1 /******************************************************************************* 2 * Intel PRO/1000 Linux driver 3 * Copyright(c) 1999 - 2006 Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * The full GNU General Public License is included in this distribution in 15 * the file called "COPYING". 16 * 17 * Contact Information: 18 * Linux NICS <linux.nics@intel.com> 19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 21 * 22 ******************************************************************************/ 23 24 /* ethtool support for e1000 */ 25 26 #include "e1000.h" 27 #include <linux/jiffies.h> 28 #include <linux/uaccess.h> 29 30 enum {NETDEV_STATS, E1000_STATS}; 31 32 struct e1000_stats { 33 char stat_string[ETH_GSTRING_LEN]; 34 int type; 35 int sizeof_stat; 36 int stat_offset; 37 }; 38 39 #define E1000_STAT(m) E1000_STATS, \ 40 sizeof(((struct e1000_adapter *)0)->m), \ 41 offsetof(struct e1000_adapter, m) 42 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \ 43 sizeof(((struct net_device *)0)->m), \ 44 offsetof(struct net_device, m) 45 46 static const struct e1000_stats e1000_gstrings_stats[] = { 47 { "rx_packets", E1000_STAT(stats.gprc) }, 48 { "tx_packets", E1000_STAT(stats.gptc) }, 49 { "rx_bytes", E1000_STAT(stats.gorcl) }, 50 { "tx_bytes", E1000_STAT(stats.gotcl) }, 51 { "rx_broadcast", E1000_STAT(stats.bprc) }, 52 { "tx_broadcast", E1000_STAT(stats.bptc) }, 53 { "rx_multicast", E1000_STAT(stats.mprc) }, 54 { "tx_multicast", E1000_STAT(stats.mptc) }, 55 { "rx_errors", E1000_STAT(stats.rxerrc) }, 56 { "tx_errors", E1000_STAT(stats.txerrc) }, 57 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) }, 58 { "multicast", E1000_STAT(stats.mprc) }, 59 { "collisions", E1000_STAT(stats.colc) }, 60 { "rx_length_errors", E1000_STAT(stats.rlerrc) }, 61 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) }, 62 { "rx_crc_errors", E1000_STAT(stats.crcerrs) }, 63 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) }, 64 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, 65 { "rx_missed_errors", E1000_STAT(stats.mpc) }, 66 { "tx_aborted_errors", E1000_STAT(stats.ecol) }, 67 { "tx_carrier_errors", E1000_STAT(stats.tncrs) }, 68 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) }, 69 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) }, 70 { "tx_window_errors", E1000_STAT(stats.latecol) }, 71 { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, 72 { "tx_deferred_ok", E1000_STAT(stats.dc) }, 73 { "tx_single_coll_ok", E1000_STAT(stats.scc) }, 74 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, 75 { "tx_timeout_count", E1000_STAT(tx_timeout_count) }, 76 { "tx_restart_queue", E1000_STAT(restart_queue) }, 77 { "rx_long_length_errors", E1000_STAT(stats.roc) }, 78 { "rx_short_length_errors", E1000_STAT(stats.ruc) }, 79 { "rx_align_errors", E1000_STAT(stats.algnerrc) }, 80 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, 81 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, 82 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, 83 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, 84 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, 85 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, 86 { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, 87 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, 88 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }, 89 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) }, 90 { "tx_smbus", E1000_STAT(stats.mgptc) }, 91 { "rx_smbus", E1000_STAT(stats.mgprc) }, 92 { "dropped_smbus", E1000_STAT(stats.mgpdc) }, 93 }; 94 95 #define E1000_QUEUE_STATS_LEN 0 96 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 97 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN) 98 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 99 "Register test (offline)", "Eeprom test (offline)", 100 "Interrupt test (offline)", "Loopback test (offline)", 101 "Link test (on/offline)" 102 }; 103 104 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 105 106 static int e1000_get_link_ksettings(struct net_device *netdev, 107 struct ethtool_link_ksettings *cmd) 108 { 109 struct e1000_adapter *adapter = netdev_priv(netdev); 110 struct e1000_hw *hw = &adapter->hw; 111 u32 supported, advertising; 112 113 if (hw->media_type == e1000_media_type_copper) { 114 supported = (SUPPORTED_10baseT_Half | 115 SUPPORTED_10baseT_Full | 116 SUPPORTED_100baseT_Half | 117 SUPPORTED_100baseT_Full | 118 SUPPORTED_1000baseT_Full| 119 SUPPORTED_Autoneg | 120 SUPPORTED_TP); 121 advertising = ADVERTISED_TP; 122 123 if (hw->autoneg == 1) { 124 advertising |= ADVERTISED_Autoneg; 125 /* the e1000 autoneg seems to match ethtool nicely */ 126 advertising |= hw->autoneg_advertised; 127 } 128 129 cmd->base.port = PORT_TP; 130 cmd->base.phy_address = hw->phy_addr; 131 } else { 132 supported = (SUPPORTED_1000baseT_Full | 133 SUPPORTED_FIBRE | 134 SUPPORTED_Autoneg); 135 136 advertising = (ADVERTISED_1000baseT_Full | 137 ADVERTISED_FIBRE | 138 ADVERTISED_Autoneg); 139 140 cmd->base.port = PORT_FIBRE; 141 } 142 143 if (er32(STATUS) & E1000_STATUS_LU) { 144 e1000_get_speed_and_duplex(hw, &adapter->link_speed, 145 &adapter->link_duplex); 146 cmd->base.speed = adapter->link_speed; 147 148 /* unfortunately FULL_DUPLEX != DUPLEX_FULL 149 * and HALF_DUPLEX != DUPLEX_HALF 150 */ 151 if (adapter->link_duplex == FULL_DUPLEX) 152 cmd->base.duplex = DUPLEX_FULL; 153 else 154 cmd->base.duplex = DUPLEX_HALF; 155 } else { 156 cmd->base.speed = SPEED_UNKNOWN; 157 cmd->base.duplex = DUPLEX_UNKNOWN; 158 } 159 160 cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) || 161 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 162 163 /* MDI-X => 1; MDI => 0 */ 164 if ((hw->media_type == e1000_media_type_copper) && 165 netif_carrier_ok(netdev)) 166 cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ? 167 ETH_TP_MDI_X : ETH_TP_MDI); 168 else 169 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID; 170 171 if (hw->mdix == AUTO_ALL_MODES) 172 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 173 else 174 cmd->base.eth_tp_mdix_ctrl = hw->mdix; 175 176 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 177 supported); 178 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 179 advertising); 180 181 return 0; 182 } 183 184 static int e1000_set_link_ksettings(struct net_device *netdev, 185 const struct ethtool_link_ksettings *cmd) 186 { 187 struct e1000_adapter *adapter = netdev_priv(netdev); 188 struct e1000_hw *hw = &adapter->hw; 189 u32 advertising; 190 191 ethtool_convert_link_mode_to_legacy_u32(&advertising, 192 cmd->link_modes.advertising); 193 194 /* MDI setting is only allowed when autoneg enabled because 195 * some hardware doesn't allow MDI setting when speed or 196 * duplex is forced. 197 */ 198 if (cmd->base.eth_tp_mdix_ctrl) { 199 if (hw->media_type != e1000_media_type_copper) 200 return -EOPNOTSUPP; 201 202 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 203 (cmd->base.autoneg != AUTONEG_ENABLE)) { 204 e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 205 return -EINVAL; 206 } 207 } 208 209 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 210 msleep(1); 211 212 if (cmd->base.autoneg == AUTONEG_ENABLE) { 213 hw->autoneg = 1; 214 if (hw->media_type == e1000_media_type_fiber) 215 hw->autoneg_advertised = ADVERTISED_1000baseT_Full | 216 ADVERTISED_FIBRE | 217 ADVERTISED_Autoneg; 218 else 219 hw->autoneg_advertised = advertising | 220 ADVERTISED_TP | 221 ADVERTISED_Autoneg; 222 } else { 223 u32 speed = cmd->base.speed; 224 /* calling this overrides forced MDI setting */ 225 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) { 226 clear_bit(__E1000_RESETTING, &adapter->flags); 227 return -EINVAL; 228 } 229 } 230 231 /* MDI-X => 2; MDI => 1; Auto => 3 */ 232 if (cmd->base.eth_tp_mdix_ctrl) { 233 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 234 hw->mdix = AUTO_ALL_MODES; 235 else 236 hw->mdix = cmd->base.eth_tp_mdix_ctrl; 237 } 238 239 /* reset the link */ 240 241 if (netif_running(adapter->netdev)) { 242 e1000_down(adapter); 243 e1000_up(adapter); 244 } else { 245 e1000_reset(adapter); 246 } 247 clear_bit(__E1000_RESETTING, &adapter->flags); 248 return 0; 249 } 250 251 static u32 e1000_get_link(struct net_device *netdev) 252 { 253 struct e1000_adapter *adapter = netdev_priv(netdev); 254 255 /* If the link is not reported up to netdev, interrupts are disabled, 256 * and so the physical link state may have changed since we last 257 * looked. Set get_link_status to make sure that the true link 258 * state is interrogated, rather than pulling a cached and possibly 259 * stale link state from the driver. 260 */ 261 if (!netif_carrier_ok(netdev)) 262 adapter->hw.get_link_status = 1; 263 264 return e1000_has_link(adapter); 265 } 266 267 static void e1000_get_pauseparam(struct net_device *netdev, 268 struct ethtool_pauseparam *pause) 269 { 270 struct e1000_adapter *adapter = netdev_priv(netdev); 271 struct e1000_hw *hw = &adapter->hw; 272 273 pause->autoneg = 274 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 275 276 if (hw->fc == E1000_FC_RX_PAUSE) { 277 pause->rx_pause = 1; 278 } else if (hw->fc == E1000_FC_TX_PAUSE) { 279 pause->tx_pause = 1; 280 } else if (hw->fc == E1000_FC_FULL) { 281 pause->rx_pause = 1; 282 pause->tx_pause = 1; 283 } 284 } 285 286 static int e1000_set_pauseparam(struct net_device *netdev, 287 struct ethtool_pauseparam *pause) 288 { 289 struct e1000_adapter *adapter = netdev_priv(netdev); 290 struct e1000_hw *hw = &adapter->hw; 291 int retval = 0; 292 293 adapter->fc_autoneg = pause->autoneg; 294 295 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 296 msleep(1); 297 298 if (pause->rx_pause && pause->tx_pause) 299 hw->fc = E1000_FC_FULL; 300 else if (pause->rx_pause && !pause->tx_pause) 301 hw->fc = E1000_FC_RX_PAUSE; 302 else if (!pause->rx_pause && pause->tx_pause) 303 hw->fc = E1000_FC_TX_PAUSE; 304 else if (!pause->rx_pause && !pause->tx_pause) 305 hw->fc = E1000_FC_NONE; 306 307 hw->original_fc = hw->fc; 308 309 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 310 if (netif_running(adapter->netdev)) { 311 e1000_down(adapter); 312 e1000_up(adapter); 313 } else { 314 e1000_reset(adapter); 315 } 316 } else 317 retval = ((hw->media_type == e1000_media_type_fiber) ? 318 e1000_setup_link(hw) : e1000_force_mac_fc(hw)); 319 320 clear_bit(__E1000_RESETTING, &adapter->flags); 321 return retval; 322 } 323 324 static u32 e1000_get_msglevel(struct net_device *netdev) 325 { 326 struct e1000_adapter *adapter = netdev_priv(netdev); 327 328 return adapter->msg_enable; 329 } 330 331 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 332 { 333 struct e1000_adapter *adapter = netdev_priv(netdev); 334 335 adapter->msg_enable = data; 336 } 337 338 static int e1000_get_regs_len(struct net_device *netdev) 339 { 340 #define E1000_REGS_LEN 32 341 return E1000_REGS_LEN * sizeof(u32); 342 } 343 344 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs, 345 void *p) 346 { 347 struct e1000_adapter *adapter = netdev_priv(netdev); 348 struct e1000_hw *hw = &adapter->hw; 349 u32 *regs_buff = p; 350 u16 phy_data; 351 352 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 353 354 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; 355 356 regs_buff[0] = er32(CTRL); 357 regs_buff[1] = er32(STATUS); 358 359 regs_buff[2] = er32(RCTL); 360 regs_buff[3] = er32(RDLEN); 361 regs_buff[4] = er32(RDH); 362 regs_buff[5] = er32(RDT); 363 regs_buff[6] = er32(RDTR); 364 365 regs_buff[7] = er32(TCTL); 366 regs_buff[8] = er32(TDLEN); 367 regs_buff[9] = er32(TDH); 368 regs_buff[10] = er32(TDT); 369 regs_buff[11] = er32(TIDV); 370 371 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */ 372 if (hw->phy_type == e1000_phy_igp) { 373 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 374 IGP01E1000_PHY_AGC_A); 375 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & 376 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 377 regs_buff[13] = (u32)phy_data; /* cable length */ 378 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 379 IGP01E1000_PHY_AGC_B); 380 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & 381 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 382 regs_buff[14] = (u32)phy_data; /* cable length */ 383 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 384 IGP01E1000_PHY_AGC_C); 385 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & 386 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 387 regs_buff[15] = (u32)phy_data; /* cable length */ 388 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 389 IGP01E1000_PHY_AGC_D); 390 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & 391 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 392 regs_buff[16] = (u32)phy_data; /* cable length */ 393 regs_buff[17] = 0; /* extended 10bt distance (not needed) */ 394 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); 395 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & 396 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 397 regs_buff[18] = (u32)phy_data; /* cable polarity */ 398 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 399 IGP01E1000_PHY_PCS_INIT_REG); 400 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & 401 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 402 regs_buff[19] = (u32)phy_data; /* cable polarity */ 403 regs_buff[20] = 0; /* polarity correction enabled (always) */ 404 regs_buff[22] = 0; /* phy receive errors (unavailable) */ 405 regs_buff[23] = regs_buff[18]; /* mdix mode */ 406 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); 407 } else { 408 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 409 regs_buff[13] = (u32)phy_data; /* cable length */ 410 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 411 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 412 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 413 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 414 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 415 regs_buff[18] = regs_buff[13]; /* cable polarity */ 416 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 417 regs_buff[20] = regs_buff[17]; /* polarity correction */ 418 /* phy receive errors */ 419 regs_buff[22] = adapter->phy_stats.receive_errors; 420 regs_buff[23] = regs_buff[13]; /* mdix mode */ 421 } 422 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ 423 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); 424 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 425 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 426 if (hw->mac_type >= e1000_82540 && 427 hw->media_type == e1000_media_type_copper) { 428 regs_buff[26] = er32(MANC); 429 } 430 } 431 432 static int e1000_get_eeprom_len(struct net_device *netdev) 433 { 434 struct e1000_adapter *adapter = netdev_priv(netdev); 435 struct e1000_hw *hw = &adapter->hw; 436 437 return hw->eeprom.word_size * 2; 438 } 439 440 static int e1000_get_eeprom(struct net_device *netdev, 441 struct ethtool_eeprom *eeprom, u8 *bytes) 442 { 443 struct e1000_adapter *adapter = netdev_priv(netdev); 444 struct e1000_hw *hw = &adapter->hw; 445 u16 *eeprom_buff; 446 int first_word, last_word; 447 int ret_val = 0; 448 u16 i; 449 450 if (eeprom->len == 0) 451 return -EINVAL; 452 453 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 454 455 first_word = eeprom->offset >> 1; 456 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 457 458 eeprom_buff = kmalloc(sizeof(u16) * 459 (last_word - first_word + 1), GFP_KERNEL); 460 if (!eeprom_buff) 461 return -ENOMEM; 462 463 if (hw->eeprom.type == e1000_eeprom_spi) 464 ret_val = e1000_read_eeprom(hw, first_word, 465 last_word - first_word + 1, 466 eeprom_buff); 467 else { 468 for (i = 0; i < last_word - first_word + 1; i++) { 469 ret_val = e1000_read_eeprom(hw, first_word + i, 1, 470 &eeprom_buff[i]); 471 if (ret_val) 472 break; 473 } 474 } 475 476 /* Device's eeprom is always little-endian, word addressable */ 477 for (i = 0; i < last_word - first_word + 1; i++) 478 le16_to_cpus(&eeprom_buff[i]); 479 480 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), 481 eeprom->len); 482 kfree(eeprom_buff); 483 484 return ret_val; 485 } 486 487 static int e1000_set_eeprom(struct net_device *netdev, 488 struct ethtool_eeprom *eeprom, u8 *bytes) 489 { 490 struct e1000_adapter *adapter = netdev_priv(netdev); 491 struct e1000_hw *hw = &adapter->hw; 492 u16 *eeprom_buff; 493 void *ptr; 494 int max_len, first_word, last_word, ret_val = 0; 495 u16 i; 496 497 if (eeprom->len == 0) 498 return -EOPNOTSUPP; 499 500 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) 501 return -EFAULT; 502 503 max_len = hw->eeprom.word_size * 2; 504 505 first_word = eeprom->offset >> 1; 506 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 507 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 508 if (!eeprom_buff) 509 return -ENOMEM; 510 511 ptr = (void *)eeprom_buff; 512 513 if (eeprom->offset & 1) { 514 /* need read/modify/write of first changed EEPROM word 515 * only the second byte of the word is being modified 516 */ 517 ret_val = e1000_read_eeprom(hw, first_word, 1, 518 &eeprom_buff[0]); 519 ptr++; 520 } 521 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { 522 /* need read/modify/write of last changed EEPROM word 523 * only the first byte of the word is being modified 524 */ 525 ret_val = e1000_read_eeprom(hw, last_word, 1, 526 &eeprom_buff[last_word - first_word]); 527 } 528 529 /* Device's eeprom is always little-endian, word addressable */ 530 for (i = 0; i < last_word - first_word + 1; i++) 531 le16_to_cpus(&eeprom_buff[i]); 532 533 memcpy(ptr, bytes, eeprom->len); 534 535 for (i = 0; i < last_word - first_word + 1; i++) 536 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); 537 538 ret_val = e1000_write_eeprom(hw, first_word, 539 last_word - first_word + 1, eeprom_buff); 540 541 /* Update the checksum over the first part of the EEPROM if needed */ 542 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG)) 543 e1000_update_eeprom_checksum(hw); 544 545 kfree(eeprom_buff); 546 return ret_val; 547 } 548 549 static void e1000_get_drvinfo(struct net_device *netdev, 550 struct ethtool_drvinfo *drvinfo) 551 { 552 struct e1000_adapter *adapter = netdev_priv(netdev); 553 554 strlcpy(drvinfo->driver, e1000_driver_name, 555 sizeof(drvinfo->driver)); 556 strlcpy(drvinfo->version, e1000_driver_version, 557 sizeof(drvinfo->version)); 558 559 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 560 sizeof(drvinfo->bus_info)); 561 } 562 563 static void e1000_get_ringparam(struct net_device *netdev, 564 struct ethtool_ringparam *ring) 565 { 566 struct e1000_adapter *adapter = netdev_priv(netdev); 567 struct e1000_hw *hw = &adapter->hw; 568 e1000_mac_type mac_type = hw->mac_type; 569 struct e1000_tx_ring *txdr = adapter->tx_ring; 570 struct e1000_rx_ring *rxdr = adapter->rx_ring; 571 572 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : 573 E1000_MAX_82544_RXD; 574 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : 575 E1000_MAX_82544_TXD; 576 ring->rx_pending = rxdr->count; 577 ring->tx_pending = txdr->count; 578 } 579 580 static int e1000_set_ringparam(struct net_device *netdev, 581 struct ethtool_ringparam *ring) 582 { 583 struct e1000_adapter *adapter = netdev_priv(netdev); 584 struct e1000_hw *hw = &adapter->hw; 585 e1000_mac_type mac_type = hw->mac_type; 586 struct e1000_tx_ring *txdr, *tx_old; 587 struct e1000_rx_ring *rxdr, *rx_old; 588 int i, err; 589 590 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 591 return -EINVAL; 592 593 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 594 msleep(1); 595 596 if (netif_running(adapter->netdev)) 597 e1000_down(adapter); 598 599 tx_old = adapter->tx_ring; 600 rx_old = adapter->rx_ring; 601 602 err = -ENOMEM; 603 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), 604 GFP_KERNEL); 605 if (!txdr) 606 goto err_alloc_tx; 607 608 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), 609 GFP_KERNEL); 610 if (!rxdr) 611 goto err_alloc_rx; 612 613 adapter->tx_ring = txdr; 614 adapter->rx_ring = rxdr; 615 616 rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD); 617 rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ? 618 E1000_MAX_RXD : E1000_MAX_82544_RXD)); 619 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); 620 txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD); 621 txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ? 622 E1000_MAX_TXD : E1000_MAX_82544_TXD)); 623 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); 624 625 for (i = 0; i < adapter->num_tx_queues; i++) 626 txdr[i].count = txdr->count; 627 for (i = 0; i < adapter->num_rx_queues; i++) 628 rxdr[i].count = rxdr->count; 629 630 if (netif_running(adapter->netdev)) { 631 /* Try to get new resources before deleting old */ 632 err = e1000_setup_all_rx_resources(adapter); 633 if (err) 634 goto err_setup_rx; 635 err = e1000_setup_all_tx_resources(adapter); 636 if (err) 637 goto err_setup_tx; 638 639 /* save the new, restore the old in order to free it, 640 * then restore the new back again 641 */ 642 643 adapter->rx_ring = rx_old; 644 adapter->tx_ring = tx_old; 645 e1000_free_all_rx_resources(adapter); 646 e1000_free_all_tx_resources(adapter); 647 kfree(tx_old); 648 kfree(rx_old); 649 adapter->rx_ring = rxdr; 650 adapter->tx_ring = txdr; 651 err = e1000_up(adapter); 652 if (err) 653 goto err_setup; 654 } 655 656 clear_bit(__E1000_RESETTING, &adapter->flags); 657 return 0; 658 err_setup_tx: 659 e1000_free_all_rx_resources(adapter); 660 err_setup_rx: 661 adapter->rx_ring = rx_old; 662 adapter->tx_ring = tx_old; 663 kfree(rxdr); 664 err_alloc_rx: 665 kfree(txdr); 666 err_alloc_tx: 667 e1000_up(adapter); 668 err_setup: 669 clear_bit(__E1000_RESETTING, &adapter->flags); 670 return err; 671 } 672 673 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg, 674 u32 mask, u32 write) 675 { 676 struct e1000_hw *hw = &adapter->hw; 677 static const u32 test[] = { 678 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 679 }; 680 u8 __iomem *address = hw->hw_addr + reg; 681 u32 read; 682 int i; 683 684 for (i = 0; i < ARRAY_SIZE(test); i++) { 685 writel(write & test[i], address); 686 read = readl(address); 687 if (read != (write & test[i] & mask)) { 688 e_err(drv, "pattern test reg %04X failed: " 689 "got 0x%08X expected 0x%08X\n", 690 reg, read, (write & test[i] & mask)); 691 *data = reg; 692 return true; 693 } 694 } 695 return false; 696 } 697 698 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg, 699 u32 mask, u32 write) 700 { 701 struct e1000_hw *hw = &adapter->hw; 702 u8 __iomem *address = hw->hw_addr + reg; 703 u32 read; 704 705 writel(write & mask, address); 706 read = readl(address); 707 if ((read & mask) != (write & mask)) { 708 e_err(drv, "set/check reg %04X test failed: " 709 "got 0x%08X expected 0x%08X\n", 710 reg, (read & mask), (write & mask)); 711 *data = reg; 712 return true; 713 } 714 return false; 715 } 716 717 #define REG_PATTERN_TEST(reg, mask, write) \ 718 do { \ 719 if (reg_pattern_test(adapter, data, \ 720 (hw->mac_type >= e1000_82543) \ 721 ? E1000_##reg : E1000_82542_##reg, \ 722 mask, write)) \ 723 return 1; \ 724 } while (0) 725 726 #define REG_SET_AND_CHECK(reg, mask, write) \ 727 do { \ 728 if (reg_set_and_check(adapter, data, \ 729 (hw->mac_type >= e1000_82543) \ 730 ? E1000_##reg : E1000_82542_##reg, \ 731 mask, write)) \ 732 return 1; \ 733 } while (0) 734 735 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 736 { 737 u32 value, before, after; 738 u32 i, toggle; 739 struct e1000_hw *hw = &adapter->hw; 740 741 /* The status register is Read Only, so a write should fail. 742 * Some bits that get toggled are ignored. 743 */ 744 745 /* there are several bits on newer hardware that are r/w */ 746 toggle = 0xFFFFF833; 747 748 before = er32(STATUS); 749 value = (er32(STATUS) & toggle); 750 ew32(STATUS, toggle); 751 after = er32(STATUS) & toggle; 752 if (value != after) { 753 e_err(drv, "failed STATUS register test got: " 754 "0x%08X expected: 0x%08X\n", after, value); 755 *data = 1; 756 return 1; 757 } 758 /* restore previous status */ 759 ew32(STATUS, before); 760 761 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 762 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); 763 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); 764 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); 765 766 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); 767 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); 768 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); 769 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); 770 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); 771 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); 772 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); 773 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 774 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); 775 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); 776 777 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); 778 779 before = 0x06DFB3FE; 780 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB); 781 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); 782 783 if (hw->mac_type >= e1000_82543) { 784 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF); 785 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 786 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); 787 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 788 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); 789 value = E1000_RAR_ENTRIES; 790 for (i = 0; i < value; i++) { 791 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 792 0x8003FFFF, 0xFFFFFFFF); 793 } 794 } else { 795 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); 796 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); 797 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); 798 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); 799 } 800 801 value = E1000_MC_TBL_SIZE; 802 for (i = 0; i < value; i++) 803 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); 804 805 *data = 0; 806 return 0; 807 } 808 809 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 810 { 811 struct e1000_hw *hw = &adapter->hw; 812 u16 temp; 813 u16 checksum = 0; 814 u16 i; 815 816 *data = 0; 817 /* Read and add up the contents of the EEPROM */ 818 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { 819 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) { 820 *data = 1; 821 break; 822 } 823 checksum += temp; 824 } 825 826 /* If Checksum is not Correct return error else test passed */ 827 if ((checksum != (u16)EEPROM_SUM) && !(*data)) 828 *data = 2; 829 830 return *data; 831 } 832 833 static irqreturn_t e1000_test_intr(int irq, void *data) 834 { 835 struct net_device *netdev = (struct net_device *)data; 836 struct e1000_adapter *adapter = netdev_priv(netdev); 837 struct e1000_hw *hw = &adapter->hw; 838 839 adapter->test_icr |= er32(ICR); 840 841 return IRQ_HANDLED; 842 } 843 844 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 845 { 846 struct net_device *netdev = adapter->netdev; 847 u32 mask, i = 0; 848 bool shared_int = true; 849 u32 irq = adapter->pdev->irq; 850 struct e1000_hw *hw = &adapter->hw; 851 852 *data = 0; 853 854 /* NOTE: we don't test MSI interrupts here, yet 855 * Hook up test interrupt handler just for this test 856 */ 857 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 858 netdev)) 859 shared_int = false; 860 else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, 861 netdev->name, netdev)) { 862 *data = 1; 863 return -1; 864 } 865 e_info(hw, "testing %s interrupt\n", (shared_int ? 866 "shared" : "unshared")); 867 868 /* Disable all the interrupts */ 869 ew32(IMC, 0xFFFFFFFF); 870 E1000_WRITE_FLUSH(); 871 msleep(10); 872 873 /* Test each interrupt */ 874 for (; i < 10; i++) { 875 /* Interrupt to test */ 876 mask = 1 << i; 877 878 if (!shared_int) { 879 /* Disable the interrupt to be reported in 880 * the cause register and then force the same 881 * interrupt and see if one gets posted. If 882 * an interrupt was posted to the bus, the 883 * test failed. 884 */ 885 adapter->test_icr = 0; 886 ew32(IMC, mask); 887 ew32(ICS, mask); 888 E1000_WRITE_FLUSH(); 889 msleep(10); 890 891 if (adapter->test_icr & mask) { 892 *data = 3; 893 break; 894 } 895 } 896 897 /* Enable the interrupt to be reported in 898 * the cause register and then force the same 899 * interrupt and see if one gets posted. If 900 * an interrupt was not posted to the bus, the 901 * test failed. 902 */ 903 adapter->test_icr = 0; 904 ew32(IMS, mask); 905 ew32(ICS, mask); 906 E1000_WRITE_FLUSH(); 907 msleep(10); 908 909 if (!(adapter->test_icr & mask)) { 910 *data = 4; 911 break; 912 } 913 914 if (!shared_int) { 915 /* Disable the other interrupts to be reported in 916 * the cause register and then force the other 917 * interrupts and see if any get posted. If 918 * an interrupt was posted to the bus, the 919 * test failed. 920 */ 921 adapter->test_icr = 0; 922 ew32(IMC, ~mask & 0x00007FFF); 923 ew32(ICS, ~mask & 0x00007FFF); 924 E1000_WRITE_FLUSH(); 925 msleep(10); 926 927 if (adapter->test_icr) { 928 *data = 5; 929 break; 930 } 931 } 932 } 933 934 /* Disable all the interrupts */ 935 ew32(IMC, 0xFFFFFFFF); 936 E1000_WRITE_FLUSH(); 937 msleep(10); 938 939 /* Unhook test interrupt handler */ 940 free_irq(irq, netdev); 941 942 return *data; 943 } 944 945 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 946 { 947 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 948 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 949 struct pci_dev *pdev = adapter->pdev; 950 int i; 951 952 if (txdr->desc && txdr->buffer_info) { 953 for (i = 0; i < txdr->count; i++) { 954 if (txdr->buffer_info[i].dma) 955 dma_unmap_single(&pdev->dev, 956 txdr->buffer_info[i].dma, 957 txdr->buffer_info[i].length, 958 DMA_TO_DEVICE); 959 if (txdr->buffer_info[i].skb) 960 dev_kfree_skb(txdr->buffer_info[i].skb); 961 } 962 } 963 964 if (rxdr->desc && rxdr->buffer_info) { 965 for (i = 0; i < rxdr->count; i++) { 966 if (rxdr->buffer_info[i].dma) 967 dma_unmap_single(&pdev->dev, 968 rxdr->buffer_info[i].dma, 969 E1000_RXBUFFER_2048, 970 DMA_FROM_DEVICE); 971 kfree(rxdr->buffer_info[i].rxbuf.data); 972 } 973 } 974 975 if (txdr->desc) { 976 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, 977 txdr->dma); 978 txdr->desc = NULL; 979 } 980 if (rxdr->desc) { 981 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, 982 rxdr->dma); 983 rxdr->desc = NULL; 984 } 985 986 kfree(txdr->buffer_info); 987 txdr->buffer_info = NULL; 988 kfree(rxdr->buffer_info); 989 rxdr->buffer_info = NULL; 990 } 991 992 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 993 { 994 struct e1000_hw *hw = &adapter->hw; 995 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 996 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 997 struct pci_dev *pdev = adapter->pdev; 998 u32 rctl; 999 int i, ret_val; 1000 1001 /* Setup Tx descriptor ring and Tx buffers */ 1002 1003 if (!txdr->count) 1004 txdr->count = E1000_DEFAULT_TXD; 1005 1006 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer), 1007 GFP_KERNEL); 1008 if (!txdr->buffer_info) { 1009 ret_val = 1; 1010 goto err_nomem; 1011 } 1012 1013 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 1014 txdr->size = ALIGN(txdr->size, 4096); 1015 txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma, 1016 GFP_KERNEL); 1017 if (!txdr->desc) { 1018 ret_val = 2; 1019 goto err_nomem; 1020 } 1021 txdr->next_to_use = txdr->next_to_clean = 0; 1022 1023 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF)); 1024 ew32(TDBAH, ((u64)txdr->dma >> 32)); 1025 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc)); 1026 ew32(TDH, 0); 1027 ew32(TDT, 0); 1028 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | 1029 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1030 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1031 1032 for (i = 0; i < txdr->count; i++) { 1033 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); 1034 struct sk_buff *skb; 1035 unsigned int size = 1024; 1036 1037 skb = alloc_skb(size, GFP_KERNEL); 1038 if (!skb) { 1039 ret_val = 3; 1040 goto err_nomem; 1041 } 1042 skb_put(skb, size); 1043 txdr->buffer_info[i].skb = skb; 1044 txdr->buffer_info[i].length = skb->len; 1045 txdr->buffer_info[i].dma = 1046 dma_map_single(&pdev->dev, skb->data, skb->len, 1047 DMA_TO_DEVICE); 1048 if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) { 1049 ret_val = 4; 1050 goto err_nomem; 1051 } 1052 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); 1053 tx_desc->lower.data = cpu_to_le32(skb->len); 1054 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1055 E1000_TXD_CMD_IFCS | 1056 E1000_TXD_CMD_RPS); 1057 tx_desc->upper.data = 0; 1058 } 1059 1060 /* Setup Rx descriptor ring and Rx buffers */ 1061 1062 if (!rxdr->count) 1063 rxdr->count = E1000_DEFAULT_RXD; 1064 1065 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer), 1066 GFP_KERNEL); 1067 if (!rxdr->buffer_info) { 1068 ret_val = 5; 1069 goto err_nomem; 1070 } 1071 1072 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); 1073 rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, 1074 GFP_KERNEL); 1075 if (!rxdr->desc) { 1076 ret_val = 6; 1077 goto err_nomem; 1078 } 1079 rxdr->next_to_use = rxdr->next_to_clean = 0; 1080 1081 rctl = er32(RCTL); 1082 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1083 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF)); 1084 ew32(RDBAH, ((u64)rxdr->dma >> 32)); 1085 ew32(RDLEN, rxdr->size); 1086 ew32(RDH, 0); 1087 ew32(RDT, 0); 1088 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1089 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1090 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); 1091 ew32(RCTL, rctl); 1092 1093 for (i = 0; i < rxdr->count; i++) { 1094 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); 1095 u8 *buf; 1096 1097 buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN, 1098 GFP_KERNEL); 1099 if (!buf) { 1100 ret_val = 7; 1101 goto err_nomem; 1102 } 1103 rxdr->buffer_info[i].rxbuf.data = buf; 1104 1105 rxdr->buffer_info[i].dma = 1106 dma_map_single(&pdev->dev, 1107 buf + NET_SKB_PAD + NET_IP_ALIGN, 1108 E1000_RXBUFFER_2048, DMA_FROM_DEVICE); 1109 if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) { 1110 ret_val = 8; 1111 goto err_nomem; 1112 } 1113 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); 1114 } 1115 1116 return 0; 1117 1118 err_nomem: 1119 e1000_free_desc_rings(adapter); 1120 return ret_val; 1121 } 1122 1123 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1124 { 1125 struct e1000_hw *hw = &adapter->hw; 1126 1127 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1128 e1000_write_phy_reg(hw, 29, 0x001F); 1129 e1000_write_phy_reg(hw, 30, 0x8FFC); 1130 e1000_write_phy_reg(hw, 29, 0x001A); 1131 e1000_write_phy_reg(hw, 30, 0x8FF0); 1132 } 1133 1134 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) 1135 { 1136 struct e1000_hw *hw = &adapter->hw; 1137 u16 phy_reg; 1138 1139 /* Because we reset the PHY above, we need to re-force TX_CLK in the 1140 * Extended PHY Specific Control Register to 25MHz clock. This 1141 * value defaults back to a 2.5MHz clock when the PHY is reset. 1142 */ 1143 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); 1144 phy_reg |= M88E1000_EPSCR_TX_CLK_25; 1145 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); 1146 1147 /* In addition, because of the s/w reset above, we need to enable 1148 * CRS on TX. This must be set for both full and half duplex 1149 * operation. 1150 */ 1151 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); 1152 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 1153 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg); 1154 } 1155 1156 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) 1157 { 1158 struct e1000_hw *hw = &adapter->hw; 1159 u32 ctrl_reg; 1160 u16 phy_reg; 1161 1162 /* Setup the Device Control Register for PHY loopback test. */ 1163 1164 ctrl_reg = er32(CTRL); 1165 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */ 1166 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1167 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1168 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ 1169 E1000_CTRL_FD); /* Force Duplex to FULL */ 1170 1171 ew32(CTRL, ctrl_reg); 1172 1173 /* Read the PHY Specific Control Register (0x10) */ 1174 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); 1175 1176 /* Clear Auto-Crossover bits in PHY Specific Control Register 1177 * (bits 6:5). 1178 */ 1179 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; 1180 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg); 1181 1182 /* Perform software reset on the PHY */ 1183 e1000_phy_reset(hw); 1184 1185 /* Have to setup TX_CLK and TX_CRS after software reset */ 1186 e1000_phy_reset_clk_and_crs(adapter); 1187 1188 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100); 1189 1190 /* Wait for reset to complete. */ 1191 udelay(500); 1192 1193 /* Have to setup TX_CLK and TX_CRS after software reset */ 1194 e1000_phy_reset_clk_and_crs(adapter); 1195 1196 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1197 e1000_phy_disable_receiver(adapter); 1198 1199 /* Set the loopback bit in the PHY control register. */ 1200 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1201 phy_reg |= MII_CR_LOOPBACK; 1202 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1203 1204 /* Setup TX_CLK and TX_CRS one more time. */ 1205 e1000_phy_reset_clk_and_crs(adapter); 1206 1207 /* Check Phy Configuration */ 1208 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1209 if (phy_reg != 0x4100) 1210 return 9; 1211 1212 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); 1213 if (phy_reg != 0x0070) 1214 return 10; 1215 1216 e1000_read_phy_reg(hw, 29, &phy_reg); 1217 if (phy_reg != 0x001A) 1218 return 11; 1219 1220 return 0; 1221 } 1222 1223 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1224 { 1225 struct e1000_hw *hw = &adapter->hw; 1226 u32 ctrl_reg = 0; 1227 u32 stat_reg = 0; 1228 1229 hw->autoneg = false; 1230 1231 if (hw->phy_type == e1000_phy_m88) { 1232 /* Auto-MDI/MDIX Off */ 1233 e1000_write_phy_reg(hw, 1234 M88E1000_PHY_SPEC_CTRL, 0x0808); 1235 /* reset to update Auto-MDI/MDIX */ 1236 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140); 1237 /* autoneg off */ 1238 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140); 1239 } 1240 1241 ctrl_reg = er32(CTRL); 1242 1243 /* force 1000, set loopback */ 1244 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140); 1245 1246 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1247 ctrl_reg = er32(CTRL); 1248 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1249 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1250 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1251 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1252 E1000_CTRL_FD); /* Force Duplex to FULL */ 1253 1254 if (hw->media_type == e1000_media_type_copper && 1255 hw->phy_type == e1000_phy_m88) 1256 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1257 else { 1258 /* Set the ILOS bit on the fiber Nic is half 1259 * duplex link is detected. 1260 */ 1261 stat_reg = er32(STATUS); 1262 if ((stat_reg & E1000_STATUS_FD) == 0) 1263 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1264 } 1265 1266 ew32(CTRL, ctrl_reg); 1267 1268 /* Disable the receiver on the PHY so when a cable is plugged in, the 1269 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1270 */ 1271 if (hw->phy_type == e1000_phy_m88) 1272 e1000_phy_disable_receiver(adapter); 1273 1274 udelay(500); 1275 1276 return 0; 1277 } 1278 1279 static int e1000_set_phy_loopback(struct e1000_adapter *adapter) 1280 { 1281 struct e1000_hw *hw = &adapter->hw; 1282 u16 phy_reg = 0; 1283 u16 count = 0; 1284 1285 switch (hw->mac_type) { 1286 case e1000_82543: 1287 if (hw->media_type == e1000_media_type_copper) { 1288 /* Attempt to setup Loopback mode on Non-integrated PHY. 1289 * Some PHY registers get corrupted at random, so 1290 * attempt this 10 times. 1291 */ 1292 while (e1000_nonintegrated_phy_loopback(adapter) && 1293 count++ < 10); 1294 if (count < 11) 1295 return 0; 1296 } 1297 break; 1298 1299 case e1000_82544: 1300 case e1000_82540: 1301 case e1000_82545: 1302 case e1000_82545_rev_3: 1303 case e1000_82546: 1304 case e1000_82546_rev_3: 1305 case e1000_82541: 1306 case e1000_82541_rev_2: 1307 case e1000_82547: 1308 case e1000_82547_rev_2: 1309 return e1000_integrated_phy_loopback(adapter); 1310 default: 1311 /* Default PHY loopback work is to read the MII 1312 * control register and assert bit 14 (loopback mode). 1313 */ 1314 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1315 phy_reg |= MII_CR_LOOPBACK; 1316 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1317 return 0; 1318 } 1319 1320 return 8; 1321 } 1322 1323 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1324 { 1325 struct e1000_hw *hw = &adapter->hw; 1326 u32 rctl; 1327 1328 if (hw->media_type == e1000_media_type_fiber || 1329 hw->media_type == e1000_media_type_internal_serdes) { 1330 switch (hw->mac_type) { 1331 case e1000_82545: 1332 case e1000_82546: 1333 case e1000_82545_rev_3: 1334 case e1000_82546_rev_3: 1335 return e1000_set_phy_loopback(adapter); 1336 default: 1337 rctl = er32(RCTL); 1338 rctl |= E1000_RCTL_LBM_TCVR; 1339 ew32(RCTL, rctl); 1340 return 0; 1341 } 1342 } else if (hw->media_type == e1000_media_type_copper) { 1343 return e1000_set_phy_loopback(adapter); 1344 } 1345 1346 return 7; 1347 } 1348 1349 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1350 { 1351 struct e1000_hw *hw = &adapter->hw; 1352 u32 rctl; 1353 u16 phy_reg; 1354 1355 rctl = er32(RCTL); 1356 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1357 ew32(RCTL, rctl); 1358 1359 switch (hw->mac_type) { 1360 case e1000_82545: 1361 case e1000_82546: 1362 case e1000_82545_rev_3: 1363 case e1000_82546_rev_3: 1364 default: 1365 hw->autoneg = true; 1366 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1367 if (phy_reg & MII_CR_LOOPBACK) { 1368 phy_reg &= ~MII_CR_LOOPBACK; 1369 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1370 e1000_phy_reset(hw); 1371 } 1372 break; 1373 } 1374 } 1375 1376 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1377 unsigned int frame_size) 1378 { 1379 memset(skb->data, 0xFF, frame_size); 1380 frame_size &= ~1; 1381 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1382 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1383 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1384 } 1385 1386 static int e1000_check_lbtest_frame(const unsigned char *data, 1387 unsigned int frame_size) 1388 { 1389 frame_size &= ~1; 1390 if (*(data + 3) == 0xFF) { 1391 if ((*(data + frame_size / 2 + 10) == 0xBE) && 1392 (*(data + frame_size / 2 + 12) == 0xAF)) { 1393 return 0; 1394 } 1395 } 1396 return 13; 1397 } 1398 1399 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1400 { 1401 struct e1000_hw *hw = &adapter->hw; 1402 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 1403 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 1404 struct pci_dev *pdev = adapter->pdev; 1405 int i, j, k, l, lc, good_cnt, ret_val = 0; 1406 unsigned long time; 1407 1408 ew32(RDT, rxdr->count - 1); 1409 1410 /* Calculate the loop count based on the largest descriptor ring 1411 * The idea is to wrap the largest ring a number of times using 64 1412 * send/receive pairs during each loop 1413 */ 1414 1415 if (rxdr->count <= txdr->count) 1416 lc = ((txdr->count / 64) * 2) + 1; 1417 else 1418 lc = ((rxdr->count / 64) * 2) + 1; 1419 1420 k = l = 0; 1421 for (j = 0; j <= lc; j++) { /* loop count loop */ 1422 for (i = 0; i < 64; i++) { /* send the packets */ 1423 e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 1424 1024); 1425 dma_sync_single_for_device(&pdev->dev, 1426 txdr->buffer_info[k].dma, 1427 txdr->buffer_info[k].length, 1428 DMA_TO_DEVICE); 1429 if (unlikely(++k == txdr->count)) 1430 k = 0; 1431 } 1432 ew32(TDT, k); 1433 E1000_WRITE_FLUSH(); 1434 msleep(200); 1435 time = jiffies; /* set the start time for the receive */ 1436 good_cnt = 0; 1437 do { /* receive the sent packets */ 1438 dma_sync_single_for_cpu(&pdev->dev, 1439 rxdr->buffer_info[l].dma, 1440 E1000_RXBUFFER_2048, 1441 DMA_FROM_DEVICE); 1442 1443 ret_val = e1000_check_lbtest_frame( 1444 rxdr->buffer_info[l].rxbuf.data + 1445 NET_SKB_PAD + NET_IP_ALIGN, 1446 1024); 1447 if (!ret_val) 1448 good_cnt++; 1449 if (unlikely(++l == rxdr->count)) 1450 l = 0; 1451 /* time + 20 msecs (200 msecs on 2.4) is more than 1452 * enough time to complete the receives, if it's 1453 * exceeded, break and error off 1454 */ 1455 } while (good_cnt < 64 && time_after(time + 20, jiffies)); 1456 1457 if (good_cnt != 64) { 1458 ret_val = 13; /* ret_val is the same as mis-compare */ 1459 break; 1460 } 1461 if (time_after_eq(jiffies, time + 2)) { 1462 ret_val = 14; /* error code for time out error */ 1463 break; 1464 } 1465 } /* end loop count loop */ 1466 return ret_val; 1467 } 1468 1469 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1470 { 1471 *data = e1000_setup_desc_rings(adapter); 1472 if (*data) 1473 goto out; 1474 *data = e1000_setup_loopback_test(adapter); 1475 if (*data) 1476 goto err_loopback; 1477 *data = e1000_run_loopback_test(adapter); 1478 e1000_loopback_cleanup(adapter); 1479 1480 err_loopback: 1481 e1000_free_desc_rings(adapter); 1482 out: 1483 return *data; 1484 } 1485 1486 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1487 { 1488 struct e1000_hw *hw = &adapter->hw; 1489 *data = 0; 1490 if (hw->media_type == e1000_media_type_internal_serdes) { 1491 int i = 0; 1492 1493 hw->serdes_has_link = false; 1494 1495 /* On some blade server designs, link establishment 1496 * could take as long as 2-3 minutes 1497 */ 1498 do { 1499 e1000_check_for_link(hw); 1500 if (hw->serdes_has_link) 1501 return *data; 1502 msleep(20); 1503 } while (i++ < 3750); 1504 1505 *data = 1; 1506 } else { 1507 e1000_check_for_link(hw); 1508 if (hw->autoneg) /* if auto_neg is set wait for it */ 1509 msleep(4000); 1510 1511 if (!(er32(STATUS) & E1000_STATUS_LU)) 1512 *data = 1; 1513 } 1514 return *data; 1515 } 1516 1517 static int e1000_get_sset_count(struct net_device *netdev, int sset) 1518 { 1519 switch (sset) { 1520 case ETH_SS_TEST: 1521 return E1000_TEST_LEN; 1522 case ETH_SS_STATS: 1523 return E1000_STATS_LEN; 1524 default: 1525 return -EOPNOTSUPP; 1526 } 1527 } 1528 1529 static void e1000_diag_test(struct net_device *netdev, 1530 struct ethtool_test *eth_test, u64 *data) 1531 { 1532 struct e1000_adapter *adapter = netdev_priv(netdev); 1533 struct e1000_hw *hw = &adapter->hw; 1534 bool if_running = netif_running(netdev); 1535 1536 set_bit(__E1000_TESTING, &adapter->flags); 1537 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1538 /* Offline tests */ 1539 1540 /* save speed, duplex, autoneg settings */ 1541 u16 autoneg_advertised = hw->autoneg_advertised; 1542 u8 forced_speed_duplex = hw->forced_speed_duplex; 1543 u8 autoneg = hw->autoneg; 1544 1545 e_info(hw, "offline testing starting\n"); 1546 1547 /* Link test performed before hardware reset so autoneg doesn't 1548 * interfere with test result 1549 */ 1550 if (e1000_link_test(adapter, &data[4])) 1551 eth_test->flags |= ETH_TEST_FL_FAILED; 1552 1553 if (if_running) 1554 /* indicate we're in test mode */ 1555 e1000_close(netdev); 1556 else 1557 e1000_reset(adapter); 1558 1559 if (e1000_reg_test(adapter, &data[0])) 1560 eth_test->flags |= ETH_TEST_FL_FAILED; 1561 1562 e1000_reset(adapter); 1563 if (e1000_eeprom_test(adapter, &data[1])) 1564 eth_test->flags |= ETH_TEST_FL_FAILED; 1565 1566 e1000_reset(adapter); 1567 if (e1000_intr_test(adapter, &data[2])) 1568 eth_test->flags |= ETH_TEST_FL_FAILED; 1569 1570 e1000_reset(adapter); 1571 /* make sure the phy is powered up */ 1572 e1000_power_up_phy(adapter); 1573 if (e1000_loopback_test(adapter, &data[3])) 1574 eth_test->flags |= ETH_TEST_FL_FAILED; 1575 1576 /* restore speed, duplex, autoneg settings */ 1577 hw->autoneg_advertised = autoneg_advertised; 1578 hw->forced_speed_duplex = forced_speed_duplex; 1579 hw->autoneg = autoneg; 1580 1581 e1000_reset(adapter); 1582 clear_bit(__E1000_TESTING, &adapter->flags); 1583 if (if_running) 1584 e1000_open(netdev); 1585 } else { 1586 e_info(hw, "online testing starting\n"); 1587 /* Online tests */ 1588 if (e1000_link_test(adapter, &data[4])) 1589 eth_test->flags |= ETH_TEST_FL_FAILED; 1590 1591 /* Online tests aren't run; pass by default */ 1592 data[0] = 0; 1593 data[1] = 0; 1594 data[2] = 0; 1595 data[3] = 0; 1596 1597 clear_bit(__E1000_TESTING, &adapter->flags); 1598 } 1599 msleep_interruptible(4 * 1000); 1600 } 1601 1602 static int e1000_wol_exclusion(struct e1000_adapter *adapter, 1603 struct ethtool_wolinfo *wol) 1604 { 1605 struct e1000_hw *hw = &adapter->hw; 1606 int retval = 1; /* fail by default */ 1607 1608 switch (hw->device_id) { 1609 case E1000_DEV_ID_82542: 1610 case E1000_DEV_ID_82543GC_FIBER: 1611 case E1000_DEV_ID_82543GC_COPPER: 1612 case E1000_DEV_ID_82544EI_FIBER: 1613 case E1000_DEV_ID_82546EB_QUAD_COPPER: 1614 case E1000_DEV_ID_82545EM_FIBER: 1615 case E1000_DEV_ID_82545EM_COPPER: 1616 case E1000_DEV_ID_82546GB_QUAD_COPPER: 1617 case E1000_DEV_ID_82546GB_PCIE: 1618 /* these don't support WoL at all */ 1619 wol->supported = 0; 1620 break; 1621 case E1000_DEV_ID_82546EB_FIBER: 1622 case E1000_DEV_ID_82546GB_FIBER: 1623 /* Wake events not supported on port B */ 1624 if (er32(STATUS) & E1000_STATUS_FUNC_1) { 1625 wol->supported = 0; 1626 break; 1627 } 1628 /* return success for non excluded adapter ports */ 1629 retval = 0; 1630 break; 1631 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1632 /* quad port adapters only support WoL on port A */ 1633 if (!adapter->quad_port_a) { 1634 wol->supported = 0; 1635 break; 1636 } 1637 /* return success for non excluded adapter ports */ 1638 retval = 0; 1639 break; 1640 default: 1641 /* dual port cards only support WoL on port A from now on 1642 * unless it was enabled in the eeprom for port B 1643 * so exclude FUNC_1 ports from having WoL enabled 1644 */ 1645 if (er32(STATUS) & E1000_STATUS_FUNC_1 && 1646 !adapter->eeprom_wol) { 1647 wol->supported = 0; 1648 break; 1649 } 1650 1651 retval = 0; 1652 } 1653 1654 return retval; 1655 } 1656 1657 static void e1000_get_wol(struct net_device *netdev, 1658 struct ethtool_wolinfo *wol) 1659 { 1660 struct e1000_adapter *adapter = netdev_priv(netdev); 1661 struct e1000_hw *hw = &adapter->hw; 1662 1663 wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC; 1664 wol->wolopts = 0; 1665 1666 /* this function will set ->supported = 0 and return 1 if wol is not 1667 * supported by this hardware 1668 */ 1669 if (e1000_wol_exclusion(adapter, wol) || 1670 !device_can_wakeup(&adapter->pdev->dev)) 1671 return; 1672 1673 /* apply any specific unsupported masks here */ 1674 switch (hw->device_id) { 1675 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1676 /* KSP3 does not support UCAST wake-ups */ 1677 wol->supported &= ~WAKE_UCAST; 1678 1679 if (adapter->wol & E1000_WUFC_EX) 1680 e_err(drv, "Interface does not support directed " 1681 "(unicast) frame wake-up packets\n"); 1682 break; 1683 default: 1684 break; 1685 } 1686 1687 if (adapter->wol & E1000_WUFC_EX) 1688 wol->wolopts |= WAKE_UCAST; 1689 if (adapter->wol & E1000_WUFC_MC) 1690 wol->wolopts |= WAKE_MCAST; 1691 if (adapter->wol & E1000_WUFC_BC) 1692 wol->wolopts |= WAKE_BCAST; 1693 if (adapter->wol & E1000_WUFC_MAG) 1694 wol->wolopts |= WAKE_MAGIC; 1695 } 1696 1697 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1698 { 1699 struct e1000_adapter *adapter = netdev_priv(netdev); 1700 struct e1000_hw *hw = &adapter->hw; 1701 1702 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) 1703 return -EOPNOTSUPP; 1704 1705 if (e1000_wol_exclusion(adapter, wol) || 1706 !device_can_wakeup(&adapter->pdev->dev)) 1707 return wol->wolopts ? -EOPNOTSUPP : 0; 1708 1709 switch (hw->device_id) { 1710 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1711 if (wol->wolopts & WAKE_UCAST) { 1712 e_err(drv, "Interface does not support directed " 1713 "(unicast) frame wake-up packets\n"); 1714 return -EOPNOTSUPP; 1715 } 1716 break; 1717 default: 1718 break; 1719 } 1720 1721 /* these settings will always override what we currently have */ 1722 adapter->wol = 0; 1723 1724 if (wol->wolopts & WAKE_UCAST) 1725 adapter->wol |= E1000_WUFC_EX; 1726 if (wol->wolopts & WAKE_MCAST) 1727 adapter->wol |= E1000_WUFC_MC; 1728 if (wol->wolopts & WAKE_BCAST) 1729 adapter->wol |= E1000_WUFC_BC; 1730 if (wol->wolopts & WAKE_MAGIC) 1731 adapter->wol |= E1000_WUFC_MAG; 1732 1733 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1734 1735 return 0; 1736 } 1737 1738 static int e1000_set_phys_id(struct net_device *netdev, 1739 enum ethtool_phys_id_state state) 1740 { 1741 struct e1000_adapter *adapter = netdev_priv(netdev); 1742 struct e1000_hw *hw = &adapter->hw; 1743 1744 switch (state) { 1745 case ETHTOOL_ID_ACTIVE: 1746 e1000_setup_led(hw); 1747 return 2; 1748 1749 case ETHTOOL_ID_ON: 1750 e1000_led_on(hw); 1751 break; 1752 1753 case ETHTOOL_ID_OFF: 1754 e1000_led_off(hw); 1755 break; 1756 1757 case ETHTOOL_ID_INACTIVE: 1758 e1000_cleanup_led(hw); 1759 } 1760 1761 return 0; 1762 } 1763 1764 static int e1000_get_coalesce(struct net_device *netdev, 1765 struct ethtool_coalesce *ec) 1766 { 1767 struct e1000_adapter *adapter = netdev_priv(netdev); 1768 1769 if (adapter->hw.mac_type < e1000_82545) 1770 return -EOPNOTSUPP; 1771 1772 if (adapter->itr_setting <= 4) 1773 ec->rx_coalesce_usecs = adapter->itr_setting; 1774 else 1775 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1776 1777 return 0; 1778 } 1779 1780 static int e1000_set_coalesce(struct net_device *netdev, 1781 struct ethtool_coalesce *ec) 1782 { 1783 struct e1000_adapter *adapter = netdev_priv(netdev); 1784 struct e1000_hw *hw = &adapter->hw; 1785 1786 if (hw->mac_type < e1000_82545) 1787 return -EOPNOTSUPP; 1788 1789 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 1790 ((ec->rx_coalesce_usecs > 4) && 1791 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 1792 (ec->rx_coalesce_usecs == 2)) 1793 return -EINVAL; 1794 1795 if (ec->rx_coalesce_usecs == 4) { 1796 adapter->itr = adapter->itr_setting = 4; 1797 } else if (ec->rx_coalesce_usecs <= 3) { 1798 adapter->itr = 20000; 1799 adapter->itr_setting = ec->rx_coalesce_usecs; 1800 } else { 1801 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 1802 adapter->itr_setting = adapter->itr & ~3; 1803 } 1804 1805 if (adapter->itr_setting != 0) 1806 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1807 else 1808 ew32(ITR, 0); 1809 1810 return 0; 1811 } 1812 1813 static int e1000_nway_reset(struct net_device *netdev) 1814 { 1815 struct e1000_adapter *adapter = netdev_priv(netdev); 1816 1817 if (netif_running(netdev)) 1818 e1000_reinit_locked(adapter); 1819 return 0; 1820 } 1821 1822 static void e1000_get_ethtool_stats(struct net_device *netdev, 1823 struct ethtool_stats *stats, u64 *data) 1824 { 1825 struct e1000_adapter *adapter = netdev_priv(netdev); 1826 int i; 1827 char *p = NULL; 1828 const struct e1000_stats *stat = e1000_gstrings_stats; 1829 1830 e1000_update_stats(adapter); 1831 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1832 switch (stat->type) { 1833 case NETDEV_STATS: 1834 p = (char *)netdev + stat->stat_offset; 1835 break; 1836 case E1000_STATS: 1837 p = (char *)adapter + stat->stat_offset; 1838 break; 1839 default: 1840 WARN_ONCE(1, "Invalid E1000 stat type: %u index %d\n", 1841 stat->type, i); 1842 break; 1843 } 1844 1845 if (stat->sizeof_stat == sizeof(u64)) 1846 data[i] = *(u64 *)p; 1847 else 1848 data[i] = *(u32 *)p; 1849 1850 stat++; 1851 } 1852 /* BUG_ON(i != E1000_STATS_LEN); */ 1853 } 1854 1855 static void e1000_get_strings(struct net_device *netdev, u32 stringset, 1856 u8 *data) 1857 { 1858 u8 *p = data; 1859 int i; 1860 1861 switch (stringset) { 1862 case ETH_SS_TEST: 1863 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 1864 break; 1865 case ETH_SS_STATS: 1866 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1867 memcpy(p, e1000_gstrings_stats[i].stat_string, 1868 ETH_GSTRING_LEN); 1869 p += ETH_GSTRING_LEN; 1870 } 1871 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */ 1872 break; 1873 } 1874 } 1875 1876 static const struct ethtool_ops e1000_ethtool_ops = { 1877 .get_drvinfo = e1000_get_drvinfo, 1878 .get_regs_len = e1000_get_regs_len, 1879 .get_regs = e1000_get_regs, 1880 .get_wol = e1000_get_wol, 1881 .set_wol = e1000_set_wol, 1882 .get_msglevel = e1000_get_msglevel, 1883 .set_msglevel = e1000_set_msglevel, 1884 .nway_reset = e1000_nway_reset, 1885 .get_link = e1000_get_link, 1886 .get_eeprom_len = e1000_get_eeprom_len, 1887 .get_eeprom = e1000_get_eeprom, 1888 .set_eeprom = e1000_set_eeprom, 1889 .get_ringparam = e1000_get_ringparam, 1890 .set_ringparam = e1000_set_ringparam, 1891 .get_pauseparam = e1000_get_pauseparam, 1892 .set_pauseparam = e1000_set_pauseparam, 1893 .self_test = e1000_diag_test, 1894 .get_strings = e1000_get_strings, 1895 .set_phys_id = e1000_set_phys_id, 1896 .get_ethtool_stats = e1000_get_ethtool_stats, 1897 .get_sset_count = e1000_get_sset_count, 1898 .get_coalesce = e1000_get_coalesce, 1899 .set_coalesce = e1000_set_coalesce, 1900 .get_ts_info = ethtool_op_get_ts_info, 1901 .get_link_ksettings = e1000_get_link_ksettings, 1902 .set_link_ksettings = e1000_set_link_ksettings, 1903 }; 1904 1905 void e1000_set_ethtool_ops(struct net_device *netdev) 1906 { 1907 netdev->ethtool_ops = &e1000_ethtool_ops; 1908 } 1909