1 /******************************************************************************* 2 3 Intel PRO/100 Linux driver 4 Copyright(c) 1999 - 2006 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 /* 30 * e100.c: Intel(R) PRO/100 ethernet driver 31 * 32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on 33 * original e100 driver, but better described as a munging of 34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers. 35 * 36 * References: 37 * Intel 8255x 10/100 Mbps Ethernet Controller Family, 38 * Open Source Software Developers Manual, 39 * http://sourceforge.net/projects/e1000 40 * 41 * 42 * Theory of Operation 43 * 44 * I. General 45 * 46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet 47 * controller family, which includes the 82557, 82558, 82559, 82550, 48 * 82551, and 82562 devices. 82558 and greater controllers 49 * integrate the Intel 82555 PHY. The controllers are used in 50 * server and client network interface cards, as well as in 51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx 52 * configurations. 8255x supports a 32-bit linear addressing 53 * mode and operates at 33Mhz PCI clock rate. 54 * 55 * II. Driver Operation 56 * 57 * Memory-mapped mode is used exclusively to access the device's 58 * shared-memory structure, the Control/Status Registers (CSR). All 59 * setup, configuration, and control of the device, including queuing 60 * of Tx, Rx, and configuration commands is through the CSR. 61 * cmd_lock serializes accesses to the CSR command register. cb_lock 62 * protects the shared Command Block List (CBL). 63 * 64 * 8255x is highly MII-compliant and all access to the PHY go 65 * through the Management Data Interface (MDI). Consequently, the 66 * driver leverages the mii.c library shared with other MII-compliant 67 * devices. 68 * 69 * Big- and Little-Endian byte order as well as 32- and 64-bit 70 * archs are supported. Weak-ordered memory and non-cache-coherent 71 * archs are supported. 72 * 73 * III. Transmit 74 * 75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked 76 * together in a fixed-size ring (CBL) thus forming the flexible mode 77 * memory structure. A TCB marked with the suspend-bit indicates 78 * the end of the ring. The last TCB processed suspends the 79 * controller, and the controller can be restarted by issue a CU 80 * resume command to continue from the suspend point, or a CU start 81 * command to start at a given position in the ring. 82 * 83 * Non-Tx commands (config, multicast setup, etc) are linked 84 * into the CBL ring along with Tx commands. The common structure 85 * used for both Tx and non-Tx commands is the Command Block (CB). 86 * 87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean 88 * is the next CB to check for completion; cb_to_send is the first 89 * CB to start on in case of a previous failure to resume. CB clean 90 * up happens in interrupt context in response to a CU interrupt. 91 * cbs_avail keeps track of number of free CB resources available. 92 * 93 * Hardware padding of short packets to minimum packet size is 94 * enabled. 82557 pads with 7Eh, while the later controllers pad 95 * with 00h. 96 * 97 * IV. Receive 98 * 99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame 100 * Descriptors (RFD) + data buffer, thus forming the simplified mode 101 * memory structure. Rx skbs are allocated to contain both the RFD 102 * and the data buffer, but the RFD is pulled off before the skb is 103 * indicated. The data buffer is aligned such that encapsulated 104 * protocol headers are u32-aligned. Since the RFD is part of the 105 * mapped shared memory, and completion status is contained within 106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent 107 * view from software and hardware. 108 * 109 * In order to keep updates to the RFD link field from colliding with 110 * hardware writes to mark packets complete, we use the feature that 111 * hardware will not write to a size 0 descriptor and mark the previous 112 * packet as end-of-list (EL). After updating the link, we remove EL 113 * and only then restore the size such that hardware may use the 114 * previous-to-end RFD. 115 * 116 * Under typical operation, the receive unit (RU) is start once, 117 * and the controller happily fills RFDs as frames arrive. If 118 * replacement RFDs cannot be allocated, or the RU goes non-active, 119 * the RU must be restarted. Frame arrival generates an interrupt, 120 * and Rx indication and re-allocation happen in the same context, 121 * therefore no locking is required. A software-generated interrupt 122 * is generated from the watchdog to recover from a failed allocation 123 * scenario where all Rx resources have been indicated and none re- 124 * placed. 125 * 126 * V. Miscellaneous 127 * 128 * VLAN offloading of tagging, stripping and filtering is not 129 * supported, but driver will accommodate the extra 4-byte VLAN tag 130 * for processing by upper layers. Tx/Rx Checksum offloading is not 131 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is 132 * not supported (hardware limitation). 133 * 134 * MagicPacket(tm) WoL support is enabled/disabled via ethtool. 135 * 136 * Thanks to JC (jchapman@katalix.com) for helping with 137 * testing/troubleshooting the development driver. 138 * 139 * TODO: 140 * o several entry points race with dev->close 141 * o check for tx-no-resources/stop Q races with tx clean/wake Q 142 * 143 * FIXES: 144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com> 145 * - Stratus87247: protect MDI control register manipulations 146 * 2009/06/01 - Andreas Mohr <andi at lisas dot de> 147 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs 148 */ 149 150 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 151 152 #include <linux/hardirq.h> 153 #include <linux/interrupt.h> 154 #include <linux/module.h> 155 #include <linux/moduleparam.h> 156 #include <linux/kernel.h> 157 #include <linux/types.h> 158 #include <linux/sched.h> 159 #include <linux/slab.h> 160 #include <linux/delay.h> 161 #include <linux/init.h> 162 #include <linux/pci.h> 163 #include <linux/dma-mapping.h> 164 #include <linux/dmapool.h> 165 #include <linux/netdevice.h> 166 #include <linux/etherdevice.h> 167 #include <linux/mii.h> 168 #include <linux/if_vlan.h> 169 #include <linux/skbuff.h> 170 #include <linux/ethtool.h> 171 #include <linux/string.h> 172 #include <linux/firmware.h> 173 #include <linux/rtnetlink.h> 174 #include <asm/unaligned.h> 175 176 177 #define DRV_NAME "e100" 178 #define DRV_EXT "-NAPI" 179 #define DRV_VERSION "3.5.24-k2"DRV_EXT 180 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" 181 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation" 182 183 #define E100_WATCHDOG_PERIOD (2 * HZ) 184 #define E100_NAPI_WEIGHT 16 185 186 #define FIRMWARE_D101M "e100/d101m_ucode.bin" 187 #define FIRMWARE_D101S "e100/d101s_ucode.bin" 188 #define FIRMWARE_D102E "e100/d102e_ucode.bin" 189 190 MODULE_DESCRIPTION(DRV_DESCRIPTION); 191 MODULE_AUTHOR(DRV_COPYRIGHT); 192 MODULE_LICENSE("GPL"); 193 MODULE_VERSION(DRV_VERSION); 194 MODULE_FIRMWARE(FIRMWARE_D101M); 195 MODULE_FIRMWARE(FIRMWARE_D101S); 196 MODULE_FIRMWARE(FIRMWARE_D102E); 197 198 static int debug = 3; 199 static int eeprom_bad_csum_allow = 0; 200 static int use_io = 0; 201 module_param(debug, int, 0); 202 module_param(eeprom_bad_csum_allow, int, 0); 203 module_param(use_io, int, 0); 204 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 205 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums"); 206 MODULE_PARM_DESC(use_io, "Force use of i/o access mode"); 207 208 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ 209 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ 210 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } 211 static DEFINE_PCI_DEVICE_TABLE(e100_id_table) = { 212 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), 213 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), 214 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), 215 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), 216 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), 217 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), 218 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), 219 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), 220 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), 221 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), 222 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), 223 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), 224 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), 225 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), 226 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), 227 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), 228 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), 229 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), 230 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), 231 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), 232 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), 233 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), 234 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), 235 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), 236 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), 237 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), 238 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), 239 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), 240 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), 241 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), 242 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), 243 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), 244 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), 245 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), 246 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), 247 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7), 248 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), 249 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), 250 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), 251 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), 252 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), 253 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), 254 { 0, } 255 }; 256 MODULE_DEVICE_TABLE(pci, e100_id_table); 257 258 enum mac { 259 mac_82557_D100_A = 0, 260 mac_82557_D100_B = 1, 261 mac_82557_D100_C = 2, 262 mac_82558_D101_A4 = 4, 263 mac_82558_D101_B0 = 5, 264 mac_82559_D101M = 8, 265 mac_82559_D101S = 9, 266 mac_82550_D102 = 12, 267 mac_82550_D102_C = 13, 268 mac_82551_E = 14, 269 mac_82551_F = 15, 270 mac_82551_10 = 16, 271 mac_unknown = 0xFF, 272 }; 273 274 enum phy { 275 phy_100a = 0x000003E0, 276 phy_100c = 0x035002A8, 277 phy_82555_tx = 0x015002A8, 278 phy_nsc_tx = 0x5C002000, 279 phy_82562_et = 0x033002A8, 280 phy_82562_em = 0x032002A8, 281 phy_82562_ek = 0x031002A8, 282 phy_82562_eh = 0x017002A8, 283 phy_82552_v = 0xd061004d, 284 phy_unknown = 0xFFFFFFFF, 285 }; 286 287 /* CSR (Control/Status Registers) */ 288 struct csr { 289 struct { 290 u8 status; 291 u8 stat_ack; 292 u8 cmd_lo; 293 u8 cmd_hi; 294 u32 gen_ptr; 295 } scb; 296 u32 port; 297 u16 flash_ctrl; 298 u8 eeprom_ctrl_lo; 299 u8 eeprom_ctrl_hi; 300 u32 mdi_ctrl; 301 u32 rx_dma_count; 302 }; 303 304 enum scb_status { 305 rus_no_res = 0x08, 306 rus_ready = 0x10, 307 rus_mask = 0x3C, 308 }; 309 310 enum ru_state { 311 RU_SUSPENDED = 0, 312 RU_RUNNING = 1, 313 RU_UNINITIALIZED = -1, 314 }; 315 316 enum scb_stat_ack { 317 stat_ack_not_ours = 0x00, 318 stat_ack_sw_gen = 0x04, 319 stat_ack_rnr = 0x10, 320 stat_ack_cu_idle = 0x20, 321 stat_ack_frame_rx = 0x40, 322 stat_ack_cu_cmd_done = 0x80, 323 stat_ack_not_present = 0xFF, 324 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), 325 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), 326 }; 327 328 enum scb_cmd_hi { 329 irq_mask_none = 0x00, 330 irq_mask_all = 0x01, 331 irq_sw_gen = 0x02, 332 }; 333 334 enum scb_cmd_lo { 335 cuc_nop = 0x00, 336 ruc_start = 0x01, 337 ruc_load_base = 0x06, 338 cuc_start = 0x10, 339 cuc_resume = 0x20, 340 cuc_dump_addr = 0x40, 341 cuc_dump_stats = 0x50, 342 cuc_load_base = 0x60, 343 cuc_dump_reset = 0x70, 344 }; 345 346 enum cuc_dump { 347 cuc_dump_complete = 0x0000A005, 348 cuc_dump_reset_complete = 0x0000A007, 349 }; 350 351 enum port { 352 software_reset = 0x0000, 353 selftest = 0x0001, 354 selective_reset = 0x0002, 355 }; 356 357 enum eeprom_ctrl_lo { 358 eesk = 0x01, 359 eecs = 0x02, 360 eedi = 0x04, 361 eedo = 0x08, 362 }; 363 364 enum mdi_ctrl { 365 mdi_write = 0x04000000, 366 mdi_read = 0x08000000, 367 mdi_ready = 0x10000000, 368 }; 369 370 enum eeprom_op { 371 op_write = 0x05, 372 op_read = 0x06, 373 op_ewds = 0x10, 374 op_ewen = 0x13, 375 }; 376 377 enum eeprom_offsets { 378 eeprom_cnfg_mdix = 0x03, 379 eeprom_phy_iface = 0x06, 380 eeprom_id = 0x0A, 381 eeprom_config_asf = 0x0D, 382 eeprom_smbus_addr = 0x90, 383 }; 384 385 enum eeprom_cnfg_mdix { 386 eeprom_mdix_enabled = 0x0080, 387 }; 388 389 enum eeprom_phy_iface { 390 NoSuchPhy = 0, 391 I82553AB, 392 I82553C, 393 I82503, 394 DP83840, 395 S80C240, 396 S80C24, 397 I82555, 398 DP83840A = 10, 399 }; 400 401 enum eeprom_id { 402 eeprom_id_wol = 0x0020, 403 }; 404 405 enum eeprom_config_asf { 406 eeprom_asf = 0x8000, 407 eeprom_gcl = 0x4000, 408 }; 409 410 enum cb_status { 411 cb_complete = 0x8000, 412 cb_ok = 0x2000, 413 }; 414 415 /** 416 * cb_command - Command Block flags 417 * @cb_tx_nc: 0: controler does CRC (normal), 1: CRC from skb memory 418 */ 419 enum cb_command { 420 cb_nop = 0x0000, 421 cb_iaaddr = 0x0001, 422 cb_config = 0x0002, 423 cb_multi = 0x0003, 424 cb_tx = 0x0004, 425 cb_ucode = 0x0005, 426 cb_dump = 0x0006, 427 cb_tx_sf = 0x0008, 428 cb_tx_nc = 0x0010, 429 cb_cid = 0x1f00, 430 cb_i = 0x2000, 431 cb_s = 0x4000, 432 cb_el = 0x8000, 433 }; 434 435 struct rfd { 436 __le16 status; 437 __le16 command; 438 __le32 link; 439 __le32 rbd; 440 __le16 actual_size; 441 __le16 size; 442 }; 443 444 struct rx { 445 struct rx *next, *prev; 446 struct sk_buff *skb; 447 dma_addr_t dma_addr; 448 }; 449 450 #if defined(__BIG_ENDIAN_BITFIELD) 451 #define X(a,b) b,a 452 #else 453 #define X(a,b) a,b 454 #endif 455 struct config { 456 /*0*/ u8 X(byte_count:6, pad0:2); 457 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); 458 /*2*/ u8 adaptive_ifs; 459 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), 460 term_write_cache_line:1), pad3:4); 461 /*4*/ u8 X(rx_dma_max_count:7, pad4:1); 462 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); 463 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), 464 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), 465 rx_save_overruns : 1), rx_save_bad_frames : 1); 466 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), 467 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), 468 tx_dynamic_tbd:1); 469 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); 470 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), 471 link_status_wake:1), arp_wake:1), mcmatch_wake:1); 472 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), 473 loopback:2); 474 /*11*/ u8 X(linear_priority:3, pad11:5); 475 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); 476 /*13*/ u8 ip_addr_lo; 477 /*14*/ u8 ip_addr_hi; 478 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), 479 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), 480 pad15_2:1), crs_or_cdt:1); 481 /*16*/ u8 fc_delay_lo; 482 /*17*/ u8 fc_delay_hi; 483 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), 484 rx_long_ok:1), fc_priority_threshold:3), pad18:1); 485 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), 486 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), 487 full_duplex_force:1), full_duplex_pin:1); 488 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); 489 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); 490 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); 491 u8 pad_d102[9]; 492 }; 493 494 #define E100_MAX_MULTICAST_ADDRS 64 495 struct multi { 496 __le16 count; 497 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; 498 }; 499 500 /* Important: keep total struct u32-aligned */ 501 #define UCODE_SIZE 134 502 struct cb { 503 __le16 status; 504 __le16 command; 505 __le32 link; 506 union { 507 u8 iaaddr[ETH_ALEN]; 508 __le32 ucode[UCODE_SIZE]; 509 struct config config; 510 struct multi multi; 511 struct { 512 u32 tbd_array; 513 u16 tcb_byte_count; 514 u8 threshold; 515 u8 tbd_count; 516 struct { 517 __le32 buf_addr; 518 __le16 size; 519 u16 eol; 520 } tbd; 521 } tcb; 522 __le32 dump_buffer_addr; 523 } u; 524 struct cb *next, *prev; 525 dma_addr_t dma_addr; 526 struct sk_buff *skb; 527 }; 528 529 enum loopback { 530 lb_none = 0, lb_mac = 1, lb_phy = 3, 531 }; 532 533 struct stats { 534 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions, 535 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, 536 tx_multiple_collisions, tx_total_collisions; 537 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors, 538 rx_resource_errors, rx_overrun_errors, rx_cdt_errors, 539 rx_short_frame_errors; 540 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; 541 __le16 xmt_tco_frames, rcv_tco_frames; 542 __le32 complete; 543 }; 544 545 struct mem { 546 struct { 547 u32 signature; 548 u32 result; 549 } selftest; 550 struct stats stats; 551 u8 dump_buf[596]; 552 }; 553 554 struct param_range { 555 u32 min; 556 u32 max; 557 u32 count; 558 }; 559 560 struct params { 561 struct param_range rfds; 562 struct param_range cbs; 563 }; 564 565 struct nic { 566 /* Begin: frequently used values: keep adjacent for cache effect */ 567 u32 msg_enable ____cacheline_aligned; 568 struct net_device *netdev; 569 struct pci_dev *pdev; 570 u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data); 571 572 struct rx *rxs ____cacheline_aligned; 573 struct rx *rx_to_use; 574 struct rx *rx_to_clean; 575 struct rfd blank_rfd; 576 enum ru_state ru_running; 577 578 spinlock_t cb_lock ____cacheline_aligned; 579 spinlock_t cmd_lock; 580 struct csr __iomem *csr; 581 enum scb_cmd_lo cuc_cmd; 582 unsigned int cbs_avail; 583 struct napi_struct napi; 584 struct cb *cbs; 585 struct cb *cb_to_use; 586 struct cb *cb_to_send; 587 struct cb *cb_to_clean; 588 __le16 tx_command; 589 /* End: frequently used values: keep adjacent for cache effect */ 590 591 enum { 592 ich = (1 << 0), 593 promiscuous = (1 << 1), 594 multicast_all = (1 << 2), 595 wol_magic = (1 << 3), 596 ich_10h_workaround = (1 << 4), 597 } flags ____cacheline_aligned; 598 599 enum mac mac; 600 enum phy phy; 601 struct params params; 602 struct timer_list watchdog; 603 struct mii_if_info mii; 604 struct work_struct tx_timeout_task; 605 enum loopback loopback; 606 607 struct mem *mem; 608 dma_addr_t dma_addr; 609 610 struct pci_pool *cbs_pool; 611 dma_addr_t cbs_dma_addr; 612 u8 adaptive_ifs; 613 u8 tx_threshold; 614 u32 tx_frames; 615 u32 tx_collisions; 616 u32 tx_deferred; 617 u32 tx_single_collisions; 618 u32 tx_multiple_collisions; 619 u32 tx_fc_pause; 620 u32 tx_tco_frames; 621 622 u32 rx_fc_pause; 623 u32 rx_fc_unsupported; 624 u32 rx_tco_frames; 625 u32 rx_short_frame_errors; 626 u32 rx_over_length_errors; 627 628 u16 eeprom_wc; 629 __le16 eeprom[256]; 630 spinlock_t mdio_lock; 631 const struct firmware *fw; 632 }; 633 634 static inline void e100_write_flush(struct nic *nic) 635 { 636 /* Flush previous PCI writes through intermediate bridges 637 * by doing a benign read */ 638 (void)ioread8(&nic->csr->scb.status); 639 } 640 641 static void e100_enable_irq(struct nic *nic) 642 { 643 unsigned long flags; 644 645 spin_lock_irqsave(&nic->cmd_lock, flags); 646 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi); 647 e100_write_flush(nic); 648 spin_unlock_irqrestore(&nic->cmd_lock, flags); 649 } 650 651 static void e100_disable_irq(struct nic *nic) 652 { 653 unsigned long flags; 654 655 spin_lock_irqsave(&nic->cmd_lock, flags); 656 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi); 657 e100_write_flush(nic); 658 spin_unlock_irqrestore(&nic->cmd_lock, flags); 659 } 660 661 static void e100_hw_reset(struct nic *nic) 662 { 663 /* Put CU and RU into idle with a selective reset to get 664 * device off of PCI bus */ 665 iowrite32(selective_reset, &nic->csr->port); 666 e100_write_flush(nic); udelay(20); 667 668 /* Now fully reset device */ 669 iowrite32(software_reset, &nic->csr->port); 670 e100_write_flush(nic); udelay(20); 671 672 /* Mask off our interrupt line - it's unmasked after reset */ 673 e100_disable_irq(nic); 674 } 675 676 static int e100_self_test(struct nic *nic) 677 { 678 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); 679 680 /* Passing the self-test is a pretty good indication 681 * that the device can DMA to/from host memory */ 682 683 nic->mem->selftest.signature = 0; 684 nic->mem->selftest.result = 0xFFFFFFFF; 685 686 iowrite32(selftest | dma_addr, &nic->csr->port); 687 e100_write_flush(nic); 688 /* Wait 10 msec for self-test to complete */ 689 msleep(10); 690 691 /* Interrupts are enabled after self-test */ 692 e100_disable_irq(nic); 693 694 /* Check results of self-test */ 695 if (nic->mem->selftest.result != 0) { 696 netif_err(nic, hw, nic->netdev, 697 "Self-test failed: result=0x%08X\n", 698 nic->mem->selftest.result); 699 return -ETIMEDOUT; 700 } 701 if (nic->mem->selftest.signature == 0) { 702 netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n"); 703 return -ETIMEDOUT; 704 } 705 706 return 0; 707 } 708 709 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data) 710 { 711 u32 cmd_addr_data[3]; 712 u8 ctrl; 713 int i, j; 714 715 /* Three cmds: write/erase enable, write data, write/erase disable */ 716 cmd_addr_data[0] = op_ewen << (addr_len - 2); 717 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | 718 le16_to_cpu(data); 719 cmd_addr_data[2] = op_ewds << (addr_len - 2); 720 721 /* Bit-bang cmds to write word to eeprom */ 722 for (j = 0; j < 3; j++) { 723 724 /* Chip select */ 725 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 726 e100_write_flush(nic); udelay(4); 727 728 for (i = 31; i >= 0; i--) { 729 ctrl = (cmd_addr_data[j] & (1 << i)) ? 730 eecs | eedi : eecs; 731 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); 732 e100_write_flush(nic); udelay(4); 733 734 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 735 e100_write_flush(nic); udelay(4); 736 } 737 /* Wait 10 msec for cmd to complete */ 738 msleep(10); 739 740 /* Chip deselect */ 741 iowrite8(0, &nic->csr->eeprom_ctrl_lo); 742 e100_write_flush(nic); udelay(4); 743 } 744 }; 745 746 /* General technique stolen from the eepro100 driver - very clever */ 747 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) 748 { 749 u32 cmd_addr_data; 750 u16 data = 0; 751 u8 ctrl; 752 int i; 753 754 cmd_addr_data = ((op_read << *addr_len) | addr) << 16; 755 756 /* Chip select */ 757 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 758 e100_write_flush(nic); udelay(4); 759 760 /* Bit-bang to read word from eeprom */ 761 for (i = 31; i >= 0; i--) { 762 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; 763 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); 764 e100_write_flush(nic); udelay(4); 765 766 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 767 e100_write_flush(nic); udelay(4); 768 769 /* Eeprom drives a dummy zero to EEDO after receiving 770 * complete address. Use this to adjust addr_len. */ 771 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo); 772 if (!(ctrl & eedo) && i > 16) { 773 *addr_len -= (i - 16); 774 i = 17; 775 } 776 777 data = (data << 1) | (ctrl & eedo ? 1 : 0); 778 } 779 780 /* Chip deselect */ 781 iowrite8(0, &nic->csr->eeprom_ctrl_lo); 782 e100_write_flush(nic); udelay(4); 783 784 return cpu_to_le16(data); 785 }; 786 787 /* Load entire EEPROM image into driver cache and validate checksum */ 788 static int e100_eeprom_load(struct nic *nic) 789 { 790 u16 addr, addr_len = 8, checksum = 0; 791 792 /* Try reading with an 8-bit addr len to discover actual addr len */ 793 e100_eeprom_read(nic, &addr_len, 0); 794 nic->eeprom_wc = 1 << addr_len; 795 796 for (addr = 0; addr < nic->eeprom_wc; addr++) { 797 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); 798 if (addr < nic->eeprom_wc - 1) 799 checksum += le16_to_cpu(nic->eeprom[addr]); 800 } 801 802 /* The checksum, stored in the last word, is calculated such that 803 * the sum of words should be 0xBABA */ 804 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) { 805 netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n"); 806 if (!eeprom_bad_csum_allow) 807 return -EAGAIN; 808 } 809 810 return 0; 811 } 812 813 /* Save (portion of) driver EEPROM cache to device and update checksum */ 814 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) 815 { 816 u16 addr, addr_len = 8, checksum = 0; 817 818 /* Try reading with an 8-bit addr len to discover actual addr len */ 819 e100_eeprom_read(nic, &addr_len, 0); 820 nic->eeprom_wc = 1 << addr_len; 821 822 if (start + count >= nic->eeprom_wc) 823 return -EINVAL; 824 825 for (addr = start; addr < start + count; addr++) 826 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); 827 828 /* The checksum, stored in the last word, is calculated such that 829 * the sum of words should be 0xBABA */ 830 for (addr = 0; addr < nic->eeprom_wc - 1; addr++) 831 checksum += le16_to_cpu(nic->eeprom[addr]); 832 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum); 833 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, 834 nic->eeprom[nic->eeprom_wc - 1]); 835 836 return 0; 837 } 838 839 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ 840 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */ 841 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) 842 { 843 unsigned long flags; 844 unsigned int i; 845 int err = 0; 846 847 spin_lock_irqsave(&nic->cmd_lock, flags); 848 849 /* Previous command is accepted when SCB clears */ 850 for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { 851 if (likely(!ioread8(&nic->csr->scb.cmd_lo))) 852 break; 853 cpu_relax(); 854 if (unlikely(i > E100_WAIT_SCB_FAST)) 855 udelay(5); 856 } 857 if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) { 858 err = -EAGAIN; 859 goto err_unlock; 860 } 861 862 if (unlikely(cmd != cuc_resume)) 863 iowrite32(dma_addr, &nic->csr->scb.gen_ptr); 864 iowrite8(cmd, &nic->csr->scb.cmd_lo); 865 866 err_unlock: 867 spin_unlock_irqrestore(&nic->cmd_lock, flags); 868 869 return err; 870 } 871 872 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb, 873 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) 874 { 875 struct cb *cb; 876 unsigned long flags; 877 int err = 0; 878 879 spin_lock_irqsave(&nic->cb_lock, flags); 880 881 if (unlikely(!nic->cbs_avail)) { 882 err = -ENOMEM; 883 goto err_unlock; 884 } 885 886 cb = nic->cb_to_use; 887 nic->cb_to_use = cb->next; 888 nic->cbs_avail--; 889 cb->skb = skb; 890 891 if (unlikely(!nic->cbs_avail)) 892 err = -ENOSPC; 893 894 cb_prepare(nic, cb, skb); 895 896 /* Order is important otherwise we'll be in a race with h/w: 897 * set S-bit in current first, then clear S-bit in previous. */ 898 cb->command |= cpu_to_le16(cb_s); 899 wmb(); 900 cb->prev->command &= cpu_to_le16(~cb_s); 901 902 while (nic->cb_to_send != nic->cb_to_use) { 903 if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd, 904 nic->cb_to_send->dma_addr))) { 905 /* Ok, here's where things get sticky. It's 906 * possible that we can't schedule the command 907 * because the controller is too busy, so 908 * let's just queue the command and try again 909 * when another command is scheduled. */ 910 if (err == -ENOSPC) { 911 //request a reset 912 schedule_work(&nic->tx_timeout_task); 913 } 914 break; 915 } else { 916 nic->cuc_cmd = cuc_resume; 917 nic->cb_to_send = nic->cb_to_send->next; 918 } 919 } 920 921 err_unlock: 922 spin_unlock_irqrestore(&nic->cb_lock, flags); 923 924 return err; 925 } 926 927 static int mdio_read(struct net_device *netdev, int addr, int reg) 928 { 929 struct nic *nic = netdev_priv(netdev); 930 return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0); 931 } 932 933 static void mdio_write(struct net_device *netdev, int addr, int reg, int data) 934 { 935 struct nic *nic = netdev_priv(netdev); 936 937 nic->mdio_ctrl(nic, addr, mdi_write, reg, data); 938 } 939 940 /* the standard mdio_ctrl() function for usual MII-compliant hardware */ 941 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) 942 { 943 u32 data_out = 0; 944 unsigned int i; 945 unsigned long flags; 946 947 948 /* 949 * Stratus87247: we shouldn't be writing the MDI control 950 * register until the Ready bit shows True. Also, since 951 * manipulation of the MDI control registers is a multi-step 952 * procedure it should be done under lock. 953 */ 954 spin_lock_irqsave(&nic->mdio_lock, flags); 955 for (i = 100; i; --i) { 956 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready) 957 break; 958 udelay(20); 959 } 960 if (unlikely(!i)) { 961 netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n"); 962 spin_unlock_irqrestore(&nic->mdio_lock, flags); 963 return 0; /* No way to indicate timeout error */ 964 } 965 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); 966 967 for (i = 0; i < 100; i++) { 968 udelay(20); 969 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready) 970 break; 971 } 972 spin_unlock_irqrestore(&nic->mdio_lock, flags); 973 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 974 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", 975 dir == mdi_read ? "READ" : "WRITE", 976 addr, reg, data, data_out); 977 return (u16)data_out; 978 } 979 980 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */ 981 static u16 mdio_ctrl_phy_82552_v(struct nic *nic, 982 u32 addr, 983 u32 dir, 984 u32 reg, 985 u16 data) 986 { 987 if ((reg == MII_BMCR) && (dir == mdi_write)) { 988 if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) { 989 u16 advert = mdio_read(nic->netdev, nic->mii.phy_id, 990 MII_ADVERTISE); 991 992 /* 993 * Workaround Si issue where sometimes the part will not 994 * autoneg to 100Mbps even when advertised. 995 */ 996 if (advert & ADVERTISE_100FULL) 997 data |= BMCR_SPEED100 | BMCR_FULLDPLX; 998 else if (advert & ADVERTISE_100HALF) 999 data |= BMCR_SPEED100; 1000 } 1001 } 1002 return mdio_ctrl_hw(nic, addr, dir, reg, data); 1003 } 1004 1005 /* Fully software-emulated mdio_ctrl() function for cards without 1006 * MII-compliant PHYs. 1007 * For now, this is mainly geared towards 80c24 support; in case of further 1008 * requirements for other types (i82503, ...?) either extend this mechanism 1009 * or split it, whichever is cleaner. 1010 */ 1011 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic, 1012 u32 addr, 1013 u32 dir, 1014 u32 reg, 1015 u16 data) 1016 { 1017 /* might need to allocate a netdev_priv'ed register array eventually 1018 * to be able to record state changes, but for now 1019 * some fully hardcoded register handling ought to be ok I guess. */ 1020 1021 if (dir == mdi_read) { 1022 switch (reg) { 1023 case MII_BMCR: 1024 /* Auto-negotiation, right? */ 1025 return BMCR_ANENABLE | 1026 BMCR_FULLDPLX; 1027 case MII_BMSR: 1028 return BMSR_LSTATUS /* for mii_link_ok() */ | 1029 BMSR_ANEGCAPABLE | 1030 BMSR_10FULL; 1031 case MII_ADVERTISE: 1032 /* 80c24 is a "combo card" PHY, right? */ 1033 return ADVERTISE_10HALF | 1034 ADVERTISE_10FULL; 1035 default: 1036 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 1037 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", 1038 dir == mdi_read ? "READ" : "WRITE", 1039 addr, reg, data); 1040 return 0xFFFF; 1041 } 1042 } else { 1043 switch (reg) { 1044 default: 1045 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 1046 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", 1047 dir == mdi_read ? "READ" : "WRITE", 1048 addr, reg, data); 1049 return 0xFFFF; 1050 } 1051 } 1052 } 1053 static inline int e100_phy_supports_mii(struct nic *nic) 1054 { 1055 /* for now, just check it by comparing whether we 1056 are using MII software emulation. 1057 */ 1058 return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated); 1059 } 1060 1061 static void e100_get_defaults(struct nic *nic) 1062 { 1063 struct param_range rfds = { .min = 16, .max = 256, .count = 256 }; 1064 struct param_range cbs = { .min = 64, .max = 256, .count = 128 }; 1065 1066 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ 1067 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision; 1068 if (nic->mac == mac_unknown) 1069 nic->mac = mac_82557_D100_A; 1070 1071 nic->params.rfds = rfds; 1072 nic->params.cbs = cbs; 1073 1074 /* Quadwords to DMA into FIFO before starting frame transmit */ 1075 nic->tx_threshold = 0xE0; 1076 1077 /* no interrupt for every tx completion, delay = 256us if not 557 */ 1078 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | 1079 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); 1080 1081 /* Template for a freshly allocated RFD */ 1082 nic->blank_rfd.command = 0; 1083 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF); 1084 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN); 1085 1086 /* MII setup */ 1087 nic->mii.phy_id_mask = 0x1F; 1088 nic->mii.reg_num_mask = 0x1F; 1089 nic->mii.dev = nic->netdev; 1090 nic->mii.mdio_read = mdio_read; 1091 nic->mii.mdio_write = mdio_write; 1092 } 1093 1094 static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1095 { 1096 struct config *config = &cb->u.config; 1097 u8 *c = (u8 *)config; 1098 struct net_device *netdev = nic->netdev; 1099 1100 cb->command = cpu_to_le16(cb_config); 1101 1102 memset(config, 0, sizeof(struct config)); 1103 1104 config->byte_count = 0x16; /* bytes in this struct */ 1105 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ 1106 config->direct_rx_dma = 0x1; /* reserved */ 1107 config->standard_tcb = 0x1; /* 1=standard, 0=extended */ 1108 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ 1109 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ 1110 config->tx_underrun_retry = 0x3; /* # of underrun retries */ 1111 if (e100_phy_supports_mii(nic)) 1112 config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */ 1113 config->pad10 = 0x6; 1114 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ 1115 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ 1116 config->ifs = 0x6; /* x16 = inter frame spacing */ 1117 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ 1118 config->pad15_1 = 0x1; 1119 config->pad15_2 = 0x1; 1120 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ 1121 config->fc_delay_hi = 0x40; /* time delay for fc frame */ 1122 config->tx_padding = 0x1; /* 1=pad short frames */ 1123 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ 1124 config->pad18 = 0x1; 1125 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ 1126 config->pad20_1 = 0x1F; 1127 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ 1128 config->pad21_1 = 0x5; 1129 1130 config->adaptive_ifs = nic->adaptive_ifs; 1131 config->loopback = nic->loopback; 1132 1133 if (nic->mii.force_media && nic->mii.full_duplex) 1134 config->full_duplex_force = 0x1; /* 1=force, 0=auto */ 1135 1136 if (nic->flags & promiscuous || nic->loopback) { 1137 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ 1138 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ 1139 config->promiscuous_mode = 0x1; /* 1=on, 0=off */ 1140 } 1141 1142 if (unlikely(netdev->features & NETIF_F_RXFCS)) 1143 config->rx_crc_transfer = 0x1; /* 1=save, 0=discard */ 1144 1145 if (nic->flags & multicast_all) 1146 config->multicast_all = 0x1; /* 1=accept, 0=no */ 1147 1148 /* disable WoL when up */ 1149 if (netif_running(nic->netdev) || !(nic->flags & wol_magic)) 1150 config->magic_packet_disable = 0x1; /* 1=off, 0=on */ 1151 1152 if (nic->mac >= mac_82558_D101_A4) { 1153 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ 1154 config->mwi_enable = 0x1; /* 1=enable, 0=disable */ 1155 config->standard_tcb = 0x0; /* 1=standard, 0=extended */ 1156 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ 1157 if (nic->mac >= mac_82559_D101M) { 1158 config->tno_intr = 0x1; /* TCO stats enable */ 1159 /* Enable TCO in extended config */ 1160 if (nic->mac >= mac_82551_10) { 1161 config->byte_count = 0x20; /* extended bytes */ 1162 config->rx_d102_mode = 0x1; /* GMRC for TCO */ 1163 } 1164 } else { 1165 config->standard_stat_counter = 0x0; 1166 } 1167 } 1168 1169 if (netdev->features & NETIF_F_RXALL) { 1170 config->rx_save_overruns = 0x1; /* 1=save, 0=discard */ 1171 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ 1172 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ 1173 } 1174 1175 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 1176 "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1177 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]); 1178 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 1179 "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1180 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]); 1181 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 1182 "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1183 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]); 1184 } 1185 1186 /************************************************************************* 1187 * CPUSaver parameters 1188 * 1189 * All CPUSaver parameters are 16-bit literals that are part of a 1190 * "move immediate value" instruction. By changing the value of 1191 * the literal in the instruction before the code is loaded, the 1192 * driver can change the algorithm. 1193 * 1194 * INTDELAY - This loads the dead-man timer with its initial value. 1195 * When this timer expires the interrupt is asserted, and the 1196 * timer is reset each time a new packet is received. (see 1197 * BUNDLEMAX below to set the limit on number of chained packets) 1198 * The current default is 0x600 or 1536. Experiments show that 1199 * the value should probably stay within the 0x200 - 0x1000. 1200 * 1201 * BUNDLEMAX - 1202 * This sets the maximum number of frames that will be bundled. In 1203 * some situations, such as the TCP windowing algorithm, it may be 1204 * better to limit the growth of the bundle size than let it go as 1205 * high as it can, because that could cause too much added latency. 1206 * The default is six, because this is the number of packets in the 1207 * default TCP window size. A value of 1 would make CPUSaver indicate 1208 * an interrupt for every frame received. If you do not want to put 1209 * a limit on the bundle size, set this value to xFFFF. 1210 * 1211 * BUNDLESMALL - 1212 * This contains a bit-mask describing the minimum size frame that 1213 * will be bundled. The default masks the lower 7 bits, which means 1214 * that any frame less than 128 bytes in length will not be bundled, 1215 * but will instead immediately generate an interrupt. This does 1216 * not affect the current bundle in any way. Any frame that is 128 1217 * bytes or large will be bundled normally. This feature is meant 1218 * to provide immediate indication of ACK frames in a TCP environment. 1219 * Customers were seeing poor performance when a machine with CPUSaver 1220 * enabled was sending but not receiving. The delay introduced when 1221 * the ACKs were received was enough to reduce total throughput, because 1222 * the sender would sit idle until the ACK was finally seen. 1223 * 1224 * The current default is 0xFF80, which masks out the lower 7 bits. 1225 * This means that any frame which is x7F (127) bytes or smaller 1226 * will cause an immediate interrupt. Because this value must be a 1227 * bit mask, there are only a few valid values that can be used. To 1228 * turn this feature off, the driver can write the value xFFFF to the 1229 * lower word of this instruction (in the same way that the other 1230 * parameters are used). Likewise, a value of 0xF800 (2047) would 1231 * cause an interrupt to be generated for every frame, because all 1232 * standard Ethernet frames are <= 2047 bytes in length. 1233 *************************************************************************/ 1234 1235 /* if you wish to disable the ucode functionality, while maintaining the 1236 * workarounds it provides, set the following defines to: 1237 * BUNDLESMALL 0 1238 * BUNDLEMAX 1 1239 * INTDELAY 1 1240 */ 1241 #define BUNDLESMALL 1 1242 #define BUNDLEMAX (u16)6 1243 #define INTDELAY (u16)1536 /* 0x600 */ 1244 1245 /* Initialize firmware */ 1246 static const struct firmware *e100_request_firmware(struct nic *nic) 1247 { 1248 const char *fw_name; 1249 const struct firmware *fw = nic->fw; 1250 u8 timer, bundle, min_size; 1251 int err = 0; 1252 bool required = false; 1253 1254 /* do not load u-code for ICH devices */ 1255 if (nic->flags & ich) 1256 return NULL; 1257 1258 /* Search for ucode match against h/w revision 1259 * 1260 * Based on comments in the source code for the FreeBSD fxp 1261 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and 1262 * 1263 * "fixes for bugs in the B-step hardware (specifically, bugs 1264 * with Inline Receive)." 1265 * 1266 * So we must fail if it cannot be loaded. 1267 * 1268 * The other microcode files are only required for the optional 1269 * CPUSaver feature. Nice to have, but no reason to fail. 1270 */ 1271 if (nic->mac == mac_82559_D101M) { 1272 fw_name = FIRMWARE_D101M; 1273 } else if (nic->mac == mac_82559_D101S) { 1274 fw_name = FIRMWARE_D101S; 1275 } else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) { 1276 fw_name = FIRMWARE_D102E; 1277 required = true; 1278 } else { /* No ucode on other devices */ 1279 return NULL; 1280 } 1281 1282 /* If the firmware has not previously been loaded, request a pointer 1283 * to it. If it was previously loaded, we are reinitializing the 1284 * adapter, possibly in a resume from hibernate, in which case 1285 * request_firmware() cannot be used. 1286 */ 1287 if (!fw) 1288 err = request_firmware(&fw, fw_name, &nic->pdev->dev); 1289 1290 if (err) { 1291 if (required) { 1292 netif_err(nic, probe, nic->netdev, 1293 "Failed to load firmware \"%s\": %d\n", 1294 fw_name, err); 1295 return ERR_PTR(err); 1296 } else { 1297 netif_info(nic, probe, nic->netdev, 1298 "CPUSaver disabled. Needs \"%s\": %d\n", 1299 fw_name, err); 1300 return NULL; 1301 } 1302 } 1303 1304 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes 1305 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */ 1306 if (fw->size != UCODE_SIZE * 4 + 3) { 1307 netif_err(nic, probe, nic->netdev, 1308 "Firmware \"%s\" has wrong size %zu\n", 1309 fw_name, fw->size); 1310 release_firmware(fw); 1311 return ERR_PTR(-EINVAL); 1312 } 1313 1314 /* Read timer, bundle and min_size from end of firmware blob */ 1315 timer = fw->data[UCODE_SIZE * 4]; 1316 bundle = fw->data[UCODE_SIZE * 4 + 1]; 1317 min_size = fw->data[UCODE_SIZE * 4 + 2]; 1318 1319 if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE || 1320 min_size >= UCODE_SIZE) { 1321 netif_err(nic, probe, nic->netdev, 1322 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n", 1323 fw_name, timer, bundle, min_size); 1324 release_firmware(fw); 1325 return ERR_PTR(-EINVAL); 1326 } 1327 1328 /* OK, firmware is validated and ready to use. Save a pointer 1329 * to it in the nic */ 1330 nic->fw = fw; 1331 return fw; 1332 } 1333 1334 static void e100_setup_ucode(struct nic *nic, struct cb *cb, 1335 struct sk_buff *skb) 1336 { 1337 const struct firmware *fw = (void *)skb; 1338 u8 timer, bundle, min_size; 1339 1340 /* It's not a real skb; we just abused the fact that e100_exec_cb 1341 will pass it through to here... */ 1342 cb->skb = NULL; 1343 1344 /* firmware is stored as little endian already */ 1345 memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4); 1346 1347 /* Read timer, bundle and min_size from end of firmware blob */ 1348 timer = fw->data[UCODE_SIZE * 4]; 1349 bundle = fw->data[UCODE_SIZE * 4 + 1]; 1350 min_size = fw->data[UCODE_SIZE * 4 + 2]; 1351 1352 /* Insert user-tunable settings in cb->u.ucode */ 1353 cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000); 1354 cb->u.ucode[timer] |= cpu_to_le32(INTDELAY); 1355 cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000); 1356 cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX); 1357 cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000); 1358 cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80); 1359 1360 cb->command = cpu_to_le16(cb_ucode | cb_el); 1361 } 1362 1363 static inline int e100_load_ucode_wait(struct nic *nic) 1364 { 1365 const struct firmware *fw; 1366 int err = 0, counter = 50; 1367 struct cb *cb = nic->cb_to_clean; 1368 1369 fw = e100_request_firmware(nic); 1370 /* If it's NULL, then no ucode is required */ 1371 if (!fw || IS_ERR(fw)) 1372 return PTR_ERR(fw); 1373 1374 if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode))) 1375 netif_err(nic, probe, nic->netdev, 1376 "ucode cmd failed with error %d\n", err); 1377 1378 /* must restart cuc */ 1379 nic->cuc_cmd = cuc_start; 1380 1381 /* wait for completion */ 1382 e100_write_flush(nic); 1383 udelay(10); 1384 1385 /* wait for possibly (ouch) 500ms */ 1386 while (!(cb->status & cpu_to_le16(cb_complete))) { 1387 msleep(10); 1388 if (!--counter) break; 1389 } 1390 1391 /* ack any interrupts, something could have been set */ 1392 iowrite8(~0, &nic->csr->scb.stat_ack); 1393 1394 /* if the command failed, or is not OK, notify and return */ 1395 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) { 1396 netif_err(nic, probe, nic->netdev, "ucode load failed\n"); 1397 err = -EPERM; 1398 } 1399 1400 return err; 1401 } 1402 1403 static void e100_setup_iaaddr(struct nic *nic, struct cb *cb, 1404 struct sk_buff *skb) 1405 { 1406 cb->command = cpu_to_le16(cb_iaaddr); 1407 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); 1408 } 1409 1410 static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1411 { 1412 cb->command = cpu_to_le16(cb_dump); 1413 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + 1414 offsetof(struct mem, dump_buf)); 1415 } 1416 1417 static int e100_phy_check_without_mii(struct nic *nic) 1418 { 1419 u8 phy_type; 1420 int without_mii; 1421 1422 phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f; 1423 1424 switch (phy_type) { 1425 case NoSuchPhy: /* Non-MII PHY; UNTESTED! */ 1426 case I82503: /* Non-MII PHY; UNTESTED! */ 1427 case S80C24: /* Non-MII PHY; tested and working */ 1428 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24": 1429 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter 1430 * doesn't have a programming interface of any sort. The 1431 * media is sensed automatically based on how the link partner 1432 * is configured. This is, in essence, manual configuration. 1433 */ 1434 netif_info(nic, probe, nic->netdev, 1435 "found MII-less i82503 or 80c24 or other PHY\n"); 1436 1437 nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated; 1438 nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */ 1439 1440 /* these might be needed for certain MII-less cards... 1441 * nic->flags |= ich; 1442 * nic->flags |= ich_10h_workaround; */ 1443 1444 without_mii = 1; 1445 break; 1446 default: 1447 without_mii = 0; 1448 break; 1449 } 1450 return without_mii; 1451 } 1452 1453 #define NCONFIG_AUTO_SWITCH 0x0080 1454 #define MII_NSC_CONG MII_RESV1 1455 #define NSC_CONG_ENABLE 0x0100 1456 #define NSC_CONG_TXREADY 0x0400 1457 #define ADVERTISE_FC_SUPPORTED 0x0400 1458 static int e100_phy_init(struct nic *nic) 1459 { 1460 struct net_device *netdev = nic->netdev; 1461 u32 addr; 1462 u16 bmcr, stat, id_lo, id_hi, cong; 1463 1464 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ 1465 for (addr = 0; addr < 32; addr++) { 1466 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; 1467 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); 1468 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1469 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1470 if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) 1471 break; 1472 } 1473 if (addr == 32) { 1474 /* uhoh, no PHY detected: check whether we seem to be some 1475 * weird, rare variant which is *known* to not have any MII. 1476 * But do this AFTER MII checking only, since this does 1477 * lookup of EEPROM values which may easily be unreliable. */ 1478 if (e100_phy_check_without_mii(nic)) 1479 return 0; /* simply return and hope for the best */ 1480 else { 1481 /* for unknown cases log a fatal error */ 1482 netif_err(nic, hw, nic->netdev, 1483 "Failed to locate any known PHY, aborting\n"); 1484 return -EAGAIN; 1485 } 1486 } else 1487 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 1488 "phy_addr = %d\n", nic->mii.phy_id); 1489 1490 /* Get phy ID */ 1491 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); 1492 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); 1493 nic->phy = (u32)id_hi << 16 | (u32)id_lo; 1494 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 1495 "phy ID = 0x%08X\n", nic->phy); 1496 1497 /* Select the phy and isolate the rest */ 1498 for (addr = 0; addr < 32; addr++) { 1499 if (addr != nic->mii.phy_id) { 1500 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); 1501 } else if (nic->phy != phy_82552_v) { 1502 bmcr = mdio_read(netdev, addr, MII_BMCR); 1503 mdio_write(netdev, addr, MII_BMCR, 1504 bmcr & ~BMCR_ISOLATE); 1505 } 1506 } 1507 /* 1508 * Workaround for 82552: 1509 * Clear the ISOLATE bit on selected phy_id last (mirrored on all 1510 * other phy_id's) using bmcr value from addr discovery loop above. 1511 */ 1512 if (nic->phy == phy_82552_v) 1513 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, 1514 bmcr & ~BMCR_ISOLATE); 1515 1516 /* Handle National tx phys */ 1517 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF 1518 if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { 1519 /* Disable congestion control */ 1520 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); 1521 cong |= NSC_CONG_TXREADY; 1522 cong &= ~NSC_CONG_ENABLE; 1523 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); 1524 } 1525 1526 if (nic->phy == phy_82552_v) { 1527 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE); 1528 1529 /* assign special tweaked mdio_ctrl() function */ 1530 nic->mdio_ctrl = mdio_ctrl_phy_82552_v; 1531 1532 /* Workaround Si not advertising flow-control during autoneg */ 1533 advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 1534 mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert); 1535 1536 /* Reset for the above changes to take effect */ 1537 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); 1538 bmcr |= BMCR_RESET; 1539 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr); 1540 } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && 1541 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) && 1542 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) { 1543 /* enable/disable MDI/MDI-X auto-switching. */ 1544 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, 1545 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH); 1546 } 1547 1548 return 0; 1549 } 1550 1551 static int e100_hw_init(struct nic *nic) 1552 { 1553 int err = 0; 1554 1555 e100_hw_reset(nic); 1556 1557 netif_err(nic, hw, nic->netdev, "e100_hw_init\n"); 1558 if (!in_interrupt() && (err = e100_self_test(nic))) 1559 return err; 1560 1561 if ((err = e100_phy_init(nic))) 1562 return err; 1563 if ((err = e100_exec_cmd(nic, cuc_load_base, 0))) 1564 return err; 1565 if ((err = e100_exec_cmd(nic, ruc_load_base, 0))) 1566 return err; 1567 if ((err = e100_load_ucode_wait(nic))) 1568 return err; 1569 if ((err = e100_exec_cb(nic, NULL, e100_configure))) 1570 return err; 1571 if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) 1572 return err; 1573 if ((err = e100_exec_cmd(nic, cuc_dump_addr, 1574 nic->dma_addr + offsetof(struct mem, stats)))) 1575 return err; 1576 if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) 1577 return err; 1578 1579 e100_disable_irq(nic); 1580 1581 return 0; 1582 } 1583 1584 static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1585 { 1586 struct net_device *netdev = nic->netdev; 1587 struct netdev_hw_addr *ha; 1588 u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS); 1589 1590 cb->command = cpu_to_le16(cb_multi); 1591 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); 1592 i = 0; 1593 netdev_for_each_mc_addr(ha, netdev) { 1594 if (i == count) 1595 break; 1596 memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr, 1597 ETH_ALEN); 1598 } 1599 } 1600 1601 static void e100_set_multicast_list(struct net_device *netdev) 1602 { 1603 struct nic *nic = netdev_priv(netdev); 1604 1605 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 1606 "mc_count=%d, flags=0x%04X\n", 1607 netdev_mc_count(netdev), netdev->flags); 1608 1609 if (netdev->flags & IFF_PROMISC) 1610 nic->flags |= promiscuous; 1611 else 1612 nic->flags &= ~promiscuous; 1613 1614 if (netdev->flags & IFF_ALLMULTI || 1615 netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS) 1616 nic->flags |= multicast_all; 1617 else 1618 nic->flags &= ~multicast_all; 1619 1620 e100_exec_cb(nic, NULL, e100_configure); 1621 e100_exec_cb(nic, NULL, e100_multi); 1622 } 1623 1624 static void e100_update_stats(struct nic *nic) 1625 { 1626 struct net_device *dev = nic->netdev; 1627 struct net_device_stats *ns = &dev->stats; 1628 struct stats *s = &nic->mem->stats; 1629 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : 1630 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames : 1631 &s->complete; 1632 1633 /* Device's stats reporting may take several microseconds to 1634 * complete, so we're always waiting for results of the 1635 * previous command. */ 1636 1637 if (*complete == cpu_to_le32(cuc_dump_reset_complete)) { 1638 *complete = 0; 1639 nic->tx_frames = le32_to_cpu(s->tx_good_frames); 1640 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); 1641 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); 1642 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); 1643 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); 1644 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); 1645 ns->collisions += nic->tx_collisions; 1646 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + 1647 le32_to_cpu(s->tx_lost_crs); 1648 nic->rx_short_frame_errors += 1649 le32_to_cpu(s->rx_short_frame_errors); 1650 ns->rx_length_errors = nic->rx_short_frame_errors + 1651 nic->rx_over_length_errors; 1652 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); 1653 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); 1654 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); 1655 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); 1656 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors); 1657 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + 1658 le32_to_cpu(s->rx_alignment_errors) + 1659 le32_to_cpu(s->rx_short_frame_errors) + 1660 le32_to_cpu(s->rx_cdt_errors); 1661 nic->tx_deferred += le32_to_cpu(s->tx_deferred); 1662 nic->tx_single_collisions += 1663 le32_to_cpu(s->tx_single_collisions); 1664 nic->tx_multiple_collisions += 1665 le32_to_cpu(s->tx_multiple_collisions); 1666 if (nic->mac >= mac_82558_D101_A4) { 1667 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); 1668 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); 1669 nic->rx_fc_unsupported += 1670 le32_to_cpu(s->fc_rcv_unsupported); 1671 if (nic->mac >= mac_82559_D101M) { 1672 nic->tx_tco_frames += 1673 le16_to_cpu(s->xmt_tco_frames); 1674 nic->rx_tco_frames += 1675 le16_to_cpu(s->rcv_tco_frames); 1676 } 1677 } 1678 } 1679 1680 1681 if (e100_exec_cmd(nic, cuc_dump_reset, 0)) 1682 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, 1683 "exec cuc_dump_reset failed\n"); 1684 } 1685 1686 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) 1687 { 1688 /* Adjust inter-frame-spacing (IFS) between two transmits if 1689 * we're getting collisions on a half-duplex connection. */ 1690 1691 if (duplex == DUPLEX_HALF) { 1692 u32 prev = nic->adaptive_ifs; 1693 u32 min_frames = (speed == SPEED_100) ? 1000 : 100; 1694 1695 if ((nic->tx_frames / 32 < nic->tx_collisions) && 1696 (nic->tx_frames > min_frames)) { 1697 if (nic->adaptive_ifs < 60) 1698 nic->adaptive_ifs += 5; 1699 } else if (nic->tx_frames < min_frames) { 1700 if (nic->adaptive_ifs >= 5) 1701 nic->adaptive_ifs -= 5; 1702 } 1703 if (nic->adaptive_ifs != prev) 1704 e100_exec_cb(nic, NULL, e100_configure); 1705 } 1706 } 1707 1708 static void e100_watchdog(unsigned long data) 1709 { 1710 struct nic *nic = (struct nic *)data; 1711 struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET }; 1712 u32 speed; 1713 1714 netif_printk(nic, timer, KERN_DEBUG, nic->netdev, 1715 "right now = %ld\n", jiffies); 1716 1717 /* mii library handles link maintenance tasks */ 1718 1719 mii_ethtool_gset(&nic->mii, &cmd); 1720 speed = ethtool_cmd_speed(&cmd); 1721 1722 if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { 1723 netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n", 1724 speed == SPEED_100 ? 100 : 10, 1725 cmd.duplex == DUPLEX_FULL ? "Full" : "Half"); 1726 } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { 1727 netdev_info(nic->netdev, "NIC Link is Down\n"); 1728 } 1729 1730 mii_check_link(&nic->mii); 1731 1732 /* Software generated interrupt to recover from (rare) Rx 1733 * allocation failure. 1734 * Unfortunately have to use a spinlock to not re-enable interrupts 1735 * accidentally, due to hardware that shares a register between the 1736 * interrupt mask bit and the SW Interrupt generation bit */ 1737 spin_lock_irq(&nic->cmd_lock); 1738 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); 1739 e100_write_flush(nic); 1740 spin_unlock_irq(&nic->cmd_lock); 1741 1742 e100_update_stats(nic); 1743 e100_adjust_adaptive_ifs(nic, speed, cmd.duplex); 1744 1745 if (nic->mac <= mac_82557_D100_C) 1746 /* Issue a multicast command to workaround a 557 lock up */ 1747 e100_set_multicast_list(nic->netdev); 1748 1749 if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF) 1750 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ 1751 nic->flags |= ich_10h_workaround; 1752 else 1753 nic->flags &= ~ich_10h_workaround; 1754 1755 mod_timer(&nic->watchdog, 1756 round_jiffies(jiffies + E100_WATCHDOG_PERIOD)); 1757 } 1758 1759 static void e100_xmit_prepare(struct nic *nic, struct cb *cb, 1760 struct sk_buff *skb) 1761 { 1762 cb->command = nic->tx_command; 1763 1764 /* 1765 * Use the last 4 bytes of the SKB payload packet as the CRC, used for 1766 * testing, ie sending frames with bad CRC. 1767 */ 1768 if (unlikely(skb->no_fcs)) 1769 cb->command |= __constant_cpu_to_le16(cb_tx_nc); 1770 else 1771 cb->command &= ~__constant_cpu_to_le16(cb_tx_nc); 1772 1773 /* interrupt every 16 packets regardless of delay */ 1774 if ((nic->cbs_avail & ~15) == nic->cbs_avail) 1775 cb->command |= cpu_to_le16(cb_i); 1776 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); 1777 cb->u.tcb.tcb_byte_count = 0; 1778 cb->u.tcb.threshold = nic->tx_threshold; 1779 cb->u.tcb.tbd_count = 1; 1780 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev, 1781 skb->data, skb->len, PCI_DMA_TODEVICE)); 1782 /* check for mapping failure? */ 1783 cb->u.tcb.tbd.size = cpu_to_le16(skb->len); 1784 skb_tx_timestamp(skb); 1785 } 1786 1787 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb, 1788 struct net_device *netdev) 1789 { 1790 struct nic *nic = netdev_priv(netdev); 1791 int err; 1792 1793 if (nic->flags & ich_10h_workaround) { 1794 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. 1795 Issue a NOP command followed by a 1us delay before 1796 issuing the Tx command. */ 1797 if (e100_exec_cmd(nic, cuc_nop, 0)) 1798 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, 1799 "exec cuc_nop failed\n"); 1800 udelay(1); 1801 } 1802 1803 err = e100_exec_cb(nic, skb, e100_xmit_prepare); 1804 1805 switch (err) { 1806 case -ENOSPC: 1807 /* We queued the skb, but now we're out of space. */ 1808 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, 1809 "No space for CB\n"); 1810 netif_stop_queue(netdev); 1811 break; 1812 case -ENOMEM: 1813 /* This is a hard error - log it. */ 1814 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, 1815 "Out of Tx resources, returning skb\n"); 1816 netif_stop_queue(netdev); 1817 return NETDEV_TX_BUSY; 1818 } 1819 1820 return NETDEV_TX_OK; 1821 } 1822 1823 static int e100_tx_clean(struct nic *nic) 1824 { 1825 struct net_device *dev = nic->netdev; 1826 struct cb *cb; 1827 int tx_cleaned = 0; 1828 1829 spin_lock(&nic->cb_lock); 1830 1831 /* Clean CBs marked complete */ 1832 for (cb = nic->cb_to_clean; 1833 cb->status & cpu_to_le16(cb_complete); 1834 cb = nic->cb_to_clean = cb->next) { 1835 rmb(); /* read skb after status */ 1836 netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev, 1837 "cb[%d]->status = 0x%04X\n", 1838 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)), 1839 cb->status); 1840 1841 if (likely(cb->skb != NULL)) { 1842 dev->stats.tx_packets++; 1843 dev->stats.tx_bytes += cb->skb->len; 1844 1845 pci_unmap_single(nic->pdev, 1846 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1847 le16_to_cpu(cb->u.tcb.tbd.size), 1848 PCI_DMA_TODEVICE); 1849 dev_kfree_skb_any(cb->skb); 1850 cb->skb = NULL; 1851 tx_cleaned = 1; 1852 } 1853 cb->status = 0; 1854 nic->cbs_avail++; 1855 } 1856 1857 spin_unlock(&nic->cb_lock); 1858 1859 /* Recover from running out of Tx resources in xmit_frame */ 1860 if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) 1861 netif_wake_queue(nic->netdev); 1862 1863 return tx_cleaned; 1864 } 1865 1866 static void e100_clean_cbs(struct nic *nic) 1867 { 1868 if (nic->cbs) { 1869 while (nic->cbs_avail != nic->params.cbs.count) { 1870 struct cb *cb = nic->cb_to_clean; 1871 if (cb->skb) { 1872 pci_unmap_single(nic->pdev, 1873 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1874 le16_to_cpu(cb->u.tcb.tbd.size), 1875 PCI_DMA_TODEVICE); 1876 dev_kfree_skb(cb->skb); 1877 } 1878 nic->cb_to_clean = nic->cb_to_clean->next; 1879 nic->cbs_avail++; 1880 } 1881 pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr); 1882 nic->cbs = NULL; 1883 nic->cbs_avail = 0; 1884 } 1885 nic->cuc_cmd = cuc_start; 1886 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = 1887 nic->cbs; 1888 } 1889 1890 static int e100_alloc_cbs(struct nic *nic) 1891 { 1892 struct cb *cb; 1893 unsigned int i, count = nic->params.cbs.count; 1894 1895 nic->cuc_cmd = cuc_start; 1896 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; 1897 nic->cbs_avail = 0; 1898 1899 nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL, 1900 &nic->cbs_dma_addr); 1901 if (!nic->cbs) 1902 return -ENOMEM; 1903 memset(nic->cbs, 0, count * sizeof(struct cb)); 1904 1905 for (cb = nic->cbs, i = 0; i < count; cb++, i++) { 1906 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; 1907 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; 1908 1909 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); 1910 cb->link = cpu_to_le32(nic->cbs_dma_addr + 1911 ((i+1) % count) * sizeof(struct cb)); 1912 } 1913 1914 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; 1915 nic->cbs_avail = count; 1916 1917 return 0; 1918 } 1919 1920 static inline void e100_start_receiver(struct nic *nic, struct rx *rx) 1921 { 1922 if (!nic->rxs) return; 1923 if (RU_SUSPENDED != nic->ru_running) return; 1924 1925 /* handle init time starts */ 1926 if (!rx) rx = nic->rxs; 1927 1928 /* (Re)start RU if suspended or idle and RFA is non-NULL */ 1929 if (rx->skb) { 1930 e100_exec_cmd(nic, ruc_start, rx->dma_addr); 1931 nic->ru_running = RU_RUNNING; 1932 } 1933 } 1934 1935 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN) 1936 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) 1937 { 1938 if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN))) 1939 return -ENOMEM; 1940 1941 /* Init, and map the RFD. */ 1942 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd)); 1943 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, 1944 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 1945 1946 if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) { 1947 dev_kfree_skb_any(rx->skb); 1948 rx->skb = NULL; 1949 rx->dma_addr = 0; 1950 return -ENOMEM; 1951 } 1952 1953 /* Link the RFD to end of RFA by linking previous RFD to 1954 * this one. We are safe to touch the previous RFD because 1955 * it is protected by the before last buffer's el bit being set */ 1956 if (rx->prev->skb) { 1957 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; 1958 put_unaligned_le32(rx->dma_addr, &prev_rfd->link); 1959 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, 1960 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); 1961 } 1962 1963 return 0; 1964 } 1965 1966 static int e100_rx_indicate(struct nic *nic, struct rx *rx, 1967 unsigned int *work_done, unsigned int work_to_do) 1968 { 1969 struct net_device *dev = nic->netdev; 1970 struct sk_buff *skb = rx->skb; 1971 struct rfd *rfd = (struct rfd *)skb->data; 1972 u16 rfd_status, actual_size; 1973 u16 fcs_pad = 0; 1974 1975 if (unlikely(work_done && *work_done >= work_to_do)) 1976 return -EAGAIN; 1977 1978 /* Need to sync before taking a peek at cb_complete bit */ 1979 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr, 1980 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); 1981 rfd_status = le16_to_cpu(rfd->status); 1982 1983 netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev, 1984 "status=0x%04X\n", rfd_status); 1985 rmb(); /* read size after status bit */ 1986 1987 /* If data isn't ready, nothing to indicate */ 1988 if (unlikely(!(rfd_status & cb_complete))) { 1989 /* If the next buffer has the el bit, but we think the receiver 1990 * is still running, check to see if it really stopped while 1991 * we had interrupts off. 1992 * This allows for a fast restart without re-enabling 1993 * interrupts */ 1994 if ((le16_to_cpu(rfd->command) & cb_el) && 1995 (RU_RUNNING == nic->ru_running)) 1996 1997 if (ioread8(&nic->csr->scb.status) & rus_no_res) 1998 nic->ru_running = RU_SUSPENDED; 1999 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, 2000 sizeof(struct rfd), 2001 PCI_DMA_FROMDEVICE); 2002 return -ENODATA; 2003 } 2004 2005 /* Get actual data size */ 2006 if (unlikely(dev->features & NETIF_F_RXFCS)) 2007 fcs_pad = 4; 2008 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; 2009 if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) 2010 actual_size = RFD_BUF_LEN - sizeof(struct rfd); 2011 2012 /* Get data */ 2013 pci_unmap_single(nic->pdev, rx->dma_addr, 2014 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 2015 2016 /* If this buffer has the el bit, but we think the receiver 2017 * is still running, check to see if it really stopped while 2018 * we had interrupts off. 2019 * This allows for a fast restart without re-enabling interrupts. 2020 * This can happen when the RU sees the size change but also sees 2021 * the el bit set. */ 2022 if ((le16_to_cpu(rfd->command) & cb_el) && 2023 (RU_RUNNING == nic->ru_running)) { 2024 2025 if (ioread8(&nic->csr->scb.status) & rus_no_res) 2026 nic->ru_running = RU_SUSPENDED; 2027 } 2028 2029 /* Pull off the RFD and put the actual data (minus eth hdr) */ 2030 skb_reserve(skb, sizeof(struct rfd)); 2031 skb_put(skb, actual_size); 2032 skb->protocol = eth_type_trans(skb, nic->netdev); 2033 2034 /* If we are receiving all frames, then don't bother 2035 * checking for errors. 2036 */ 2037 if (unlikely(dev->features & NETIF_F_RXALL)) { 2038 if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) 2039 /* Received oversized frame, but keep it. */ 2040 nic->rx_over_length_errors++; 2041 goto process_skb; 2042 } 2043 2044 if (unlikely(!(rfd_status & cb_ok))) { 2045 /* Don't indicate if hardware indicates errors */ 2046 dev_kfree_skb_any(skb); 2047 } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) { 2048 /* Don't indicate oversized frames */ 2049 nic->rx_over_length_errors++; 2050 dev_kfree_skb_any(skb); 2051 } else { 2052 process_skb: 2053 dev->stats.rx_packets++; 2054 dev->stats.rx_bytes += (actual_size - fcs_pad); 2055 netif_receive_skb(skb); 2056 if (work_done) 2057 (*work_done)++; 2058 } 2059 2060 rx->skb = NULL; 2061 2062 return 0; 2063 } 2064 2065 static void e100_rx_clean(struct nic *nic, unsigned int *work_done, 2066 unsigned int work_to_do) 2067 { 2068 struct rx *rx; 2069 int restart_required = 0, err = 0; 2070 struct rx *old_before_last_rx, *new_before_last_rx; 2071 struct rfd *old_before_last_rfd, *new_before_last_rfd; 2072 2073 /* Indicate newly arrived packets */ 2074 for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { 2075 err = e100_rx_indicate(nic, rx, work_done, work_to_do); 2076 /* Hit quota or no more to clean */ 2077 if (-EAGAIN == err || -ENODATA == err) 2078 break; 2079 } 2080 2081 2082 /* On EAGAIN, hit quota so have more work to do, restart once 2083 * cleanup is complete. 2084 * Else, are we already rnr? then pay attention!!! this ensures that 2085 * the state machine progression never allows a start with a 2086 * partially cleaned list, avoiding a race between hardware 2087 * and rx_to_clean when in NAPI mode */ 2088 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running) 2089 restart_required = 1; 2090 2091 old_before_last_rx = nic->rx_to_use->prev->prev; 2092 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data; 2093 2094 /* Alloc new skbs to refill list */ 2095 for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { 2096 if (unlikely(e100_rx_alloc_skb(nic, rx))) 2097 break; /* Better luck next time (see watchdog) */ 2098 } 2099 2100 new_before_last_rx = nic->rx_to_use->prev->prev; 2101 if (new_before_last_rx != old_before_last_rx) { 2102 /* Set the el-bit on the buffer that is before the last buffer. 2103 * This lets us update the next pointer on the last buffer 2104 * without worrying about hardware touching it. 2105 * We set the size to 0 to prevent hardware from touching this 2106 * buffer. 2107 * When the hardware hits the before last buffer with el-bit 2108 * and size of 0, it will RNR interrupt, the RUS will go into 2109 * the No Resources state. It will not complete nor write to 2110 * this buffer. */ 2111 new_before_last_rfd = 2112 (struct rfd *)new_before_last_rx->skb->data; 2113 new_before_last_rfd->size = 0; 2114 new_before_last_rfd->command |= cpu_to_le16(cb_el); 2115 pci_dma_sync_single_for_device(nic->pdev, 2116 new_before_last_rx->dma_addr, sizeof(struct rfd), 2117 PCI_DMA_BIDIRECTIONAL); 2118 2119 /* Now that we have a new stopping point, we can clear the old 2120 * stopping point. We must sync twice to get the proper 2121 * ordering on the hardware side of things. */ 2122 old_before_last_rfd->command &= ~cpu_to_le16(cb_el); 2123 pci_dma_sync_single_for_device(nic->pdev, 2124 old_before_last_rx->dma_addr, sizeof(struct rfd), 2125 PCI_DMA_BIDIRECTIONAL); 2126 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN 2127 + ETH_FCS_LEN); 2128 pci_dma_sync_single_for_device(nic->pdev, 2129 old_before_last_rx->dma_addr, sizeof(struct rfd), 2130 PCI_DMA_BIDIRECTIONAL); 2131 } 2132 2133 if (restart_required) { 2134 // ack the rnr? 2135 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack); 2136 e100_start_receiver(nic, nic->rx_to_clean); 2137 if (work_done) 2138 (*work_done)++; 2139 } 2140 } 2141 2142 static void e100_rx_clean_list(struct nic *nic) 2143 { 2144 struct rx *rx; 2145 unsigned int i, count = nic->params.rfds.count; 2146 2147 nic->ru_running = RU_UNINITIALIZED; 2148 2149 if (nic->rxs) { 2150 for (rx = nic->rxs, i = 0; i < count; rx++, i++) { 2151 if (rx->skb) { 2152 pci_unmap_single(nic->pdev, rx->dma_addr, 2153 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 2154 dev_kfree_skb(rx->skb); 2155 } 2156 } 2157 kfree(nic->rxs); 2158 nic->rxs = NULL; 2159 } 2160 2161 nic->rx_to_use = nic->rx_to_clean = NULL; 2162 } 2163 2164 static int e100_rx_alloc_list(struct nic *nic) 2165 { 2166 struct rx *rx; 2167 unsigned int i, count = nic->params.rfds.count; 2168 struct rfd *before_last; 2169 2170 nic->rx_to_use = nic->rx_to_clean = NULL; 2171 nic->ru_running = RU_UNINITIALIZED; 2172 2173 if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC))) 2174 return -ENOMEM; 2175 2176 for (rx = nic->rxs, i = 0; i < count; rx++, i++) { 2177 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; 2178 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; 2179 if (e100_rx_alloc_skb(nic, rx)) { 2180 e100_rx_clean_list(nic); 2181 return -ENOMEM; 2182 } 2183 } 2184 /* Set the el-bit on the buffer that is before the last buffer. 2185 * This lets us update the next pointer on the last buffer without 2186 * worrying about hardware touching it. 2187 * We set the size to 0 to prevent hardware from touching this buffer. 2188 * When the hardware hits the before last buffer with el-bit and size 2189 * of 0, it will RNR interrupt, the RU will go into the No Resources 2190 * state. It will not complete nor write to this buffer. */ 2191 rx = nic->rxs->prev->prev; 2192 before_last = (struct rfd *)rx->skb->data; 2193 before_last->command |= cpu_to_le16(cb_el); 2194 before_last->size = 0; 2195 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, 2196 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); 2197 2198 nic->rx_to_use = nic->rx_to_clean = nic->rxs; 2199 nic->ru_running = RU_SUSPENDED; 2200 2201 return 0; 2202 } 2203 2204 static irqreturn_t e100_intr(int irq, void *dev_id) 2205 { 2206 struct net_device *netdev = dev_id; 2207 struct nic *nic = netdev_priv(netdev); 2208 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack); 2209 2210 netif_printk(nic, intr, KERN_DEBUG, nic->netdev, 2211 "stat_ack = 0x%02X\n", stat_ack); 2212 2213 if (stat_ack == stat_ack_not_ours || /* Not our interrupt */ 2214 stat_ack == stat_ack_not_present) /* Hardware is ejected */ 2215 return IRQ_NONE; 2216 2217 /* Ack interrupt(s) */ 2218 iowrite8(stat_ack, &nic->csr->scb.stat_ack); 2219 2220 /* We hit Receive No Resource (RNR); restart RU after cleaning */ 2221 if (stat_ack & stat_ack_rnr) 2222 nic->ru_running = RU_SUSPENDED; 2223 2224 if (likely(napi_schedule_prep(&nic->napi))) { 2225 e100_disable_irq(nic); 2226 __napi_schedule(&nic->napi); 2227 } 2228 2229 return IRQ_HANDLED; 2230 } 2231 2232 static int e100_poll(struct napi_struct *napi, int budget) 2233 { 2234 struct nic *nic = container_of(napi, struct nic, napi); 2235 unsigned int work_done = 0; 2236 2237 e100_rx_clean(nic, &work_done, budget); 2238 e100_tx_clean(nic); 2239 2240 /* If budget not fully consumed, exit the polling mode */ 2241 if (work_done < budget) { 2242 napi_complete(napi); 2243 e100_enable_irq(nic); 2244 } 2245 2246 return work_done; 2247 } 2248 2249 #ifdef CONFIG_NET_POLL_CONTROLLER 2250 static void e100_netpoll(struct net_device *netdev) 2251 { 2252 struct nic *nic = netdev_priv(netdev); 2253 2254 e100_disable_irq(nic); 2255 e100_intr(nic->pdev->irq, netdev); 2256 e100_tx_clean(nic); 2257 e100_enable_irq(nic); 2258 } 2259 #endif 2260 2261 static int e100_set_mac_address(struct net_device *netdev, void *p) 2262 { 2263 struct nic *nic = netdev_priv(netdev); 2264 struct sockaddr *addr = p; 2265 2266 if (!is_valid_ether_addr(addr->sa_data)) 2267 return -EADDRNOTAVAIL; 2268 2269 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2270 e100_exec_cb(nic, NULL, e100_setup_iaaddr); 2271 2272 return 0; 2273 } 2274 2275 static int e100_change_mtu(struct net_device *netdev, int new_mtu) 2276 { 2277 if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN) 2278 return -EINVAL; 2279 netdev->mtu = new_mtu; 2280 return 0; 2281 } 2282 2283 static int e100_asf(struct nic *nic) 2284 { 2285 /* ASF can be enabled from eeprom */ 2286 return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && 2287 (nic->eeprom[eeprom_config_asf] & eeprom_asf) && 2288 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) && 2289 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE); 2290 } 2291 2292 static int e100_up(struct nic *nic) 2293 { 2294 int err; 2295 2296 if ((err = e100_rx_alloc_list(nic))) 2297 return err; 2298 if ((err = e100_alloc_cbs(nic))) 2299 goto err_rx_clean_list; 2300 if ((err = e100_hw_init(nic))) 2301 goto err_clean_cbs; 2302 e100_set_multicast_list(nic->netdev); 2303 e100_start_receiver(nic, NULL); 2304 mod_timer(&nic->watchdog, jiffies); 2305 if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED, 2306 nic->netdev->name, nic->netdev))) 2307 goto err_no_irq; 2308 netif_wake_queue(nic->netdev); 2309 napi_enable(&nic->napi); 2310 /* enable ints _after_ enabling poll, preventing a race between 2311 * disable ints+schedule */ 2312 e100_enable_irq(nic); 2313 return 0; 2314 2315 err_no_irq: 2316 del_timer_sync(&nic->watchdog); 2317 err_clean_cbs: 2318 e100_clean_cbs(nic); 2319 err_rx_clean_list: 2320 e100_rx_clean_list(nic); 2321 return err; 2322 } 2323 2324 static void e100_down(struct nic *nic) 2325 { 2326 /* wait here for poll to complete */ 2327 napi_disable(&nic->napi); 2328 netif_stop_queue(nic->netdev); 2329 e100_hw_reset(nic); 2330 free_irq(nic->pdev->irq, nic->netdev); 2331 del_timer_sync(&nic->watchdog); 2332 netif_carrier_off(nic->netdev); 2333 e100_clean_cbs(nic); 2334 e100_rx_clean_list(nic); 2335 } 2336 2337 static void e100_tx_timeout(struct net_device *netdev) 2338 { 2339 struct nic *nic = netdev_priv(netdev); 2340 2341 /* Reset outside of interrupt context, to avoid request_irq 2342 * in interrupt context */ 2343 schedule_work(&nic->tx_timeout_task); 2344 } 2345 2346 static void e100_tx_timeout_task(struct work_struct *work) 2347 { 2348 struct nic *nic = container_of(work, struct nic, tx_timeout_task); 2349 struct net_device *netdev = nic->netdev; 2350 2351 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, 2352 "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status)); 2353 2354 rtnl_lock(); 2355 if (netif_running(netdev)) { 2356 e100_down(netdev_priv(netdev)); 2357 e100_up(netdev_priv(netdev)); 2358 } 2359 rtnl_unlock(); 2360 } 2361 2362 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) 2363 { 2364 int err; 2365 struct sk_buff *skb; 2366 2367 /* Use driver resources to perform internal MAC or PHY 2368 * loopback test. A single packet is prepared and transmitted 2369 * in loopback mode, and the test passes if the received 2370 * packet compares byte-for-byte to the transmitted packet. */ 2371 2372 if ((err = e100_rx_alloc_list(nic))) 2373 return err; 2374 if ((err = e100_alloc_cbs(nic))) 2375 goto err_clean_rx; 2376 2377 /* ICH PHY loopback is broken so do MAC loopback instead */ 2378 if (nic->flags & ich && loopback_mode == lb_phy) 2379 loopback_mode = lb_mac; 2380 2381 nic->loopback = loopback_mode; 2382 if ((err = e100_hw_init(nic))) 2383 goto err_loopback_none; 2384 2385 if (loopback_mode == lb_phy) 2386 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 2387 BMCR_LOOPBACK); 2388 2389 e100_start_receiver(nic, NULL); 2390 2391 if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) { 2392 err = -ENOMEM; 2393 goto err_loopback_none; 2394 } 2395 skb_put(skb, ETH_DATA_LEN); 2396 memset(skb->data, 0xFF, ETH_DATA_LEN); 2397 e100_xmit_frame(skb, nic->netdev); 2398 2399 msleep(10); 2400 2401 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr, 2402 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 2403 2404 if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), 2405 skb->data, ETH_DATA_LEN)) 2406 err = -EAGAIN; 2407 2408 err_loopback_none: 2409 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); 2410 nic->loopback = lb_none; 2411 e100_clean_cbs(nic); 2412 e100_hw_reset(nic); 2413 err_clean_rx: 2414 e100_rx_clean_list(nic); 2415 return err; 2416 } 2417 2418 #define MII_LED_CONTROL 0x1B 2419 #define E100_82552_LED_OVERRIDE 0x19 2420 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */ 2421 #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */ 2422 2423 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd) 2424 { 2425 struct nic *nic = netdev_priv(netdev); 2426 return mii_ethtool_gset(&nic->mii, cmd); 2427 } 2428 2429 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd) 2430 { 2431 struct nic *nic = netdev_priv(netdev); 2432 int err; 2433 2434 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); 2435 err = mii_ethtool_sset(&nic->mii, cmd); 2436 e100_exec_cb(nic, NULL, e100_configure); 2437 2438 return err; 2439 } 2440 2441 static void e100_get_drvinfo(struct net_device *netdev, 2442 struct ethtool_drvinfo *info) 2443 { 2444 struct nic *nic = netdev_priv(netdev); 2445 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 2446 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 2447 strlcpy(info->bus_info, pci_name(nic->pdev), 2448 sizeof(info->bus_info)); 2449 } 2450 2451 #define E100_PHY_REGS 0x1C 2452 static int e100_get_regs_len(struct net_device *netdev) 2453 { 2454 struct nic *nic = netdev_priv(netdev); 2455 return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf); 2456 } 2457 2458 static void e100_get_regs(struct net_device *netdev, 2459 struct ethtool_regs *regs, void *p) 2460 { 2461 struct nic *nic = netdev_priv(netdev); 2462 u32 *buff = p; 2463 int i; 2464 2465 regs->version = (1 << 24) | nic->pdev->revision; 2466 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 | 2467 ioread8(&nic->csr->scb.cmd_lo) << 16 | 2468 ioread16(&nic->csr->scb.status); 2469 for (i = E100_PHY_REGS; i >= 0; i--) 2470 buff[1 + E100_PHY_REGS - i] = 2471 mdio_read(netdev, nic->mii.phy_id, i); 2472 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); 2473 e100_exec_cb(nic, NULL, e100_dump); 2474 msleep(10); 2475 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf, 2476 sizeof(nic->mem->dump_buf)); 2477 } 2478 2479 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2480 { 2481 struct nic *nic = netdev_priv(netdev); 2482 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; 2483 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; 2484 } 2485 2486 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2487 { 2488 struct nic *nic = netdev_priv(netdev); 2489 2490 if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) || 2491 !device_can_wakeup(&nic->pdev->dev)) 2492 return -EOPNOTSUPP; 2493 2494 if (wol->wolopts) 2495 nic->flags |= wol_magic; 2496 else 2497 nic->flags &= ~wol_magic; 2498 2499 device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts); 2500 2501 e100_exec_cb(nic, NULL, e100_configure); 2502 2503 return 0; 2504 } 2505 2506 static u32 e100_get_msglevel(struct net_device *netdev) 2507 { 2508 struct nic *nic = netdev_priv(netdev); 2509 return nic->msg_enable; 2510 } 2511 2512 static void e100_set_msglevel(struct net_device *netdev, u32 value) 2513 { 2514 struct nic *nic = netdev_priv(netdev); 2515 nic->msg_enable = value; 2516 } 2517 2518 static int e100_nway_reset(struct net_device *netdev) 2519 { 2520 struct nic *nic = netdev_priv(netdev); 2521 return mii_nway_restart(&nic->mii); 2522 } 2523 2524 static u32 e100_get_link(struct net_device *netdev) 2525 { 2526 struct nic *nic = netdev_priv(netdev); 2527 return mii_link_ok(&nic->mii); 2528 } 2529 2530 static int e100_get_eeprom_len(struct net_device *netdev) 2531 { 2532 struct nic *nic = netdev_priv(netdev); 2533 return nic->eeprom_wc << 1; 2534 } 2535 2536 #define E100_EEPROM_MAGIC 0x1234 2537 static int e100_get_eeprom(struct net_device *netdev, 2538 struct ethtool_eeprom *eeprom, u8 *bytes) 2539 { 2540 struct nic *nic = netdev_priv(netdev); 2541 2542 eeprom->magic = E100_EEPROM_MAGIC; 2543 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); 2544 2545 return 0; 2546 } 2547 2548 static int e100_set_eeprom(struct net_device *netdev, 2549 struct ethtool_eeprom *eeprom, u8 *bytes) 2550 { 2551 struct nic *nic = netdev_priv(netdev); 2552 2553 if (eeprom->magic != E100_EEPROM_MAGIC) 2554 return -EINVAL; 2555 2556 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); 2557 2558 return e100_eeprom_save(nic, eeprom->offset >> 1, 2559 (eeprom->len >> 1) + 1); 2560 } 2561 2562 static void e100_get_ringparam(struct net_device *netdev, 2563 struct ethtool_ringparam *ring) 2564 { 2565 struct nic *nic = netdev_priv(netdev); 2566 struct param_range *rfds = &nic->params.rfds; 2567 struct param_range *cbs = &nic->params.cbs; 2568 2569 ring->rx_max_pending = rfds->max; 2570 ring->tx_max_pending = cbs->max; 2571 ring->rx_pending = rfds->count; 2572 ring->tx_pending = cbs->count; 2573 } 2574 2575 static int e100_set_ringparam(struct net_device *netdev, 2576 struct ethtool_ringparam *ring) 2577 { 2578 struct nic *nic = netdev_priv(netdev); 2579 struct param_range *rfds = &nic->params.rfds; 2580 struct param_range *cbs = &nic->params.cbs; 2581 2582 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 2583 return -EINVAL; 2584 2585 if (netif_running(netdev)) 2586 e100_down(nic); 2587 rfds->count = max(ring->rx_pending, rfds->min); 2588 rfds->count = min(rfds->count, rfds->max); 2589 cbs->count = max(ring->tx_pending, cbs->min); 2590 cbs->count = min(cbs->count, cbs->max); 2591 netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n", 2592 rfds->count, cbs->count); 2593 if (netif_running(netdev)) 2594 e100_up(nic); 2595 2596 return 0; 2597 } 2598 2599 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { 2600 "Link test (on/offline)", 2601 "Eeprom test (on/offline)", 2602 "Self test (offline)", 2603 "Mac loopback (offline)", 2604 "Phy loopback (offline)", 2605 }; 2606 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test) 2607 2608 static void e100_diag_test(struct net_device *netdev, 2609 struct ethtool_test *test, u64 *data) 2610 { 2611 struct ethtool_cmd cmd; 2612 struct nic *nic = netdev_priv(netdev); 2613 int i, err; 2614 2615 memset(data, 0, E100_TEST_LEN * sizeof(u64)); 2616 data[0] = !mii_link_ok(&nic->mii); 2617 data[1] = e100_eeprom_load(nic); 2618 if (test->flags & ETH_TEST_FL_OFFLINE) { 2619 2620 /* save speed, duplex & autoneg settings */ 2621 err = mii_ethtool_gset(&nic->mii, &cmd); 2622 2623 if (netif_running(netdev)) 2624 e100_down(nic); 2625 data[2] = e100_self_test(nic); 2626 data[3] = e100_loopback_test(nic, lb_mac); 2627 data[4] = e100_loopback_test(nic, lb_phy); 2628 2629 /* restore speed, duplex & autoneg settings */ 2630 err = mii_ethtool_sset(&nic->mii, &cmd); 2631 2632 if (netif_running(netdev)) 2633 e100_up(nic); 2634 } 2635 for (i = 0; i < E100_TEST_LEN; i++) 2636 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; 2637 2638 msleep_interruptible(4 * 1000); 2639 } 2640 2641 static int e100_set_phys_id(struct net_device *netdev, 2642 enum ethtool_phys_id_state state) 2643 { 2644 struct nic *nic = netdev_priv(netdev); 2645 enum led_state { 2646 led_on = 0x01, 2647 led_off = 0x04, 2648 led_on_559 = 0x05, 2649 led_on_557 = 0x07, 2650 }; 2651 u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE : 2652 MII_LED_CONTROL; 2653 u16 leds = 0; 2654 2655 switch (state) { 2656 case ETHTOOL_ID_ACTIVE: 2657 return 2; 2658 2659 case ETHTOOL_ID_ON: 2660 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON : 2661 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559; 2662 break; 2663 2664 case ETHTOOL_ID_OFF: 2665 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off; 2666 break; 2667 2668 case ETHTOOL_ID_INACTIVE: 2669 break; 2670 } 2671 2672 mdio_write(netdev, nic->mii.phy_id, led_reg, leds); 2673 return 0; 2674 } 2675 2676 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { 2677 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", 2678 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", 2679 "rx_length_errors", "rx_over_errors", "rx_crc_errors", 2680 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", 2681 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", 2682 "tx_heartbeat_errors", "tx_window_errors", 2683 /* device-specific stats */ 2684 "tx_deferred", "tx_single_collisions", "tx_multi_collisions", 2685 "tx_flow_control_pause", "rx_flow_control_pause", 2686 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", 2687 "rx_short_frame_errors", "rx_over_length_errors", 2688 }; 2689 #define E100_NET_STATS_LEN 21 2690 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats) 2691 2692 static int e100_get_sset_count(struct net_device *netdev, int sset) 2693 { 2694 switch (sset) { 2695 case ETH_SS_TEST: 2696 return E100_TEST_LEN; 2697 case ETH_SS_STATS: 2698 return E100_STATS_LEN; 2699 default: 2700 return -EOPNOTSUPP; 2701 } 2702 } 2703 2704 static void e100_get_ethtool_stats(struct net_device *netdev, 2705 struct ethtool_stats *stats, u64 *data) 2706 { 2707 struct nic *nic = netdev_priv(netdev); 2708 int i; 2709 2710 for (i = 0; i < E100_NET_STATS_LEN; i++) 2711 data[i] = ((unsigned long *)&netdev->stats)[i]; 2712 2713 data[i++] = nic->tx_deferred; 2714 data[i++] = nic->tx_single_collisions; 2715 data[i++] = nic->tx_multiple_collisions; 2716 data[i++] = nic->tx_fc_pause; 2717 data[i++] = nic->rx_fc_pause; 2718 data[i++] = nic->rx_fc_unsupported; 2719 data[i++] = nic->tx_tco_frames; 2720 data[i++] = nic->rx_tco_frames; 2721 data[i++] = nic->rx_short_frame_errors; 2722 data[i++] = nic->rx_over_length_errors; 2723 } 2724 2725 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2726 { 2727 switch (stringset) { 2728 case ETH_SS_TEST: 2729 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test)); 2730 break; 2731 case ETH_SS_STATS: 2732 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats)); 2733 break; 2734 } 2735 } 2736 2737 static const struct ethtool_ops e100_ethtool_ops = { 2738 .get_settings = e100_get_settings, 2739 .set_settings = e100_set_settings, 2740 .get_drvinfo = e100_get_drvinfo, 2741 .get_regs_len = e100_get_regs_len, 2742 .get_regs = e100_get_regs, 2743 .get_wol = e100_get_wol, 2744 .set_wol = e100_set_wol, 2745 .get_msglevel = e100_get_msglevel, 2746 .set_msglevel = e100_set_msglevel, 2747 .nway_reset = e100_nway_reset, 2748 .get_link = e100_get_link, 2749 .get_eeprom_len = e100_get_eeprom_len, 2750 .get_eeprom = e100_get_eeprom, 2751 .set_eeprom = e100_set_eeprom, 2752 .get_ringparam = e100_get_ringparam, 2753 .set_ringparam = e100_set_ringparam, 2754 .self_test = e100_diag_test, 2755 .get_strings = e100_get_strings, 2756 .set_phys_id = e100_set_phys_id, 2757 .get_ethtool_stats = e100_get_ethtool_stats, 2758 .get_sset_count = e100_get_sset_count, 2759 .get_ts_info = ethtool_op_get_ts_info, 2760 }; 2761 2762 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2763 { 2764 struct nic *nic = netdev_priv(netdev); 2765 2766 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); 2767 } 2768 2769 static int e100_alloc(struct nic *nic) 2770 { 2771 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem), 2772 &nic->dma_addr); 2773 return nic->mem ? 0 : -ENOMEM; 2774 } 2775 2776 static void e100_free(struct nic *nic) 2777 { 2778 if (nic->mem) { 2779 pci_free_consistent(nic->pdev, sizeof(struct mem), 2780 nic->mem, nic->dma_addr); 2781 nic->mem = NULL; 2782 } 2783 } 2784 2785 static int e100_open(struct net_device *netdev) 2786 { 2787 struct nic *nic = netdev_priv(netdev); 2788 int err = 0; 2789 2790 netif_carrier_off(netdev); 2791 if ((err = e100_up(nic))) 2792 netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n"); 2793 return err; 2794 } 2795 2796 static int e100_close(struct net_device *netdev) 2797 { 2798 e100_down(netdev_priv(netdev)); 2799 return 0; 2800 } 2801 2802 static int e100_set_features(struct net_device *netdev, 2803 netdev_features_t features) 2804 { 2805 struct nic *nic = netdev_priv(netdev); 2806 netdev_features_t changed = features ^ netdev->features; 2807 2808 if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL))) 2809 return 0; 2810 2811 netdev->features = features; 2812 e100_exec_cb(nic, NULL, e100_configure); 2813 return 0; 2814 } 2815 2816 static const struct net_device_ops e100_netdev_ops = { 2817 .ndo_open = e100_open, 2818 .ndo_stop = e100_close, 2819 .ndo_start_xmit = e100_xmit_frame, 2820 .ndo_validate_addr = eth_validate_addr, 2821 .ndo_set_rx_mode = e100_set_multicast_list, 2822 .ndo_set_mac_address = e100_set_mac_address, 2823 .ndo_change_mtu = e100_change_mtu, 2824 .ndo_do_ioctl = e100_do_ioctl, 2825 .ndo_tx_timeout = e100_tx_timeout, 2826 #ifdef CONFIG_NET_POLL_CONTROLLER 2827 .ndo_poll_controller = e100_netpoll, 2828 #endif 2829 .ndo_set_features = e100_set_features, 2830 }; 2831 2832 static int __devinit e100_probe(struct pci_dev *pdev, 2833 const struct pci_device_id *ent) 2834 { 2835 struct net_device *netdev; 2836 struct nic *nic; 2837 int err; 2838 2839 if (!(netdev = alloc_etherdev(sizeof(struct nic)))) 2840 return -ENOMEM; 2841 2842 netdev->hw_features |= NETIF_F_RXFCS; 2843 netdev->priv_flags |= IFF_SUPP_NOFCS; 2844 netdev->hw_features |= NETIF_F_RXALL; 2845 2846 netdev->netdev_ops = &e100_netdev_ops; 2847 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops); 2848 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; 2849 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 2850 2851 nic = netdev_priv(netdev); 2852 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT); 2853 nic->netdev = netdev; 2854 nic->pdev = pdev; 2855 nic->msg_enable = (1 << debug) - 1; 2856 nic->mdio_ctrl = mdio_ctrl_hw; 2857 pci_set_drvdata(pdev, netdev); 2858 2859 if ((err = pci_enable_device(pdev))) { 2860 netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n"); 2861 goto err_out_free_dev; 2862 } 2863 2864 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 2865 netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n"); 2866 err = -ENODEV; 2867 goto err_out_disable_pdev; 2868 } 2869 2870 if ((err = pci_request_regions(pdev, DRV_NAME))) { 2871 netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n"); 2872 goto err_out_disable_pdev; 2873 } 2874 2875 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) { 2876 netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n"); 2877 goto err_out_free_res; 2878 } 2879 2880 SET_NETDEV_DEV(netdev, &pdev->dev); 2881 2882 if (use_io) 2883 netif_info(nic, probe, nic->netdev, "using i/o access mode\n"); 2884 2885 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr)); 2886 if (!nic->csr) { 2887 netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n"); 2888 err = -ENOMEM; 2889 goto err_out_free_res; 2890 } 2891 2892 if (ent->driver_data) 2893 nic->flags |= ich; 2894 else 2895 nic->flags &= ~ich; 2896 2897 e100_get_defaults(nic); 2898 2899 /* D100 MAC doesn't allow rx of vlan packets with normal MTU */ 2900 if (nic->mac < mac_82558_D101_A4) 2901 netdev->features |= NETIF_F_VLAN_CHALLENGED; 2902 2903 /* locks must be initialized before calling hw_reset */ 2904 spin_lock_init(&nic->cb_lock); 2905 spin_lock_init(&nic->cmd_lock); 2906 spin_lock_init(&nic->mdio_lock); 2907 2908 /* Reset the device before pci_set_master() in case device is in some 2909 * funky state and has an interrupt pending - hint: we don't have the 2910 * interrupt handler registered yet. */ 2911 e100_hw_reset(nic); 2912 2913 pci_set_master(pdev); 2914 2915 init_timer(&nic->watchdog); 2916 nic->watchdog.function = e100_watchdog; 2917 nic->watchdog.data = (unsigned long)nic; 2918 2919 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task); 2920 2921 if ((err = e100_alloc(nic))) { 2922 netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n"); 2923 goto err_out_iounmap; 2924 } 2925 2926 if ((err = e100_eeprom_load(nic))) 2927 goto err_out_free; 2928 2929 e100_phy_init(nic); 2930 2931 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); 2932 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN); 2933 if (!is_valid_ether_addr(netdev->perm_addr)) { 2934 if (!eeprom_bad_csum_allow) { 2935 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n"); 2936 err = -EAGAIN; 2937 goto err_out_free; 2938 } else { 2939 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n"); 2940 } 2941 } 2942 2943 /* Wol magic packet can be enabled from eeprom */ 2944 if ((nic->mac >= mac_82558_D101_A4) && 2945 (nic->eeprom[eeprom_id] & eeprom_id_wol)) { 2946 nic->flags |= wol_magic; 2947 device_set_wakeup_enable(&pdev->dev, true); 2948 } 2949 2950 /* ack any pending wake events, disable PME */ 2951 pci_pme_active(pdev, false); 2952 2953 strcpy(netdev->name, "eth%d"); 2954 if ((err = register_netdev(netdev))) { 2955 netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n"); 2956 goto err_out_free; 2957 } 2958 nic->cbs_pool = pci_pool_create(netdev->name, 2959 nic->pdev, 2960 nic->params.cbs.max * sizeof(struct cb), 2961 sizeof(u32), 2962 0); 2963 netif_info(nic, probe, nic->netdev, 2964 "addr 0x%llx, irq %d, MAC addr %pM\n", 2965 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0), 2966 pdev->irq, netdev->dev_addr); 2967 2968 return 0; 2969 2970 err_out_free: 2971 e100_free(nic); 2972 err_out_iounmap: 2973 pci_iounmap(pdev, nic->csr); 2974 err_out_free_res: 2975 pci_release_regions(pdev); 2976 err_out_disable_pdev: 2977 pci_disable_device(pdev); 2978 err_out_free_dev: 2979 pci_set_drvdata(pdev, NULL); 2980 free_netdev(netdev); 2981 return err; 2982 } 2983 2984 static void __devexit e100_remove(struct pci_dev *pdev) 2985 { 2986 struct net_device *netdev = pci_get_drvdata(pdev); 2987 2988 if (netdev) { 2989 struct nic *nic = netdev_priv(netdev); 2990 unregister_netdev(netdev); 2991 e100_free(nic); 2992 pci_iounmap(pdev, nic->csr); 2993 pci_pool_destroy(nic->cbs_pool); 2994 free_netdev(netdev); 2995 pci_release_regions(pdev); 2996 pci_disable_device(pdev); 2997 pci_set_drvdata(pdev, NULL); 2998 } 2999 } 3000 3001 #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */ 3002 #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */ 3003 #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */ 3004 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake) 3005 { 3006 struct net_device *netdev = pci_get_drvdata(pdev); 3007 struct nic *nic = netdev_priv(netdev); 3008 3009 if (netif_running(netdev)) 3010 e100_down(nic); 3011 netif_device_detach(netdev); 3012 3013 pci_save_state(pdev); 3014 3015 if ((nic->flags & wol_magic) | e100_asf(nic)) { 3016 /* enable reverse auto-negotiation */ 3017 if (nic->phy == phy_82552_v) { 3018 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, 3019 E100_82552_SMARTSPEED); 3020 3021 mdio_write(netdev, nic->mii.phy_id, 3022 E100_82552_SMARTSPEED, smartspeed | 3023 E100_82552_REV_ANEG | E100_82552_ANEG_NOW); 3024 } 3025 *enable_wake = true; 3026 } else { 3027 *enable_wake = false; 3028 } 3029 3030 pci_disable_device(pdev); 3031 } 3032 3033 static int __e100_power_off(struct pci_dev *pdev, bool wake) 3034 { 3035 if (wake) 3036 return pci_prepare_to_sleep(pdev); 3037 3038 pci_wake_from_d3(pdev, false); 3039 pci_set_power_state(pdev, PCI_D3hot); 3040 3041 return 0; 3042 } 3043 3044 #ifdef CONFIG_PM 3045 static int e100_suspend(struct pci_dev *pdev, pm_message_t state) 3046 { 3047 bool wake; 3048 __e100_shutdown(pdev, &wake); 3049 return __e100_power_off(pdev, wake); 3050 } 3051 3052 static int e100_resume(struct pci_dev *pdev) 3053 { 3054 struct net_device *netdev = pci_get_drvdata(pdev); 3055 struct nic *nic = netdev_priv(netdev); 3056 3057 pci_set_power_state(pdev, PCI_D0); 3058 pci_restore_state(pdev); 3059 /* ack any pending wake events, disable PME */ 3060 pci_enable_wake(pdev, 0, 0); 3061 3062 /* disable reverse auto-negotiation */ 3063 if (nic->phy == phy_82552_v) { 3064 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, 3065 E100_82552_SMARTSPEED); 3066 3067 mdio_write(netdev, nic->mii.phy_id, 3068 E100_82552_SMARTSPEED, 3069 smartspeed & ~(E100_82552_REV_ANEG)); 3070 } 3071 3072 netif_device_attach(netdev); 3073 if (netif_running(netdev)) 3074 e100_up(nic); 3075 3076 return 0; 3077 } 3078 #endif /* CONFIG_PM */ 3079 3080 static void e100_shutdown(struct pci_dev *pdev) 3081 { 3082 bool wake; 3083 __e100_shutdown(pdev, &wake); 3084 if (system_state == SYSTEM_POWER_OFF) 3085 __e100_power_off(pdev, wake); 3086 } 3087 3088 /* ------------------ PCI Error Recovery infrastructure -------------- */ 3089 /** 3090 * e100_io_error_detected - called when PCI error is detected. 3091 * @pdev: Pointer to PCI device 3092 * @state: The current pci connection state 3093 */ 3094 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 3095 { 3096 struct net_device *netdev = pci_get_drvdata(pdev); 3097 struct nic *nic = netdev_priv(netdev); 3098 3099 netif_device_detach(netdev); 3100 3101 if (state == pci_channel_io_perm_failure) 3102 return PCI_ERS_RESULT_DISCONNECT; 3103 3104 if (netif_running(netdev)) 3105 e100_down(nic); 3106 pci_disable_device(pdev); 3107 3108 /* Request a slot reset. */ 3109 return PCI_ERS_RESULT_NEED_RESET; 3110 } 3111 3112 /** 3113 * e100_io_slot_reset - called after the pci bus has been reset. 3114 * @pdev: Pointer to PCI device 3115 * 3116 * Restart the card from scratch. 3117 */ 3118 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev) 3119 { 3120 struct net_device *netdev = pci_get_drvdata(pdev); 3121 struct nic *nic = netdev_priv(netdev); 3122 3123 if (pci_enable_device(pdev)) { 3124 pr_err("Cannot re-enable PCI device after reset\n"); 3125 return PCI_ERS_RESULT_DISCONNECT; 3126 } 3127 pci_set_master(pdev); 3128 3129 /* Only one device per card can do a reset */ 3130 if (0 != PCI_FUNC(pdev->devfn)) 3131 return PCI_ERS_RESULT_RECOVERED; 3132 e100_hw_reset(nic); 3133 e100_phy_init(nic); 3134 3135 return PCI_ERS_RESULT_RECOVERED; 3136 } 3137 3138 /** 3139 * e100_io_resume - resume normal operations 3140 * @pdev: Pointer to PCI device 3141 * 3142 * Resume normal operations after an error recovery 3143 * sequence has been completed. 3144 */ 3145 static void e100_io_resume(struct pci_dev *pdev) 3146 { 3147 struct net_device *netdev = pci_get_drvdata(pdev); 3148 struct nic *nic = netdev_priv(netdev); 3149 3150 /* ack any pending wake events, disable PME */ 3151 pci_enable_wake(pdev, 0, 0); 3152 3153 netif_device_attach(netdev); 3154 if (netif_running(netdev)) { 3155 e100_open(netdev); 3156 mod_timer(&nic->watchdog, jiffies); 3157 } 3158 } 3159 3160 static struct pci_error_handlers e100_err_handler = { 3161 .error_detected = e100_io_error_detected, 3162 .slot_reset = e100_io_slot_reset, 3163 .resume = e100_io_resume, 3164 }; 3165 3166 static struct pci_driver e100_driver = { 3167 .name = DRV_NAME, 3168 .id_table = e100_id_table, 3169 .probe = e100_probe, 3170 .remove = __devexit_p(e100_remove), 3171 #ifdef CONFIG_PM 3172 /* Power Management hooks */ 3173 .suspend = e100_suspend, 3174 .resume = e100_resume, 3175 #endif 3176 .shutdown = e100_shutdown, 3177 .err_handler = &e100_err_handler, 3178 }; 3179 3180 static int __init e100_init_module(void) 3181 { 3182 if (((1 << debug) - 1) & NETIF_MSG_DRV) { 3183 pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION); 3184 pr_info("%s\n", DRV_COPYRIGHT); 3185 } 3186 return pci_register_driver(&e100_driver); 3187 } 3188 3189 static void __exit e100_cleanup_module(void) 3190 { 3191 pci_unregister_driver(&e100_driver); 3192 } 3193 3194 module_init(e100_init_module); 3195 module_exit(e100_cleanup_module); 3196