15  * the file called "COPYING".
16  *
17  * Contact Information:
18  * Linux NICS <linux.nics@intel.com>
19  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21  *
22  ******************************************************************************/
23 
24 /* ethtool support for e1000 */
25 
26 #include "e1000.h"
27 #include <linux/jiffies.h>
28 #include <linux/uaccess.h>
29 
30 enum {NETDEV_STATS, E1000_STATS};
31 
32 struct e1000_stats {
33 	char stat_string[ETH_GSTRING_LEN];
34 	int type;
35 	int sizeof_stat;
36 	int stat_offset;
37 };
38 
39 #define E1000_STAT(m)		E1000_STATS, \
40 				sizeof(((struct e1000_adapter *)0)->m), \
41 				offsetof(struct e1000_adapter, m)
42 #define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
43 				sizeof(((struct net_device *)0)->m), \
44 				offsetof(struct net_device, m)
45 
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47 	{ "rx_packets", E1000_STAT(stats.gprc) },
48 	{ "tx_packets", E1000_STAT(stats.gptc) },
49 	{ "rx_bytes", E1000_STAT(stats.gorcl) },
50 	{ "tx_bytes", E1000_STAT(stats.gotcl) },
51 	{ "rx_broadcast", E1000_STAT(stats.bprc) },
52 	{ "tx_broadcast", E1000_STAT(stats.bptc) },
53 	{ "rx_multicast", E1000_STAT(stats.mprc) },
54 	{ "tx_multicast", E1000_STAT(stats.mptc) },
55 	{ "rx_errors", E1000_STAT(stats.rxerrc) },
56 	{ "tx_errors", E1000_STAT(stats.txerrc) },
57 	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
58 	{ "multicast", E1000_STAT(stats.mprc) },
59 	{ "collisions", E1000_STAT(stats.colc) },
60 	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
61 	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
62 	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63 	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
64 	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65 	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
66 	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
67 	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68 	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
69 	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
70 	{ "tx_window_errors", E1000_STAT(stats.latecol) },
71 	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72 	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
73 	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
74 	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75 	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76 	{ "tx_restart_queue", E1000_STAT(restart_queue) },
77 	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
78 	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
79 	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
80 	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81 	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82 	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83 	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84 	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85 	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86 	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
87 	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88 	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89 	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
90 	{ "tx_smbus", E1000_STAT(stats.mgptc) },
91 	{ "rx_smbus", E1000_STAT(stats.mgprc) },
92 	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
93 };
94 
95 #define E1000_QUEUE_STATS_LEN 0
96 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
97 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
98 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
99 	"Register test  (offline)", "Eeprom test    (offline)",
100 	"Interrupt test (offline)", "Loopback test  (offline)",
101 	"Link test   (on/offline)"
102 };
103 
104 #define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
105 
106 static int e1000_get_link_ksettings(struct net_device *netdev,
107 				    struct ethtool_link_ksettings *cmd)
108 {
109 	struct e1000_adapter *adapter = netdev_priv(netdev);
110 	struct e1000_hw *hw = &adapter->hw;
111 	u32 supported, advertising;
112 
113 	if (hw->media_type == e1000_media_type_copper) {
114 		supported = (SUPPORTED_10baseT_Half |
115 			     SUPPORTED_10baseT_Full |
116 			     SUPPORTED_100baseT_Half |
117 			     SUPPORTED_100baseT_Full |
118 			     SUPPORTED_1000baseT_Full|
119 			     SUPPORTED_Autoneg |
120 			     SUPPORTED_TP);
121 		advertising = ADVERTISED_TP;
122 
123 		if (hw->autoneg == 1) {
124 			advertising |= ADVERTISED_Autoneg;
125 			/* the e1000 autoneg seems to match ethtool nicely */
126 			advertising |= hw->autoneg_advertised;
127 		}
128 
129 		cmd->base.port = PORT_TP;
130 		cmd->base.phy_address = hw->phy_addr;
131 	} else {
132 		supported   = (SUPPORTED_1000baseT_Full |
133 			       SUPPORTED_FIBRE |
134 			       SUPPORTED_Autoneg);
135 
136 		advertising = (ADVERTISED_1000baseT_Full |
137 			       ADVERTISED_FIBRE |
138 			       ADVERTISED_Autoneg);
139 
140 		cmd->base.port = PORT_FIBRE;
141 	}
142 
143 	if (er32(STATUS) & E1000_STATUS_LU) {
144 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
145 					   &adapter->link_duplex);
146 		cmd->base.speed = adapter->link_speed;
147 
148 		/* unfortunately FULL_DUPLEX != DUPLEX_FULL
149 		 * and HALF_DUPLEX != DUPLEX_HALF
150 		 */
151 		if (adapter->link_duplex == FULL_DUPLEX)
152 			cmd->base.duplex = DUPLEX_FULL;
153 		else
154 			cmd->base.duplex = DUPLEX_HALF;
155 	} else {
156 		cmd->base.speed = SPEED_UNKNOWN;
157 		cmd->base.duplex = DUPLEX_UNKNOWN;
158 	}
159 
160 	cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
161 			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
162 
163 	/* MDI-X => 1; MDI => 0 */
164 	if ((hw->media_type == e1000_media_type_copper) &&
165 	    netif_carrier_ok(netdev))
166 		cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
167 				     ETH_TP_MDI_X : ETH_TP_MDI);
168 	else
169 		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
170 
171 	if (hw->mdix == AUTO_ALL_MODES)
172 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
173 	else
174 		cmd->base.eth_tp_mdix_ctrl = hw->mdix;
175 
176 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
177 						supported);
178 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
179 						advertising);
180 
181 	return 0;
182 }
183 
184 static int e1000_set_link_ksettings(struct net_device *netdev,
185 				    const struct ethtool_link_ksettings *cmd)
186 {
187 	struct e1000_adapter *adapter = netdev_priv(netdev);
188 	struct e1000_hw *hw = &adapter->hw;
189 	u32 advertising;
190 
191 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
192 						cmd->link_modes.advertising);
193 
194 	/* MDI setting is only allowed when autoneg enabled because
195 	 * some hardware doesn't allow MDI setting when speed or
196 	 * duplex is forced.
197 	 */
198 	if (cmd->base.eth_tp_mdix_ctrl) {
199 		if (hw->media_type != e1000_media_type_copper)
200 			return -EOPNOTSUPP;
201 
202 		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
203 		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
204 			e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
205 			return -EINVAL;
206 		}
207 	}
208 
209 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
210 		msleep(1);
211 
212 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
213 		hw->autoneg = 1;
214 		if (hw->media_type == e1000_media_type_fiber)
215 			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
216 						 ADVERTISED_FIBRE |
217 						 ADVERTISED_Autoneg;
218 		else
219 			hw->autoneg_advertised = advertising |
220 						 ADVERTISED_TP |
221 						 ADVERTISED_Autoneg;
222 	} else {
223 		u32 speed = cmd->base.speed;
224 		/* calling this overrides forced MDI setting */
225 		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
226 			clear_bit(__E1000_RESETTING, &adapter->flags);
227 			return -EINVAL;
228 		}
229 	}
230 
231 	/* MDI-X => 2; MDI => 1; Auto => 3 */
232 	if (cmd->base.eth_tp_mdix_ctrl) {
233 		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
234 			hw->mdix = AUTO_ALL_MODES;
235 		else
236 			hw->mdix = cmd->base.eth_tp_mdix_ctrl;
237 	}
238 
239 	/* reset the link */
240 
241 	if (netif_running(adapter->netdev)) {
242 		e1000_down(adapter);
243 		e1000_up(adapter);
244 	} else {
245 		e1000_reset(adapter);
246 	}
247 	clear_bit(__E1000_RESETTING, &adapter->flags);
248 	return 0;
249 }
250 
251 static u32 e1000_get_link(struct net_device *netdev)
252 {
253 	struct e1000_adapter *adapter = netdev_priv(netdev);
254 
255 	/* If the link is not reported up to netdev, interrupts are disabled,
256 	 * and so the physical link state may have changed since we last
257 	 * looked. Set get_link_status to make sure that the true link
258 	 * state is interrogated, rather than pulling a cached and possibly
259 	 * stale link state from the driver.
260 	 */
261 	if (!netif_carrier_ok(netdev))
262 		adapter->hw.get_link_status = 1;
263 
264 	return e1000_has_link(adapter);
265 }
266 
267 static void e1000_get_pauseparam(struct net_device *netdev,
268 				 struct ethtool_pauseparam *pause)
269 {
270 	struct e1000_adapter *adapter = netdev_priv(netdev);
271 	struct e1000_hw *hw = &adapter->hw;
272 
273 	pause->autoneg =
274 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
275 
276 	if (hw->fc == E1000_FC_RX_PAUSE) {
277 		pause->rx_pause = 1;
278 	} else if (hw->fc == E1000_FC_TX_PAUSE) {
279 		pause->tx_pause = 1;
280 	} else if (hw->fc == E1000_FC_FULL) {
281 		pause->rx_pause = 1;
282 		pause->tx_pause = 1;
283 	}
284 }
285 
286 static int e1000_set_pauseparam(struct net_device *netdev,
287 				struct ethtool_pauseparam *pause)
288 {
289 	struct e1000_adapter *adapter = netdev_priv(netdev);
290 	struct e1000_hw *hw = &adapter->hw;
291 	int retval = 0;
292 
293 	adapter->fc_autoneg = pause->autoneg;
294 
295 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
296 		msleep(1);
297 
298 	if (pause->rx_pause && pause->tx_pause)
299 		hw->fc = E1000_FC_FULL;
300 	else if (pause->rx_pause && !pause->tx_pause)
301 		hw->fc = E1000_FC_RX_PAUSE;
302 	else if (!pause->rx_pause && pause->tx_pause)
303 		hw->fc = E1000_FC_TX_PAUSE;
304 	else if (!pause->rx_pause && !pause->tx_pause)
305 		hw->fc = E1000_FC_NONE;
306 
307 	hw->original_fc = hw->fc;
308 
309 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
310 		if (netif_running(adapter->netdev)) {
311 			e1000_down(adapter);
312 			e1000_up(adapter);
313 		} else {
314 			e1000_reset(adapter);
315 		}
316 	} else
317 		retval = ((hw->media_type == e1000_media_type_fiber) ?
318 			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
319 
320 	clear_bit(__E1000_RESETTING, &adapter->flags);
321 	return retval;
322 }
323 
324 static u32 e1000_get_msglevel(struct net_device *netdev)
325 {
326 	struct e1000_adapter *adapter = netdev_priv(netdev);
327 
328 	return adapter->msg_enable;
329 }
330 
331 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
332 {
333 	struct e1000_adapter *adapter = netdev_priv(netdev);
334 
335 	adapter->msg_enable = data;
336 }
337 
338 static int e1000_get_regs_len(struct net_device *netdev)
339 {
340 #define E1000_REGS_LEN 32
341 	return E1000_REGS_LEN * sizeof(u32);
342 }
343 
344 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
345 			   void *p)
346 {
347 	struct e1000_adapter *adapter = netdev_priv(netdev);
348 	struct e1000_hw *hw = &adapter->hw;
349 	u32 *regs_buff = p;
350 	u16 phy_data;
351 
352 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
353 
354 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
355 
356 	regs_buff[0]  = er32(CTRL);
357 	regs_buff[1]  = er32(STATUS);
358 
359 	regs_buff[2]  = er32(RCTL);
360 	regs_buff[3]  = er32(RDLEN);
361 	regs_buff[4]  = er32(RDH);
362 	regs_buff[5]  = er32(RDT);
363 	regs_buff[6]  = er32(RDTR);
364 
365 	regs_buff[7]  = er32(TCTL);
366 	regs_buff[8]  = er32(TDLEN);
367 	regs_buff[9]  = er32(TDH);
368 	regs_buff[10] = er32(TDT);
369 	regs_buff[11] = er32(TIDV);
370 
371 	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
372 	if (hw->phy_type == e1000_phy_igp) {
373 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
374 				    IGP01E1000_PHY_AGC_A);
375 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
376 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
377 		regs_buff[13] = (u32)phy_data; /* cable length */
378 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
379 				    IGP01E1000_PHY_AGC_B);
380 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
381 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
382 		regs_buff[14] = (u32)phy_data; /* cable length */
383 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
384 				    IGP01E1000_PHY_AGC_C);
385 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
386 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
387 		regs_buff[15] = (u32)phy_data; /* cable length */
388 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
389 				    IGP01E1000_PHY_AGC_D);
390 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
391 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
392 		regs_buff[16] = (u32)phy_data; /* cable length */
393 		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
394 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
395 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
396 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
397 		regs_buff[18] = (u32)phy_data; /* cable polarity */
398 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
399 				    IGP01E1000_PHY_PCS_INIT_REG);
400 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
401 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
402 		regs_buff[19] = (u32)phy_data; /* cable polarity */
403 		regs_buff[20] = 0; /* polarity correction enabled (always) */
404 		regs_buff[22] = 0; /* phy receive errors (unavailable) */
405 		regs_buff[23] = regs_buff[18]; /* mdix mode */
406 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
407 	} else {
408 		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
409 		regs_buff[13] = (u32)phy_data; /* cable length */
410 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
411 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
412 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
413 		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
414 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
415 		regs_buff[18] = regs_buff[13]; /* cable polarity */
416 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
417 		regs_buff[20] = regs_buff[17]; /* polarity correction */
418 		/* phy receive errors */
419 		regs_buff[22] = adapter->phy_stats.receive_errors;
420 		regs_buff[23] = regs_buff[13]; /* mdix mode */
421 	}
422 	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
423 	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
424 	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
425 	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
426 	if (hw->mac_type >= e1000_82540 &&
427 	    hw->media_type == e1000_media_type_copper) {
428 		regs_buff[26] = er32(MANC);
429 	}
430 }
431 
432 static int e1000_get_eeprom_len(struct net_device *netdev)
433 {
434 	struct e1000_adapter *adapter = netdev_priv(netdev);
435 	struct e1000_hw *hw = &adapter->hw;
436 
437 	return hw->eeprom.word_size * 2;
438 }
439 
440 static int e1000_get_eeprom(struct net_device *netdev,
441 			    struct ethtool_eeprom *eeprom, u8 *bytes)
442 {
443 	struct e1000_adapter *adapter = netdev_priv(netdev);
444 	struct e1000_hw *hw = &adapter->hw;
445 	u16 *eeprom_buff;
446 	int first_word, last_word;
447 	int ret_val = 0;
448 	u16 i;
449 
450 	if (eeprom->len == 0)
451 		return -EINVAL;
452 
453 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
454 
455 	first_word = eeprom->offset >> 1;
456 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
457 
458 	eeprom_buff = kmalloc(sizeof(u16) *
459 			(last_word - first_word + 1), GFP_KERNEL);
460 	if (!eeprom_buff)
461 		return -ENOMEM;
462 
463 	if (hw->eeprom.type == e1000_eeprom_spi)
464 		ret_val = e1000_read_eeprom(hw, first_word,
465 					    last_word - first_word + 1,
466 					    eeprom_buff);
467 	else {
468 		for (i = 0; i < last_word - first_word + 1; i++) {
469 			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
470 						    &eeprom_buff[i]);
471 			if (ret_val)
472 				break;
473 		}
474 	}
475 
476 	/* Device's eeprom is always little-endian, word addressable */
477 	for (i = 0; i < last_word - first_word + 1; i++)
478 		le16_to_cpus(&eeprom_buff[i]);
479 
480 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
481 	       eeprom->len);
482 	kfree(eeprom_buff);
483 
484 	return ret_val;
485 }
486 
487 static int e1000_set_eeprom(struct net_device *netdev,
488 			    struct ethtool_eeprom *eeprom, u8 *bytes)
489 {
490 	struct e1000_adapter *adapter = netdev_priv(netdev);
491 	struct e1000_hw *hw = &adapter->hw;
492 	u16 *eeprom_buff;
493 	void *ptr;
494 	int max_len, first_word, last_word, ret_val = 0;
495 	u16 i;
496 
497 	if (eeprom->len == 0)
498 		return -EOPNOTSUPP;
499 
500 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
501 		return -EFAULT;
502 
503 	max_len = hw->eeprom.word_size * 2;
504 
505 	first_word = eeprom->offset >> 1;
506 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
507 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
508 	if (!eeprom_buff)
509 		return -ENOMEM;
510 
511 	ptr = (void *)eeprom_buff;
512 
513 	if (eeprom->offset & 1) {
514 		/* need read/modify/write of first changed EEPROM word
515 		 * only the second byte of the word is being modified
516 		 */
517 		ret_val = e1000_read_eeprom(hw, first_word, 1,
518 					    &eeprom_buff[0]);
519 		ptr++;
520 	}
521 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
522 		/* need read/modify/write of last changed EEPROM word
523 		 * only the first byte of the word is being modified
524 		 */
525 		ret_val = e1000_read_eeprom(hw, last_word, 1,
526 					    &eeprom_buff[last_word - first_word]);
527 	}
528 
529 	/* Device's eeprom is always little-endian, word addressable */
530 	for (i = 0; i < last_word - first_word + 1; i++)
531 		le16_to_cpus(&eeprom_buff[i]);
532 
533 	memcpy(ptr, bytes, eeprom->len);
534 
535 	for (i = 0; i < last_word - first_word + 1; i++)
536 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
537 
538 	ret_val = e1000_write_eeprom(hw, first_word,
539 				     last_word - first_word + 1, eeprom_buff);
540 
541 	/* Update the checksum over the first part of the EEPROM if needed */
542 	if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
543 		e1000_update_eeprom_checksum(hw);
544 
545 	kfree(eeprom_buff);
546 	return ret_val;
547 }
548 
549 static void e1000_get_drvinfo(struct net_device *netdev,
550 			      struct ethtool_drvinfo *drvinfo)
551 {
552 	struct e1000_adapter *adapter = netdev_priv(netdev);
553 
554 	strlcpy(drvinfo->driver,  e1000_driver_name,
555 		sizeof(drvinfo->driver));
556 	strlcpy(drvinfo->version, e1000_driver_version,
557 		sizeof(drvinfo->version));
558 
559 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
560 		sizeof(drvinfo->bus_info));
561 }
562 
563 static void e1000_get_ringparam(struct net_device *netdev,
564 				struct ethtool_ringparam *ring)
565 {
566 	struct e1000_adapter *adapter = netdev_priv(netdev);
567 	struct e1000_hw *hw = &adapter->hw;
568 	e1000_mac_type mac_type = hw->mac_type;
569 	struct e1000_tx_ring *txdr = adapter->tx_ring;
570 	struct e1000_rx_ring *rxdr = adapter->rx_ring;
571 
572 	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
573 		E1000_MAX_82544_RXD;
574 	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
575 		E1000_MAX_82544_TXD;
576 	ring->rx_pending = rxdr->count;
577 	ring->tx_pending = txdr->count;
578 }
579 
580 static int e1000_set_ringparam(struct net_device *netdev,
581 			       struct ethtool_ringparam *ring)
582 {
583 	struct e1000_adapter *adapter = netdev_priv(netdev);
584 	struct e1000_hw *hw = &adapter->hw;
585 	e1000_mac_type mac_type = hw->mac_type;
586 	struct e1000_tx_ring *txdr, *tx_old;
587 	struct e1000_rx_ring *rxdr, *rx_old;
588 	int i, err;
589 
590 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
591 		return -EINVAL;
592 
593 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
594 		msleep(1);
595 
596 	if (netif_running(adapter->netdev))
597 		e1000_down(adapter);
598 
599 	tx_old = adapter->tx_ring;
600 	rx_old = adapter->rx_ring;
601 
602 	err = -ENOMEM;
603 	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
604 		       GFP_KERNEL);
605 	if (!txdr)
606 		goto err_alloc_tx;
607 
608 	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
609 		       GFP_KERNEL);
610 	if (!rxdr)
611 		goto err_alloc_rx;
612 
613 	adapter->tx_ring = txdr;
614 	adapter->rx_ring = rxdr;
615 
616 	rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
617 	rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
618 			  E1000_MAX_RXD : E1000_MAX_82544_RXD));
619 	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
620 	txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
621 	txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
622 			  E1000_MAX_TXD : E1000_MAX_82544_TXD));
623 	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
624 
625 	for (i = 0; i < adapter->num_tx_queues; i++)
626 		txdr[i].count = txdr->count;
627 	for (i = 0; i < adapter->num_rx_queues; i++)
628 		rxdr[i].count = rxdr->count;
629 
630 	if (netif_running(adapter->netdev)) {
631 		/* Try to get new resources before deleting old */
632 		err = e1000_setup_all_rx_resources(adapter);
633 		if (err)
634 			goto err_setup_rx;
635 		err = e1000_setup_all_tx_resources(adapter);
636 		if (err)
637 			goto err_setup_tx;
638 
639 		/* save the new, restore the old in order to free it,
640 		 * then restore the new back again
641 		 */
642 
643 		adapter->rx_ring = rx_old;
644 		adapter->tx_ring = tx_old;
645 		e1000_free_all_rx_resources(adapter);
646 		e1000_free_all_tx_resources(adapter);
647 		kfree(tx_old);
648 		kfree(rx_old);
649 		adapter->rx_ring = rxdr;
650 		adapter->tx_ring = txdr;
651 		err = e1000_up(adapter);
652 		if (err)
653 			goto err_setup;
654 	}
655 
656 	clear_bit(__E1000_RESETTING, &adapter->flags);
657 	return 0;
658 err_setup_tx:
659 	e1000_free_all_rx_resources(adapter);
660 err_setup_rx:
661 	adapter->rx_ring = rx_old;
662 	adapter->tx_ring = tx_old;
663 	kfree(rxdr);
664 err_alloc_rx:
665 	kfree(txdr);
666 err_alloc_tx:
667 	e1000_up(adapter);
668 err_setup:
669 	clear_bit(__E1000_RESETTING, &adapter->flags);
670 	return err;
671 }
672 
673 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
674 			     u32 mask, u32 write)
675 {
676 	struct e1000_hw *hw = &adapter->hw;
677 	static const u32 test[] = {
678 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
679 	};
680 	u8 __iomem *address = hw->hw_addr + reg;
681 	u32 read;
682 	int i;
683 
684 	for (i = 0; i < ARRAY_SIZE(test); i++) {
685 		writel(write & test[i], address);
686 		read = readl(address);
687 		if (read != (write & test[i] & mask)) {
688 			e_err(drv, "pattern test reg %04X failed: "
689 			      "got 0x%08X expected 0x%08X\n",
690 			      reg, read, (write & test[i] & mask));
691 			*data = reg;
692 			return true;
693 		}
694 	}
695 	return false;
696 }
697 
698 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
699 			      u32 mask, u32 write)
700 {
701 	struct e1000_hw *hw = &adapter->hw;
702 	u8 __iomem *address = hw->hw_addr + reg;
703 	u32 read;
704 
705 	writel(write & mask, address);
706 	read = readl(address);
707 	if ((read & mask) != (write & mask)) {
708 		e_err(drv, "set/check reg %04X test failed: "
709 		      "got 0x%08X expected 0x%08X\n",
710 		      reg, (read & mask), (write & mask));
711 		*data = reg;
712 		return true;
713 	}
714 	return false;
715 }
716 
717 #define REG_PATTERN_TEST(reg, mask, write)			     \
718 	do {							     \
719 		if (reg_pattern_test(adapter, data,		     \
720 			     (hw->mac_type >= e1000_82543)   \
721 			     ? E1000_##reg : E1000_82542_##reg,	     \
722 			     mask, write))			     \
723 			return 1;				     \
724 	} while (0)
725 
726 #define REG_SET_AND_CHECK(reg, mask, write)			     \
727 	do {							     \
728 		if (reg_set_and_check(adapter, data,		     \
729 			      (hw->mac_type >= e1000_82543)  \
730 			      ? E1000_##reg : E1000_82542_##reg,     \
731 			      mask, write))			     \
732 			return 1;				     \
733 	} while (0)
734 
735 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
736 {
737 	u32 value, before, after;
738 	u32 i, toggle;
739 	struct e1000_hw *hw = &adapter->hw;
740 
741 	/* The status register is Read Only, so a write should fail.
742 	 * Some bits that get toggled are ignored.
743 	 */
744 
745 	/* there are several bits on newer hardware that are r/w */
746 	toggle = 0xFFFFF833;
747 
748 	before = er32(STATUS);
749 	value = (er32(STATUS) & toggle);
750 	ew32(STATUS, toggle);
751 	after = er32(STATUS) & toggle;
752 	if (value != after) {
753 		e_err(drv, "failed STATUS register test got: "
754 		      "0x%08X expected: 0x%08X\n", after, value);
755 		*data = 1;
756 		return 1;
757 	}
758 	/* restore previous status */
759 	ew32(STATUS, before);
760 
761 	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
762 	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
763 	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
764 	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
765 
766 	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
767 	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
768 	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
769 	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
770 	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
771 	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
772 	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
773 	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
774 	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
775 	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
776 
777 	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
778 
779 	before = 0x06DFB3FE;
780 	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
781 	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
782 
783 	if (hw->mac_type >= e1000_82543) {
784 		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
785 		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
786 		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
787 		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
788 		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
789 		value = E1000_RAR_ENTRIES;
790 		for (i = 0; i < value; i++) {
791 			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
792 					 0x8003FFFF, 0xFFFFFFFF);
793 		}
794 	} else {
795 		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
796 		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
797 		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
798 		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
799 	}
800 
801 	value = E1000_MC_TBL_SIZE;
802 	for (i = 0; i < value; i++)
803 		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
804 
805 	*data = 0;
806 	return 0;
807 }
808 
809 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
810 {
811 	struct e1000_hw *hw = &adapter->hw;
812 	u16 temp;
813 	u16 checksum = 0;
814 	u16 i;
815 
816 	*data = 0;
817 	/* Read and add up the contents of the EEPROM */
818 	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
819 		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
820 			*data = 1;
821 			break;
822 		}
823 		checksum += temp;
824 	}
825 
826 	/* If Checksum is not Correct return error else test passed */
827 	if ((checksum != (u16)EEPROM_SUM) && !(*data))
828 		*data = 2;
829 
830 	return *data;
831 }
832 
833 static irqreturn_t e1000_test_intr(int irq, void *data)
834 {
835 	struct net_device *netdev = (struct net_device *)data;
836 	struct e1000_adapter *adapter = netdev_priv(netdev);
837 	struct e1000_hw *hw = &adapter->hw;
838 
839 	adapter->test_icr |= er32(ICR);
840 
841 	return IRQ_HANDLED;
842 }
843 
844 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
845 {
846 	struct net_device *netdev = adapter->netdev;
847 	u32 mask, i = 0;
848 	bool shared_int = true;
849 	u32 irq = adapter->pdev->irq;
850 	struct e1000_hw *hw = &adapter->hw;
851 
852 	*data = 0;
853 
854 	/* NOTE: we don't test MSI interrupts here, yet
855 	 * Hook up test interrupt handler just for this test
856 	 */
857 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
858 			 netdev))
859 		shared_int = false;
860 	else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
861 			     netdev->name, netdev)) {
862 		*data = 1;
863 		return -1;
864 	}
865 	e_info(hw, "testing %s interrupt\n", (shared_int ?
866 	       "shared" : "unshared"));
867 
868 	/* Disable all the interrupts */
869 	ew32(IMC, 0xFFFFFFFF);
870 	E1000_WRITE_FLUSH();
871 	msleep(10);
872 
873 	/* Test each interrupt */
874 	for (; i < 10; i++) {
875 		/* Interrupt to test */
876 		mask = 1 << i;
877 
878 		if (!shared_int) {
879 			/* Disable the interrupt to be reported in
880 			 * the cause register and then force the same
881 			 * interrupt and see if one gets posted.  If
882 			 * an interrupt was posted to the bus, the
883 			 * test failed.
884 			 */
885 			adapter->test_icr = 0;
886 			ew32(IMC, mask);
887 			ew32(ICS, mask);
888 			E1000_WRITE_FLUSH();
889 			msleep(10);
890 
891 			if (adapter->test_icr & mask) {
892 				*data = 3;
893 				break;
894 			}
895 		}
896 
897 		/* Enable the interrupt to be reported in
898 		 * the cause register and then force the same
899 		 * interrupt and see if one gets posted.  If
900 		 * an interrupt was not posted to the bus, the
901 		 * test failed.
902 		 */
903 		adapter->test_icr = 0;
904 		ew32(IMS, mask);
905 		ew32(ICS, mask);
906 		E1000_WRITE_FLUSH();
907 		msleep(10);
908 
909 		if (!(adapter->test_icr & mask)) {
910 			*data = 4;
911 			break;
912 		}
913 
914 		if (!shared_int) {
915 			/* Disable the other interrupts to be reported in
916 			 * the cause register and then force the other
917 			 * interrupts and see if any get posted.  If
918 			 * an interrupt was posted to the bus, the
919 			 * test failed.
920 			 */
921 			adapter->test_icr = 0;
922 			ew32(IMC, ~mask & 0x00007FFF);
923 			ew32(ICS, ~mask & 0x00007FFF);
924 			E1000_WRITE_FLUSH();
925 			msleep(10);
926 
927 			if (adapter->test_icr) {
928 				*data = 5;
929 				break;
930 			}
931 		}
932 	}
933 
934 	/* Disable all the interrupts */
935 	ew32(IMC, 0xFFFFFFFF);
936 	E1000_WRITE_FLUSH();
937 	msleep(10);
938 
939 	/* Unhook test interrupt handler */
940 	free_irq(irq, netdev);
941 
942 	return *data;
943 }
944 
945 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
946 {
947 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
948 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
949 	struct pci_dev *pdev = adapter->pdev;
950 	int i;
951 
952 	if (txdr->desc && txdr->buffer_info) {
953 		for (i = 0; i < txdr->count; i++) {
954 			if (txdr->buffer_info[i].dma)
955 				dma_unmap_single(&pdev->dev,
956 						 txdr->buffer_info[i].dma,
957 						 txdr->buffer_info[i].length,
958 						 DMA_TO_DEVICE);
959 			if (txdr->buffer_info[i].skb)
960 				dev_kfree_skb(txdr->buffer_info[i].skb);
961 		}
962 	}
963 
964 	if (rxdr->desc && rxdr->buffer_info) {
965 		for (i = 0; i < rxdr->count; i++) {
966 			if (rxdr->buffer_info[i].dma)
967 				dma_unmap_single(&pdev->dev,
968 						 rxdr->buffer_info[i].dma,
969 						 E1000_RXBUFFER_2048,
970 						 DMA_FROM_DEVICE);
971 			kfree(rxdr->buffer_info[i].rxbuf.data);
972 		}
973 	}
974 
975 	if (txdr->desc) {
976 		dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
977 				  txdr->dma);
978 		txdr->desc = NULL;
979 	}
980 	if (rxdr->desc) {
981 		dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
982 				  rxdr->dma);
983 		rxdr->desc = NULL;
984 	}
985 
986 	kfree(txdr->buffer_info);
987 	txdr->buffer_info = NULL;
988 	kfree(rxdr->buffer_info);
989 	rxdr->buffer_info = NULL;
990 }
991 
992 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
993 {
994 	struct e1000_hw *hw = &adapter->hw;
995 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
996 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
997 	struct pci_dev *pdev = adapter->pdev;
998 	u32 rctl;
999 	int i, ret_val;
1000 
1001 	/* Setup Tx descriptor ring and Tx buffers */
1002 
1003 	if (!txdr->count)
1004 		txdr->count = E1000_DEFAULT_TXD;
1005 
1006 	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
1007 				    GFP_KERNEL);
1008 	if (!txdr->buffer_info) {
1009 		ret_val = 1;
1010 		goto err_nomem;
1011 	}
1012 
1013 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1014 	txdr->size = ALIGN(txdr->size, 4096);
1015 	txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1016 					 GFP_KERNEL);
1017 	if (!txdr->desc) {
1018 		ret_val = 2;
1019 		goto err_nomem;
1020 	}
1021 	txdr->next_to_use = txdr->next_to_clean = 0;
1022 
1023 	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1024 	ew32(TDBAH, ((u64)txdr->dma >> 32));
1025 	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1026 	ew32(TDH, 0);
1027 	ew32(TDT, 0);
1028 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1029 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1030 	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1031 
1032 	for (i = 0; i < txdr->count; i++) {
1033 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1034 		struct sk_buff *skb;
1035 		unsigned int size = 1024;
1036 
1037 		skb = alloc_skb(size, GFP_KERNEL);
1038 		if (!skb) {
1039 			ret_val = 3;
1040 			goto err_nomem;
1041 		}
1042 		skb_put(skb, size);
1043 		txdr->buffer_info[i].skb = skb;
1044 		txdr->buffer_info[i].length = skb->len;
1045 		txdr->buffer_info[i].dma =
1046 			dma_map_single(&pdev->dev, skb->data, skb->len,
1047 				       DMA_TO_DEVICE);
1048 		if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1049 			ret_val = 4;
1050 			goto err_nomem;
1051 		}
1052 		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1053 		tx_desc->lower.data = cpu_to_le32(skb->len);
1054 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1055 						   E1000_TXD_CMD_IFCS |
1056 						   E1000_TXD_CMD_RPS);
1057 		tx_desc->upper.data = 0;
1058 	}
1059 
1060 	/* Setup Rx descriptor ring and Rx buffers */
1061 
1062 	if (!rxdr->count)
1063 		rxdr->count = E1000_DEFAULT_RXD;
1064 
1065 	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1066 				    GFP_KERNEL);
1067 	if (!rxdr->buffer_info) {
1068 		ret_val = 5;
1069 		goto err_nomem;
1070 	}
1071 
1072 	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1073 	rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1074 					 GFP_KERNEL);
1075 	if (!rxdr->desc) {
1076 		ret_val = 6;
1077 		goto err_nomem;
1078 	}
1079 	rxdr->next_to_use = rxdr->next_to_clean = 0;
1080 
1081 	rctl = er32(RCTL);
1082 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1083 	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1084 	ew32(RDBAH, ((u64)rxdr->dma >> 32));
1085 	ew32(RDLEN, rxdr->size);
1086 	ew32(RDH, 0);
1087 	ew32(RDT, 0);
1088 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1089 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1090 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1091 	ew32(RCTL, rctl);
1092 
1093 	for (i = 0; i < rxdr->count; i++) {
1094 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1095 		u8 *buf;
1096 
1097 		buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1098 			      GFP_KERNEL);
1099 		if (!buf) {
1100 			ret_val = 7;
1101 			goto err_nomem;
1102 		}
1103 		rxdr->buffer_info[i].rxbuf.data = buf;
1104 
1105 		rxdr->buffer_info[i].dma =
1106 			dma_map_single(&pdev->dev,
1107 				       buf + NET_SKB_PAD + NET_IP_ALIGN,
1108 				       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1109 		if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1110 			ret_val = 8;
1111 			goto err_nomem;
1112 		}
1113 		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1114 	}
1115 
1116 	return 0;
1117 
1118 err_nomem:
1119 	e1000_free_desc_rings(adapter);
1120 	return ret_val;
1121 }
1122 
1123 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1124 {
1125 	struct e1000_hw *hw = &adapter->hw;
1126 
1127 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1128 	e1000_write_phy_reg(hw, 29, 0x001F);
1129 	e1000_write_phy_reg(hw, 30, 0x8FFC);
1130 	e1000_write_phy_reg(hw, 29, 0x001A);
1131 	e1000_write_phy_reg(hw, 30, 0x8FF0);
1132 }
1133 
1134 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1135 {
1136 	struct e1000_hw *hw = &adapter->hw;
1137 	u16 phy_reg;
1138 
1139 	/* Because we reset the PHY above, we need to re-force TX_CLK in the
1140 	 * Extended PHY Specific Control Register to 25MHz clock.  This
1141 	 * value defaults back to a 2.5MHz clock when the PHY is reset.
1142 	 */
1143 	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1144 	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1145 	e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1146 
1147 	/* In addition, because of the s/w reset above, we need to enable
1148 	 * CRS on TX.  This must be set for both full and half duplex
1149 	 * operation.
1150 	 */
1151 	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1152 	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1153 	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1154 }
1155 
1156 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1157 {
1158 	struct e1000_hw *hw = &adapter->hw;
1159 	u32 ctrl_reg;
1160 	u16 phy_reg;
1161 
1162 	/* Setup the Device Control Register for PHY loopback test. */
1163 
1164 	ctrl_reg = er32(CTRL);
1165 	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
1166 		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
1167 		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
1168 		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
1169 		     E1000_CTRL_FD);		/* Force Duplex to FULL */
1170 
1171 	ew32(CTRL, ctrl_reg);
1172 
1173 	/* Read the PHY Specific Control Register (0x10) */
1174 	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1175 
1176 	/* Clear Auto-Crossover bits in PHY Specific Control Register
1177 	 * (bits 6:5).
1178 	 */
1179 	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1180 	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1181 
1182 	/* Perform software reset on the PHY */
1183 	e1000_phy_reset(hw);
1184 
1185 	/* Have to setup TX_CLK and TX_CRS after software reset */
1186 	e1000_phy_reset_clk_and_crs(adapter);
1187 
1188 	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1189 
1190 	/* Wait for reset to complete. */
1191 	udelay(500);
1192 
1193 	/* Have to setup TX_CLK and TX_CRS after software reset */
1194 	e1000_phy_reset_clk_and_crs(adapter);
1195 
1196 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1197 	e1000_phy_disable_receiver(adapter);
1198 
1199 	/* Set the loopback bit in the PHY control register. */
1200 	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1201 	phy_reg |= MII_CR_LOOPBACK;
1202 	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1203 
1204 	/* Setup TX_CLK and TX_CRS one more time. */
1205 	e1000_phy_reset_clk_and_crs(adapter);
1206 
1207 	/* Check Phy Configuration */
1208 	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1209 	if (phy_reg != 0x4100)
1210 		return 9;
1211 
1212 	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1213 	if (phy_reg != 0x0070)
1214 		return 10;
1215 
1216 	e1000_read_phy_reg(hw, 29, &phy_reg);
1217 	if (phy_reg != 0x001A)
1218 		return 11;
1219 
1220 	return 0;
1221 }
1222 
1223 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1224 {
1225 	struct e1000_hw *hw = &adapter->hw;
1226 	u32 ctrl_reg = 0;
1227 	u32 stat_reg = 0;
1228 
1229 	hw->autoneg = false;
1230 
1231 	if (hw->phy_type == e1000_phy_m88) {
1232 		/* Auto-MDI/MDIX Off */
1233 		e1000_write_phy_reg(hw,
1234 				    M88E1000_PHY_SPEC_CTRL, 0x0808);
1235 		/* reset to update Auto-MDI/MDIX */
1236 		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1237 		/* autoneg off */
1238 		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1239 	}
1240 
1241 	ctrl_reg = er32(CTRL);
1242 
1243 	/* force 1000, set loopback */
1244 	e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1245 
1246 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1247 	ctrl_reg = er32(CTRL);
1248 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1249 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1250 			E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1251 			E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1252 			E1000_CTRL_FD); /* Force Duplex to FULL */
1253 
1254 	if (hw->media_type == e1000_media_type_copper &&
1255 	    hw->phy_type == e1000_phy_m88)
1256 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1257 	else {
1258 		/* Set the ILOS bit on the fiber Nic is half
1259 		 * duplex link is detected.
1260 		 */
1261 		stat_reg = er32(STATUS);
1262 		if ((stat_reg & E1000_STATUS_FD) == 0)
1263 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1264 	}
1265 
1266 	ew32(CTRL, ctrl_reg);
1267 
1268 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1269 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1270 	 */
1271 	if (hw->phy_type == e1000_phy_m88)
1272 		e1000_phy_disable_receiver(adapter);
1273 
1274 	udelay(500);
1275 
1276 	return 0;
1277 }
1278 
1279 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1280 {
1281 	struct e1000_hw *hw = &adapter->hw;
1282 	u16 phy_reg = 0;
1283 	u16 count = 0;
1284 
1285 	switch (hw->mac_type) {
1286 	case e1000_82543:
1287 		if (hw->media_type == e1000_media_type_copper) {
1288 			/* Attempt to setup Loopback mode on Non-integrated PHY.
1289 			 * Some PHY registers get corrupted at random, so
1290 			 * attempt this 10 times.
1291 			 */
1292 			while (e1000_nonintegrated_phy_loopback(adapter) &&
1293 			       count++ < 10);
1294 			if (count < 11)
1295 				return 0;
1296 		}
1297 		break;
1298 
1299 	case e1000_82544:
1300 	case e1000_82540:
1301 	case e1000_82545:
1302 	case e1000_82545_rev_3:
1303 	case e1000_82546:
1304 	case e1000_82546_rev_3:
1305 	case e1000_82541:
1306 	case e1000_82541_rev_2:
1307 	case e1000_82547:
1308 	case e1000_82547_rev_2:
1309 		return e1000_integrated_phy_loopback(adapter);
1310 	default:
1311 		/* Default PHY loopback work is to read the MII
1312 		 * control register and assert bit 14 (loopback mode).
1313 		 */
1314 		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1315 		phy_reg |= MII_CR_LOOPBACK;
1316 		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1317 		return 0;
1318 	}
1319 
1320 	return 8;
1321 }
1322 
1323 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1324 {
1325 	struct e1000_hw *hw = &adapter->hw;
1326 	u32 rctl;
1327 
1328 	if (hw->media_type == e1000_media_type_fiber ||
1329 	    hw->media_type == e1000_media_type_internal_serdes) {
1330 		switch (hw->mac_type) {
1331 		case e1000_82545:
1332 		case e1000_82546:
1333 		case e1000_82545_rev_3:
1334 		case e1000_82546_rev_3:
1335 			return e1000_set_phy_loopback(adapter);
1336 		default:
1337 			rctl = er32(RCTL);
1338 			rctl |= E1000_RCTL_LBM_TCVR;
1339 			ew32(RCTL, rctl);
1340 			return 0;
1341 		}
1342 	} else if (hw->media_type == e1000_media_type_copper) {
1343 		return e1000_set_phy_loopback(adapter);
1344 	}
1345 
1346 	return 7;
1347 }
1348 
1349 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1350 {
1351 	struct e1000_hw *hw = &adapter->hw;
1352 	u32 rctl;
1353 	u16 phy_reg;
1354 
1355 	rctl = er32(RCTL);
1356 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1357 	ew32(RCTL, rctl);
1358 
1359 	switch (hw->mac_type) {
1360 	case e1000_82545:
1361 	case e1000_82546:
1362 	case e1000_82545_rev_3:
1363 	case e1000_82546_rev_3:
1364 	default:
1365 		hw->autoneg = true;
1366 		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1367 		if (phy_reg & MII_CR_LOOPBACK) {
1368 			phy_reg &= ~MII_CR_LOOPBACK;
1369 			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1370 			e1000_phy_reset(hw);
1371 		}
1372 		break;
1373 	}
1374 }
1375 
1376 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1377 				      unsigned int frame_size)
1378 {
1379 	memset(skb->data, 0xFF, frame_size);
1380 	frame_size &= ~1;
1381 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1382 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1383 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1384 }
1385 
1386 static int e1000_check_lbtest_frame(const unsigned char *data,
1387 				    unsigned int frame_size)
1388 {
1389 	frame_size &= ~1;
1390 	if (*(data + 3) == 0xFF) {
1391 		if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1392 		    (*(data + frame_size / 2 + 12) == 0xAF)) {
1393 			return 0;
1394 		}
1395 	}
1396 	return 13;
1397 }
1398 
1399 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1400 {
1401 	struct e1000_hw *hw = &adapter->hw;
1402 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1403 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1404 	struct pci_dev *pdev = adapter->pdev;
1405 	int i, j, k, l, lc, good_cnt, ret_val = 0;
1406 	unsigned long time;
1407 
1408 	ew32(RDT, rxdr->count - 1);
1409 
1410 	/* Calculate the loop count based on the largest descriptor ring
1411 	 * The idea is to wrap the largest ring a number of times using 64
1412 	 * send/receive pairs during each loop
1413 	 */
1414 
1415 	if (rxdr->count <= txdr->count)
1416 		lc = ((txdr->count / 64) * 2) + 1;
1417 	else
1418 		lc = ((rxdr->count / 64) * 2) + 1;
1419 
1420 	k = l = 0;
1421 	for (j = 0; j <= lc; j++) { /* loop count loop */
1422 		for (i = 0; i < 64; i++) { /* send the packets */
1423 			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1424 						  1024);
1425 			dma_sync_single_for_device(&pdev->dev,
1426 						   txdr->buffer_info[k].dma,
1427 						   txdr->buffer_info[k].length,
1428 						   DMA_TO_DEVICE);
1429 			if (unlikely(++k == txdr->count))
1430 				k = 0;
1431 		}
1432 		ew32(TDT, k);
1433 		E1000_WRITE_FLUSH();
1434 		msleep(200);
1435 		time = jiffies; /* set the start time for the receive */
1436 		good_cnt = 0;
1437 		do { /* receive the sent packets */
1438 			dma_sync_single_for_cpu(&pdev->dev,
1439 						rxdr->buffer_info[l].dma,
1440 						E1000_RXBUFFER_2048,
1441 						DMA_FROM_DEVICE);
1442 
1443 			ret_val = e1000_check_lbtest_frame(
1444 					rxdr->buffer_info[l].rxbuf.data +
1445 					NET_SKB_PAD + NET_IP_ALIGN,
1446 					1024);
1447 			if (!ret_val)
1448 				good_cnt++;
1449 			if (unlikely(++l == rxdr->count))
1450 				l = 0;
1451 			/* time + 20 msecs (200 msecs on 2.4) is more than
1452 			 * enough time to complete the receives, if it's
1453 			 * exceeded, break and error off
1454 			 */
1455 		} while (good_cnt < 64 && time_after(time + 20, jiffies));
1456 
1457 		if (good_cnt != 64) {
1458 			ret_val = 13; /* ret_val is the same as mis-compare */
1459 			break;
1460 		}
1461 		if (time_after_eq(jiffies, time + 2)) {
1462 			ret_val = 14; /* error code for time out error */
1463 			break;
1464 		}
1465 	} /* end loop count loop */
1466 	return ret_val;
1467 }
1468 
1469 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1470 {
1471 	*data = e1000_setup_desc_rings(adapter);
1472 	if (*data)
1473 		goto out;
1474 	*data = e1000_setup_loopback_test(adapter);
1475 	if (*data)
1476 		goto err_loopback;
1477 	*data = e1000_run_loopback_test(adapter);
1478 	e1000_loopback_cleanup(adapter);
1479 
1480 err_loopback:
1481 	e1000_free_desc_rings(adapter);
1482 out:
1483 	return *data;
1484 }
1485 
1486 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1487 {
1488 	struct e1000_hw *hw = &adapter->hw;
1489 	*data = 0;
1490 	if (hw->media_type == e1000_media_type_internal_serdes) {
1491 		int i = 0;
1492 
1493 		hw->serdes_has_link = false;
1494 
1495 		/* On some blade server designs, link establishment
1496 		 * could take as long as 2-3 minutes
1497 		 */
1498 		do {
1499 			e1000_check_for_link(hw);
1500 			if (hw->serdes_has_link)
1501 				return *data;
1502 			msleep(20);
1503 		} while (i++ < 3750);
1504 
1505 		*data = 1;
1506 	} else {
1507 		e1000_check_for_link(hw);
1508 		if (hw->autoneg)  /* if auto_neg is set wait for it */
1509 			msleep(4000);
1510 
1511 		if (!(er32(STATUS) & E1000_STATUS_LU))
1512 			*data = 1;
1513 	}
1514 	return *data;
1515 }
1516 
1517 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1518 {
1519 	switch (sset) {
1520 	case ETH_SS_TEST:
1521 		return E1000_TEST_LEN;
1522 	case ETH_SS_STATS:
1523 		return E1000_STATS_LEN;
1524 	default:
1525 		return -EOPNOTSUPP;
1526 	}
1527 }
1528 
1529 static void e1000_diag_test(struct net_device *netdev,
1530 			    struct ethtool_test *eth_test, u64 *data)
1531 {
1532 	struct e1000_adapter *adapter = netdev_priv(netdev);
1533 	struct e1000_hw *hw = &adapter->hw;
1534 	bool if_running = netif_running(netdev);
1535 
1536 	set_bit(__E1000_TESTING, &adapter->flags);
1537 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1538 		/* Offline tests */
1539 
1540 		/* save speed, duplex, autoneg settings */
1541 		u16 autoneg_advertised = hw->autoneg_advertised;
1542 		u8 forced_speed_duplex = hw->forced_speed_duplex;
1543 		u8 autoneg = hw->autoneg;
1544 
1545 		e_info(hw, "offline testing starting\n");
1546 
1547 		/* Link test performed before hardware reset so autoneg doesn't
1548 		 * interfere with test result
1549 		 */
1550 		if (e1000_link_test(adapter, &data[4]))
1551 			eth_test->flags |= ETH_TEST_FL_FAILED;
1552 
1553 		if (if_running)
1554 			/* indicate we're in test mode */
1555 			e1000_close(netdev);
1556 		else
1557 			e1000_reset(adapter);
1558 
1559 		if (e1000_reg_test(adapter, &data[0]))
1560 			eth_test->flags |= ETH_TEST_FL_FAILED;
1561 
1562 		e1000_reset(adapter);
1563 		if (e1000_eeprom_test(adapter, &data[1]))
1564 			eth_test->flags |= ETH_TEST_FL_FAILED;
1565 
1566 		e1000_reset(adapter);
1567 		if (e1000_intr_test(adapter, &data[2]))
1568 			eth_test->flags |= ETH_TEST_FL_FAILED;
1569 
1570 		e1000_reset(adapter);
1571 		/* make sure the phy is powered up */
1572 		e1000_power_up_phy(adapter);
1573 		if (e1000_loopback_test(adapter, &data[3]))
1574 			eth_test->flags |= ETH_TEST_FL_FAILED;
1575 
1576 		/* restore speed, duplex, autoneg settings */
1577 		hw->autoneg_advertised = autoneg_advertised;
1578 		hw->forced_speed_duplex = forced_speed_duplex;
1579 		hw->autoneg = autoneg;
1580 
1581 		e1000_reset(adapter);
1582 		clear_bit(__E1000_TESTING, &adapter->flags);
1583 		if (if_running)
1584 			e1000_open(netdev);
1585 	} else {
1586 		e_info(hw, "online testing starting\n");
1587 		/* Online tests */
1588 		if (e1000_link_test(adapter, &data[4]))
1589 			eth_test->flags |= ETH_TEST_FL_FAILED;
1590 
1591 		/* Online tests aren't run; pass by default */
1592 		data[0] = 0;
1593 		data[1] = 0;
1594 		data[2] = 0;
1595 		data[3] = 0;
1596 
1597 		clear_bit(__E1000_TESTING, &adapter->flags);
1598 	}
1599 	msleep_interruptible(4 * 1000);
1600 }
1601 
1602 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1603 			       struct ethtool_wolinfo *wol)
1604 {
1605 	struct e1000_hw *hw = &adapter->hw;
1606 	int retval = 1; /* fail by default */
1607 
1608 	switch (hw->device_id) {
1609 	case E1000_DEV_ID_82542:
1610 	case E1000_DEV_ID_82543GC_FIBER:
1611 	case E1000_DEV_ID_82543GC_COPPER:
1612 	case E1000_DEV_ID_82544EI_FIBER:
1613 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1614 	case E1000_DEV_ID_82545EM_FIBER:
1615 	case E1000_DEV_ID_82545EM_COPPER:
1616 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1617 	case E1000_DEV_ID_82546GB_PCIE:
1618 		/* these don't support WoL at all */
1619 		wol->supported = 0;
1620 		break;
1621 	case E1000_DEV_ID_82546EB_FIBER:
1622 	case E1000_DEV_ID_82546GB_FIBER:
1623 		/* Wake events not supported on port B */
1624 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1625 			wol->supported = 0;
1626 			break;
1627 		}
1628 		/* return success for non excluded adapter ports */
1629 		retval = 0;
1630 		break;
1631 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1632 		/* quad port adapters only support WoL on port A */
1633 		if (!adapter->quad_port_a) {
1634 			wol->supported = 0;
1635 			break;
1636 		}
1637 		/* return success for non excluded adapter ports */
1638 		retval = 0;
1639 		break;
1640 	default:
1641 		/* dual port cards only support WoL on port A from now on
1642 		 * unless it was enabled in the eeprom for port B
1643 		 * so exclude FUNC_1 ports from having WoL enabled
1644 		 */
1645 		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1646 		    !adapter->eeprom_wol) {
1647 			wol->supported = 0;
1648 			break;
1649 		}
1650 
1651 		retval = 0;
1652 	}
1653 
1654 	return retval;
1655 }
1656 
1657 static void e1000_get_wol(struct net_device *netdev,
1658 			  struct ethtool_wolinfo *wol)
1659 {
1660 	struct e1000_adapter *adapter = netdev_priv(netdev);
1661 	struct e1000_hw *hw = &adapter->hw;
1662 
1663 	wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1664 	wol->wolopts = 0;
1665 
1666 	/* this function will set ->supported = 0 and return 1 if wol is not
1667 	 * supported by this hardware
1668 	 */
1669 	if (e1000_wol_exclusion(adapter, wol) ||
1670 	    !device_can_wakeup(&adapter->pdev->dev))
1671 		return;
1672 
1673 	/* apply any specific unsupported masks here */
1674 	switch (hw->device_id) {
1675 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1676 		/* KSP3 does not support UCAST wake-ups */
1677 		wol->supported &= ~WAKE_UCAST;
1678 
1679 		if (adapter->wol & E1000_WUFC_EX)
1680 			e_err(drv, "Interface does not support directed "
1681 			      "(unicast) frame wake-up packets\n");
1682 		break;
1683 	default:
1684 		break;
1685 	}
1686 
1687 	if (adapter->wol & E1000_WUFC_EX)
1688 		wol->wolopts |= WAKE_UCAST;
1689 	if (adapter->wol & E1000_WUFC_MC)
1690 		wol->wolopts |= WAKE_MCAST;
1691 	if (adapter->wol & E1000_WUFC_BC)
1692 		wol->wolopts |= WAKE_BCAST;
1693 	if (adapter->wol & E1000_WUFC_MAG)
1694 		wol->wolopts |= WAKE_MAGIC;
1695 }
1696 
1697 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1698 {
1699 	struct e1000_adapter *adapter = netdev_priv(netdev);
1700 	struct e1000_hw *hw = &adapter->hw;
1701 
1702 	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1703 		return -EOPNOTSUPP;
1704 
1705 	if (e1000_wol_exclusion(adapter, wol) ||
1706 	    !device_can_wakeup(&adapter->pdev->dev))
1707 		return wol->wolopts ? -EOPNOTSUPP : 0;
1708 
1709 	switch (hw->device_id) {
1710 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1711 		if (wol->wolopts & WAKE_UCAST) {
1712 			e_err(drv, "Interface does not support directed "
1713 			      "(unicast) frame wake-up packets\n");
1714 			return -EOPNOTSUPP;
1715 		}
1716 		break;
1717 	default:
1718 		break;
1719 	}
1720 
1721 	/* these settings will always override what we currently have */
1722 	adapter->wol = 0;
1723 
1724 	if (wol->wolopts & WAKE_UCAST)
1725 		adapter->wol |= E1000_WUFC_EX;
1726 	if (wol->wolopts & WAKE_MCAST)
1727 		adapter->wol |= E1000_WUFC_MC;
1728 	if (wol->wolopts & WAKE_BCAST)
1729 		adapter->wol |= E1000_WUFC_BC;
1730 	if (wol->wolopts & WAKE_MAGIC)
1731 		adapter->wol |= E1000_WUFC_MAG;
1732 
1733 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1734 
1735 	return 0;
1736 }
1737 
1738 static int e1000_set_phys_id(struct net_device *netdev,
1739 			     enum ethtool_phys_id_state state)
1740 {
1741 	struct e1000_adapter *adapter = netdev_priv(netdev);
1742 	struct e1000_hw *hw = &adapter->hw;
1743 
1744 	switch (state) {
1745 	case ETHTOOL_ID_ACTIVE:
1746 		e1000_setup_led(hw);
1747 		return 2;
1748 
1749 	case ETHTOOL_ID_ON:
1750 		e1000_led_on(hw);
1751 		break;
1752 
1753 	case ETHTOOL_ID_OFF:
1754 		e1000_led_off(hw);
1755 		break;
1756 
1757 	case ETHTOOL_ID_INACTIVE:
1758 		e1000_cleanup_led(hw);
1759 	}
1760 
1761 	return 0;
1762 }
1763 
1764 static int e1000_get_coalesce(struct net_device *netdev,
1765 			      struct ethtool_coalesce *ec)
1766 {
1767 	struct e1000_adapter *adapter = netdev_priv(netdev);
1768 
1769 	if (adapter->hw.mac_type < e1000_82545)
1770 		return -EOPNOTSUPP;
1771 
1772 	if (adapter->itr_setting <= 4)
1773 		ec->rx_coalesce_usecs = adapter->itr_setting;
1774 	else
1775 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1776 
1777 	return 0;
1778 }
1779 
1780 static int e1000_set_coalesce(struct net_device *netdev,
1781 			      struct ethtool_coalesce *ec)
1782 {
1783 	struct e1000_adapter *adapter = netdev_priv(netdev);
1784 	struct e1000_hw *hw = &adapter->hw;
1785 
1786 	if (hw->mac_type < e1000_82545)
1787 		return -EOPNOTSUPP;
1788 
1789 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1790 	    ((ec->rx_coalesce_usecs > 4) &&
1791 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1792 	    (ec->rx_coalesce_usecs == 2))
1793 		return -EINVAL;
1794 
1795 	if (ec->rx_coalesce_usecs == 4) {
1796 		adapter->itr = adapter->itr_setting = 4;
1797 	} else if (ec->rx_coalesce_usecs <= 3) {
1798 		adapter->itr = 20000;
1799 		adapter->itr_setting = ec->rx_coalesce_usecs;
1800 	} else {
1801 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1802 		adapter->itr_setting = adapter->itr & ~3;
1803 	}
1804 
1805 	if (adapter->itr_setting != 0)
1806 		ew32(ITR, 1000000000 / (adapter->itr * 256));
1807 	else
1808 		ew32(ITR, 0);
1809 
1810 	return 0;
1811 }
1812 
1813 static int e1000_nway_reset(struct net_device *netdev)
1814 {
1815 	struct e1000_adapter *adapter = netdev_priv(netdev);
1816 
1817 	if (netif_running(netdev))
1818 		e1000_reinit_locked(adapter);
1819 	return 0;
1820 }
1821 
1822 static void e1000_get_ethtool_stats(struct net_device *netdev,
1823 				    struct ethtool_stats *stats, u64 *data)
1824 {
1825 	struct e1000_adapter *adapter = netdev_priv(netdev);
1826 	int i;
1827 	char *p = NULL;
1828 	const struct e1000_stats *stat = e1000_gstrings_stats;
1829 
1830 	e1000_update_stats(adapter);
1831 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1832 		switch (stat->type) {
1833 		case NETDEV_STATS:
1834 			p = (char *)netdev + stat->stat_offset;
1835 			break;
1836 		case E1000_STATS:
1837 			p = (char *)adapter + stat->stat_offset;
1838 			break;
1839 		default:
1840 			WARN_ONCE(1, "Invalid E1000 stat type: %u index %d\n",
1841 				  stat->type, i);
1842 			break;
1843 		}
1844 
1845 		if (stat->sizeof_stat == sizeof(u64))
1846 			data[i] = *(u64 *)p;
1847 		else
1848 			data[i] = *(u32 *)p;
1849 
1850 		stat++;
1851 	}
1852 /* BUG_ON(i != E1000_STATS_LEN); */
1853 }
1854 
1855 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1856 			      u8 *data)
1857 {
1858 	u8 *p = data;
1859 	int i;
1860 
1861 	switch (stringset) {
1862 	case ETH_SS_TEST:
1863 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1864 		break;
1865 	case ETH_SS_STATS:
1866 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1867 			memcpy(p, e1000_gstrings_stats[i].stat_string,
1868 			       ETH_GSTRING_LEN);
1869 			p += ETH_GSTRING_LEN;
1870 		}
1871 		/* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1872 		break;
1873 	}
1874 }
1875 
1876 static const struct ethtool_ops e1000_ethtool_ops = {
1877 	.get_drvinfo		= e1000_get_drvinfo,
1878 	.get_regs_len		= e1000_get_regs_len,
1879 	.get_regs		= e1000_get_regs,
1880 	.get_wol		= e1000_get_wol,
1881 	.set_wol		= e1000_set_wol,
1882 	.get_msglevel		= e1000_get_msglevel,
1883 	.set_msglevel		= e1000_set_msglevel,
1884 	.nway_reset		= e1000_nway_reset,
1885 	.get_link		= e1000_get_link,
1886 	.get_eeprom_len		= e1000_get_eeprom_len,
1887 	.get_eeprom		= e1000_get_eeprom,
1888 	.set_eeprom		= e1000_set_eeprom,
1889 	.get_ringparam		= e1000_get_ringparam,
1890 	.set_ringparam		= e1000_set_ringparam,
1891 	.get_pauseparam		= e1000_get_pauseparam,
1892 	.set_pauseparam		= e1000_set_pauseparam,
1893 	.self_test		= e1000_diag_test,
1894 	.get_strings		= e1000_get_strings,
1895 	.set_phys_id		= e1000_set_phys_id,
1896 	.get_ethtool_stats	= e1000_get_ethtool_stats,
1897 	.get_sset_count		= e1000_get_sset_count,
1898 	.get_coalesce		= e1000_get_coalesce,
1899 	.set_coalesce		= e1000_set_coalesce,
1900 	.get_ts_info		= ethtool_op_get_ts_info,
1901 	.get_link_ksettings	= e1000_get_link_ksettings,
1902 	.set_link_ksettings	= e1000_set_link_ksettings,
1903 };
1904 
1905 void e1000_set_ethtool_ops(struct net_device *netdev)
1906 {
1907 	netdev->ethtool_ops = &e1000_ethtool_ops;
1908 }
1909