xref: /openbmc/linux/drivers/net/ethernet/intel/e100.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*******************************************************************************
3 
4   Intel PRO/100 Linux driver
5   Copyright(c) 1999 - 2006 Intel Corporation.
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 
28 *******************************************************************************/
29 
30 /*
31  *	e100.c: Intel(R) PRO/100 ethernet driver
32  *
33  *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
34  *	original e100 driver, but better described as a munging of
35  *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
36  *
37  *	References:
38  *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
39  *		Open Source Software Developers Manual,
40  *		http://sourceforge.net/projects/e1000
41  *
42  *
43  *	                      Theory of Operation
44  *
45  *	I.   General
46  *
47  *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
48  *	controller family, which includes the 82557, 82558, 82559, 82550,
49  *	82551, and 82562 devices.  82558 and greater controllers
50  *	integrate the Intel 82555 PHY.  The controllers are used in
51  *	server and client network interface cards, as well as in
52  *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
53  *	configurations.  8255x supports a 32-bit linear addressing
54  *	mode and operates at 33Mhz PCI clock rate.
55  *
56  *	II.  Driver Operation
57  *
58  *	Memory-mapped mode is used exclusively to access the device's
59  *	shared-memory structure, the Control/Status Registers (CSR). All
60  *	setup, configuration, and control of the device, including queuing
61  *	of Tx, Rx, and configuration commands is through the CSR.
62  *	cmd_lock serializes accesses to the CSR command register.  cb_lock
63  *	protects the shared Command Block List (CBL).
64  *
65  *	8255x is highly MII-compliant and all access to the PHY go
66  *	through the Management Data Interface (MDI).  Consequently, the
67  *	driver leverages the mii.c library shared with other MII-compliant
68  *	devices.
69  *
70  *	Big- and Little-Endian byte order as well as 32- and 64-bit
71  *	archs are supported.  Weak-ordered memory and non-cache-coherent
72  *	archs are supported.
73  *
74  *	III. Transmit
75  *
76  *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
77  *	together in a fixed-size ring (CBL) thus forming the flexible mode
78  *	memory structure.  A TCB marked with the suspend-bit indicates
79  *	the end of the ring.  The last TCB processed suspends the
80  *	controller, and the controller can be restarted by issue a CU
81  *	resume command to continue from the suspend point, or a CU start
82  *	command to start at a given position in the ring.
83  *
84  *	Non-Tx commands (config, multicast setup, etc) are linked
85  *	into the CBL ring along with Tx commands.  The common structure
86  *	used for both Tx and non-Tx commands is the Command Block (CB).
87  *
88  *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
89  *	is the next CB to check for completion; cb_to_send is the first
90  *	CB to start on in case of a previous failure to resume.  CB clean
91  *	up happens in interrupt context in response to a CU interrupt.
92  *	cbs_avail keeps track of number of free CB resources available.
93  *
94  * 	Hardware padding of short packets to minimum packet size is
95  * 	enabled.  82557 pads with 7Eh, while the later controllers pad
96  * 	with 00h.
97  *
98  *	IV.  Receive
99  *
100  *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
101  *	Descriptors (RFD) + data buffer, thus forming the simplified mode
102  *	memory structure.  Rx skbs are allocated to contain both the RFD
103  *	and the data buffer, but the RFD is pulled off before the skb is
104  *	indicated.  The data buffer is aligned such that encapsulated
105  *	protocol headers are u32-aligned.  Since the RFD is part of the
106  *	mapped shared memory, and completion status is contained within
107  *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
108  *	view from software and hardware.
109  *
110  *	In order to keep updates to the RFD link field from colliding with
111  *	hardware writes to mark packets complete, we use the feature that
112  *	hardware will not write to a size 0 descriptor and mark the previous
113  *	packet as end-of-list (EL).   After updating the link, we remove EL
114  *	and only then restore the size such that hardware may use the
115  *	previous-to-end RFD.
116  *
117  *	Under typical operation, the  receive unit (RU) is start once,
118  *	and the controller happily fills RFDs as frames arrive.  If
119  *	replacement RFDs cannot be allocated, or the RU goes non-active,
120  *	the RU must be restarted.  Frame arrival generates an interrupt,
121  *	and Rx indication and re-allocation happen in the same context,
122  *	therefore no locking is required.  A software-generated interrupt
123  *	is generated from the watchdog to recover from a failed allocation
124  *	scenario where all Rx resources have been indicated and none re-
125  *	placed.
126  *
127  *	V.   Miscellaneous
128  *
129  * 	VLAN offloading of tagging, stripping and filtering is not
130  * 	supported, but driver will accommodate the extra 4-byte VLAN tag
131  * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
132  * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
133  * 	not supported (hardware limitation).
134  *
135  * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
136  *
137  * 	Thanks to JC (jchapman@katalix.com) for helping with
138  * 	testing/troubleshooting the development driver.
139  *
140  * 	TODO:
141  * 	o several entry points race with dev->close
142  * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
143  *
144  *	FIXES:
145  * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
146  *	- Stratus87247: protect MDI control register manipulations
147  * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
148  *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
149  */
150 
151 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
152 
153 #include <linux/hardirq.h>
154 #include <linux/interrupt.h>
155 #include <linux/module.h>
156 #include <linux/moduleparam.h>
157 #include <linux/kernel.h>
158 #include <linux/types.h>
159 #include <linux/sched.h>
160 #include <linux/slab.h>
161 #include <linux/delay.h>
162 #include <linux/init.h>
163 #include <linux/pci.h>
164 #include <linux/dma-mapping.h>
165 #include <linux/dmapool.h>
166 #include <linux/netdevice.h>
167 #include <linux/etherdevice.h>
168 #include <linux/mii.h>
169 #include <linux/if_vlan.h>
170 #include <linux/skbuff.h>
171 #include <linux/ethtool.h>
172 #include <linux/string.h>
173 #include <linux/firmware.h>
174 #include <linux/rtnetlink.h>
175 #include <asm/unaligned.h>
176 
177 
178 #define DRV_NAME		"e100"
179 #define DRV_EXT			"-NAPI"
180 #define DRV_VERSION		"3.5.24-k2"DRV_EXT
181 #define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
182 #define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"
183 
184 #define E100_WATCHDOG_PERIOD	(2 * HZ)
185 #define E100_NAPI_WEIGHT	16
186 
187 #define FIRMWARE_D101M		"e100/d101m_ucode.bin"
188 #define FIRMWARE_D101S		"e100/d101s_ucode.bin"
189 #define FIRMWARE_D102E		"e100/d102e_ucode.bin"
190 
191 MODULE_DESCRIPTION(DRV_DESCRIPTION);
192 MODULE_AUTHOR(DRV_COPYRIGHT);
193 MODULE_LICENSE("GPL");
194 MODULE_VERSION(DRV_VERSION);
195 MODULE_FIRMWARE(FIRMWARE_D101M);
196 MODULE_FIRMWARE(FIRMWARE_D101S);
197 MODULE_FIRMWARE(FIRMWARE_D102E);
198 
199 static int debug = 3;
200 static int eeprom_bad_csum_allow = 0;
201 static int use_io = 0;
202 module_param(debug, int, 0);
203 module_param(eeprom_bad_csum_allow, int, 0);
204 module_param(use_io, int, 0);
205 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
206 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
207 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
208 
209 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
210 	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
211 	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
212 static const struct pci_device_id e100_id_table[] = {
213 	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
214 	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
215 	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
216 	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
217 	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
218 	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
219 	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
220 	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
221 	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
222 	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
223 	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
224 	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
225 	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
226 	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
227 	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
228 	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
229 	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
230 	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
231 	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
232 	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
233 	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
234 	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
235 	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
236 	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
237 	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
238 	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
239 	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
240 	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
241 	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
242 	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
243 	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
244 	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
245 	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
246 	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
247 	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
248 	INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
249 	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
250 	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
251 	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
252 	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
253 	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
254 	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
255 	{ 0, }
256 };
257 MODULE_DEVICE_TABLE(pci, e100_id_table);
258 
259 enum mac {
260 	mac_82557_D100_A  = 0,
261 	mac_82557_D100_B  = 1,
262 	mac_82557_D100_C  = 2,
263 	mac_82558_D101_A4 = 4,
264 	mac_82558_D101_B0 = 5,
265 	mac_82559_D101M   = 8,
266 	mac_82559_D101S   = 9,
267 	mac_82550_D102    = 12,
268 	mac_82550_D102_C  = 13,
269 	mac_82551_E       = 14,
270 	mac_82551_F       = 15,
271 	mac_82551_10      = 16,
272 	mac_unknown       = 0xFF,
273 };
274 
275 enum phy {
276 	phy_100a     = 0x000003E0,
277 	phy_100c     = 0x035002A8,
278 	phy_82555_tx = 0x015002A8,
279 	phy_nsc_tx   = 0x5C002000,
280 	phy_82562_et = 0x033002A8,
281 	phy_82562_em = 0x032002A8,
282 	phy_82562_ek = 0x031002A8,
283 	phy_82562_eh = 0x017002A8,
284 	phy_82552_v  = 0xd061004d,
285 	phy_unknown  = 0xFFFFFFFF,
286 };
287 
288 /* CSR (Control/Status Registers) */
289 struct csr {
290 	struct {
291 		u8 status;
292 		u8 stat_ack;
293 		u8 cmd_lo;
294 		u8 cmd_hi;
295 		u32 gen_ptr;
296 	} scb;
297 	u32 port;
298 	u16 flash_ctrl;
299 	u8 eeprom_ctrl_lo;
300 	u8 eeprom_ctrl_hi;
301 	u32 mdi_ctrl;
302 	u32 rx_dma_count;
303 };
304 
305 enum scb_status {
306 	rus_no_res       = 0x08,
307 	rus_ready        = 0x10,
308 	rus_mask         = 0x3C,
309 };
310 
311 enum ru_state  {
312 	RU_SUSPENDED = 0,
313 	RU_RUNNING	 = 1,
314 	RU_UNINITIALIZED = -1,
315 };
316 
317 enum scb_stat_ack {
318 	stat_ack_not_ours    = 0x00,
319 	stat_ack_sw_gen      = 0x04,
320 	stat_ack_rnr         = 0x10,
321 	stat_ack_cu_idle     = 0x20,
322 	stat_ack_frame_rx    = 0x40,
323 	stat_ack_cu_cmd_done = 0x80,
324 	stat_ack_not_present = 0xFF,
325 	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
326 	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
327 };
328 
329 enum scb_cmd_hi {
330 	irq_mask_none = 0x00,
331 	irq_mask_all  = 0x01,
332 	irq_sw_gen    = 0x02,
333 };
334 
335 enum scb_cmd_lo {
336 	cuc_nop        = 0x00,
337 	ruc_start      = 0x01,
338 	ruc_load_base  = 0x06,
339 	cuc_start      = 0x10,
340 	cuc_resume     = 0x20,
341 	cuc_dump_addr  = 0x40,
342 	cuc_dump_stats = 0x50,
343 	cuc_load_base  = 0x60,
344 	cuc_dump_reset = 0x70,
345 };
346 
347 enum cuc_dump {
348 	cuc_dump_complete       = 0x0000A005,
349 	cuc_dump_reset_complete = 0x0000A007,
350 };
351 
352 enum port {
353 	software_reset  = 0x0000,
354 	selftest        = 0x0001,
355 	selective_reset = 0x0002,
356 };
357 
358 enum eeprom_ctrl_lo {
359 	eesk = 0x01,
360 	eecs = 0x02,
361 	eedi = 0x04,
362 	eedo = 0x08,
363 };
364 
365 enum mdi_ctrl {
366 	mdi_write = 0x04000000,
367 	mdi_read  = 0x08000000,
368 	mdi_ready = 0x10000000,
369 };
370 
371 enum eeprom_op {
372 	op_write = 0x05,
373 	op_read  = 0x06,
374 	op_ewds  = 0x10,
375 	op_ewen  = 0x13,
376 };
377 
378 enum eeprom_offsets {
379 	eeprom_cnfg_mdix  = 0x03,
380 	eeprom_phy_iface  = 0x06,
381 	eeprom_id         = 0x0A,
382 	eeprom_config_asf = 0x0D,
383 	eeprom_smbus_addr = 0x90,
384 };
385 
386 enum eeprom_cnfg_mdix {
387 	eeprom_mdix_enabled = 0x0080,
388 };
389 
390 enum eeprom_phy_iface {
391 	NoSuchPhy = 0,
392 	I82553AB,
393 	I82553C,
394 	I82503,
395 	DP83840,
396 	S80C240,
397 	S80C24,
398 	I82555,
399 	DP83840A = 10,
400 };
401 
402 enum eeprom_id {
403 	eeprom_id_wol = 0x0020,
404 };
405 
406 enum eeprom_config_asf {
407 	eeprom_asf = 0x8000,
408 	eeprom_gcl = 0x4000,
409 };
410 
411 enum cb_status {
412 	cb_complete = 0x8000,
413 	cb_ok       = 0x2000,
414 };
415 
416 /**
417  * cb_command - Command Block flags
418  * @cb_tx_nc:  0: controller does CRC (normal),  1: CRC from skb memory
419  */
420 enum cb_command {
421 	cb_nop    = 0x0000,
422 	cb_iaaddr = 0x0001,
423 	cb_config = 0x0002,
424 	cb_multi  = 0x0003,
425 	cb_tx     = 0x0004,
426 	cb_ucode  = 0x0005,
427 	cb_dump   = 0x0006,
428 	cb_tx_sf  = 0x0008,
429 	cb_tx_nc  = 0x0010,
430 	cb_cid    = 0x1f00,
431 	cb_i      = 0x2000,
432 	cb_s      = 0x4000,
433 	cb_el     = 0x8000,
434 };
435 
436 struct rfd {
437 	__le16 status;
438 	__le16 command;
439 	__le32 link;
440 	__le32 rbd;
441 	__le16 actual_size;
442 	__le16 size;
443 };
444 
445 struct rx {
446 	struct rx *next, *prev;
447 	struct sk_buff *skb;
448 	dma_addr_t dma_addr;
449 };
450 
451 #if defined(__BIG_ENDIAN_BITFIELD)
452 #define X(a,b)	b,a
453 #else
454 #define X(a,b)	a,b
455 #endif
456 struct config {
457 /*0*/	u8 X(byte_count:6, pad0:2);
458 /*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
459 /*2*/	u8 adaptive_ifs;
460 /*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
461 	   term_write_cache_line:1), pad3:4);
462 /*4*/	u8 X(rx_dma_max_count:7, pad4:1);
463 /*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
464 /*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
465 	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
466 	   rx_save_overruns : 1), rx_save_bad_frames : 1);
467 /*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
468 	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
469 	   tx_dynamic_tbd:1);
470 /*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
471 /*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
472 	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
473 /*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
474 	   loopback:2);
475 /*11*/	u8 X(linear_priority:3, pad11:5);
476 /*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
477 /*13*/	u8 ip_addr_lo;
478 /*14*/	u8 ip_addr_hi;
479 /*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
480 	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
481 	   pad15_2:1), crs_or_cdt:1);
482 /*16*/	u8 fc_delay_lo;
483 /*17*/	u8 fc_delay_hi;
484 /*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
485 	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
486 /*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
487 	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
488 	   full_duplex_force:1), full_duplex_pin:1);
489 /*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
490 /*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
491 /*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
492 	u8 pad_d102[9];
493 };
494 
495 #define E100_MAX_MULTICAST_ADDRS	64
496 struct multi {
497 	__le16 count;
498 	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
499 };
500 
501 /* Important: keep total struct u32-aligned */
502 #define UCODE_SIZE			134
503 struct cb {
504 	__le16 status;
505 	__le16 command;
506 	__le32 link;
507 	union {
508 		u8 iaaddr[ETH_ALEN];
509 		__le32 ucode[UCODE_SIZE];
510 		struct config config;
511 		struct multi multi;
512 		struct {
513 			u32 tbd_array;
514 			u16 tcb_byte_count;
515 			u8 threshold;
516 			u8 tbd_count;
517 			struct {
518 				__le32 buf_addr;
519 				__le16 size;
520 				u16 eol;
521 			} tbd;
522 		} tcb;
523 		__le32 dump_buffer_addr;
524 	} u;
525 	struct cb *next, *prev;
526 	dma_addr_t dma_addr;
527 	struct sk_buff *skb;
528 };
529 
530 enum loopback {
531 	lb_none = 0, lb_mac = 1, lb_phy = 3,
532 };
533 
534 struct stats {
535 	__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
536 		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
537 		tx_multiple_collisions, tx_total_collisions;
538 	__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
539 		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
540 		rx_short_frame_errors;
541 	__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
542 	__le16 xmt_tco_frames, rcv_tco_frames;
543 	__le32 complete;
544 };
545 
546 struct mem {
547 	struct {
548 		u32 signature;
549 		u32 result;
550 	} selftest;
551 	struct stats stats;
552 	u8 dump_buf[596];
553 };
554 
555 struct param_range {
556 	u32 min;
557 	u32 max;
558 	u32 count;
559 };
560 
561 struct params {
562 	struct param_range rfds;
563 	struct param_range cbs;
564 };
565 
566 struct nic {
567 	/* Begin: frequently used values: keep adjacent for cache effect */
568 	u32 msg_enable				____cacheline_aligned;
569 	struct net_device *netdev;
570 	struct pci_dev *pdev;
571 	u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
572 
573 	struct rx *rxs				____cacheline_aligned;
574 	struct rx *rx_to_use;
575 	struct rx *rx_to_clean;
576 	struct rfd blank_rfd;
577 	enum ru_state ru_running;
578 
579 	spinlock_t cb_lock			____cacheline_aligned;
580 	spinlock_t cmd_lock;
581 	struct csr __iomem *csr;
582 	enum scb_cmd_lo cuc_cmd;
583 	unsigned int cbs_avail;
584 	struct napi_struct napi;
585 	struct cb *cbs;
586 	struct cb *cb_to_use;
587 	struct cb *cb_to_send;
588 	struct cb *cb_to_clean;
589 	__le16 tx_command;
590 	/* End: frequently used values: keep adjacent for cache effect */
591 
592 	enum {
593 		ich                = (1 << 0),
594 		promiscuous        = (1 << 1),
595 		multicast_all      = (1 << 2),
596 		wol_magic          = (1 << 3),
597 		ich_10h_workaround = (1 << 4),
598 	} flags					____cacheline_aligned;
599 
600 	enum mac mac;
601 	enum phy phy;
602 	struct params params;
603 	struct timer_list watchdog;
604 	struct mii_if_info mii;
605 	struct work_struct tx_timeout_task;
606 	enum loopback loopback;
607 
608 	struct mem *mem;
609 	dma_addr_t dma_addr;
610 
611 	struct dma_pool *cbs_pool;
612 	dma_addr_t cbs_dma_addr;
613 	u8 adaptive_ifs;
614 	u8 tx_threshold;
615 	u32 tx_frames;
616 	u32 tx_collisions;
617 	u32 tx_deferred;
618 	u32 tx_single_collisions;
619 	u32 tx_multiple_collisions;
620 	u32 tx_fc_pause;
621 	u32 tx_tco_frames;
622 
623 	u32 rx_fc_pause;
624 	u32 rx_fc_unsupported;
625 	u32 rx_tco_frames;
626 	u32 rx_short_frame_errors;
627 	u32 rx_over_length_errors;
628 
629 	u16 eeprom_wc;
630 	__le16 eeprom[256];
631 	spinlock_t mdio_lock;
632 	const struct firmware *fw;
633 };
634 
635 static inline void e100_write_flush(struct nic *nic)
636 {
637 	/* Flush previous PCI writes through intermediate bridges
638 	 * by doing a benign read */
639 	(void)ioread8(&nic->csr->scb.status);
640 }
641 
642 static void e100_enable_irq(struct nic *nic)
643 {
644 	unsigned long flags;
645 
646 	spin_lock_irqsave(&nic->cmd_lock, flags);
647 	iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
648 	e100_write_flush(nic);
649 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
650 }
651 
652 static void e100_disable_irq(struct nic *nic)
653 {
654 	unsigned long flags;
655 
656 	spin_lock_irqsave(&nic->cmd_lock, flags);
657 	iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
658 	e100_write_flush(nic);
659 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
660 }
661 
662 static void e100_hw_reset(struct nic *nic)
663 {
664 	/* Put CU and RU into idle with a selective reset to get
665 	 * device off of PCI bus */
666 	iowrite32(selective_reset, &nic->csr->port);
667 	e100_write_flush(nic); udelay(20);
668 
669 	/* Now fully reset device */
670 	iowrite32(software_reset, &nic->csr->port);
671 	e100_write_flush(nic); udelay(20);
672 
673 	/* Mask off our interrupt line - it's unmasked after reset */
674 	e100_disable_irq(nic);
675 }
676 
677 static int e100_self_test(struct nic *nic)
678 {
679 	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
680 
681 	/* Passing the self-test is a pretty good indication
682 	 * that the device can DMA to/from host memory */
683 
684 	nic->mem->selftest.signature = 0;
685 	nic->mem->selftest.result = 0xFFFFFFFF;
686 
687 	iowrite32(selftest | dma_addr, &nic->csr->port);
688 	e100_write_flush(nic);
689 	/* Wait 10 msec for self-test to complete */
690 	msleep(10);
691 
692 	/* Interrupts are enabled after self-test */
693 	e100_disable_irq(nic);
694 
695 	/* Check results of self-test */
696 	if (nic->mem->selftest.result != 0) {
697 		netif_err(nic, hw, nic->netdev,
698 			  "Self-test failed: result=0x%08X\n",
699 			  nic->mem->selftest.result);
700 		return -ETIMEDOUT;
701 	}
702 	if (nic->mem->selftest.signature == 0) {
703 		netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
704 		return -ETIMEDOUT;
705 	}
706 
707 	return 0;
708 }
709 
710 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
711 {
712 	u32 cmd_addr_data[3];
713 	u8 ctrl;
714 	int i, j;
715 
716 	/* Three cmds: write/erase enable, write data, write/erase disable */
717 	cmd_addr_data[0] = op_ewen << (addr_len - 2);
718 	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
719 		le16_to_cpu(data);
720 	cmd_addr_data[2] = op_ewds << (addr_len - 2);
721 
722 	/* Bit-bang cmds to write word to eeprom */
723 	for (j = 0; j < 3; j++) {
724 
725 		/* Chip select */
726 		iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
727 		e100_write_flush(nic); udelay(4);
728 
729 		for (i = 31; i >= 0; i--) {
730 			ctrl = (cmd_addr_data[j] & (1 << i)) ?
731 				eecs | eedi : eecs;
732 			iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
733 			e100_write_flush(nic); udelay(4);
734 
735 			iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
736 			e100_write_flush(nic); udelay(4);
737 		}
738 		/* Wait 10 msec for cmd to complete */
739 		msleep(10);
740 
741 		/* Chip deselect */
742 		iowrite8(0, &nic->csr->eeprom_ctrl_lo);
743 		e100_write_flush(nic); udelay(4);
744 	}
745 };
746 
747 /* General technique stolen from the eepro100 driver - very clever */
748 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
749 {
750 	u32 cmd_addr_data;
751 	u16 data = 0;
752 	u8 ctrl;
753 	int i;
754 
755 	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
756 
757 	/* Chip select */
758 	iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
759 	e100_write_flush(nic); udelay(4);
760 
761 	/* Bit-bang to read word from eeprom */
762 	for (i = 31; i >= 0; i--) {
763 		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
764 		iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
765 		e100_write_flush(nic); udelay(4);
766 
767 		iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
768 		e100_write_flush(nic); udelay(4);
769 
770 		/* Eeprom drives a dummy zero to EEDO after receiving
771 		 * complete address.  Use this to adjust addr_len. */
772 		ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
773 		if (!(ctrl & eedo) && i > 16) {
774 			*addr_len -= (i - 16);
775 			i = 17;
776 		}
777 
778 		data = (data << 1) | (ctrl & eedo ? 1 : 0);
779 	}
780 
781 	/* Chip deselect */
782 	iowrite8(0, &nic->csr->eeprom_ctrl_lo);
783 	e100_write_flush(nic); udelay(4);
784 
785 	return cpu_to_le16(data);
786 };
787 
788 /* Load entire EEPROM image into driver cache and validate checksum */
789 static int e100_eeprom_load(struct nic *nic)
790 {
791 	u16 addr, addr_len = 8, checksum = 0;
792 
793 	/* Try reading with an 8-bit addr len to discover actual addr len */
794 	e100_eeprom_read(nic, &addr_len, 0);
795 	nic->eeprom_wc = 1 << addr_len;
796 
797 	for (addr = 0; addr < nic->eeprom_wc; addr++) {
798 		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
799 		if (addr < nic->eeprom_wc - 1)
800 			checksum += le16_to_cpu(nic->eeprom[addr]);
801 	}
802 
803 	/* The checksum, stored in the last word, is calculated such that
804 	 * the sum of words should be 0xBABA */
805 	if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
806 		netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
807 		if (!eeprom_bad_csum_allow)
808 			return -EAGAIN;
809 	}
810 
811 	return 0;
812 }
813 
814 /* Save (portion of) driver EEPROM cache to device and update checksum */
815 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
816 {
817 	u16 addr, addr_len = 8, checksum = 0;
818 
819 	/* Try reading with an 8-bit addr len to discover actual addr len */
820 	e100_eeprom_read(nic, &addr_len, 0);
821 	nic->eeprom_wc = 1 << addr_len;
822 
823 	if (start + count >= nic->eeprom_wc)
824 		return -EINVAL;
825 
826 	for (addr = start; addr < start + count; addr++)
827 		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
828 
829 	/* The checksum, stored in the last word, is calculated such that
830 	 * the sum of words should be 0xBABA */
831 	for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
832 		checksum += le16_to_cpu(nic->eeprom[addr]);
833 	nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
834 	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
835 		nic->eeprom[nic->eeprom_wc - 1]);
836 
837 	return 0;
838 }
839 
840 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
841 #define E100_WAIT_SCB_FAST 20       /* delay like the old code */
842 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
843 {
844 	unsigned long flags;
845 	unsigned int i;
846 	int err = 0;
847 
848 	spin_lock_irqsave(&nic->cmd_lock, flags);
849 
850 	/* Previous command is accepted when SCB clears */
851 	for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
852 		if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
853 			break;
854 		cpu_relax();
855 		if (unlikely(i > E100_WAIT_SCB_FAST))
856 			udelay(5);
857 	}
858 	if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
859 		err = -EAGAIN;
860 		goto err_unlock;
861 	}
862 
863 	if (unlikely(cmd != cuc_resume))
864 		iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
865 	iowrite8(cmd, &nic->csr->scb.cmd_lo);
866 
867 err_unlock:
868 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
869 
870 	return err;
871 }
872 
873 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
874 	int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
875 {
876 	struct cb *cb;
877 	unsigned long flags;
878 	int err;
879 
880 	spin_lock_irqsave(&nic->cb_lock, flags);
881 
882 	if (unlikely(!nic->cbs_avail)) {
883 		err = -ENOMEM;
884 		goto err_unlock;
885 	}
886 
887 	cb = nic->cb_to_use;
888 	nic->cb_to_use = cb->next;
889 	nic->cbs_avail--;
890 	cb->skb = skb;
891 
892 	err = cb_prepare(nic, cb, skb);
893 	if (err)
894 		goto err_unlock;
895 
896 	if (unlikely(!nic->cbs_avail))
897 		err = -ENOSPC;
898 
899 
900 	/* Order is important otherwise we'll be in a race with h/w:
901 	 * set S-bit in current first, then clear S-bit in previous. */
902 	cb->command |= cpu_to_le16(cb_s);
903 	dma_wmb();
904 	cb->prev->command &= cpu_to_le16(~cb_s);
905 
906 	while (nic->cb_to_send != nic->cb_to_use) {
907 		if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
908 			nic->cb_to_send->dma_addr))) {
909 			/* Ok, here's where things get sticky.  It's
910 			 * possible that we can't schedule the command
911 			 * because the controller is too busy, so
912 			 * let's just queue the command and try again
913 			 * when another command is scheduled. */
914 			if (err == -ENOSPC) {
915 				//request a reset
916 				schedule_work(&nic->tx_timeout_task);
917 			}
918 			break;
919 		} else {
920 			nic->cuc_cmd = cuc_resume;
921 			nic->cb_to_send = nic->cb_to_send->next;
922 		}
923 	}
924 
925 err_unlock:
926 	spin_unlock_irqrestore(&nic->cb_lock, flags);
927 
928 	return err;
929 }
930 
931 static int mdio_read(struct net_device *netdev, int addr, int reg)
932 {
933 	struct nic *nic = netdev_priv(netdev);
934 	return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
935 }
936 
937 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
938 {
939 	struct nic *nic = netdev_priv(netdev);
940 
941 	nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
942 }
943 
944 /* the standard mdio_ctrl() function for usual MII-compliant hardware */
945 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
946 {
947 	u32 data_out = 0;
948 	unsigned int i;
949 	unsigned long flags;
950 
951 
952 	/*
953 	 * Stratus87247: we shouldn't be writing the MDI control
954 	 * register until the Ready bit shows True.  Also, since
955 	 * manipulation of the MDI control registers is a multi-step
956 	 * procedure it should be done under lock.
957 	 */
958 	spin_lock_irqsave(&nic->mdio_lock, flags);
959 	for (i = 100; i; --i) {
960 		if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
961 			break;
962 		udelay(20);
963 	}
964 	if (unlikely(!i)) {
965 		netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
966 		spin_unlock_irqrestore(&nic->mdio_lock, flags);
967 		return 0;		/* No way to indicate timeout error */
968 	}
969 	iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
970 
971 	for (i = 0; i < 100; i++) {
972 		udelay(20);
973 		if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
974 			break;
975 	}
976 	spin_unlock_irqrestore(&nic->mdio_lock, flags);
977 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
978 		     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
979 		     dir == mdi_read ? "READ" : "WRITE",
980 		     addr, reg, data, data_out);
981 	return (u16)data_out;
982 }
983 
984 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
985 static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
986 				 u32 addr,
987 				 u32 dir,
988 				 u32 reg,
989 				 u16 data)
990 {
991 	if ((reg == MII_BMCR) && (dir == mdi_write)) {
992 		if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
993 			u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
994 							MII_ADVERTISE);
995 
996 			/*
997 			 * Workaround Si issue where sometimes the part will not
998 			 * autoneg to 100Mbps even when advertised.
999 			 */
1000 			if (advert & ADVERTISE_100FULL)
1001 				data |= BMCR_SPEED100 | BMCR_FULLDPLX;
1002 			else if (advert & ADVERTISE_100HALF)
1003 				data |= BMCR_SPEED100;
1004 		}
1005 	}
1006 	return mdio_ctrl_hw(nic, addr, dir, reg, data);
1007 }
1008 
1009 /* Fully software-emulated mdio_ctrl() function for cards without
1010  * MII-compliant PHYs.
1011  * For now, this is mainly geared towards 80c24 support; in case of further
1012  * requirements for other types (i82503, ...?) either extend this mechanism
1013  * or split it, whichever is cleaner.
1014  */
1015 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
1016 				      u32 addr,
1017 				      u32 dir,
1018 				      u32 reg,
1019 				      u16 data)
1020 {
1021 	/* might need to allocate a netdev_priv'ed register array eventually
1022 	 * to be able to record state changes, but for now
1023 	 * some fully hardcoded register handling ought to be ok I guess. */
1024 
1025 	if (dir == mdi_read) {
1026 		switch (reg) {
1027 		case MII_BMCR:
1028 			/* Auto-negotiation, right? */
1029 			return  BMCR_ANENABLE |
1030 				BMCR_FULLDPLX;
1031 		case MII_BMSR:
1032 			return	BMSR_LSTATUS /* for mii_link_ok() */ |
1033 				BMSR_ANEGCAPABLE |
1034 				BMSR_10FULL;
1035 		case MII_ADVERTISE:
1036 			/* 80c24 is a "combo card" PHY, right? */
1037 			return	ADVERTISE_10HALF |
1038 				ADVERTISE_10FULL;
1039 		default:
1040 			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1041 				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1042 				     dir == mdi_read ? "READ" : "WRITE",
1043 				     addr, reg, data);
1044 			return 0xFFFF;
1045 		}
1046 	} else {
1047 		switch (reg) {
1048 		default:
1049 			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1050 				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1051 				     dir == mdi_read ? "READ" : "WRITE",
1052 				     addr, reg, data);
1053 			return 0xFFFF;
1054 		}
1055 	}
1056 }
1057 static inline int e100_phy_supports_mii(struct nic *nic)
1058 {
1059 	/* for now, just check it by comparing whether we
1060 	   are using MII software emulation.
1061 	*/
1062 	return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1063 }
1064 
1065 static void e100_get_defaults(struct nic *nic)
1066 {
1067 	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1068 	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1069 
1070 	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1071 	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1072 	if (nic->mac == mac_unknown)
1073 		nic->mac = mac_82557_D100_A;
1074 
1075 	nic->params.rfds = rfds;
1076 	nic->params.cbs = cbs;
1077 
1078 	/* Quadwords to DMA into FIFO before starting frame transmit */
1079 	nic->tx_threshold = 0xE0;
1080 
1081 	/* no interrupt for every tx completion, delay = 256us if not 557 */
1082 	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1083 		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1084 
1085 	/* Template for a freshly allocated RFD */
1086 	nic->blank_rfd.command = 0;
1087 	nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1088 	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1089 
1090 	/* MII setup */
1091 	nic->mii.phy_id_mask = 0x1F;
1092 	nic->mii.reg_num_mask = 0x1F;
1093 	nic->mii.dev = nic->netdev;
1094 	nic->mii.mdio_read = mdio_read;
1095 	nic->mii.mdio_write = mdio_write;
1096 }
1097 
1098 static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1099 {
1100 	struct config *config = &cb->u.config;
1101 	u8 *c = (u8 *)config;
1102 	struct net_device *netdev = nic->netdev;
1103 
1104 	cb->command = cpu_to_le16(cb_config);
1105 
1106 	memset(config, 0, sizeof(struct config));
1107 
1108 	config->byte_count = 0x16;		/* bytes in this struct */
1109 	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
1110 	config->direct_rx_dma = 0x1;		/* reserved */
1111 	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
1112 	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
1113 	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
1114 	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
1115 	if (e100_phy_supports_mii(nic))
1116 		config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1117 	config->pad10 = 0x6;
1118 	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
1119 	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
1120 	config->ifs = 0x6;			/* x16 = inter frame spacing */
1121 	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
1122 	config->pad15_1 = 0x1;
1123 	config->pad15_2 = 0x1;
1124 	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
1125 	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
1126 	config->tx_padding = 0x1;		/* 1=pad short frames */
1127 	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
1128 	config->pad18 = 0x1;
1129 	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
1130 	config->pad20_1 = 0x1F;
1131 	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
1132 	config->pad21_1 = 0x5;
1133 
1134 	config->adaptive_ifs = nic->adaptive_ifs;
1135 	config->loopback = nic->loopback;
1136 
1137 	if (nic->mii.force_media && nic->mii.full_duplex)
1138 		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */
1139 
1140 	if (nic->flags & promiscuous || nic->loopback) {
1141 		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
1142 		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
1143 		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
1144 	}
1145 
1146 	if (unlikely(netdev->features & NETIF_F_RXFCS))
1147 		config->rx_crc_transfer = 0x1;	/* 1=save, 0=discard */
1148 
1149 	if (nic->flags & multicast_all)
1150 		config->multicast_all = 0x1;		/* 1=accept, 0=no */
1151 
1152 	/* disable WoL when up */
1153 	if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1154 		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */
1155 
1156 	if (nic->mac >= mac_82558_D101_A4) {
1157 		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
1158 		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
1159 		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
1160 		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
1161 		if (nic->mac >= mac_82559_D101M) {
1162 			config->tno_intr = 0x1;		/* TCO stats enable */
1163 			/* Enable TCO in extended config */
1164 			if (nic->mac >= mac_82551_10) {
1165 				config->byte_count = 0x20; /* extended bytes */
1166 				config->rx_d102_mode = 0x1; /* GMRC for TCO */
1167 			}
1168 		} else {
1169 			config->standard_stat_counter = 0x0;
1170 		}
1171 	}
1172 
1173 	if (netdev->features & NETIF_F_RXALL) {
1174 		config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1175 		config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1176 		config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1177 	}
1178 
1179 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
1180 		     c + 0);
1181 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
1182 		     c + 8);
1183 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
1184 		     c + 16);
1185 	return 0;
1186 }
1187 
1188 /*************************************************************************
1189 *  CPUSaver parameters
1190 *
1191 *  All CPUSaver parameters are 16-bit literals that are part of a
1192 *  "move immediate value" instruction.  By changing the value of
1193 *  the literal in the instruction before the code is loaded, the
1194 *  driver can change the algorithm.
1195 *
1196 *  INTDELAY - This loads the dead-man timer with its initial value.
1197 *    When this timer expires the interrupt is asserted, and the
1198 *    timer is reset each time a new packet is received.  (see
1199 *    BUNDLEMAX below to set the limit on number of chained packets)
1200 *    The current default is 0x600 or 1536.  Experiments show that
1201 *    the value should probably stay within the 0x200 - 0x1000.
1202 *
1203 *  BUNDLEMAX -
1204 *    This sets the maximum number of frames that will be bundled.  In
1205 *    some situations, such as the TCP windowing algorithm, it may be
1206 *    better to limit the growth of the bundle size than let it go as
1207 *    high as it can, because that could cause too much added latency.
1208 *    The default is six, because this is the number of packets in the
1209 *    default TCP window size.  A value of 1 would make CPUSaver indicate
1210 *    an interrupt for every frame received.  If you do not want to put
1211 *    a limit on the bundle size, set this value to xFFFF.
1212 *
1213 *  BUNDLESMALL -
1214 *    This contains a bit-mask describing the minimum size frame that
1215 *    will be bundled.  The default masks the lower 7 bits, which means
1216 *    that any frame less than 128 bytes in length will not be bundled,
1217 *    but will instead immediately generate an interrupt.  This does
1218 *    not affect the current bundle in any way.  Any frame that is 128
1219 *    bytes or large will be bundled normally.  This feature is meant
1220 *    to provide immediate indication of ACK frames in a TCP environment.
1221 *    Customers were seeing poor performance when a machine with CPUSaver
1222 *    enabled was sending but not receiving.  The delay introduced when
1223 *    the ACKs were received was enough to reduce total throughput, because
1224 *    the sender would sit idle until the ACK was finally seen.
1225 *
1226 *    The current default is 0xFF80, which masks out the lower 7 bits.
1227 *    This means that any frame which is x7F (127) bytes or smaller
1228 *    will cause an immediate interrupt.  Because this value must be a
1229 *    bit mask, there are only a few valid values that can be used.  To
1230 *    turn this feature off, the driver can write the value xFFFF to the
1231 *    lower word of this instruction (in the same way that the other
1232 *    parameters are used).  Likewise, a value of 0xF800 (2047) would
1233 *    cause an interrupt to be generated for every frame, because all
1234 *    standard Ethernet frames are <= 2047 bytes in length.
1235 *************************************************************************/
1236 
1237 /* if you wish to disable the ucode functionality, while maintaining the
1238  * workarounds it provides, set the following defines to:
1239  * BUNDLESMALL 0
1240  * BUNDLEMAX 1
1241  * INTDELAY 1
1242  */
1243 #define BUNDLESMALL 1
1244 #define BUNDLEMAX (u16)6
1245 #define INTDELAY (u16)1536 /* 0x600 */
1246 
1247 /* Initialize firmware */
1248 static const struct firmware *e100_request_firmware(struct nic *nic)
1249 {
1250 	const char *fw_name;
1251 	const struct firmware *fw = nic->fw;
1252 	u8 timer, bundle, min_size;
1253 	int err = 0;
1254 	bool required = false;
1255 
1256 	/* do not load u-code for ICH devices */
1257 	if (nic->flags & ich)
1258 		return NULL;
1259 
1260 	/* Search for ucode match against h/w revision
1261 	 *
1262 	 * Based on comments in the source code for the FreeBSD fxp
1263 	 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1264 	 *
1265 	 *    "fixes for bugs in the B-step hardware (specifically, bugs
1266 	 *     with Inline Receive)."
1267 	 *
1268 	 * So we must fail if it cannot be loaded.
1269 	 *
1270 	 * The other microcode files are only required for the optional
1271 	 * CPUSaver feature.  Nice to have, but no reason to fail.
1272 	 */
1273 	if (nic->mac == mac_82559_D101M) {
1274 		fw_name = FIRMWARE_D101M;
1275 	} else if (nic->mac == mac_82559_D101S) {
1276 		fw_name = FIRMWARE_D101S;
1277 	} else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1278 		fw_name = FIRMWARE_D102E;
1279 		required = true;
1280 	} else { /* No ucode on other devices */
1281 		return NULL;
1282 	}
1283 
1284 	/* If the firmware has not previously been loaded, request a pointer
1285 	 * to it. If it was previously loaded, we are reinitializing the
1286 	 * adapter, possibly in a resume from hibernate, in which case
1287 	 * request_firmware() cannot be used.
1288 	 */
1289 	if (!fw)
1290 		err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1291 
1292 	if (err) {
1293 		if (required) {
1294 			netif_err(nic, probe, nic->netdev,
1295 				  "Failed to load firmware \"%s\": %d\n",
1296 				  fw_name, err);
1297 			return ERR_PTR(err);
1298 		} else {
1299 			netif_info(nic, probe, nic->netdev,
1300 				   "CPUSaver disabled. Needs \"%s\": %d\n",
1301 				   fw_name, err);
1302 			return NULL;
1303 		}
1304 	}
1305 
1306 	/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1307 	   indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1308 	if (fw->size != UCODE_SIZE * 4 + 3) {
1309 		netif_err(nic, probe, nic->netdev,
1310 			  "Firmware \"%s\" has wrong size %zu\n",
1311 			  fw_name, fw->size);
1312 		release_firmware(fw);
1313 		return ERR_PTR(-EINVAL);
1314 	}
1315 
1316 	/* Read timer, bundle and min_size from end of firmware blob */
1317 	timer = fw->data[UCODE_SIZE * 4];
1318 	bundle = fw->data[UCODE_SIZE * 4 + 1];
1319 	min_size = fw->data[UCODE_SIZE * 4 + 2];
1320 
1321 	if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1322 	    min_size >= UCODE_SIZE) {
1323 		netif_err(nic, probe, nic->netdev,
1324 			  "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1325 			  fw_name, timer, bundle, min_size);
1326 		release_firmware(fw);
1327 		return ERR_PTR(-EINVAL);
1328 	}
1329 
1330 	/* OK, firmware is validated and ready to use. Save a pointer
1331 	 * to it in the nic */
1332 	nic->fw = fw;
1333 	return fw;
1334 }
1335 
1336 static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1337 			     struct sk_buff *skb)
1338 {
1339 	const struct firmware *fw = (void *)skb;
1340 	u8 timer, bundle, min_size;
1341 
1342 	/* It's not a real skb; we just abused the fact that e100_exec_cb
1343 	   will pass it through to here... */
1344 	cb->skb = NULL;
1345 
1346 	/* firmware is stored as little endian already */
1347 	memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1348 
1349 	/* Read timer, bundle and min_size from end of firmware blob */
1350 	timer = fw->data[UCODE_SIZE * 4];
1351 	bundle = fw->data[UCODE_SIZE * 4 + 1];
1352 	min_size = fw->data[UCODE_SIZE * 4 + 2];
1353 
1354 	/* Insert user-tunable settings in cb->u.ucode */
1355 	cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1356 	cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1357 	cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1358 	cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1359 	cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1360 	cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1361 
1362 	cb->command = cpu_to_le16(cb_ucode | cb_el);
1363 	return 0;
1364 }
1365 
1366 static inline int e100_load_ucode_wait(struct nic *nic)
1367 {
1368 	const struct firmware *fw;
1369 	int err = 0, counter = 50;
1370 	struct cb *cb = nic->cb_to_clean;
1371 
1372 	fw = e100_request_firmware(nic);
1373 	/* If it's NULL, then no ucode is required */
1374 	if (!fw || IS_ERR(fw))
1375 		return PTR_ERR(fw);
1376 
1377 	if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1378 		netif_err(nic, probe, nic->netdev,
1379 			  "ucode cmd failed with error %d\n", err);
1380 
1381 	/* must restart cuc */
1382 	nic->cuc_cmd = cuc_start;
1383 
1384 	/* wait for completion */
1385 	e100_write_flush(nic);
1386 	udelay(10);
1387 
1388 	/* wait for possibly (ouch) 500ms */
1389 	while (!(cb->status & cpu_to_le16(cb_complete))) {
1390 		msleep(10);
1391 		if (!--counter) break;
1392 	}
1393 
1394 	/* ack any interrupts, something could have been set */
1395 	iowrite8(~0, &nic->csr->scb.stat_ack);
1396 
1397 	/* if the command failed, or is not OK, notify and return */
1398 	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1399 		netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1400 		err = -EPERM;
1401 	}
1402 
1403 	return err;
1404 }
1405 
1406 static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1407 	struct sk_buff *skb)
1408 {
1409 	cb->command = cpu_to_le16(cb_iaaddr);
1410 	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1411 	return 0;
1412 }
1413 
1414 static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1415 {
1416 	cb->command = cpu_to_le16(cb_dump);
1417 	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1418 		offsetof(struct mem, dump_buf));
1419 	return 0;
1420 }
1421 
1422 static int e100_phy_check_without_mii(struct nic *nic)
1423 {
1424 	u8 phy_type;
1425 	int without_mii;
1426 
1427 	phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
1428 
1429 	switch (phy_type) {
1430 	case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1431 	case I82503: /* Non-MII PHY; UNTESTED! */
1432 	case S80C24: /* Non-MII PHY; tested and working */
1433 		/* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1434 		 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1435 		 * doesn't have a programming interface of any sort.  The
1436 		 * media is sensed automatically based on how the link partner
1437 		 * is configured.  This is, in essence, manual configuration.
1438 		 */
1439 		netif_info(nic, probe, nic->netdev,
1440 			   "found MII-less i82503 or 80c24 or other PHY\n");
1441 
1442 		nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1443 		nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1444 
1445 		/* these might be needed for certain MII-less cards...
1446 		 * nic->flags |= ich;
1447 		 * nic->flags |= ich_10h_workaround; */
1448 
1449 		without_mii = 1;
1450 		break;
1451 	default:
1452 		without_mii = 0;
1453 		break;
1454 	}
1455 	return without_mii;
1456 }
1457 
1458 #define NCONFIG_AUTO_SWITCH	0x0080
1459 #define MII_NSC_CONG		MII_RESV1
1460 #define NSC_CONG_ENABLE		0x0100
1461 #define NSC_CONG_TXREADY	0x0400
1462 #define ADVERTISE_FC_SUPPORTED	0x0400
1463 static int e100_phy_init(struct nic *nic)
1464 {
1465 	struct net_device *netdev = nic->netdev;
1466 	u32 addr;
1467 	u16 bmcr, stat, id_lo, id_hi, cong;
1468 
1469 	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1470 	for (addr = 0; addr < 32; addr++) {
1471 		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1472 		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1473 		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1474 		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1475 		if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1476 			break;
1477 	}
1478 	if (addr == 32) {
1479 		/* uhoh, no PHY detected: check whether we seem to be some
1480 		 * weird, rare variant which is *known* to not have any MII.
1481 		 * But do this AFTER MII checking only, since this does
1482 		 * lookup of EEPROM values which may easily be unreliable. */
1483 		if (e100_phy_check_without_mii(nic))
1484 			return 0; /* simply return and hope for the best */
1485 		else {
1486 			/* for unknown cases log a fatal error */
1487 			netif_err(nic, hw, nic->netdev,
1488 				  "Failed to locate any known PHY, aborting\n");
1489 			return -EAGAIN;
1490 		}
1491 	} else
1492 		netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1493 			     "phy_addr = %d\n", nic->mii.phy_id);
1494 
1495 	/* Get phy ID */
1496 	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1497 	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1498 	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1499 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1500 		     "phy ID = 0x%08X\n", nic->phy);
1501 
1502 	/* Select the phy and isolate the rest */
1503 	for (addr = 0; addr < 32; addr++) {
1504 		if (addr != nic->mii.phy_id) {
1505 			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1506 		} else if (nic->phy != phy_82552_v) {
1507 			bmcr = mdio_read(netdev, addr, MII_BMCR);
1508 			mdio_write(netdev, addr, MII_BMCR,
1509 				bmcr & ~BMCR_ISOLATE);
1510 		}
1511 	}
1512 	/*
1513 	 * Workaround for 82552:
1514 	 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1515 	 * other phy_id's) using bmcr value from addr discovery loop above.
1516 	 */
1517 	if (nic->phy == phy_82552_v)
1518 		mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1519 			bmcr & ~BMCR_ISOLATE);
1520 
1521 	/* Handle National tx phys */
1522 #define NCS_PHY_MODEL_MASK	0xFFF0FFFF
1523 	if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1524 		/* Disable congestion control */
1525 		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1526 		cong |= NSC_CONG_TXREADY;
1527 		cong &= ~NSC_CONG_ENABLE;
1528 		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1529 	}
1530 
1531 	if (nic->phy == phy_82552_v) {
1532 		u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1533 
1534 		/* assign special tweaked mdio_ctrl() function */
1535 		nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1536 
1537 		/* Workaround Si not advertising flow-control during autoneg */
1538 		advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1539 		mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1540 
1541 		/* Reset for the above changes to take effect */
1542 		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1543 		bmcr |= BMCR_RESET;
1544 		mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1545 	} else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1546 	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1547 		(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1548 		/* enable/disable MDI/MDI-X auto-switching. */
1549 		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1550 				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1551 	}
1552 
1553 	return 0;
1554 }
1555 
1556 static int e100_hw_init(struct nic *nic)
1557 {
1558 	int err = 0;
1559 
1560 	e100_hw_reset(nic);
1561 
1562 	netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1563 	if (!in_interrupt() && (err = e100_self_test(nic)))
1564 		return err;
1565 
1566 	if ((err = e100_phy_init(nic)))
1567 		return err;
1568 	if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1569 		return err;
1570 	if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1571 		return err;
1572 	if ((err = e100_load_ucode_wait(nic)))
1573 		return err;
1574 	if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1575 		return err;
1576 	if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1577 		return err;
1578 	if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1579 		nic->dma_addr + offsetof(struct mem, stats))))
1580 		return err;
1581 	if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1582 		return err;
1583 
1584 	e100_disable_irq(nic);
1585 
1586 	return 0;
1587 }
1588 
1589 static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1590 {
1591 	struct net_device *netdev = nic->netdev;
1592 	struct netdev_hw_addr *ha;
1593 	u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1594 
1595 	cb->command = cpu_to_le16(cb_multi);
1596 	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1597 	i = 0;
1598 	netdev_for_each_mc_addr(ha, netdev) {
1599 		if (i == count)
1600 			break;
1601 		memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1602 			ETH_ALEN);
1603 	}
1604 	return 0;
1605 }
1606 
1607 static void e100_set_multicast_list(struct net_device *netdev)
1608 {
1609 	struct nic *nic = netdev_priv(netdev);
1610 
1611 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1612 		     "mc_count=%d, flags=0x%04X\n",
1613 		     netdev_mc_count(netdev), netdev->flags);
1614 
1615 	if (netdev->flags & IFF_PROMISC)
1616 		nic->flags |= promiscuous;
1617 	else
1618 		nic->flags &= ~promiscuous;
1619 
1620 	if (netdev->flags & IFF_ALLMULTI ||
1621 		netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1622 		nic->flags |= multicast_all;
1623 	else
1624 		nic->flags &= ~multicast_all;
1625 
1626 	e100_exec_cb(nic, NULL, e100_configure);
1627 	e100_exec_cb(nic, NULL, e100_multi);
1628 }
1629 
1630 static void e100_update_stats(struct nic *nic)
1631 {
1632 	struct net_device *dev = nic->netdev;
1633 	struct net_device_stats *ns = &dev->stats;
1634 	struct stats *s = &nic->mem->stats;
1635 	__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1636 		(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1637 		&s->complete;
1638 
1639 	/* Device's stats reporting may take several microseconds to
1640 	 * complete, so we're always waiting for results of the
1641 	 * previous command. */
1642 
1643 	if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1644 		*complete = 0;
1645 		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1646 		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1647 		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1648 		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1649 		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1650 		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1651 		ns->collisions += nic->tx_collisions;
1652 		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1653 			le32_to_cpu(s->tx_lost_crs);
1654 		nic->rx_short_frame_errors +=
1655 			le32_to_cpu(s->rx_short_frame_errors);
1656 		ns->rx_length_errors = nic->rx_short_frame_errors +
1657 			nic->rx_over_length_errors;
1658 		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1659 		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1660 		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1661 		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1662 		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1663 		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1664 			le32_to_cpu(s->rx_alignment_errors) +
1665 			le32_to_cpu(s->rx_short_frame_errors) +
1666 			le32_to_cpu(s->rx_cdt_errors);
1667 		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1668 		nic->tx_single_collisions +=
1669 			le32_to_cpu(s->tx_single_collisions);
1670 		nic->tx_multiple_collisions +=
1671 			le32_to_cpu(s->tx_multiple_collisions);
1672 		if (nic->mac >= mac_82558_D101_A4) {
1673 			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1674 			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1675 			nic->rx_fc_unsupported +=
1676 				le32_to_cpu(s->fc_rcv_unsupported);
1677 			if (nic->mac >= mac_82559_D101M) {
1678 				nic->tx_tco_frames +=
1679 					le16_to_cpu(s->xmt_tco_frames);
1680 				nic->rx_tco_frames +=
1681 					le16_to_cpu(s->rcv_tco_frames);
1682 			}
1683 		}
1684 	}
1685 
1686 
1687 	if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1688 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1689 			     "exec cuc_dump_reset failed\n");
1690 }
1691 
1692 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1693 {
1694 	/* Adjust inter-frame-spacing (IFS) between two transmits if
1695 	 * we're getting collisions on a half-duplex connection. */
1696 
1697 	if (duplex == DUPLEX_HALF) {
1698 		u32 prev = nic->adaptive_ifs;
1699 		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1700 
1701 		if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1702 		   (nic->tx_frames > min_frames)) {
1703 			if (nic->adaptive_ifs < 60)
1704 				nic->adaptive_ifs += 5;
1705 		} else if (nic->tx_frames < min_frames) {
1706 			if (nic->adaptive_ifs >= 5)
1707 				nic->adaptive_ifs -= 5;
1708 		}
1709 		if (nic->adaptive_ifs != prev)
1710 			e100_exec_cb(nic, NULL, e100_configure);
1711 	}
1712 }
1713 
1714 static void e100_watchdog(struct timer_list *t)
1715 {
1716 	struct nic *nic = from_timer(nic, t, watchdog);
1717 	struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1718 	u32 speed;
1719 
1720 	netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1721 		     "right now = %ld\n", jiffies);
1722 
1723 	/* mii library handles link maintenance tasks */
1724 
1725 	mii_ethtool_gset(&nic->mii, &cmd);
1726 	speed = ethtool_cmd_speed(&cmd);
1727 
1728 	if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1729 		netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1730 			    speed == SPEED_100 ? 100 : 10,
1731 			    cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1732 	} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1733 		netdev_info(nic->netdev, "NIC Link is Down\n");
1734 	}
1735 
1736 	mii_check_link(&nic->mii);
1737 
1738 	/* Software generated interrupt to recover from (rare) Rx
1739 	 * allocation failure.
1740 	 * Unfortunately have to use a spinlock to not re-enable interrupts
1741 	 * accidentally, due to hardware that shares a register between the
1742 	 * interrupt mask bit and the SW Interrupt generation bit */
1743 	spin_lock_irq(&nic->cmd_lock);
1744 	iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1745 	e100_write_flush(nic);
1746 	spin_unlock_irq(&nic->cmd_lock);
1747 
1748 	e100_update_stats(nic);
1749 	e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1750 
1751 	if (nic->mac <= mac_82557_D100_C)
1752 		/* Issue a multicast command to workaround a 557 lock up */
1753 		e100_set_multicast_list(nic->netdev);
1754 
1755 	if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1756 		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1757 		nic->flags |= ich_10h_workaround;
1758 	else
1759 		nic->flags &= ~ich_10h_workaround;
1760 
1761 	mod_timer(&nic->watchdog,
1762 		  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1763 }
1764 
1765 static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1766 	struct sk_buff *skb)
1767 {
1768 	dma_addr_t dma_addr;
1769 	cb->command = nic->tx_command;
1770 
1771 	dma_addr = pci_map_single(nic->pdev,
1772 				  skb->data, skb->len, PCI_DMA_TODEVICE);
1773 	/* If we can't map the skb, have the upper layer try later */
1774 	if (pci_dma_mapping_error(nic->pdev, dma_addr)) {
1775 		dev_kfree_skb_any(skb);
1776 		skb = NULL;
1777 		return -ENOMEM;
1778 	}
1779 
1780 	/*
1781 	 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1782 	 * testing, ie sending frames with bad CRC.
1783 	 */
1784 	if (unlikely(skb->no_fcs))
1785 		cb->command |= cpu_to_le16(cb_tx_nc);
1786 	else
1787 		cb->command &= ~cpu_to_le16(cb_tx_nc);
1788 
1789 	/* interrupt every 16 packets regardless of delay */
1790 	if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1791 		cb->command |= cpu_to_le16(cb_i);
1792 	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1793 	cb->u.tcb.tcb_byte_count = 0;
1794 	cb->u.tcb.threshold = nic->tx_threshold;
1795 	cb->u.tcb.tbd_count = 1;
1796 	cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1797 	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1798 	skb_tx_timestamp(skb);
1799 	return 0;
1800 }
1801 
1802 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1803 				   struct net_device *netdev)
1804 {
1805 	struct nic *nic = netdev_priv(netdev);
1806 	int err;
1807 
1808 	if (nic->flags & ich_10h_workaround) {
1809 		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1810 		   Issue a NOP command followed by a 1us delay before
1811 		   issuing the Tx command. */
1812 		if (e100_exec_cmd(nic, cuc_nop, 0))
1813 			netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1814 				     "exec cuc_nop failed\n");
1815 		udelay(1);
1816 	}
1817 
1818 	err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1819 
1820 	switch (err) {
1821 	case -ENOSPC:
1822 		/* We queued the skb, but now we're out of space. */
1823 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1824 			     "No space for CB\n");
1825 		netif_stop_queue(netdev);
1826 		break;
1827 	case -ENOMEM:
1828 		/* This is a hard error - log it. */
1829 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1830 			     "Out of Tx resources, returning skb\n");
1831 		netif_stop_queue(netdev);
1832 		return NETDEV_TX_BUSY;
1833 	}
1834 
1835 	return NETDEV_TX_OK;
1836 }
1837 
1838 static int e100_tx_clean(struct nic *nic)
1839 {
1840 	struct net_device *dev = nic->netdev;
1841 	struct cb *cb;
1842 	int tx_cleaned = 0;
1843 
1844 	spin_lock(&nic->cb_lock);
1845 
1846 	/* Clean CBs marked complete */
1847 	for (cb = nic->cb_to_clean;
1848 	    cb->status & cpu_to_le16(cb_complete);
1849 	    cb = nic->cb_to_clean = cb->next) {
1850 		dma_rmb(); /* read skb after status */
1851 		netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1852 			     "cb[%d]->status = 0x%04X\n",
1853 			     (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1854 			     cb->status);
1855 
1856 		if (likely(cb->skb != NULL)) {
1857 			dev->stats.tx_packets++;
1858 			dev->stats.tx_bytes += cb->skb->len;
1859 
1860 			pci_unmap_single(nic->pdev,
1861 				le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1862 				le16_to_cpu(cb->u.tcb.tbd.size),
1863 				PCI_DMA_TODEVICE);
1864 			dev_kfree_skb_any(cb->skb);
1865 			cb->skb = NULL;
1866 			tx_cleaned = 1;
1867 		}
1868 		cb->status = 0;
1869 		nic->cbs_avail++;
1870 	}
1871 
1872 	spin_unlock(&nic->cb_lock);
1873 
1874 	/* Recover from running out of Tx resources in xmit_frame */
1875 	if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1876 		netif_wake_queue(nic->netdev);
1877 
1878 	return tx_cleaned;
1879 }
1880 
1881 static void e100_clean_cbs(struct nic *nic)
1882 {
1883 	if (nic->cbs) {
1884 		while (nic->cbs_avail != nic->params.cbs.count) {
1885 			struct cb *cb = nic->cb_to_clean;
1886 			if (cb->skb) {
1887 				pci_unmap_single(nic->pdev,
1888 					le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1889 					le16_to_cpu(cb->u.tcb.tbd.size),
1890 					PCI_DMA_TODEVICE);
1891 				dev_kfree_skb(cb->skb);
1892 			}
1893 			nic->cb_to_clean = nic->cb_to_clean->next;
1894 			nic->cbs_avail++;
1895 		}
1896 		dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1897 		nic->cbs = NULL;
1898 		nic->cbs_avail = 0;
1899 	}
1900 	nic->cuc_cmd = cuc_start;
1901 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1902 		nic->cbs;
1903 }
1904 
1905 static int e100_alloc_cbs(struct nic *nic)
1906 {
1907 	struct cb *cb;
1908 	unsigned int i, count = nic->params.cbs.count;
1909 
1910 	nic->cuc_cmd = cuc_start;
1911 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1912 	nic->cbs_avail = 0;
1913 
1914 	nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL,
1915 				   &nic->cbs_dma_addr);
1916 	if (!nic->cbs)
1917 		return -ENOMEM;
1918 
1919 	for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1920 		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1921 		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1922 
1923 		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1924 		cb->link = cpu_to_le32(nic->cbs_dma_addr +
1925 			((i+1) % count) * sizeof(struct cb));
1926 	}
1927 
1928 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1929 	nic->cbs_avail = count;
1930 
1931 	return 0;
1932 }
1933 
1934 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1935 {
1936 	if (!nic->rxs) return;
1937 	if (RU_SUSPENDED != nic->ru_running) return;
1938 
1939 	/* handle init time starts */
1940 	if (!rx) rx = nic->rxs;
1941 
1942 	/* (Re)start RU if suspended or idle and RFA is non-NULL */
1943 	if (rx->skb) {
1944 		e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1945 		nic->ru_running = RU_RUNNING;
1946 	}
1947 }
1948 
1949 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1950 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1951 {
1952 	if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1953 		return -ENOMEM;
1954 
1955 	/* Init, and map the RFD. */
1956 	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1957 	rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1958 		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1959 
1960 	if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1961 		dev_kfree_skb_any(rx->skb);
1962 		rx->skb = NULL;
1963 		rx->dma_addr = 0;
1964 		return -ENOMEM;
1965 	}
1966 
1967 	/* Link the RFD to end of RFA by linking previous RFD to
1968 	 * this one.  We are safe to touch the previous RFD because
1969 	 * it is protected by the before last buffer's el bit being set */
1970 	if (rx->prev->skb) {
1971 		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1972 		put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1973 		pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1974 			sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1975 	}
1976 
1977 	return 0;
1978 }
1979 
1980 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1981 	unsigned int *work_done, unsigned int work_to_do)
1982 {
1983 	struct net_device *dev = nic->netdev;
1984 	struct sk_buff *skb = rx->skb;
1985 	struct rfd *rfd = (struct rfd *)skb->data;
1986 	u16 rfd_status, actual_size;
1987 	u16 fcs_pad = 0;
1988 
1989 	if (unlikely(work_done && *work_done >= work_to_do))
1990 		return -EAGAIN;
1991 
1992 	/* Need to sync before taking a peek at cb_complete bit */
1993 	pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1994 		sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1995 	rfd_status = le16_to_cpu(rfd->status);
1996 
1997 	netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1998 		     "status=0x%04X\n", rfd_status);
1999 	dma_rmb(); /* read size after status bit */
2000 
2001 	/* If data isn't ready, nothing to indicate */
2002 	if (unlikely(!(rfd_status & cb_complete))) {
2003 		/* If the next buffer has the el bit, but we think the receiver
2004 		 * is still running, check to see if it really stopped while
2005 		 * we had interrupts off.
2006 		 * This allows for a fast restart without re-enabling
2007 		 * interrupts */
2008 		if ((le16_to_cpu(rfd->command) & cb_el) &&
2009 		    (RU_RUNNING == nic->ru_running))
2010 
2011 			if (ioread8(&nic->csr->scb.status) & rus_no_res)
2012 				nic->ru_running = RU_SUSPENDED;
2013 		pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2014 					       sizeof(struct rfd),
2015 					       PCI_DMA_FROMDEVICE);
2016 		return -ENODATA;
2017 	}
2018 
2019 	/* Get actual data size */
2020 	if (unlikely(dev->features & NETIF_F_RXFCS))
2021 		fcs_pad = 4;
2022 	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
2023 	if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
2024 		actual_size = RFD_BUF_LEN - sizeof(struct rfd);
2025 
2026 	/* Get data */
2027 	pci_unmap_single(nic->pdev, rx->dma_addr,
2028 		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2029 
2030 	/* If this buffer has the el bit, but we think the receiver
2031 	 * is still running, check to see if it really stopped while
2032 	 * we had interrupts off.
2033 	 * This allows for a fast restart without re-enabling interrupts.
2034 	 * This can happen when the RU sees the size change but also sees
2035 	 * the el bit set. */
2036 	if ((le16_to_cpu(rfd->command) & cb_el) &&
2037 	    (RU_RUNNING == nic->ru_running)) {
2038 
2039 	    if (ioread8(&nic->csr->scb.status) & rus_no_res)
2040 		nic->ru_running = RU_SUSPENDED;
2041 	}
2042 
2043 	/* Pull off the RFD and put the actual data (minus eth hdr) */
2044 	skb_reserve(skb, sizeof(struct rfd));
2045 	skb_put(skb, actual_size);
2046 	skb->protocol = eth_type_trans(skb, nic->netdev);
2047 
2048 	/* If we are receiving all frames, then don't bother
2049 	 * checking for errors.
2050 	 */
2051 	if (unlikely(dev->features & NETIF_F_RXALL)) {
2052 		if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2053 			/* Received oversized frame, but keep it. */
2054 			nic->rx_over_length_errors++;
2055 		goto process_skb;
2056 	}
2057 
2058 	if (unlikely(!(rfd_status & cb_ok))) {
2059 		/* Don't indicate if hardware indicates errors */
2060 		dev_kfree_skb_any(skb);
2061 	} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2062 		/* Don't indicate oversized frames */
2063 		nic->rx_over_length_errors++;
2064 		dev_kfree_skb_any(skb);
2065 	} else {
2066 process_skb:
2067 		dev->stats.rx_packets++;
2068 		dev->stats.rx_bytes += (actual_size - fcs_pad);
2069 		netif_receive_skb(skb);
2070 		if (work_done)
2071 			(*work_done)++;
2072 	}
2073 
2074 	rx->skb = NULL;
2075 
2076 	return 0;
2077 }
2078 
2079 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2080 	unsigned int work_to_do)
2081 {
2082 	struct rx *rx;
2083 	int restart_required = 0, err = 0;
2084 	struct rx *old_before_last_rx, *new_before_last_rx;
2085 	struct rfd *old_before_last_rfd, *new_before_last_rfd;
2086 
2087 	/* Indicate newly arrived packets */
2088 	for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2089 		err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2090 		/* Hit quota or no more to clean */
2091 		if (-EAGAIN == err || -ENODATA == err)
2092 			break;
2093 	}
2094 
2095 
2096 	/* On EAGAIN, hit quota so have more work to do, restart once
2097 	 * cleanup is complete.
2098 	 * Else, are we already rnr? then pay attention!!! this ensures that
2099 	 * the state machine progression never allows a start with a
2100 	 * partially cleaned list, avoiding a race between hardware
2101 	 * and rx_to_clean when in NAPI mode */
2102 	if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2103 		restart_required = 1;
2104 
2105 	old_before_last_rx = nic->rx_to_use->prev->prev;
2106 	old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2107 
2108 	/* Alloc new skbs to refill list */
2109 	for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2110 		if (unlikely(e100_rx_alloc_skb(nic, rx)))
2111 			break; /* Better luck next time (see watchdog) */
2112 	}
2113 
2114 	new_before_last_rx = nic->rx_to_use->prev->prev;
2115 	if (new_before_last_rx != old_before_last_rx) {
2116 		/* Set the el-bit on the buffer that is before the last buffer.
2117 		 * This lets us update the next pointer on the last buffer
2118 		 * without worrying about hardware touching it.
2119 		 * We set the size to 0 to prevent hardware from touching this
2120 		 * buffer.
2121 		 * When the hardware hits the before last buffer with el-bit
2122 		 * and size of 0, it will RNR interrupt, the RUS will go into
2123 		 * the No Resources state.  It will not complete nor write to
2124 		 * this buffer. */
2125 		new_before_last_rfd =
2126 			(struct rfd *)new_before_last_rx->skb->data;
2127 		new_before_last_rfd->size = 0;
2128 		new_before_last_rfd->command |= cpu_to_le16(cb_el);
2129 		pci_dma_sync_single_for_device(nic->pdev,
2130 			new_before_last_rx->dma_addr, sizeof(struct rfd),
2131 			PCI_DMA_BIDIRECTIONAL);
2132 
2133 		/* Now that we have a new stopping point, we can clear the old
2134 		 * stopping point.  We must sync twice to get the proper
2135 		 * ordering on the hardware side of things. */
2136 		old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2137 		pci_dma_sync_single_for_device(nic->pdev,
2138 			old_before_last_rx->dma_addr, sizeof(struct rfd),
2139 			PCI_DMA_BIDIRECTIONAL);
2140 		old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2141 							+ ETH_FCS_LEN);
2142 		pci_dma_sync_single_for_device(nic->pdev,
2143 			old_before_last_rx->dma_addr, sizeof(struct rfd),
2144 			PCI_DMA_BIDIRECTIONAL);
2145 	}
2146 
2147 	if (restart_required) {
2148 		// ack the rnr?
2149 		iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2150 		e100_start_receiver(nic, nic->rx_to_clean);
2151 		if (work_done)
2152 			(*work_done)++;
2153 	}
2154 }
2155 
2156 static void e100_rx_clean_list(struct nic *nic)
2157 {
2158 	struct rx *rx;
2159 	unsigned int i, count = nic->params.rfds.count;
2160 
2161 	nic->ru_running = RU_UNINITIALIZED;
2162 
2163 	if (nic->rxs) {
2164 		for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2165 			if (rx->skb) {
2166 				pci_unmap_single(nic->pdev, rx->dma_addr,
2167 					RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2168 				dev_kfree_skb(rx->skb);
2169 			}
2170 		}
2171 		kfree(nic->rxs);
2172 		nic->rxs = NULL;
2173 	}
2174 
2175 	nic->rx_to_use = nic->rx_to_clean = NULL;
2176 }
2177 
2178 static int e100_rx_alloc_list(struct nic *nic)
2179 {
2180 	struct rx *rx;
2181 	unsigned int i, count = nic->params.rfds.count;
2182 	struct rfd *before_last;
2183 
2184 	nic->rx_to_use = nic->rx_to_clean = NULL;
2185 	nic->ru_running = RU_UNINITIALIZED;
2186 
2187 	if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
2188 		return -ENOMEM;
2189 
2190 	for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2191 		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2192 		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2193 		if (e100_rx_alloc_skb(nic, rx)) {
2194 			e100_rx_clean_list(nic);
2195 			return -ENOMEM;
2196 		}
2197 	}
2198 	/* Set the el-bit on the buffer that is before the last buffer.
2199 	 * This lets us update the next pointer on the last buffer without
2200 	 * worrying about hardware touching it.
2201 	 * We set the size to 0 to prevent hardware from touching this buffer.
2202 	 * When the hardware hits the before last buffer with el-bit and size
2203 	 * of 0, it will RNR interrupt, the RU will go into the No Resources
2204 	 * state.  It will not complete nor write to this buffer. */
2205 	rx = nic->rxs->prev->prev;
2206 	before_last = (struct rfd *)rx->skb->data;
2207 	before_last->command |= cpu_to_le16(cb_el);
2208 	before_last->size = 0;
2209 	pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2210 		sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
2211 
2212 	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2213 	nic->ru_running = RU_SUSPENDED;
2214 
2215 	return 0;
2216 }
2217 
2218 static irqreturn_t e100_intr(int irq, void *dev_id)
2219 {
2220 	struct net_device *netdev = dev_id;
2221 	struct nic *nic = netdev_priv(netdev);
2222 	u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2223 
2224 	netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2225 		     "stat_ack = 0x%02X\n", stat_ack);
2226 
2227 	if (stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
2228 	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
2229 		return IRQ_NONE;
2230 
2231 	/* Ack interrupt(s) */
2232 	iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2233 
2234 	/* We hit Receive No Resource (RNR); restart RU after cleaning */
2235 	if (stat_ack & stat_ack_rnr)
2236 		nic->ru_running = RU_SUSPENDED;
2237 
2238 	if (likely(napi_schedule_prep(&nic->napi))) {
2239 		e100_disable_irq(nic);
2240 		__napi_schedule(&nic->napi);
2241 	}
2242 
2243 	return IRQ_HANDLED;
2244 }
2245 
2246 static int e100_poll(struct napi_struct *napi, int budget)
2247 {
2248 	struct nic *nic = container_of(napi, struct nic, napi);
2249 	unsigned int work_done = 0;
2250 
2251 	e100_rx_clean(nic, &work_done, budget);
2252 	e100_tx_clean(nic);
2253 
2254 	/* If budget not fully consumed, exit the polling mode */
2255 	if (work_done < budget) {
2256 		napi_complete_done(napi, work_done);
2257 		e100_enable_irq(nic);
2258 	}
2259 
2260 	return work_done;
2261 }
2262 
2263 #ifdef CONFIG_NET_POLL_CONTROLLER
2264 static void e100_netpoll(struct net_device *netdev)
2265 {
2266 	struct nic *nic = netdev_priv(netdev);
2267 
2268 	e100_disable_irq(nic);
2269 	e100_intr(nic->pdev->irq, netdev);
2270 	e100_tx_clean(nic);
2271 	e100_enable_irq(nic);
2272 }
2273 #endif
2274 
2275 static int e100_set_mac_address(struct net_device *netdev, void *p)
2276 {
2277 	struct nic *nic = netdev_priv(netdev);
2278 	struct sockaddr *addr = p;
2279 
2280 	if (!is_valid_ether_addr(addr->sa_data))
2281 		return -EADDRNOTAVAIL;
2282 
2283 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2284 	e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2285 
2286 	return 0;
2287 }
2288 
2289 static int e100_asf(struct nic *nic)
2290 {
2291 	/* ASF can be enabled from eeprom */
2292 	return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2293 	   (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2294 	   !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2295 	   ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE);
2296 }
2297 
2298 static int e100_up(struct nic *nic)
2299 {
2300 	int err;
2301 
2302 	if ((err = e100_rx_alloc_list(nic)))
2303 		return err;
2304 	if ((err = e100_alloc_cbs(nic)))
2305 		goto err_rx_clean_list;
2306 	if ((err = e100_hw_init(nic)))
2307 		goto err_clean_cbs;
2308 	e100_set_multicast_list(nic->netdev);
2309 	e100_start_receiver(nic, NULL);
2310 	mod_timer(&nic->watchdog, jiffies);
2311 	if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2312 		nic->netdev->name, nic->netdev)))
2313 		goto err_no_irq;
2314 	netif_wake_queue(nic->netdev);
2315 	napi_enable(&nic->napi);
2316 	/* enable ints _after_ enabling poll, preventing a race between
2317 	 * disable ints+schedule */
2318 	e100_enable_irq(nic);
2319 	return 0;
2320 
2321 err_no_irq:
2322 	del_timer_sync(&nic->watchdog);
2323 err_clean_cbs:
2324 	e100_clean_cbs(nic);
2325 err_rx_clean_list:
2326 	e100_rx_clean_list(nic);
2327 	return err;
2328 }
2329 
2330 static void e100_down(struct nic *nic)
2331 {
2332 	/* wait here for poll to complete */
2333 	napi_disable(&nic->napi);
2334 	netif_stop_queue(nic->netdev);
2335 	e100_hw_reset(nic);
2336 	free_irq(nic->pdev->irq, nic->netdev);
2337 	del_timer_sync(&nic->watchdog);
2338 	netif_carrier_off(nic->netdev);
2339 	e100_clean_cbs(nic);
2340 	e100_rx_clean_list(nic);
2341 }
2342 
2343 static void e100_tx_timeout(struct net_device *netdev)
2344 {
2345 	struct nic *nic = netdev_priv(netdev);
2346 
2347 	/* Reset outside of interrupt context, to avoid request_irq
2348 	 * in interrupt context */
2349 	schedule_work(&nic->tx_timeout_task);
2350 }
2351 
2352 static void e100_tx_timeout_task(struct work_struct *work)
2353 {
2354 	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2355 	struct net_device *netdev = nic->netdev;
2356 
2357 	netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2358 		     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2359 
2360 	rtnl_lock();
2361 	if (netif_running(netdev)) {
2362 		e100_down(netdev_priv(netdev));
2363 		e100_up(netdev_priv(netdev));
2364 	}
2365 	rtnl_unlock();
2366 }
2367 
2368 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2369 {
2370 	int err;
2371 	struct sk_buff *skb;
2372 
2373 	/* Use driver resources to perform internal MAC or PHY
2374 	 * loopback test.  A single packet is prepared and transmitted
2375 	 * in loopback mode, and the test passes if the received
2376 	 * packet compares byte-for-byte to the transmitted packet. */
2377 
2378 	if ((err = e100_rx_alloc_list(nic)))
2379 		return err;
2380 	if ((err = e100_alloc_cbs(nic)))
2381 		goto err_clean_rx;
2382 
2383 	/* ICH PHY loopback is broken so do MAC loopback instead */
2384 	if (nic->flags & ich && loopback_mode == lb_phy)
2385 		loopback_mode = lb_mac;
2386 
2387 	nic->loopback = loopback_mode;
2388 	if ((err = e100_hw_init(nic)))
2389 		goto err_loopback_none;
2390 
2391 	if (loopback_mode == lb_phy)
2392 		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2393 			BMCR_LOOPBACK);
2394 
2395 	e100_start_receiver(nic, NULL);
2396 
2397 	if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2398 		err = -ENOMEM;
2399 		goto err_loopback_none;
2400 	}
2401 	skb_put(skb, ETH_DATA_LEN);
2402 	memset(skb->data, 0xFF, ETH_DATA_LEN);
2403 	e100_xmit_frame(skb, nic->netdev);
2404 
2405 	msleep(10);
2406 
2407 	pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2408 			RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2409 
2410 	if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2411 	   skb->data, ETH_DATA_LEN))
2412 		err = -EAGAIN;
2413 
2414 err_loopback_none:
2415 	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2416 	nic->loopback = lb_none;
2417 	e100_clean_cbs(nic);
2418 	e100_hw_reset(nic);
2419 err_clean_rx:
2420 	e100_rx_clean_list(nic);
2421 	return err;
2422 }
2423 
2424 #define MII_LED_CONTROL	0x1B
2425 #define E100_82552_LED_OVERRIDE 0x19
2426 #define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2427 #define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
2428 
2429 static int e100_get_link_ksettings(struct net_device *netdev,
2430 				   struct ethtool_link_ksettings *cmd)
2431 {
2432 	struct nic *nic = netdev_priv(netdev);
2433 
2434 	mii_ethtool_get_link_ksettings(&nic->mii, cmd);
2435 
2436 	return 0;
2437 }
2438 
2439 static int e100_set_link_ksettings(struct net_device *netdev,
2440 				   const struct ethtool_link_ksettings *cmd)
2441 {
2442 	struct nic *nic = netdev_priv(netdev);
2443 	int err;
2444 
2445 	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2446 	err = mii_ethtool_set_link_ksettings(&nic->mii, cmd);
2447 	e100_exec_cb(nic, NULL, e100_configure);
2448 
2449 	return err;
2450 }
2451 
2452 static void e100_get_drvinfo(struct net_device *netdev,
2453 	struct ethtool_drvinfo *info)
2454 {
2455 	struct nic *nic = netdev_priv(netdev);
2456 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2457 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2458 	strlcpy(info->bus_info, pci_name(nic->pdev),
2459 		sizeof(info->bus_info));
2460 }
2461 
2462 #define E100_PHY_REGS 0x1C
2463 static int e100_get_regs_len(struct net_device *netdev)
2464 {
2465 	struct nic *nic = netdev_priv(netdev);
2466 	return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2467 }
2468 
2469 static void e100_get_regs(struct net_device *netdev,
2470 	struct ethtool_regs *regs, void *p)
2471 {
2472 	struct nic *nic = netdev_priv(netdev);
2473 	u32 *buff = p;
2474 	int i;
2475 
2476 	regs->version = (1 << 24) | nic->pdev->revision;
2477 	buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2478 		ioread8(&nic->csr->scb.cmd_lo) << 16 |
2479 		ioread16(&nic->csr->scb.status);
2480 	for (i = E100_PHY_REGS; i >= 0; i--)
2481 		buff[1 + E100_PHY_REGS - i] =
2482 			mdio_read(netdev, nic->mii.phy_id, i);
2483 	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2484 	e100_exec_cb(nic, NULL, e100_dump);
2485 	msleep(10);
2486 	memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2487 		sizeof(nic->mem->dump_buf));
2488 }
2489 
2490 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2491 {
2492 	struct nic *nic = netdev_priv(netdev);
2493 	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2494 	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2495 }
2496 
2497 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2498 {
2499 	struct nic *nic = netdev_priv(netdev);
2500 
2501 	if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2502 	    !device_can_wakeup(&nic->pdev->dev))
2503 		return -EOPNOTSUPP;
2504 
2505 	if (wol->wolopts)
2506 		nic->flags |= wol_magic;
2507 	else
2508 		nic->flags &= ~wol_magic;
2509 
2510 	device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2511 
2512 	e100_exec_cb(nic, NULL, e100_configure);
2513 
2514 	return 0;
2515 }
2516 
2517 static u32 e100_get_msglevel(struct net_device *netdev)
2518 {
2519 	struct nic *nic = netdev_priv(netdev);
2520 	return nic->msg_enable;
2521 }
2522 
2523 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2524 {
2525 	struct nic *nic = netdev_priv(netdev);
2526 	nic->msg_enable = value;
2527 }
2528 
2529 static int e100_nway_reset(struct net_device *netdev)
2530 {
2531 	struct nic *nic = netdev_priv(netdev);
2532 	return mii_nway_restart(&nic->mii);
2533 }
2534 
2535 static u32 e100_get_link(struct net_device *netdev)
2536 {
2537 	struct nic *nic = netdev_priv(netdev);
2538 	return mii_link_ok(&nic->mii);
2539 }
2540 
2541 static int e100_get_eeprom_len(struct net_device *netdev)
2542 {
2543 	struct nic *nic = netdev_priv(netdev);
2544 	return nic->eeprom_wc << 1;
2545 }
2546 
2547 #define E100_EEPROM_MAGIC	0x1234
2548 static int e100_get_eeprom(struct net_device *netdev,
2549 	struct ethtool_eeprom *eeprom, u8 *bytes)
2550 {
2551 	struct nic *nic = netdev_priv(netdev);
2552 
2553 	eeprom->magic = E100_EEPROM_MAGIC;
2554 	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2555 
2556 	return 0;
2557 }
2558 
2559 static int e100_set_eeprom(struct net_device *netdev,
2560 	struct ethtool_eeprom *eeprom, u8 *bytes)
2561 {
2562 	struct nic *nic = netdev_priv(netdev);
2563 
2564 	if (eeprom->magic != E100_EEPROM_MAGIC)
2565 		return -EINVAL;
2566 
2567 	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2568 
2569 	return e100_eeprom_save(nic, eeprom->offset >> 1,
2570 		(eeprom->len >> 1) + 1);
2571 }
2572 
2573 static void e100_get_ringparam(struct net_device *netdev,
2574 	struct ethtool_ringparam *ring)
2575 {
2576 	struct nic *nic = netdev_priv(netdev);
2577 	struct param_range *rfds = &nic->params.rfds;
2578 	struct param_range *cbs = &nic->params.cbs;
2579 
2580 	ring->rx_max_pending = rfds->max;
2581 	ring->tx_max_pending = cbs->max;
2582 	ring->rx_pending = rfds->count;
2583 	ring->tx_pending = cbs->count;
2584 }
2585 
2586 static int e100_set_ringparam(struct net_device *netdev,
2587 	struct ethtool_ringparam *ring)
2588 {
2589 	struct nic *nic = netdev_priv(netdev);
2590 	struct param_range *rfds = &nic->params.rfds;
2591 	struct param_range *cbs = &nic->params.cbs;
2592 
2593 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2594 		return -EINVAL;
2595 
2596 	if (netif_running(netdev))
2597 		e100_down(nic);
2598 	rfds->count = max(ring->rx_pending, rfds->min);
2599 	rfds->count = min(rfds->count, rfds->max);
2600 	cbs->count = max(ring->tx_pending, cbs->min);
2601 	cbs->count = min(cbs->count, cbs->max);
2602 	netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2603 		   rfds->count, cbs->count);
2604 	if (netif_running(netdev))
2605 		e100_up(nic);
2606 
2607 	return 0;
2608 }
2609 
2610 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2611 	"Link test     (on/offline)",
2612 	"Eeprom test   (on/offline)",
2613 	"Self test        (offline)",
2614 	"Mac loopback     (offline)",
2615 	"Phy loopback     (offline)",
2616 };
2617 #define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test)
2618 
2619 static void e100_diag_test(struct net_device *netdev,
2620 	struct ethtool_test *test, u64 *data)
2621 {
2622 	struct ethtool_cmd cmd;
2623 	struct nic *nic = netdev_priv(netdev);
2624 	int i, err;
2625 
2626 	memset(data, 0, E100_TEST_LEN * sizeof(u64));
2627 	data[0] = !mii_link_ok(&nic->mii);
2628 	data[1] = e100_eeprom_load(nic);
2629 	if (test->flags & ETH_TEST_FL_OFFLINE) {
2630 
2631 		/* save speed, duplex & autoneg settings */
2632 		err = mii_ethtool_gset(&nic->mii, &cmd);
2633 
2634 		if (netif_running(netdev))
2635 			e100_down(nic);
2636 		data[2] = e100_self_test(nic);
2637 		data[3] = e100_loopback_test(nic, lb_mac);
2638 		data[4] = e100_loopback_test(nic, lb_phy);
2639 
2640 		/* restore speed, duplex & autoneg settings */
2641 		err = mii_ethtool_sset(&nic->mii, &cmd);
2642 
2643 		if (netif_running(netdev))
2644 			e100_up(nic);
2645 	}
2646 	for (i = 0; i < E100_TEST_LEN; i++)
2647 		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2648 
2649 	msleep_interruptible(4 * 1000);
2650 }
2651 
2652 static int e100_set_phys_id(struct net_device *netdev,
2653 			    enum ethtool_phys_id_state state)
2654 {
2655 	struct nic *nic = netdev_priv(netdev);
2656 	enum led_state {
2657 		led_on     = 0x01,
2658 		led_off    = 0x04,
2659 		led_on_559 = 0x05,
2660 		led_on_557 = 0x07,
2661 	};
2662 	u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2663 		MII_LED_CONTROL;
2664 	u16 leds = 0;
2665 
2666 	switch (state) {
2667 	case ETHTOOL_ID_ACTIVE:
2668 		return 2;
2669 
2670 	case ETHTOOL_ID_ON:
2671 		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2672 		       (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2673 		break;
2674 
2675 	case ETHTOOL_ID_OFF:
2676 		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2677 		break;
2678 
2679 	case ETHTOOL_ID_INACTIVE:
2680 		break;
2681 	}
2682 
2683 	mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2684 	return 0;
2685 }
2686 
2687 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2688 	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2689 	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2690 	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
2691 	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2692 	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2693 	"tx_heartbeat_errors", "tx_window_errors",
2694 	/* device-specific stats */
2695 	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2696 	"tx_flow_control_pause", "rx_flow_control_pause",
2697 	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2698 	"rx_short_frame_errors", "rx_over_length_errors",
2699 };
2700 #define E100_NET_STATS_LEN	21
2701 #define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats)
2702 
2703 static int e100_get_sset_count(struct net_device *netdev, int sset)
2704 {
2705 	switch (sset) {
2706 	case ETH_SS_TEST:
2707 		return E100_TEST_LEN;
2708 	case ETH_SS_STATS:
2709 		return E100_STATS_LEN;
2710 	default:
2711 		return -EOPNOTSUPP;
2712 	}
2713 }
2714 
2715 static void e100_get_ethtool_stats(struct net_device *netdev,
2716 	struct ethtool_stats *stats, u64 *data)
2717 {
2718 	struct nic *nic = netdev_priv(netdev);
2719 	int i;
2720 
2721 	for (i = 0; i < E100_NET_STATS_LEN; i++)
2722 		data[i] = ((unsigned long *)&netdev->stats)[i];
2723 
2724 	data[i++] = nic->tx_deferred;
2725 	data[i++] = nic->tx_single_collisions;
2726 	data[i++] = nic->tx_multiple_collisions;
2727 	data[i++] = nic->tx_fc_pause;
2728 	data[i++] = nic->rx_fc_pause;
2729 	data[i++] = nic->rx_fc_unsupported;
2730 	data[i++] = nic->tx_tco_frames;
2731 	data[i++] = nic->rx_tco_frames;
2732 	data[i++] = nic->rx_short_frame_errors;
2733 	data[i++] = nic->rx_over_length_errors;
2734 }
2735 
2736 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2737 {
2738 	switch (stringset) {
2739 	case ETH_SS_TEST:
2740 		memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2741 		break;
2742 	case ETH_SS_STATS:
2743 		memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2744 		break;
2745 	}
2746 }
2747 
2748 static const struct ethtool_ops e100_ethtool_ops = {
2749 	.get_drvinfo		= e100_get_drvinfo,
2750 	.get_regs_len		= e100_get_regs_len,
2751 	.get_regs		= e100_get_regs,
2752 	.get_wol		= e100_get_wol,
2753 	.set_wol		= e100_set_wol,
2754 	.get_msglevel		= e100_get_msglevel,
2755 	.set_msglevel		= e100_set_msglevel,
2756 	.nway_reset		= e100_nway_reset,
2757 	.get_link		= e100_get_link,
2758 	.get_eeprom_len		= e100_get_eeprom_len,
2759 	.get_eeprom		= e100_get_eeprom,
2760 	.set_eeprom		= e100_set_eeprom,
2761 	.get_ringparam		= e100_get_ringparam,
2762 	.set_ringparam		= e100_set_ringparam,
2763 	.self_test		= e100_diag_test,
2764 	.get_strings		= e100_get_strings,
2765 	.set_phys_id		= e100_set_phys_id,
2766 	.get_ethtool_stats	= e100_get_ethtool_stats,
2767 	.get_sset_count		= e100_get_sset_count,
2768 	.get_ts_info		= ethtool_op_get_ts_info,
2769 	.get_link_ksettings	= e100_get_link_ksettings,
2770 	.set_link_ksettings	= e100_set_link_ksettings,
2771 };
2772 
2773 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2774 {
2775 	struct nic *nic = netdev_priv(netdev);
2776 
2777 	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2778 }
2779 
2780 static int e100_alloc(struct nic *nic)
2781 {
2782 	nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2783 		&nic->dma_addr);
2784 	return nic->mem ? 0 : -ENOMEM;
2785 }
2786 
2787 static void e100_free(struct nic *nic)
2788 {
2789 	if (nic->mem) {
2790 		pci_free_consistent(nic->pdev, sizeof(struct mem),
2791 			nic->mem, nic->dma_addr);
2792 		nic->mem = NULL;
2793 	}
2794 }
2795 
2796 static int e100_open(struct net_device *netdev)
2797 {
2798 	struct nic *nic = netdev_priv(netdev);
2799 	int err = 0;
2800 
2801 	netif_carrier_off(netdev);
2802 	if ((err = e100_up(nic)))
2803 		netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2804 	return err;
2805 }
2806 
2807 static int e100_close(struct net_device *netdev)
2808 {
2809 	e100_down(netdev_priv(netdev));
2810 	return 0;
2811 }
2812 
2813 static int e100_set_features(struct net_device *netdev,
2814 			     netdev_features_t features)
2815 {
2816 	struct nic *nic = netdev_priv(netdev);
2817 	netdev_features_t changed = features ^ netdev->features;
2818 
2819 	if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2820 		return 0;
2821 
2822 	netdev->features = features;
2823 	e100_exec_cb(nic, NULL, e100_configure);
2824 	return 0;
2825 }
2826 
2827 static const struct net_device_ops e100_netdev_ops = {
2828 	.ndo_open		= e100_open,
2829 	.ndo_stop		= e100_close,
2830 	.ndo_start_xmit		= e100_xmit_frame,
2831 	.ndo_validate_addr	= eth_validate_addr,
2832 	.ndo_set_rx_mode	= e100_set_multicast_list,
2833 	.ndo_set_mac_address	= e100_set_mac_address,
2834 	.ndo_do_ioctl		= e100_do_ioctl,
2835 	.ndo_tx_timeout		= e100_tx_timeout,
2836 #ifdef CONFIG_NET_POLL_CONTROLLER
2837 	.ndo_poll_controller	= e100_netpoll,
2838 #endif
2839 	.ndo_set_features	= e100_set_features,
2840 };
2841 
2842 static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2843 {
2844 	struct net_device *netdev;
2845 	struct nic *nic;
2846 	int err;
2847 
2848 	if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2849 		return -ENOMEM;
2850 
2851 	netdev->hw_features |= NETIF_F_RXFCS;
2852 	netdev->priv_flags |= IFF_SUPP_NOFCS;
2853 	netdev->hw_features |= NETIF_F_RXALL;
2854 
2855 	netdev->netdev_ops = &e100_netdev_ops;
2856 	netdev->ethtool_ops = &e100_ethtool_ops;
2857 	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2858 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2859 
2860 	nic = netdev_priv(netdev);
2861 	netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2862 	nic->netdev = netdev;
2863 	nic->pdev = pdev;
2864 	nic->msg_enable = (1 << debug) - 1;
2865 	nic->mdio_ctrl = mdio_ctrl_hw;
2866 	pci_set_drvdata(pdev, netdev);
2867 
2868 	if ((err = pci_enable_device(pdev))) {
2869 		netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2870 		goto err_out_free_dev;
2871 	}
2872 
2873 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2874 		netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2875 		err = -ENODEV;
2876 		goto err_out_disable_pdev;
2877 	}
2878 
2879 	if ((err = pci_request_regions(pdev, DRV_NAME))) {
2880 		netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2881 		goto err_out_disable_pdev;
2882 	}
2883 
2884 	if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
2885 		netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2886 		goto err_out_free_res;
2887 	}
2888 
2889 	SET_NETDEV_DEV(netdev, &pdev->dev);
2890 
2891 	if (use_io)
2892 		netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2893 
2894 	nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2895 	if (!nic->csr) {
2896 		netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2897 		err = -ENOMEM;
2898 		goto err_out_free_res;
2899 	}
2900 
2901 	if (ent->driver_data)
2902 		nic->flags |= ich;
2903 	else
2904 		nic->flags &= ~ich;
2905 
2906 	e100_get_defaults(nic);
2907 
2908 	/* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2909 	if (nic->mac < mac_82558_D101_A4)
2910 		netdev->features |= NETIF_F_VLAN_CHALLENGED;
2911 
2912 	/* locks must be initialized before calling hw_reset */
2913 	spin_lock_init(&nic->cb_lock);
2914 	spin_lock_init(&nic->cmd_lock);
2915 	spin_lock_init(&nic->mdio_lock);
2916 
2917 	/* Reset the device before pci_set_master() in case device is in some
2918 	 * funky state and has an interrupt pending - hint: we don't have the
2919 	 * interrupt handler registered yet. */
2920 	e100_hw_reset(nic);
2921 
2922 	pci_set_master(pdev);
2923 
2924 	timer_setup(&nic->watchdog, e100_watchdog, 0);
2925 
2926 	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2927 
2928 	if ((err = e100_alloc(nic))) {
2929 		netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2930 		goto err_out_iounmap;
2931 	}
2932 
2933 	if ((err = e100_eeprom_load(nic)))
2934 		goto err_out_free;
2935 
2936 	e100_phy_init(nic);
2937 
2938 	memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2939 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2940 		if (!eeprom_bad_csum_allow) {
2941 			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2942 			err = -EAGAIN;
2943 			goto err_out_free;
2944 		} else {
2945 			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2946 		}
2947 	}
2948 
2949 	/* Wol magic packet can be enabled from eeprom */
2950 	if ((nic->mac >= mac_82558_D101_A4) &&
2951 	   (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
2952 		nic->flags |= wol_magic;
2953 		device_set_wakeup_enable(&pdev->dev, true);
2954 	}
2955 
2956 	/* ack any pending wake events, disable PME */
2957 	pci_pme_active(pdev, false);
2958 
2959 	strcpy(netdev->name, "eth%d");
2960 	if ((err = register_netdev(netdev))) {
2961 		netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2962 		goto err_out_free;
2963 	}
2964 	nic->cbs_pool = dma_pool_create(netdev->name,
2965 			   &nic->pdev->dev,
2966 			   nic->params.cbs.max * sizeof(struct cb),
2967 			   sizeof(u32),
2968 			   0);
2969 	if (!nic->cbs_pool) {
2970 		netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n");
2971 		err = -ENOMEM;
2972 		goto err_out_pool;
2973 	}
2974 	netif_info(nic, probe, nic->netdev,
2975 		   "addr 0x%llx, irq %d, MAC addr %pM\n",
2976 		   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2977 		   pdev->irq, netdev->dev_addr);
2978 
2979 	return 0;
2980 
2981 err_out_pool:
2982 	unregister_netdev(netdev);
2983 err_out_free:
2984 	e100_free(nic);
2985 err_out_iounmap:
2986 	pci_iounmap(pdev, nic->csr);
2987 err_out_free_res:
2988 	pci_release_regions(pdev);
2989 err_out_disable_pdev:
2990 	pci_disable_device(pdev);
2991 err_out_free_dev:
2992 	free_netdev(netdev);
2993 	return err;
2994 }
2995 
2996 static void e100_remove(struct pci_dev *pdev)
2997 {
2998 	struct net_device *netdev = pci_get_drvdata(pdev);
2999 
3000 	if (netdev) {
3001 		struct nic *nic = netdev_priv(netdev);
3002 		unregister_netdev(netdev);
3003 		e100_free(nic);
3004 		pci_iounmap(pdev, nic->csr);
3005 		dma_pool_destroy(nic->cbs_pool);
3006 		free_netdev(netdev);
3007 		pci_release_regions(pdev);
3008 		pci_disable_device(pdev);
3009 	}
3010 }
3011 
3012 #define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
3013 #define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
3014 #define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
3015 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
3016 {
3017 	struct net_device *netdev = pci_get_drvdata(pdev);
3018 	struct nic *nic = netdev_priv(netdev);
3019 
3020 	if (netif_running(netdev))
3021 		e100_down(nic);
3022 	netif_device_detach(netdev);
3023 
3024 	pci_save_state(pdev);
3025 
3026 	if ((nic->flags & wol_magic) | e100_asf(nic)) {
3027 		/* enable reverse auto-negotiation */
3028 		if (nic->phy == phy_82552_v) {
3029 			u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3030 			                           E100_82552_SMARTSPEED);
3031 
3032 			mdio_write(netdev, nic->mii.phy_id,
3033 			           E100_82552_SMARTSPEED, smartspeed |
3034 			           E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3035 		}
3036 		*enable_wake = true;
3037 	} else {
3038 		*enable_wake = false;
3039 	}
3040 
3041 	pci_clear_master(pdev);
3042 }
3043 
3044 static int __e100_power_off(struct pci_dev *pdev, bool wake)
3045 {
3046 	if (wake)
3047 		return pci_prepare_to_sleep(pdev);
3048 
3049 	pci_wake_from_d3(pdev, false);
3050 	pci_set_power_state(pdev, PCI_D3hot);
3051 
3052 	return 0;
3053 }
3054 
3055 #ifdef CONFIG_PM
3056 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
3057 {
3058 	bool wake;
3059 	__e100_shutdown(pdev, &wake);
3060 	return __e100_power_off(pdev, wake);
3061 }
3062 
3063 static int e100_resume(struct pci_dev *pdev)
3064 {
3065 	struct net_device *netdev = pci_get_drvdata(pdev);
3066 	struct nic *nic = netdev_priv(netdev);
3067 
3068 	pci_set_power_state(pdev, PCI_D0);
3069 	pci_restore_state(pdev);
3070 	/* ack any pending wake events, disable PME */
3071 	pci_enable_wake(pdev, PCI_D0, 0);
3072 
3073 	/* disable reverse auto-negotiation */
3074 	if (nic->phy == phy_82552_v) {
3075 		u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3076 		                           E100_82552_SMARTSPEED);
3077 
3078 		mdio_write(netdev, nic->mii.phy_id,
3079 		           E100_82552_SMARTSPEED,
3080 		           smartspeed & ~(E100_82552_REV_ANEG));
3081 	}
3082 
3083 	netif_device_attach(netdev);
3084 	if (netif_running(netdev))
3085 		e100_up(nic);
3086 
3087 	return 0;
3088 }
3089 #endif /* CONFIG_PM */
3090 
3091 static void e100_shutdown(struct pci_dev *pdev)
3092 {
3093 	bool wake;
3094 	__e100_shutdown(pdev, &wake);
3095 	if (system_state == SYSTEM_POWER_OFF)
3096 		__e100_power_off(pdev, wake);
3097 }
3098 
3099 /* ------------------ PCI Error Recovery infrastructure  -------------- */
3100 /**
3101  * e100_io_error_detected - called when PCI error is detected.
3102  * @pdev: Pointer to PCI device
3103  * @state: The current pci connection state
3104  */
3105 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3106 {
3107 	struct net_device *netdev = pci_get_drvdata(pdev);
3108 	struct nic *nic = netdev_priv(netdev);
3109 
3110 	netif_device_detach(netdev);
3111 
3112 	if (state == pci_channel_io_perm_failure)
3113 		return PCI_ERS_RESULT_DISCONNECT;
3114 
3115 	if (netif_running(netdev))
3116 		e100_down(nic);
3117 	pci_disable_device(pdev);
3118 
3119 	/* Request a slot reset. */
3120 	return PCI_ERS_RESULT_NEED_RESET;
3121 }
3122 
3123 /**
3124  * e100_io_slot_reset - called after the pci bus has been reset.
3125  * @pdev: Pointer to PCI device
3126  *
3127  * Restart the card from scratch.
3128  */
3129 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3130 {
3131 	struct net_device *netdev = pci_get_drvdata(pdev);
3132 	struct nic *nic = netdev_priv(netdev);
3133 
3134 	if (pci_enable_device(pdev)) {
3135 		pr_err("Cannot re-enable PCI device after reset\n");
3136 		return PCI_ERS_RESULT_DISCONNECT;
3137 	}
3138 	pci_set_master(pdev);
3139 
3140 	/* Only one device per card can do a reset */
3141 	if (0 != PCI_FUNC(pdev->devfn))
3142 		return PCI_ERS_RESULT_RECOVERED;
3143 	e100_hw_reset(nic);
3144 	e100_phy_init(nic);
3145 
3146 	return PCI_ERS_RESULT_RECOVERED;
3147 }
3148 
3149 /**
3150  * e100_io_resume - resume normal operations
3151  * @pdev: Pointer to PCI device
3152  *
3153  * Resume normal operations after an error recovery
3154  * sequence has been completed.
3155  */
3156 static void e100_io_resume(struct pci_dev *pdev)
3157 {
3158 	struct net_device *netdev = pci_get_drvdata(pdev);
3159 	struct nic *nic = netdev_priv(netdev);
3160 
3161 	/* ack any pending wake events, disable PME */
3162 	pci_enable_wake(pdev, PCI_D0, 0);
3163 
3164 	netif_device_attach(netdev);
3165 	if (netif_running(netdev)) {
3166 		e100_open(netdev);
3167 		mod_timer(&nic->watchdog, jiffies);
3168 	}
3169 }
3170 
3171 static const struct pci_error_handlers e100_err_handler = {
3172 	.error_detected = e100_io_error_detected,
3173 	.slot_reset = e100_io_slot_reset,
3174 	.resume = e100_io_resume,
3175 };
3176 
3177 static struct pci_driver e100_driver = {
3178 	.name =         DRV_NAME,
3179 	.id_table =     e100_id_table,
3180 	.probe =        e100_probe,
3181 	.remove =       e100_remove,
3182 #ifdef CONFIG_PM
3183 	/* Power Management hooks */
3184 	.suspend =      e100_suspend,
3185 	.resume =       e100_resume,
3186 #endif
3187 	.shutdown =     e100_shutdown,
3188 	.err_handler = &e100_err_handler,
3189 };
3190 
3191 static int __init e100_init_module(void)
3192 {
3193 	if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3194 		pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
3195 		pr_info("%s\n", DRV_COPYRIGHT);
3196 	}
3197 	return pci_register_driver(&e100_driver);
3198 }
3199 
3200 static void __exit e100_cleanup_module(void)
3201 {
3202 	pci_unregister_driver(&e100_driver);
3203 }
3204 
3205 module_init(e100_init_module);
3206 module_exit(e100_cleanup_module);
3207