1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /* ethtool support for e1000 */
30 
31 #include "e1000.h"
32 #include <asm/uaccess.h>
33 
34 enum {NETDEV_STATS, E1000_STATS};
35 
36 struct e1000_stats {
37 	char stat_string[ETH_GSTRING_LEN];
38 	int type;
39 	int sizeof_stat;
40 	int stat_offset;
41 };
42 
43 #define E1000_STAT(m)		E1000_STATS, \
44 				sizeof(((struct e1000_adapter *)0)->m), \
45 		      		offsetof(struct e1000_adapter, m)
46 #define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
47 				sizeof(((struct net_device *)0)->m), \
48 				offsetof(struct net_device, m)
49 
50 static const struct e1000_stats e1000_gstrings_stats[] = {
51 	{ "rx_packets", E1000_STAT(stats.gprc) },
52 	{ "tx_packets", E1000_STAT(stats.gptc) },
53 	{ "rx_bytes", E1000_STAT(stats.gorcl) },
54 	{ "tx_bytes", E1000_STAT(stats.gotcl) },
55 	{ "rx_broadcast", E1000_STAT(stats.bprc) },
56 	{ "tx_broadcast", E1000_STAT(stats.bptc) },
57 	{ "rx_multicast", E1000_STAT(stats.mprc) },
58 	{ "tx_multicast", E1000_STAT(stats.mptc) },
59 	{ "rx_errors", E1000_STAT(stats.rxerrc) },
60 	{ "tx_errors", E1000_STAT(stats.txerrc) },
61 	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
62 	{ "multicast", E1000_STAT(stats.mprc) },
63 	{ "collisions", E1000_STAT(stats.colc) },
64 	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
65 	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
66 	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
67 	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
68 	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
69 	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
70 	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
71 	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
72 	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
73 	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
74 	{ "tx_window_errors", E1000_STAT(stats.latecol) },
75 	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
76 	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
77 	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
78 	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
79 	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
80 	{ "tx_restart_queue", E1000_STAT(restart_queue) },
81 	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
82 	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
83 	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
84 	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
85 	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
86 	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
87 	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
88 	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
89 	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
90 	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
91 	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
92 	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
93 	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
94 	{ "tx_smbus", E1000_STAT(stats.mgptc) },
95 	{ "rx_smbus", E1000_STAT(stats.mgprc) },
96 	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
97 };
98 
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103 	"Register test  (offline)", "Eeprom test    (offline)",
104 	"Interrupt test (offline)", "Loopback test  (offline)",
105 	"Link test   (on/offline)"
106 };
107 #define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
108 
109 static int e1000_get_settings(struct net_device *netdev,
110 			      struct ethtool_cmd *ecmd)
111 {
112 	struct e1000_adapter *adapter = netdev_priv(netdev);
113 	struct e1000_hw *hw = &adapter->hw;
114 
115 	if (hw->media_type == e1000_media_type_copper) {
116 
117 		ecmd->supported = (SUPPORTED_10baseT_Half |
118 				   SUPPORTED_10baseT_Full |
119 				   SUPPORTED_100baseT_Half |
120 				   SUPPORTED_100baseT_Full |
121 				   SUPPORTED_1000baseT_Full|
122 				   SUPPORTED_Autoneg |
123 				   SUPPORTED_TP);
124 		ecmd->advertising = ADVERTISED_TP;
125 
126 		if (hw->autoneg == 1) {
127 			ecmd->advertising |= ADVERTISED_Autoneg;
128 			/* the e1000 autoneg seems to match ethtool nicely */
129 			ecmd->advertising |= hw->autoneg_advertised;
130 		}
131 
132 		ecmd->port = PORT_TP;
133 		ecmd->phy_address = hw->phy_addr;
134 
135 		if (hw->mac_type == e1000_82543)
136 			ecmd->transceiver = XCVR_EXTERNAL;
137 		else
138 			ecmd->transceiver = XCVR_INTERNAL;
139 
140 	} else {
141 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
142 				     SUPPORTED_FIBRE |
143 				     SUPPORTED_Autoneg);
144 
145 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
146 				     ADVERTISED_FIBRE |
147 				     ADVERTISED_Autoneg);
148 
149 		ecmd->port = PORT_FIBRE;
150 
151 		if (hw->mac_type >= e1000_82545)
152 			ecmd->transceiver = XCVR_INTERNAL;
153 		else
154 			ecmd->transceiver = XCVR_EXTERNAL;
155 	}
156 
157 	if (er32(STATUS) & E1000_STATUS_LU) {
158 
159 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
160 		                                   &adapter->link_duplex);
161 		ethtool_cmd_speed_set(ecmd, adapter->link_speed);
162 
163 		/* unfortunately FULL_DUPLEX != DUPLEX_FULL
164 		 * and HALF_DUPLEX != DUPLEX_HALF
165 		 */
166 		if (adapter->link_duplex == FULL_DUPLEX)
167 			ecmd->duplex = DUPLEX_FULL;
168 		else
169 			ecmd->duplex = DUPLEX_HALF;
170 	} else {
171 		ethtool_cmd_speed_set(ecmd, -1);
172 		ecmd->duplex = -1;
173 	}
174 
175 	ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
176 			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
177 
178 	/* MDI-X => 1; MDI => 0 */
179 	if ((hw->media_type == e1000_media_type_copper) &&
180 	    netif_carrier_ok(netdev))
181 		ecmd->eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
182 				     ETH_TP_MDI_X : ETH_TP_MDI);
183 	else
184 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
185 
186 	if (hw->mdix == AUTO_ALL_MODES)
187 		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
188 	else
189 		ecmd->eth_tp_mdix_ctrl = hw->mdix;
190 	return 0;
191 }
192 
193 static int e1000_set_settings(struct net_device *netdev,
194 			      struct ethtool_cmd *ecmd)
195 {
196 	struct e1000_adapter *adapter = netdev_priv(netdev);
197 	struct e1000_hw *hw = &adapter->hw;
198 
199 	/* MDI setting is only allowed when autoneg enabled because
200 	 * some hardware doesn't allow MDI setting when speed or
201 	 * duplex is forced.
202 	 */
203 	if (ecmd->eth_tp_mdix_ctrl) {
204 		if (hw->media_type != e1000_media_type_copper)
205 			return -EOPNOTSUPP;
206 
207 		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
208 		    (ecmd->autoneg != AUTONEG_ENABLE)) {
209 			e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
210 			return -EINVAL;
211 		}
212 	}
213 
214 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
215 		msleep(1);
216 
217 	if (ecmd->autoneg == AUTONEG_ENABLE) {
218 		hw->autoneg = 1;
219 		if (hw->media_type == e1000_media_type_fiber)
220 			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
221 				     ADVERTISED_FIBRE |
222 				     ADVERTISED_Autoneg;
223 		else
224 			hw->autoneg_advertised = ecmd->advertising |
225 						 ADVERTISED_TP |
226 						 ADVERTISED_Autoneg;
227 		ecmd->advertising = hw->autoneg_advertised;
228 	} else {
229 		u32 speed = ethtool_cmd_speed(ecmd);
230 		/* calling this overrides forced MDI setting */
231 		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
232 			clear_bit(__E1000_RESETTING, &adapter->flags);
233 			return -EINVAL;
234 		}
235 	}
236 
237 	/* MDI-X => 2; MDI => 1; Auto => 3 */
238 	if (ecmd->eth_tp_mdix_ctrl) {
239 		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
240 			hw->mdix = AUTO_ALL_MODES;
241 		else
242 			hw->mdix = ecmd->eth_tp_mdix_ctrl;
243 	}
244 
245 	/* reset the link */
246 
247 	if (netif_running(adapter->netdev)) {
248 		e1000_down(adapter);
249 		e1000_up(adapter);
250 	} else
251 		e1000_reset(adapter);
252 
253 	clear_bit(__E1000_RESETTING, &adapter->flags);
254 	return 0;
255 }
256 
257 static u32 e1000_get_link(struct net_device *netdev)
258 {
259 	struct e1000_adapter *adapter = netdev_priv(netdev);
260 
261 	/* If the link is not reported up to netdev, interrupts are disabled,
262 	 * and so the physical link state may have changed since we last
263 	 * looked. Set get_link_status to make sure that the true link
264 	 * state is interrogated, rather than pulling a cached and possibly
265 	 * stale link state from the driver.
266 	 */
267 	if (!netif_carrier_ok(netdev))
268 		adapter->hw.get_link_status = 1;
269 
270 	return e1000_has_link(adapter);
271 }
272 
273 static void e1000_get_pauseparam(struct net_device *netdev,
274 				 struct ethtool_pauseparam *pause)
275 {
276 	struct e1000_adapter *adapter = netdev_priv(netdev);
277 	struct e1000_hw *hw = &adapter->hw;
278 
279 	pause->autoneg =
280 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
281 
282 	if (hw->fc == E1000_FC_RX_PAUSE)
283 		pause->rx_pause = 1;
284 	else if (hw->fc == E1000_FC_TX_PAUSE)
285 		pause->tx_pause = 1;
286 	else if (hw->fc == E1000_FC_FULL) {
287 		pause->rx_pause = 1;
288 		pause->tx_pause = 1;
289 	}
290 }
291 
292 static int e1000_set_pauseparam(struct net_device *netdev,
293 				struct ethtool_pauseparam *pause)
294 {
295 	struct e1000_adapter *adapter = netdev_priv(netdev);
296 	struct e1000_hw *hw = &adapter->hw;
297 	int retval = 0;
298 
299 	adapter->fc_autoneg = pause->autoneg;
300 
301 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
302 		msleep(1);
303 
304 	if (pause->rx_pause && pause->tx_pause)
305 		hw->fc = E1000_FC_FULL;
306 	else if (pause->rx_pause && !pause->tx_pause)
307 		hw->fc = E1000_FC_RX_PAUSE;
308 	else if (!pause->rx_pause && pause->tx_pause)
309 		hw->fc = E1000_FC_TX_PAUSE;
310 	else if (!pause->rx_pause && !pause->tx_pause)
311 		hw->fc = E1000_FC_NONE;
312 
313 	hw->original_fc = hw->fc;
314 
315 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
316 		if (netif_running(adapter->netdev)) {
317 			e1000_down(adapter);
318 			e1000_up(adapter);
319 		} else
320 			e1000_reset(adapter);
321 	} else
322 		retval = ((hw->media_type == e1000_media_type_fiber) ?
323 			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
324 
325 	clear_bit(__E1000_RESETTING, &adapter->flags);
326 	return retval;
327 }
328 
329 static u32 e1000_get_msglevel(struct net_device *netdev)
330 {
331 	struct e1000_adapter *adapter = netdev_priv(netdev);
332 	return adapter->msg_enable;
333 }
334 
335 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
336 {
337 	struct e1000_adapter *adapter = netdev_priv(netdev);
338 	adapter->msg_enable = data;
339 }
340 
341 static int e1000_get_regs_len(struct net_device *netdev)
342 {
343 #define E1000_REGS_LEN 32
344 	return E1000_REGS_LEN * sizeof(u32);
345 }
346 
347 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
348 			   void *p)
349 {
350 	struct e1000_adapter *adapter = netdev_priv(netdev);
351 	struct e1000_hw *hw = &adapter->hw;
352 	u32 *regs_buff = p;
353 	u16 phy_data;
354 
355 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
356 
357 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
358 
359 	regs_buff[0]  = er32(CTRL);
360 	regs_buff[1]  = er32(STATUS);
361 
362 	regs_buff[2]  = er32(RCTL);
363 	regs_buff[3]  = er32(RDLEN);
364 	regs_buff[4]  = er32(RDH);
365 	regs_buff[5]  = er32(RDT);
366 	regs_buff[6]  = er32(RDTR);
367 
368 	regs_buff[7]  = er32(TCTL);
369 	regs_buff[8]  = er32(TDLEN);
370 	regs_buff[9]  = er32(TDH);
371 	regs_buff[10] = er32(TDT);
372 	regs_buff[11] = er32(TIDV);
373 
374 	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
375 	if (hw->phy_type == e1000_phy_igp) {
376 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
377 				    IGP01E1000_PHY_AGC_A);
378 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
379 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
380 		regs_buff[13] = (u32)phy_data; /* cable length */
381 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
382 				    IGP01E1000_PHY_AGC_B);
383 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
384 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
385 		regs_buff[14] = (u32)phy_data; /* cable length */
386 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
387 				    IGP01E1000_PHY_AGC_C);
388 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
389 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
390 		regs_buff[15] = (u32)phy_data; /* cable length */
391 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
392 				    IGP01E1000_PHY_AGC_D);
393 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
394 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
395 		regs_buff[16] = (u32)phy_data; /* cable length */
396 		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
397 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
398 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
399 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
400 		regs_buff[18] = (u32)phy_data; /* cable polarity */
401 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
402 				    IGP01E1000_PHY_PCS_INIT_REG);
403 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
404 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
405 		regs_buff[19] = (u32)phy_data; /* cable polarity */
406 		regs_buff[20] = 0; /* polarity correction enabled (always) */
407 		regs_buff[22] = 0; /* phy receive errors (unavailable) */
408 		regs_buff[23] = regs_buff[18]; /* mdix mode */
409 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
410 	} else {
411 		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
412 		regs_buff[13] = (u32)phy_data; /* cable length */
413 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
414 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
415 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
416 		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
417 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
418 		regs_buff[18] = regs_buff[13]; /* cable polarity */
419 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
420 		regs_buff[20] = regs_buff[17]; /* polarity correction */
421 		/* phy receive errors */
422 		regs_buff[22] = adapter->phy_stats.receive_errors;
423 		regs_buff[23] = regs_buff[13]; /* mdix mode */
424 	}
425 	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
426 	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
427 	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
428 	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
429 	if (hw->mac_type >= e1000_82540 &&
430 	    hw->media_type == e1000_media_type_copper) {
431 		regs_buff[26] = er32(MANC);
432 	}
433 }
434 
435 static int e1000_get_eeprom_len(struct net_device *netdev)
436 {
437 	struct e1000_adapter *adapter = netdev_priv(netdev);
438 	struct e1000_hw *hw = &adapter->hw;
439 
440 	return hw->eeprom.word_size * 2;
441 }
442 
443 static int e1000_get_eeprom(struct net_device *netdev,
444 			    struct ethtool_eeprom *eeprom, u8 *bytes)
445 {
446 	struct e1000_adapter *adapter = netdev_priv(netdev);
447 	struct e1000_hw *hw = &adapter->hw;
448 	u16 *eeprom_buff;
449 	int first_word, last_word;
450 	int ret_val = 0;
451 	u16 i;
452 
453 	if (eeprom->len == 0)
454 		return -EINVAL;
455 
456 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
457 
458 	first_word = eeprom->offset >> 1;
459 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
460 
461 	eeprom_buff = kmalloc(sizeof(u16) *
462 			(last_word - first_word + 1), GFP_KERNEL);
463 	if (!eeprom_buff)
464 		return -ENOMEM;
465 
466 	if (hw->eeprom.type == e1000_eeprom_spi)
467 		ret_val = e1000_read_eeprom(hw, first_word,
468 					    last_word - first_word + 1,
469 					    eeprom_buff);
470 	else {
471 		for (i = 0; i < last_word - first_word + 1; i++) {
472 			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
473 						    &eeprom_buff[i]);
474 			if (ret_val)
475 				break;
476 		}
477 	}
478 
479 	/* Device's eeprom is always little-endian, word addressable */
480 	for (i = 0; i < last_word - first_word + 1; i++)
481 		le16_to_cpus(&eeprom_buff[i]);
482 
483 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
484 	       eeprom->len);
485 	kfree(eeprom_buff);
486 
487 	return ret_val;
488 }
489 
490 static int e1000_set_eeprom(struct net_device *netdev,
491 			    struct ethtool_eeprom *eeprom, u8 *bytes)
492 {
493 	struct e1000_adapter *adapter = netdev_priv(netdev);
494 	struct e1000_hw *hw = &adapter->hw;
495 	u16 *eeprom_buff;
496 	void *ptr;
497 	int max_len, first_word, last_word, ret_val = 0;
498 	u16 i;
499 
500 	if (eeprom->len == 0)
501 		return -EOPNOTSUPP;
502 
503 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
504 		return -EFAULT;
505 
506 	max_len = hw->eeprom.word_size * 2;
507 
508 	first_word = eeprom->offset >> 1;
509 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
510 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
511 	if (!eeprom_buff)
512 		return -ENOMEM;
513 
514 	ptr = (void *)eeprom_buff;
515 
516 	if (eeprom->offset & 1) {
517 		/* need read/modify/write of first changed EEPROM word
518 		 * only the second byte of the word is being modified
519 		 */
520 		ret_val = e1000_read_eeprom(hw, first_word, 1,
521 					    &eeprom_buff[0]);
522 		ptr++;
523 	}
524 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
525 		/* need read/modify/write of last changed EEPROM word
526 		 * only the first byte of the word is being modified
527 		 */
528 		ret_val = e1000_read_eeprom(hw, last_word, 1,
529 		                  &eeprom_buff[last_word - first_word]);
530 	}
531 
532 	/* Device's eeprom is always little-endian, word addressable */
533 	for (i = 0; i < last_word - first_word + 1; i++)
534 		le16_to_cpus(&eeprom_buff[i]);
535 
536 	memcpy(ptr, bytes, eeprom->len);
537 
538 	for (i = 0; i < last_word - first_word + 1; i++)
539 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
540 
541 	ret_val = e1000_write_eeprom(hw, first_word,
542 				     last_word - first_word + 1, eeprom_buff);
543 
544 	/* Update the checksum over the first part of the EEPROM if needed */
545 	if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
546 		e1000_update_eeprom_checksum(hw);
547 
548 	kfree(eeprom_buff);
549 	return ret_val;
550 }
551 
552 static void e1000_get_drvinfo(struct net_device *netdev,
553 			      struct ethtool_drvinfo *drvinfo)
554 {
555 	struct e1000_adapter *adapter = netdev_priv(netdev);
556 
557 	strlcpy(drvinfo->driver,  e1000_driver_name,
558 		sizeof(drvinfo->driver));
559 	strlcpy(drvinfo->version, e1000_driver_version,
560 		sizeof(drvinfo->version));
561 
562 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
563 		sizeof(drvinfo->bus_info));
564 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
565 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
566 }
567 
568 static void e1000_get_ringparam(struct net_device *netdev,
569 				struct ethtool_ringparam *ring)
570 {
571 	struct e1000_adapter *adapter = netdev_priv(netdev);
572 	struct e1000_hw *hw = &adapter->hw;
573 	e1000_mac_type mac_type = hw->mac_type;
574 	struct e1000_tx_ring *txdr = adapter->tx_ring;
575 	struct e1000_rx_ring *rxdr = adapter->rx_ring;
576 
577 	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
578 		E1000_MAX_82544_RXD;
579 	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
580 		E1000_MAX_82544_TXD;
581 	ring->rx_pending = rxdr->count;
582 	ring->tx_pending = txdr->count;
583 }
584 
585 static int e1000_set_ringparam(struct net_device *netdev,
586 			       struct ethtool_ringparam *ring)
587 {
588 	struct e1000_adapter *adapter = netdev_priv(netdev);
589 	struct e1000_hw *hw = &adapter->hw;
590 	e1000_mac_type mac_type = hw->mac_type;
591 	struct e1000_tx_ring *txdr, *tx_old;
592 	struct e1000_rx_ring *rxdr, *rx_old;
593 	int i, err;
594 
595 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
596 		return -EINVAL;
597 
598 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
599 		msleep(1);
600 
601 	if (netif_running(adapter->netdev))
602 		e1000_down(adapter);
603 
604 	tx_old = adapter->tx_ring;
605 	rx_old = adapter->rx_ring;
606 
607 	err = -ENOMEM;
608 	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
609 		       GFP_KERNEL);
610 	if (!txdr)
611 		goto err_alloc_tx;
612 
613 	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
614 		       GFP_KERNEL);
615 	if (!rxdr)
616 		goto err_alloc_rx;
617 
618 	adapter->tx_ring = txdr;
619 	adapter->rx_ring = rxdr;
620 
621 	rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
622 	rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
623 			  E1000_MAX_RXD : E1000_MAX_82544_RXD));
624 	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
625 
626 	txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
627 	txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
628 			  E1000_MAX_TXD : E1000_MAX_82544_TXD));
629 	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
630 
631 	for (i = 0; i < adapter->num_tx_queues; i++)
632 		txdr[i].count = txdr->count;
633 	for (i = 0; i < adapter->num_rx_queues; i++)
634 		rxdr[i].count = rxdr->count;
635 
636 	if (netif_running(adapter->netdev)) {
637 		/* Try to get new resources before deleting old */
638 		err = e1000_setup_all_rx_resources(adapter);
639 		if (err)
640 			goto err_setup_rx;
641 		err = e1000_setup_all_tx_resources(adapter);
642 		if (err)
643 			goto err_setup_tx;
644 
645 		/* save the new, restore the old in order to free it,
646 		 * then restore the new back again
647 		 */
648 
649 		adapter->rx_ring = rx_old;
650 		adapter->tx_ring = tx_old;
651 		e1000_free_all_rx_resources(adapter);
652 		e1000_free_all_tx_resources(adapter);
653 		kfree(tx_old);
654 		kfree(rx_old);
655 		adapter->rx_ring = rxdr;
656 		adapter->tx_ring = txdr;
657 		err = e1000_up(adapter);
658 		if (err)
659 			goto err_setup;
660 	}
661 
662 	clear_bit(__E1000_RESETTING, &adapter->flags);
663 	return 0;
664 err_setup_tx:
665 	e1000_free_all_rx_resources(adapter);
666 err_setup_rx:
667 	adapter->rx_ring = rx_old;
668 	adapter->tx_ring = tx_old;
669 	kfree(rxdr);
670 err_alloc_rx:
671 	kfree(txdr);
672 err_alloc_tx:
673 	e1000_up(adapter);
674 err_setup:
675 	clear_bit(__E1000_RESETTING, &adapter->flags);
676 	return err;
677 }
678 
679 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
680 			     u32 mask, u32 write)
681 {
682 	struct e1000_hw *hw = &adapter->hw;
683 	static const u32 test[] =
684 		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
685 	u8 __iomem *address = hw->hw_addr + reg;
686 	u32 read;
687 	int i;
688 
689 	for (i = 0; i < ARRAY_SIZE(test); i++) {
690 		writel(write & test[i], address);
691 		read = readl(address);
692 		if (read != (write & test[i] & mask)) {
693 			e_err(drv, "pattern test reg %04X failed: "
694 			      "got 0x%08X expected 0x%08X\n",
695 			      reg, read, (write & test[i] & mask));
696 			*data = reg;
697 			return true;
698 		}
699 	}
700 	return false;
701 }
702 
703 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
704 			      u32 mask, u32 write)
705 {
706 	struct e1000_hw *hw = &adapter->hw;
707 	u8 __iomem *address = hw->hw_addr + reg;
708 	u32 read;
709 
710 	writel(write & mask, address);
711 	read = readl(address);
712 	if ((read & mask) != (write & mask)) {
713 		e_err(drv, "set/check reg %04X test failed: "
714 		      "got 0x%08X expected 0x%08X\n",
715 		      reg, (read & mask), (write & mask));
716 		*data = reg;
717 		return true;
718 	}
719 	return false;
720 }
721 
722 #define REG_PATTERN_TEST(reg, mask, write)			     \
723 	do {							     \
724 		if (reg_pattern_test(adapter, data,		     \
725 			     (hw->mac_type >= e1000_82543)   \
726 			     ? E1000_##reg : E1000_82542_##reg,	     \
727 			     mask, write))			     \
728 			return 1;				     \
729 	} while (0)
730 
731 #define REG_SET_AND_CHECK(reg, mask, write)			     \
732 	do {							     \
733 		if (reg_set_and_check(adapter, data,		     \
734 			      (hw->mac_type >= e1000_82543)  \
735 			      ? E1000_##reg : E1000_82542_##reg,     \
736 			      mask, write))			     \
737 			return 1;				     \
738 	} while (0)
739 
740 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
741 {
742 	u32 value, before, after;
743 	u32 i, toggle;
744 	struct e1000_hw *hw = &adapter->hw;
745 
746 	/* The status register is Read Only, so a write should fail.
747 	 * Some bits that get toggled are ignored.
748 	 */
749 
750 	/* there are several bits on newer hardware that are r/w */
751 	toggle = 0xFFFFF833;
752 
753 	before = er32(STATUS);
754 	value = (er32(STATUS) & toggle);
755 	ew32(STATUS, toggle);
756 	after = er32(STATUS) & toggle;
757 	if (value != after) {
758 		e_err(drv, "failed STATUS register test got: "
759 		      "0x%08X expected: 0x%08X\n", after, value);
760 		*data = 1;
761 		return 1;
762 	}
763 	/* restore previous status */
764 	ew32(STATUS, before);
765 
766 	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
767 	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
768 	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
769 	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
770 
771 	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
772 	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
773 	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
774 	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
775 	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
776 	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
777 	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
778 	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
779 	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
780 	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
781 
782 	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
783 
784 	before = 0x06DFB3FE;
785 	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
786 	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
787 
788 	if (hw->mac_type >= e1000_82543) {
789 		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
790 		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
791 		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
792 		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
793 		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
794 		value = E1000_RAR_ENTRIES;
795 		for (i = 0; i < value; i++) {
796 			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
797 			                 0xFFFFFFFF);
798 		}
799 	} else {
800 		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
801 		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
802 		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
803 		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
804 	}
805 
806 	value = E1000_MC_TBL_SIZE;
807 	for (i = 0; i < value; i++)
808 		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
809 
810 	*data = 0;
811 	return 0;
812 }
813 
814 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
815 {
816 	struct e1000_hw *hw = &adapter->hw;
817 	u16 temp;
818 	u16 checksum = 0;
819 	u16 i;
820 
821 	*data = 0;
822 	/* Read and add up the contents of the EEPROM */
823 	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
824 		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
825 			*data = 1;
826 			break;
827 		}
828 		checksum += temp;
829 	}
830 
831 	/* If Checksum is not Correct return error else test passed */
832 	if ((checksum != (u16)EEPROM_SUM) && !(*data))
833 		*data = 2;
834 
835 	return *data;
836 }
837 
838 static irqreturn_t e1000_test_intr(int irq, void *data)
839 {
840 	struct net_device *netdev = (struct net_device *)data;
841 	struct e1000_adapter *adapter = netdev_priv(netdev);
842 	struct e1000_hw *hw = &adapter->hw;
843 
844 	adapter->test_icr |= er32(ICR);
845 
846 	return IRQ_HANDLED;
847 }
848 
849 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
850 {
851 	struct net_device *netdev = adapter->netdev;
852 	u32 mask, i = 0;
853 	bool shared_int = true;
854 	u32 irq = adapter->pdev->irq;
855 	struct e1000_hw *hw = &adapter->hw;
856 
857 	*data = 0;
858 
859 	/* NOTE: we don't test MSI interrupts here, yet
860 	 * Hook up test interrupt handler just for this test
861 	 */
862 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
863 			 netdev))
864 		shared_int = false;
865 	else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
866 			     netdev->name, netdev)) {
867 		*data = 1;
868 		return -1;
869 	}
870 	e_info(hw, "testing %s interrupt\n", (shared_int ?
871 	       "shared" : "unshared"));
872 
873 	/* Disable all the interrupts */
874 	ew32(IMC, 0xFFFFFFFF);
875 	E1000_WRITE_FLUSH();
876 	msleep(10);
877 
878 	/* Test each interrupt */
879 	for (; i < 10; i++) {
880 
881 		/* Interrupt to test */
882 		mask = 1 << i;
883 
884 		if (!shared_int) {
885 			/* Disable the interrupt to be reported in
886 			 * the cause register and then force the same
887 			 * interrupt and see if one gets posted.  If
888 			 * an interrupt was posted to the bus, the
889 			 * test failed.
890 			 */
891 			adapter->test_icr = 0;
892 			ew32(IMC, mask);
893 			ew32(ICS, mask);
894 			E1000_WRITE_FLUSH();
895 			msleep(10);
896 
897 			if (adapter->test_icr & mask) {
898 				*data = 3;
899 				break;
900 			}
901 		}
902 
903 		/* Enable the interrupt to be reported in
904 		 * the cause register and then force the same
905 		 * interrupt and see if one gets posted.  If
906 		 * an interrupt was not posted to the bus, the
907 		 * test failed.
908 		 */
909 		adapter->test_icr = 0;
910 		ew32(IMS, mask);
911 		ew32(ICS, mask);
912 		E1000_WRITE_FLUSH();
913 		msleep(10);
914 
915 		if (!(adapter->test_icr & mask)) {
916 			*data = 4;
917 			break;
918 		}
919 
920 		if (!shared_int) {
921 			/* Disable the other interrupts to be reported in
922 			 * the cause register and then force the other
923 			 * interrupts and see if any get posted.  If
924 			 * an interrupt was posted to the bus, the
925 			 * test failed.
926 			 */
927 			adapter->test_icr = 0;
928 			ew32(IMC, ~mask & 0x00007FFF);
929 			ew32(ICS, ~mask & 0x00007FFF);
930 			E1000_WRITE_FLUSH();
931 			msleep(10);
932 
933 			if (adapter->test_icr) {
934 				*data = 5;
935 				break;
936 			}
937 		}
938 	}
939 
940 	/* Disable all the interrupts */
941 	ew32(IMC, 0xFFFFFFFF);
942 	E1000_WRITE_FLUSH();
943 	msleep(10);
944 
945 	/* Unhook test interrupt handler */
946 	free_irq(irq, netdev);
947 
948 	return *data;
949 }
950 
951 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
952 {
953 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
954 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
955 	struct pci_dev *pdev = adapter->pdev;
956 	int i;
957 
958 	if (txdr->desc && txdr->buffer_info) {
959 		for (i = 0; i < txdr->count; i++) {
960 			if (txdr->buffer_info[i].dma)
961 				dma_unmap_single(&pdev->dev,
962 						 txdr->buffer_info[i].dma,
963 						 txdr->buffer_info[i].length,
964 						 DMA_TO_DEVICE);
965 			if (txdr->buffer_info[i].skb)
966 				dev_kfree_skb(txdr->buffer_info[i].skb);
967 		}
968 	}
969 
970 	if (rxdr->desc && rxdr->buffer_info) {
971 		for (i = 0; i < rxdr->count; i++) {
972 			if (rxdr->buffer_info[i].dma)
973 				dma_unmap_single(&pdev->dev,
974 						 rxdr->buffer_info[i].dma,
975 						 rxdr->buffer_info[i].length,
976 						 DMA_FROM_DEVICE);
977 			if (rxdr->buffer_info[i].skb)
978 				dev_kfree_skb(rxdr->buffer_info[i].skb);
979 		}
980 	}
981 
982 	if (txdr->desc) {
983 		dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
984 				  txdr->dma);
985 		txdr->desc = NULL;
986 	}
987 	if (rxdr->desc) {
988 		dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
989 				  rxdr->dma);
990 		rxdr->desc = NULL;
991 	}
992 
993 	kfree(txdr->buffer_info);
994 	txdr->buffer_info = NULL;
995 	kfree(rxdr->buffer_info);
996 	rxdr->buffer_info = NULL;
997 }
998 
999 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1000 {
1001 	struct e1000_hw *hw = &adapter->hw;
1002 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1003 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1004 	struct pci_dev *pdev = adapter->pdev;
1005 	u32 rctl;
1006 	int i, ret_val;
1007 
1008 	/* Setup Tx descriptor ring and Tx buffers */
1009 
1010 	if (!txdr->count)
1011 		txdr->count = E1000_DEFAULT_TXD;
1012 
1013 	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
1014 				    GFP_KERNEL);
1015 	if (!txdr->buffer_info) {
1016 		ret_val = 1;
1017 		goto err_nomem;
1018 	}
1019 
1020 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1021 	txdr->size = ALIGN(txdr->size, 4096);
1022 	txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1023 					 GFP_KERNEL);
1024 	if (!txdr->desc) {
1025 		ret_val = 2;
1026 		goto err_nomem;
1027 	}
1028 	txdr->next_to_use = txdr->next_to_clean = 0;
1029 
1030 	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1031 	ew32(TDBAH, ((u64)txdr->dma >> 32));
1032 	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1033 	ew32(TDH, 0);
1034 	ew32(TDT, 0);
1035 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1036 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1037 	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1038 
1039 	for (i = 0; i < txdr->count; i++) {
1040 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1041 		struct sk_buff *skb;
1042 		unsigned int size = 1024;
1043 
1044 		skb = alloc_skb(size, GFP_KERNEL);
1045 		if (!skb) {
1046 			ret_val = 3;
1047 			goto err_nomem;
1048 		}
1049 		skb_put(skb, size);
1050 		txdr->buffer_info[i].skb = skb;
1051 		txdr->buffer_info[i].length = skb->len;
1052 		txdr->buffer_info[i].dma =
1053 			dma_map_single(&pdev->dev, skb->data, skb->len,
1054 				       DMA_TO_DEVICE);
1055 		if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1056 			ret_val = 4;
1057 			goto err_nomem;
1058 		}
1059 		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1060 		tx_desc->lower.data = cpu_to_le32(skb->len);
1061 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1062 						   E1000_TXD_CMD_IFCS |
1063 						   E1000_TXD_CMD_RPS);
1064 		tx_desc->upper.data = 0;
1065 	}
1066 
1067 	/* Setup Rx descriptor ring and Rx buffers */
1068 
1069 	if (!rxdr->count)
1070 		rxdr->count = E1000_DEFAULT_RXD;
1071 
1072 	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1073 				    GFP_KERNEL);
1074 	if (!rxdr->buffer_info) {
1075 		ret_val = 5;
1076 		goto err_nomem;
1077 	}
1078 
1079 	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1080 	rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1081 					 GFP_KERNEL);
1082 	if (!rxdr->desc) {
1083 		ret_val = 6;
1084 		goto err_nomem;
1085 	}
1086 	rxdr->next_to_use = rxdr->next_to_clean = 0;
1087 
1088 	rctl = er32(RCTL);
1089 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1090 	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1091 	ew32(RDBAH, ((u64)rxdr->dma >> 32));
1092 	ew32(RDLEN, rxdr->size);
1093 	ew32(RDH, 0);
1094 	ew32(RDT, 0);
1095 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1096 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1097 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1098 	ew32(RCTL, rctl);
1099 
1100 	for (i = 0; i < rxdr->count; i++) {
1101 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1102 		struct sk_buff *skb;
1103 
1104 		skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1105 		if (!skb) {
1106 			ret_val = 7;
1107 			goto err_nomem;
1108 		}
1109 		skb_reserve(skb, NET_IP_ALIGN);
1110 		rxdr->buffer_info[i].skb = skb;
1111 		rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1112 		rxdr->buffer_info[i].dma =
1113 			dma_map_single(&pdev->dev, skb->data,
1114 				       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1115 		if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1116 			ret_val = 8;
1117 			goto err_nomem;
1118 		}
1119 		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1120 		memset(skb->data, 0x00, skb->len);
1121 	}
1122 
1123 	return 0;
1124 
1125 err_nomem:
1126 	e1000_free_desc_rings(adapter);
1127 	return ret_val;
1128 }
1129 
1130 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1131 {
1132 	struct e1000_hw *hw = &adapter->hw;
1133 
1134 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1135 	e1000_write_phy_reg(hw, 29, 0x001F);
1136 	e1000_write_phy_reg(hw, 30, 0x8FFC);
1137 	e1000_write_phy_reg(hw, 29, 0x001A);
1138 	e1000_write_phy_reg(hw, 30, 0x8FF0);
1139 }
1140 
1141 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1142 {
1143 	struct e1000_hw *hw = &adapter->hw;
1144 	u16 phy_reg;
1145 
1146 	/* Because we reset the PHY above, we need to re-force TX_CLK in the
1147 	 * Extended PHY Specific Control Register to 25MHz clock.  This
1148 	 * value defaults back to a 2.5MHz clock when the PHY is reset.
1149 	 */
1150 	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1151 	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1152 	e1000_write_phy_reg(hw,
1153 		M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1154 
1155 	/* In addition, because of the s/w reset above, we need to enable
1156 	 * CRS on TX.  This must be set for both full and half duplex
1157 	 * operation.
1158 	 */
1159 	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1160 	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1161 	e1000_write_phy_reg(hw,
1162 		M88E1000_PHY_SPEC_CTRL, phy_reg);
1163 }
1164 
1165 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1166 {
1167 	struct e1000_hw *hw = &adapter->hw;
1168 	u32 ctrl_reg;
1169 	u16 phy_reg;
1170 
1171 	/* Setup the Device Control Register for PHY loopback test. */
1172 
1173 	ctrl_reg = er32(CTRL);
1174 	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
1175 		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
1176 		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
1177 		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
1178 		     E1000_CTRL_FD);		/* Force Duplex to FULL */
1179 
1180 	ew32(CTRL, ctrl_reg);
1181 
1182 	/* Read the PHY Specific Control Register (0x10) */
1183 	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1184 
1185 	/* Clear Auto-Crossover bits in PHY Specific Control Register
1186 	 * (bits 6:5).
1187 	 */
1188 	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1189 	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1190 
1191 	/* Perform software reset on the PHY */
1192 	e1000_phy_reset(hw);
1193 
1194 	/* Have to setup TX_CLK and TX_CRS after software reset */
1195 	e1000_phy_reset_clk_and_crs(adapter);
1196 
1197 	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1198 
1199 	/* Wait for reset to complete. */
1200 	udelay(500);
1201 
1202 	/* Have to setup TX_CLK and TX_CRS after software reset */
1203 	e1000_phy_reset_clk_and_crs(adapter);
1204 
1205 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1206 	e1000_phy_disable_receiver(adapter);
1207 
1208 	/* Set the loopback bit in the PHY control register. */
1209 	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1210 	phy_reg |= MII_CR_LOOPBACK;
1211 	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1212 
1213 	/* Setup TX_CLK and TX_CRS one more time. */
1214 	e1000_phy_reset_clk_and_crs(adapter);
1215 
1216 	/* Check Phy Configuration */
1217 	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1218 	if (phy_reg != 0x4100)
1219 		 return 9;
1220 
1221 	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1222 	if (phy_reg != 0x0070)
1223 		return 10;
1224 
1225 	e1000_read_phy_reg(hw, 29, &phy_reg);
1226 	if (phy_reg != 0x001A)
1227 		return 11;
1228 
1229 	return 0;
1230 }
1231 
1232 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1233 {
1234 	struct e1000_hw *hw = &adapter->hw;
1235 	u32 ctrl_reg = 0;
1236 	u32 stat_reg = 0;
1237 
1238 	hw->autoneg = false;
1239 
1240 	if (hw->phy_type == e1000_phy_m88) {
1241 		/* Auto-MDI/MDIX Off */
1242 		e1000_write_phy_reg(hw,
1243 				    M88E1000_PHY_SPEC_CTRL, 0x0808);
1244 		/* reset to update Auto-MDI/MDIX */
1245 		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1246 		/* autoneg off */
1247 		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1248 	}
1249 
1250 	ctrl_reg = er32(CTRL);
1251 
1252 	/* force 1000, set loopback */
1253 	e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1254 
1255 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1256 	ctrl_reg = er32(CTRL);
1257 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1258 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1259 			E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1260 			E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1261 			E1000_CTRL_FD); /* Force Duplex to FULL */
1262 
1263 	if (hw->media_type == e1000_media_type_copper &&
1264 	   hw->phy_type == e1000_phy_m88)
1265 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1266 	else {
1267 		/* Set the ILOS bit on the fiber Nic is half
1268 		 * duplex link is detected.
1269 		 */
1270 		stat_reg = er32(STATUS);
1271 		if ((stat_reg & E1000_STATUS_FD) == 0)
1272 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1273 	}
1274 
1275 	ew32(CTRL, ctrl_reg);
1276 
1277 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1278 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1279 	 */
1280 	if (hw->phy_type == e1000_phy_m88)
1281 		e1000_phy_disable_receiver(adapter);
1282 
1283 	udelay(500);
1284 
1285 	return 0;
1286 }
1287 
1288 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1289 {
1290 	struct e1000_hw *hw = &adapter->hw;
1291 	u16 phy_reg = 0;
1292 	u16 count = 0;
1293 
1294 	switch (hw->mac_type) {
1295 	case e1000_82543:
1296 		if (hw->media_type == e1000_media_type_copper) {
1297 			/* Attempt to setup Loopback mode on Non-integrated PHY.
1298 			 * Some PHY registers get corrupted at random, so
1299 			 * attempt this 10 times.
1300 			 */
1301 			while (e1000_nonintegrated_phy_loopback(adapter) &&
1302 			      count++ < 10);
1303 			if (count < 11)
1304 				return 0;
1305 		}
1306 		break;
1307 
1308 	case e1000_82544:
1309 	case e1000_82540:
1310 	case e1000_82545:
1311 	case e1000_82545_rev_3:
1312 	case e1000_82546:
1313 	case e1000_82546_rev_3:
1314 	case e1000_82541:
1315 	case e1000_82541_rev_2:
1316 	case e1000_82547:
1317 	case e1000_82547_rev_2:
1318 		return e1000_integrated_phy_loopback(adapter);
1319 		break;
1320 	default:
1321 		/* Default PHY loopback work is to read the MII
1322 		 * control register and assert bit 14 (loopback mode).
1323 		 */
1324 		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1325 		phy_reg |= MII_CR_LOOPBACK;
1326 		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1327 		return 0;
1328 		break;
1329 	}
1330 
1331 	return 8;
1332 }
1333 
1334 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1335 {
1336 	struct e1000_hw *hw = &adapter->hw;
1337 	u32 rctl;
1338 
1339 	if (hw->media_type == e1000_media_type_fiber ||
1340 	    hw->media_type == e1000_media_type_internal_serdes) {
1341 		switch (hw->mac_type) {
1342 		case e1000_82545:
1343 		case e1000_82546:
1344 		case e1000_82545_rev_3:
1345 		case e1000_82546_rev_3:
1346 			return e1000_set_phy_loopback(adapter);
1347 			break;
1348 		default:
1349 			rctl = er32(RCTL);
1350 			rctl |= E1000_RCTL_LBM_TCVR;
1351 			ew32(RCTL, rctl);
1352 			return 0;
1353 		}
1354 	} else if (hw->media_type == e1000_media_type_copper)
1355 		return e1000_set_phy_loopback(adapter);
1356 
1357 	return 7;
1358 }
1359 
1360 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1361 {
1362 	struct e1000_hw *hw = &adapter->hw;
1363 	u32 rctl;
1364 	u16 phy_reg;
1365 
1366 	rctl = er32(RCTL);
1367 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1368 	ew32(RCTL, rctl);
1369 
1370 	switch (hw->mac_type) {
1371 	case e1000_82545:
1372 	case e1000_82546:
1373 	case e1000_82545_rev_3:
1374 	case e1000_82546_rev_3:
1375 	default:
1376 		hw->autoneg = true;
1377 		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1378 		if (phy_reg & MII_CR_LOOPBACK) {
1379 			phy_reg &= ~MII_CR_LOOPBACK;
1380 			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1381 			e1000_phy_reset(hw);
1382 		}
1383 		break;
1384 	}
1385 }
1386 
1387 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1388 				      unsigned int frame_size)
1389 {
1390 	memset(skb->data, 0xFF, frame_size);
1391 	frame_size &= ~1;
1392 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1393 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1394 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1395 }
1396 
1397 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1398 				    unsigned int frame_size)
1399 {
1400 	frame_size &= ~1;
1401 	if (*(skb->data + 3) == 0xFF) {
1402 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1403 		   (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1404 			return 0;
1405 		}
1406 	}
1407 	return 13;
1408 }
1409 
1410 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1411 {
1412 	struct e1000_hw *hw = &adapter->hw;
1413 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1414 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1415 	struct pci_dev *pdev = adapter->pdev;
1416 	int i, j, k, l, lc, good_cnt, ret_val=0;
1417 	unsigned long time;
1418 
1419 	ew32(RDT, rxdr->count - 1);
1420 
1421 	/* Calculate the loop count based on the largest descriptor ring
1422 	 * The idea is to wrap the largest ring a number of times using 64
1423 	 * send/receive pairs during each loop
1424 	 */
1425 
1426 	if (rxdr->count <= txdr->count)
1427 		lc = ((txdr->count / 64) * 2) + 1;
1428 	else
1429 		lc = ((rxdr->count / 64) * 2) + 1;
1430 
1431 	k = l = 0;
1432 	for (j = 0; j <= lc; j++) { /* loop count loop */
1433 		for (i = 0; i < 64; i++) { /* send the packets */
1434 			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1435 					1024);
1436 			dma_sync_single_for_device(&pdev->dev,
1437 						   txdr->buffer_info[k].dma,
1438 						   txdr->buffer_info[k].length,
1439 						   DMA_TO_DEVICE);
1440 			if (unlikely(++k == txdr->count)) k = 0;
1441 		}
1442 		ew32(TDT, k);
1443 		E1000_WRITE_FLUSH();
1444 		msleep(200);
1445 		time = jiffies; /* set the start time for the receive */
1446 		good_cnt = 0;
1447 		do { /* receive the sent packets */
1448 			dma_sync_single_for_cpu(&pdev->dev,
1449 						rxdr->buffer_info[l].dma,
1450 						rxdr->buffer_info[l].length,
1451 						DMA_FROM_DEVICE);
1452 
1453 			ret_val = e1000_check_lbtest_frame(
1454 					rxdr->buffer_info[l].skb,
1455 					1024);
1456 			if (!ret_val)
1457 				good_cnt++;
1458 			if (unlikely(++l == rxdr->count)) l = 0;
1459 			/* time + 20 msecs (200 msecs on 2.4) is more than
1460 			 * enough time to complete the receives, if it's
1461 			 * exceeded, break and error off
1462 			 */
1463 		} while (good_cnt < 64 && jiffies < (time + 20));
1464 		if (good_cnt != 64) {
1465 			ret_val = 13; /* ret_val is the same as mis-compare */
1466 			break;
1467 		}
1468 		if (jiffies >= (time + 2)) {
1469 			ret_val = 14; /* error code for time out error */
1470 			break;
1471 		}
1472 	} /* end loop count loop */
1473 	return ret_val;
1474 }
1475 
1476 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1477 {
1478 	*data = e1000_setup_desc_rings(adapter);
1479 	if (*data)
1480 		goto out;
1481 	*data = e1000_setup_loopback_test(adapter);
1482 	if (*data)
1483 		goto err_loopback;
1484 	*data = e1000_run_loopback_test(adapter);
1485 	e1000_loopback_cleanup(adapter);
1486 
1487 err_loopback:
1488 	e1000_free_desc_rings(adapter);
1489 out:
1490 	return *data;
1491 }
1492 
1493 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1494 {
1495 	struct e1000_hw *hw = &adapter->hw;
1496 	*data = 0;
1497 	if (hw->media_type == e1000_media_type_internal_serdes) {
1498 		int i = 0;
1499 		hw->serdes_has_link = false;
1500 
1501 		/* On some blade server designs, link establishment
1502 		 * could take as long as 2-3 minutes
1503 		 */
1504 		do {
1505 			e1000_check_for_link(hw);
1506 			if (hw->serdes_has_link)
1507 				return *data;
1508 			msleep(20);
1509 		} while (i++ < 3750);
1510 
1511 		*data = 1;
1512 	} else {
1513 		e1000_check_for_link(hw);
1514 		if (hw->autoneg)  /* if auto_neg is set wait for it */
1515 			msleep(4000);
1516 
1517 		if (!(er32(STATUS) & E1000_STATUS_LU)) {
1518 			*data = 1;
1519 		}
1520 	}
1521 	return *data;
1522 }
1523 
1524 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1525 {
1526 	switch (sset) {
1527 	case ETH_SS_TEST:
1528 		return E1000_TEST_LEN;
1529 	case ETH_SS_STATS:
1530 		return E1000_STATS_LEN;
1531 	default:
1532 		return -EOPNOTSUPP;
1533 	}
1534 }
1535 
1536 static void e1000_diag_test(struct net_device *netdev,
1537 			    struct ethtool_test *eth_test, u64 *data)
1538 {
1539 	struct e1000_adapter *adapter = netdev_priv(netdev);
1540 	struct e1000_hw *hw = &adapter->hw;
1541 	bool if_running = netif_running(netdev);
1542 
1543 	set_bit(__E1000_TESTING, &adapter->flags);
1544 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1545 		/* Offline tests */
1546 
1547 		/* save speed, duplex, autoneg settings */
1548 		u16 autoneg_advertised = hw->autoneg_advertised;
1549 		u8 forced_speed_duplex = hw->forced_speed_duplex;
1550 		u8 autoneg = hw->autoneg;
1551 
1552 		e_info(hw, "offline testing starting\n");
1553 
1554 		/* Link test performed before hardware reset so autoneg doesn't
1555 		 * interfere with test result
1556 		 */
1557 		if (e1000_link_test(adapter, &data[4]))
1558 			eth_test->flags |= ETH_TEST_FL_FAILED;
1559 
1560 		if (if_running)
1561 			/* indicate we're in test mode */
1562 			dev_close(netdev);
1563 		else
1564 			e1000_reset(adapter);
1565 
1566 		if (e1000_reg_test(adapter, &data[0]))
1567 			eth_test->flags |= ETH_TEST_FL_FAILED;
1568 
1569 		e1000_reset(adapter);
1570 		if (e1000_eeprom_test(adapter, &data[1]))
1571 			eth_test->flags |= ETH_TEST_FL_FAILED;
1572 
1573 		e1000_reset(adapter);
1574 		if (e1000_intr_test(adapter, &data[2]))
1575 			eth_test->flags |= ETH_TEST_FL_FAILED;
1576 
1577 		e1000_reset(adapter);
1578 		/* make sure the phy is powered up */
1579 		e1000_power_up_phy(adapter);
1580 		if (e1000_loopback_test(adapter, &data[3]))
1581 			eth_test->flags |= ETH_TEST_FL_FAILED;
1582 
1583 		/* restore speed, duplex, autoneg settings */
1584 		hw->autoneg_advertised = autoneg_advertised;
1585 		hw->forced_speed_duplex = forced_speed_duplex;
1586 		hw->autoneg = autoneg;
1587 
1588 		e1000_reset(adapter);
1589 		clear_bit(__E1000_TESTING, &adapter->flags);
1590 		if (if_running)
1591 			dev_open(netdev);
1592 	} else {
1593 		e_info(hw, "online testing starting\n");
1594 		/* Online tests */
1595 		if (e1000_link_test(adapter, &data[4]))
1596 			eth_test->flags |= ETH_TEST_FL_FAILED;
1597 
1598 		/* Online tests aren't run; pass by default */
1599 		data[0] = 0;
1600 		data[1] = 0;
1601 		data[2] = 0;
1602 		data[3] = 0;
1603 
1604 		clear_bit(__E1000_TESTING, &adapter->flags);
1605 	}
1606 	msleep_interruptible(4 * 1000);
1607 }
1608 
1609 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1610 			       struct ethtool_wolinfo *wol)
1611 {
1612 	struct e1000_hw *hw = &adapter->hw;
1613 	int retval = 1; /* fail by default */
1614 
1615 	switch (hw->device_id) {
1616 	case E1000_DEV_ID_82542:
1617 	case E1000_DEV_ID_82543GC_FIBER:
1618 	case E1000_DEV_ID_82543GC_COPPER:
1619 	case E1000_DEV_ID_82544EI_FIBER:
1620 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1621 	case E1000_DEV_ID_82545EM_FIBER:
1622 	case E1000_DEV_ID_82545EM_COPPER:
1623 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1624 	case E1000_DEV_ID_82546GB_PCIE:
1625 		/* these don't support WoL at all */
1626 		wol->supported = 0;
1627 		break;
1628 	case E1000_DEV_ID_82546EB_FIBER:
1629 	case E1000_DEV_ID_82546GB_FIBER:
1630 		/* Wake events not supported on port B */
1631 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1632 			wol->supported = 0;
1633 			break;
1634 		}
1635 		/* return success for non excluded adapter ports */
1636 		retval = 0;
1637 		break;
1638 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1639 		/* quad port adapters only support WoL on port A */
1640 		if (!adapter->quad_port_a) {
1641 			wol->supported = 0;
1642 			break;
1643 		}
1644 		/* return success for non excluded adapter ports */
1645 		retval = 0;
1646 		break;
1647 	default:
1648 		/* dual port cards only support WoL on port A from now on
1649 		 * unless it was enabled in the eeprom for port B
1650 		 * so exclude FUNC_1 ports from having WoL enabled
1651 		 */
1652 		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1653 		    !adapter->eeprom_wol) {
1654 			wol->supported = 0;
1655 			break;
1656 		}
1657 
1658 		retval = 0;
1659 	}
1660 
1661 	return retval;
1662 }
1663 
1664 static void e1000_get_wol(struct net_device *netdev,
1665 			  struct ethtool_wolinfo *wol)
1666 {
1667 	struct e1000_adapter *adapter = netdev_priv(netdev);
1668 	struct e1000_hw *hw = &adapter->hw;
1669 
1670 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1671 	                 WAKE_BCAST | WAKE_MAGIC;
1672 	wol->wolopts = 0;
1673 
1674 	/* this function will set ->supported = 0 and return 1 if wol is not
1675 	 * supported by this hardware
1676 	 */
1677 	if (e1000_wol_exclusion(adapter, wol) ||
1678 	    !device_can_wakeup(&adapter->pdev->dev))
1679 		return;
1680 
1681 	/* apply any specific unsupported masks here */
1682 	switch (hw->device_id) {
1683 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1684 		/* KSP3 does not support UCAST wake-ups */
1685 		wol->supported &= ~WAKE_UCAST;
1686 
1687 		if (adapter->wol & E1000_WUFC_EX)
1688 			e_err(drv, "Interface does not support directed "
1689 			      "(unicast) frame wake-up packets\n");
1690 		break;
1691 	default:
1692 		break;
1693 	}
1694 
1695 	if (adapter->wol & E1000_WUFC_EX)
1696 		wol->wolopts |= WAKE_UCAST;
1697 	if (adapter->wol & E1000_WUFC_MC)
1698 		wol->wolopts |= WAKE_MCAST;
1699 	if (adapter->wol & E1000_WUFC_BC)
1700 		wol->wolopts |= WAKE_BCAST;
1701 	if (adapter->wol & E1000_WUFC_MAG)
1702 		wol->wolopts |= WAKE_MAGIC;
1703 }
1704 
1705 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1706 {
1707 	struct e1000_adapter *adapter = netdev_priv(netdev);
1708 	struct e1000_hw *hw = &adapter->hw;
1709 
1710 	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1711 		return -EOPNOTSUPP;
1712 
1713 	if (e1000_wol_exclusion(adapter, wol) ||
1714 	    !device_can_wakeup(&adapter->pdev->dev))
1715 		return wol->wolopts ? -EOPNOTSUPP : 0;
1716 
1717 	switch (hw->device_id) {
1718 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1719 		if (wol->wolopts & WAKE_UCAST) {
1720 			e_err(drv, "Interface does not support directed "
1721 			      "(unicast) frame wake-up packets\n");
1722 			return -EOPNOTSUPP;
1723 		}
1724 		break;
1725 	default:
1726 		break;
1727 	}
1728 
1729 	/* these settings will always override what we currently have */
1730 	adapter->wol = 0;
1731 
1732 	if (wol->wolopts & WAKE_UCAST)
1733 		adapter->wol |= E1000_WUFC_EX;
1734 	if (wol->wolopts & WAKE_MCAST)
1735 		adapter->wol |= E1000_WUFC_MC;
1736 	if (wol->wolopts & WAKE_BCAST)
1737 		adapter->wol |= E1000_WUFC_BC;
1738 	if (wol->wolopts & WAKE_MAGIC)
1739 		adapter->wol |= E1000_WUFC_MAG;
1740 
1741 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1742 
1743 	return 0;
1744 }
1745 
1746 static int e1000_set_phys_id(struct net_device *netdev,
1747 			     enum ethtool_phys_id_state state)
1748 {
1749 	struct e1000_adapter *adapter = netdev_priv(netdev);
1750 	struct e1000_hw *hw = &adapter->hw;
1751 
1752 	switch (state) {
1753 	case ETHTOOL_ID_ACTIVE:
1754 		e1000_setup_led(hw);
1755 		return 2;
1756 
1757 	case ETHTOOL_ID_ON:
1758 		e1000_led_on(hw);
1759 		break;
1760 
1761 	case ETHTOOL_ID_OFF:
1762 		e1000_led_off(hw);
1763 		break;
1764 
1765 	case ETHTOOL_ID_INACTIVE:
1766 		e1000_cleanup_led(hw);
1767 	}
1768 
1769 	return 0;
1770 }
1771 
1772 static int e1000_get_coalesce(struct net_device *netdev,
1773 			      struct ethtool_coalesce *ec)
1774 {
1775 	struct e1000_adapter *adapter = netdev_priv(netdev);
1776 
1777 	if (adapter->hw.mac_type < e1000_82545)
1778 		return -EOPNOTSUPP;
1779 
1780 	if (adapter->itr_setting <= 4)
1781 		ec->rx_coalesce_usecs = adapter->itr_setting;
1782 	else
1783 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1784 
1785 	return 0;
1786 }
1787 
1788 static int e1000_set_coalesce(struct net_device *netdev,
1789 			      struct ethtool_coalesce *ec)
1790 {
1791 	struct e1000_adapter *adapter = netdev_priv(netdev);
1792 	struct e1000_hw *hw = &adapter->hw;
1793 
1794 	if (hw->mac_type < e1000_82545)
1795 		return -EOPNOTSUPP;
1796 
1797 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1798 	    ((ec->rx_coalesce_usecs > 4) &&
1799 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1800 	    (ec->rx_coalesce_usecs == 2))
1801 		return -EINVAL;
1802 
1803 	if (ec->rx_coalesce_usecs == 4) {
1804 		adapter->itr = adapter->itr_setting = 4;
1805 	} else if (ec->rx_coalesce_usecs <= 3) {
1806 		adapter->itr = 20000;
1807 		adapter->itr_setting = ec->rx_coalesce_usecs;
1808 	} else {
1809 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1810 		adapter->itr_setting = adapter->itr & ~3;
1811 	}
1812 
1813 	if (adapter->itr_setting != 0)
1814 		ew32(ITR, 1000000000 / (adapter->itr * 256));
1815 	else
1816 		ew32(ITR, 0);
1817 
1818 	return 0;
1819 }
1820 
1821 static int e1000_nway_reset(struct net_device *netdev)
1822 {
1823 	struct e1000_adapter *adapter = netdev_priv(netdev);
1824 	if (netif_running(netdev))
1825 		e1000_reinit_locked(adapter);
1826 	return 0;
1827 }
1828 
1829 static void e1000_get_ethtool_stats(struct net_device *netdev,
1830 				    struct ethtool_stats *stats, u64 *data)
1831 {
1832 	struct e1000_adapter *adapter = netdev_priv(netdev);
1833 	int i;
1834 	char *p = NULL;
1835 
1836 	e1000_update_stats(adapter);
1837 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1838 		switch (e1000_gstrings_stats[i].type) {
1839 		case NETDEV_STATS:
1840 			p = (char *) netdev +
1841 					e1000_gstrings_stats[i].stat_offset;
1842 			break;
1843 		case E1000_STATS:
1844 			p = (char *) adapter +
1845 					e1000_gstrings_stats[i].stat_offset;
1846 			break;
1847 		}
1848 
1849 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1850 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1851 	}
1852 /* BUG_ON(i != E1000_STATS_LEN); */
1853 }
1854 
1855 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1856 			      u8 *data)
1857 {
1858 	u8 *p = data;
1859 	int i;
1860 
1861 	switch (stringset) {
1862 	case ETH_SS_TEST:
1863 		memcpy(data, *e1000_gstrings_test,
1864 			sizeof(e1000_gstrings_test));
1865 		break;
1866 	case ETH_SS_STATS:
1867 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1868 			memcpy(p, e1000_gstrings_stats[i].stat_string,
1869 			       ETH_GSTRING_LEN);
1870 			p += ETH_GSTRING_LEN;
1871 		}
1872 		/* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1873 		break;
1874 	}
1875 }
1876 
1877 static const struct ethtool_ops e1000_ethtool_ops = {
1878 	.get_settings		= e1000_get_settings,
1879 	.set_settings		= e1000_set_settings,
1880 	.get_drvinfo		= e1000_get_drvinfo,
1881 	.get_regs_len		= e1000_get_regs_len,
1882 	.get_regs		= e1000_get_regs,
1883 	.get_wol		= e1000_get_wol,
1884 	.set_wol		= e1000_set_wol,
1885 	.get_msglevel		= e1000_get_msglevel,
1886 	.set_msglevel		= e1000_set_msglevel,
1887 	.nway_reset		= e1000_nway_reset,
1888 	.get_link		= e1000_get_link,
1889 	.get_eeprom_len		= e1000_get_eeprom_len,
1890 	.get_eeprom		= e1000_get_eeprom,
1891 	.set_eeprom		= e1000_set_eeprom,
1892 	.get_ringparam		= e1000_get_ringparam,
1893 	.set_ringparam		= e1000_set_ringparam,
1894 	.get_pauseparam		= e1000_get_pauseparam,
1895 	.set_pauseparam		= e1000_set_pauseparam,
1896 	.self_test		= e1000_diag_test,
1897 	.get_strings		= e1000_get_strings,
1898 	.set_phys_id		= e1000_set_phys_id,
1899 	.get_ethtool_stats	= e1000_get_ethtool_stats,
1900 	.get_sset_count		= e1000_get_sset_count,
1901 	.get_coalesce		= e1000_get_coalesce,
1902 	.set_coalesce		= e1000_set_coalesce,
1903 	.get_ts_info		= ethtool_op_get_ts_info,
1904 };
1905 
1906 void e1000_set_ethtool_ops(struct net_device *netdev)
1907 {
1908 	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1909 }
1910