1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2006 Intel Corporation. */ 3 4 /* 5 * e100.c: Intel(R) PRO/100 ethernet driver 6 * 7 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on 8 * original e100 driver, but better described as a munging of 9 * e100, e1000, eepro100, tg3, 8139cp, and other drivers. 10 * 11 * References: 12 * Intel 8255x 10/100 Mbps Ethernet Controller Family, 13 * Open Source Software Developers Manual, 14 * http://sourceforge.net/projects/e1000 15 * 16 * 17 * Theory of Operation 18 * 19 * I. General 20 * 21 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet 22 * controller family, which includes the 82557, 82558, 82559, 82550, 23 * 82551, and 82562 devices. 82558 and greater controllers 24 * integrate the Intel 82555 PHY. The controllers are used in 25 * server and client network interface cards, as well as in 26 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx 27 * configurations. 8255x supports a 32-bit linear addressing 28 * mode and operates at 33Mhz PCI clock rate. 29 * 30 * II. Driver Operation 31 * 32 * Memory-mapped mode is used exclusively to access the device's 33 * shared-memory structure, the Control/Status Registers (CSR). All 34 * setup, configuration, and control of the device, including queuing 35 * of Tx, Rx, and configuration commands is through the CSR. 36 * cmd_lock serializes accesses to the CSR command register. cb_lock 37 * protects the shared Command Block List (CBL). 38 * 39 * 8255x is highly MII-compliant and all access to the PHY go 40 * through the Management Data Interface (MDI). Consequently, the 41 * driver leverages the mii.c library shared with other MII-compliant 42 * devices. 43 * 44 * Big- and Little-Endian byte order as well as 32- and 64-bit 45 * archs are supported. Weak-ordered memory and non-cache-coherent 46 * archs are supported. 47 * 48 * III. Transmit 49 * 50 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked 51 * together in a fixed-size ring (CBL) thus forming the flexible mode 52 * memory structure. A TCB marked with the suspend-bit indicates 53 * the end of the ring. The last TCB processed suspends the 54 * controller, and the controller can be restarted by issue a CU 55 * resume command to continue from the suspend point, or a CU start 56 * command to start at a given position in the ring. 57 * 58 * Non-Tx commands (config, multicast setup, etc) are linked 59 * into the CBL ring along with Tx commands. The common structure 60 * used for both Tx and non-Tx commands is the Command Block (CB). 61 * 62 * cb_to_use is the next CB to use for queuing a command; cb_to_clean 63 * is the next CB to check for completion; cb_to_send is the first 64 * CB to start on in case of a previous failure to resume. CB clean 65 * up happens in interrupt context in response to a CU interrupt. 66 * cbs_avail keeps track of number of free CB resources available. 67 * 68 * Hardware padding of short packets to minimum packet size is 69 * enabled. 82557 pads with 7Eh, while the later controllers pad 70 * with 00h. 71 * 72 * IV. Receive 73 * 74 * The Receive Frame Area (RFA) comprises a ring of Receive Frame 75 * Descriptors (RFD) + data buffer, thus forming the simplified mode 76 * memory structure. Rx skbs are allocated to contain both the RFD 77 * and the data buffer, but the RFD is pulled off before the skb is 78 * indicated. The data buffer is aligned such that encapsulated 79 * protocol headers are u32-aligned. Since the RFD is part of the 80 * mapped shared memory, and completion status is contained within 81 * the RFD, the RFD must be dma_sync'ed to maintain a consistent 82 * view from software and hardware. 83 * 84 * In order to keep updates to the RFD link field from colliding with 85 * hardware writes to mark packets complete, we use the feature that 86 * hardware will not write to a size 0 descriptor and mark the previous 87 * packet as end-of-list (EL). After updating the link, we remove EL 88 * and only then restore the size such that hardware may use the 89 * previous-to-end RFD. 90 * 91 * Under typical operation, the receive unit (RU) is start once, 92 * and the controller happily fills RFDs as frames arrive. If 93 * replacement RFDs cannot be allocated, or the RU goes non-active, 94 * the RU must be restarted. Frame arrival generates an interrupt, 95 * and Rx indication and re-allocation happen in the same context, 96 * therefore no locking is required. A software-generated interrupt 97 * is generated from the watchdog to recover from a failed allocation 98 * scenario where all Rx resources have been indicated and none re- 99 * placed. 100 * 101 * V. Miscellaneous 102 * 103 * VLAN offloading of tagging, stripping and filtering is not 104 * supported, but driver will accommodate the extra 4-byte VLAN tag 105 * for processing by upper layers. Tx/Rx Checksum offloading is not 106 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is 107 * not supported (hardware limitation). 108 * 109 * MagicPacket(tm) WoL support is enabled/disabled via ethtool. 110 * 111 * Thanks to JC (jchapman@katalix.com) for helping with 112 * testing/troubleshooting the development driver. 113 * 114 * TODO: 115 * o several entry points race with dev->close 116 * o check for tx-no-resources/stop Q races with tx clean/wake Q 117 * 118 * FIXES: 119 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com> 120 * - Stratus87247: protect MDI control register manipulations 121 * 2009/06/01 - Andreas Mohr <andi at lisas dot de> 122 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs 123 */ 124 125 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 126 127 #include <linux/hardirq.h> 128 #include <linux/interrupt.h> 129 #include <linux/module.h> 130 #include <linux/moduleparam.h> 131 #include <linux/kernel.h> 132 #include <linux/types.h> 133 #include <linux/sched.h> 134 #include <linux/slab.h> 135 #include <linux/delay.h> 136 #include <linux/init.h> 137 #include <linux/pci.h> 138 #include <linux/dma-mapping.h> 139 #include <linux/dmapool.h> 140 #include <linux/netdevice.h> 141 #include <linux/etherdevice.h> 142 #include <linux/mii.h> 143 #include <linux/if_vlan.h> 144 #include <linux/skbuff.h> 145 #include <linux/ethtool.h> 146 #include <linux/string.h> 147 #include <linux/firmware.h> 148 #include <linux/rtnetlink.h> 149 #include <asm/unaligned.h> 150 151 152 #define DRV_NAME "e100" 153 #define DRV_EXT "-NAPI" 154 #define DRV_VERSION "3.5.24-k2"DRV_EXT 155 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" 156 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation" 157 158 #define E100_WATCHDOG_PERIOD (2 * HZ) 159 #define E100_NAPI_WEIGHT 16 160 161 #define FIRMWARE_D101M "e100/d101m_ucode.bin" 162 #define FIRMWARE_D101S "e100/d101s_ucode.bin" 163 #define FIRMWARE_D102E "e100/d102e_ucode.bin" 164 165 MODULE_DESCRIPTION(DRV_DESCRIPTION); 166 MODULE_AUTHOR(DRV_COPYRIGHT); 167 MODULE_LICENSE("GPL v2"); 168 MODULE_VERSION(DRV_VERSION); 169 MODULE_FIRMWARE(FIRMWARE_D101M); 170 MODULE_FIRMWARE(FIRMWARE_D101S); 171 MODULE_FIRMWARE(FIRMWARE_D102E); 172 173 static int debug = 3; 174 static int eeprom_bad_csum_allow = 0; 175 static int use_io = 0; 176 module_param(debug, int, 0); 177 module_param(eeprom_bad_csum_allow, int, 0); 178 module_param(use_io, int, 0); 179 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 180 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums"); 181 MODULE_PARM_DESC(use_io, "Force use of i/o access mode"); 182 183 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ 184 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ 185 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } 186 static const struct pci_device_id e100_id_table[] = { 187 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), 188 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), 189 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), 190 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), 191 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), 192 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), 193 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), 194 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), 195 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), 196 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), 197 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), 198 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), 199 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), 200 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), 201 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), 202 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), 203 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), 204 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), 205 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), 206 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), 207 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), 208 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), 209 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), 210 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), 211 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), 212 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), 213 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), 214 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), 215 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), 216 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), 217 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), 218 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), 219 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), 220 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), 221 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), 222 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7), 223 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), 224 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), 225 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), 226 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), 227 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), 228 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), 229 { 0, } 230 }; 231 MODULE_DEVICE_TABLE(pci, e100_id_table); 232 233 enum mac { 234 mac_82557_D100_A = 0, 235 mac_82557_D100_B = 1, 236 mac_82557_D100_C = 2, 237 mac_82558_D101_A4 = 4, 238 mac_82558_D101_B0 = 5, 239 mac_82559_D101M = 8, 240 mac_82559_D101S = 9, 241 mac_82550_D102 = 12, 242 mac_82550_D102_C = 13, 243 mac_82551_E = 14, 244 mac_82551_F = 15, 245 mac_82551_10 = 16, 246 mac_unknown = 0xFF, 247 }; 248 249 enum phy { 250 phy_100a = 0x000003E0, 251 phy_100c = 0x035002A8, 252 phy_82555_tx = 0x015002A8, 253 phy_nsc_tx = 0x5C002000, 254 phy_82562_et = 0x033002A8, 255 phy_82562_em = 0x032002A8, 256 phy_82562_ek = 0x031002A8, 257 phy_82562_eh = 0x017002A8, 258 phy_82552_v = 0xd061004d, 259 phy_unknown = 0xFFFFFFFF, 260 }; 261 262 /* CSR (Control/Status Registers) */ 263 struct csr { 264 struct { 265 u8 status; 266 u8 stat_ack; 267 u8 cmd_lo; 268 u8 cmd_hi; 269 u32 gen_ptr; 270 } scb; 271 u32 port; 272 u16 flash_ctrl; 273 u8 eeprom_ctrl_lo; 274 u8 eeprom_ctrl_hi; 275 u32 mdi_ctrl; 276 u32 rx_dma_count; 277 }; 278 279 enum scb_status { 280 rus_no_res = 0x08, 281 rus_ready = 0x10, 282 rus_mask = 0x3C, 283 }; 284 285 enum ru_state { 286 RU_SUSPENDED = 0, 287 RU_RUNNING = 1, 288 RU_UNINITIALIZED = -1, 289 }; 290 291 enum scb_stat_ack { 292 stat_ack_not_ours = 0x00, 293 stat_ack_sw_gen = 0x04, 294 stat_ack_rnr = 0x10, 295 stat_ack_cu_idle = 0x20, 296 stat_ack_frame_rx = 0x40, 297 stat_ack_cu_cmd_done = 0x80, 298 stat_ack_not_present = 0xFF, 299 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), 300 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), 301 }; 302 303 enum scb_cmd_hi { 304 irq_mask_none = 0x00, 305 irq_mask_all = 0x01, 306 irq_sw_gen = 0x02, 307 }; 308 309 enum scb_cmd_lo { 310 cuc_nop = 0x00, 311 ruc_start = 0x01, 312 ruc_load_base = 0x06, 313 cuc_start = 0x10, 314 cuc_resume = 0x20, 315 cuc_dump_addr = 0x40, 316 cuc_dump_stats = 0x50, 317 cuc_load_base = 0x60, 318 cuc_dump_reset = 0x70, 319 }; 320 321 enum cuc_dump { 322 cuc_dump_complete = 0x0000A005, 323 cuc_dump_reset_complete = 0x0000A007, 324 }; 325 326 enum port { 327 software_reset = 0x0000, 328 selftest = 0x0001, 329 selective_reset = 0x0002, 330 }; 331 332 enum eeprom_ctrl_lo { 333 eesk = 0x01, 334 eecs = 0x02, 335 eedi = 0x04, 336 eedo = 0x08, 337 }; 338 339 enum mdi_ctrl { 340 mdi_write = 0x04000000, 341 mdi_read = 0x08000000, 342 mdi_ready = 0x10000000, 343 }; 344 345 enum eeprom_op { 346 op_write = 0x05, 347 op_read = 0x06, 348 op_ewds = 0x10, 349 op_ewen = 0x13, 350 }; 351 352 enum eeprom_offsets { 353 eeprom_cnfg_mdix = 0x03, 354 eeprom_phy_iface = 0x06, 355 eeprom_id = 0x0A, 356 eeprom_config_asf = 0x0D, 357 eeprom_smbus_addr = 0x90, 358 }; 359 360 enum eeprom_cnfg_mdix { 361 eeprom_mdix_enabled = 0x0080, 362 }; 363 364 enum eeprom_phy_iface { 365 NoSuchPhy = 0, 366 I82553AB, 367 I82553C, 368 I82503, 369 DP83840, 370 S80C240, 371 S80C24, 372 I82555, 373 DP83840A = 10, 374 }; 375 376 enum eeprom_id { 377 eeprom_id_wol = 0x0020, 378 }; 379 380 enum eeprom_config_asf { 381 eeprom_asf = 0x8000, 382 eeprom_gcl = 0x4000, 383 }; 384 385 enum cb_status { 386 cb_complete = 0x8000, 387 cb_ok = 0x2000, 388 }; 389 390 /** 391 * cb_command - Command Block flags 392 * @cb_tx_nc: 0: controller does CRC (normal), 1: CRC from skb memory 393 */ 394 enum cb_command { 395 cb_nop = 0x0000, 396 cb_iaaddr = 0x0001, 397 cb_config = 0x0002, 398 cb_multi = 0x0003, 399 cb_tx = 0x0004, 400 cb_ucode = 0x0005, 401 cb_dump = 0x0006, 402 cb_tx_sf = 0x0008, 403 cb_tx_nc = 0x0010, 404 cb_cid = 0x1f00, 405 cb_i = 0x2000, 406 cb_s = 0x4000, 407 cb_el = 0x8000, 408 }; 409 410 struct rfd { 411 __le16 status; 412 __le16 command; 413 __le32 link; 414 __le32 rbd; 415 __le16 actual_size; 416 __le16 size; 417 }; 418 419 struct rx { 420 struct rx *next, *prev; 421 struct sk_buff *skb; 422 dma_addr_t dma_addr; 423 }; 424 425 #if defined(__BIG_ENDIAN_BITFIELD) 426 #define X(a,b) b,a 427 #else 428 #define X(a,b) a,b 429 #endif 430 struct config { 431 /*0*/ u8 X(byte_count:6, pad0:2); 432 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); 433 /*2*/ u8 adaptive_ifs; 434 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), 435 term_write_cache_line:1), pad3:4); 436 /*4*/ u8 X(rx_dma_max_count:7, pad4:1); 437 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); 438 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), 439 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), 440 rx_save_overruns : 1), rx_save_bad_frames : 1); 441 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), 442 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), 443 tx_dynamic_tbd:1); 444 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); 445 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), 446 link_status_wake:1), arp_wake:1), mcmatch_wake:1); 447 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), 448 loopback:2); 449 /*11*/ u8 X(linear_priority:3, pad11:5); 450 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); 451 /*13*/ u8 ip_addr_lo; 452 /*14*/ u8 ip_addr_hi; 453 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), 454 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), 455 pad15_2:1), crs_or_cdt:1); 456 /*16*/ u8 fc_delay_lo; 457 /*17*/ u8 fc_delay_hi; 458 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), 459 rx_long_ok:1), fc_priority_threshold:3), pad18:1); 460 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), 461 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), 462 full_duplex_force:1), full_duplex_pin:1); 463 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); 464 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); 465 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); 466 u8 pad_d102[9]; 467 }; 468 469 #define E100_MAX_MULTICAST_ADDRS 64 470 struct multi { 471 __le16 count; 472 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; 473 }; 474 475 /* Important: keep total struct u32-aligned */ 476 #define UCODE_SIZE 134 477 struct cb { 478 __le16 status; 479 __le16 command; 480 __le32 link; 481 union { 482 u8 iaaddr[ETH_ALEN]; 483 __le32 ucode[UCODE_SIZE]; 484 struct config config; 485 struct multi multi; 486 struct { 487 u32 tbd_array; 488 u16 tcb_byte_count; 489 u8 threshold; 490 u8 tbd_count; 491 struct { 492 __le32 buf_addr; 493 __le16 size; 494 u16 eol; 495 } tbd; 496 } tcb; 497 __le32 dump_buffer_addr; 498 } u; 499 struct cb *next, *prev; 500 dma_addr_t dma_addr; 501 struct sk_buff *skb; 502 }; 503 504 enum loopback { 505 lb_none = 0, lb_mac = 1, lb_phy = 3, 506 }; 507 508 struct stats { 509 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions, 510 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, 511 tx_multiple_collisions, tx_total_collisions; 512 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors, 513 rx_resource_errors, rx_overrun_errors, rx_cdt_errors, 514 rx_short_frame_errors; 515 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; 516 __le16 xmt_tco_frames, rcv_tco_frames; 517 __le32 complete; 518 }; 519 520 struct mem { 521 struct { 522 u32 signature; 523 u32 result; 524 } selftest; 525 struct stats stats; 526 u8 dump_buf[596]; 527 }; 528 529 struct param_range { 530 u32 min; 531 u32 max; 532 u32 count; 533 }; 534 535 struct params { 536 struct param_range rfds; 537 struct param_range cbs; 538 }; 539 540 struct nic { 541 /* Begin: frequently used values: keep adjacent for cache effect */ 542 u32 msg_enable ____cacheline_aligned; 543 struct net_device *netdev; 544 struct pci_dev *pdev; 545 u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data); 546 547 struct rx *rxs ____cacheline_aligned; 548 struct rx *rx_to_use; 549 struct rx *rx_to_clean; 550 struct rfd blank_rfd; 551 enum ru_state ru_running; 552 553 spinlock_t cb_lock ____cacheline_aligned; 554 spinlock_t cmd_lock; 555 struct csr __iomem *csr; 556 enum scb_cmd_lo cuc_cmd; 557 unsigned int cbs_avail; 558 struct napi_struct napi; 559 struct cb *cbs; 560 struct cb *cb_to_use; 561 struct cb *cb_to_send; 562 struct cb *cb_to_clean; 563 __le16 tx_command; 564 /* End: frequently used values: keep adjacent for cache effect */ 565 566 enum { 567 ich = (1 << 0), 568 promiscuous = (1 << 1), 569 multicast_all = (1 << 2), 570 wol_magic = (1 << 3), 571 ich_10h_workaround = (1 << 4), 572 } flags ____cacheline_aligned; 573 574 enum mac mac; 575 enum phy phy; 576 struct params params; 577 struct timer_list watchdog; 578 struct mii_if_info mii; 579 struct work_struct tx_timeout_task; 580 enum loopback loopback; 581 582 struct mem *mem; 583 dma_addr_t dma_addr; 584 585 struct dma_pool *cbs_pool; 586 dma_addr_t cbs_dma_addr; 587 u8 adaptive_ifs; 588 u8 tx_threshold; 589 u32 tx_frames; 590 u32 tx_collisions; 591 u32 tx_deferred; 592 u32 tx_single_collisions; 593 u32 tx_multiple_collisions; 594 u32 tx_fc_pause; 595 u32 tx_tco_frames; 596 597 u32 rx_fc_pause; 598 u32 rx_fc_unsupported; 599 u32 rx_tco_frames; 600 u32 rx_short_frame_errors; 601 u32 rx_over_length_errors; 602 603 u16 eeprom_wc; 604 __le16 eeprom[256]; 605 spinlock_t mdio_lock; 606 const struct firmware *fw; 607 }; 608 609 static inline void e100_write_flush(struct nic *nic) 610 { 611 /* Flush previous PCI writes through intermediate bridges 612 * by doing a benign read */ 613 (void)ioread8(&nic->csr->scb.status); 614 } 615 616 static void e100_enable_irq(struct nic *nic) 617 { 618 unsigned long flags; 619 620 spin_lock_irqsave(&nic->cmd_lock, flags); 621 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi); 622 e100_write_flush(nic); 623 spin_unlock_irqrestore(&nic->cmd_lock, flags); 624 } 625 626 static void e100_disable_irq(struct nic *nic) 627 { 628 unsigned long flags; 629 630 spin_lock_irqsave(&nic->cmd_lock, flags); 631 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi); 632 e100_write_flush(nic); 633 spin_unlock_irqrestore(&nic->cmd_lock, flags); 634 } 635 636 static void e100_hw_reset(struct nic *nic) 637 { 638 /* Put CU and RU into idle with a selective reset to get 639 * device off of PCI bus */ 640 iowrite32(selective_reset, &nic->csr->port); 641 e100_write_flush(nic); udelay(20); 642 643 /* Now fully reset device */ 644 iowrite32(software_reset, &nic->csr->port); 645 e100_write_flush(nic); udelay(20); 646 647 /* Mask off our interrupt line - it's unmasked after reset */ 648 e100_disable_irq(nic); 649 } 650 651 static int e100_self_test(struct nic *nic) 652 { 653 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); 654 655 /* Passing the self-test is a pretty good indication 656 * that the device can DMA to/from host memory */ 657 658 nic->mem->selftest.signature = 0; 659 nic->mem->selftest.result = 0xFFFFFFFF; 660 661 iowrite32(selftest | dma_addr, &nic->csr->port); 662 e100_write_flush(nic); 663 /* Wait 10 msec for self-test to complete */ 664 msleep(10); 665 666 /* Interrupts are enabled after self-test */ 667 e100_disable_irq(nic); 668 669 /* Check results of self-test */ 670 if (nic->mem->selftest.result != 0) { 671 netif_err(nic, hw, nic->netdev, 672 "Self-test failed: result=0x%08X\n", 673 nic->mem->selftest.result); 674 return -ETIMEDOUT; 675 } 676 if (nic->mem->selftest.signature == 0) { 677 netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n"); 678 return -ETIMEDOUT; 679 } 680 681 return 0; 682 } 683 684 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data) 685 { 686 u32 cmd_addr_data[3]; 687 u8 ctrl; 688 int i, j; 689 690 /* Three cmds: write/erase enable, write data, write/erase disable */ 691 cmd_addr_data[0] = op_ewen << (addr_len - 2); 692 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | 693 le16_to_cpu(data); 694 cmd_addr_data[2] = op_ewds << (addr_len - 2); 695 696 /* Bit-bang cmds to write word to eeprom */ 697 for (j = 0; j < 3; j++) { 698 699 /* Chip select */ 700 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 701 e100_write_flush(nic); udelay(4); 702 703 for (i = 31; i >= 0; i--) { 704 ctrl = (cmd_addr_data[j] & (1 << i)) ? 705 eecs | eedi : eecs; 706 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); 707 e100_write_flush(nic); udelay(4); 708 709 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 710 e100_write_flush(nic); udelay(4); 711 } 712 /* Wait 10 msec for cmd to complete */ 713 msleep(10); 714 715 /* Chip deselect */ 716 iowrite8(0, &nic->csr->eeprom_ctrl_lo); 717 e100_write_flush(nic); udelay(4); 718 } 719 }; 720 721 /* General technique stolen from the eepro100 driver - very clever */ 722 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) 723 { 724 u32 cmd_addr_data; 725 u16 data = 0; 726 u8 ctrl; 727 int i; 728 729 cmd_addr_data = ((op_read << *addr_len) | addr) << 16; 730 731 /* Chip select */ 732 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 733 e100_write_flush(nic); udelay(4); 734 735 /* Bit-bang to read word from eeprom */ 736 for (i = 31; i >= 0; i--) { 737 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; 738 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); 739 e100_write_flush(nic); udelay(4); 740 741 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 742 e100_write_flush(nic); udelay(4); 743 744 /* Eeprom drives a dummy zero to EEDO after receiving 745 * complete address. Use this to adjust addr_len. */ 746 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo); 747 if (!(ctrl & eedo) && i > 16) { 748 *addr_len -= (i - 16); 749 i = 17; 750 } 751 752 data = (data << 1) | (ctrl & eedo ? 1 : 0); 753 } 754 755 /* Chip deselect */ 756 iowrite8(0, &nic->csr->eeprom_ctrl_lo); 757 e100_write_flush(nic); udelay(4); 758 759 return cpu_to_le16(data); 760 }; 761 762 /* Load entire EEPROM image into driver cache and validate checksum */ 763 static int e100_eeprom_load(struct nic *nic) 764 { 765 u16 addr, addr_len = 8, checksum = 0; 766 767 /* Try reading with an 8-bit addr len to discover actual addr len */ 768 e100_eeprom_read(nic, &addr_len, 0); 769 nic->eeprom_wc = 1 << addr_len; 770 771 for (addr = 0; addr < nic->eeprom_wc; addr++) { 772 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); 773 if (addr < nic->eeprom_wc - 1) 774 checksum += le16_to_cpu(nic->eeprom[addr]); 775 } 776 777 /* The checksum, stored in the last word, is calculated such that 778 * the sum of words should be 0xBABA */ 779 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) { 780 netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n"); 781 if (!eeprom_bad_csum_allow) 782 return -EAGAIN; 783 } 784 785 return 0; 786 } 787 788 /* Save (portion of) driver EEPROM cache to device and update checksum */ 789 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) 790 { 791 u16 addr, addr_len = 8, checksum = 0; 792 793 /* Try reading with an 8-bit addr len to discover actual addr len */ 794 e100_eeprom_read(nic, &addr_len, 0); 795 nic->eeprom_wc = 1 << addr_len; 796 797 if (start + count >= nic->eeprom_wc) 798 return -EINVAL; 799 800 for (addr = start; addr < start + count; addr++) 801 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); 802 803 /* The checksum, stored in the last word, is calculated such that 804 * the sum of words should be 0xBABA */ 805 for (addr = 0; addr < nic->eeprom_wc - 1; addr++) 806 checksum += le16_to_cpu(nic->eeprom[addr]); 807 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum); 808 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, 809 nic->eeprom[nic->eeprom_wc - 1]); 810 811 return 0; 812 } 813 814 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ 815 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */ 816 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) 817 { 818 unsigned long flags; 819 unsigned int i; 820 int err = 0; 821 822 spin_lock_irqsave(&nic->cmd_lock, flags); 823 824 /* Previous command is accepted when SCB clears */ 825 for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { 826 if (likely(!ioread8(&nic->csr->scb.cmd_lo))) 827 break; 828 cpu_relax(); 829 if (unlikely(i > E100_WAIT_SCB_FAST)) 830 udelay(5); 831 } 832 if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) { 833 err = -EAGAIN; 834 goto err_unlock; 835 } 836 837 if (unlikely(cmd != cuc_resume)) 838 iowrite32(dma_addr, &nic->csr->scb.gen_ptr); 839 iowrite8(cmd, &nic->csr->scb.cmd_lo); 840 841 err_unlock: 842 spin_unlock_irqrestore(&nic->cmd_lock, flags); 843 844 return err; 845 } 846 847 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb, 848 int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) 849 { 850 struct cb *cb; 851 unsigned long flags; 852 int err; 853 854 spin_lock_irqsave(&nic->cb_lock, flags); 855 856 if (unlikely(!nic->cbs_avail)) { 857 err = -ENOMEM; 858 goto err_unlock; 859 } 860 861 cb = nic->cb_to_use; 862 nic->cb_to_use = cb->next; 863 nic->cbs_avail--; 864 cb->skb = skb; 865 866 err = cb_prepare(nic, cb, skb); 867 if (err) 868 goto err_unlock; 869 870 if (unlikely(!nic->cbs_avail)) 871 err = -ENOSPC; 872 873 874 /* Order is important otherwise we'll be in a race with h/w: 875 * set S-bit in current first, then clear S-bit in previous. */ 876 cb->command |= cpu_to_le16(cb_s); 877 dma_wmb(); 878 cb->prev->command &= cpu_to_le16(~cb_s); 879 880 while (nic->cb_to_send != nic->cb_to_use) { 881 if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd, 882 nic->cb_to_send->dma_addr))) { 883 /* Ok, here's where things get sticky. It's 884 * possible that we can't schedule the command 885 * because the controller is too busy, so 886 * let's just queue the command and try again 887 * when another command is scheduled. */ 888 if (err == -ENOSPC) { 889 //request a reset 890 schedule_work(&nic->tx_timeout_task); 891 } 892 break; 893 } else { 894 nic->cuc_cmd = cuc_resume; 895 nic->cb_to_send = nic->cb_to_send->next; 896 } 897 } 898 899 err_unlock: 900 spin_unlock_irqrestore(&nic->cb_lock, flags); 901 902 return err; 903 } 904 905 static int mdio_read(struct net_device *netdev, int addr, int reg) 906 { 907 struct nic *nic = netdev_priv(netdev); 908 return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0); 909 } 910 911 static void mdio_write(struct net_device *netdev, int addr, int reg, int data) 912 { 913 struct nic *nic = netdev_priv(netdev); 914 915 nic->mdio_ctrl(nic, addr, mdi_write, reg, data); 916 } 917 918 /* the standard mdio_ctrl() function for usual MII-compliant hardware */ 919 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) 920 { 921 u32 data_out = 0; 922 unsigned int i; 923 unsigned long flags; 924 925 926 /* 927 * Stratus87247: we shouldn't be writing the MDI control 928 * register until the Ready bit shows True. Also, since 929 * manipulation of the MDI control registers is a multi-step 930 * procedure it should be done under lock. 931 */ 932 spin_lock_irqsave(&nic->mdio_lock, flags); 933 for (i = 100; i; --i) { 934 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready) 935 break; 936 udelay(20); 937 } 938 if (unlikely(!i)) { 939 netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n"); 940 spin_unlock_irqrestore(&nic->mdio_lock, flags); 941 return 0; /* No way to indicate timeout error */ 942 } 943 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); 944 945 for (i = 0; i < 100; i++) { 946 udelay(20); 947 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready) 948 break; 949 } 950 spin_unlock_irqrestore(&nic->mdio_lock, flags); 951 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 952 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", 953 dir == mdi_read ? "READ" : "WRITE", 954 addr, reg, data, data_out); 955 return (u16)data_out; 956 } 957 958 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */ 959 static u16 mdio_ctrl_phy_82552_v(struct nic *nic, 960 u32 addr, 961 u32 dir, 962 u32 reg, 963 u16 data) 964 { 965 if ((reg == MII_BMCR) && (dir == mdi_write)) { 966 if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) { 967 u16 advert = mdio_read(nic->netdev, nic->mii.phy_id, 968 MII_ADVERTISE); 969 970 /* 971 * Workaround Si issue where sometimes the part will not 972 * autoneg to 100Mbps even when advertised. 973 */ 974 if (advert & ADVERTISE_100FULL) 975 data |= BMCR_SPEED100 | BMCR_FULLDPLX; 976 else if (advert & ADVERTISE_100HALF) 977 data |= BMCR_SPEED100; 978 } 979 } 980 return mdio_ctrl_hw(nic, addr, dir, reg, data); 981 } 982 983 /* Fully software-emulated mdio_ctrl() function for cards without 984 * MII-compliant PHYs. 985 * For now, this is mainly geared towards 80c24 support; in case of further 986 * requirements for other types (i82503, ...?) either extend this mechanism 987 * or split it, whichever is cleaner. 988 */ 989 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic, 990 u32 addr, 991 u32 dir, 992 u32 reg, 993 u16 data) 994 { 995 /* might need to allocate a netdev_priv'ed register array eventually 996 * to be able to record state changes, but for now 997 * some fully hardcoded register handling ought to be ok I guess. */ 998 999 if (dir == mdi_read) { 1000 switch (reg) { 1001 case MII_BMCR: 1002 /* Auto-negotiation, right? */ 1003 return BMCR_ANENABLE | 1004 BMCR_FULLDPLX; 1005 case MII_BMSR: 1006 return BMSR_LSTATUS /* for mii_link_ok() */ | 1007 BMSR_ANEGCAPABLE | 1008 BMSR_10FULL; 1009 case MII_ADVERTISE: 1010 /* 80c24 is a "combo card" PHY, right? */ 1011 return ADVERTISE_10HALF | 1012 ADVERTISE_10FULL; 1013 default: 1014 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 1015 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", 1016 dir == mdi_read ? "READ" : "WRITE", 1017 addr, reg, data); 1018 return 0xFFFF; 1019 } 1020 } else { 1021 switch (reg) { 1022 default: 1023 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 1024 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", 1025 dir == mdi_read ? "READ" : "WRITE", 1026 addr, reg, data); 1027 return 0xFFFF; 1028 } 1029 } 1030 } 1031 static inline int e100_phy_supports_mii(struct nic *nic) 1032 { 1033 /* for now, just check it by comparing whether we 1034 are using MII software emulation. 1035 */ 1036 return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated); 1037 } 1038 1039 static void e100_get_defaults(struct nic *nic) 1040 { 1041 struct param_range rfds = { .min = 16, .max = 256, .count = 256 }; 1042 struct param_range cbs = { .min = 64, .max = 256, .count = 128 }; 1043 1044 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ 1045 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision; 1046 if (nic->mac == mac_unknown) 1047 nic->mac = mac_82557_D100_A; 1048 1049 nic->params.rfds = rfds; 1050 nic->params.cbs = cbs; 1051 1052 /* Quadwords to DMA into FIFO before starting frame transmit */ 1053 nic->tx_threshold = 0xE0; 1054 1055 /* no interrupt for every tx completion, delay = 256us if not 557 */ 1056 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | 1057 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); 1058 1059 /* Template for a freshly allocated RFD */ 1060 nic->blank_rfd.command = 0; 1061 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF); 1062 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN); 1063 1064 /* MII setup */ 1065 nic->mii.phy_id_mask = 0x1F; 1066 nic->mii.reg_num_mask = 0x1F; 1067 nic->mii.dev = nic->netdev; 1068 nic->mii.mdio_read = mdio_read; 1069 nic->mii.mdio_write = mdio_write; 1070 } 1071 1072 static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1073 { 1074 struct config *config = &cb->u.config; 1075 u8 *c = (u8 *)config; 1076 struct net_device *netdev = nic->netdev; 1077 1078 cb->command = cpu_to_le16(cb_config); 1079 1080 memset(config, 0, sizeof(struct config)); 1081 1082 config->byte_count = 0x16; /* bytes in this struct */ 1083 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ 1084 config->direct_rx_dma = 0x1; /* reserved */ 1085 config->standard_tcb = 0x1; /* 1=standard, 0=extended */ 1086 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ 1087 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ 1088 config->tx_underrun_retry = 0x3; /* # of underrun retries */ 1089 if (e100_phy_supports_mii(nic)) 1090 config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */ 1091 config->pad10 = 0x6; 1092 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ 1093 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ 1094 config->ifs = 0x6; /* x16 = inter frame spacing */ 1095 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ 1096 config->pad15_1 = 0x1; 1097 config->pad15_2 = 0x1; 1098 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ 1099 config->fc_delay_hi = 0x40; /* time delay for fc frame */ 1100 config->tx_padding = 0x1; /* 1=pad short frames */ 1101 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ 1102 config->pad18 = 0x1; 1103 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ 1104 config->pad20_1 = 0x1F; 1105 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ 1106 config->pad21_1 = 0x5; 1107 1108 config->adaptive_ifs = nic->adaptive_ifs; 1109 config->loopback = nic->loopback; 1110 1111 if (nic->mii.force_media && nic->mii.full_duplex) 1112 config->full_duplex_force = 0x1; /* 1=force, 0=auto */ 1113 1114 if (nic->flags & promiscuous || nic->loopback) { 1115 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ 1116 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ 1117 config->promiscuous_mode = 0x1; /* 1=on, 0=off */ 1118 } 1119 1120 if (unlikely(netdev->features & NETIF_F_RXFCS)) 1121 config->rx_crc_transfer = 0x1; /* 1=save, 0=discard */ 1122 1123 if (nic->flags & multicast_all) 1124 config->multicast_all = 0x1; /* 1=accept, 0=no */ 1125 1126 /* disable WoL when up */ 1127 if (netif_running(nic->netdev) || !(nic->flags & wol_magic)) 1128 config->magic_packet_disable = 0x1; /* 1=off, 0=on */ 1129 1130 if (nic->mac >= mac_82558_D101_A4) { 1131 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ 1132 config->mwi_enable = 0x1; /* 1=enable, 0=disable */ 1133 config->standard_tcb = 0x0; /* 1=standard, 0=extended */ 1134 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ 1135 if (nic->mac >= mac_82559_D101M) { 1136 config->tno_intr = 0x1; /* TCO stats enable */ 1137 /* Enable TCO in extended config */ 1138 if (nic->mac >= mac_82551_10) { 1139 config->byte_count = 0x20; /* extended bytes */ 1140 config->rx_d102_mode = 0x1; /* GMRC for TCO */ 1141 } 1142 } else { 1143 config->standard_stat_counter = 0x0; 1144 } 1145 } 1146 1147 if (netdev->features & NETIF_F_RXALL) { 1148 config->rx_save_overruns = 0x1; /* 1=save, 0=discard */ 1149 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ 1150 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ 1151 } 1152 1153 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n", 1154 c + 0); 1155 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n", 1156 c + 8); 1157 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n", 1158 c + 16); 1159 return 0; 1160 } 1161 1162 /************************************************************************* 1163 * CPUSaver parameters 1164 * 1165 * All CPUSaver parameters are 16-bit literals that are part of a 1166 * "move immediate value" instruction. By changing the value of 1167 * the literal in the instruction before the code is loaded, the 1168 * driver can change the algorithm. 1169 * 1170 * INTDELAY - This loads the dead-man timer with its initial value. 1171 * When this timer expires the interrupt is asserted, and the 1172 * timer is reset each time a new packet is received. (see 1173 * BUNDLEMAX below to set the limit on number of chained packets) 1174 * The current default is 0x600 or 1536. Experiments show that 1175 * the value should probably stay within the 0x200 - 0x1000. 1176 * 1177 * BUNDLEMAX - 1178 * This sets the maximum number of frames that will be bundled. In 1179 * some situations, such as the TCP windowing algorithm, it may be 1180 * better to limit the growth of the bundle size than let it go as 1181 * high as it can, because that could cause too much added latency. 1182 * The default is six, because this is the number of packets in the 1183 * default TCP window size. A value of 1 would make CPUSaver indicate 1184 * an interrupt for every frame received. If you do not want to put 1185 * a limit on the bundle size, set this value to xFFFF. 1186 * 1187 * BUNDLESMALL - 1188 * This contains a bit-mask describing the minimum size frame that 1189 * will be bundled. The default masks the lower 7 bits, which means 1190 * that any frame less than 128 bytes in length will not be bundled, 1191 * but will instead immediately generate an interrupt. This does 1192 * not affect the current bundle in any way. Any frame that is 128 1193 * bytes or large will be bundled normally. This feature is meant 1194 * to provide immediate indication of ACK frames in a TCP environment. 1195 * Customers were seeing poor performance when a machine with CPUSaver 1196 * enabled was sending but not receiving. The delay introduced when 1197 * the ACKs were received was enough to reduce total throughput, because 1198 * the sender would sit idle until the ACK was finally seen. 1199 * 1200 * The current default is 0xFF80, which masks out the lower 7 bits. 1201 * This means that any frame which is x7F (127) bytes or smaller 1202 * will cause an immediate interrupt. Because this value must be a 1203 * bit mask, there are only a few valid values that can be used. To 1204 * turn this feature off, the driver can write the value xFFFF to the 1205 * lower word of this instruction (in the same way that the other 1206 * parameters are used). Likewise, a value of 0xF800 (2047) would 1207 * cause an interrupt to be generated for every frame, because all 1208 * standard Ethernet frames are <= 2047 bytes in length. 1209 *************************************************************************/ 1210 1211 /* if you wish to disable the ucode functionality, while maintaining the 1212 * workarounds it provides, set the following defines to: 1213 * BUNDLESMALL 0 1214 * BUNDLEMAX 1 1215 * INTDELAY 1 1216 */ 1217 #define BUNDLESMALL 1 1218 #define BUNDLEMAX (u16)6 1219 #define INTDELAY (u16)1536 /* 0x600 */ 1220 1221 /* Initialize firmware */ 1222 static const struct firmware *e100_request_firmware(struct nic *nic) 1223 { 1224 const char *fw_name; 1225 const struct firmware *fw = nic->fw; 1226 u8 timer, bundle, min_size; 1227 int err = 0; 1228 bool required = false; 1229 1230 /* do not load u-code for ICH devices */ 1231 if (nic->flags & ich) 1232 return NULL; 1233 1234 /* Search for ucode match against h/w revision 1235 * 1236 * Based on comments in the source code for the FreeBSD fxp 1237 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and 1238 * 1239 * "fixes for bugs in the B-step hardware (specifically, bugs 1240 * with Inline Receive)." 1241 * 1242 * So we must fail if it cannot be loaded. 1243 * 1244 * The other microcode files are only required for the optional 1245 * CPUSaver feature. Nice to have, but no reason to fail. 1246 */ 1247 if (nic->mac == mac_82559_D101M) { 1248 fw_name = FIRMWARE_D101M; 1249 } else if (nic->mac == mac_82559_D101S) { 1250 fw_name = FIRMWARE_D101S; 1251 } else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) { 1252 fw_name = FIRMWARE_D102E; 1253 required = true; 1254 } else { /* No ucode on other devices */ 1255 return NULL; 1256 } 1257 1258 /* If the firmware has not previously been loaded, request a pointer 1259 * to it. If it was previously loaded, we are reinitializing the 1260 * adapter, possibly in a resume from hibernate, in which case 1261 * request_firmware() cannot be used. 1262 */ 1263 if (!fw) 1264 err = request_firmware(&fw, fw_name, &nic->pdev->dev); 1265 1266 if (err) { 1267 if (required) { 1268 netif_err(nic, probe, nic->netdev, 1269 "Failed to load firmware \"%s\": %d\n", 1270 fw_name, err); 1271 return ERR_PTR(err); 1272 } else { 1273 netif_info(nic, probe, nic->netdev, 1274 "CPUSaver disabled. Needs \"%s\": %d\n", 1275 fw_name, err); 1276 return NULL; 1277 } 1278 } 1279 1280 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes 1281 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */ 1282 if (fw->size != UCODE_SIZE * 4 + 3) { 1283 netif_err(nic, probe, nic->netdev, 1284 "Firmware \"%s\" has wrong size %zu\n", 1285 fw_name, fw->size); 1286 release_firmware(fw); 1287 return ERR_PTR(-EINVAL); 1288 } 1289 1290 /* Read timer, bundle and min_size from end of firmware blob */ 1291 timer = fw->data[UCODE_SIZE * 4]; 1292 bundle = fw->data[UCODE_SIZE * 4 + 1]; 1293 min_size = fw->data[UCODE_SIZE * 4 + 2]; 1294 1295 if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE || 1296 min_size >= UCODE_SIZE) { 1297 netif_err(nic, probe, nic->netdev, 1298 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n", 1299 fw_name, timer, bundle, min_size); 1300 release_firmware(fw); 1301 return ERR_PTR(-EINVAL); 1302 } 1303 1304 /* OK, firmware is validated and ready to use. Save a pointer 1305 * to it in the nic */ 1306 nic->fw = fw; 1307 return fw; 1308 } 1309 1310 static int e100_setup_ucode(struct nic *nic, struct cb *cb, 1311 struct sk_buff *skb) 1312 { 1313 const struct firmware *fw = (void *)skb; 1314 u8 timer, bundle, min_size; 1315 1316 /* It's not a real skb; we just abused the fact that e100_exec_cb 1317 will pass it through to here... */ 1318 cb->skb = NULL; 1319 1320 /* firmware is stored as little endian already */ 1321 memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4); 1322 1323 /* Read timer, bundle and min_size from end of firmware blob */ 1324 timer = fw->data[UCODE_SIZE * 4]; 1325 bundle = fw->data[UCODE_SIZE * 4 + 1]; 1326 min_size = fw->data[UCODE_SIZE * 4 + 2]; 1327 1328 /* Insert user-tunable settings in cb->u.ucode */ 1329 cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000); 1330 cb->u.ucode[timer] |= cpu_to_le32(INTDELAY); 1331 cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000); 1332 cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX); 1333 cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000); 1334 cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80); 1335 1336 cb->command = cpu_to_le16(cb_ucode | cb_el); 1337 return 0; 1338 } 1339 1340 static inline int e100_load_ucode_wait(struct nic *nic) 1341 { 1342 const struct firmware *fw; 1343 int err = 0, counter = 50; 1344 struct cb *cb = nic->cb_to_clean; 1345 1346 fw = e100_request_firmware(nic); 1347 /* If it's NULL, then no ucode is required */ 1348 if (IS_ERR_OR_NULL(fw)) 1349 return PTR_ERR_OR_ZERO(fw); 1350 1351 if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode))) 1352 netif_err(nic, probe, nic->netdev, 1353 "ucode cmd failed with error %d\n", err); 1354 1355 /* must restart cuc */ 1356 nic->cuc_cmd = cuc_start; 1357 1358 /* wait for completion */ 1359 e100_write_flush(nic); 1360 udelay(10); 1361 1362 /* wait for possibly (ouch) 500ms */ 1363 while (!(cb->status & cpu_to_le16(cb_complete))) { 1364 msleep(10); 1365 if (!--counter) break; 1366 } 1367 1368 /* ack any interrupts, something could have been set */ 1369 iowrite8(~0, &nic->csr->scb.stat_ack); 1370 1371 /* if the command failed, or is not OK, notify and return */ 1372 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) { 1373 netif_err(nic, probe, nic->netdev, "ucode load failed\n"); 1374 err = -EPERM; 1375 } 1376 1377 return err; 1378 } 1379 1380 static int e100_setup_iaaddr(struct nic *nic, struct cb *cb, 1381 struct sk_buff *skb) 1382 { 1383 cb->command = cpu_to_le16(cb_iaaddr); 1384 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); 1385 return 0; 1386 } 1387 1388 static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1389 { 1390 cb->command = cpu_to_le16(cb_dump); 1391 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + 1392 offsetof(struct mem, dump_buf)); 1393 return 0; 1394 } 1395 1396 static int e100_phy_check_without_mii(struct nic *nic) 1397 { 1398 u8 phy_type; 1399 int without_mii; 1400 1401 phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f; 1402 1403 switch (phy_type) { 1404 case NoSuchPhy: /* Non-MII PHY; UNTESTED! */ 1405 case I82503: /* Non-MII PHY; UNTESTED! */ 1406 case S80C24: /* Non-MII PHY; tested and working */ 1407 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24": 1408 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter 1409 * doesn't have a programming interface of any sort. The 1410 * media is sensed automatically based on how the link partner 1411 * is configured. This is, in essence, manual configuration. 1412 */ 1413 netif_info(nic, probe, nic->netdev, 1414 "found MII-less i82503 or 80c24 or other PHY\n"); 1415 1416 nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated; 1417 nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */ 1418 1419 /* these might be needed for certain MII-less cards... 1420 * nic->flags |= ich; 1421 * nic->flags |= ich_10h_workaround; */ 1422 1423 without_mii = 1; 1424 break; 1425 default: 1426 without_mii = 0; 1427 break; 1428 } 1429 return without_mii; 1430 } 1431 1432 #define NCONFIG_AUTO_SWITCH 0x0080 1433 #define MII_NSC_CONG MII_RESV1 1434 #define NSC_CONG_ENABLE 0x0100 1435 #define NSC_CONG_TXREADY 0x0400 1436 #define ADVERTISE_FC_SUPPORTED 0x0400 1437 static int e100_phy_init(struct nic *nic) 1438 { 1439 struct net_device *netdev = nic->netdev; 1440 u32 addr; 1441 u16 bmcr, stat, id_lo, id_hi, cong; 1442 1443 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ 1444 for (addr = 0; addr < 32; addr++) { 1445 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; 1446 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); 1447 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1448 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1449 if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) 1450 break; 1451 } 1452 if (addr == 32) { 1453 /* uhoh, no PHY detected: check whether we seem to be some 1454 * weird, rare variant which is *known* to not have any MII. 1455 * But do this AFTER MII checking only, since this does 1456 * lookup of EEPROM values which may easily be unreliable. */ 1457 if (e100_phy_check_without_mii(nic)) 1458 return 0; /* simply return and hope for the best */ 1459 else { 1460 /* for unknown cases log a fatal error */ 1461 netif_err(nic, hw, nic->netdev, 1462 "Failed to locate any known PHY, aborting\n"); 1463 return -EAGAIN; 1464 } 1465 } else 1466 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 1467 "phy_addr = %d\n", nic->mii.phy_id); 1468 1469 /* Get phy ID */ 1470 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); 1471 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); 1472 nic->phy = (u32)id_hi << 16 | (u32)id_lo; 1473 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 1474 "phy ID = 0x%08X\n", nic->phy); 1475 1476 /* Select the phy and isolate the rest */ 1477 for (addr = 0; addr < 32; addr++) { 1478 if (addr != nic->mii.phy_id) { 1479 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); 1480 } else if (nic->phy != phy_82552_v) { 1481 bmcr = mdio_read(netdev, addr, MII_BMCR); 1482 mdio_write(netdev, addr, MII_BMCR, 1483 bmcr & ~BMCR_ISOLATE); 1484 } 1485 } 1486 /* 1487 * Workaround for 82552: 1488 * Clear the ISOLATE bit on selected phy_id last (mirrored on all 1489 * other phy_id's) using bmcr value from addr discovery loop above. 1490 */ 1491 if (nic->phy == phy_82552_v) 1492 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, 1493 bmcr & ~BMCR_ISOLATE); 1494 1495 /* Handle National tx phys */ 1496 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF 1497 if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { 1498 /* Disable congestion control */ 1499 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); 1500 cong |= NSC_CONG_TXREADY; 1501 cong &= ~NSC_CONG_ENABLE; 1502 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); 1503 } 1504 1505 if (nic->phy == phy_82552_v) { 1506 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE); 1507 1508 /* assign special tweaked mdio_ctrl() function */ 1509 nic->mdio_ctrl = mdio_ctrl_phy_82552_v; 1510 1511 /* Workaround Si not advertising flow-control during autoneg */ 1512 advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 1513 mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert); 1514 1515 /* Reset for the above changes to take effect */ 1516 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); 1517 bmcr |= BMCR_RESET; 1518 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr); 1519 } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && 1520 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) && 1521 (nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) { 1522 /* enable/disable MDI/MDI-X auto-switching. */ 1523 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, 1524 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH); 1525 } 1526 1527 return 0; 1528 } 1529 1530 static int e100_hw_init(struct nic *nic) 1531 { 1532 int err = 0; 1533 1534 e100_hw_reset(nic); 1535 1536 netif_err(nic, hw, nic->netdev, "e100_hw_init\n"); 1537 if (!in_interrupt() && (err = e100_self_test(nic))) 1538 return err; 1539 1540 if ((err = e100_phy_init(nic))) 1541 return err; 1542 if ((err = e100_exec_cmd(nic, cuc_load_base, 0))) 1543 return err; 1544 if ((err = e100_exec_cmd(nic, ruc_load_base, 0))) 1545 return err; 1546 if ((err = e100_load_ucode_wait(nic))) 1547 return err; 1548 if ((err = e100_exec_cb(nic, NULL, e100_configure))) 1549 return err; 1550 if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) 1551 return err; 1552 if ((err = e100_exec_cmd(nic, cuc_dump_addr, 1553 nic->dma_addr + offsetof(struct mem, stats)))) 1554 return err; 1555 if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) 1556 return err; 1557 1558 e100_disable_irq(nic); 1559 1560 return 0; 1561 } 1562 1563 static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1564 { 1565 struct net_device *netdev = nic->netdev; 1566 struct netdev_hw_addr *ha; 1567 u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS); 1568 1569 cb->command = cpu_to_le16(cb_multi); 1570 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); 1571 i = 0; 1572 netdev_for_each_mc_addr(ha, netdev) { 1573 if (i == count) 1574 break; 1575 memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr, 1576 ETH_ALEN); 1577 } 1578 return 0; 1579 } 1580 1581 static void e100_set_multicast_list(struct net_device *netdev) 1582 { 1583 struct nic *nic = netdev_priv(netdev); 1584 1585 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 1586 "mc_count=%d, flags=0x%04X\n", 1587 netdev_mc_count(netdev), netdev->flags); 1588 1589 if (netdev->flags & IFF_PROMISC) 1590 nic->flags |= promiscuous; 1591 else 1592 nic->flags &= ~promiscuous; 1593 1594 if (netdev->flags & IFF_ALLMULTI || 1595 netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS) 1596 nic->flags |= multicast_all; 1597 else 1598 nic->flags &= ~multicast_all; 1599 1600 e100_exec_cb(nic, NULL, e100_configure); 1601 e100_exec_cb(nic, NULL, e100_multi); 1602 } 1603 1604 static void e100_update_stats(struct nic *nic) 1605 { 1606 struct net_device *dev = nic->netdev; 1607 struct net_device_stats *ns = &dev->stats; 1608 struct stats *s = &nic->mem->stats; 1609 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : 1610 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames : 1611 &s->complete; 1612 1613 /* Device's stats reporting may take several microseconds to 1614 * complete, so we're always waiting for results of the 1615 * previous command. */ 1616 1617 if (*complete == cpu_to_le32(cuc_dump_reset_complete)) { 1618 *complete = 0; 1619 nic->tx_frames = le32_to_cpu(s->tx_good_frames); 1620 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); 1621 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); 1622 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); 1623 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); 1624 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); 1625 ns->collisions += nic->tx_collisions; 1626 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + 1627 le32_to_cpu(s->tx_lost_crs); 1628 nic->rx_short_frame_errors += 1629 le32_to_cpu(s->rx_short_frame_errors); 1630 ns->rx_length_errors = nic->rx_short_frame_errors + 1631 nic->rx_over_length_errors; 1632 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); 1633 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); 1634 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); 1635 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); 1636 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors); 1637 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + 1638 le32_to_cpu(s->rx_alignment_errors) + 1639 le32_to_cpu(s->rx_short_frame_errors) + 1640 le32_to_cpu(s->rx_cdt_errors); 1641 nic->tx_deferred += le32_to_cpu(s->tx_deferred); 1642 nic->tx_single_collisions += 1643 le32_to_cpu(s->tx_single_collisions); 1644 nic->tx_multiple_collisions += 1645 le32_to_cpu(s->tx_multiple_collisions); 1646 if (nic->mac >= mac_82558_D101_A4) { 1647 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); 1648 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); 1649 nic->rx_fc_unsupported += 1650 le32_to_cpu(s->fc_rcv_unsupported); 1651 if (nic->mac >= mac_82559_D101M) { 1652 nic->tx_tco_frames += 1653 le16_to_cpu(s->xmt_tco_frames); 1654 nic->rx_tco_frames += 1655 le16_to_cpu(s->rcv_tco_frames); 1656 } 1657 } 1658 } 1659 1660 1661 if (e100_exec_cmd(nic, cuc_dump_reset, 0)) 1662 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, 1663 "exec cuc_dump_reset failed\n"); 1664 } 1665 1666 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) 1667 { 1668 /* Adjust inter-frame-spacing (IFS) between two transmits if 1669 * we're getting collisions on a half-duplex connection. */ 1670 1671 if (duplex == DUPLEX_HALF) { 1672 u32 prev = nic->adaptive_ifs; 1673 u32 min_frames = (speed == SPEED_100) ? 1000 : 100; 1674 1675 if ((nic->tx_frames / 32 < nic->tx_collisions) && 1676 (nic->tx_frames > min_frames)) { 1677 if (nic->adaptive_ifs < 60) 1678 nic->adaptive_ifs += 5; 1679 } else if (nic->tx_frames < min_frames) { 1680 if (nic->adaptive_ifs >= 5) 1681 nic->adaptive_ifs -= 5; 1682 } 1683 if (nic->adaptive_ifs != prev) 1684 e100_exec_cb(nic, NULL, e100_configure); 1685 } 1686 } 1687 1688 static void e100_watchdog(struct timer_list *t) 1689 { 1690 struct nic *nic = from_timer(nic, t, watchdog); 1691 struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET }; 1692 u32 speed; 1693 1694 netif_printk(nic, timer, KERN_DEBUG, nic->netdev, 1695 "right now = %ld\n", jiffies); 1696 1697 /* mii library handles link maintenance tasks */ 1698 1699 mii_ethtool_gset(&nic->mii, &cmd); 1700 speed = ethtool_cmd_speed(&cmd); 1701 1702 if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { 1703 netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n", 1704 speed == SPEED_100 ? 100 : 10, 1705 cmd.duplex == DUPLEX_FULL ? "Full" : "Half"); 1706 } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { 1707 netdev_info(nic->netdev, "NIC Link is Down\n"); 1708 } 1709 1710 mii_check_link(&nic->mii); 1711 1712 /* Software generated interrupt to recover from (rare) Rx 1713 * allocation failure. 1714 * Unfortunately have to use a spinlock to not re-enable interrupts 1715 * accidentally, due to hardware that shares a register between the 1716 * interrupt mask bit and the SW Interrupt generation bit */ 1717 spin_lock_irq(&nic->cmd_lock); 1718 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); 1719 e100_write_flush(nic); 1720 spin_unlock_irq(&nic->cmd_lock); 1721 1722 e100_update_stats(nic); 1723 e100_adjust_adaptive_ifs(nic, speed, cmd.duplex); 1724 1725 if (nic->mac <= mac_82557_D100_C) 1726 /* Issue a multicast command to workaround a 557 lock up */ 1727 e100_set_multicast_list(nic->netdev); 1728 1729 if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF) 1730 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ 1731 nic->flags |= ich_10h_workaround; 1732 else 1733 nic->flags &= ~ich_10h_workaround; 1734 1735 mod_timer(&nic->watchdog, 1736 round_jiffies(jiffies + E100_WATCHDOG_PERIOD)); 1737 } 1738 1739 static int e100_xmit_prepare(struct nic *nic, struct cb *cb, 1740 struct sk_buff *skb) 1741 { 1742 dma_addr_t dma_addr; 1743 cb->command = nic->tx_command; 1744 1745 dma_addr = pci_map_single(nic->pdev, 1746 skb->data, skb->len, PCI_DMA_TODEVICE); 1747 /* If we can't map the skb, have the upper layer try later */ 1748 if (pci_dma_mapping_error(nic->pdev, dma_addr)) { 1749 dev_kfree_skb_any(skb); 1750 skb = NULL; 1751 return -ENOMEM; 1752 } 1753 1754 /* 1755 * Use the last 4 bytes of the SKB payload packet as the CRC, used for 1756 * testing, ie sending frames with bad CRC. 1757 */ 1758 if (unlikely(skb->no_fcs)) 1759 cb->command |= cpu_to_le16(cb_tx_nc); 1760 else 1761 cb->command &= ~cpu_to_le16(cb_tx_nc); 1762 1763 /* interrupt every 16 packets regardless of delay */ 1764 if ((nic->cbs_avail & ~15) == nic->cbs_avail) 1765 cb->command |= cpu_to_le16(cb_i); 1766 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); 1767 cb->u.tcb.tcb_byte_count = 0; 1768 cb->u.tcb.threshold = nic->tx_threshold; 1769 cb->u.tcb.tbd_count = 1; 1770 cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr); 1771 cb->u.tcb.tbd.size = cpu_to_le16(skb->len); 1772 skb_tx_timestamp(skb); 1773 return 0; 1774 } 1775 1776 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb, 1777 struct net_device *netdev) 1778 { 1779 struct nic *nic = netdev_priv(netdev); 1780 int err; 1781 1782 if (nic->flags & ich_10h_workaround) { 1783 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. 1784 Issue a NOP command followed by a 1us delay before 1785 issuing the Tx command. */ 1786 if (e100_exec_cmd(nic, cuc_nop, 0)) 1787 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, 1788 "exec cuc_nop failed\n"); 1789 udelay(1); 1790 } 1791 1792 err = e100_exec_cb(nic, skb, e100_xmit_prepare); 1793 1794 switch (err) { 1795 case -ENOSPC: 1796 /* We queued the skb, but now we're out of space. */ 1797 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, 1798 "No space for CB\n"); 1799 netif_stop_queue(netdev); 1800 break; 1801 case -ENOMEM: 1802 /* This is a hard error - log it. */ 1803 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, 1804 "Out of Tx resources, returning skb\n"); 1805 netif_stop_queue(netdev); 1806 return NETDEV_TX_BUSY; 1807 } 1808 1809 return NETDEV_TX_OK; 1810 } 1811 1812 static int e100_tx_clean(struct nic *nic) 1813 { 1814 struct net_device *dev = nic->netdev; 1815 struct cb *cb; 1816 int tx_cleaned = 0; 1817 1818 spin_lock(&nic->cb_lock); 1819 1820 /* Clean CBs marked complete */ 1821 for (cb = nic->cb_to_clean; 1822 cb->status & cpu_to_le16(cb_complete); 1823 cb = nic->cb_to_clean = cb->next) { 1824 dma_rmb(); /* read skb after status */ 1825 netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev, 1826 "cb[%d]->status = 0x%04X\n", 1827 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)), 1828 cb->status); 1829 1830 if (likely(cb->skb != NULL)) { 1831 dev->stats.tx_packets++; 1832 dev->stats.tx_bytes += cb->skb->len; 1833 1834 pci_unmap_single(nic->pdev, 1835 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1836 le16_to_cpu(cb->u.tcb.tbd.size), 1837 PCI_DMA_TODEVICE); 1838 dev_kfree_skb_any(cb->skb); 1839 cb->skb = NULL; 1840 tx_cleaned = 1; 1841 } 1842 cb->status = 0; 1843 nic->cbs_avail++; 1844 } 1845 1846 spin_unlock(&nic->cb_lock); 1847 1848 /* Recover from running out of Tx resources in xmit_frame */ 1849 if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) 1850 netif_wake_queue(nic->netdev); 1851 1852 return tx_cleaned; 1853 } 1854 1855 static void e100_clean_cbs(struct nic *nic) 1856 { 1857 if (nic->cbs) { 1858 while (nic->cbs_avail != nic->params.cbs.count) { 1859 struct cb *cb = nic->cb_to_clean; 1860 if (cb->skb) { 1861 pci_unmap_single(nic->pdev, 1862 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1863 le16_to_cpu(cb->u.tcb.tbd.size), 1864 PCI_DMA_TODEVICE); 1865 dev_kfree_skb(cb->skb); 1866 } 1867 nic->cb_to_clean = nic->cb_to_clean->next; 1868 nic->cbs_avail++; 1869 } 1870 dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr); 1871 nic->cbs = NULL; 1872 nic->cbs_avail = 0; 1873 } 1874 nic->cuc_cmd = cuc_start; 1875 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = 1876 nic->cbs; 1877 } 1878 1879 static int e100_alloc_cbs(struct nic *nic) 1880 { 1881 struct cb *cb; 1882 unsigned int i, count = nic->params.cbs.count; 1883 1884 nic->cuc_cmd = cuc_start; 1885 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; 1886 nic->cbs_avail = 0; 1887 1888 nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL, 1889 &nic->cbs_dma_addr); 1890 if (!nic->cbs) 1891 return -ENOMEM; 1892 1893 for (cb = nic->cbs, i = 0; i < count; cb++, i++) { 1894 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; 1895 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; 1896 1897 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); 1898 cb->link = cpu_to_le32(nic->cbs_dma_addr + 1899 ((i+1) % count) * sizeof(struct cb)); 1900 } 1901 1902 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; 1903 nic->cbs_avail = count; 1904 1905 return 0; 1906 } 1907 1908 static inline void e100_start_receiver(struct nic *nic, struct rx *rx) 1909 { 1910 if (!nic->rxs) return; 1911 if (RU_SUSPENDED != nic->ru_running) return; 1912 1913 /* handle init time starts */ 1914 if (!rx) rx = nic->rxs; 1915 1916 /* (Re)start RU if suspended or idle and RFA is non-NULL */ 1917 if (rx->skb) { 1918 e100_exec_cmd(nic, ruc_start, rx->dma_addr); 1919 nic->ru_running = RU_RUNNING; 1920 } 1921 } 1922 1923 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN) 1924 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) 1925 { 1926 if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN))) 1927 return -ENOMEM; 1928 1929 /* Init, and map the RFD. */ 1930 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd)); 1931 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, 1932 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 1933 1934 if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) { 1935 dev_kfree_skb_any(rx->skb); 1936 rx->skb = NULL; 1937 rx->dma_addr = 0; 1938 return -ENOMEM; 1939 } 1940 1941 /* Link the RFD to end of RFA by linking previous RFD to 1942 * this one. We are safe to touch the previous RFD because 1943 * it is protected by the before last buffer's el bit being set */ 1944 if (rx->prev->skb) { 1945 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; 1946 put_unaligned_le32(rx->dma_addr, &prev_rfd->link); 1947 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, 1948 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); 1949 } 1950 1951 return 0; 1952 } 1953 1954 static int e100_rx_indicate(struct nic *nic, struct rx *rx, 1955 unsigned int *work_done, unsigned int work_to_do) 1956 { 1957 struct net_device *dev = nic->netdev; 1958 struct sk_buff *skb = rx->skb; 1959 struct rfd *rfd = (struct rfd *)skb->data; 1960 u16 rfd_status, actual_size; 1961 u16 fcs_pad = 0; 1962 1963 if (unlikely(work_done && *work_done >= work_to_do)) 1964 return -EAGAIN; 1965 1966 /* Need to sync before taking a peek at cb_complete bit */ 1967 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr, 1968 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); 1969 rfd_status = le16_to_cpu(rfd->status); 1970 1971 netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev, 1972 "status=0x%04X\n", rfd_status); 1973 dma_rmb(); /* read size after status bit */ 1974 1975 /* If data isn't ready, nothing to indicate */ 1976 if (unlikely(!(rfd_status & cb_complete))) { 1977 /* If the next buffer has the el bit, but we think the receiver 1978 * is still running, check to see if it really stopped while 1979 * we had interrupts off. 1980 * This allows for a fast restart without re-enabling 1981 * interrupts */ 1982 if ((le16_to_cpu(rfd->command) & cb_el) && 1983 (RU_RUNNING == nic->ru_running)) 1984 1985 if (ioread8(&nic->csr->scb.status) & rus_no_res) 1986 nic->ru_running = RU_SUSPENDED; 1987 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, 1988 sizeof(struct rfd), 1989 PCI_DMA_FROMDEVICE); 1990 return -ENODATA; 1991 } 1992 1993 /* Get actual data size */ 1994 if (unlikely(dev->features & NETIF_F_RXFCS)) 1995 fcs_pad = 4; 1996 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; 1997 if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) 1998 actual_size = RFD_BUF_LEN - sizeof(struct rfd); 1999 2000 /* Get data */ 2001 pci_unmap_single(nic->pdev, rx->dma_addr, 2002 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 2003 2004 /* If this buffer has the el bit, but we think the receiver 2005 * is still running, check to see if it really stopped while 2006 * we had interrupts off. 2007 * This allows for a fast restart without re-enabling interrupts. 2008 * This can happen when the RU sees the size change but also sees 2009 * the el bit set. */ 2010 if ((le16_to_cpu(rfd->command) & cb_el) && 2011 (RU_RUNNING == nic->ru_running)) { 2012 2013 if (ioread8(&nic->csr->scb.status) & rus_no_res) 2014 nic->ru_running = RU_SUSPENDED; 2015 } 2016 2017 /* Pull off the RFD and put the actual data (minus eth hdr) */ 2018 skb_reserve(skb, sizeof(struct rfd)); 2019 skb_put(skb, actual_size); 2020 skb->protocol = eth_type_trans(skb, nic->netdev); 2021 2022 /* If we are receiving all frames, then don't bother 2023 * checking for errors. 2024 */ 2025 if (unlikely(dev->features & NETIF_F_RXALL)) { 2026 if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) 2027 /* Received oversized frame, but keep it. */ 2028 nic->rx_over_length_errors++; 2029 goto process_skb; 2030 } 2031 2032 if (unlikely(!(rfd_status & cb_ok))) { 2033 /* Don't indicate if hardware indicates errors */ 2034 dev_kfree_skb_any(skb); 2035 } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) { 2036 /* Don't indicate oversized frames */ 2037 nic->rx_over_length_errors++; 2038 dev_kfree_skb_any(skb); 2039 } else { 2040 process_skb: 2041 dev->stats.rx_packets++; 2042 dev->stats.rx_bytes += (actual_size - fcs_pad); 2043 netif_receive_skb(skb); 2044 if (work_done) 2045 (*work_done)++; 2046 } 2047 2048 rx->skb = NULL; 2049 2050 return 0; 2051 } 2052 2053 static void e100_rx_clean(struct nic *nic, unsigned int *work_done, 2054 unsigned int work_to_do) 2055 { 2056 struct rx *rx; 2057 int restart_required = 0, err = 0; 2058 struct rx *old_before_last_rx, *new_before_last_rx; 2059 struct rfd *old_before_last_rfd, *new_before_last_rfd; 2060 2061 /* Indicate newly arrived packets */ 2062 for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { 2063 err = e100_rx_indicate(nic, rx, work_done, work_to_do); 2064 /* Hit quota or no more to clean */ 2065 if (-EAGAIN == err || -ENODATA == err) 2066 break; 2067 } 2068 2069 2070 /* On EAGAIN, hit quota so have more work to do, restart once 2071 * cleanup is complete. 2072 * Else, are we already rnr? then pay attention!!! this ensures that 2073 * the state machine progression never allows a start with a 2074 * partially cleaned list, avoiding a race between hardware 2075 * and rx_to_clean when in NAPI mode */ 2076 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running) 2077 restart_required = 1; 2078 2079 old_before_last_rx = nic->rx_to_use->prev->prev; 2080 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data; 2081 2082 /* Alloc new skbs to refill list */ 2083 for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { 2084 if (unlikely(e100_rx_alloc_skb(nic, rx))) 2085 break; /* Better luck next time (see watchdog) */ 2086 } 2087 2088 new_before_last_rx = nic->rx_to_use->prev->prev; 2089 if (new_before_last_rx != old_before_last_rx) { 2090 /* Set the el-bit on the buffer that is before the last buffer. 2091 * This lets us update the next pointer on the last buffer 2092 * without worrying about hardware touching it. 2093 * We set the size to 0 to prevent hardware from touching this 2094 * buffer. 2095 * When the hardware hits the before last buffer with el-bit 2096 * and size of 0, it will RNR interrupt, the RUS will go into 2097 * the No Resources state. It will not complete nor write to 2098 * this buffer. */ 2099 new_before_last_rfd = 2100 (struct rfd *)new_before_last_rx->skb->data; 2101 new_before_last_rfd->size = 0; 2102 new_before_last_rfd->command |= cpu_to_le16(cb_el); 2103 pci_dma_sync_single_for_device(nic->pdev, 2104 new_before_last_rx->dma_addr, sizeof(struct rfd), 2105 PCI_DMA_BIDIRECTIONAL); 2106 2107 /* Now that we have a new stopping point, we can clear the old 2108 * stopping point. We must sync twice to get the proper 2109 * ordering on the hardware side of things. */ 2110 old_before_last_rfd->command &= ~cpu_to_le16(cb_el); 2111 pci_dma_sync_single_for_device(nic->pdev, 2112 old_before_last_rx->dma_addr, sizeof(struct rfd), 2113 PCI_DMA_BIDIRECTIONAL); 2114 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN 2115 + ETH_FCS_LEN); 2116 pci_dma_sync_single_for_device(nic->pdev, 2117 old_before_last_rx->dma_addr, sizeof(struct rfd), 2118 PCI_DMA_BIDIRECTIONAL); 2119 } 2120 2121 if (restart_required) { 2122 // ack the rnr? 2123 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack); 2124 e100_start_receiver(nic, nic->rx_to_clean); 2125 if (work_done) 2126 (*work_done)++; 2127 } 2128 } 2129 2130 static void e100_rx_clean_list(struct nic *nic) 2131 { 2132 struct rx *rx; 2133 unsigned int i, count = nic->params.rfds.count; 2134 2135 nic->ru_running = RU_UNINITIALIZED; 2136 2137 if (nic->rxs) { 2138 for (rx = nic->rxs, i = 0; i < count; rx++, i++) { 2139 if (rx->skb) { 2140 pci_unmap_single(nic->pdev, rx->dma_addr, 2141 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 2142 dev_kfree_skb(rx->skb); 2143 } 2144 } 2145 kfree(nic->rxs); 2146 nic->rxs = NULL; 2147 } 2148 2149 nic->rx_to_use = nic->rx_to_clean = NULL; 2150 } 2151 2152 static int e100_rx_alloc_list(struct nic *nic) 2153 { 2154 struct rx *rx; 2155 unsigned int i, count = nic->params.rfds.count; 2156 struct rfd *before_last; 2157 2158 nic->rx_to_use = nic->rx_to_clean = NULL; 2159 nic->ru_running = RU_UNINITIALIZED; 2160 2161 if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC))) 2162 return -ENOMEM; 2163 2164 for (rx = nic->rxs, i = 0; i < count; rx++, i++) { 2165 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; 2166 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; 2167 if (e100_rx_alloc_skb(nic, rx)) { 2168 e100_rx_clean_list(nic); 2169 return -ENOMEM; 2170 } 2171 } 2172 /* Set the el-bit on the buffer that is before the last buffer. 2173 * This lets us update the next pointer on the last buffer without 2174 * worrying about hardware touching it. 2175 * We set the size to 0 to prevent hardware from touching this buffer. 2176 * When the hardware hits the before last buffer with el-bit and size 2177 * of 0, it will RNR interrupt, the RU will go into the No Resources 2178 * state. It will not complete nor write to this buffer. */ 2179 rx = nic->rxs->prev->prev; 2180 before_last = (struct rfd *)rx->skb->data; 2181 before_last->command |= cpu_to_le16(cb_el); 2182 before_last->size = 0; 2183 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, 2184 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); 2185 2186 nic->rx_to_use = nic->rx_to_clean = nic->rxs; 2187 nic->ru_running = RU_SUSPENDED; 2188 2189 return 0; 2190 } 2191 2192 static irqreturn_t e100_intr(int irq, void *dev_id) 2193 { 2194 struct net_device *netdev = dev_id; 2195 struct nic *nic = netdev_priv(netdev); 2196 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack); 2197 2198 netif_printk(nic, intr, KERN_DEBUG, nic->netdev, 2199 "stat_ack = 0x%02X\n", stat_ack); 2200 2201 if (stat_ack == stat_ack_not_ours || /* Not our interrupt */ 2202 stat_ack == stat_ack_not_present) /* Hardware is ejected */ 2203 return IRQ_NONE; 2204 2205 /* Ack interrupt(s) */ 2206 iowrite8(stat_ack, &nic->csr->scb.stat_ack); 2207 2208 /* We hit Receive No Resource (RNR); restart RU after cleaning */ 2209 if (stat_ack & stat_ack_rnr) 2210 nic->ru_running = RU_SUSPENDED; 2211 2212 if (likely(napi_schedule_prep(&nic->napi))) { 2213 e100_disable_irq(nic); 2214 __napi_schedule(&nic->napi); 2215 } 2216 2217 return IRQ_HANDLED; 2218 } 2219 2220 static int e100_poll(struct napi_struct *napi, int budget) 2221 { 2222 struct nic *nic = container_of(napi, struct nic, napi); 2223 unsigned int work_done = 0; 2224 2225 e100_rx_clean(nic, &work_done, budget); 2226 e100_tx_clean(nic); 2227 2228 /* If budget fully consumed, continue polling */ 2229 if (work_done == budget) 2230 return budget; 2231 2232 /* only re-enable interrupt if stack agrees polling is really done */ 2233 if (likely(napi_complete_done(napi, work_done))) 2234 e100_enable_irq(nic); 2235 2236 return work_done; 2237 } 2238 2239 #ifdef CONFIG_NET_POLL_CONTROLLER 2240 static void e100_netpoll(struct net_device *netdev) 2241 { 2242 struct nic *nic = netdev_priv(netdev); 2243 2244 e100_disable_irq(nic); 2245 e100_intr(nic->pdev->irq, netdev); 2246 e100_tx_clean(nic); 2247 e100_enable_irq(nic); 2248 } 2249 #endif 2250 2251 static int e100_set_mac_address(struct net_device *netdev, void *p) 2252 { 2253 struct nic *nic = netdev_priv(netdev); 2254 struct sockaddr *addr = p; 2255 2256 if (!is_valid_ether_addr(addr->sa_data)) 2257 return -EADDRNOTAVAIL; 2258 2259 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2260 e100_exec_cb(nic, NULL, e100_setup_iaaddr); 2261 2262 return 0; 2263 } 2264 2265 static int e100_asf(struct nic *nic) 2266 { 2267 /* ASF can be enabled from eeprom */ 2268 return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && 2269 (nic->eeprom[eeprom_config_asf] & eeprom_asf) && 2270 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) && 2271 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE); 2272 } 2273 2274 static int e100_up(struct nic *nic) 2275 { 2276 int err; 2277 2278 if ((err = e100_rx_alloc_list(nic))) 2279 return err; 2280 if ((err = e100_alloc_cbs(nic))) 2281 goto err_rx_clean_list; 2282 if ((err = e100_hw_init(nic))) 2283 goto err_clean_cbs; 2284 e100_set_multicast_list(nic->netdev); 2285 e100_start_receiver(nic, NULL); 2286 mod_timer(&nic->watchdog, jiffies); 2287 if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED, 2288 nic->netdev->name, nic->netdev))) 2289 goto err_no_irq; 2290 netif_wake_queue(nic->netdev); 2291 napi_enable(&nic->napi); 2292 /* enable ints _after_ enabling poll, preventing a race between 2293 * disable ints+schedule */ 2294 e100_enable_irq(nic); 2295 return 0; 2296 2297 err_no_irq: 2298 del_timer_sync(&nic->watchdog); 2299 err_clean_cbs: 2300 e100_clean_cbs(nic); 2301 err_rx_clean_list: 2302 e100_rx_clean_list(nic); 2303 return err; 2304 } 2305 2306 static void e100_down(struct nic *nic) 2307 { 2308 /* wait here for poll to complete */ 2309 napi_disable(&nic->napi); 2310 netif_stop_queue(nic->netdev); 2311 e100_hw_reset(nic); 2312 free_irq(nic->pdev->irq, nic->netdev); 2313 del_timer_sync(&nic->watchdog); 2314 netif_carrier_off(nic->netdev); 2315 e100_clean_cbs(nic); 2316 e100_rx_clean_list(nic); 2317 } 2318 2319 static void e100_tx_timeout(struct net_device *netdev) 2320 { 2321 struct nic *nic = netdev_priv(netdev); 2322 2323 /* Reset outside of interrupt context, to avoid request_irq 2324 * in interrupt context */ 2325 schedule_work(&nic->tx_timeout_task); 2326 } 2327 2328 static void e100_tx_timeout_task(struct work_struct *work) 2329 { 2330 struct nic *nic = container_of(work, struct nic, tx_timeout_task); 2331 struct net_device *netdev = nic->netdev; 2332 2333 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, 2334 "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status)); 2335 2336 rtnl_lock(); 2337 if (netif_running(netdev)) { 2338 e100_down(netdev_priv(netdev)); 2339 e100_up(netdev_priv(netdev)); 2340 } 2341 rtnl_unlock(); 2342 } 2343 2344 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) 2345 { 2346 int err; 2347 struct sk_buff *skb; 2348 2349 /* Use driver resources to perform internal MAC or PHY 2350 * loopback test. A single packet is prepared and transmitted 2351 * in loopback mode, and the test passes if the received 2352 * packet compares byte-for-byte to the transmitted packet. */ 2353 2354 if ((err = e100_rx_alloc_list(nic))) 2355 return err; 2356 if ((err = e100_alloc_cbs(nic))) 2357 goto err_clean_rx; 2358 2359 /* ICH PHY loopback is broken so do MAC loopback instead */ 2360 if (nic->flags & ich && loopback_mode == lb_phy) 2361 loopback_mode = lb_mac; 2362 2363 nic->loopback = loopback_mode; 2364 if ((err = e100_hw_init(nic))) 2365 goto err_loopback_none; 2366 2367 if (loopback_mode == lb_phy) 2368 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 2369 BMCR_LOOPBACK); 2370 2371 e100_start_receiver(nic, NULL); 2372 2373 if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) { 2374 err = -ENOMEM; 2375 goto err_loopback_none; 2376 } 2377 skb_put(skb, ETH_DATA_LEN); 2378 memset(skb->data, 0xFF, ETH_DATA_LEN); 2379 e100_xmit_frame(skb, nic->netdev); 2380 2381 msleep(10); 2382 2383 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr, 2384 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 2385 2386 if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), 2387 skb->data, ETH_DATA_LEN)) 2388 err = -EAGAIN; 2389 2390 err_loopback_none: 2391 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); 2392 nic->loopback = lb_none; 2393 e100_clean_cbs(nic); 2394 e100_hw_reset(nic); 2395 err_clean_rx: 2396 e100_rx_clean_list(nic); 2397 return err; 2398 } 2399 2400 #define MII_LED_CONTROL 0x1B 2401 #define E100_82552_LED_OVERRIDE 0x19 2402 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */ 2403 #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */ 2404 2405 static int e100_get_link_ksettings(struct net_device *netdev, 2406 struct ethtool_link_ksettings *cmd) 2407 { 2408 struct nic *nic = netdev_priv(netdev); 2409 2410 mii_ethtool_get_link_ksettings(&nic->mii, cmd); 2411 2412 return 0; 2413 } 2414 2415 static int e100_set_link_ksettings(struct net_device *netdev, 2416 const struct ethtool_link_ksettings *cmd) 2417 { 2418 struct nic *nic = netdev_priv(netdev); 2419 int err; 2420 2421 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); 2422 err = mii_ethtool_set_link_ksettings(&nic->mii, cmd); 2423 e100_exec_cb(nic, NULL, e100_configure); 2424 2425 return err; 2426 } 2427 2428 static void e100_get_drvinfo(struct net_device *netdev, 2429 struct ethtool_drvinfo *info) 2430 { 2431 struct nic *nic = netdev_priv(netdev); 2432 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 2433 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 2434 strlcpy(info->bus_info, pci_name(nic->pdev), 2435 sizeof(info->bus_info)); 2436 } 2437 2438 #define E100_PHY_REGS 0x1C 2439 static int e100_get_regs_len(struct net_device *netdev) 2440 { 2441 struct nic *nic = netdev_priv(netdev); 2442 return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf); 2443 } 2444 2445 static void e100_get_regs(struct net_device *netdev, 2446 struct ethtool_regs *regs, void *p) 2447 { 2448 struct nic *nic = netdev_priv(netdev); 2449 u32 *buff = p; 2450 int i; 2451 2452 regs->version = (1 << 24) | nic->pdev->revision; 2453 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 | 2454 ioread8(&nic->csr->scb.cmd_lo) << 16 | 2455 ioread16(&nic->csr->scb.status); 2456 for (i = E100_PHY_REGS; i >= 0; i--) 2457 buff[1 + E100_PHY_REGS - i] = 2458 mdio_read(netdev, nic->mii.phy_id, i); 2459 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); 2460 e100_exec_cb(nic, NULL, e100_dump); 2461 msleep(10); 2462 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf, 2463 sizeof(nic->mem->dump_buf)); 2464 } 2465 2466 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2467 { 2468 struct nic *nic = netdev_priv(netdev); 2469 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; 2470 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; 2471 } 2472 2473 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2474 { 2475 struct nic *nic = netdev_priv(netdev); 2476 2477 if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) || 2478 !device_can_wakeup(&nic->pdev->dev)) 2479 return -EOPNOTSUPP; 2480 2481 if (wol->wolopts) 2482 nic->flags |= wol_magic; 2483 else 2484 nic->flags &= ~wol_magic; 2485 2486 device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts); 2487 2488 e100_exec_cb(nic, NULL, e100_configure); 2489 2490 return 0; 2491 } 2492 2493 static u32 e100_get_msglevel(struct net_device *netdev) 2494 { 2495 struct nic *nic = netdev_priv(netdev); 2496 return nic->msg_enable; 2497 } 2498 2499 static void e100_set_msglevel(struct net_device *netdev, u32 value) 2500 { 2501 struct nic *nic = netdev_priv(netdev); 2502 nic->msg_enable = value; 2503 } 2504 2505 static int e100_nway_reset(struct net_device *netdev) 2506 { 2507 struct nic *nic = netdev_priv(netdev); 2508 return mii_nway_restart(&nic->mii); 2509 } 2510 2511 static u32 e100_get_link(struct net_device *netdev) 2512 { 2513 struct nic *nic = netdev_priv(netdev); 2514 return mii_link_ok(&nic->mii); 2515 } 2516 2517 static int e100_get_eeprom_len(struct net_device *netdev) 2518 { 2519 struct nic *nic = netdev_priv(netdev); 2520 return nic->eeprom_wc << 1; 2521 } 2522 2523 #define E100_EEPROM_MAGIC 0x1234 2524 static int e100_get_eeprom(struct net_device *netdev, 2525 struct ethtool_eeprom *eeprom, u8 *bytes) 2526 { 2527 struct nic *nic = netdev_priv(netdev); 2528 2529 eeprom->magic = E100_EEPROM_MAGIC; 2530 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); 2531 2532 return 0; 2533 } 2534 2535 static int e100_set_eeprom(struct net_device *netdev, 2536 struct ethtool_eeprom *eeprom, u8 *bytes) 2537 { 2538 struct nic *nic = netdev_priv(netdev); 2539 2540 if (eeprom->magic != E100_EEPROM_MAGIC) 2541 return -EINVAL; 2542 2543 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); 2544 2545 return e100_eeprom_save(nic, eeprom->offset >> 1, 2546 (eeprom->len >> 1) + 1); 2547 } 2548 2549 static void e100_get_ringparam(struct net_device *netdev, 2550 struct ethtool_ringparam *ring) 2551 { 2552 struct nic *nic = netdev_priv(netdev); 2553 struct param_range *rfds = &nic->params.rfds; 2554 struct param_range *cbs = &nic->params.cbs; 2555 2556 ring->rx_max_pending = rfds->max; 2557 ring->tx_max_pending = cbs->max; 2558 ring->rx_pending = rfds->count; 2559 ring->tx_pending = cbs->count; 2560 } 2561 2562 static int e100_set_ringparam(struct net_device *netdev, 2563 struct ethtool_ringparam *ring) 2564 { 2565 struct nic *nic = netdev_priv(netdev); 2566 struct param_range *rfds = &nic->params.rfds; 2567 struct param_range *cbs = &nic->params.cbs; 2568 2569 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 2570 return -EINVAL; 2571 2572 if (netif_running(netdev)) 2573 e100_down(nic); 2574 rfds->count = max(ring->rx_pending, rfds->min); 2575 rfds->count = min(rfds->count, rfds->max); 2576 cbs->count = max(ring->tx_pending, cbs->min); 2577 cbs->count = min(cbs->count, cbs->max); 2578 netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n", 2579 rfds->count, cbs->count); 2580 if (netif_running(netdev)) 2581 e100_up(nic); 2582 2583 return 0; 2584 } 2585 2586 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { 2587 "Link test (on/offline)", 2588 "Eeprom test (on/offline)", 2589 "Self test (offline)", 2590 "Mac loopback (offline)", 2591 "Phy loopback (offline)", 2592 }; 2593 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test) 2594 2595 static void e100_diag_test(struct net_device *netdev, 2596 struct ethtool_test *test, u64 *data) 2597 { 2598 struct ethtool_cmd cmd; 2599 struct nic *nic = netdev_priv(netdev); 2600 int i, err; 2601 2602 memset(data, 0, E100_TEST_LEN * sizeof(u64)); 2603 data[0] = !mii_link_ok(&nic->mii); 2604 data[1] = e100_eeprom_load(nic); 2605 if (test->flags & ETH_TEST_FL_OFFLINE) { 2606 2607 /* save speed, duplex & autoneg settings */ 2608 err = mii_ethtool_gset(&nic->mii, &cmd); 2609 2610 if (netif_running(netdev)) 2611 e100_down(nic); 2612 data[2] = e100_self_test(nic); 2613 data[3] = e100_loopback_test(nic, lb_mac); 2614 data[4] = e100_loopback_test(nic, lb_phy); 2615 2616 /* restore speed, duplex & autoneg settings */ 2617 err = mii_ethtool_sset(&nic->mii, &cmd); 2618 2619 if (netif_running(netdev)) 2620 e100_up(nic); 2621 } 2622 for (i = 0; i < E100_TEST_LEN; i++) 2623 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; 2624 2625 msleep_interruptible(4 * 1000); 2626 } 2627 2628 static int e100_set_phys_id(struct net_device *netdev, 2629 enum ethtool_phys_id_state state) 2630 { 2631 struct nic *nic = netdev_priv(netdev); 2632 enum led_state { 2633 led_on = 0x01, 2634 led_off = 0x04, 2635 led_on_559 = 0x05, 2636 led_on_557 = 0x07, 2637 }; 2638 u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE : 2639 MII_LED_CONTROL; 2640 u16 leds = 0; 2641 2642 switch (state) { 2643 case ETHTOOL_ID_ACTIVE: 2644 return 2; 2645 2646 case ETHTOOL_ID_ON: 2647 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON : 2648 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559; 2649 break; 2650 2651 case ETHTOOL_ID_OFF: 2652 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off; 2653 break; 2654 2655 case ETHTOOL_ID_INACTIVE: 2656 break; 2657 } 2658 2659 mdio_write(netdev, nic->mii.phy_id, led_reg, leds); 2660 return 0; 2661 } 2662 2663 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { 2664 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", 2665 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", 2666 "rx_length_errors", "rx_over_errors", "rx_crc_errors", 2667 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", 2668 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", 2669 "tx_heartbeat_errors", "tx_window_errors", 2670 /* device-specific stats */ 2671 "tx_deferred", "tx_single_collisions", "tx_multi_collisions", 2672 "tx_flow_control_pause", "rx_flow_control_pause", 2673 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", 2674 "rx_short_frame_errors", "rx_over_length_errors", 2675 }; 2676 #define E100_NET_STATS_LEN 21 2677 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats) 2678 2679 static int e100_get_sset_count(struct net_device *netdev, int sset) 2680 { 2681 switch (sset) { 2682 case ETH_SS_TEST: 2683 return E100_TEST_LEN; 2684 case ETH_SS_STATS: 2685 return E100_STATS_LEN; 2686 default: 2687 return -EOPNOTSUPP; 2688 } 2689 } 2690 2691 static void e100_get_ethtool_stats(struct net_device *netdev, 2692 struct ethtool_stats *stats, u64 *data) 2693 { 2694 struct nic *nic = netdev_priv(netdev); 2695 int i; 2696 2697 for (i = 0; i < E100_NET_STATS_LEN; i++) 2698 data[i] = ((unsigned long *)&netdev->stats)[i]; 2699 2700 data[i++] = nic->tx_deferred; 2701 data[i++] = nic->tx_single_collisions; 2702 data[i++] = nic->tx_multiple_collisions; 2703 data[i++] = nic->tx_fc_pause; 2704 data[i++] = nic->rx_fc_pause; 2705 data[i++] = nic->rx_fc_unsupported; 2706 data[i++] = nic->tx_tco_frames; 2707 data[i++] = nic->rx_tco_frames; 2708 data[i++] = nic->rx_short_frame_errors; 2709 data[i++] = nic->rx_over_length_errors; 2710 } 2711 2712 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2713 { 2714 switch (stringset) { 2715 case ETH_SS_TEST: 2716 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test)); 2717 break; 2718 case ETH_SS_STATS: 2719 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats)); 2720 break; 2721 } 2722 } 2723 2724 static const struct ethtool_ops e100_ethtool_ops = { 2725 .get_drvinfo = e100_get_drvinfo, 2726 .get_regs_len = e100_get_regs_len, 2727 .get_regs = e100_get_regs, 2728 .get_wol = e100_get_wol, 2729 .set_wol = e100_set_wol, 2730 .get_msglevel = e100_get_msglevel, 2731 .set_msglevel = e100_set_msglevel, 2732 .nway_reset = e100_nway_reset, 2733 .get_link = e100_get_link, 2734 .get_eeprom_len = e100_get_eeprom_len, 2735 .get_eeprom = e100_get_eeprom, 2736 .set_eeprom = e100_set_eeprom, 2737 .get_ringparam = e100_get_ringparam, 2738 .set_ringparam = e100_set_ringparam, 2739 .self_test = e100_diag_test, 2740 .get_strings = e100_get_strings, 2741 .set_phys_id = e100_set_phys_id, 2742 .get_ethtool_stats = e100_get_ethtool_stats, 2743 .get_sset_count = e100_get_sset_count, 2744 .get_ts_info = ethtool_op_get_ts_info, 2745 .get_link_ksettings = e100_get_link_ksettings, 2746 .set_link_ksettings = e100_set_link_ksettings, 2747 }; 2748 2749 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2750 { 2751 struct nic *nic = netdev_priv(netdev); 2752 2753 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); 2754 } 2755 2756 static int e100_alloc(struct nic *nic) 2757 { 2758 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem), 2759 &nic->dma_addr); 2760 return nic->mem ? 0 : -ENOMEM; 2761 } 2762 2763 static void e100_free(struct nic *nic) 2764 { 2765 if (nic->mem) { 2766 pci_free_consistent(nic->pdev, sizeof(struct mem), 2767 nic->mem, nic->dma_addr); 2768 nic->mem = NULL; 2769 } 2770 } 2771 2772 static int e100_open(struct net_device *netdev) 2773 { 2774 struct nic *nic = netdev_priv(netdev); 2775 int err = 0; 2776 2777 netif_carrier_off(netdev); 2778 if ((err = e100_up(nic))) 2779 netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n"); 2780 return err; 2781 } 2782 2783 static int e100_close(struct net_device *netdev) 2784 { 2785 e100_down(netdev_priv(netdev)); 2786 return 0; 2787 } 2788 2789 static int e100_set_features(struct net_device *netdev, 2790 netdev_features_t features) 2791 { 2792 struct nic *nic = netdev_priv(netdev); 2793 netdev_features_t changed = features ^ netdev->features; 2794 2795 if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL))) 2796 return 0; 2797 2798 netdev->features = features; 2799 e100_exec_cb(nic, NULL, e100_configure); 2800 return 0; 2801 } 2802 2803 static const struct net_device_ops e100_netdev_ops = { 2804 .ndo_open = e100_open, 2805 .ndo_stop = e100_close, 2806 .ndo_start_xmit = e100_xmit_frame, 2807 .ndo_validate_addr = eth_validate_addr, 2808 .ndo_set_rx_mode = e100_set_multicast_list, 2809 .ndo_set_mac_address = e100_set_mac_address, 2810 .ndo_do_ioctl = e100_do_ioctl, 2811 .ndo_tx_timeout = e100_tx_timeout, 2812 #ifdef CONFIG_NET_POLL_CONTROLLER 2813 .ndo_poll_controller = e100_netpoll, 2814 #endif 2815 .ndo_set_features = e100_set_features, 2816 }; 2817 2818 static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2819 { 2820 struct net_device *netdev; 2821 struct nic *nic; 2822 int err; 2823 2824 if (!(netdev = alloc_etherdev(sizeof(struct nic)))) 2825 return -ENOMEM; 2826 2827 netdev->hw_features |= NETIF_F_RXFCS; 2828 netdev->priv_flags |= IFF_SUPP_NOFCS; 2829 netdev->hw_features |= NETIF_F_RXALL; 2830 2831 netdev->netdev_ops = &e100_netdev_ops; 2832 netdev->ethtool_ops = &e100_ethtool_ops; 2833 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; 2834 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 2835 2836 nic = netdev_priv(netdev); 2837 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT); 2838 nic->netdev = netdev; 2839 nic->pdev = pdev; 2840 nic->msg_enable = (1 << debug) - 1; 2841 nic->mdio_ctrl = mdio_ctrl_hw; 2842 pci_set_drvdata(pdev, netdev); 2843 2844 if ((err = pci_enable_device(pdev))) { 2845 netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n"); 2846 goto err_out_free_dev; 2847 } 2848 2849 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 2850 netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n"); 2851 err = -ENODEV; 2852 goto err_out_disable_pdev; 2853 } 2854 2855 if ((err = pci_request_regions(pdev, DRV_NAME))) { 2856 netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n"); 2857 goto err_out_disable_pdev; 2858 } 2859 2860 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) { 2861 netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n"); 2862 goto err_out_free_res; 2863 } 2864 2865 SET_NETDEV_DEV(netdev, &pdev->dev); 2866 2867 if (use_io) 2868 netif_info(nic, probe, nic->netdev, "using i/o access mode\n"); 2869 2870 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr)); 2871 if (!nic->csr) { 2872 netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n"); 2873 err = -ENOMEM; 2874 goto err_out_free_res; 2875 } 2876 2877 if (ent->driver_data) 2878 nic->flags |= ich; 2879 else 2880 nic->flags &= ~ich; 2881 2882 e100_get_defaults(nic); 2883 2884 /* D100 MAC doesn't allow rx of vlan packets with normal MTU */ 2885 if (nic->mac < mac_82558_D101_A4) 2886 netdev->features |= NETIF_F_VLAN_CHALLENGED; 2887 2888 /* locks must be initialized before calling hw_reset */ 2889 spin_lock_init(&nic->cb_lock); 2890 spin_lock_init(&nic->cmd_lock); 2891 spin_lock_init(&nic->mdio_lock); 2892 2893 /* Reset the device before pci_set_master() in case device is in some 2894 * funky state and has an interrupt pending - hint: we don't have the 2895 * interrupt handler registered yet. */ 2896 e100_hw_reset(nic); 2897 2898 pci_set_master(pdev); 2899 2900 timer_setup(&nic->watchdog, e100_watchdog, 0); 2901 2902 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task); 2903 2904 if ((err = e100_alloc(nic))) { 2905 netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n"); 2906 goto err_out_iounmap; 2907 } 2908 2909 if ((err = e100_eeprom_load(nic))) 2910 goto err_out_free; 2911 2912 e100_phy_init(nic); 2913 2914 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); 2915 if (!is_valid_ether_addr(netdev->dev_addr)) { 2916 if (!eeprom_bad_csum_allow) { 2917 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n"); 2918 err = -EAGAIN; 2919 goto err_out_free; 2920 } else { 2921 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n"); 2922 } 2923 } 2924 2925 /* Wol magic packet can be enabled from eeprom */ 2926 if ((nic->mac >= mac_82558_D101_A4) && 2927 (nic->eeprom[eeprom_id] & eeprom_id_wol)) { 2928 nic->flags |= wol_magic; 2929 device_set_wakeup_enable(&pdev->dev, true); 2930 } 2931 2932 /* ack any pending wake events, disable PME */ 2933 pci_pme_active(pdev, false); 2934 2935 strcpy(netdev->name, "eth%d"); 2936 if ((err = register_netdev(netdev))) { 2937 netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n"); 2938 goto err_out_free; 2939 } 2940 nic->cbs_pool = dma_pool_create(netdev->name, 2941 &nic->pdev->dev, 2942 nic->params.cbs.max * sizeof(struct cb), 2943 sizeof(u32), 2944 0); 2945 if (!nic->cbs_pool) { 2946 netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n"); 2947 err = -ENOMEM; 2948 goto err_out_pool; 2949 } 2950 netif_info(nic, probe, nic->netdev, 2951 "addr 0x%llx, irq %d, MAC addr %pM\n", 2952 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0), 2953 pdev->irq, netdev->dev_addr); 2954 2955 return 0; 2956 2957 err_out_pool: 2958 unregister_netdev(netdev); 2959 err_out_free: 2960 e100_free(nic); 2961 err_out_iounmap: 2962 pci_iounmap(pdev, nic->csr); 2963 err_out_free_res: 2964 pci_release_regions(pdev); 2965 err_out_disable_pdev: 2966 pci_disable_device(pdev); 2967 err_out_free_dev: 2968 free_netdev(netdev); 2969 return err; 2970 } 2971 2972 static void e100_remove(struct pci_dev *pdev) 2973 { 2974 struct net_device *netdev = pci_get_drvdata(pdev); 2975 2976 if (netdev) { 2977 struct nic *nic = netdev_priv(netdev); 2978 unregister_netdev(netdev); 2979 e100_free(nic); 2980 pci_iounmap(pdev, nic->csr); 2981 dma_pool_destroy(nic->cbs_pool); 2982 free_netdev(netdev); 2983 pci_release_regions(pdev); 2984 pci_disable_device(pdev); 2985 } 2986 } 2987 2988 #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */ 2989 #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */ 2990 #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */ 2991 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake) 2992 { 2993 struct net_device *netdev = pci_get_drvdata(pdev); 2994 struct nic *nic = netdev_priv(netdev); 2995 2996 if (netif_running(netdev)) 2997 e100_down(nic); 2998 netif_device_detach(netdev); 2999 3000 pci_save_state(pdev); 3001 3002 if ((nic->flags & wol_magic) | e100_asf(nic)) { 3003 /* enable reverse auto-negotiation */ 3004 if (nic->phy == phy_82552_v) { 3005 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, 3006 E100_82552_SMARTSPEED); 3007 3008 mdio_write(netdev, nic->mii.phy_id, 3009 E100_82552_SMARTSPEED, smartspeed | 3010 E100_82552_REV_ANEG | E100_82552_ANEG_NOW); 3011 } 3012 *enable_wake = true; 3013 } else { 3014 *enable_wake = false; 3015 } 3016 3017 pci_clear_master(pdev); 3018 } 3019 3020 static int __e100_power_off(struct pci_dev *pdev, bool wake) 3021 { 3022 if (wake) 3023 return pci_prepare_to_sleep(pdev); 3024 3025 pci_wake_from_d3(pdev, false); 3026 pci_set_power_state(pdev, PCI_D3hot); 3027 3028 return 0; 3029 } 3030 3031 #ifdef CONFIG_PM 3032 static int e100_suspend(struct pci_dev *pdev, pm_message_t state) 3033 { 3034 bool wake; 3035 __e100_shutdown(pdev, &wake); 3036 return __e100_power_off(pdev, wake); 3037 } 3038 3039 static int e100_resume(struct pci_dev *pdev) 3040 { 3041 struct net_device *netdev = pci_get_drvdata(pdev); 3042 struct nic *nic = netdev_priv(netdev); 3043 3044 pci_set_power_state(pdev, PCI_D0); 3045 pci_restore_state(pdev); 3046 /* ack any pending wake events, disable PME */ 3047 pci_enable_wake(pdev, PCI_D0, 0); 3048 3049 /* disable reverse auto-negotiation */ 3050 if (nic->phy == phy_82552_v) { 3051 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, 3052 E100_82552_SMARTSPEED); 3053 3054 mdio_write(netdev, nic->mii.phy_id, 3055 E100_82552_SMARTSPEED, 3056 smartspeed & ~(E100_82552_REV_ANEG)); 3057 } 3058 3059 netif_device_attach(netdev); 3060 if (netif_running(netdev)) 3061 e100_up(nic); 3062 3063 return 0; 3064 } 3065 #endif /* CONFIG_PM */ 3066 3067 static void e100_shutdown(struct pci_dev *pdev) 3068 { 3069 bool wake; 3070 __e100_shutdown(pdev, &wake); 3071 if (system_state == SYSTEM_POWER_OFF) 3072 __e100_power_off(pdev, wake); 3073 } 3074 3075 /* ------------------ PCI Error Recovery infrastructure -------------- */ 3076 /** 3077 * e100_io_error_detected - called when PCI error is detected. 3078 * @pdev: Pointer to PCI device 3079 * @state: The current pci connection state 3080 */ 3081 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 3082 { 3083 struct net_device *netdev = pci_get_drvdata(pdev); 3084 struct nic *nic = netdev_priv(netdev); 3085 3086 netif_device_detach(netdev); 3087 3088 if (state == pci_channel_io_perm_failure) 3089 return PCI_ERS_RESULT_DISCONNECT; 3090 3091 if (netif_running(netdev)) 3092 e100_down(nic); 3093 pci_disable_device(pdev); 3094 3095 /* Request a slot reset. */ 3096 return PCI_ERS_RESULT_NEED_RESET; 3097 } 3098 3099 /** 3100 * e100_io_slot_reset - called after the pci bus has been reset. 3101 * @pdev: Pointer to PCI device 3102 * 3103 * Restart the card from scratch. 3104 */ 3105 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev) 3106 { 3107 struct net_device *netdev = pci_get_drvdata(pdev); 3108 struct nic *nic = netdev_priv(netdev); 3109 3110 if (pci_enable_device(pdev)) { 3111 pr_err("Cannot re-enable PCI device after reset\n"); 3112 return PCI_ERS_RESULT_DISCONNECT; 3113 } 3114 pci_set_master(pdev); 3115 3116 /* Only one device per card can do a reset */ 3117 if (0 != PCI_FUNC(pdev->devfn)) 3118 return PCI_ERS_RESULT_RECOVERED; 3119 e100_hw_reset(nic); 3120 e100_phy_init(nic); 3121 3122 return PCI_ERS_RESULT_RECOVERED; 3123 } 3124 3125 /** 3126 * e100_io_resume - resume normal operations 3127 * @pdev: Pointer to PCI device 3128 * 3129 * Resume normal operations after an error recovery 3130 * sequence has been completed. 3131 */ 3132 static void e100_io_resume(struct pci_dev *pdev) 3133 { 3134 struct net_device *netdev = pci_get_drvdata(pdev); 3135 struct nic *nic = netdev_priv(netdev); 3136 3137 /* ack any pending wake events, disable PME */ 3138 pci_enable_wake(pdev, PCI_D0, 0); 3139 3140 netif_device_attach(netdev); 3141 if (netif_running(netdev)) { 3142 e100_open(netdev); 3143 mod_timer(&nic->watchdog, jiffies); 3144 } 3145 } 3146 3147 static const struct pci_error_handlers e100_err_handler = { 3148 .error_detected = e100_io_error_detected, 3149 .slot_reset = e100_io_slot_reset, 3150 .resume = e100_io_resume, 3151 }; 3152 3153 static struct pci_driver e100_driver = { 3154 .name = DRV_NAME, 3155 .id_table = e100_id_table, 3156 .probe = e100_probe, 3157 .remove = e100_remove, 3158 #ifdef CONFIG_PM 3159 /* Power Management hooks */ 3160 .suspend = e100_suspend, 3161 .resume = e100_resume, 3162 #endif 3163 .shutdown = e100_shutdown, 3164 .err_handler = &e100_err_handler, 3165 }; 3166 3167 static int __init e100_init_module(void) 3168 { 3169 if (((1 << debug) - 1) & NETIF_MSG_DRV) { 3170 pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION); 3171 pr_info("%s\n", DRV_COPYRIGHT); 3172 } 3173 return pci_register_driver(&e100_driver); 3174 } 3175 3176 static void __exit e100_cleanup_module(void) 3177 { 3178 pci_unregister_driver(&e100_driver); 3179 } 3180 3181 module_init(e100_init_module); 3182 module_exit(e100_cleanup_module); 3183