1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3 
4 /* ethtool support for e1000 */
5 
6 #include "e1000.h"
7 #include <linux/jiffies.h>
8 #include <linux/uaccess.h>
9 
10 enum {NETDEV_STATS, E1000_STATS};
11 
12 struct e1000_stats {
13 	char stat_string[ETH_GSTRING_LEN];
14 	int type;
15 	int sizeof_stat;
16 	int stat_offset;
17 };
18 
19 #define E1000_STAT(m)		E1000_STATS, \
20 				sizeof(((struct e1000_adapter *)0)->m), \
21 				offsetof(struct e1000_adapter, m)
22 #define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
23 				sizeof(((struct net_device *)0)->m), \
24 				offsetof(struct net_device, m)
25 
26 static const struct e1000_stats e1000_gstrings_stats[] = {
27 	{ "rx_packets", E1000_STAT(stats.gprc) },
28 	{ "tx_packets", E1000_STAT(stats.gptc) },
29 	{ "rx_bytes", E1000_STAT(stats.gorcl) },
30 	{ "tx_bytes", E1000_STAT(stats.gotcl) },
31 	{ "rx_broadcast", E1000_STAT(stats.bprc) },
32 	{ "tx_broadcast", E1000_STAT(stats.bptc) },
33 	{ "rx_multicast", E1000_STAT(stats.mprc) },
34 	{ "tx_multicast", E1000_STAT(stats.mptc) },
35 	{ "rx_errors", E1000_STAT(stats.rxerrc) },
36 	{ "tx_errors", E1000_STAT(stats.txerrc) },
37 	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
38 	{ "multicast", E1000_STAT(stats.mprc) },
39 	{ "collisions", E1000_STAT(stats.colc) },
40 	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
41 	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
42 	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
43 	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
44 	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
45 	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
46 	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
47 	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
48 	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
49 	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
50 	{ "tx_window_errors", E1000_STAT(stats.latecol) },
51 	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
52 	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
53 	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
54 	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
55 	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
56 	{ "tx_restart_queue", E1000_STAT(restart_queue) },
57 	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
58 	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
59 	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
60 	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
61 	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
62 	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
63 	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
64 	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
65 	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
66 	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
67 	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
68 	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
69 	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
70 	{ "tx_smbus", E1000_STAT(stats.mgptc) },
71 	{ "rx_smbus", E1000_STAT(stats.mgprc) },
72 	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
73 };
74 
75 #define E1000_QUEUE_STATS_LEN 0
76 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
77 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
78 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
79 	"Register test  (offline)", "Eeprom test    (offline)",
80 	"Interrupt test (offline)", "Loopback test  (offline)",
81 	"Link test   (on/offline)"
82 };
83 
84 #define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
85 
86 static int e1000_get_link_ksettings(struct net_device *netdev,
87 				    struct ethtool_link_ksettings *cmd)
88 {
89 	struct e1000_adapter *adapter = netdev_priv(netdev);
90 	struct e1000_hw *hw = &adapter->hw;
91 	u32 supported, advertising;
92 
93 	if (hw->media_type == e1000_media_type_copper) {
94 		supported = (SUPPORTED_10baseT_Half |
95 			     SUPPORTED_10baseT_Full |
96 			     SUPPORTED_100baseT_Half |
97 			     SUPPORTED_100baseT_Full |
98 			     SUPPORTED_1000baseT_Full|
99 			     SUPPORTED_Autoneg |
100 			     SUPPORTED_TP);
101 		advertising = ADVERTISED_TP;
102 
103 		if (hw->autoneg == 1) {
104 			advertising |= ADVERTISED_Autoneg;
105 			/* the e1000 autoneg seems to match ethtool nicely */
106 			advertising |= hw->autoneg_advertised;
107 		}
108 
109 		cmd->base.port = PORT_TP;
110 		cmd->base.phy_address = hw->phy_addr;
111 	} else {
112 		supported   = (SUPPORTED_1000baseT_Full |
113 			       SUPPORTED_FIBRE |
114 			       SUPPORTED_Autoneg);
115 
116 		advertising = (ADVERTISED_1000baseT_Full |
117 			       ADVERTISED_FIBRE |
118 			       ADVERTISED_Autoneg);
119 
120 		cmd->base.port = PORT_FIBRE;
121 	}
122 
123 	if (er32(STATUS) & E1000_STATUS_LU) {
124 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
125 					   &adapter->link_duplex);
126 		cmd->base.speed = adapter->link_speed;
127 
128 		/* unfortunately FULL_DUPLEX != DUPLEX_FULL
129 		 * and HALF_DUPLEX != DUPLEX_HALF
130 		 */
131 		if (adapter->link_duplex == FULL_DUPLEX)
132 			cmd->base.duplex = DUPLEX_FULL;
133 		else
134 			cmd->base.duplex = DUPLEX_HALF;
135 	} else {
136 		cmd->base.speed = SPEED_UNKNOWN;
137 		cmd->base.duplex = DUPLEX_UNKNOWN;
138 	}
139 
140 	cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
141 			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
142 
143 	/* MDI-X => 1; MDI => 0 */
144 	if ((hw->media_type == e1000_media_type_copper) &&
145 	    netif_carrier_ok(netdev))
146 		cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
147 				     ETH_TP_MDI_X : ETH_TP_MDI);
148 	else
149 		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
150 
151 	if (hw->mdix == AUTO_ALL_MODES)
152 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
153 	else
154 		cmd->base.eth_tp_mdix_ctrl = hw->mdix;
155 
156 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
157 						supported);
158 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
159 						advertising);
160 
161 	return 0;
162 }
163 
164 static int e1000_set_link_ksettings(struct net_device *netdev,
165 				    const struct ethtool_link_ksettings *cmd)
166 {
167 	struct e1000_adapter *adapter = netdev_priv(netdev);
168 	struct e1000_hw *hw = &adapter->hw;
169 	u32 advertising;
170 
171 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
172 						cmd->link_modes.advertising);
173 
174 	/* MDI setting is only allowed when autoneg enabled because
175 	 * some hardware doesn't allow MDI setting when speed or
176 	 * duplex is forced.
177 	 */
178 	if (cmd->base.eth_tp_mdix_ctrl) {
179 		if (hw->media_type != e1000_media_type_copper)
180 			return -EOPNOTSUPP;
181 
182 		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
183 		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
184 			e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
185 			return -EINVAL;
186 		}
187 	}
188 
189 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
190 		msleep(1);
191 
192 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
193 		hw->autoneg = 1;
194 		if (hw->media_type == e1000_media_type_fiber)
195 			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
196 						 ADVERTISED_FIBRE |
197 						 ADVERTISED_Autoneg;
198 		else
199 			hw->autoneg_advertised = advertising |
200 						 ADVERTISED_TP |
201 						 ADVERTISED_Autoneg;
202 	} else {
203 		u32 speed = cmd->base.speed;
204 		/* calling this overrides forced MDI setting */
205 		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
206 			clear_bit(__E1000_RESETTING, &adapter->flags);
207 			return -EINVAL;
208 		}
209 	}
210 
211 	/* MDI-X => 2; MDI => 1; Auto => 3 */
212 	if (cmd->base.eth_tp_mdix_ctrl) {
213 		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
214 			hw->mdix = AUTO_ALL_MODES;
215 		else
216 			hw->mdix = cmd->base.eth_tp_mdix_ctrl;
217 	}
218 
219 	/* reset the link */
220 
221 	if (netif_running(adapter->netdev)) {
222 		e1000_down(adapter);
223 		e1000_up(adapter);
224 	} else {
225 		e1000_reset(adapter);
226 	}
227 	clear_bit(__E1000_RESETTING, &adapter->flags);
228 	return 0;
229 }
230 
231 static u32 e1000_get_link(struct net_device *netdev)
232 {
233 	struct e1000_adapter *adapter = netdev_priv(netdev);
234 
235 	/* If the link is not reported up to netdev, interrupts are disabled,
236 	 * and so the physical link state may have changed since we last
237 	 * looked. Set get_link_status to make sure that the true link
238 	 * state is interrogated, rather than pulling a cached and possibly
239 	 * stale link state from the driver.
240 	 */
241 	if (!netif_carrier_ok(netdev))
242 		adapter->hw.get_link_status = 1;
243 
244 	return e1000_has_link(adapter);
245 }
246 
247 static void e1000_get_pauseparam(struct net_device *netdev,
248 				 struct ethtool_pauseparam *pause)
249 {
250 	struct e1000_adapter *adapter = netdev_priv(netdev);
251 	struct e1000_hw *hw = &adapter->hw;
252 
253 	pause->autoneg =
254 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
255 
256 	if (hw->fc == E1000_FC_RX_PAUSE) {
257 		pause->rx_pause = 1;
258 	} else if (hw->fc == E1000_FC_TX_PAUSE) {
259 		pause->tx_pause = 1;
260 	} else if (hw->fc == E1000_FC_FULL) {
261 		pause->rx_pause = 1;
262 		pause->tx_pause = 1;
263 	}
264 }
265 
266 static int e1000_set_pauseparam(struct net_device *netdev,
267 				struct ethtool_pauseparam *pause)
268 {
269 	struct e1000_adapter *adapter = netdev_priv(netdev);
270 	struct e1000_hw *hw = &adapter->hw;
271 	int retval = 0;
272 
273 	adapter->fc_autoneg = pause->autoneg;
274 
275 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
276 		msleep(1);
277 
278 	if (pause->rx_pause && pause->tx_pause)
279 		hw->fc = E1000_FC_FULL;
280 	else if (pause->rx_pause && !pause->tx_pause)
281 		hw->fc = E1000_FC_RX_PAUSE;
282 	else if (!pause->rx_pause && pause->tx_pause)
283 		hw->fc = E1000_FC_TX_PAUSE;
284 	else if (!pause->rx_pause && !pause->tx_pause)
285 		hw->fc = E1000_FC_NONE;
286 
287 	hw->original_fc = hw->fc;
288 
289 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
290 		if (netif_running(adapter->netdev)) {
291 			e1000_down(adapter);
292 			e1000_up(adapter);
293 		} else {
294 			e1000_reset(adapter);
295 		}
296 	} else
297 		retval = ((hw->media_type == e1000_media_type_fiber) ?
298 			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
299 
300 	clear_bit(__E1000_RESETTING, &adapter->flags);
301 	return retval;
302 }
303 
304 static u32 e1000_get_msglevel(struct net_device *netdev)
305 {
306 	struct e1000_adapter *adapter = netdev_priv(netdev);
307 
308 	return adapter->msg_enable;
309 }
310 
311 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
312 {
313 	struct e1000_adapter *adapter = netdev_priv(netdev);
314 
315 	adapter->msg_enable = data;
316 }
317 
318 static int e1000_get_regs_len(struct net_device *netdev)
319 {
320 #define E1000_REGS_LEN 32
321 	return E1000_REGS_LEN * sizeof(u32);
322 }
323 
324 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
325 			   void *p)
326 {
327 	struct e1000_adapter *adapter = netdev_priv(netdev);
328 	struct e1000_hw *hw = &adapter->hw;
329 	u32 *regs_buff = p;
330 	u16 phy_data;
331 
332 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
333 
334 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
335 
336 	regs_buff[0]  = er32(CTRL);
337 	regs_buff[1]  = er32(STATUS);
338 
339 	regs_buff[2]  = er32(RCTL);
340 	regs_buff[3]  = er32(RDLEN);
341 	regs_buff[4]  = er32(RDH);
342 	regs_buff[5]  = er32(RDT);
343 	regs_buff[6]  = er32(RDTR);
344 
345 	regs_buff[7]  = er32(TCTL);
346 	regs_buff[8]  = er32(TDLEN);
347 	regs_buff[9]  = er32(TDH);
348 	regs_buff[10] = er32(TDT);
349 	regs_buff[11] = er32(TIDV);
350 
351 	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
352 	if (hw->phy_type == e1000_phy_igp) {
353 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
354 				    IGP01E1000_PHY_AGC_A);
355 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
356 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
357 		regs_buff[13] = (u32)phy_data; /* cable length */
358 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
359 				    IGP01E1000_PHY_AGC_B);
360 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
361 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
362 		regs_buff[14] = (u32)phy_data; /* cable length */
363 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
364 				    IGP01E1000_PHY_AGC_C);
365 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
366 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
367 		regs_buff[15] = (u32)phy_data; /* cable length */
368 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
369 				    IGP01E1000_PHY_AGC_D);
370 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
371 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
372 		regs_buff[16] = (u32)phy_data; /* cable length */
373 		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
374 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
375 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
376 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
377 		regs_buff[18] = (u32)phy_data; /* cable polarity */
378 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
379 				    IGP01E1000_PHY_PCS_INIT_REG);
380 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
381 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
382 		regs_buff[19] = (u32)phy_data; /* cable polarity */
383 		regs_buff[20] = 0; /* polarity correction enabled (always) */
384 		regs_buff[22] = 0; /* phy receive errors (unavailable) */
385 		regs_buff[23] = regs_buff[18]; /* mdix mode */
386 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
387 	} else {
388 		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
389 		regs_buff[13] = (u32)phy_data; /* cable length */
390 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
391 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
392 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
393 		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
394 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
395 		regs_buff[18] = regs_buff[13]; /* cable polarity */
396 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
397 		regs_buff[20] = regs_buff[17]; /* polarity correction */
398 		/* phy receive errors */
399 		regs_buff[22] = adapter->phy_stats.receive_errors;
400 		regs_buff[23] = regs_buff[13]; /* mdix mode */
401 	}
402 	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
403 	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
404 	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
405 	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
406 	if (hw->mac_type >= e1000_82540 &&
407 	    hw->media_type == e1000_media_type_copper) {
408 		regs_buff[26] = er32(MANC);
409 	}
410 }
411 
412 static int e1000_get_eeprom_len(struct net_device *netdev)
413 {
414 	struct e1000_adapter *adapter = netdev_priv(netdev);
415 	struct e1000_hw *hw = &adapter->hw;
416 
417 	return hw->eeprom.word_size * 2;
418 }
419 
420 static int e1000_get_eeprom(struct net_device *netdev,
421 			    struct ethtool_eeprom *eeprom, u8 *bytes)
422 {
423 	struct e1000_adapter *adapter = netdev_priv(netdev);
424 	struct e1000_hw *hw = &adapter->hw;
425 	u16 *eeprom_buff;
426 	int first_word, last_word;
427 	int ret_val = 0;
428 	u16 i;
429 
430 	if (eeprom->len == 0)
431 		return -EINVAL;
432 
433 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
434 
435 	first_word = eeprom->offset >> 1;
436 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
437 
438 	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
439 				    GFP_KERNEL);
440 	if (!eeprom_buff)
441 		return -ENOMEM;
442 
443 	if (hw->eeprom.type == e1000_eeprom_spi)
444 		ret_val = e1000_read_eeprom(hw, first_word,
445 					    last_word - first_word + 1,
446 					    eeprom_buff);
447 	else {
448 		for (i = 0; i < last_word - first_word + 1; i++) {
449 			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
450 						    &eeprom_buff[i]);
451 			if (ret_val)
452 				break;
453 		}
454 	}
455 
456 	/* Device's eeprom is always little-endian, word addressable */
457 	for (i = 0; i < last_word - first_word + 1; i++)
458 		le16_to_cpus(&eeprom_buff[i]);
459 
460 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
461 	       eeprom->len);
462 	kfree(eeprom_buff);
463 
464 	return ret_val;
465 }
466 
467 static int e1000_set_eeprom(struct net_device *netdev,
468 			    struct ethtool_eeprom *eeprom, u8 *bytes)
469 {
470 	struct e1000_adapter *adapter = netdev_priv(netdev);
471 	struct e1000_hw *hw = &adapter->hw;
472 	u16 *eeprom_buff;
473 	void *ptr;
474 	int max_len, first_word, last_word, ret_val = 0;
475 	u16 i;
476 
477 	if (eeprom->len == 0)
478 		return -EOPNOTSUPP;
479 
480 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
481 		return -EFAULT;
482 
483 	max_len = hw->eeprom.word_size * 2;
484 
485 	first_word = eeprom->offset >> 1;
486 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
487 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
488 	if (!eeprom_buff)
489 		return -ENOMEM;
490 
491 	ptr = (void *)eeprom_buff;
492 
493 	if (eeprom->offset & 1) {
494 		/* need read/modify/write of first changed EEPROM word
495 		 * only the second byte of the word is being modified
496 		 */
497 		ret_val = e1000_read_eeprom(hw, first_word, 1,
498 					    &eeprom_buff[0]);
499 		ptr++;
500 	}
501 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
502 		/* need read/modify/write of last changed EEPROM word
503 		 * only the first byte of the word is being modified
504 		 */
505 		ret_val = e1000_read_eeprom(hw, last_word, 1,
506 					    &eeprom_buff[last_word - first_word]);
507 	}
508 
509 	/* Device's eeprom is always little-endian, word addressable */
510 	for (i = 0; i < last_word - first_word + 1; i++)
511 		le16_to_cpus(&eeprom_buff[i]);
512 
513 	memcpy(ptr, bytes, eeprom->len);
514 
515 	for (i = 0; i < last_word - first_word + 1; i++)
516 		cpu_to_le16s(&eeprom_buff[i]);
517 
518 	ret_val = e1000_write_eeprom(hw, first_word,
519 				     last_word - first_word + 1, eeprom_buff);
520 
521 	/* Update the checksum over the first part of the EEPROM if needed */
522 	if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
523 		e1000_update_eeprom_checksum(hw);
524 
525 	kfree(eeprom_buff);
526 	return ret_val;
527 }
528 
529 static void e1000_get_drvinfo(struct net_device *netdev,
530 			      struct ethtool_drvinfo *drvinfo)
531 {
532 	struct e1000_adapter *adapter = netdev_priv(netdev);
533 
534 	strlcpy(drvinfo->driver,  e1000_driver_name,
535 		sizeof(drvinfo->driver));
536 
537 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
538 		sizeof(drvinfo->bus_info));
539 }
540 
541 static void e1000_get_ringparam(struct net_device *netdev,
542 				struct ethtool_ringparam *ring,
543 				struct kernel_ethtool_ringparam *kernel_ring,
544 				struct netlink_ext_ack *extack)
545 {
546 	struct e1000_adapter *adapter = netdev_priv(netdev);
547 	struct e1000_hw *hw = &adapter->hw;
548 	e1000_mac_type mac_type = hw->mac_type;
549 	struct e1000_tx_ring *txdr = adapter->tx_ring;
550 	struct e1000_rx_ring *rxdr = adapter->rx_ring;
551 
552 	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
553 		E1000_MAX_82544_RXD;
554 	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
555 		E1000_MAX_82544_TXD;
556 	ring->rx_pending = rxdr->count;
557 	ring->tx_pending = txdr->count;
558 }
559 
560 static int e1000_set_ringparam(struct net_device *netdev,
561 			       struct ethtool_ringparam *ring,
562 			       struct kernel_ethtool_ringparam *kernel_ring,
563 			       struct netlink_ext_ack *extack)
564 {
565 	struct e1000_adapter *adapter = netdev_priv(netdev);
566 	struct e1000_hw *hw = &adapter->hw;
567 	e1000_mac_type mac_type = hw->mac_type;
568 	struct e1000_tx_ring *txdr, *tx_old;
569 	struct e1000_rx_ring *rxdr, *rx_old;
570 	int i, err;
571 
572 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
573 		return -EINVAL;
574 
575 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
576 		msleep(1);
577 
578 	if (netif_running(adapter->netdev))
579 		e1000_down(adapter);
580 
581 	tx_old = adapter->tx_ring;
582 	rx_old = adapter->rx_ring;
583 
584 	err = -ENOMEM;
585 	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
586 		       GFP_KERNEL);
587 	if (!txdr)
588 		goto err_alloc_tx;
589 
590 	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
591 		       GFP_KERNEL);
592 	if (!rxdr)
593 		goto err_alloc_rx;
594 
595 	adapter->tx_ring = txdr;
596 	adapter->rx_ring = rxdr;
597 
598 	rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
599 	rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
600 			  E1000_MAX_RXD : E1000_MAX_82544_RXD));
601 	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
602 	txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
603 	txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
604 			  E1000_MAX_TXD : E1000_MAX_82544_TXD));
605 	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
606 
607 	for (i = 0; i < adapter->num_tx_queues; i++)
608 		txdr[i].count = txdr->count;
609 	for (i = 0; i < adapter->num_rx_queues; i++)
610 		rxdr[i].count = rxdr->count;
611 
612 	err = 0;
613 	if (netif_running(adapter->netdev)) {
614 		/* Try to get new resources before deleting old */
615 		err = e1000_setup_all_rx_resources(adapter);
616 		if (err)
617 			goto err_setup_rx;
618 		err = e1000_setup_all_tx_resources(adapter);
619 		if (err)
620 			goto err_setup_tx;
621 
622 		/* save the new, restore the old in order to free it,
623 		 * then restore the new back again
624 		 */
625 
626 		adapter->rx_ring = rx_old;
627 		adapter->tx_ring = tx_old;
628 		e1000_free_all_rx_resources(adapter);
629 		e1000_free_all_tx_resources(adapter);
630 		adapter->rx_ring = rxdr;
631 		adapter->tx_ring = txdr;
632 		err = e1000_up(adapter);
633 	}
634 	kfree(tx_old);
635 	kfree(rx_old);
636 
637 	clear_bit(__E1000_RESETTING, &adapter->flags);
638 	return err;
639 
640 err_setup_tx:
641 	e1000_free_all_rx_resources(adapter);
642 err_setup_rx:
643 	adapter->rx_ring = rx_old;
644 	adapter->tx_ring = tx_old;
645 	kfree(rxdr);
646 err_alloc_rx:
647 	kfree(txdr);
648 err_alloc_tx:
649 	if (netif_running(adapter->netdev))
650 		e1000_up(adapter);
651 	clear_bit(__E1000_RESETTING, &adapter->flags);
652 	return err;
653 }
654 
655 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
656 			     u32 mask, u32 write)
657 {
658 	struct e1000_hw *hw = &adapter->hw;
659 	static const u32 test[] = {
660 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
661 	};
662 	u8 __iomem *address = hw->hw_addr + reg;
663 	u32 read;
664 	int i;
665 
666 	for (i = 0; i < ARRAY_SIZE(test); i++) {
667 		writel(write & test[i], address);
668 		read = readl(address);
669 		if (read != (write & test[i] & mask)) {
670 			e_err(drv, "pattern test reg %04X failed: "
671 			      "got 0x%08X expected 0x%08X\n",
672 			      reg, read, (write & test[i] & mask));
673 			*data = reg;
674 			return true;
675 		}
676 	}
677 	return false;
678 }
679 
680 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
681 			      u32 mask, u32 write)
682 {
683 	struct e1000_hw *hw = &adapter->hw;
684 	u8 __iomem *address = hw->hw_addr + reg;
685 	u32 read;
686 
687 	writel(write & mask, address);
688 	read = readl(address);
689 	if ((read & mask) != (write & mask)) {
690 		e_err(drv, "set/check reg %04X test failed: "
691 		      "got 0x%08X expected 0x%08X\n",
692 		      reg, (read & mask), (write & mask));
693 		*data = reg;
694 		return true;
695 	}
696 	return false;
697 }
698 
699 #define REG_PATTERN_TEST(reg, mask, write)			     \
700 	do {							     \
701 		if (reg_pattern_test(adapter, data,		     \
702 			     (hw->mac_type >= e1000_82543)   \
703 			     ? E1000_##reg : E1000_82542_##reg,	     \
704 			     mask, write))			     \
705 			return 1;				     \
706 	} while (0)
707 
708 #define REG_SET_AND_CHECK(reg, mask, write)			     \
709 	do {							     \
710 		if (reg_set_and_check(adapter, data,		     \
711 			      (hw->mac_type >= e1000_82543)  \
712 			      ? E1000_##reg : E1000_82542_##reg,     \
713 			      mask, write))			     \
714 			return 1;				     \
715 	} while (0)
716 
717 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
718 {
719 	u32 value, before, after;
720 	u32 i, toggle;
721 	struct e1000_hw *hw = &adapter->hw;
722 
723 	/* The status register is Read Only, so a write should fail.
724 	 * Some bits that get toggled are ignored.
725 	 */
726 
727 	/* there are several bits on newer hardware that are r/w */
728 	toggle = 0xFFFFF833;
729 
730 	before = er32(STATUS);
731 	value = (er32(STATUS) & toggle);
732 	ew32(STATUS, toggle);
733 	after = er32(STATUS) & toggle;
734 	if (value != after) {
735 		e_err(drv, "failed STATUS register test got: "
736 		      "0x%08X expected: 0x%08X\n", after, value);
737 		*data = 1;
738 		return 1;
739 	}
740 	/* restore previous status */
741 	ew32(STATUS, before);
742 
743 	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
744 	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
745 	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
746 	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
747 
748 	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
749 	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
750 	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
751 	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
752 	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
753 	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
754 	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
755 	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
756 	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
757 	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
758 
759 	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
760 
761 	before = 0x06DFB3FE;
762 	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
763 	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
764 
765 	if (hw->mac_type >= e1000_82543) {
766 		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
767 		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
768 		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
769 		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
770 		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
771 		value = E1000_RAR_ENTRIES;
772 		for (i = 0; i < value; i++) {
773 			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
774 					 0x8003FFFF, 0xFFFFFFFF);
775 		}
776 	} else {
777 		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
778 		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
779 		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
780 		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
781 	}
782 
783 	value = E1000_MC_TBL_SIZE;
784 	for (i = 0; i < value; i++)
785 		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
786 
787 	*data = 0;
788 	return 0;
789 }
790 
791 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
792 {
793 	struct e1000_hw *hw = &adapter->hw;
794 	u16 temp;
795 	u16 checksum = 0;
796 	u16 i;
797 
798 	*data = 0;
799 	/* Read and add up the contents of the EEPROM */
800 	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
801 		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
802 			*data = 1;
803 			break;
804 		}
805 		checksum += temp;
806 	}
807 
808 	/* If Checksum is not Correct return error else test passed */
809 	if ((checksum != (u16)EEPROM_SUM) && !(*data))
810 		*data = 2;
811 
812 	return *data;
813 }
814 
815 static irqreturn_t e1000_test_intr(int irq, void *data)
816 {
817 	struct net_device *netdev = (struct net_device *)data;
818 	struct e1000_adapter *adapter = netdev_priv(netdev);
819 	struct e1000_hw *hw = &adapter->hw;
820 
821 	adapter->test_icr |= er32(ICR);
822 
823 	return IRQ_HANDLED;
824 }
825 
826 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
827 {
828 	struct net_device *netdev = adapter->netdev;
829 	u32 mask, i = 0;
830 	bool shared_int = true;
831 	u32 irq = adapter->pdev->irq;
832 	struct e1000_hw *hw = &adapter->hw;
833 
834 	*data = 0;
835 
836 	/* NOTE: we don't test MSI interrupts here, yet
837 	 * Hook up test interrupt handler just for this test
838 	 */
839 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
840 			 netdev))
841 		shared_int = false;
842 	else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
843 			     netdev->name, netdev)) {
844 		*data = 1;
845 		return -1;
846 	}
847 	e_info(hw, "testing %s interrupt\n", (shared_int ?
848 	       "shared" : "unshared"));
849 
850 	/* Disable all the interrupts */
851 	ew32(IMC, 0xFFFFFFFF);
852 	E1000_WRITE_FLUSH();
853 	msleep(10);
854 
855 	/* Test each interrupt */
856 	for (; i < 10; i++) {
857 		/* Interrupt to test */
858 		mask = 1 << i;
859 
860 		if (!shared_int) {
861 			/* Disable the interrupt to be reported in
862 			 * the cause register and then force the same
863 			 * interrupt and see if one gets posted.  If
864 			 * an interrupt was posted to the bus, the
865 			 * test failed.
866 			 */
867 			adapter->test_icr = 0;
868 			ew32(IMC, mask);
869 			ew32(ICS, mask);
870 			E1000_WRITE_FLUSH();
871 			msleep(10);
872 
873 			if (adapter->test_icr & mask) {
874 				*data = 3;
875 				break;
876 			}
877 		}
878 
879 		/* Enable the interrupt to be reported in
880 		 * the cause register and then force the same
881 		 * interrupt and see if one gets posted.  If
882 		 * an interrupt was not posted to the bus, the
883 		 * test failed.
884 		 */
885 		adapter->test_icr = 0;
886 		ew32(IMS, mask);
887 		ew32(ICS, mask);
888 		E1000_WRITE_FLUSH();
889 		msleep(10);
890 
891 		if (!(adapter->test_icr & mask)) {
892 			*data = 4;
893 			break;
894 		}
895 
896 		if (!shared_int) {
897 			/* Disable the other interrupts to be reported in
898 			 * the cause register and then force the other
899 			 * interrupts and see if any get posted.  If
900 			 * an interrupt was posted to the bus, the
901 			 * test failed.
902 			 */
903 			adapter->test_icr = 0;
904 			ew32(IMC, ~mask & 0x00007FFF);
905 			ew32(ICS, ~mask & 0x00007FFF);
906 			E1000_WRITE_FLUSH();
907 			msleep(10);
908 
909 			if (adapter->test_icr) {
910 				*data = 5;
911 				break;
912 			}
913 		}
914 	}
915 
916 	/* Disable all the interrupts */
917 	ew32(IMC, 0xFFFFFFFF);
918 	E1000_WRITE_FLUSH();
919 	msleep(10);
920 
921 	/* Unhook test interrupt handler */
922 	free_irq(irq, netdev);
923 
924 	return *data;
925 }
926 
927 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
928 {
929 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
930 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
931 	struct pci_dev *pdev = adapter->pdev;
932 	int i;
933 
934 	if (txdr->desc && txdr->buffer_info) {
935 		for (i = 0; i < txdr->count; i++) {
936 			if (txdr->buffer_info[i].dma)
937 				dma_unmap_single(&pdev->dev,
938 						 txdr->buffer_info[i].dma,
939 						 txdr->buffer_info[i].length,
940 						 DMA_TO_DEVICE);
941 			dev_kfree_skb(txdr->buffer_info[i].skb);
942 		}
943 	}
944 
945 	if (rxdr->desc && rxdr->buffer_info) {
946 		for (i = 0; i < rxdr->count; i++) {
947 			if (rxdr->buffer_info[i].dma)
948 				dma_unmap_single(&pdev->dev,
949 						 rxdr->buffer_info[i].dma,
950 						 E1000_RXBUFFER_2048,
951 						 DMA_FROM_DEVICE);
952 			kfree(rxdr->buffer_info[i].rxbuf.data);
953 		}
954 	}
955 
956 	if (txdr->desc) {
957 		dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
958 				  txdr->dma);
959 		txdr->desc = NULL;
960 	}
961 	if (rxdr->desc) {
962 		dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
963 				  rxdr->dma);
964 		rxdr->desc = NULL;
965 	}
966 
967 	kfree(txdr->buffer_info);
968 	txdr->buffer_info = NULL;
969 	kfree(rxdr->buffer_info);
970 	rxdr->buffer_info = NULL;
971 }
972 
973 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
974 {
975 	struct e1000_hw *hw = &adapter->hw;
976 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
977 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
978 	struct pci_dev *pdev = adapter->pdev;
979 	u32 rctl;
980 	int i, ret_val;
981 
982 	/* Setup Tx descriptor ring and Tx buffers */
983 
984 	if (!txdr->count)
985 		txdr->count = E1000_DEFAULT_TXD;
986 
987 	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
988 				    GFP_KERNEL);
989 	if (!txdr->buffer_info) {
990 		ret_val = 1;
991 		goto err_nomem;
992 	}
993 
994 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
995 	txdr->size = ALIGN(txdr->size, 4096);
996 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
997 					GFP_KERNEL);
998 	if (!txdr->desc) {
999 		ret_val = 2;
1000 		goto err_nomem;
1001 	}
1002 	txdr->next_to_use = txdr->next_to_clean = 0;
1003 
1004 	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1005 	ew32(TDBAH, ((u64)txdr->dma >> 32));
1006 	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1007 	ew32(TDH, 0);
1008 	ew32(TDT, 0);
1009 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1010 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1011 	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1012 
1013 	for (i = 0; i < txdr->count; i++) {
1014 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1015 		struct sk_buff *skb;
1016 		unsigned int size = 1024;
1017 
1018 		skb = alloc_skb(size, GFP_KERNEL);
1019 		if (!skb) {
1020 			ret_val = 3;
1021 			goto err_nomem;
1022 		}
1023 		skb_put(skb, size);
1024 		txdr->buffer_info[i].skb = skb;
1025 		txdr->buffer_info[i].length = skb->len;
1026 		txdr->buffer_info[i].dma =
1027 			dma_map_single(&pdev->dev, skb->data, skb->len,
1028 				       DMA_TO_DEVICE);
1029 		if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1030 			ret_val = 4;
1031 			goto err_nomem;
1032 		}
1033 		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1034 		tx_desc->lower.data = cpu_to_le32(skb->len);
1035 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1036 						   E1000_TXD_CMD_IFCS |
1037 						   E1000_TXD_CMD_RPS);
1038 		tx_desc->upper.data = 0;
1039 	}
1040 
1041 	/* Setup Rx descriptor ring and Rx buffers */
1042 
1043 	if (!rxdr->count)
1044 		rxdr->count = E1000_DEFAULT_RXD;
1045 
1046 	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1047 				    GFP_KERNEL);
1048 	if (!rxdr->buffer_info) {
1049 		ret_val = 5;
1050 		goto err_nomem;
1051 	}
1052 
1053 	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1054 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1055 					GFP_KERNEL);
1056 	if (!rxdr->desc) {
1057 		ret_val = 6;
1058 		goto err_nomem;
1059 	}
1060 	rxdr->next_to_use = rxdr->next_to_clean = 0;
1061 
1062 	rctl = er32(RCTL);
1063 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1064 	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1065 	ew32(RDBAH, ((u64)rxdr->dma >> 32));
1066 	ew32(RDLEN, rxdr->size);
1067 	ew32(RDH, 0);
1068 	ew32(RDT, 0);
1069 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1070 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1071 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1072 	ew32(RCTL, rctl);
1073 
1074 	for (i = 0; i < rxdr->count; i++) {
1075 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1076 		u8 *buf;
1077 
1078 		buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1079 			      GFP_KERNEL);
1080 		if (!buf) {
1081 			ret_val = 7;
1082 			goto err_nomem;
1083 		}
1084 		rxdr->buffer_info[i].rxbuf.data = buf;
1085 
1086 		rxdr->buffer_info[i].dma =
1087 			dma_map_single(&pdev->dev,
1088 				       buf + NET_SKB_PAD + NET_IP_ALIGN,
1089 				       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1090 		if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1091 			ret_val = 8;
1092 			goto err_nomem;
1093 		}
1094 		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1095 	}
1096 
1097 	return 0;
1098 
1099 err_nomem:
1100 	e1000_free_desc_rings(adapter);
1101 	return ret_val;
1102 }
1103 
1104 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1105 {
1106 	struct e1000_hw *hw = &adapter->hw;
1107 
1108 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1109 	e1000_write_phy_reg(hw, 29, 0x001F);
1110 	e1000_write_phy_reg(hw, 30, 0x8FFC);
1111 	e1000_write_phy_reg(hw, 29, 0x001A);
1112 	e1000_write_phy_reg(hw, 30, 0x8FF0);
1113 }
1114 
1115 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1116 {
1117 	struct e1000_hw *hw = &adapter->hw;
1118 	u16 phy_reg;
1119 
1120 	/* Because we reset the PHY above, we need to re-force TX_CLK in the
1121 	 * Extended PHY Specific Control Register to 25MHz clock.  This
1122 	 * value defaults back to a 2.5MHz clock when the PHY is reset.
1123 	 */
1124 	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1125 	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1126 	e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1127 
1128 	/* In addition, because of the s/w reset above, we need to enable
1129 	 * CRS on TX.  This must be set for both full and half duplex
1130 	 * operation.
1131 	 */
1132 	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1133 	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1134 	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1135 }
1136 
1137 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1138 {
1139 	struct e1000_hw *hw = &adapter->hw;
1140 	u32 ctrl_reg;
1141 	u16 phy_reg;
1142 
1143 	/* Setup the Device Control Register for PHY loopback test. */
1144 
1145 	ctrl_reg = er32(CTRL);
1146 	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
1147 		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
1148 		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
1149 		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
1150 		     E1000_CTRL_FD);		/* Force Duplex to FULL */
1151 
1152 	ew32(CTRL, ctrl_reg);
1153 
1154 	/* Read the PHY Specific Control Register (0x10) */
1155 	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1156 
1157 	/* Clear Auto-Crossover bits in PHY Specific Control Register
1158 	 * (bits 6:5).
1159 	 */
1160 	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1161 	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1162 
1163 	/* Perform software reset on the PHY */
1164 	e1000_phy_reset(hw);
1165 
1166 	/* Have to setup TX_CLK and TX_CRS after software reset */
1167 	e1000_phy_reset_clk_and_crs(adapter);
1168 
1169 	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1170 
1171 	/* Wait for reset to complete. */
1172 	udelay(500);
1173 
1174 	/* Have to setup TX_CLK and TX_CRS after software reset */
1175 	e1000_phy_reset_clk_and_crs(adapter);
1176 
1177 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1178 	e1000_phy_disable_receiver(adapter);
1179 
1180 	/* Set the loopback bit in the PHY control register. */
1181 	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1182 	phy_reg |= MII_CR_LOOPBACK;
1183 	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1184 
1185 	/* Setup TX_CLK and TX_CRS one more time. */
1186 	e1000_phy_reset_clk_and_crs(adapter);
1187 
1188 	/* Check Phy Configuration */
1189 	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1190 	if (phy_reg != 0x4100)
1191 		return 9;
1192 
1193 	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1194 	if (phy_reg != 0x0070)
1195 		return 10;
1196 
1197 	e1000_read_phy_reg(hw, 29, &phy_reg);
1198 	if (phy_reg != 0x001A)
1199 		return 11;
1200 
1201 	return 0;
1202 }
1203 
1204 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1205 {
1206 	struct e1000_hw *hw = &adapter->hw;
1207 	u32 ctrl_reg = 0;
1208 	u32 stat_reg = 0;
1209 
1210 	hw->autoneg = false;
1211 
1212 	if (hw->phy_type == e1000_phy_m88) {
1213 		/* Auto-MDI/MDIX Off */
1214 		e1000_write_phy_reg(hw,
1215 				    M88E1000_PHY_SPEC_CTRL, 0x0808);
1216 		/* reset to update Auto-MDI/MDIX */
1217 		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1218 		/* autoneg off */
1219 		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1220 	}
1221 
1222 	ctrl_reg = er32(CTRL);
1223 
1224 	/* force 1000, set loopback */
1225 	e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1226 
1227 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1228 	ctrl_reg = er32(CTRL);
1229 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1230 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1231 			E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1232 			E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1233 			E1000_CTRL_FD); /* Force Duplex to FULL */
1234 
1235 	if (hw->media_type == e1000_media_type_copper &&
1236 	    hw->phy_type == e1000_phy_m88)
1237 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1238 	else {
1239 		/* Set the ILOS bit on the fiber Nic is half
1240 		 * duplex link is detected.
1241 		 */
1242 		stat_reg = er32(STATUS);
1243 		if ((stat_reg & E1000_STATUS_FD) == 0)
1244 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1245 	}
1246 
1247 	ew32(CTRL, ctrl_reg);
1248 
1249 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1250 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1251 	 */
1252 	if (hw->phy_type == e1000_phy_m88)
1253 		e1000_phy_disable_receiver(adapter);
1254 
1255 	udelay(500);
1256 
1257 	return 0;
1258 }
1259 
1260 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1261 {
1262 	struct e1000_hw *hw = &adapter->hw;
1263 	u16 phy_reg = 0;
1264 	u16 count = 0;
1265 
1266 	switch (hw->mac_type) {
1267 	case e1000_82543:
1268 		if (hw->media_type == e1000_media_type_copper) {
1269 			/* Attempt to setup Loopback mode on Non-integrated PHY.
1270 			 * Some PHY registers get corrupted at random, so
1271 			 * attempt this 10 times.
1272 			 */
1273 			while (e1000_nonintegrated_phy_loopback(adapter) &&
1274 			       count++ < 10);
1275 			if (count < 11)
1276 				return 0;
1277 		}
1278 		break;
1279 
1280 	case e1000_82544:
1281 	case e1000_82540:
1282 	case e1000_82545:
1283 	case e1000_82545_rev_3:
1284 	case e1000_82546:
1285 	case e1000_82546_rev_3:
1286 	case e1000_82541:
1287 	case e1000_82541_rev_2:
1288 	case e1000_82547:
1289 	case e1000_82547_rev_2:
1290 		return e1000_integrated_phy_loopback(adapter);
1291 	default:
1292 		/* Default PHY loopback work is to read the MII
1293 		 * control register and assert bit 14 (loopback mode).
1294 		 */
1295 		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1296 		phy_reg |= MII_CR_LOOPBACK;
1297 		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1298 		return 0;
1299 	}
1300 
1301 	return 8;
1302 }
1303 
1304 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1305 {
1306 	struct e1000_hw *hw = &adapter->hw;
1307 	u32 rctl;
1308 
1309 	if (hw->media_type == e1000_media_type_fiber ||
1310 	    hw->media_type == e1000_media_type_internal_serdes) {
1311 		switch (hw->mac_type) {
1312 		case e1000_82545:
1313 		case e1000_82546:
1314 		case e1000_82545_rev_3:
1315 		case e1000_82546_rev_3:
1316 			return e1000_set_phy_loopback(adapter);
1317 		default:
1318 			rctl = er32(RCTL);
1319 			rctl |= E1000_RCTL_LBM_TCVR;
1320 			ew32(RCTL, rctl);
1321 			return 0;
1322 		}
1323 	} else if (hw->media_type == e1000_media_type_copper) {
1324 		return e1000_set_phy_loopback(adapter);
1325 	}
1326 
1327 	return 7;
1328 }
1329 
1330 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1331 {
1332 	struct e1000_hw *hw = &adapter->hw;
1333 	u32 rctl;
1334 	u16 phy_reg;
1335 
1336 	rctl = er32(RCTL);
1337 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1338 	ew32(RCTL, rctl);
1339 
1340 	switch (hw->mac_type) {
1341 	case e1000_82545:
1342 	case e1000_82546:
1343 	case e1000_82545_rev_3:
1344 	case e1000_82546_rev_3:
1345 	default:
1346 		hw->autoneg = true;
1347 		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1348 		if (phy_reg & MII_CR_LOOPBACK) {
1349 			phy_reg &= ~MII_CR_LOOPBACK;
1350 			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1351 			e1000_phy_reset(hw);
1352 		}
1353 		break;
1354 	}
1355 }
1356 
1357 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1358 				      unsigned int frame_size)
1359 {
1360 	memset(skb->data, 0xFF, frame_size);
1361 	frame_size &= ~1;
1362 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1363 	skb->data[frame_size / 2 + 10] = 0xBE;
1364 	skb->data[frame_size / 2 + 12] = 0xAF;
1365 }
1366 
1367 static int e1000_check_lbtest_frame(const unsigned char *data,
1368 				    unsigned int frame_size)
1369 {
1370 	frame_size &= ~1;
1371 	if (*(data + 3) == 0xFF) {
1372 		if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1373 		    (*(data + frame_size / 2 + 12) == 0xAF)) {
1374 			return 0;
1375 		}
1376 	}
1377 	return 13;
1378 }
1379 
1380 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1381 {
1382 	struct e1000_hw *hw = &adapter->hw;
1383 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1384 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1385 	struct pci_dev *pdev = adapter->pdev;
1386 	int i, j, k, l, lc, good_cnt, ret_val = 0;
1387 	unsigned long time;
1388 
1389 	ew32(RDT, rxdr->count - 1);
1390 
1391 	/* Calculate the loop count based on the largest descriptor ring
1392 	 * The idea is to wrap the largest ring a number of times using 64
1393 	 * send/receive pairs during each loop
1394 	 */
1395 
1396 	if (rxdr->count <= txdr->count)
1397 		lc = ((txdr->count / 64) * 2) + 1;
1398 	else
1399 		lc = ((rxdr->count / 64) * 2) + 1;
1400 
1401 	k = l = 0;
1402 	for (j = 0; j <= lc; j++) { /* loop count loop */
1403 		for (i = 0; i < 64; i++) { /* send the packets */
1404 			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1405 						  1024);
1406 			dma_sync_single_for_device(&pdev->dev,
1407 						   txdr->buffer_info[k].dma,
1408 						   txdr->buffer_info[k].length,
1409 						   DMA_TO_DEVICE);
1410 			if (unlikely(++k == txdr->count))
1411 				k = 0;
1412 		}
1413 		ew32(TDT, k);
1414 		E1000_WRITE_FLUSH();
1415 		msleep(200);
1416 		time = jiffies; /* set the start time for the receive */
1417 		good_cnt = 0;
1418 		do { /* receive the sent packets */
1419 			dma_sync_single_for_cpu(&pdev->dev,
1420 						rxdr->buffer_info[l].dma,
1421 						E1000_RXBUFFER_2048,
1422 						DMA_FROM_DEVICE);
1423 
1424 			ret_val = e1000_check_lbtest_frame(
1425 					rxdr->buffer_info[l].rxbuf.data +
1426 					NET_SKB_PAD + NET_IP_ALIGN,
1427 					1024);
1428 			if (!ret_val)
1429 				good_cnt++;
1430 			if (unlikely(++l == rxdr->count))
1431 				l = 0;
1432 			/* time + 20 msecs (200 msecs on 2.4) is more than
1433 			 * enough time to complete the receives, if it's
1434 			 * exceeded, break and error off
1435 			 */
1436 		} while (good_cnt < 64 && time_after(time + 20, jiffies));
1437 
1438 		if (good_cnt != 64) {
1439 			ret_val = 13; /* ret_val is the same as mis-compare */
1440 			break;
1441 		}
1442 		if (time_after_eq(jiffies, time + 2)) {
1443 			ret_val = 14; /* error code for time out error */
1444 			break;
1445 		}
1446 	} /* end loop count loop */
1447 	return ret_val;
1448 }
1449 
1450 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1451 {
1452 	*data = e1000_setup_desc_rings(adapter);
1453 	if (*data)
1454 		goto out;
1455 	*data = e1000_setup_loopback_test(adapter);
1456 	if (*data)
1457 		goto err_loopback;
1458 	*data = e1000_run_loopback_test(adapter);
1459 	e1000_loopback_cleanup(adapter);
1460 
1461 err_loopback:
1462 	e1000_free_desc_rings(adapter);
1463 out:
1464 	return *data;
1465 }
1466 
1467 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1468 {
1469 	struct e1000_hw *hw = &adapter->hw;
1470 	*data = 0;
1471 	if (hw->media_type == e1000_media_type_internal_serdes) {
1472 		int i = 0;
1473 
1474 		hw->serdes_has_link = false;
1475 
1476 		/* On some blade server designs, link establishment
1477 		 * could take as long as 2-3 minutes
1478 		 */
1479 		do {
1480 			e1000_check_for_link(hw);
1481 			if (hw->serdes_has_link)
1482 				return *data;
1483 			msleep(20);
1484 		} while (i++ < 3750);
1485 
1486 		*data = 1;
1487 	} else {
1488 		e1000_check_for_link(hw);
1489 		if (hw->autoneg)  /* if auto_neg is set wait for it */
1490 			msleep(4000);
1491 
1492 		if (!(er32(STATUS) & E1000_STATUS_LU))
1493 			*data = 1;
1494 	}
1495 	return *data;
1496 }
1497 
1498 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1499 {
1500 	switch (sset) {
1501 	case ETH_SS_TEST:
1502 		return E1000_TEST_LEN;
1503 	case ETH_SS_STATS:
1504 		return E1000_STATS_LEN;
1505 	default:
1506 		return -EOPNOTSUPP;
1507 	}
1508 }
1509 
1510 static void e1000_diag_test(struct net_device *netdev,
1511 			    struct ethtool_test *eth_test, u64 *data)
1512 {
1513 	struct e1000_adapter *adapter = netdev_priv(netdev);
1514 	struct e1000_hw *hw = &adapter->hw;
1515 	bool if_running = netif_running(netdev);
1516 
1517 	set_bit(__E1000_TESTING, &adapter->flags);
1518 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1519 		/* Offline tests */
1520 
1521 		/* save speed, duplex, autoneg settings */
1522 		u16 autoneg_advertised = hw->autoneg_advertised;
1523 		u8 forced_speed_duplex = hw->forced_speed_duplex;
1524 		u8 autoneg = hw->autoneg;
1525 
1526 		e_info(hw, "offline testing starting\n");
1527 
1528 		/* Link test performed before hardware reset so autoneg doesn't
1529 		 * interfere with test result
1530 		 */
1531 		if (e1000_link_test(adapter, &data[4]))
1532 			eth_test->flags |= ETH_TEST_FL_FAILED;
1533 
1534 		if (if_running)
1535 			/* indicate we're in test mode */
1536 			e1000_close(netdev);
1537 		else
1538 			e1000_reset(adapter);
1539 
1540 		if (e1000_reg_test(adapter, &data[0]))
1541 			eth_test->flags |= ETH_TEST_FL_FAILED;
1542 
1543 		e1000_reset(adapter);
1544 		if (e1000_eeprom_test(adapter, &data[1]))
1545 			eth_test->flags |= ETH_TEST_FL_FAILED;
1546 
1547 		e1000_reset(adapter);
1548 		if (e1000_intr_test(adapter, &data[2]))
1549 			eth_test->flags |= ETH_TEST_FL_FAILED;
1550 
1551 		e1000_reset(adapter);
1552 		/* make sure the phy is powered up */
1553 		e1000_power_up_phy(adapter);
1554 		if (e1000_loopback_test(adapter, &data[3]))
1555 			eth_test->flags |= ETH_TEST_FL_FAILED;
1556 
1557 		/* restore speed, duplex, autoneg settings */
1558 		hw->autoneg_advertised = autoneg_advertised;
1559 		hw->forced_speed_duplex = forced_speed_duplex;
1560 		hw->autoneg = autoneg;
1561 
1562 		e1000_reset(adapter);
1563 		clear_bit(__E1000_TESTING, &adapter->flags);
1564 		if (if_running)
1565 			e1000_open(netdev);
1566 	} else {
1567 		e_info(hw, "online testing starting\n");
1568 		/* Online tests */
1569 		if (e1000_link_test(adapter, &data[4]))
1570 			eth_test->flags |= ETH_TEST_FL_FAILED;
1571 
1572 		/* Online tests aren't run; pass by default */
1573 		data[0] = 0;
1574 		data[1] = 0;
1575 		data[2] = 0;
1576 		data[3] = 0;
1577 
1578 		clear_bit(__E1000_TESTING, &adapter->flags);
1579 	}
1580 	msleep_interruptible(4 * 1000);
1581 }
1582 
1583 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1584 			       struct ethtool_wolinfo *wol)
1585 {
1586 	struct e1000_hw *hw = &adapter->hw;
1587 	int retval = 1; /* fail by default */
1588 
1589 	switch (hw->device_id) {
1590 	case E1000_DEV_ID_82542:
1591 	case E1000_DEV_ID_82543GC_FIBER:
1592 	case E1000_DEV_ID_82543GC_COPPER:
1593 	case E1000_DEV_ID_82544EI_FIBER:
1594 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1595 	case E1000_DEV_ID_82545EM_FIBER:
1596 	case E1000_DEV_ID_82545EM_COPPER:
1597 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1598 	case E1000_DEV_ID_82546GB_PCIE:
1599 		/* these don't support WoL at all */
1600 		wol->supported = 0;
1601 		break;
1602 	case E1000_DEV_ID_82546EB_FIBER:
1603 	case E1000_DEV_ID_82546GB_FIBER:
1604 		/* Wake events not supported on port B */
1605 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1606 			wol->supported = 0;
1607 			break;
1608 		}
1609 		/* return success for non excluded adapter ports */
1610 		retval = 0;
1611 		break;
1612 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1613 		/* quad port adapters only support WoL on port A */
1614 		if (!adapter->quad_port_a) {
1615 			wol->supported = 0;
1616 			break;
1617 		}
1618 		/* return success for non excluded adapter ports */
1619 		retval = 0;
1620 		break;
1621 	default:
1622 		/* dual port cards only support WoL on port A from now on
1623 		 * unless it was enabled in the eeprom for port B
1624 		 * so exclude FUNC_1 ports from having WoL enabled
1625 		 */
1626 		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1627 		    !adapter->eeprom_wol) {
1628 			wol->supported = 0;
1629 			break;
1630 		}
1631 
1632 		retval = 0;
1633 	}
1634 
1635 	return retval;
1636 }
1637 
1638 static void e1000_get_wol(struct net_device *netdev,
1639 			  struct ethtool_wolinfo *wol)
1640 {
1641 	struct e1000_adapter *adapter = netdev_priv(netdev);
1642 	struct e1000_hw *hw = &adapter->hw;
1643 
1644 	wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1645 	wol->wolopts = 0;
1646 
1647 	/* this function will set ->supported = 0 and return 1 if wol is not
1648 	 * supported by this hardware
1649 	 */
1650 	if (e1000_wol_exclusion(adapter, wol) ||
1651 	    !device_can_wakeup(&adapter->pdev->dev))
1652 		return;
1653 
1654 	/* apply any specific unsupported masks here */
1655 	switch (hw->device_id) {
1656 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1657 		/* KSP3 does not support UCAST wake-ups */
1658 		wol->supported &= ~WAKE_UCAST;
1659 
1660 		if (adapter->wol & E1000_WUFC_EX)
1661 			e_err(drv, "Interface does not support directed "
1662 			      "(unicast) frame wake-up packets\n");
1663 		break;
1664 	default:
1665 		break;
1666 	}
1667 
1668 	if (adapter->wol & E1000_WUFC_EX)
1669 		wol->wolopts |= WAKE_UCAST;
1670 	if (adapter->wol & E1000_WUFC_MC)
1671 		wol->wolopts |= WAKE_MCAST;
1672 	if (adapter->wol & E1000_WUFC_BC)
1673 		wol->wolopts |= WAKE_BCAST;
1674 	if (adapter->wol & E1000_WUFC_MAG)
1675 		wol->wolopts |= WAKE_MAGIC;
1676 }
1677 
1678 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1679 {
1680 	struct e1000_adapter *adapter = netdev_priv(netdev);
1681 	struct e1000_hw *hw = &adapter->hw;
1682 
1683 	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1684 		return -EOPNOTSUPP;
1685 
1686 	if (e1000_wol_exclusion(adapter, wol) ||
1687 	    !device_can_wakeup(&adapter->pdev->dev))
1688 		return wol->wolopts ? -EOPNOTSUPP : 0;
1689 
1690 	switch (hw->device_id) {
1691 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1692 		if (wol->wolopts & WAKE_UCAST) {
1693 			e_err(drv, "Interface does not support directed "
1694 			      "(unicast) frame wake-up packets\n");
1695 			return -EOPNOTSUPP;
1696 		}
1697 		break;
1698 	default:
1699 		break;
1700 	}
1701 
1702 	/* these settings will always override what we currently have */
1703 	adapter->wol = 0;
1704 
1705 	if (wol->wolopts & WAKE_UCAST)
1706 		adapter->wol |= E1000_WUFC_EX;
1707 	if (wol->wolopts & WAKE_MCAST)
1708 		adapter->wol |= E1000_WUFC_MC;
1709 	if (wol->wolopts & WAKE_BCAST)
1710 		adapter->wol |= E1000_WUFC_BC;
1711 	if (wol->wolopts & WAKE_MAGIC)
1712 		adapter->wol |= E1000_WUFC_MAG;
1713 
1714 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1715 
1716 	return 0;
1717 }
1718 
1719 static int e1000_set_phys_id(struct net_device *netdev,
1720 			     enum ethtool_phys_id_state state)
1721 {
1722 	struct e1000_adapter *adapter = netdev_priv(netdev);
1723 	struct e1000_hw *hw = &adapter->hw;
1724 
1725 	switch (state) {
1726 	case ETHTOOL_ID_ACTIVE:
1727 		e1000_setup_led(hw);
1728 		return 2;
1729 
1730 	case ETHTOOL_ID_ON:
1731 		e1000_led_on(hw);
1732 		break;
1733 
1734 	case ETHTOOL_ID_OFF:
1735 		e1000_led_off(hw);
1736 		break;
1737 
1738 	case ETHTOOL_ID_INACTIVE:
1739 		e1000_cleanup_led(hw);
1740 	}
1741 
1742 	return 0;
1743 }
1744 
1745 static int e1000_get_coalesce(struct net_device *netdev,
1746 			      struct ethtool_coalesce *ec,
1747 			      struct kernel_ethtool_coalesce *kernel_coal,
1748 			      struct netlink_ext_ack *extack)
1749 {
1750 	struct e1000_adapter *adapter = netdev_priv(netdev);
1751 
1752 	if (adapter->hw.mac_type < e1000_82545)
1753 		return -EOPNOTSUPP;
1754 
1755 	if (adapter->itr_setting <= 4)
1756 		ec->rx_coalesce_usecs = adapter->itr_setting;
1757 	else
1758 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1759 
1760 	return 0;
1761 }
1762 
1763 static int e1000_set_coalesce(struct net_device *netdev,
1764 			      struct ethtool_coalesce *ec,
1765 			      struct kernel_ethtool_coalesce *kernel_coal,
1766 			      struct netlink_ext_ack *extack)
1767 {
1768 	struct e1000_adapter *adapter = netdev_priv(netdev);
1769 	struct e1000_hw *hw = &adapter->hw;
1770 
1771 	if (hw->mac_type < e1000_82545)
1772 		return -EOPNOTSUPP;
1773 
1774 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1775 	    ((ec->rx_coalesce_usecs > 4) &&
1776 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1777 	    (ec->rx_coalesce_usecs == 2))
1778 		return -EINVAL;
1779 
1780 	if (ec->rx_coalesce_usecs == 4) {
1781 		adapter->itr = adapter->itr_setting = 4;
1782 	} else if (ec->rx_coalesce_usecs <= 3) {
1783 		adapter->itr = 20000;
1784 		adapter->itr_setting = ec->rx_coalesce_usecs;
1785 	} else {
1786 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1787 		adapter->itr_setting = adapter->itr & ~3;
1788 	}
1789 
1790 	if (adapter->itr_setting != 0)
1791 		ew32(ITR, 1000000000 / (adapter->itr * 256));
1792 	else
1793 		ew32(ITR, 0);
1794 
1795 	return 0;
1796 }
1797 
1798 static int e1000_nway_reset(struct net_device *netdev)
1799 {
1800 	struct e1000_adapter *adapter = netdev_priv(netdev);
1801 
1802 	if (netif_running(netdev))
1803 		e1000_reinit_locked(adapter);
1804 	return 0;
1805 }
1806 
1807 static void e1000_get_ethtool_stats(struct net_device *netdev,
1808 				    struct ethtool_stats *stats, u64 *data)
1809 {
1810 	struct e1000_adapter *adapter = netdev_priv(netdev);
1811 	int i;
1812 	const struct e1000_stats *stat = e1000_gstrings_stats;
1813 
1814 	e1000_update_stats(adapter);
1815 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) {
1816 		char *p;
1817 
1818 		switch (stat->type) {
1819 		case NETDEV_STATS:
1820 			p = (char *)netdev + stat->stat_offset;
1821 			break;
1822 		case E1000_STATS:
1823 			p = (char *)adapter + stat->stat_offset;
1824 			break;
1825 		default:
1826 			netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n",
1827 					 stat->type, i);
1828 			continue;
1829 		}
1830 
1831 		if (stat->sizeof_stat == sizeof(u64))
1832 			data[i] = *(u64 *)p;
1833 		else
1834 			data[i] = *(u32 *)p;
1835 	}
1836 /* BUG_ON(i != E1000_STATS_LEN); */
1837 }
1838 
1839 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1840 			      u8 *data)
1841 {
1842 	u8 *p = data;
1843 	int i;
1844 
1845 	switch (stringset) {
1846 	case ETH_SS_TEST:
1847 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1848 		break;
1849 	case ETH_SS_STATS:
1850 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1851 			memcpy(p, e1000_gstrings_stats[i].stat_string,
1852 			       ETH_GSTRING_LEN);
1853 			p += ETH_GSTRING_LEN;
1854 		}
1855 		/* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1856 		break;
1857 	}
1858 }
1859 
1860 static const struct ethtool_ops e1000_ethtool_ops = {
1861 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
1862 	.get_drvinfo		= e1000_get_drvinfo,
1863 	.get_regs_len		= e1000_get_regs_len,
1864 	.get_regs		= e1000_get_regs,
1865 	.get_wol		= e1000_get_wol,
1866 	.set_wol		= e1000_set_wol,
1867 	.get_msglevel		= e1000_get_msglevel,
1868 	.set_msglevel		= e1000_set_msglevel,
1869 	.nway_reset		= e1000_nway_reset,
1870 	.get_link		= e1000_get_link,
1871 	.get_eeprom_len		= e1000_get_eeprom_len,
1872 	.get_eeprom		= e1000_get_eeprom,
1873 	.set_eeprom		= e1000_set_eeprom,
1874 	.get_ringparam		= e1000_get_ringparam,
1875 	.set_ringparam		= e1000_set_ringparam,
1876 	.get_pauseparam		= e1000_get_pauseparam,
1877 	.set_pauseparam		= e1000_set_pauseparam,
1878 	.self_test		= e1000_diag_test,
1879 	.get_strings		= e1000_get_strings,
1880 	.set_phys_id		= e1000_set_phys_id,
1881 	.get_ethtool_stats	= e1000_get_ethtool_stats,
1882 	.get_sset_count		= e1000_get_sset_count,
1883 	.get_coalesce		= e1000_get_coalesce,
1884 	.set_coalesce		= e1000_set_coalesce,
1885 	.get_ts_info		= ethtool_op_get_ts_info,
1886 	.get_link_ksettings	= e1000_get_link_ksettings,
1887 	.set_link_ksettings	= e1000_set_link_ksettings,
1888 };
1889 
1890 void e1000_set_ethtool_ops(struct net_device *netdev)
1891 {
1892 	netdev->ethtool_ops = &e1000_ethtool_ops;
1893 }
1894