xref: /openbmc/linux/drivers/net/ethernet/intel/e100.c (revision 72ed5d5624af384eaf74d84915810d54486a75e2)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3 
4 /*
5  *	e100.c: Intel(R) PRO/100 ethernet driver
6  *
7  *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
8  *	original e100 driver, but better described as a munging of
9  *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
10  *
11  *	References:
12  *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
13  *		Open Source Software Developers Manual,
14  *		http://sourceforge.net/projects/e1000
15  *
16  *
17  *	                      Theory of Operation
18  *
19  *	I.   General
20  *
21  *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
22  *	controller family, which includes the 82557, 82558, 82559, 82550,
23  *	82551, and 82562 devices.  82558 and greater controllers
24  *	integrate the Intel 82555 PHY.  The controllers are used in
25  *	server and client network interface cards, as well as in
26  *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
27  *	configurations.  8255x supports a 32-bit linear addressing
28  *	mode and operates at 33Mhz PCI clock rate.
29  *
30  *	II.  Driver Operation
31  *
32  *	Memory-mapped mode is used exclusively to access the device's
33  *	shared-memory structure, the Control/Status Registers (CSR). All
34  *	setup, configuration, and control of the device, including queuing
35  *	of Tx, Rx, and configuration commands is through the CSR.
36  *	cmd_lock serializes accesses to the CSR command register.  cb_lock
37  *	protects the shared Command Block List (CBL).
38  *
39  *	8255x is highly MII-compliant and all access to the PHY go
40  *	through the Management Data Interface (MDI).  Consequently, the
41  *	driver leverages the mii.c library shared with other MII-compliant
42  *	devices.
43  *
44  *	Big- and Little-Endian byte order as well as 32- and 64-bit
45  *	archs are supported.  Weak-ordered memory and non-cache-coherent
46  *	archs are supported.
47  *
48  *	III. Transmit
49  *
50  *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
51  *	together in a fixed-size ring (CBL) thus forming the flexible mode
52  *	memory structure.  A TCB marked with the suspend-bit indicates
53  *	the end of the ring.  The last TCB processed suspends the
54  *	controller, and the controller can be restarted by issue a CU
55  *	resume command to continue from the suspend point, or a CU start
56  *	command to start at a given position in the ring.
57  *
58  *	Non-Tx commands (config, multicast setup, etc) are linked
59  *	into the CBL ring along with Tx commands.  The common structure
60  *	used for both Tx and non-Tx commands is the Command Block (CB).
61  *
62  *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
63  *	is the next CB to check for completion; cb_to_send is the first
64  *	CB to start on in case of a previous failure to resume.  CB clean
65  *	up happens in interrupt context in response to a CU interrupt.
66  *	cbs_avail keeps track of number of free CB resources available.
67  *
68  * 	Hardware padding of short packets to minimum packet size is
69  * 	enabled.  82557 pads with 7Eh, while the later controllers pad
70  * 	with 00h.
71  *
72  *	IV.  Receive
73  *
74  *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
75  *	Descriptors (RFD) + data buffer, thus forming the simplified mode
76  *	memory structure.  Rx skbs are allocated to contain both the RFD
77  *	and the data buffer, but the RFD is pulled off before the skb is
78  *	indicated.  The data buffer is aligned such that encapsulated
79  *	protocol headers are u32-aligned.  Since the RFD is part of the
80  *	mapped shared memory, and completion status is contained within
81  *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
82  *	view from software and hardware.
83  *
84  *	In order to keep updates to the RFD link field from colliding with
85  *	hardware writes to mark packets complete, we use the feature that
86  *	hardware will not write to a size 0 descriptor and mark the previous
87  *	packet as end-of-list (EL).   After updating the link, we remove EL
88  *	and only then restore the size such that hardware may use the
89  *	previous-to-end RFD.
90  *
91  *	Under typical operation, the  receive unit (RU) is start once,
92  *	and the controller happily fills RFDs as frames arrive.  If
93  *	replacement RFDs cannot be allocated, or the RU goes non-active,
94  *	the RU must be restarted.  Frame arrival generates an interrupt,
95  *	and Rx indication and re-allocation happen in the same context,
96  *	therefore no locking is required.  A software-generated interrupt
97  *	is generated from the watchdog to recover from a failed allocation
98  *	scenario where all Rx resources have been indicated and none re-
99  *	placed.
100  *
101  *	V.   Miscellaneous
102  *
103  * 	VLAN offloading of tagging, stripping and filtering is not
104  * 	supported, but driver will accommodate the extra 4-byte VLAN tag
105  * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
106  * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
107  * 	not supported (hardware limitation).
108  *
109  * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
110  *
111  * 	Thanks to JC (jchapman@katalix.com) for helping with
112  * 	testing/troubleshooting the development driver.
113  *
114  * 	TODO:
115  * 	o several entry points race with dev->close
116  * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
117  *
118  *	FIXES:
119  * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
120  *	- Stratus87247: protect MDI control register manipulations
121  * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
122  *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
123  */
124 
125 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
126 
127 #include <linux/hardirq.h>
128 #include <linux/interrupt.h>
129 #include <linux/module.h>
130 #include <linux/moduleparam.h>
131 #include <linux/kernel.h>
132 #include <linux/types.h>
133 #include <linux/sched.h>
134 #include <linux/slab.h>
135 #include <linux/delay.h>
136 #include <linux/init.h>
137 #include <linux/pci.h>
138 #include <linux/dma-mapping.h>
139 #include <linux/dmapool.h>
140 #include <linux/netdevice.h>
141 #include <linux/etherdevice.h>
142 #include <linux/mii.h>
143 #include <linux/if_vlan.h>
144 #include <linux/skbuff.h>
145 #include <linux/ethtool.h>
146 #include <linux/string.h>
147 #include <linux/firmware.h>
148 #include <linux/rtnetlink.h>
149 #include <asm/unaligned.h>
150 
151 
152 #define DRV_NAME		"e100"
153 #define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
154 #define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"
155 
156 #define E100_WATCHDOG_PERIOD	(2 * HZ)
157 #define E100_NAPI_WEIGHT	16
158 
159 #define FIRMWARE_D101M		"e100/d101m_ucode.bin"
160 #define FIRMWARE_D101S		"e100/d101s_ucode.bin"
161 #define FIRMWARE_D102E		"e100/d102e_ucode.bin"
162 
163 MODULE_DESCRIPTION(DRV_DESCRIPTION);
164 MODULE_AUTHOR(DRV_COPYRIGHT);
165 MODULE_LICENSE("GPL v2");
166 MODULE_FIRMWARE(FIRMWARE_D101M);
167 MODULE_FIRMWARE(FIRMWARE_D101S);
168 MODULE_FIRMWARE(FIRMWARE_D102E);
169 
170 static int debug = 3;
171 static int eeprom_bad_csum_allow = 0;
172 static int use_io = 0;
173 module_param(debug, int, 0);
174 module_param(eeprom_bad_csum_allow, int, 0);
175 module_param(use_io, int, 0);
176 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
177 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
178 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
179 
180 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
181 	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
182 	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
183 static const struct pci_device_id e100_id_table[] = {
184 	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
185 	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
186 	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
187 	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
188 	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
189 	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
190 	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
191 	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
192 	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
193 	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
194 	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
195 	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
196 	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
197 	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
198 	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
199 	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
200 	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
201 	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
202 	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
203 	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
204 	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
205 	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
206 	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
207 	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
208 	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
209 	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
210 	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
211 	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
212 	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
213 	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
214 	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
215 	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
216 	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
217 	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
218 	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
219 	INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
220 	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
221 	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
222 	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
223 	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
224 	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
225 	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
226 	{ 0, }
227 };
228 MODULE_DEVICE_TABLE(pci, e100_id_table);
229 
230 enum mac {
231 	mac_82557_D100_A  = 0,
232 	mac_82557_D100_B  = 1,
233 	mac_82557_D100_C  = 2,
234 	mac_82558_D101_A4 = 4,
235 	mac_82558_D101_B0 = 5,
236 	mac_82559_D101M   = 8,
237 	mac_82559_D101S   = 9,
238 	mac_82550_D102    = 12,
239 	mac_82550_D102_C  = 13,
240 	mac_82551_E       = 14,
241 	mac_82551_F       = 15,
242 	mac_82551_10      = 16,
243 	mac_unknown       = 0xFF,
244 };
245 
246 enum phy {
247 	phy_100a     = 0x000003E0,
248 	phy_100c     = 0x035002A8,
249 	phy_82555_tx = 0x015002A8,
250 	phy_nsc_tx   = 0x5C002000,
251 	phy_82562_et = 0x033002A8,
252 	phy_82562_em = 0x032002A8,
253 	phy_82562_ek = 0x031002A8,
254 	phy_82562_eh = 0x017002A8,
255 	phy_82552_v  = 0xd061004d,
256 	phy_unknown  = 0xFFFFFFFF,
257 };
258 
259 /* CSR (Control/Status Registers) */
260 struct csr {
261 	struct {
262 		u8 status;
263 		u8 stat_ack;
264 		u8 cmd_lo;
265 		u8 cmd_hi;
266 		u32 gen_ptr;
267 	} scb;
268 	u32 port;
269 	u16 flash_ctrl;
270 	u8 eeprom_ctrl_lo;
271 	u8 eeprom_ctrl_hi;
272 	u32 mdi_ctrl;
273 	u32 rx_dma_count;
274 };
275 
276 enum scb_status {
277 	rus_no_res       = 0x08,
278 	rus_ready        = 0x10,
279 	rus_mask         = 0x3C,
280 };
281 
282 enum ru_state  {
283 	RU_SUSPENDED = 0,
284 	RU_RUNNING	 = 1,
285 	RU_UNINITIALIZED = -1,
286 };
287 
288 enum scb_stat_ack {
289 	stat_ack_not_ours    = 0x00,
290 	stat_ack_sw_gen      = 0x04,
291 	stat_ack_rnr         = 0x10,
292 	stat_ack_cu_idle     = 0x20,
293 	stat_ack_frame_rx    = 0x40,
294 	stat_ack_cu_cmd_done = 0x80,
295 	stat_ack_not_present = 0xFF,
296 	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
297 	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
298 };
299 
300 enum scb_cmd_hi {
301 	irq_mask_none = 0x00,
302 	irq_mask_all  = 0x01,
303 	irq_sw_gen    = 0x02,
304 };
305 
306 enum scb_cmd_lo {
307 	cuc_nop        = 0x00,
308 	ruc_start      = 0x01,
309 	ruc_load_base  = 0x06,
310 	cuc_start      = 0x10,
311 	cuc_resume     = 0x20,
312 	cuc_dump_addr  = 0x40,
313 	cuc_dump_stats = 0x50,
314 	cuc_load_base  = 0x60,
315 	cuc_dump_reset = 0x70,
316 };
317 
318 enum cuc_dump {
319 	cuc_dump_complete       = 0x0000A005,
320 	cuc_dump_reset_complete = 0x0000A007,
321 };
322 
323 enum port {
324 	software_reset  = 0x0000,
325 	selftest        = 0x0001,
326 	selective_reset = 0x0002,
327 };
328 
329 enum eeprom_ctrl_lo {
330 	eesk = 0x01,
331 	eecs = 0x02,
332 	eedi = 0x04,
333 	eedo = 0x08,
334 };
335 
336 enum mdi_ctrl {
337 	mdi_write = 0x04000000,
338 	mdi_read  = 0x08000000,
339 	mdi_ready = 0x10000000,
340 };
341 
342 enum eeprom_op {
343 	op_write = 0x05,
344 	op_read  = 0x06,
345 	op_ewds  = 0x10,
346 	op_ewen  = 0x13,
347 };
348 
349 enum eeprom_offsets {
350 	eeprom_cnfg_mdix  = 0x03,
351 	eeprom_phy_iface  = 0x06,
352 	eeprom_id         = 0x0A,
353 	eeprom_config_asf = 0x0D,
354 	eeprom_smbus_addr = 0x90,
355 };
356 
357 enum eeprom_cnfg_mdix {
358 	eeprom_mdix_enabled = 0x0080,
359 };
360 
361 enum eeprom_phy_iface {
362 	NoSuchPhy = 0,
363 	I82553AB,
364 	I82553C,
365 	I82503,
366 	DP83840,
367 	S80C240,
368 	S80C24,
369 	I82555,
370 	DP83840A = 10,
371 };
372 
373 enum eeprom_id {
374 	eeprom_id_wol = 0x0020,
375 };
376 
377 enum eeprom_config_asf {
378 	eeprom_asf = 0x8000,
379 	eeprom_gcl = 0x4000,
380 };
381 
382 enum cb_status {
383 	cb_complete = 0x8000,
384 	cb_ok       = 0x2000,
385 };
386 
387 /*
388  * cb_command - Command Block flags
389  * @cb_tx_nc:  0: controller does CRC (normal),  1: CRC from skb memory
390  */
391 enum cb_command {
392 	cb_nop    = 0x0000,
393 	cb_iaaddr = 0x0001,
394 	cb_config = 0x0002,
395 	cb_multi  = 0x0003,
396 	cb_tx     = 0x0004,
397 	cb_ucode  = 0x0005,
398 	cb_dump   = 0x0006,
399 	cb_tx_sf  = 0x0008,
400 	cb_tx_nc  = 0x0010,
401 	cb_cid    = 0x1f00,
402 	cb_i      = 0x2000,
403 	cb_s      = 0x4000,
404 	cb_el     = 0x8000,
405 };
406 
407 struct rfd {
408 	__le16 status;
409 	__le16 command;
410 	__le32 link;
411 	__le32 rbd;
412 	__le16 actual_size;
413 	__le16 size;
414 };
415 
416 struct rx {
417 	struct rx *next, *prev;
418 	struct sk_buff *skb;
419 	dma_addr_t dma_addr;
420 };
421 
422 #if defined(__BIG_ENDIAN_BITFIELD)
423 #define X(a,b)	b,a
424 #else
425 #define X(a,b)	a,b
426 #endif
427 struct config {
428 /*0*/	u8 X(byte_count:6, pad0:2);
429 /*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
430 /*2*/	u8 adaptive_ifs;
431 /*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
432 	   term_write_cache_line:1), pad3:4);
433 /*4*/	u8 X(rx_dma_max_count:7, pad4:1);
434 /*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
435 /*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
436 	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
437 	   rx_save_overruns : 1), rx_save_bad_frames : 1);
438 /*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
439 	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
440 	   tx_dynamic_tbd:1);
441 /*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
442 /*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
443 	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
444 /*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
445 	   loopback:2);
446 /*11*/	u8 X(linear_priority:3, pad11:5);
447 /*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
448 /*13*/	u8 ip_addr_lo;
449 /*14*/	u8 ip_addr_hi;
450 /*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
451 	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
452 	   pad15_2:1), crs_or_cdt:1);
453 /*16*/	u8 fc_delay_lo;
454 /*17*/	u8 fc_delay_hi;
455 /*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
456 	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
457 /*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
458 	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
459 	   full_duplex_force:1), full_duplex_pin:1);
460 /*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
461 /*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
462 /*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
463 	u8 pad_d102[9];
464 };
465 
466 #define E100_MAX_MULTICAST_ADDRS	64
467 struct multi {
468 	__le16 count;
469 	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
470 };
471 
472 /* Important: keep total struct u32-aligned */
473 #define UCODE_SIZE			134
474 struct cb {
475 	__le16 status;
476 	__le16 command;
477 	__le32 link;
478 	union {
479 		u8 iaaddr[ETH_ALEN];
480 		__le32 ucode[UCODE_SIZE];
481 		struct config config;
482 		struct multi multi;
483 		struct {
484 			u32 tbd_array;
485 			u16 tcb_byte_count;
486 			u8 threshold;
487 			u8 tbd_count;
488 			struct {
489 				__le32 buf_addr;
490 				__le16 size;
491 				u16 eol;
492 			} tbd;
493 		} tcb;
494 		__le32 dump_buffer_addr;
495 	} u;
496 	struct cb *next, *prev;
497 	dma_addr_t dma_addr;
498 	struct sk_buff *skb;
499 };
500 
501 enum loopback {
502 	lb_none = 0, lb_mac = 1, lb_phy = 3,
503 };
504 
505 struct stats {
506 	__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
507 		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
508 		tx_multiple_collisions, tx_total_collisions;
509 	__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
510 		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
511 		rx_short_frame_errors;
512 	__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
513 	__le16 xmt_tco_frames, rcv_tco_frames;
514 	__le32 complete;
515 };
516 
517 struct mem {
518 	struct {
519 		u32 signature;
520 		u32 result;
521 	} selftest;
522 	struct stats stats;
523 	u8 dump_buf[596];
524 };
525 
526 struct param_range {
527 	u32 min;
528 	u32 max;
529 	u32 count;
530 };
531 
532 struct params {
533 	struct param_range rfds;
534 	struct param_range cbs;
535 };
536 
537 struct nic {
538 	/* Begin: frequently used values: keep adjacent for cache effect */
539 	u32 msg_enable				____cacheline_aligned;
540 	struct net_device *netdev;
541 	struct pci_dev *pdev;
542 	u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
543 
544 	struct rx *rxs				____cacheline_aligned;
545 	struct rx *rx_to_use;
546 	struct rx *rx_to_clean;
547 	struct rfd blank_rfd;
548 	enum ru_state ru_running;
549 
550 	spinlock_t cb_lock			____cacheline_aligned;
551 	spinlock_t cmd_lock;
552 	struct csr __iomem *csr;
553 	enum scb_cmd_lo cuc_cmd;
554 	unsigned int cbs_avail;
555 	struct napi_struct napi;
556 	struct cb *cbs;
557 	struct cb *cb_to_use;
558 	struct cb *cb_to_send;
559 	struct cb *cb_to_clean;
560 	__le16 tx_command;
561 	/* End: frequently used values: keep adjacent for cache effect */
562 
563 	enum {
564 		ich                = (1 << 0),
565 		promiscuous        = (1 << 1),
566 		multicast_all      = (1 << 2),
567 		wol_magic          = (1 << 3),
568 		ich_10h_workaround = (1 << 4),
569 	} flags					____cacheline_aligned;
570 
571 	enum mac mac;
572 	enum phy phy;
573 	struct params params;
574 	struct timer_list watchdog;
575 	struct mii_if_info mii;
576 	struct work_struct tx_timeout_task;
577 	enum loopback loopback;
578 
579 	struct mem *mem;
580 	dma_addr_t dma_addr;
581 
582 	struct dma_pool *cbs_pool;
583 	dma_addr_t cbs_dma_addr;
584 	u8 adaptive_ifs;
585 	u8 tx_threshold;
586 	u32 tx_frames;
587 	u32 tx_collisions;
588 	u32 tx_deferred;
589 	u32 tx_single_collisions;
590 	u32 tx_multiple_collisions;
591 	u32 tx_fc_pause;
592 	u32 tx_tco_frames;
593 
594 	u32 rx_fc_pause;
595 	u32 rx_fc_unsupported;
596 	u32 rx_tco_frames;
597 	u32 rx_short_frame_errors;
598 	u32 rx_over_length_errors;
599 
600 	u16 eeprom_wc;
601 	__le16 eeprom[256];
602 	spinlock_t mdio_lock;
603 	const struct firmware *fw;
604 };
605 
606 static inline void e100_write_flush(struct nic *nic)
607 {
608 	/* Flush previous PCI writes through intermediate bridges
609 	 * by doing a benign read */
610 	(void)ioread8(&nic->csr->scb.status);
611 }
612 
613 static void e100_enable_irq(struct nic *nic)
614 {
615 	unsigned long flags;
616 
617 	spin_lock_irqsave(&nic->cmd_lock, flags);
618 	iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
619 	e100_write_flush(nic);
620 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
621 }
622 
623 static void e100_disable_irq(struct nic *nic)
624 {
625 	unsigned long flags;
626 
627 	spin_lock_irqsave(&nic->cmd_lock, flags);
628 	iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
629 	e100_write_flush(nic);
630 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
631 }
632 
633 static void e100_hw_reset(struct nic *nic)
634 {
635 	/* Put CU and RU into idle with a selective reset to get
636 	 * device off of PCI bus */
637 	iowrite32(selective_reset, &nic->csr->port);
638 	e100_write_flush(nic); udelay(20);
639 
640 	/* Now fully reset device */
641 	iowrite32(software_reset, &nic->csr->port);
642 	e100_write_flush(nic); udelay(20);
643 
644 	/* Mask off our interrupt line - it's unmasked after reset */
645 	e100_disable_irq(nic);
646 }
647 
648 static int e100_self_test(struct nic *nic)
649 {
650 	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
651 
652 	/* Passing the self-test is a pretty good indication
653 	 * that the device can DMA to/from host memory */
654 
655 	nic->mem->selftest.signature = 0;
656 	nic->mem->selftest.result = 0xFFFFFFFF;
657 
658 	iowrite32(selftest | dma_addr, &nic->csr->port);
659 	e100_write_flush(nic);
660 	/* Wait 10 msec for self-test to complete */
661 	msleep(10);
662 
663 	/* Interrupts are enabled after self-test */
664 	e100_disable_irq(nic);
665 
666 	/* Check results of self-test */
667 	if (nic->mem->selftest.result != 0) {
668 		netif_err(nic, hw, nic->netdev,
669 			  "Self-test failed: result=0x%08X\n",
670 			  nic->mem->selftest.result);
671 		return -ETIMEDOUT;
672 	}
673 	if (nic->mem->selftest.signature == 0) {
674 		netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
675 		return -ETIMEDOUT;
676 	}
677 
678 	return 0;
679 }
680 
681 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
682 {
683 	u32 cmd_addr_data[3];
684 	u8 ctrl;
685 	int i, j;
686 
687 	/* Three cmds: write/erase enable, write data, write/erase disable */
688 	cmd_addr_data[0] = op_ewen << (addr_len - 2);
689 	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
690 		le16_to_cpu(data);
691 	cmd_addr_data[2] = op_ewds << (addr_len - 2);
692 
693 	/* Bit-bang cmds to write word to eeprom */
694 	for (j = 0; j < 3; j++) {
695 
696 		/* Chip select */
697 		iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
698 		e100_write_flush(nic); udelay(4);
699 
700 		for (i = 31; i >= 0; i--) {
701 			ctrl = (cmd_addr_data[j] & (1 << i)) ?
702 				eecs | eedi : eecs;
703 			iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
704 			e100_write_flush(nic); udelay(4);
705 
706 			iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
707 			e100_write_flush(nic); udelay(4);
708 		}
709 		/* Wait 10 msec for cmd to complete */
710 		msleep(10);
711 
712 		/* Chip deselect */
713 		iowrite8(0, &nic->csr->eeprom_ctrl_lo);
714 		e100_write_flush(nic); udelay(4);
715 	}
716 };
717 
718 /* General technique stolen from the eepro100 driver - very clever */
719 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
720 {
721 	u32 cmd_addr_data;
722 	u16 data = 0;
723 	u8 ctrl;
724 	int i;
725 
726 	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
727 
728 	/* Chip select */
729 	iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
730 	e100_write_flush(nic); udelay(4);
731 
732 	/* Bit-bang to read word from eeprom */
733 	for (i = 31; i >= 0; i--) {
734 		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
735 		iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
736 		e100_write_flush(nic); udelay(4);
737 
738 		iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
739 		e100_write_flush(nic); udelay(4);
740 
741 		/* Eeprom drives a dummy zero to EEDO after receiving
742 		 * complete address.  Use this to adjust addr_len. */
743 		ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
744 		if (!(ctrl & eedo) && i > 16) {
745 			*addr_len -= (i - 16);
746 			i = 17;
747 		}
748 
749 		data = (data << 1) | (ctrl & eedo ? 1 : 0);
750 	}
751 
752 	/* Chip deselect */
753 	iowrite8(0, &nic->csr->eeprom_ctrl_lo);
754 	e100_write_flush(nic); udelay(4);
755 
756 	return cpu_to_le16(data);
757 };
758 
759 /* Load entire EEPROM image into driver cache and validate checksum */
760 static int e100_eeprom_load(struct nic *nic)
761 {
762 	u16 addr, addr_len = 8, checksum = 0;
763 
764 	/* Try reading with an 8-bit addr len to discover actual addr len */
765 	e100_eeprom_read(nic, &addr_len, 0);
766 	nic->eeprom_wc = 1 << addr_len;
767 
768 	for (addr = 0; addr < nic->eeprom_wc; addr++) {
769 		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
770 		if (addr < nic->eeprom_wc - 1)
771 			checksum += le16_to_cpu(nic->eeprom[addr]);
772 	}
773 
774 	/* The checksum, stored in the last word, is calculated such that
775 	 * the sum of words should be 0xBABA */
776 	if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
777 		netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
778 		if (!eeprom_bad_csum_allow)
779 			return -EAGAIN;
780 	}
781 
782 	return 0;
783 }
784 
785 /* Save (portion of) driver EEPROM cache to device and update checksum */
786 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
787 {
788 	u16 addr, addr_len = 8, checksum = 0;
789 
790 	/* Try reading with an 8-bit addr len to discover actual addr len */
791 	e100_eeprom_read(nic, &addr_len, 0);
792 	nic->eeprom_wc = 1 << addr_len;
793 
794 	if (start + count >= nic->eeprom_wc)
795 		return -EINVAL;
796 
797 	for (addr = start; addr < start + count; addr++)
798 		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
799 
800 	/* The checksum, stored in the last word, is calculated such that
801 	 * the sum of words should be 0xBABA */
802 	for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
803 		checksum += le16_to_cpu(nic->eeprom[addr]);
804 	nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
805 	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
806 		nic->eeprom[nic->eeprom_wc - 1]);
807 
808 	return 0;
809 }
810 
811 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
812 #define E100_WAIT_SCB_FAST 20       /* delay like the old code */
813 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
814 {
815 	unsigned long flags;
816 	unsigned int i;
817 	int err = 0;
818 
819 	spin_lock_irqsave(&nic->cmd_lock, flags);
820 
821 	/* Previous command is accepted when SCB clears */
822 	for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
823 		if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
824 			break;
825 		cpu_relax();
826 		if (unlikely(i > E100_WAIT_SCB_FAST))
827 			udelay(5);
828 	}
829 	if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
830 		err = -EAGAIN;
831 		goto err_unlock;
832 	}
833 
834 	if (unlikely(cmd != cuc_resume))
835 		iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
836 	iowrite8(cmd, &nic->csr->scb.cmd_lo);
837 
838 err_unlock:
839 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
840 
841 	return err;
842 }
843 
844 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
845 	int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
846 {
847 	struct cb *cb;
848 	unsigned long flags;
849 	int err;
850 
851 	spin_lock_irqsave(&nic->cb_lock, flags);
852 
853 	if (unlikely(!nic->cbs_avail)) {
854 		err = -ENOMEM;
855 		goto err_unlock;
856 	}
857 
858 	cb = nic->cb_to_use;
859 	nic->cb_to_use = cb->next;
860 	nic->cbs_avail--;
861 	cb->skb = skb;
862 
863 	err = cb_prepare(nic, cb, skb);
864 	if (err)
865 		goto err_unlock;
866 
867 	if (unlikely(!nic->cbs_avail))
868 		err = -ENOSPC;
869 
870 
871 	/* Order is important otherwise we'll be in a race with h/w:
872 	 * set S-bit in current first, then clear S-bit in previous. */
873 	cb->command |= cpu_to_le16(cb_s);
874 	dma_wmb();
875 	cb->prev->command &= cpu_to_le16(~cb_s);
876 
877 	while (nic->cb_to_send != nic->cb_to_use) {
878 		if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
879 			nic->cb_to_send->dma_addr))) {
880 			/* Ok, here's where things get sticky.  It's
881 			 * possible that we can't schedule the command
882 			 * because the controller is too busy, so
883 			 * let's just queue the command and try again
884 			 * when another command is scheduled. */
885 			if (err == -ENOSPC) {
886 				//request a reset
887 				schedule_work(&nic->tx_timeout_task);
888 			}
889 			break;
890 		} else {
891 			nic->cuc_cmd = cuc_resume;
892 			nic->cb_to_send = nic->cb_to_send->next;
893 		}
894 	}
895 
896 err_unlock:
897 	spin_unlock_irqrestore(&nic->cb_lock, flags);
898 
899 	return err;
900 }
901 
902 static int mdio_read(struct net_device *netdev, int addr, int reg)
903 {
904 	struct nic *nic = netdev_priv(netdev);
905 	return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
906 }
907 
908 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
909 {
910 	struct nic *nic = netdev_priv(netdev);
911 
912 	nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
913 }
914 
915 /* the standard mdio_ctrl() function for usual MII-compliant hardware */
916 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
917 {
918 	u32 data_out = 0;
919 	unsigned int i;
920 	unsigned long flags;
921 
922 
923 	/*
924 	 * Stratus87247: we shouldn't be writing the MDI control
925 	 * register until the Ready bit shows True.  Also, since
926 	 * manipulation of the MDI control registers is a multi-step
927 	 * procedure it should be done under lock.
928 	 */
929 	spin_lock_irqsave(&nic->mdio_lock, flags);
930 	for (i = 100; i; --i) {
931 		if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
932 			break;
933 		udelay(20);
934 	}
935 	if (unlikely(!i)) {
936 		netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
937 		spin_unlock_irqrestore(&nic->mdio_lock, flags);
938 		return 0;		/* No way to indicate timeout error */
939 	}
940 	iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
941 
942 	for (i = 0; i < 100; i++) {
943 		udelay(20);
944 		if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
945 			break;
946 	}
947 	spin_unlock_irqrestore(&nic->mdio_lock, flags);
948 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
949 		     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
950 		     dir == mdi_read ? "READ" : "WRITE",
951 		     addr, reg, data, data_out);
952 	return (u16)data_out;
953 }
954 
955 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
956 static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
957 				 u32 addr,
958 				 u32 dir,
959 				 u32 reg,
960 				 u16 data)
961 {
962 	if ((reg == MII_BMCR) && (dir == mdi_write)) {
963 		if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
964 			u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
965 							MII_ADVERTISE);
966 
967 			/*
968 			 * Workaround Si issue where sometimes the part will not
969 			 * autoneg to 100Mbps even when advertised.
970 			 */
971 			if (advert & ADVERTISE_100FULL)
972 				data |= BMCR_SPEED100 | BMCR_FULLDPLX;
973 			else if (advert & ADVERTISE_100HALF)
974 				data |= BMCR_SPEED100;
975 		}
976 	}
977 	return mdio_ctrl_hw(nic, addr, dir, reg, data);
978 }
979 
980 /* Fully software-emulated mdio_ctrl() function for cards without
981  * MII-compliant PHYs.
982  * For now, this is mainly geared towards 80c24 support; in case of further
983  * requirements for other types (i82503, ...?) either extend this mechanism
984  * or split it, whichever is cleaner.
985  */
986 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
987 				      u32 addr,
988 				      u32 dir,
989 				      u32 reg,
990 				      u16 data)
991 {
992 	/* might need to allocate a netdev_priv'ed register array eventually
993 	 * to be able to record state changes, but for now
994 	 * some fully hardcoded register handling ought to be ok I guess. */
995 
996 	if (dir == mdi_read) {
997 		switch (reg) {
998 		case MII_BMCR:
999 			/* Auto-negotiation, right? */
1000 			return  BMCR_ANENABLE |
1001 				BMCR_FULLDPLX;
1002 		case MII_BMSR:
1003 			return	BMSR_LSTATUS /* for mii_link_ok() */ |
1004 				BMSR_ANEGCAPABLE |
1005 				BMSR_10FULL;
1006 		case MII_ADVERTISE:
1007 			/* 80c24 is a "combo card" PHY, right? */
1008 			return	ADVERTISE_10HALF |
1009 				ADVERTISE_10FULL;
1010 		default:
1011 			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1012 				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1013 				     dir == mdi_read ? "READ" : "WRITE",
1014 				     addr, reg, data);
1015 			return 0xFFFF;
1016 		}
1017 	} else {
1018 		switch (reg) {
1019 		default:
1020 			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1021 				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1022 				     dir == mdi_read ? "READ" : "WRITE",
1023 				     addr, reg, data);
1024 			return 0xFFFF;
1025 		}
1026 	}
1027 }
1028 static inline int e100_phy_supports_mii(struct nic *nic)
1029 {
1030 	/* for now, just check it by comparing whether we
1031 	   are using MII software emulation.
1032 	*/
1033 	return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1034 }
1035 
1036 static void e100_get_defaults(struct nic *nic)
1037 {
1038 	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1039 	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1040 
1041 	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1042 	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1043 	if (nic->mac == mac_unknown)
1044 		nic->mac = mac_82557_D100_A;
1045 
1046 	nic->params.rfds = rfds;
1047 	nic->params.cbs = cbs;
1048 
1049 	/* Quadwords to DMA into FIFO before starting frame transmit */
1050 	nic->tx_threshold = 0xE0;
1051 
1052 	/* no interrupt for every tx completion, delay = 256us if not 557 */
1053 	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1054 		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1055 
1056 	/* Template for a freshly allocated RFD */
1057 	nic->blank_rfd.command = 0;
1058 	nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1059 	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1060 
1061 	/* MII setup */
1062 	nic->mii.phy_id_mask = 0x1F;
1063 	nic->mii.reg_num_mask = 0x1F;
1064 	nic->mii.dev = nic->netdev;
1065 	nic->mii.mdio_read = mdio_read;
1066 	nic->mii.mdio_write = mdio_write;
1067 }
1068 
1069 static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1070 {
1071 	struct config *config = &cb->u.config;
1072 	u8 *c = (u8 *)config;
1073 	struct net_device *netdev = nic->netdev;
1074 
1075 	cb->command = cpu_to_le16(cb_config);
1076 
1077 	memset(config, 0, sizeof(struct config));
1078 
1079 	config->byte_count = 0x16;		/* bytes in this struct */
1080 	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
1081 	config->direct_rx_dma = 0x1;		/* reserved */
1082 	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
1083 	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
1084 	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
1085 	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
1086 	if (e100_phy_supports_mii(nic))
1087 		config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1088 	config->pad10 = 0x6;
1089 	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
1090 	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
1091 	config->ifs = 0x6;			/* x16 = inter frame spacing */
1092 	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
1093 	config->pad15_1 = 0x1;
1094 	config->pad15_2 = 0x1;
1095 	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
1096 	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
1097 	config->tx_padding = 0x1;		/* 1=pad short frames */
1098 	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
1099 	config->pad18 = 0x1;
1100 	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
1101 	config->pad20_1 = 0x1F;
1102 	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
1103 	config->pad21_1 = 0x5;
1104 
1105 	config->adaptive_ifs = nic->adaptive_ifs;
1106 	config->loopback = nic->loopback;
1107 
1108 	if (nic->mii.force_media && nic->mii.full_duplex)
1109 		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */
1110 
1111 	if (nic->flags & promiscuous || nic->loopback) {
1112 		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
1113 		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
1114 		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
1115 	}
1116 
1117 	if (unlikely(netdev->features & NETIF_F_RXFCS))
1118 		config->rx_crc_transfer = 0x1;	/* 1=save, 0=discard */
1119 
1120 	if (nic->flags & multicast_all)
1121 		config->multicast_all = 0x1;		/* 1=accept, 0=no */
1122 
1123 	/* disable WoL when up */
1124 	if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1125 		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */
1126 
1127 	if (nic->mac >= mac_82558_D101_A4) {
1128 		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
1129 		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
1130 		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
1131 		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
1132 		if (nic->mac >= mac_82559_D101M) {
1133 			config->tno_intr = 0x1;		/* TCO stats enable */
1134 			/* Enable TCO in extended config */
1135 			if (nic->mac >= mac_82551_10) {
1136 				config->byte_count = 0x20; /* extended bytes */
1137 				config->rx_d102_mode = 0x1; /* GMRC for TCO */
1138 			}
1139 		} else {
1140 			config->standard_stat_counter = 0x0;
1141 		}
1142 	}
1143 
1144 	if (netdev->features & NETIF_F_RXALL) {
1145 		config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1146 		config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1147 		config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1148 	}
1149 
1150 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
1151 		     c + 0);
1152 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
1153 		     c + 8);
1154 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
1155 		     c + 16);
1156 	return 0;
1157 }
1158 
1159 /*************************************************************************
1160 *  CPUSaver parameters
1161 *
1162 *  All CPUSaver parameters are 16-bit literals that are part of a
1163 *  "move immediate value" instruction.  By changing the value of
1164 *  the literal in the instruction before the code is loaded, the
1165 *  driver can change the algorithm.
1166 *
1167 *  INTDELAY - This loads the dead-man timer with its initial value.
1168 *    When this timer expires the interrupt is asserted, and the
1169 *    timer is reset each time a new packet is received.  (see
1170 *    BUNDLEMAX below to set the limit on number of chained packets)
1171 *    The current default is 0x600 or 1536.  Experiments show that
1172 *    the value should probably stay within the 0x200 - 0x1000.
1173 *
1174 *  BUNDLEMAX -
1175 *    This sets the maximum number of frames that will be bundled.  In
1176 *    some situations, such as the TCP windowing algorithm, it may be
1177 *    better to limit the growth of the bundle size than let it go as
1178 *    high as it can, because that could cause too much added latency.
1179 *    The default is six, because this is the number of packets in the
1180 *    default TCP window size.  A value of 1 would make CPUSaver indicate
1181 *    an interrupt for every frame received.  If you do not want to put
1182 *    a limit on the bundle size, set this value to xFFFF.
1183 *
1184 *  BUNDLESMALL -
1185 *    This contains a bit-mask describing the minimum size frame that
1186 *    will be bundled.  The default masks the lower 7 bits, which means
1187 *    that any frame less than 128 bytes in length will not be bundled,
1188 *    but will instead immediately generate an interrupt.  This does
1189 *    not affect the current bundle in any way.  Any frame that is 128
1190 *    bytes or large will be bundled normally.  This feature is meant
1191 *    to provide immediate indication of ACK frames in a TCP environment.
1192 *    Customers were seeing poor performance when a machine with CPUSaver
1193 *    enabled was sending but not receiving.  The delay introduced when
1194 *    the ACKs were received was enough to reduce total throughput, because
1195 *    the sender would sit idle until the ACK was finally seen.
1196 *
1197 *    The current default is 0xFF80, which masks out the lower 7 bits.
1198 *    This means that any frame which is x7F (127) bytes or smaller
1199 *    will cause an immediate interrupt.  Because this value must be a
1200 *    bit mask, there are only a few valid values that can be used.  To
1201 *    turn this feature off, the driver can write the value xFFFF to the
1202 *    lower word of this instruction (in the same way that the other
1203 *    parameters are used).  Likewise, a value of 0xF800 (2047) would
1204 *    cause an interrupt to be generated for every frame, because all
1205 *    standard Ethernet frames are <= 2047 bytes in length.
1206 *************************************************************************/
1207 
1208 /* if you wish to disable the ucode functionality, while maintaining the
1209  * workarounds it provides, set the following defines to:
1210  * BUNDLESMALL 0
1211  * BUNDLEMAX 1
1212  * INTDELAY 1
1213  */
1214 #define BUNDLESMALL 1
1215 #define BUNDLEMAX (u16)6
1216 #define INTDELAY (u16)1536 /* 0x600 */
1217 
1218 /* Initialize firmware */
1219 static const struct firmware *e100_request_firmware(struct nic *nic)
1220 {
1221 	const char *fw_name;
1222 	const struct firmware *fw = nic->fw;
1223 	u8 timer, bundle, min_size;
1224 	int err = 0;
1225 	bool required = false;
1226 
1227 	/* do not load u-code for ICH devices */
1228 	if (nic->flags & ich)
1229 		return NULL;
1230 
1231 	/* Search for ucode match against h/w revision
1232 	 *
1233 	 * Based on comments in the source code for the FreeBSD fxp
1234 	 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1235 	 *
1236 	 *    "fixes for bugs in the B-step hardware (specifically, bugs
1237 	 *     with Inline Receive)."
1238 	 *
1239 	 * So we must fail if it cannot be loaded.
1240 	 *
1241 	 * The other microcode files are only required for the optional
1242 	 * CPUSaver feature.  Nice to have, but no reason to fail.
1243 	 */
1244 	if (nic->mac == mac_82559_D101M) {
1245 		fw_name = FIRMWARE_D101M;
1246 	} else if (nic->mac == mac_82559_D101S) {
1247 		fw_name = FIRMWARE_D101S;
1248 	} else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1249 		fw_name = FIRMWARE_D102E;
1250 		required = true;
1251 	} else { /* No ucode on other devices */
1252 		return NULL;
1253 	}
1254 
1255 	/* If the firmware has not previously been loaded, request a pointer
1256 	 * to it. If it was previously loaded, we are reinitializing the
1257 	 * adapter, possibly in a resume from hibernate, in which case
1258 	 * request_firmware() cannot be used.
1259 	 */
1260 	if (!fw)
1261 		err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1262 
1263 	if (err) {
1264 		if (required) {
1265 			netif_err(nic, probe, nic->netdev,
1266 				  "Failed to load firmware \"%s\": %d\n",
1267 				  fw_name, err);
1268 			return ERR_PTR(err);
1269 		} else {
1270 			netif_info(nic, probe, nic->netdev,
1271 				   "CPUSaver disabled. Needs \"%s\": %d\n",
1272 				   fw_name, err);
1273 			return NULL;
1274 		}
1275 	}
1276 
1277 	/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1278 	   indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1279 	if (fw->size != UCODE_SIZE * 4 + 3) {
1280 		netif_err(nic, probe, nic->netdev,
1281 			  "Firmware \"%s\" has wrong size %zu\n",
1282 			  fw_name, fw->size);
1283 		release_firmware(fw);
1284 		return ERR_PTR(-EINVAL);
1285 	}
1286 
1287 	/* Read timer, bundle and min_size from end of firmware blob */
1288 	timer = fw->data[UCODE_SIZE * 4];
1289 	bundle = fw->data[UCODE_SIZE * 4 + 1];
1290 	min_size = fw->data[UCODE_SIZE * 4 + 2];
1291 
1292 	if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1293 	    min_size >= UCODE_SIZE) {
1294 		netif_err(nic, probe, nic->netdev,
1295 			  "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1296 			  fw_name, timer, bundle, min_size);
1297 		release_firmware(fw);
1298 		return ERR_PTR(-EINVAL);
1299 	}
1300 
1301 	/* OK, firmware is validated and ready to use. Save a pointer
1302 	 * to it in the nic */
1303 	nic->fw = fw;
1304 	return fw;
1305 }
1306 
1307 static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1308 			     struct sk_buff *skb)
1309 {
1310 	const struct firmware *fw = (void *)skb;
1311 	u8 timer, bundle, min_size;
1312 
1313 	/* It's not a real skb; we just abused the fact that e100_exec_cb
1314 	   will pass it through to here... */
1315 	cb->skb = NULL;
1316 
1317 	/* firmware is stored as little endian already */
1318 	memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1319 
1320 	/* Read timer, bundle and min_size from end of firmware blob */
1321 	timer = fw->data[UCODE_SIZE * 4];
1322 	bundle = fw->data[UCODE_SIZE * 4 + 1];
1323 	min_size = fw->data[UCODE_SIZE * 4 + 2];
1324 
1325 	/* Insert user-tunable settings in cb->u.ucode */
1326 	cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1327 	cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1328 	cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1329 	cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1330 	cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1331 	cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1332 
1333 	cb->command = cpu_to_le16(cb_ucode | cb_el);
1334 	return 0;
1335 }
1336 
1337 static inline int e100_load_ucode_wait(struct nic *nic)
1338 {
1339 	const struct firmware *fw;
1340 	int err = 0, counter = 50;
1341 	struct cb *cb = nic->cb_to_clean;
1342 
1343 	fw = e100_request_firmware(nic);
1344 	/* If it's NULL, then no ucode is required */
1345 	if (IS_ERR_OR_NULL(fw))
1346 		return PTR_ERR_OR_ZERO(fw);
1347 
1348 	if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1349 		netif_err(nic, probe, nic->netdev,
1350 			  "ucode cmd failed with error %d\n", err);
1351 
1352 	/* must restart cuc */
1353 	nic->cuc_cmd = cuc_start;
1354 
1355 	/* wait for completion */
1356 	e100_write_flush(nic);
1357 	udelay(10);
1358 
1359 	/* wait for possibly (ouch) 500ms */
1360 	while (!(cb->status & cpu_to_le16(cb_complete))) {
1361 		msleep(10);
1362 		if (!--counter) break;
1363 	}
1364 
1365 	/* ack any interrupts, something could have been set */
1366 	iowrite8(~0, &nic->csr->scb.stat_ack);
1367 
1368 	/* if the command failed, or is not OK, notify and return */
1369 	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1370 		netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1371 		err = -EPERM;
1372 	}
1373 
1374 	return err;
1375 }
1376 
1377 static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1378 	struct sk_buff *skb)
1379 {
1380 	cb->command = cpu_to_le16(cb_iaaddr);
1381 	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1382 	return 0;
1383 }
1384 
1385 static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1386 {
1387 	cb->command = cpu_to_le16(cb_dump);
1388 	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1389 		offsetof(struct mem, dump_buf));
1390 	return 0;
1391 }
1392 
1393 static int e100_phy_check_without_mii(struct nic *nic)
1394 {
1395 	u8 phy_type;
1396 	int without_mii;
1397 
1398 	phy_type = (le16_to_cpu(nic->eeprom[eeprom_phy_iface]) >> 8) & 0x0f;
1399 
1400 	switch (phy_type) {
1401 	case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1402 	case I82503: /* Non-MII PHY; UNTESTED! */
1403 	case S80C24: /* Non-MII PHY; tested and working */
1404 		/* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1405 		 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1406 		 * doesn't have a programming interface of any sort.  The
1407 		 * media is sensed automatically based on how the link partner
1408 		 * is configured.  This is, in essence, manual configuration.
1409 		 */
1410 		netif_info(nic, probe, nic->netdev,
1411 			   "found MII-less i82503 or 80c24 or other PHY\n");
1412 
1413 		nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1414 		nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1415 
1416 		/* these might be needed for certain MII-less cards...
1417 		 * nic->flags |= ich;
1418 		 * nic->flags |= ich_10h_workaround; */
1419 
1420 		without_mii = 1;
1421 		break;
1422 	default:
1423 		without_mii = 0;
1424 		break;
1425 	}
1426 	return without_mii;
1427 }
1428 
1429 #define NCONFIG_AUTO_SWITCH	0x0080
1430 #define MII_NSC_CONG		MII_RESV1
1431 #define NSC_CONG_ENABLE		0x0100
1432 #define NSC_CONG_TXREADY	0x0400
1433 static int e100_phy_init(struct nic *nic)
1434 {
1435 	struct net_device *netdev = nic->netdev;
1436 	u32 addr;
1437 	u16 bmcr, stat, id_lo, id_hi, cong;
1438 
1439 	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1440 	for (addr = 0; addr < 32; addr++) {
1441 		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1442 		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1443 		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1444 		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1445 		if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1446 			break;
1447 	}
1448 	if (addr == 32) {
1449 		/* uhoh, no PHY detected: check whether we seem to be some
1450 		 * weird, rare variant which is *known* to not have any MII.
1451 		 * But do this AFTER MII checking only, since this does
1452 		 * lookup of EEPROM values which may easily be unreliable. */
1453 		if (e100_phy_check_without_mii(nic))
1454 			return 0; /* simply return and hope for the best */
1455 		else {
1456 			/* for unknown cases log a fatal error */
1457 			netif_err(nic, hw, nic->netdev,
1458 				  "Failed to locate any known PHY, aborting\n");
1459 			return -EAGAIN;
1460 		}
1461 	} else
1462 		netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1463 			     "phy_addr = %d\n", nic->mii.phy_id);
1464 
1465 	/* Get phy ID */
1466 	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1467 	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1468 	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1469 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1470 		     "phy ID = 0x%08X\n", nic->phy);
1471 
1472 	/* Select the phy and isolate the rest */
1473 	for (addr = 0; addr < 32; addr++) {
1474 		if (addr != nic->mii.phy_id) {
1475 			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1476 		} else if (nic->phy != phy_82552_v) {
1477 			bmcr = mdio_read(netdev, addr, MII_BMCR);
1478 			mdio_write(netdev, addr, MII_BMCR,
1479 				bmcr & ~BMCR_ISOLATE);
1480 		}
1481 	}
1482 	/*
1483 	 * Workaround for 82552:
1484 	 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1485 	 * other phy_id's) using bmcr value from addr discovery loop above.
1486 	 */
1487 	if (nic->phy == phy_82552_v)
1488 		mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1489 			bmcr & ~BMCR_ISOLATE);
1490 
1491 	/* Handle National tx phys */
1492 #define NCS_PHY_MODEL_MASK	0xFFF0FFFF
1493 	if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1494 		/* Disable congestion control */
1495 		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1496 		cong |= NSC_CONG_TXREADY;
1497 		cong &= ~NSC_CONG_ENABLE;
1498 		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1499 	}
1500 
1501 	if (nic->phy == phy_82552_v) {
1502 		u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1503 
1504 		/* assign special tweaked mdio_ctrl() function */
1505 		nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1506 
1507 		/* Workaround Si not advertising flow-control during autoneg */
1508 		advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1509 		mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1510 
1511 		/* Reset for the above changes to take effect */
1512 		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1513 		bmcr |= BMCR_RESET;
1514 		mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1515 	} else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1516 	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1517 	   (le16_to_cpu(nic->eeprom[eeprom_cnfg_mdix]) & eeprom_mdix_enabled))) {
1518 		/* enable/disable MDI/MDI-X auto-switching. */
1519 		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1520 				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1521 	}
1522 
1523 	return 0;
1524 }
1525 
1526 static int e100_hw_init(struct nic *nic)
1527 {
1528 	int err = 0;
1529 
1530 	e100_hw_reset(nic);
1531 
1532 	netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1533 	if ((err = e100_self_test(nic)))
1534 		return err;
1535 
1536 	if ((err = e100_phy_init(nic)))
1537 		return err;
1538 	if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1539 		return err;
1540 	if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1541 		return err;
1542 	if ((err = e100_load_ucode_wait(nic)))
1543 		return err;
1544 	if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1545 		return err;
1546 	if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1547 		return err;
1548 	if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1549 		nic->dma_addr + offsetof(struct mem, stats))))
1550 		return err;
1551 	if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1552 		return err;
1553 
1554 	e100_disable_irq(nic);
1555 
1556 	return 0;
1557 }
1558 
1559 static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1560 {
1561 	struct net_device *netdev = nic->netdev;
1562 	struct netdev_hw_addr *ha;
1563 	u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1564 
1565 	cb->command = cpu_to_le16(cb_multi);
1566 	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1567 	i = 0;
1568 	netdev_for_each_mc_addr(ha, netdev) {
1569 		if (i == count)
1570 			break;
1571 		memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1572 			ETH_ALEN);
1573 	}
1574 	return 0;
1575 }
1576 
1577 static void e100_set_multicast_list(struct net_device *netdev)
1578 {
1579 	struct nic *nic = netdev_priv(netdev);
1580 
1581 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1582 		     "mc_count=%d, flags=0x%04X\n",
1583 		     netdev_mc_count(netdev), netdev->flags);
1584 
1585 	if (netdev->flags & IFF_PROMISC)
1586 		nic->flags |= promiscuous;
1587 	else
1588 		nic->flags &= ~promiscuous;
1589 
1590 	if (netdev->flags & IFF_ALLMULTI ||
1591 		netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1592 		nic->flags |= multicast_all;
1593 	else
1594 		nic->flags &= ~multicast_all;
1595 
1596 	e100_exec_cb(nic, NULL, e100_configure);
1597 	e100_exec_cb(nic, NULL, e100_multi);
1598 }
1599 
1600 static void e100_update_stats(struct nic *nic)
1601 {
1602 	struct net_device *dev = nic->netdev;
1603 	struct net_device_stats *ns = &dev->stats;
1604 	struct stats *s = &nic->mem->stats;
1605 	__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1606 		(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1607 		&s->complete;
1608 
1609 	/* Device's stats reporting may take several microseconds to
1610 	 * complete, so we're always waiting for results of the
1611 	 * previous command. */
1612 
1613 	if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1614 		*complete = 0;
1615 		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1616 		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1617 		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1618 		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1619 		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1620 		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1621 		ns->collisions += nic->tx_collisions;
1622 		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1623 			le32_to_cpu(s->tx_lost_crs);
1624 		nic->rx_short_frame_errors +=
1625 			le32_to_cpu(s->rx_short_frame_errors);
1626 		ns->rx_length_errors = nic->rx_short_frame_errors +
1627 			nic->rx_over_length_errors;
1628 		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1629 		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1630 		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1631 		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1632 		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1633 		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1634 			le32_to_cpu(s->rx_alignment_errors) +
1635 			le32_to_cpu(s->rx_short_frame_errors) +
1636 			le32_to_cpu(s->rx_cdt_errors);
1637 		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1638 		nic->tx_single_collisions +=
1639 			le32_to_cpu(s->tx_single_collisions);
1640 		nic->tx_multiple_collisions +=
1641 			le32_to_cpu(s->tx_multiple_collisions);
1642 		if (nic->mac >= mac_82558_D101_A4) {
1643 			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1644 			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1645 			nic->rx_fc_unsupported +=
1646 				le32_to_cpu(s->fc_rcv_unsupported);
1647 			if (nic->mac >= mac_82559_D101M) {
1648 				nic->tx_tco_frames +=
1649 					le16_to_cpu(s->xmt_tco_frames);
1650 				nic->rx_tco_frames +=
1651 					le16_to_cpu(s->rcv_tco_frames);
1652 			}
1653 		}
1654 	}
1655 
1656 
1657 	if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1658 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1659 			     "exec cuc_dump_reset failed\n");
1660 }
1661 
1662 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1663 {
1664 	/* Adjust inter-frame-spacing (IFS) between two transmits if
1665 	 * we're getting collisions on a half-duplex connection. */
1666 
1667 	if (duplex == DUPLEX_HALF) {
1668 		u32 prev = nic->adaptive_ifs;
1669 		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1670 
1671 		if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1672 		   (nic->tx_frames > min_frames)) {
1673 			if (nic->adaptive_ifs < 60)
1674 				nic->adaptive_ifs += 5;
1675 		} else if (nic->tx_frames < min_frames) {
1676 			if (nic->adaptive_ifs >= 5)
1677 				nic->adaptive_ifs -= 5;
1678 		}
1679 		if (nic->adaptive_ifs != prev)
1680 			e100_exec_cb(nic, NULL, e100_configure);
1681 	}
1682 }
1683 
1684 static void e100_watchdog(struct timer_list *t)
1685 {
1686 	struct nic *nic = from_timer(nic, t, watchdog);
1687 	struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1688 	u32 speed;
1689 
1690 	netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1691 		     "right now = %ld\n", jiffies);
1692 
1693 	/* mii library handles link maintenance tasks */
1694 
1695 	mii_ethtool_gset(&nic->mii, &cmd);
1696 	speed = ethtool_cmd_speed(&cmd);
1697 
1698 	if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1699 		netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1700 			    speed == SPEED_100 ? 100 : 10,
1701 			    cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1702 	} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1703 		netdev_info(nic->netdev, "NIC Link is Down\n");
1704 	}
1705 
1706 	mii_check_link(&nic->mii);
1707 
1708 	/* Software generated interrupt to recover from (rare) Rx
1709 	 * allocation failure.
1710 	 * Unfortunately have to use a spinlock to not re-enable interrupts
1711 	 * accidentally, due to hardware that shares a register between the
1712 	 * interrupt mask bit and the SW Interrupt generation bit */
1713 	spin_lock_irq(&nic->cmd_lock);
1714 	iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1715 	e100_write_flush(nic);
1716 	spin_unlock_irq(&nic->cmd_lock);
1717 
1718 	e100_update_stats(nic);
1719 	e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1720 
1721 	if (nic->mac <= mac_82557_D100_C)
1722 		/* Issue a multicast command to workaround a 557 lock up */
1723 		e100_set_multicast_list(nic->netdev);
1724 
1725 	if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1726 		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1727 		nic->flags |= ich_10h_workaround;
1728 	else
1729 		nic->flags &= ~ich_10h_workaround;
1730 
1731 	mod_timer(&nic->watchdog,
1732 		  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1733 }
1734 
1735 static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1736 	struct sk_buff *skb)
1737 {
1738 	dma_addr_t dma_addr;
1739 	cb->command = nic->tx_command;
1740 
1741 	dma_addr = dma_map_single(&nic->pdev->dev, skb->data, skb->len,
1742 				  DMA_TO_DEVICE);
1743 	/* If we can't map the skb, have the upper layer try later */
1744 	if (dma_mapping_error(&nic->pdev->dev, dma_addr))
1745 		return -ENOMEM;
1746 
1747 	/*
1748 	 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1749 	 * testing, ie sending frames with bad CRC.
1750 	 */
1751 	if (unlikely(skb->no_fcs))
1752 		cb->command |= cpu_to_le16(cb_tx_nc);
1753 	else
1754 		cb->command &= ~cpu_to_le16(cb_tx_nc);
1755 
1756 	/* interrupt every 16 packets regardless of delay */
1757 	if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1758 		cb->command |= cpu_to_le16(cb_i);
1759 	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1760 	cb->u.tcb.tcb_byte_count = 0;
1761 	cb->u.tcb.threshold = nic->tx_threshold;
1762 	cb->u.tcb.tbd_count = 1;
1763 	cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1764 	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1765 	skb_tx_timestamp(skb);
1766 	return 0;
1767 }
1768 
1769 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1770 				   struct net_device *netdev)
1771 {
1772 	struct nic *nic = netdev_priv(netdev);
1773 	int err;
1774 
1775 	if (nic->flags & ich_10h_workaround) {
1776 		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1777 		   Issue a NOP command followed by a 1us delay before
1778 		   issuing the Tx command. */
1779 		if (e100_exec_cmd(nic, cuc_nop, 0))
1780 			netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1781 				     "exec cuc_nop failed\n");
1782 		udelay(1);
1783 	}
1784 
1785 	err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1786 
1787 	switch (err) {
1788 	case -ENOSPC:
1789 		/* We queued the skb, but now we're out of space. */
1790 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1791 			     "No space for CB\n");
1792 		netif_stop_queue(netdev);
1793 		break;
1794 	case -ENOMEM:
1795 		/* This is a hard error - log it. */
1796 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1797 			     "Out of Tx resources, returning skb\n");
1798 		netif_stop_queue(netdev);
1799 		return NETDEV_TX_BUSY;
1800 	}
1801 
1802 	return NETDEV_TX_OK;
1803 }
1804 
1805 static int e100_tx_clean(struct nic *nic)
1806 {
1807 	struct net_device *dev = nic->netdev;
1808 	struct cb *cb;
1809 	int tx_cleaned = 0;
1810 
1811 	spin_lock(&nic->cb_lock);
1812 
1813 	/* Clean CBs marked complete */
1814 	for (cb = nic->cb_to_clean;
1815 	    cb->status & cpu_to_le16(cb_complete);
1816 	    cb = nic->cb_to_clean = cb->next) {
1817 		dma_rmb(); /* read skb after status */
1818 		netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1819 			     "cb[%d]->status = 0x%04X\n",
1820 			     (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1821 			     cb->status);
1822 
1823 		if (likely(cb->skb != NULL)) {
1824 			dev->stats.tx_packets++;
1825 			dev->stats.tx_bytes += cb->skb->len;
1826 
1827 			dma_unmap_single(&nic->pdev->dev,
1828 					 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1829 					 le16_to_cpu(cb->u.tcb.tbd.size),
1830 					 DMA_TO_DEVICE);
1831 			dev_kfree_skb_any(cb->skb);
1832 			cb->skb = NULL;
1833 			tx_cleaned = 1;
1834 		}
1835 		cb->status = 0;
1836 		nic->cbs_avail++;
1837 	}
1838 
1839 	spin_unlock(&nic->cb_lock);
1840 
1841 	/* Recover from running out of Tx resources in xmit_frame */
1842 	if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1843 		netif_wake_queue(nic->netdev);
1844 
1845 	return tx_cleaned;
1846 }
1847 
1848 static void e100_clean_cbs(struct nic *nic)
1849 {
1850 	if (nic->cbs) {
1851 		while (nic->cbs_avail != nic->params.cbs.count) {
1852 			struct cb *cb = nic->cb_to_clean;
1853 			if (cb->skb) {
1854 				dma_unmap_single(&nic->pdev->dev,
1855 						 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1856 						 le16_to_cpu(cb->u.tcb.tbd.size),
1857 						 DMA_TO_DEVICE);
1858 				dev_kfree_skb(cb->skb);
1859 			}
1860 			nic->cb_to_clean = nic->cb_to_clean->next;
1861 			nic->cbs_avail++;
1862 		}
1863 		dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1864 		nic->cbs = NULL;
1865 		nic->cbs_avail = 0;
1866 	}
1867 	nic->cuc_cmd = cuc_start;
1868 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1869 		nic->cbs;
1870 }
1871 
1872 static int e100_alloc_cbs(struct nic *nic)
1873 {
1874 	struct cb *cb;
1875 	unsigned int i, count = nic->params.cbs.count;
1876 
1877 	nic->cuc_cmd = cuc_start;
1878 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1879 	nic->cbs_avail = 0;
1880 
1881 	nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL,
1882 				   &nic->cbs_dma_addr);
1883 	if (!nic->cbs)
1884 		return -ENOMEM;
1885 
1886 	for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1887 		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1888 		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1889 
1890 		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1891 		cb->link = cpu_to_le32(nic->cbs_dma_addr +
1892 			((i+1) % count) * sizeof(struct cb));
1893 	}
1894 
1895 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1896 	nic->cbs_avail = count;
1897 
1898 	return 0;
1899 }
1900 
1901 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1902 {
1903 	if (!nic->rxs) return;
1904 	if (RU_SUSPENDED != nic->ru_running) return;
1905 
1906 	/* handle init time starts */
1907 	if (!rx) rx = nic->rxs;
1908 
1909 	/* (Re)start RU if suspended or idle and RFA is non-NULL */
1910 	if (rx->skb) {
1911 		e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1912 		nic->ru_running = RU_RUNNING;
1913 	}
1914 }
1915 
1916 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1917 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1918 {
1919 	if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1920 		return -ENOMEM;
1921 
1922 	/* Init, and map the RFD. */
1923 	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1924 	rx->dma_addr = dma_map_single(&nic->pdev->dev, rx->skb->data,
1925 				      RFD_BUF_LEN, DMA_BIDIRECTIONAL);
1926 
1927 	if (dma_mapping_error(&nic->pdev->dev, rx->dma_addr)) {
1928 		dev_kfree_skb_any(rx->skb);
1929 		rx->skb = NULL;
1930 		rx->dma_addr = 0;
1931 		return -ENOMEM;
1932 	}
1933 
1934 	/* Link the RFD to end of RFA by linking previous RFD to
1935 	 * this one.  We are safe to touch the previous RFD because
1936 	 * it is protected by the before last buffer's el bit being set */
1937 	if (rx->prev->skb) {
1938 		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1939 		put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1940 		dma_sync_single_for_device(&nic->pdev->dev,
1941 					   rx->prev->dma_addr,
1942 					   sizeof(struct rfd),
1943 					   DMA_BIDIRECTIONAL);
1944 	}
1945 
1946 	return 0;
1947 }
1948 
1949 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1950 	unsigned int *work_done, unsigned int work_to_do)
1951 {
1952 	struct net_device *dev = nic->netdev;
1953 	struct sk_buff *skb = rx->skb;
1954 	struct rfd *rfd = (struct rfd *)skb->data;
1955 	u16 rfd_status, actual_size;
1956 	u16 fcs_pad = 0;
1957 
1958 	if (unlikely(work_done && *work_done >= work_to_do))
1959 		return -EAGAIN;
1960 
1961 	/* Need to sync before taking a peek at cb_complete bit */
1962 	dma_sync_single_for_cpu(&nic->pdev->dev, rx->dma_addr,
1963 				sizeof(struct rfd), DMA_BIDIRECTIONAL);
1964 	rfd_status = le16_to_cpu(rfd->status);
1965 
1966 	netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1967 		     "status=0x%04X\n", rfd_status);
1968 	dma_rmb(); /* read size after status bit */
1969 
1970 	/* If data isn't ready, nothing to indicate */
1971 	if (unlikely(!(rfd_status & cb_complete))) {
1972 		/* If the next buffer has the el bit, but we think the receiver
1973 		 * is still running, check to see if it really stopped while
1974 		 * we had interrupts off.
1975 		 * This allows for a fast restart without re-enabling
1976 		 * interrupts */
1977 		if ((le16_to_cpu(rfd->command) & cb_el) &&
1978 		    (RU_RUNNING == nic->ru_running))
1979 
1980 			if (ioread8(&nic->csr->scb.status) & rus_no_res)
1981 				nic->ru_running = RU_SUSPENDED;
1982 		dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
1983 					   sizeof(struct rfd),
1984 					   DMA_FROM_DEVICE);
1985 		return -ENODATA;
1986 	}
1987 
1988 	/* Get actual data size */
1989 	if (unlikely(dev->features & NETIF_F_RXFCS))
1990 		fcs_pad = 4;
1991 	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1992 	if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1993 		actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1994 
1995 	/* Get data */
1996 	dma_unmap_single(&nic->pdev->dev, rx->dma_addr, RFD_BUF_LEN,
1997 			 DMA_BIDIRECTIONAL);
1998 
1999 	/* If this buffer has the el bit, but we think the receiver
2000 	 * is still running, check to see if it really stopped while
2001 	 * we had interrupts off.
2002 	 * This allows for a fast restart without re-enabling interrupts.
2003 	 * This can happen when the RU sees the size change but also sees
2004 	 * the el bit set. */
2005 	if ((le16_to_cpu(rfd->command) & cb_el) &&
2006 	    (RU_RUNNING == nic->ru_running)) {
2007 
2008 	    if (ioread8(&nic->csr->scb.status) & rus_no_res)
2009 		nic->ru_running = RU_SUSPENDED;
2010 	}
2011 
2012 	/* Pull off the RFD and put the actual data (minus eth hdr) */
2013 	skb_reserve(skb, sizeof(struct rfd));
2014 	skb_put(skb, actual_size);
2015 	skb->protocol = eth_type_trans(skb, nic->netdev);
2016 
2017 	/* If we are receiving all frames, then don't bother
2018 	 * checking for errors.
2019 	 */
2020 	if (unlikely(dev->features & NETIF_F_RXALL)) {
2021 		if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2022 			/* Received oversized frame, but keep it. */
2023 			nic->rx_over_length_errors++;
2024 		goto process_skb;
2025 	}
2026 
2027 	if (unlikely(!(rfd_status & cb_ok))) {
2028 		/* Don't indicate if hardware indicates errors */
2029 		dev_kfree_skb_any(skb);
2030 	} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2031 		/* Don't indicate oversized frames */
2032 		nic->rx_over_length_errors++;
2033 		dev_kfree_skb_any(skb);
2034 	} else {
2035 process_skb:
2036 		dev->stats.rx_packets++;
2037 		dev->stats.rx_bytes += (actual_size - fcs_pad);
2038 		netif_receive_skb(skb);
2039 		if (work_done)
2040 			(*work_done)++;
2041 	}
2042 
2043 	rx->skb = NULL;
2044 
2045 	return 0;
2046 }
2047 
2048 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2049 	unsigned int work_to_do)
2050 {
2051 	struct rx *rx;
2052 	int restart_required = 0, err = 0;
2053 	struct rx *old_before_last_rx, *new_before_last_rx;
2054 	struct rfd *old_before_last_rfd, *new_before_last_rfd;
2055 
2056 	/* Indicate newly arrived packets */
2057 	for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2058 		err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2059 		/* Hit quota or no more to clean */
2060 		if (-EAGAIN == err || -ENODATA == err)
2061 			break;
2062 	}
2063 
2064 
2065 	/* On EAGAIN, hit quota so have more work to do, restart once
2066 	 * cleanup is complete.
2067 	 * Else, are we already rnr? then pay attention!!! this ensures that
2068 	 * the state machine progression never allows a start with a
2069 	 * partially cleaned list, avoiding a race between hardware
2070 	 * and rx_to_clean when in NAPI mode */
2071 	if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2072 		restart_required = 1;
2073 
2074 	old_before_last_rx = nic->rx_to_use->prev->prev;
2075 	old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2076 
2077 	/* Alloc new skbs to refill list */
2078 	for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2079 		if (unlikely(e100_rx_alloc_skb(nic, rx)))
2080 			break; /* Better luck next time (see watchdog) */
2081 	}
2082 
2083 	new_before_last_rx = nic->rx_to_use->prev->prev;
2084 	if (new_before_last_rx != old_before_last_rx) {
2085 		/* Set the el-bit on the buffer that is before the last buffer.
2086 		 * This lets us update the next pointer on the last buffer
2087 		 * without worrying about hardware touching it.
2088 		 * We set the size to 0 to prevent hardware from touching this
2089 		 * buffer.
2090 		 * When the hardware hits the before last buffer with el-bit
2091 		 * and size of 0, it will RNR interrupt, the RUS will go into
2092 		 * the No Resources state.  It will not complete nor write to
2093 		 * this buffer. */
2094 		new_before_last_rfd =
2095 			(struct rfd *)new_before_last_rx->skb->data;
2096 		new_before_last_rfd->size = 0;
2097 		new_before_last_rfd->command |= cpu_to_le16(cb_el);
2098 		dma_sync_single_for_device(&nic->pdev->dev,
2099 					   new_before_last_rx->dma_addr,
2100 					   sizeof(struct rfd),
2101 					   DMA_BIDIRECTIONAL);
2102 
2103 		/* Now that we have a new stopping point, we can clear the old
2104 		 * stopping point.  We must sync twice to get the proper
2105 		 * ordering on the hardware side of things. */
2106 		old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2107 		dma_sync_single_for_device(&nic->pdev->dev,
2108 					   old_before_last_rx->dma_addr,
2109 					   sizeof(struct rfd),
2110 					   DMA_BIDIRECTIONAL);
2111 		old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2112 							+ ETH_FCS_LEN);
2113 		dma_sync_single_for_device(&nic->pdev->dev,
2114 					   old_before_last_rx->dma_addr,
2115 					   sizeof(struct rfd),
2116 					   DMA_BIDIRECTIONAL);
2117 	}
2118 
2119 	if (restart_required) {
2120 		// ack the rnr?
2121 		iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2122 		e100_start_receiver(nic, nic->rx_to_clean);
2123 		if (work_done)
2124 			(*work_done)++;
2125 	}
2126 }
2127 
2128 static void e100_rx_clean_list(struct nic *nic)
2129 {
2130 	struct rx *rx;
2131 	unsigned int i, count = nic->params.rfds.count;
2132 
2133 	nic->ru_running = RU_UNINITIALIZED;
2134 
2135 	if (nic->rxs) {
2136 		for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2137 			if (rx->skb) {
2138 				dma_unmap_single(&nic->pdev->dev,
2139 						 rx->dma_addr, RFD_BUF_LEN,
2140 						 DMA_BIDIRECTIONAL);
2141 				dev_kfree_skb(rx->skb);
2142 			}
2143 		}
2144 		kfree(nic->rxs);
2145 		nic->rxs = NULL;
2146 	}
2147 
2148 	nic->rx_to_use = nic->rx_to_clean = NULL;
2149 }
2150 
2151 static int e100_rx_alloc_list(struct nic *nic)
2152 {
2153 	struct rx *rx;
2154 	unsigned int i, count = nic->params.rfds.count;
2155 	struct rfd *before_last;
2156 
2157 	nic->rx_to_use = nic->rx_to_clean = NULL;
2158 	nic->ru_running = RU_UNINITIALIZED;
2159 
2160 	if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_KERNEL)))
2161 		return -ENOMEM;
2162 
2163 	for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2164 		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2165 		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2166 		if (e100_rx_alloc_skb(nic, rx)) {
2167 			e100_rx_clean_list(nic);
2168 			return -ENOMEM;
2169 		}
2170 	}
2171 	/* Set the el-bit on the buffer that is before the last buffer.
2172 	 * This lets us update the next pointer on the last buffer without
2173 	 * worrying about hardware touching it.
2174 	 * We set the size to 0 to prevent hardware from touching this buffer.
2175 	 * When the hardware hits the before last buffer with el-bit and size
2176 	 * of 0, it will RNR interrupt, the RU will go into the No Resources
2177 	 * state.  It will not complete nor write to this buffer. */
2178 	rx = nic->rxs->prev->prev;
2179 	before_last = (struct rfd *)rx->skb->data;
2180 	before_last->command |= cpu_to_le16(cb_el);
2181 	before_last->size = 0;
2182 	dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
2183 				   sizeof(struct rfd), DMA_BIDIRECTIONAL);
2184 
2185 	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2186 	nic->ru_running = RU_SUSPENDED;
2187 
2188 	return 0;
2189 }
2190 
2191 static irqreturn_t e100_intr(int irq, void *dev_id)
2192 {
2193 	struct net_device *netdev = dev_id;
2194 	struct nic *nic = netdev_priv(netdev);
2195 	u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2196 
2197 	netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2198 		     "stat_ack = 0x%02X\n", stat_ack);
2199 
2200 	if (stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
2201 	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
2202 		return IRQ_NONE;
2203 
2204 	/* Ack interrupt(s) */
2205 	iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2206 
2207 	/* We hit Receive No Resource (RNR); restart RU after cleaning */
2208 	if (stat_ack & stat_ack_rnr)
2209 		nic->ru_running = RU_SUSPENDED;
2210 
2211 	if (likely(napi_schedule_prep(&nic->napi))) {
2212 		e100_disable_irq(nic);
2213 		__napi_schedule(&nic->napi);
2214 	}
2215 
2216 	return IRQ_HANDLED;
2217 }
2218 
2219 static int e100_poll(struct napi_struct *napi, int budget)
2220 {
2221 	struct nic *nic = container_of(napi, struct nic, napi);
2222 	unsigned int work_done = 0;
2223 
2224 	e100_rx_clean(nic, &work_done, budget);
2225 	e100_tx_clean(nic);
2226 
2227 	/* If budget fully consumed, continue polling */
2228 	if (work_done == budget)
2229 		return budget;
2230 
2231 	/* only re-enable interrupt if stack agrees polling is really done */
2232 	if (likely(napi_complete_done(napi, work_done)))
2233 		e100_enable_irq(nic);
2234 
2235 	return work_done;
2236 }
2237 
2238 #ifdef CONFIG_NET_POLL_CONTROLLER
2239 static void e100_netpoll(struct net_device *netdev)
2240 {
2241 	struct nic *nic = netdev_priv(netdev);
2242 
2243 	e100_disable_irq(nic);
2244 	e100_intr(nic->pdev->irq, netdev);
2245 	e100_tx_clean(nic);
2246 	e100_enable_irq(nic);
2247 }
2248 #endif
2249 
2250 static int e100_set_mac_address(struct net_device *netdev, void *p)
2251 {
2252 	struct nic *nic = netdev_priv(netdev);
2253 	struct sockaddr *addr = p;
2254 
2255 	if (!is_valid_ether_addr(addr->sa_data))
2256 		return -EADDRNOTAVAIL;
2257 
2258 	eth_hw_addr_set(netdev, addr->sa_data);
2259 	e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2260 
2261 	return 0;
2262 }
2263 
2264 static int e100_asf(struct nic *nic)
2265 {
2266 	/* ASF can be enabled from eeprom */
2267 	return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2268 	   (le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_asf) &&
2269 	   !(le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_gcl) &&
2270 	   ((le16_to_cpu(nic->eeprom[eeprom_smbus_addr]) & 0xFF) != 0xFE);
2271 }
2272 
2273 static int e100_up(struct nic *nic)
2274 {
2275 	int err;
2276 
2277 	if ((err = e100_rx_alloc_list(nic)))
2278 		return err;
2279 	if ((err = e100_alloc_cbs(nic)))
2280 		goto err_rx_clean_list;
2281 	if ((err = e100_hw_init(nic)))
2282 		goto err_clean_cbs;
2283 	e100_set_multicast_list(nic->netdev);
2284 	e100_start_receiver(nic, NULL);
2285 	mod_timer(&nic->watchdog, jiffies);
2286 	if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2287 		nic->netdev->name, nic->netdev)))
2288 		goto err_no_irq;
2289 	netif_wake_queue(nic->netdev);
2290 	napi_enable(&nic->napi);
2291 	/* enable ints _after_ enabling poll, preventing a race between
2292 	 * disable ints+schedule */
2293 	e100_enable_irq(nic);
2294 	return 0;
2295 
2296 err_no_irq:
2297 	del_timer_sync(&nic->watchdog);
2298 err_clean_cbs:
2299 	e100_clean_cbs(nic);
2300 err_rx_clean_list:
2301 	e100_rx_clean_list(nic);
2302 	return err;
2303 }
2304 
2305 static void e100_down(struct nic *nic)
2306 {
2307 	/* wait here for poll to complete */
2308 	napi_disable(&nic->napi);
2309 	netif_stop_queue(nic->netdev);
2310 	e100_hw_reset(nic);
2311 	free_irq(nic->pdev->irq, nic->netdev);
2312 	del_timer_sync(&nic->watchdog);
2313 	netif_carrier_off(nic->netdev);
2314 	e100_clean_cbs(nic);
2315 	e100_rx_clean_list(nic);
2316 }
2317 
2318 static void e100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
2319 {
2320 	struct nic *nic = netdev_priv(netdev);
2321 
2322 	/* Reset outside of interrupt context, to avoid request_irq
2323 	 * in interrupt context */
2324 	schedule_work(&nic->tx_timeout_task);
2325 }
2326 
2327 static void e100_tx_timeout_task(struct work_struct *work)
2328 {
2329 	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2330 	struct net_device *netdev = nic->netdev;
2331 
2332 	netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2333 		     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2334 
2335 	rtnl_lock();
2336 	if (netif_running(netdev)) {
2337 		e100_down(netdev_priv(netdev));
2338 		e100_up(netdev_priv(netdev));
2339 	}
2340 	rtnl_unlock();
2341 }
2342 
2343 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2344 {
2345 	int err;
2346 	struct sk_buff *skb;
2347 
2348 	/* Use driver resources to perform internal MAC or PHY
2349 	 * loopback test.  A single packet is prepared and transmitted
2350 	 * in loopback mode, and the test passes if the received
2351 	 * packet compares byte-for-byte to the transmitted packet. */
2352 
2353 	if ((err = e100_rx_alloc_list(nic)))
2354 		return err;
2355 	if ((err = e100_alloc_cbs(nic)))
2356 		goto err_clean_rx;
2357 
2358 	/* ICH PHY loopback is broken so do MAC loopback instead */
2359 	if (nic->flags & ich && loopback_mode == lb_phy)
2360 		loopback_mode = lb_mac;
2361 
2362 	nic->loopback = loopback_mode;
2363 	if ((err = e100_hw_init(nic)))
2364 		goto err_loopback_none;
2365 
2366 	if (loopback_mode == lb_phy)
2367 		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2368 			BMCR_LOOPBACK);
2369 
2370 	e100_start_receiver(nic, NULL);
2371 
2372 	if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2373 		err = -ENOMEM;
2374 		goto err_loopback_none;
2375 	}
2376 	skb_put(skb, ETH_DATA_LEN);
2377 	memset(skb->data, 0xFF, ETH_DATA_LEN);
2378 	e100_xmit_frame(skb, nic->netdev);
2379 
2380 	msleep(10);
2381 
2382 	dma_sync_single_for_cpu(&nic->pdev->dev, nic->rx_to_clean->dma_addr,
2383 				RFD_BUF_LEN, DMA_BIDIRECTIONAL);
2384 
2385 	if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2386 	   skb->data, ETH_DATA_LEN))
2387 		err = -EAGAIN;
2388 
2389 err_loopback_none:
2390 	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2391 	nic->loopback = lb_none;
2392 	e100_clean_cbs(nic);
2393 	e100_hw_reset(nic);
2394 err_clean_rx:
2395 	e100_rx_clean_list(nic);
2396 	return err;
2397 }
2398 
2399 #define MII_LED_CONTROL	0x1B
2400 #define E100_82552_LED_OVERRIDE 0x19
2401 #define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2402 #define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
2403 
2404 static int e100_get_link_ksettings(struct net_device *netdev,
2405 				   struct ethtool_link_ksettings *cmd)
2406 {
2407 	struct nic *nic = netdev_priv(netdev);
2408 
2409 	mii_ethtool_get_link_ksettings(&nic->mii, cmd);
2410 
2411 	return 0;
2412 }
2413 
2414 static int e100_set_link_ksettings(struct net_device *netdev,
2415 				   const struct ethtool_link_ksettings *cmd)
2416 {
2417 	struct nic *nic = netdev_priv(netdev);
2418 	int err;
2419 
2420 	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2421 	err = mii_ethtool_set_link_ksettings(&nic->mii, cmd);
2422 	e100_exec_cb(nic, NULL, e100_configure);
2423 
2424 	return err;
2425 }
2426 
2427 static void e100_get_drvinfo(struct net_device *netdev,
2428 	struct ethtool_drvinfo *info)
2429 {
2430 	struct nic *nic = netdev_priv(netdev);
2431 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2432 	strscpy(info->bus_info, pci_name(nic->pdev),
2433 		sizeof(info->bus_info));
2434 }
2435 
2436 #define E100_PHY_REGS 0x1D
2437 static int e100_get_regs_len(struct net_device *netdev)
2438 {
2439 	struct nic *nic = netdev_priv(netdev);
2440 
2441 	/* We know the number of registers, and the size of the dump buffer.
2442 	 * Calculate the total size in bytes.
2443 	 */
2444 	return (1 + E100_PHY_REGS) * sizeof(u32) + sizeof(nic->mem->dump_buf);
2445 }
2446 
2447 static void e100_get_regs(struct net_device *netdev,
2448 	struct ethtool_regs *regs, void *p)
2449 {
2450 	struct nic *nic = netdev_priv(netdev);
2451 	u32 *buff = p;
2452 	int i;
2453 
2454 	regs->version = (1 << 24) | nic->pdev->revision;
2455 	buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2456 		ioread8(&nic->csr->scb.cmd_lo) << 16 |
2457 		ioread16(&nic->csr->scb.status);
2458 	for (i = 0; i < E100_PHY_REGS; i++)
2459 		/* Note that we read the registers in reverse order. This
2460 		 * ordering is the ABI apparently used by ethtool and other
2461 		 * applications.
2462 		 */
2463 		buff[1 + i] = mdio_read(netdev, nic->mii.phy_id,
2464 					E100_PHY_REGS - 1 - i);
2465 	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2466 	e100_exec_cb(nic, NULL, e100_dump);
2467 	msleep(10);
2468 	memcpy(&buff[1 + E100_PHY_REGS], nic->mem->dump_buf,
2469 	       sizeof(nic->mem->dump_buf));
2470 }
2471 
2472 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2473 {
2474 	struct nic *nic = netdev_priv(netdev);
2475 	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2476 	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2477 }
2478 
2479 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2480 {
2481 	struct nic *nic = netdev_priv(netdev);
2482 
2483 	if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2484 	    !device_can_wakeup(&nic->pdev->dev))
2485 		return -EOPNOTSUPP;
2486 
2487 	if (wol->wolopts)
2488 		nic->flags |= wol_magic;
2489 	else
2490 		nic->flags &= ~wol_magic;
2491 
2492 	device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2493 
2494 	e100_exec_cb(nic, NULL, e100_configure);
2495 
2496 	return 0;
2497 }
2498 
2499 static u32 e100_get_msglevel(struct net_device *netdev)
2500 {
2501 	struct nic *nic = netdev_priv(netdev);
2502 	return nic->msg_enable;
2503 }
2504 
2505 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2506 {
2507 	struct nic *nic = netdev_priv(netdev);
2508 	nic->msg_enable = value;
2509 }
2510 
2511 static int e100_nway_reset(struct net_device *netdev)
2512 {
2513 	struct nic *nic = netdev_priv(netdev);
2514 	return mii_nway_restart(&nic->mii);
2515 }
2516 
2517 static u32 e100_get_link(struct net_device *netdev)
2518 {
2519 	struct nic *nic = netdev_priv(netdev);
2520 	return mii_link_ok(&nic->mii);
2521 }
2522 
2523 static int e100_get_eeprom_len(struct net_device *netdev)
2524 {
2525 	struct nic *nic = netdev_priv(netdev);
2526 	return nic->eeprom_wc << 1;
2527 }
2528 
2529 #define E100_EEPROM_MAGIC	0x1234
2530 static int e100_get_eeprom(struct net_device *netdev,
2531 	struct ethtool_eeprom *eeprom, u8 *bytes)
2532 {
2533 	struct nic *nic = netdev_priv(netdev);
2534 
2535 	eeprom->magic = E100_EEPROM_MAGIC;
2536 	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2537 
2538 	return 0;
2539 }
2540 
2541 static int e100_set_eeprom(struct net_device *netdev,
2542 	struct ethtool_eeprom *eeprom, u8 *bytes)
2543 {
2544 	struct nic *nic = netdev_priv(netdev);
2545 
2546 	if (eeprom->magic != E100_EEPROM_MAGIC)
2547 		return -EINVAL;
2548 
2549 	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2550 
2551 	return e100_eeprom_save(nic, eeprom->offset >> 1,
2552 		(eeprom->len >> 1) + 1);
2553 }
2554 
2555 static void e100_get_ringparam(struct net_device *netdev,
2556 			       struct ethtool_ringparam *ring,
2557 			       struct kernel_ethtool_ringparam *kernel_ring,
2558 			       struct netlink_ext_ack *extack)
2559 {
2560 	struct nic *nic = netdev_priv(netdev);
2561 	struct param_range *rfds = &nic->params.rfds;
2562 	struct param_range *cbs = &nic->params.cbs;
2563 
2564 	ring->rx_max_pending = rfds->max;
2565 	ring->tx_max_pending = cbs->max;
2566 	ring->rx_pending = rfds->count;
2567 	ring->tx_pending = cbs->count;
2568 }
2569 
2570 static int e100_set_ringparam(struct net_device *netdev,
2571 			      struct ethtool_ringparam *ring,
2572 			      struct kernel_ethtool_ringparam *kernel_ring,
2573 			      struct netlink_ext_ack *extack)
2574 {
2575 	struct nic *nic = netdev_priv(netdev);
2576 	struct param_range *rfds = &nic->params.rfds;
2577 	struct param_range *cbs = &nic->params.cbs;
2578 
2579 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2580 		return -EINVAL;
2581 
2582 	if (netif_running(netdev))
2583 		e100_down(nic);
2584 	rfds->count = max(ring->rx_pending, rfds->min);
2585 	rfds->count = min(rfds->count, rfds->max);
2586 	cbs->count = max(ring->tx_pending, cbs->min);
2587 	cbs->count = min(cbs->count, cbs->max);
2588 	netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2589 		   rfds->count, cbs->count);
2590 	if (netif_running(netdev))
2591 		e100_up(nic);
2592 
2593 	return 0;
2594 }
2595 
2596 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2597 	"Link test     (on/offline)",
2598 	"Eeprom test   (on/offline)",
2599 	"Self test        (offline)",
2600 	"Mac loopback     (offline)",
2601 	"Phy loopback     (offline)",
2602 };
2603 #define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test)
2604 
2605 static void e100_diag_test(struct net_device *netdev,
2606 	struct ethtool_test *test, u64 *data)
2607 {
2608 	struct ethtool_cmd cmd;
2609 	struct nic *nic = netdev_priv(netdev);
2610 	int i;
2611 
2612 	memset(data, 0, E100_TEST_LEN * sizeof(u64));
2613 	data[0] = !mii_link_ok(&nic->mii);
2614 	data[1] = e100_eeprom_load(nic);
2615 	if (test->flags & ETH_TEST_FL_OFFLINE) {
2616 
2617 		/* save speed, duplex & autoneg settings */
2618 		mii_ethtool_gset(&nic->mii, &cmd);
2619 
2620 		if (netif_running(netdev))
2621 			e100_down(nic);
2622 		data[2] = e100_self_test(nic);
2623 		data[3] = e100_loopback_test(nic, lb_mac);
2624 		data[4] = e100_loopback_test(nic, lb_phy);
2625 
2626 		/* restore speed, duplex & autoneg settings */
2627 		mii_ethtool_sset(&nic->mii, &cmd);
2628 
2629 		if (netif_running(netdev))
2630 			e100_up(nic);
2631 	}
2632 	for (i = 0; i < E100_TEST_LEN; i++)
2633 		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2634 
2635 	msleep_interruptible(4 * 1000);
2636 }
2637 
2638 static int e100_set_phys_id(struct net_device *netdev,
2639 			    enum ethtool_phys_id_state state)
2640 {
2641 	struct nic *nic = netdev_priv(netdev);
2642 	enum led_state {
2643 		led_on     = 0x01,
2644 		led_off    = 0x04,
2645 		led_on_559 = 0x05,
2646 		led_on_557 = 0x07,
2647 	};
2648 	u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2649 		MII_LED_CONTROL;
2650 	u16 leds = 0;
2651 
2652 	switch (state) {
2653 	case ETHTOOL_ID_ACTIVE:
2654 		return 2;
2655 
2656 	case ETHTOOL_ID_ON:
2657 		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2658 		       (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2659 		break;
2660 
2661 	case ETHTOOL_ID_OFF:
2662 		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2663 		break;
2664 
2665 	case ETHTOOL_ID_INACTIVE:
2666 		break;
2667 	}
2668 
2669 	mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2670 	return 0;
2671 }
2672 
2673 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2674 	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2675 	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2676 	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
2677 	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2678 	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2679 	"tx_heartbeat_errors", "tx_window_errors",
2680 	/* device-specific stats */
2681 	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2682 	"tx_flow_control_pause", "rx_flow_control_pause",
2683 	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2684 	"rx_short_frame_errors", "rx_over_length_errors",
2685 };
2686 #define E100_NET_STATS_LEN	21
2687 #define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats)
2688 
2689 static int e100_get_sset_count(struct net_device *netdev, int sset)
2690 {
2691 	switch (sset) {
2692 	case ETH_SS_TEST:
2693 		return E100_TEST_LEN;
2694 	case ETH_SS_STATS:
2695 		return E100_STATS_LEN;
2696 	default:
2697 		return -EOPNOTSUPP;
2698 	}
2699 }
2700 
2701 static void e100_get_ethtool_stats(struct net_device *netdev,
2702 	struct ethtool_stats *stats, u64 *data)
2703 {
2704 	struct nic *nic = netdev_priv(netdev);
2705 	int i;
2706 
2707 	for (i = 0; i < E100_NET_STATS_LEN; i++)
2708 		data[i] = ((unsigned long *)&netdev->stats)[i];
2709 
2710 	data[i++] = nic->tx_deferred;
2711 	data[i++] = nic->tx_single_collisions;
2712 	data[i++] = nic->tx_multiple_collisions;
2713 	data[i++] = nic->tx_fc_pause;
2714 	data[i++] = nic->rx_fc_pause;
2715 	data[i++] = nic->rx_fc_unsupported;
2716 	data[i++] = nic->tx_tco_frames;
2717 	data[i++] = nic->rx_tco_frames;
2718 	data[i++] = nic->rx_short_frame_errors;
2719 	data[i++] = nic->rx_over_length_errors;
2720 }
2721 
2722 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2723 {
2724 	switch (stringset) {
2725 	case ETH_SS_TEST:
2726 		memcpy(data, e100_gstrings_test, sizeof(e100_gstrings_test));
2727 		break;
2728 	case ETH_SS_STATS:
2729 		memcpy(data, e100_gstrings_stats, sizeof(e100_gstrings_stats));
2730 		break;
2731 	}
2732 }
2733 
2734 static const struct ethtool_ops e100_ethtool_ops = {
2735 	.get_drvinfo		= e100_get_drvinfo,
2736 	.get_regs_len		= e100_get_regs_len,
2737 	.get_regs		= e100_get_regs,
2738 	.get_wol		= e100_get_wol,
2739 	.set_wol		= e100_set_wol,
2740 	.get_msglevel		= e100_get_msglevel,
2741 	.set_msglevel		= e100_set_msglevel,
2742 	.nway_reset		= e100_nway_reset,
2743 	.get_link		= e100_get_link,
2744 	.get_eeprom_len		= e100_get_eeprom_len,
2745 	.get_eeprom		= e100_get_eeprom,
2746 	.set_eeprom		= e100_set_eeprom,
2747 	.get_ringparam		= e100_get_ringparam,
2748 	.set_ringparam		= e100_set_ringparam,
2749 	.self_test		= e100_diag_test,
2750 	.get_strings		= e100_get_strings,
2751 	.set_phys_id		= e100_set_phys_id,
2752 	.get_ethtool_stats	= e100_get_ethtool_stats,
2753 	.get_sset_count		= e100_get_sset_count,
2754 	.get_ts_info		= ethtool_op_get_ts_info,
2755 	.get_link_ksettings	= e100_get_link_ksettings,
2756 	.set_link_ksettings	= e100_set_link_ksettings,
2757 };
2758 
2759 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2760 {
2761 	struct nic *nic = netdev_priv(netdev);
2762 
2763 	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2764 }
2765 
2766 static int e100_alloc(struct nic *nic)
2767 {
2768 	nic->mem = dma_alloc_coherent(&nic->pdev->dev, sizeof(struct mem),
2769 				      &nic->dma_addr, GFP_KERNEL);
2770 	return nic->mem ? 0 : -ENOMEM;
2771 }
2772 
2773 static void e100_free(struct nic *nic)
2774 {
2775 	if (nic->mem) {
2776 		dma_free_coherent(&nic->pdev->dev, sizeof(struct mem),
2777 				  nic->mem, nic->dma_addr);
2778 		nic->mem = NULL;
2779 	}
2780 }
2781 
2782 static int e100_open(struct net_device *netdev)
2783 {
2784 	struct nic *nic = netdev_priv(netdev);
2785 	int err = 0;
2786 
2787 	netif_carrier_off(netdev);
2788 	if ((err = e100_up(nic)))
2789 		netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2790 	return err;
2791 }
2792 
2793 static int e100_close(struct net_device *netdev)
2794 {
2795 	e100_down(netdev_priv(netdev));
2796 	return 0;
2797 }
2798 
2799 static int e100_set_features(struct net_device *netdev,
2800 			     netdev_features_t features)
2801 {
2802 	struct nic *nic = netdev_priv(netdev);
2803 	netdev_features_t changed = features ^ netdev->features;
2804 
2805 	if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2806 		return 0;
2807 
2808 	netdev->features = features;
2809 	e100_exec_cb(nic, NULL, e100_configure);
2810 	return 1;
2811 }
2812 
2813 static const struct net_device_ops e100_netdev_ops = {
2814 	.ndo_open		= e100_open,
2815 	.ndo_stop		= e100_close,
2816 	.ndo_start_xmit		= e100_xmit_frame,
2817 	.ndo_validate_addr	= eth_validate_addr,
2818 	.ndo_set_rx_mode	= e100_set_multicast_list,
2819 	.ndo_set_mac_address	= e100_set_mac_address,
2820 	.ndo_eth_ioctl		= e100_do_ioctl,
2821 	.ndo_tx_timeout		= e100_tx_timeout,
2822 #ifdef CONFIG_NET_POLL_CONTROLLER
2823 	.ndo_poll_controller	= e100_netpoll,
2824 #endif
2825 	.ndo_set_features	= e100_set_features,
2826 };
2827 
2828 static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2829 {
2830 	struct net_device *netdev;
2831 	struct nic *nic;
2832 	int err;
2833 
2834 	if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2835 		return -ENOMEM;
2836 
2837 	netdev->hw_features |= NETIF_F_RXFCS;
2838 	netdev->priv_flags |= IFF_SUPP_NOFCS;
2839 	netdev->hw_features |= NETIF_F_RXALL;
2840 
2841 	netdev->netdev_ops = &e100_netdev_ops;
2842 	netdev->ethtool_ops = &e100_ethtool_ops;
2843 	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2844 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2845 
2846 	nic = netdev_priv(netdev);
2847 	netif_napi_add_weight(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2848 	nic->netdev = netdev;
2849 	nic->pdev = pdev;
2850 	nic->msg_enable = (1 << debug) - 1;
2851 	nic->mdio_ctrl = mdio_ctrl_hw;
2852 	pci_set_drvdata(pdev, netdev);
2853 
2854 	if ((err = pci_enable_device(pdev))) {
2855 		netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2856 		goto err_out_free_dev;
2857 	}
2858 
2859 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2860 		netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2861 		err = -ENODEV;
2862 		goto err_out_disable_pdev;
2863 	}
2864 
2865 	if ((err = pci_request_regions(pdev, DRV_NAME))) {
2866 		netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2867 		goto err_out_disable_pdev;
2868 	}
2869 
2870 	if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
2871 		netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2872 		goto err_out_free_res;
2873 	}
2874 
2875 	SET_NETDEV_DEV(netdev, &pdev->dev);
2876 
2877 	if (use_io)
2878 		netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2879 
2880 	nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2881 	if (!nic->csr) {
2882 		netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2883 		err = -ENOMEM;
2884 		goto err_out_free_res;
2885 	}
2886 
2887 	if (ent->driver_data)
2888 		nic->flags |= ich;
2889 	else
2890 		nic->flags &= ~ich;
2891 
2892 	e100_get_defaults(nic);
2893 
2894 	/* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2895 	if (nic->mac < mac_82558_D101_A4)
2896 		netdev->features |= NETIF_F_VLAN_CHALLENGED;
2897 
2898 	/* locks must be initialized before calling hw_reset */
2899 	spin_lock_init(&nic->cb_lock);
2900 	spin_lock_init(&nic->cmd_lock);
2901 	spin_lock_init(&nic->mdio_lock);
2902 
2903 	/* Reset the device before pci_set_master() in case device is in some
2904 	 * funky state and has an interrupt pending - hint: we don't have the
2905 	 * interrupt handler registered yet. */
2906 	e100_hw_reset(nic);
2907 
2908 	pci_set_master(pdev);
2909 
2910 	timer_setup(&nic->watchdog, e100_watchdog, 0);
2911 
2912 	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2913 
2914 	if ((err = e100_alloc(nic))) {
2915 		netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2916 		goto err_out_iounmap;
2917 	}
2918 
2919 	if ((err = e100_eeprom_load(nic)))
2920 		goto err_out_free;
2921 
2922 	e100_phy_init(nic);
2923 
2924 	eth_hw_addr_set(netdev, (u8 *)nic->eeprom);
2925 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2926 		if (!eeprom_bad_csum_allow) {
2927 			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2928 			err = -EAGAIN;
2929 			goto err_out_free;
2930 		} else {
2931 			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2932 		}
2933 	}
2934 
2935 	/* Wol magic packet can be enabled from eeprom */
2936 	if ((nic->mac >= mac_82558_D101_A4) &&
2937 	   (le16_to_cpu(nic->eeprom[eeprom_id]) & eeprom_id_wol)) {
2938 		nic->flags |= wol_magic;
2939 		device_set_wakeup_enable(&pdev->dev, true);
2940 	}
2941 
2942 	/* ack any pending wake events, disable PME */
2943 	pci_pme_active(pdev, false);
2944 
2945 	strcpy(netdev->name, "eth%d");
2946 	if ((err = register_netdev(netdev))) {
2947 		netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2948 		goto err_out_free;
2949 	}
2950 	nic->cbs_pool = dma_pool_create(netdev->name,
2951 			   &nic->pdev->dev,
2952 			   nic->params.cbs.max * sizeof(struct cb),
2953 			   sizeof(u32),
2954 			   0);
2955 	if (!nic->cbs_pool) {
2956 		netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n");
2957 		err = -ENOMEM;
2958 		goto err_out_pool;
2959 	}
2960 	netif_info(nic, probe, nic->netdev,
2961 		   "addr 0x%llx, irq %d, MAC addr %pM\n",
2962 		   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2963 		   pdev->irq, netdev->dev_addr);
2964 
2965 	return 0;
2966 
2967 err_out_pool:
2968 	unregister_netdev(netdev);
2969 err_out_free:
2970 	e100_free(nic);
2971 err_out_iounmap:
2972 	pci_iounmap(pdev, nic->csr);
2973 err_out_free_res:
2974 	pci_release_regions(pdev);
2975 err_out_disable_pdev:
2976 	pci_disable_device(pdev);
2977 err_out_free_dev:
2978 	free_netdev(netdev);
2979 	return err;
2980 }
2981 
2982 static void e100_remove(struct pci_dev *pdev)
2983 {
2984 	struct net_device *netdev = pci_get_drvdata(pdev);
2985 
2986 	if (netdev) {
2987 		struct nic *nic = netdev_priv(netdev);
2988 		unregister_netdev(netdev);
2989 		e100_free(nic);
2990 		pci_iounmap(pdev, nic->csr);
2991 		dma_pool_destroy(nic->cbs_pool);
2992 		free_netdev(netdev);
2993 		pci_release_regions(pdev);
2994 		pci_disable_device(pdev);
2995 	}
2996 }
2997 
2998 #define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
2999 #define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
3000 #define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
3001 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
3002 {
3003 	struct net_device *netdev = pci_get_drvdata(pdev);
3004 	struct nic *nic = netdev_priv(netdev);
3005 
3006 	netif_device_detach(netdev);
3007 
3008 	if (netif_running(netdev))
3009 		e100_down(nic);
3010 
3011 	if ((nic->flags & wol_magic) | e100_asf(nic)) {
3012 		/* enable reverse auto-negotiation */
3013 		if (nic->phy == phy_82552_v) {
3014 			u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3015 			                           E100_82552_SMARTSPEED);
3016 
3017 			mdio_write(netdev, nic->mii.phy_id,
3018 			           E100_82552_SMARTSPEED, smartspeed |
3019 			           E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3020 		}
3021 		*enable_wake = true;
3022 	} else {
3023 		*enable_wake = false;
3024 	}
3025 
3026 	pci_disable_device(pdev);
3027 }
3028 
3029 static int __e100_power_off(struct pci_dev *pdev, bool wake)
3030 {
3031 	if (wake)
3032 		return pci_prepare_to_sleep(pdev);
3033 
3034 	pci_wake_from_d3(pdev, false);
3035 	pci_set_power_state(pdev, PCI_D3hot);
3036 
3037 	return 0;
3038 }
3039 
3040 static int __maybe_unused e100_suspend(struct device *dev_d)
3041 {
3042 	bool wake;
3043 
3044 	__e100_shutdown(to_pci_dev(dev_d), &wake);
3045 
3046 	return 0;
3047 }
3048 
3049 static int __maybe_unused e100_resume(struct device *dev_d)
3050 {
3051 	struct net_device *netdev = dev_get_drvdata(dev_d);
3052 	struct nic *nic = netdev_priv(netdev);
3053 	int err;
3054 
3055 	err = pci_enable_device(to_pci_dev(dev_d));
3056 	if (err) {
3057 		netdev_err(netdev, "Resume cannot enable PCI device, aborting\n");
3058 		return err;
3059 	}
3060 	pci_set_master(to_pci_dev(dev_d));
3061 
3062 	/* disable reverse auto-negotiation */
3063 	if (nic->phy == phy_82552_v) {
3064 		u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3065 		                           E100_82552_SMARTSPEED);
3066 
3067 		mdio_write(netdev, nic->mii.phy_id,
3068 		           E100_82552_SMARTSPEED,
3069 		           smartspeed & ~(E100_82552_REV_ANEG));
3070 	}
3071 
3072 	if (netif_running(netdev))
3073 		e100_up(nic);
3074 
3075 	netif_device_attach(netdev);
3076 
3077 	return 0;
3078 }
3079 
3080 static void e100_shutdown(struct pci_dev *pdev)
3081 {
3082 	bool wake;
3083 	__e100_shutdown(pdev, &wake);
3084 	if (system_state == SYSTEM_POWER_OFF)
3085 		__e100_power_off(pdev, wake);
3086 }
3087 
3088 /* ------------------ PCI Error Recovery infrastructure  -------------- */
3089 /**
3090  * e100_io_error_detected - called when PCI error is detected.
3091  * @pdev: Pointer to PCI device
3092  * @state: The current pci connection state
3093  */
3094 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3095 {
3096 	struct net_device *netdev = pci_get_drvdata(pdev);
3097 	struct nic *nic = netdev_priv(netdev);
3098 
3099 	netif_device_detach(netdev);
3100 
3101 	if (state == pci_channel_io_perm_failure)
3102 		return PCI_ERS_RESULT_DISCONNECT;
3103 
3104 	if (netif_running(netdev))
3105 		e100_down(nic);
3106 	pci_disable_device(pdev);
3107 
3108 	/* Request a slot reset. */
3109 	return PCI_ERS_RESULT_NEED_RESET;
3110 }
3111 
3112 /**
3113  * e100_io_slot_reset - called after the pci bus has been reset.
3114  * @pdev: Pointer to PCI device
3115  *
3116  * Restart the card from scratch.
3117  */
3118 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3119 {
3120 	struct net_device *netdev = pci_get_drvdata(pdev);
3121 	struct nic *nic = netdev_priv(netdev);
3122 
3123 	if (pci_enable_device(pdev)) {
3124 		pr_err("Cannot re-enable PCI device after reset\n");
3125 		return PCI_ERS_RESULT_DISCONNECT;
3126 	}
3127 	pci_set_master(pdev);
3128 
3129 	/* Only one device per card can do a reset */
3130 	if (0 != PCI_FUNC(pdev->devfn))
3131 		return PCI_ERS_RESULT_RECOVERED;
3132 	e100_hw_reset(nic);
3133 	e100_phy_init(nic);
3134 
3135 	return PCI_ERS_RESULT_RECOVERED;
3136 }
3137 
3138 /**
3139  * e100_io_resume - resume normal operations
3140  * @pdev: Pointer to PCI device
3141  *
3142  * Resume normal operations after an error recovery
3143  * sequence has been completed.
3144  */
3145 static void e100_io_resume(struct pci_dev *pdev)
3146 {
3147 	struct net_device *netdev = pci_get_drvdata(pdev);
3148 	struct nic *nic = netdev_priv(netdev);
3149 
3150 	/* ack any pending wake events, disable PME */
3151 	pci_enable_wake(pdev, PCI_D0, 0);
3152 
3153 	netif_device_attach(netdev);
3154 	if (netif_running(netdev)) {
3155 		e100_open(netdev);
3156 		mod_timer(&nic->watchdog, jiffies);
3157 	}
3158 }
3159 
3160 static const struct pci_error_handlers e100_err_handler = {
3161 	.error_detected = e100_io_error_detected,
3162 	.slot_reset = e100_io_slot_reset,
3163 	.resume = e100_io_resume,
3164 };
3165 
3166 static SIMPLE_DEV_PM_OPS(e100_pm_ops, e100_suspend, e100_resume);
3167 
3168 static struct pci_driver e100_driver = {
3169 	.name =         DRV_NAME,
3170 	.id_table =     e100_id_table,
3171 	.probe =        e100_probe,
3172 	.remove =       e100_remove,
3173 
3174 	/* Power Management hooks */
3175 	.driver.pm =	&e100_pm_ops,
3176 
3177 	.shutdown =     e100_shutdown,
3178 	.err_handler = &e100_err_handler,
3179 };
3180 
3181 static int __init e100_init_module(void)
3182 {
3183 	if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3184 		pr_info("%s\n", DRV_DESCRIPTION);
3185 		pr_info("%s\n", DRV_COPYRIGHT);
3186 	}
3187 	return pci_register_driver(&e100_driver);
3188 }
3189 
3190 static void __exit e100_cleanup_module(void)
3191 {
3192 	pci_unregister_driver(&e100_driver);
3193 }
3194 
3195 module_init(e100_init_module);
3196 module_exit(e100_cleanup_module);
3197