1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
15 
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static struct hnae3_ae_algo ae_algovf;
18 
19 static const struct pci_device_id ae_algovf_pci_tbl[] = {
20 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
21 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
22 	/* required last entry */
23 	{0, }
24 };
25 
26 static const u8 hclgevf_hash_key[] = {
27 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
28 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
29 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
30 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
31 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
32 };
33 
34 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
35 
36 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
37 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
38 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
39 					 HCLGEVF_CMDQ_TX_TAIL_REG,
40 					 HCLGEVF_CMDQ_TX_HEAD_REG,
41 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
42 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
43 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
44 					 HCLGEVF_CMDQ_RX_TAIL_REG,
45 					 HCLGEVF_CMDQ_RX_HEAD_REG,
46 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
47 					 HCLGEVF_CMDQ_INTR_STS_REG,
48 					 HCLGEVF_CMDQ_INTR_EN_REG,
49 					 HCLGEVF_CMDQ_INTR_GEN_REG};
50 
51 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
52 					   HCLGEVF_RST_ING,
53 					   HCLGEVF_GRO_EN_REG};
54 
55 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
56 					 HCLGEVF_RING_RX_ADDR_H_REG,
57 					 HCLGEVF_RING_RX_BD_NUM_REG,
58 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
59 					 HCLGEVF_RING_RX_MERGE_EN_REG,
60 					 HCLGEVF_RING_RX_TAIL_REG,
61 					 HCLGEVF_RING_RX_HEAD_REG,
62 					 HCLGEVF_RING_RX_FBD_NUM_REG,
63 					 HCLGEVF_RING_RX_OFFSET_REG,
64 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
65 					 HCLGEVF_RING_RX_STASH_REG,
66 					 HCLGEVF_RING_RX_BD_ERR_REG,
67 					 HCLGEVF_RING_TX_ADDR_L_REG,
68 					 HCLGEVF_RING_TX_ADDR_H_REG,
69 					 HCLGEVF_RING_TX_BD_NUM_REG,
70 					 HCLGEVF_RING_TX_PRIORITY_REG,
71 					 HCLGEVF_RING_TX_TC_REG,
72 					 HCLGEVF_RING_TX_MERGE_EN_REG,
73 					 HCLGEVF_RING_TX_TAIL_REG,
74 					 HCLGEVF_RING_TX_HEAD_REG,
75 					 HCLGEVF_RING_TX_FBD_NUM_REG,
76 					 HCLGEVF_RING_TX_OFFSET_REG,
77 					 HCLGEVF_RING_TX_EBD_NUM_REG,
78 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
79 					 HCLGEVF_RING_TX_BD_ERR_REG,
80 					 HCLGEVF_RING_EN_REG};
81 
82 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
83 					     HCLGEVF_TQP_INTR_GL0_REG,
84 					     HCLGEVF_TQP_INTR_GL1_REG,
85 					     HCLGEVF_TQP_INTR_GL2_REG,
86 					     HCLGEVF_TQP_INTR_RL_REG};
87 
88 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
89 {
90 	if (!handle->client)
91 		return container_of(handle, struct hclgevf_dev, nic);
92 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
93 		return container_of(handle, struct hclgevf_dev, roce);
94 	else
95 		return container_of(handle, struct hclgevf_dev, nic);
96 }
97 
98 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
99 {
100 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
101 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
102 	struct hclgevf_desc desc;
103 	struct hclgevf_tqp *tqp;
104 	int status;
105 	int i;
106 
107 	for (i = 0; i < kinfo->num_tqps; i++) {
108 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
109 		hclgevf_cmd_setup_basic_desc(&desc,
110 					     HCLGEVF_OPC_QUERY_RX_STATUS,
111 					     true);
112 
113 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
114 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
115 		if (status) {
116 			dev_err(&hdev->pdev->dev,
117 				"Query tqp stat fail, status = %d,queue = %d\n",
118 				status,	i);
119 			return status;
120 		}
121 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
122 			le32_to_cpu(desc.data[1]);
123 
124 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
125 					     true);
126 
127 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
128 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
129 		if (status) {
130 			dev_err(&hdev->pdev->dev,
131 				"Query tqp stat fail, status = %d,queue = %d\n",
132 				status, i);
133 			return status;
134 		}
135 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
136 			le32_to_cpu(desc.data[1]);
137 	}
138 
139 	return 0;
140 }
141 
142 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
143 {
144 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
145 	struct hclgevf_tqp *tqp;
146 	u64 *buff = data;
147 	int i;
148 
149 	for (i = 0; i < kinfo->num_tqps; i++) {
150 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
151 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
152 	}
153 	for (i = 0; i < kinfo->num_tqps; i++) {
154 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
155 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
156 	}
157 
158 	return buff;
159 }
160 
161 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
162 {
163 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
164 
165 	return kinfo->num_tqps * 2;
166 }
167 
168 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
169 {
170 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
171 	u8 *buff = data;
172 	int i = 0;
173 
174 	for (i = 0; i < kinfo->num_tqps; i++) {
175 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
176 						       struct hclgevf_tqp, q);
177 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
178 			 tqp->index);
179 		buff += ETH_GSTRING_LEN;
180 	}
181 
182 	for (i = 0; i < kinfo->num_tqps; i++) {
183 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
184 						       struct hclgevf_tqp, q);
185 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
186 			 tqp->index);
187 		buff += ETH_GSTRING_LEN;
188 	}
189 
190 	return buff;
191 }
192 
193 static void hclgevf_update_stats(struct hnae3_handle *handle,
194 				 struct net_device_stats *net_stats)
195 {
196 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
197 	int status;
198 
199 	status = hclgevf_tqps_update_stats(handle);
200 	if (status)
201 		dev_err(&hdev->pdev->dev,
202 			"VF update of TQPS stats fail, status = %d.\n",
203 			status);
204 }
205 
206 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
207 {
208 	if (strset == ETH_SS_TEST)
209 		return -EOPNOTSUPP;
210 	else if (strset == ETH_SS_STATS)
211 		return hclgevf_tqps_get_sset_count(handle, strset);
212 
213 	return 0;
214 }
215 
216 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
217 				u8 *data)
218 {
219 	u8 *p = (char *)data;
220 
221 	if (strset == ETH_SS_STATS)
222 		p = hclgevf_tqps_get_strings(handle, p);
223 }
224 
225 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
226 {
227 	hclgevf_tqps_get_stats(handle, data);
228 }
229 
230 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
231 {
232 	u8 resp_msg;
233 	int status;
234 
235 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
236 				      true, &resp_msg, sizeof(resp_msg));
237 	if (status) {
238 		dev_err(&hdev->pdev->dev,
239 			"VF request to get TC info from PF failed %d",
240 			status);
241 		return status;
242 	}
243 
244 	hdev->hw_tc_map = resp_msg;
245 
246 	return 0;
247 }
248 
249 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
250 {
251 	struct hnae3_handle *nic = &hdev->nic;
252 	u8 resp_msg;
253 	int ret;
254 
255 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
256 				   HCLGE_MBX_GET_PORT_BASE_VLAN_STATE,
257 				   NULL, 0, true, &resp_msg, sizeof(u8));
258 	if (ret) {
259 		dev_err(&hdev->pdev->dev,
260 			"VF request to get port based vlan state failed %d",
261 			ret);
262 		return ret;
263 	}
264 
265 	nic->port_base_vlan_state = resp_msg;
266 
267 	return 0;
268 }
269 
270 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
271 {
272 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
273 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
274 	int status;
275 
276 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
277 				      true, resp_msg,
278 				      HCLGEVF_TQPS_RSS_INFO_LEN);
279 	if (status) {
280 		dev_err(&hdev->pdev->dev,
281 			"VF request to get tqp info from PF failed %d",
282 			status);
283 		return status;
284 	}
285 
286 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
287 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
288 	memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));
289 
290 	return 0;
291 }
292 
293 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
294 {
295 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
296 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
297 	int ret;
298 
299 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
300 				   true, resp_msg,
301 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
302 	if (ret) {
303 		dev_err(&hdev->pdev->dev,
304 			"VF request to get tqp depth info from PF failed %d",
305 			ret);
306 		return ret;
307 	}
308 
309 	memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
310 	memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));
311 
312 	return 0;
313 }
314 
315 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
316 {
317 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
318 	u8 msg_data[2], resp_data[2];
319 	u16 qid_in_pf = 0;
320 	int ret;
321 
322 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
323 
324 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
325 				   sizeof(msg_data), true, resp_data,
326 				   sizeof(resp_data));
327 	if (!ret)
328 		qid_in_pf = *(u16 *)resp_data;
329 
330 	return qid_in_pf;
331 }
332 
333 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
334 {
335 	u8 resp_msg[2];
336 	int ret;
337 
338 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MEDIA_TYPE, 0, NULL, 0,
339 				   true, resp_msg, sizeof(resp_msg));
340 	if (ret) {
341 		dev_err(&hdev->pdev->dev,
342 			"VF request to get the pf port media type failed %d",
343 			ret);
344 		return ret;
345 	}
346 
347 	hdev->hw.mac.media_type = resp_msg[0];
348 	hdev->hw.mac.module_type = resp_msg[1];
349 
350 	return 0;
351 }
352 
353 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
354 {
355 	struct hclgevf_tqp *tqp;
356 	int i;
357 
358 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
359 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
360 	if (!hdev->htqp)
361 		return -ENOMEM;
362 
363 	tqp = hdev->htqp;
364 
365 	for (i = 0; i < hdev->num_tqps; i++) {
366 		tqp->dev = &hdev->pdev->dev;
367 		tqp->index = i;
368 
369 		tqp->q.ae_algo = &ae_algovf;
370 		tqp->q.buf_size = hdev->rx_buf_len;
371 		tqp->q.tx_desc_num = hdev->num_tx_desc;
372 		tqp->q.rx_desc_num = hdev->num_rx_desc;
373 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
374 			i * HCLGEVF_TQP_REG_SIZE;
375 
376 		tqp++;
377 	}
378 
379 	return 0;
380 }
381 
382 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
383 {
384 	struct hnae3_handle *nic = &hdev->nic;
385 	struct hnae3_knic_private_info *kinfo;
386 	u16 new_tqps = hdev->num_tqps;
387 	unsigned int i;
388 
389 	kinfo = &nic->kinfo;
390 	kinfo->num_tc = 0;
391 	kinfo->num_tx_desc = hdev->num_tx_desc;
392 	kinfo->num_rx_desc = hdev->num_rx_desc;
393 	kinfo->rx_buf_len = hdev->rx_buf_len;
394 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
395 		if (hdev->hw_tc_map & BIT(i))
396 			kinfo->num_tc++;
397 
398 	kinfo->rss_size
399 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
400 	new_tqps = kinfo->rss_size * kinfo->num_tc;
401 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
402 
403 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
404 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
405 	if (!kinfo->tqp)
406 		return -ENOMEM;
407 
408 	for (i = 0; i < kinfo->num_tqps; i++) {
409 		hdev->htqp[i].q.handle = &hdev->nic;
410 		hdev->htqp[i].q.tqp_index = i;
411 		kinfo->tqp[i] = &hdev->htqp[i].q;
412 	}
413 
414 	/* after init the max rss_size and tqps, adjust the default tqp numbers
415 	 * and rss size with the actual vector numbers
416 	 */
417 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
418 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / kinfo->num_tc,
419 				kinfo->rss_size);
420 
421 	return 0;
422 }
423 
424 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
425 {
426 	int status;
427 	u8 resp_msg;
428 
429 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
430 				      0, false, &resp_msg, sizeof(resp_msg));
431 	if (status)
432 		dev_err(&hdev->pdev->dev,
433 			"VF failed to fetch link status(%d) from PF", status);
434 }
435 
436 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
437 {
438 	struct hnae3_handle *rhandle = &hdev->roce;
439 	struct hnae3_handle *handle = &hdev->nic;
440 	struct hnae3_client *rclient;
441 	struct hnae3_client *client;
442 
443 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
444 		return;
445 
446 	client = handle->client;
447 	rclient = hdev->roce_client;
448 
449 	link_state =
450 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
451 
452 	if (link_state != hdev->hw.mac.link) {
453 		client->ops->link_status_change(handle, !!link_state);
454 		if (rclient && rclient->ops->link_status_change)
455 			rclient->ops->link_status_change(rhandle, !!link_state);
456 		hdev->hw.mac.link = link_state;
457 	}
458 
459 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
460 }
461 
462 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
463 {
464 #define HCLGEVF_ADVERTISING 0
465 #define HCLGEVF_SUPPORTED   1
466 	u8 send_msg;
467 	u8 resp_msg;
468 
469 	send_msg = HCLGEVF_ADVERTISING;
470 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
471 			     &send_msg, sizeof(send_msg), false,
472 			     &resp_msg, sizeof(resp_msg));
473 	send_msg = HCLGEVF_SUPPORTED;
474 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
475 			     &send_msg, sizeof(send_msg), false,
476 			     &resp_msg, sizeof(resp_msg));
477 }
478 
479 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
480 {
481 	struct hnae3_handle *nic = &hdev->nic;
482 	int ret;
483 
484 	nic->ae_algo = &ae_algovf;
485 	nic->pdev = hdev->pdev;
486 	nic->numa_node_mask = hdev->numa_node_mask;
487 	nic->flags |= HNAE3_SUPPORT_VF;
488 
489 	ret = hclgevf_knic_setup(hdev);
490 	if (ret)
491 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
492 			ret);
493 	return ret;
494 }
495 
496 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
497 {
498 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
499 		dev_warn(&hdev->pdev->dev,
500 			 "vector(vector_id %d) has been freed.\n", vector_id);
501 		return;
502 	}
503 
504 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
505 	hdev->num_msi_left += 1;
506 	hdev->num_msi_used -= 1;
507 }
508 
509 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
510 			      struct hnae3_vector_info *vector_info)
511 {
512 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
513 	struct hnae3_vector_info *vector = vector_info;
514 	int alloc = 0;
515 	int i, j;
516 
517 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
518 	vector_num = min(hdev->num_msi_left, vector_num);
519 
520 	for (j = 0; j < vector_num; j++) {
521 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
522 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
523 				vector->vector = pci_irq_vector(hdev->pdev, i);
524 				vector->io_addr = hdev->hw.io_base +
525 					HCLGEVF_VECTOR_REG_BASE +
526 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
527 				hdev->vector_status[i] = 0;
528 				hdev->vector_irq[i] = vector->vector;
529 
530 				vector++;
531 				alloc++;
532 
533 				break;
534 			}
535 		}
536 	}
537 	hdev->num_msi_left -= alloc;
538 	hdev->num_msi_used += alloc;
539 
540 	return alloc;
541 }
542 
543 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
544 {
545 	int i;
546 
547 	for (i = 0; i < hdev->num_msi; i++)
548 		if (vector == hdev->vector_irq[i])
549 			return i;
550 
551 	return -EINVAL;
552 }
553 
554 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
555 				    const u8 hfunc, const u8 *key)
556 {
557 	struct hclgevf_rss_config_cmd *req;
558 	unsigned int key_offset = 0;
559 	struct hclgevf_desc desc;
560 	int key_counts;
561 	int key_size;
562 	int ret;
563 
564 	key_counts = HCLGEVF_RSS_KEY_SIZE;
565 	req = (struct hclgevf_rss_config_cmd *)desc.data;
566 
567 	while (key_counts) {
568 		hclgevf_cmd_setup_basic_desc(&desc,
569 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
570 					     false);
571 
572 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
573 		req->hash_config |=
574 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
575 
576 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
577 		memcpy(req->hash_key,
578 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
579 
580 		key_counts -= key_size;
581 		key_offset++;
582 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
583 		if (ret) {
584 			dev_err(&hdev->pdev->dev,
585 				"Configure RSS config fail, status = %d\n",
586 				ret);
587 			return ret;
588 		}
589 	}
590 
591 	return 0;
592 }
593 
594 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
595 {
596 	return HCLGEVF_RSS_KEY_SIZE;
597 }
598 
599 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
600 {
601 	return HCLGEVF_RSS_IND_TBL_SIZE;
602 }
603 
604 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
605 {
606 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
607 	struct hclgevf_rss_indirection_table_cmd *req;
608 	struct hclgevf_desc desc;
609 	int status;
610 	int i, j;
611 
612 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
613 
614 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
615 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
616 					     false);
617 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
618 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
619 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
620 			req->rss_result[j] =
621 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
622 
623 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
624 		if (status) {
625 			dev_err(&hdev->pdev->dev,
626 				"VF failed(=%d) to set RSS indirection table\n",
627 				status);
628 			return status;
629 		}
630 	}
631 
632 	return 0;
633 }
634 
635 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
636 {
637 	struct hclgevf_rss_tc_mode_cmd *req;
638 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
639 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
640 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
641 	struct hclgevf_desc desc;
642 	u16 roundup_size;
643 	int status;
644 	unsigned int i;
645 
646 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
647 
648 	roundup_size = roundup_pow_of_two(rss_size);
649 	roundup_size = ilog2(roundup_size);
650 
651 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
652 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
653 		tc_size[i] = roundup_size;
654 		tc_offset[i] = rss_size * i;
655 	}
656 
657 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
658 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
659 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
660 			      (tc_valid[i] & 0x1));
661 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
662 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
663 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
664 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
665 	}
666 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
667 	if (status)
668 		dev_err(&hdev->pdev->dev,
669 			"VF failed(=%d) to set rss tc mode\n", status);
670 
671 	return status;
672 }
673 
674 /* for revision 0x20, vf shared the same rss config with pf */
675 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
676 {
677 #define HCLGEVF_RSS_MBX_RESP_LEN	8
678 
679 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
680 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
681 	u16 msg_num, hash_key_index;
682 	u8 index;
683 	int ret;
684 
685 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
686 			HCLGEVF_RSS_MBX_RESP_LEN;
687 	for (index = 0; index < msg_num; index++) {
688 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_RSS_KEY, 0,
689 					   &index, sizeof(index),
690 					   true, resp_msg,
691 					   HCLGEVF_RSS_MBX_RESP_LEN);
692 		if (ret) {
693 			dev_err(&hdev->pdev->dev,
694 				"VF get rss hash key from PF failed, ret=%d",
695 				ret);
696 			return ret;
697 		}
698 
699 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
700 		if (index == msg_num - 1)
701 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
702 			       &resp_msg[0],
703 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
704 		else
705 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
706 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
707 	}
708 
709 	return 0;
710 }
711 
712 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
713 			   u8 *hfunc)
714 {
715 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
716 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
717 	int i, ret;
718 
719 	if (handle->pdev->revision >= 0x21) {
720 		/* Get hash algorithm */
721 		if (hfunc) {
722 			switch (rss_cfg->hash_algo) {
723 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
724 				*hfunc = ETH_RSS_HASH_TOP;
725 				break;
726 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
727 				*hfunc = ETH_RSS_HASH_XOR;
728 				break;
729 			default:
730 				*hfunc = ETH_RSS_HASH_UNKNOWN;
731 				break;
732 			}
733 		}
734 
735 		/* Get the RSS Key required by the user */
736 		if (key)
737 			memcpy(key, rss_cfg->rss_hash_key,
738 			       HCLGEVF_RSS_KEY_SIZE);
739 	} else {
740 		if (hfunc)
741 			*hfunc = ETH_RSS_HASH_TOP;
742 		if (key) {
743 			ret = hclgevf_get_rss_hash_key(hdev);
744 			if (ret)
745 				return ret;
746 			memcpy(key, rss_cfg->rss_hash_key,
747 			       HCLGEVF_RSS_KEY_SIZE);
748 		}
749 	}
750 
751 	if (indir)
752 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
753 			indir[i] = rss_cfg->rss_indirection_tbl[i];
754 
755 	return 0;
756 }
757 
758 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
759 			   const u8 *key, const u8 hfunc)
760 {
761 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
762 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
763 	int ret, i;
764 
765 	if (handle->pdev->revision >= 0x21) {
766 		/* Set the RSS Hash Key if specififed by the user */
767 		if (key) {
768 			switch (hfunc) {
769 			case ETH_RSS_HASH_TOP:
770 				rss_cfg->hash_algo =
771 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
772 				break;
773 			case ETH_RSS_HASH_XOR:
774 				rss_cfg->hash_algo =
775 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
776 				break;
777 			case ETH_RSS_HASH_NO_CHANGE:
778 				break;
779 			default:
780 				return -EINVAL;
781 			}
782 
783 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
784 						       key);
785 			if (ret)
786 				return ret;
787 
788 			/* Update the shadow RSS key with user specified qids */
789 			memcpy(rss_cfg->rss_hash_key, key,
790 			       HCLGEVF_RSS_KEY_SIZE);
791 		}
792 	}
793 
794 	/* update the shadow RSS table with user specified qids */
795 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
796 		rss_cfg->rss_indirection_tbl[i] = indir[i];
797 
798 	/* update the hardware */
799 	return hclgevf_set_rss_indir_table(hdev);
800 }
801 
802 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
803 {
804 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
805 
806 	if (nfc->data & RXH_L4_B_2_3)
807 		hash_sets |= HCLGEVF_D_PORT_BIT;
808 	else
809 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
810 
811 	if (nfc->data & RXH_IP_SRC)
812 		hash_sets |= HCLGEVF_S_IP_BIT;
813 	else
814 		hash_sets &= ~HCLGEVF_S_IP_BIT;
815 
816 	if (nfc->data & RXH_IP_DST)
817 		hash_sets |= HCLGEVF_D_IP_BIT;
818 	else
819 		hash_sets &= ~HCLGEVF_D_IP_BIT;
820 
821 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
822 		hash_sets |= HCLGEVF_V_TAG_BIT;
823 
824 	return hash_sets;
825 }
826 
827 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
828 				 struct ethtool_rxnfc *nfc)
829 {
830 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
831 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
832 	struct hclgevf_rss_input_tuple_cmd *req;
833 	struct hclgevf_desc desc;
834 	u8 tuple_sets;
835 	int ret;
836 
837 	if (handle->pdev->revision == 0x20)
838 		return -EOPNOTSUPP;
839 
840 	if (nfc->data &
841 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
842 		return -EINVAL;
843 
844 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
845 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
846 
847 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
848 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
849 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
850 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
851 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
852 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
853 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
854 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
855 
856 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
857 	switch (nfc->flow_type) {
858 	case TCP_V4_FLOW:
859 		req->ipv4_tcp_en = tuple_sets;
860 		break;
861 	case TCP_V6_FLOW:
862 		req->ipv6_tcp_en = tuple_sets;
863 		break;
864 	case UDP_V4_FLOW:
865 		req->ipv4_udp_en = tuple_sets;
866 		break;
867 	case UDP_V6_FLOW:
868 		req->ipv6_udp_en = tuple_sets;
869 		break;
870 	case SCTP_V4_FLOW:
871 		req->ipv4_sctp_en = tuple_sets;
872 		break;
873 	case SCTP_V6_FLOW:
874 		if ((nfc->data & RXH_L4_B_0_1) ||
875 		    (nfc->data & RXH_L4_B_2_3))
876 			return -EINVAL;
877 
878 		req->ipv6_sctp_en = tuple_sets;
879 		break;
880 	case IPV4_FLOW:
881 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
882 		break;
883 	case IPV6_FLOW:
884 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
885 		break;
886 	default:
887 		return -EINVAL;
888 	}
889 
890 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
891 	if (ret) {
892 		dev_err(&hdev->pdev->dev,
893 			"Set rss tuple fail, status = %d\n", ret);
894 		return ret;
895 	}
896 
897 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
898 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
899 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
900 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
901 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
902 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
903 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
904 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
905 	return 0;
906 }
907 
908 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
909 				 struct ethtool_rxnfc *nfc)
910 {
911 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
912 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
913 	u8 tuple_sets;
914 
915 	if (handle->pdev->revision == 0x20)
916 		return -EOPNOTSUPP;
917 
918 	nfc->data = 0;
919 
920 	switch (nfc->flow_type) {
921 	case TCP_V4_FLOW:
922 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
923 		break;
924 	case UDP_V4_FLOW:
925 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
926 		break;
927 	case TCP_V6_FLOW:
928 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
929 		break;
930 	case UDP_V6_FLOW:
931 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
932 		break;
933 	case SCTP_V4_FLOW:
934 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
935 		break;
936 	case SCTP_V6_FLOW:
937 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
938 		break;
939 	case IPV4_FLOW:
940 	case IPV6_FLOW:
941 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
942 		break;
943 	default:
944 		return -EINVAL;
945 	}
946 
947 	if (!tuple_sets)
948 		return 0;
949 
950 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
951 		nfc->data |= RXH_L4_B_2_3;
952 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
953 		nfc->data |= RXH_L4_B_0_1;
954 	if (tuple_sets & HCLGEVF_D_IP_BIT)
955 		nfc->data |= RXH_IP_DST;
956 	if (tuple_sets & HCLGEVF_S_IP_BIT)
957 		nfc->data |= RXH_IP_SRC;
958 
959 	return 0;
960 }
961 
962 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
963 				       struct hclgevf_rss_cfg *rss_cfg)
964 {
965 	struct hclgevf_rss_input_tuple_cmd *req;
966 	struct hclgevf_desc desc;
967 	int ret;
968 
969 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
970 
971 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
972 
973 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
974 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
975 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
976 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
977 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
978 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
979 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
980 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
981 
982 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
983 	if (ret)
984 		dev_err(&hdev->pdev->dev,
985 			"Configure rss input fail, status = %d\n", ret);
986 	return ret;
987 }
988 
989 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
990 {
991 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
992 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
993 
994 	return rss_cfg->rss_size;
995 }
996 
997 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
998 				       int vector_id,
999 				       struct hnae3_ring_chain_node *ring_chain)
1000 {
1001 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1002 	struct hnae3_ring_chain_node *node;
1003 	struct hclge_mbx_vf_to_pf_cmd *req;
1004 	struct hclgevf_desc desc;
1005 	int i = 0;
1006 	int status;
1007 	u8 type;
1008 
1009 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1010 	type = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1011 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1012 
1013 	for (node = ring_chain; node; node = node->next) {
1014 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
1015 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
1016 
1017 		if (i == 0) {
1018 			hclgevf_cmd_setup_basic_desc(&desc,
1019 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1020 						     false);
1021 			req->msg[0] = type;
1022 			req->msg[1] = vector_id;
1023 		}
1024 
1025 		req->msg[idx_offset] =
1026 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1027 		req->msg[idx_offset + 1] = node->tqp_index;
1028 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
1029 							   HNAE3_RING_GL_IDX_M,
1030 							   HNAE3_RING_GL_IDX_S);
1031 
1032 		i++;
1033 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
1034 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
1035 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
1036 		    !node->next) {
1037 			req->msg[2] = i;
1038 
1039 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1040 			if (status) {
1041 				dev_err(&hdev->pdev->dev,
1042 					"Map TQP fail, status is %d.\n",
1043 					status);
1044 				return status;
1045 			}
1046 			i = 0;
1047 			hclgevf_cmd_setup_basic_desc(&desc,
1048 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1049 						     false);
1050 			req->msg[0] = type;
1051 			req->msg[1] = vector_id;
1052 		}
1053 	}
1054 
1055 	return 0;
1056 }
1057 
1058 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1059 				      struct hnae3_ring_chain_node *ring_chain)
1060 {
1061 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1062 	int vector_id;
1063 
1064 	vector_id = hclgevf_get_vector_index(hdev, vector);
1065 	if (vector_id < 0) {
1066 		dev_err(&handle->pdev->dev,
1067 			"Get vector index fail. ret =%d\n", vector_id);
1068 		return vector_id;
1069 	}
1070 
1071 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1072 }
1073 
1074 static int hclgevf_unmap_ring_from_vector(
1075 				struct hnae3_handle *handle,
1076 				int vector,
1077 				struct hnae3_ring_chain_node *ring_chain)
1078 {
1079 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1080 	int ret, vector_id;
1081 
1082 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1083 		return 0;
1084 
1085 	vector_id = hclgevf_get_vector_index(hdev, vector);
1086 	if (vector_id < 0) {
1087 		dev_err(&handle->pdev->dev,
1088 			"Get vector index fail. ret =%d\n", vector_id);
1089 		return vector_id;
1090 	}
1091 
1092 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1093 	if (ret)
1094 		dev_err(&handle->pdev->dev,
1095 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1096 			vector_id,
1097 			ret);
1098 
1099 	return ret;
1100 }
1101 
1102 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1103 {
1104 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1105 	int vector_id;
1106 
1107 	vector_id = hclgevf_get_vector_index(hdev, vector);
1108 	if (vector_id < 0) {
1109 		dev_err(&handle->pdev->dev,
1110 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1111 			vector_id);
1112 		return vector_id;
1113 	}
1114 
1115 	hclgevf_free_vector(hdev, vector_id);
1116 
1117 	return 0;
1118 }
1119 
1120 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1121 					bool en_uc_pmc, bool en_mc_pmc,
1122 					bool en_bc_pmc)
1123 {
1124 	struct hclge_mbx_vf_to_pf_cmd *req;
1125 	struct hclgevf_desc desc;
1126 	int ret;
1127 
1128 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1129 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
1130 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1131 	req->msg[1] = en_bc_pmc ? 1 : 0;
1132 	req->msg[2] = en_uc_pmc ? 1 : 0;
1133 	req->msg[3] = en_mc_pmc ? 1 : 0;
1134 
1135 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1136 	if (ret)
1137 		dev_err(&hdev->pdev->dev,
1138 			"Set promisc mode fail, status is %d.\n", ret);
1139 
1140 	return ret;
1141 }
1142 
1143 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1144 				    bool en_mc_pmc)
1145 {
1146 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1147 	struct pci_dev *pdev = hdev->pdev;
1148 	bool en_bc_pmc;
1149 
1150 	en_bc_pmc = pdev->revision != 0x20;
1151 
1152 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1153 					    en_bc_pmc);
1154 }
1155 
1156 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1157 			      int stream_id, bool enable)
1158 {
1159 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1160 	struct hclgevf_desc desc;
1161 	int status;
1162 
1163 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1164 
1165 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1166 				     false);
1167 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1168 	req->stream_id = cpu_to_le16(stream_id);
1169 	if (enable)
1170 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1171 
1172 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1173 	if (status)
1174 		dev_err(&hdev->pdev->dev,
1175 			"TQP enable fail, status =%d.\n", status);
1176 
1177 	return status;
1178 }
1179 
1180 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1181 {
1182 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1183 	struct hclgevf_tqp *tqp;
1184 	int i;
1185 
1186 	for (i = 0; i < kinfo->num_tqps; i++) {
1187 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1188 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1189 	}
1190 }
1191 
1192 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1193 {
1194 	u8 host_mac[ETH_ALEN];
1195 	int status;
1196 
1197 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MAC_ADDR, 0, NULL, 0,
1198 				      true, host_mac, ETH_ALEN);
1199 	if (status) {
1200 		dev_err(&hdev->pdev->dev,
1201 			"fail to get VF MAC from host %d", status);
1202 		return status;
1203 	}
1204 
1205 	ether_addr_copy(p, host_mac);
1206 
1207 	return 0;
1208 }
1209 
1210 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1211 {
1212 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1213 	u8 host_mac_addr[ETH_ALEN];
1214 
1215 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1216 		return;
1217 
1218 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1219 	if (hdev->has_pf_mac)
1220 		ether_addr_copy(p, host_mac_addr);
1221 	else
1222 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1223 }
1224 
1225 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1226 				bool is_first)
1227 {
1228 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1229 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1230 	u8 *new_mac_addr = (u8 *)p;
1231 	u8 msg_data[ETH_ALEN * 2];
1232 	u16 subcode;
1233 	int status;
1234 
1235 	ether_addr_copy(msg_data, new_mac_addr);
1236 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1237 
1238 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1239 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1240 
1241 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1242 				      subcode, msg_data, sizeof(msg_data),
1243 				      true, NULL, 0);
1244 	if (!status)
1245 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1246 
1247 	return status;
1248 }
1249 
1250 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1251 			       const unsigned char *addr)
1252 {
1253 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1254 
1255 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1256 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1257 				    addr, ETH_ALEN, false, NULL, 0);
1258 }
1259 
1260 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1261 			      const unsigned char *addr)
1262 {
1263 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1264 
1265 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1266 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1267 				    addr, ETH_ALEN, false, NULL, 0);
1268 }
1269 
1270 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1271 			       const unsigned char *addr)
1272 {
1273 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1274 
1275 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1276 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1277 				    addr, ETH_ALEN, false, NULL, 0);
1278 }
1279 
1280 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1281 			      const unsigned char *addr)
1282 {
1283 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1284 
1285 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1286 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1287 				    addr, ETH_ALEN, false, NULL, 0);
1288 }
1289 
1290 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1291 				   __be16 proto, u16 vlan_id,
1292 				   bool is_kill)
1293 {
1294 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1295 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1296 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1297 	int ret;
1298 
1299 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1300 		return -EINVAL;
1301 
1302 	if (proto != htons(ETH_P_8021Q))
1303 		return -EPROTONOSUPPORT;
1304 
1305 	/* When device is resetting, firmware is unable to handle
1306 	 * mailbox. Just record the vlan id, and remove it after
1307 	 * reset finished.
1308 	 */
1309 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) && is_kill) {
1310 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1311 		return -EBUSY;
1312 	}
1313 
1314 	msg_data[0] = is_kill;
1315 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1316 	memcpy(&msg_data[3], &proto, sizeof(proto));
1317 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1318 				   HCLGE_MBX_VLAN_FILTER, msg_data,
1319 				   HCLGEVF_VLAN_MBX_MSG_LEN, true, NULL, 0);
1320 
1321 	/* when remove hw vlan filter failed, record the vlan id,
1322 	 * and try to remove it from hw later, to be consistence
1323 	 * with stack.
1324 	 */
1325 	if (is_kill && ret)
1326 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1327 
1328 	return ret;
1329 }
1330 
1331 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1332 {
1333 #define HCLGEVF_MAX_SYNC_COUNT	60
1334 	struct hnae3_handle *handle = &hdev->nic;
1335 	int ret, sync_cnt = 0;
1336 	u16 vlan_id;
1337 
1338 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1339 	while (vlan_id != VLAN_N_VID) {
1340 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1341 					      vlan_id, true);
1342 		if (ret)
1343 			return;
1344 
1345 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1346 		sync_cnt++;
1347 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1348 			return;
1349 
1350 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1351 	}
1352 }
1353 
1354 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1355 {
1356 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1357 	u8 msg_data;
1358 
1359 	msg_data = enable ? 1 : 0;
1360 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1361 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1362 				    1, false, NULL, 0);
1363 }
1364 
1365 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1366 {
1367 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1368 	u8 msg_data[2];
1369 	int ret;
1370 
1371 	memcpy(msg_data, &queue_id, sizeof(queue_id));
1372 
1373 	/* disable vf queue before send queue reset msg to PF */
1374 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1375 	if (ret)
1376 		return ret;
1377 
1378 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1379 				    sizeof(msg_data), true, NULL, 0);
1380 }
1381 
1382 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1383 {
1384 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1385 
1386 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1387 				    sizeof(new_mtu), true, NULL, 0);
1388 }
1389 
1390 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1391 				 enum hnae3_reset_notify_type type)
1392 {
1393 	struct hnae3_client *client = hdev->nic_client;
1394 	struct hnae3_handle *handle = &hdev->nic;
1395 	int ret;
1396 
1397 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1398 	    !client)
1399 		return 0;
1400 
1401 	if (!client->ops->reset_notify)
1402 		return -EOPNOTSUPP;
1403 
1404 	ret = client->ops->reset_notify(handle, type);
1405 	if (ret)
1406 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1407 			type, ret);
1408 
1409 	return ret;
1410 }
1411 
1412 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1413 {
1414 	struct hclgevf_dev *hdev = ae_dev->priv;
1415 
1416 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1417 }
1418 
1419 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1420 				    unsigned long delay_us,
1421 				    unsigned long wait_cnt)
1422 {
1423 	unsigned long cnt = 0;
1424 
1425 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1426 	       cnt++ < wait_cnt)
1427 		usleep_range(delay_us, delay_us * 2);
1428 
1429 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1430 		dev_err(&hdev->pdev->dev,
1431 			"flr wait timeout\n");
1432 		return -ETIMEDOUT;
1433 	}
1434 
1435 	return 0;
1436 }
1437 
1438 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1439 {
1440 #define HCLGEVF_RESET_WAIT_US	20000
1441 #define HCLGEVF_RESET_WAIT_CNT	2000
1442 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1443 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1444 
1445 	u32 val;
1446 	int ret;
1447 
1448 	if (hdev->reset_type == HNAE3_FLR_RESET)
1449 		return hclgevf_flr_poll_timeout(hdev,
1450 						HCLGEVF_RESET_WAIT_US,
1451 						HCLGEVF_RESET_WAIT_CNT);
1452 	else if (hdev->reset_type == HNAE3_VF_RESET)
1453 		ret = readl_poll_timeout(hdev->hw.io_base +
1454 					 HCLGEVF_VF_RST_ING, val,
1455 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1456 					 HCLGEVF_RESET_WAIT_US,
1457 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1458 	else
1459 		ret = readl_poll_timeout(hdev->hw.io_base +
1460 					 HCLGEVF_RST_ING, val,
1461 					 !(val & HCLGEVF_RST_ING_BITS),
1462 					 HCLGEVF_RESET_WAIT_US,
1463 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1464 
1465 	/* hardware completion status should be available by this time */
1466 	if (ret) {
1467 		dev_err(&hdev->pdev->dev,
1468 			"could'nt get reset done status from h/w, timeout!\n");
1469 		return ret;
1470 	}
1471 
1472 	/* we will wait a bit more to let reset of the stack to complete. This
1473 	 * might happen in case reset assertion was made by PF. Yes, this also
1474 	 * means we might end up waiting bit more even for VF reset.
1475 	 */
1476 	msleep(5000);
1477 
1478 	return 0;
1479 }
1480 
1481 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1482 {
1483 	u32 reg_val;
1484 
1485 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1486 	if (enable)
1487 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1488 	else
1489 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1490 
1491 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1492 			  reg_val);
1493 }
1494 
1495 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1496 {
1497 	int ret;
1498 
1499 	/* uninitialize the nic client */
1500 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1501 	if (ret)
1502 		return ret;
1503 
1504 	/* re-initialize the hclge device */
1505 	ret = hclgevf_reset_hdev(hdev);
1506 	if (ret) {
1507 		dev_err(&hdev->pdev->dev,
1508 			"hclge device re-init failed, VF is disabled!\n");
1509 		return ret;
1510 	}
1511 
1512 	/* bring up the nic client again */
1513 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1514 	if (ret)
1515 		return ret;
1516 
1517 	ret = hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1518 	if (ret)
1519 		return ret;
1520 
1521 	/* clear handshake status with IMP */
1522 	hclgevf_reset_handshake(hdev, false);
1523 
1524 	return 0;
1525 }
1526 
1527 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1528 {
1529 #define HCLGEVF_RESET_SYNC_TIME 100
1530 
1531 	int ret = 0;
1532 
1533 	switch (hdev->reset_type) {
1534 	case HNAE3_VF_FUNC_RESET:
1535 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1536 					   0, true, NULL, sizeof(u8));
1537 		hdev->rst_stats.vf_func_rst_cnt++;
1538 		break;
1539 	case HNAE3_FLR_RESET:
1540 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1541 		hdev->rst_stats.flr_rst_cnt++;
1542 		break;
1543 	default:
1544 		break;
1545 	}
1546 
1547 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1548 	/* inform hardware that preparatory work is done */
1549 	msleep(HCLGEVF_RESET_SYNC_TIME);
1550 	hclgevf_reset_handshake(hdev, true);
1551 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1552 		 hdev->reset_type, ret);
1553 
1554 	return ret;
1555 }
1556 
1557 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1558 {
1559 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1560 		 hdev->rst_stats.vf_func_rst_cnt);
1561 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1562 		 hdev->rst_stats.flr_rst_cnt);
1563 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1564 		 hdev->rst_stats.vf_rst_cnt);
1565 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1566 		 hdev->rst_stats.rst_done_cnt);
1567 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1568 		 hdev->rst_stats.hw_rst_done_cnt);
1569 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1570 		 hdev->rst_stats.rst_cnt);
1571 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1572 		 hdev->rst_stats.rst_fail_cnt);
1573 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1574 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1575 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1576 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STAT_REG));
1577 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1578 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1579 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1580 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1581 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1582 }
1583 
1584 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1585 {
1586 	/* recover handshake status with IMP when reset fail */
1587 	hclgevf_reset_handshake(hdev, true);
1588 	hdev->rst_stats.rst_fail_cnt++;
1589 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1590 		hdev->rst_stats.rst_fail_cnt);
1591 
1592 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1593 		set_bit(hdev->reset_type, &hdev->reset_pending);
1594 
1595 	if (hclgevf_is_reset_pending(hdev)) {
1596 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1597 		hclgevf_reset_task_schedule(hdev);
1598 	} else {
1599 		hclgevf_dump_rst_info(hdev);
1600 	}
1601 }
1602 
1603 static int hclgevf_reset(struct hclgevf_dev *hdev)
1604 {
1605 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1606 	int ret;
1607 
1608 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1609 	 * know if device is undergoing reset
1610 	 */
1611 	ae_dev->reset_type = hdev->reset_type;
1612 	hdev->rst_stats.rst_cnt++;
1613 	rtnl_lock();
1614 
1615 	/* bring down the nic to stop any ongoing TX/RX */
1616 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1617 	if (ret)
1618 		goto err_reset_lock;
1619 
1620 	rtnl_unlock();
1621 
1622 	ret = hclgevf_reset_prepare_wait(hdev);
1623 	if (ret)
1624 		goto err_reset;
1625 
1626 	/* check if VF could successfully fetch the hardware reset completion
1627 	 * status from the hardware
1628 	 */
1629 	ret = hclgevf_reset_wait(hdev);
1630 	if (ret) {
1631 		/* can't do much in this situation, will disable VF */
1632 		dev_err(&hdev->pdev->dev,
1633 			"VF failed(=%d) to fetch H/W reset completion status\n",
1634 			ret);
1635 		goto err_reset;
1636 	}
1637 
1638 	hdev->rst_stats.hw_rst_done_cnt++;
1639 
1640 	rtnl_lock();
1641 
1642 	/* now, re-initialize the nic client and ae device */
1643 	ret = hclgevf_reset_stack(hdev);
1644 	if (ret) {
1645 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1646 		goto err_reset_lock;
1647 	}
1648 
1649 	/* bring up the nic to enable TX/RX again */
1650 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1651 	if (ret)
1652 		goto err_reset_lock;
1653 
1654 	rtnl_unlock();
1655 
1656 	hdev->last_reset_time = jiffies;
1657 	ae_dev->reset_type = HNAE3_NONE_RESET;
1658 	hdev->rst_stats.rst_done_cnt++;
1659 	hdev->rst_stats.rst_fail_cnt = 0;
1660 
1661 	return ret;
1662 err_reset_lock:
1663 	rtnl_unlock();
1664 err_reset:
1665 	hclgevf_reset_err_handle(hdev);
1666 
1667 	return ret;
1668 }
1669 
1670 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1671 						     unsigned long *addr)
1672 {
1673 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1674 
1675 	/* return the highest priority reset level amongst all */
1676 	if (test_bit(HNAE3_VF_RESET, addr)) {
1677 		rst_level = HNAE3_VF_RESET;
1678 		clear_bit(HNAE3_VF_RESET, addr);
1679 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1680 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1681 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1682 		rst_level = HNAE3_VF_FULL_RESET;
1683 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1684 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1685 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1686 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1687 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1688 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1689 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1690 		rst_level = HNAE3_VF_FUNC_RESET;
1691 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1692 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1693 		rst_level = HNAE3_FLR_RESET;
1694 		clear_bit(HNAE3_FLR_RESET, addr);
1695 	}
1696 
1697 	return rst_level;
1698 }
1699 
1700 static void hclgevf_reset_event(struct pci_dev *pdev,
1701 				struct hnae3_handle *handle)
1702 {
1703 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1704 	struct hclgevf_dev *hdev = ae_dev->priv;
1705 
1706 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1707 
1708 	if (hdev->default_reset_request)
1709 		hdev->reset_level =
1710 			hclgevf_get_reset_level(hdev,
1711 						&hdev->default_reset_request);
1712 	else
1713 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1714 
1715 	/* reset of this VF requested */
1716 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1717 	hclgevf_reset_task_schedule(hdev);
1718 
1719 	hdev->last_reset_time = jiffies;
1720 }
1721 
1722 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1723 					  enum hnae3_reset_type rst_type)
1724 {
1725 	struct hclgevf_dev *hdev = ae_dev->priv;
1726 
1727 	set_bit(rst_type, &hdev->default_reset_request);
1728 }
1729 
1730 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1731 {
1732 #define HCLGEVF_FLR_WAIT_MS	100
1733 #define HCLGEVF_FLR_WAIT_CNT	50
1734 	struct hclgevf_dev *hdev = ae_dev->priv;
1735 	int cnt = 0;
1736 
1737 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1738 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1739 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1740 	hclgevf_reset_event(hdev->pdev, NULL);
1741 
1742 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1743 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1744 		msleep(HCLGEVF_FLR_WAIT_MS);
1745 
1746 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1747 		dev_err(&hdev->pdev->dev,
1748 			"flr wait down timeout: %d\n", cnt);
1749 }
1750 
1751 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1752 {
1753 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1754 
1755 	return hdev->fw_version;
1756 }
1757 
1758 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1759 {
1760 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1761 
1762 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1763 					    HCLGEVF_MISC_VECTOR_NUM);
1764 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1765 	/* vector status always valid for Vector 0 */
1766 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1767 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1768 
1769 	hdev->num_msi_left -= 1;
1770 	hdev->num_msi_used += 1;
1771 }
1772 
1773 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1774 {
1775 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1776 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1777 			      &hdev->state))
1778 		mod_delayed_work(system_wq, &hdev->service_task, 0);
1779 }
1780 
1781 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1782 {
1783 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1784 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
1785 			      &hdev->state))
1786 		mod_delayed_work(system_wq, &hdev->service_task, 0);
1787 }
1788 
1789 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
1790 				  unsigned long delay)
1791 {
1792 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state))
1793 		mod_delayed_work(system_wq, &hdev->service_task, delay);
1794 }
1795 
1796 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1797 {
1798 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
1799 
1800 	int ret;
1801 
1802 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1803 		return;
1804 
1805 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1806 		return;
1807 
1808 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1809 			       &hdev->reset_state)) {
1810 		/* PF has initmated that it is about to reset the hardware.
1811 		 * We now have to poll & check if hardware has actually
1812 		 * completed the reset sequence. On hardware reset completion,
1813 		 * VF needs to reset the client and ae device.
1814 		 */
1815 		hdev->reset_attempts = 0;
1816 
1817 		hdev->last_reset_time = jiffies;
1818 		while ((hdev->reset_type =
1819 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1820 		       != HNAE3_NONE_RESET) {
1821 			ret = hclgevf_reset(hdev);
1822 			if (ret)
1823 				dev_err(&hdev->pdev->dev,
1824 					"VF stack reset failed %d.\n", ret);
1825 		}
1826 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1827 				      &hdev->reset_state)) {
1828 		/* we could be here when either of below happens:
1829 		 * 1. reset was initiated due to watchdog timeout caused by
1830 		 *    a. IMP was earlier reset and our TX got choked down and
1831 		 *       which resulted in watchdog reacting and inducing VF
1832 		 *       reset. This also means our cmdq would be unreliable.
1833 		 *    b. problem in TX due to other lower layer(example link
1834 		 *       layer not functioning properly etc.)
1835 		 * 2. VF reset might have been initiated due to some config
1836 		 *    change.
1837 		 *
1838 		 * NOTE: Theres no clear way to detect above cases than to react
1839 		 * to the response of PF for this reset request. PF will ack the
1840 		 * 1b and 2. cases but we will not get any intimation about 1a
1841 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1842 		 * communication between PF and VF would be broken.
1843 		 *
1844 		 * if we are never geting into pending state it means either:
1845 		 * 1. PF is not receiving our request which could be due to IMP
1846 		 *    reset
1847 		 * 2. PF is screwed
1848 		 * We cannot do much for 2. but to check first we can try reset
1849 		 * our PCIe + stack and see if it alleviates the problem.
1850 		 */
1851 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1852 			/* prepare for full reset of stack + pcie interface */
1853 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1854 
1855 			/* "defer" schedule the reset task again */
1856 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1857 		} else {
1858 			hdev->reset_attempts++;
1859 
1860 			set_bit(hdev->reset_level, &hdev->reset_pending);
1861 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1862 		}
1863 		hclgevf_reset_task_schedule(hdev);
1864 	}
1865 
1866 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1867 }
1868 
1869 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1870 {
1871 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
1872 		return;
1873 
1874 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1875 		return;
1876 
1877 	hclgevf_mbx_async_handler(hdev);
1878 
1879 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1880 }
1881 
1882 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1883 {
1884 	u8 respmsg;
1885 	int ret;
1886 
1887 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
1888 		return;
1889 
1890 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1891 				   0, false, &respmsg, sizeof(respmsg));
1892 	if (ret)
1893 		dev_err(&hdev->pdev->dev,
1894 			"VF sends keep alive cmd failed(=%d)\n", ret);
1895 }
1896 
1897 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
1898 {
1899 	unsigned long delta = round_jiffies_relative(HZ);
1900 	struct hnae3_handle *handle = &hdev->nic;
1901 
1902 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
1903 		delta = jiffies - hdev->last_serv_processed;
1904 
1905 		if (delta < round_jiffies_relative(HZ)) {
1906 			delta = round_jiffies_relative(HZ) - delta;
1907 			goto out;
1908 		}
1909 	}
1910 
1911 	hdev->serv_processed_cnt++;
1912 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
1913 		hclgevf_keep_alive(hdev);
1914 
1915 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
1916 		hdev->last_serv_processed = jiffies;
1917 		goto out;
1918 	}
1919 
1920 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
1921 		hclgevf_tqps_update_stats(handle);
1922 
1923 	/* request the link status from the PF. PF would be able to tell VF
1924 	 * about such updates in future so we might remove this later
1925 	 */
1926 	hclgevf_request_link_info(hdev);
1927 
1928 	hclgevf_update_link_mode(hdev);
1929 
1930 	hclgevf_sync_vlan_filter(hdev);
1931 
1932 	hdev->last_serv_processed = jiffies;
1933 
1934 out:
1935 	hclgevf_task_schedule(hdev, delta);
1936 }
1937 
1938 static void hclgevf_service_task(struct work_struct *work)
1939 {
1940 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
1941 						service_task.work);
1942 
1943 	hclgevf_reset_service_task(hdev);
1944 	hclgevf_mailbox_service_task(hdev);
1945 	hclgevf_periodic_service_task(hdev);
1946 
1947 	/* Handle reset and mbx again in case periodical task delays the
1948 	 * handling by calling hclgevf_task_schedule() in
1949 	 * hclgevf_periodic_service_task()
1950 	 */
1951 	hclgevf_reset_service_task(hdev);
1952 	hclgevf_mailbox_service_task(hdev);
1953 }
1954 
1955 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1956 {
1957 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1958 }
1959 
1960 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1961 						      u32 *clearval)
1962 {
1963 	u32 val, cmdq_stat_reg, rst_ing_reg;
1964 
1965 	/* fetch the events from their corresponding regs */
1966 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
1967 					 HCLGEVF_VECTOR0_CMDQ_STAT_REG);
1968 
1969 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1970 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1971 		dev_info(&hdev->pdev->dev,
1972 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1973 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1974 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1975 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1976 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
1977 		hdev->rst_stats.vf_rst_cnt++;
1978 		/* set up VF hardware reset status, its PF will clear
1979 		 * this status when PF has initialized done.
1980 		 */
1981 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
1982 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
1983 				  val | HCLGEVF_VF_RST_ING_BIT);
1984 		return HCLGEVF_VECTOR0_EVENT_RST;
1985 	}
1986 
1987 	/* check for vector0 mailbox(=CMDQ RX) event source */
1988 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1989 		/* for revision 0x21, clearing interrupt is writing bit 0
1990 		 * to the clear register, writing bit 1 means to keep the
1991 		 * old value.
1992 		 * for revision 0x20, the clear register is a read & write
1993 		 * register, so we should just write 0 to the bit we are
1994 		 * handling, and keep other bits as cmdq_stat_reg.
1995 		 */
1996 		if (hdev->pdev->revision >= 0x21)
1997 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1998 		else
1999 			*clearval = cmdq_stat_reg &
2000 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2001 
2002 		return HCLGEVF_VECTOR0_EVENT_MBX;
2003 	}
2004 
2005 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
2006 
2007 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2008 }
2009 
2010 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2011 {
2012 	writel(en ? 1 : 0, vector->addr);
2013 }
2014 
2015 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2016 {
2017 	enum hclgevf_evt_cause event_cause;
2018 	struct hclgevf_dev *hdev = data;
2019 	u32 clearval;
2020 
2021 	hclgevf_enable_vector(&hdev->misc_vector, false);
2022 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2023 
2024 	switch (event_cause) {
2025 	case HCLGEVF_VECTOR0_EVENT_RST:
2026 		hclgevf_reset_task_schedule(hdev);
2027 		break;
2028 	case HCLGEVF_VECTOR0_EVENT_MBX:
2029 		hclgevf_mbx_handler(hdev);
2030 		break;
2031 	default:
2032 		break;
2033 	}
2034 
2035 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2036 		hclgevf_clear_event_cause(hdev, clearval);
2037 		hclgevf_enable_vector(&hdev->misc_vector, true);
2038 	}
2039 
2040 	return IRQ_HANDLED;
2041 }
2042 
2043 static int hclgevf_configure(struct hclgevf_dev *hdev)
2044 {
2045 	int ret;
2046 
2047 	/* get current port based vlan state from PF */
2048 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2049 	if (ret)
2050 		return ret;
2051 
2052 	/* get queue configuration from PF */
2053 	ret = hclgevf_get_queue_info(hdev);
2054 	if (ret)
2055 		return ret;
2056 
2057 	/* get queue depth info from PF */
2058 	ret = hclgevf_get_queue_depth(hdev);
2059 	if (ret)
2060 		return ret;
2061 
2062 	ret = hclgevf_get_pf_media_type(hdev);
2063 	if (ret)
2064 		return ret;
2065 
2066 	/* get tc configuration from PF */
2067 	return hclgevf_get_tc_info(hdev);
2068 }
2069 
2070 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2071 {
2072 	struct pci_dev *pdev = ae_dev->pdev;
2073 	struct hclgevf_dev *hdev;
2074 
2075 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2076 	if (!hdev)
2077 		return -ENOMEM;
2078 
2079 	hdev->pdev = pdev;
2080 	hdev->ae_dev = ae_dev;
2081 	ae_dev->priv = hdev;
2082 
2083 	return 0;
2084 }
2085 
2086 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2087 {
2088 	struct hnae3_handle *roce = &hdev->roce;
2089 	struct hnae3_handle *nic = &hdev->nic;
2090 
2091 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2092 
2093 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2094 	    hdev->num_msi_left == 0)
2095 		return -EINVAL;
2096 
2097 	roce->rinfo.base_vector = hdev->roce_base_vector;
2098 
2099 	roce->rinfo.netdev = nic->kinfo.netdev;
2100 	roce->rinfo.roce_io_base = hdev->hw.io_base;
2101 
2102 	roce->pdev = nic->pdev;
2103 	roce->ae_algo = nic->ae_algo;
2104 	roce->numa_node_mask = nic->numa_node_mask;
2105 
2106 	return 0;
2107 }
2108 
2109 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2110 {
2111 	struct hclgevf_cfg_gro_status_cmd *req;
2112 	struct hclgevf_desc desc;
2113 	int ret;
2114 
2115 	if (!hnae3_dev_gro_supported(hdev))
2116 		return 0;
2117 
2118 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2119 				     false);
2120 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2121 
2122 	req->gro_en = cpu_to_le16(en ? 1 : 0);
2123 
2124 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2125 	if (ret)
2126 		dev_err(&hdev->pdev->dev,
2127 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2128 
2129 	return ret;
2130 }
2131 
2132 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2133 {
2134 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2135 	int ret;
2136 	u32 i;
2137 
2138 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2139 
2140 	if (hdev->pdev->revision >= 0x21) {
2141 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2142 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2143 		       HCLGEVF_RSS_KEY_SIZE);
2144 
2145 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2146 					       rss_cfg->rss_hash_key);
2147 		if (ret)
2148 			return ret;
2149 
2150 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
2151 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2152 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
2153 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2154 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
2155 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2156 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
2157 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2158 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
2159 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2160 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
2161 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2162 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
2163 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2164 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
2165 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2166 
2167 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2168 		if (ret)
2169 			return ret;
2170 	}
2171 
2172 	/* Initialize RSS indirect table */
2173 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2174 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2175 
2176 	ret = hclgevf_set_rss_indir_table(hdev);
2177 	if (ret)
2178 		return ret;
2179 
2180 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2181 }
2182 
2183 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2184 {
2185 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2186 				       false);
2187 }
2188 
2189 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2190 {
2191 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2192 
2193 	unsigned long last = hdev->serv_processed_cnt;
2194 	int i = 0;
2195 
2196 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2197 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2198 	       last == hdev->serv_processed_cnt)
2199 		usleep_range(1, 1);
2200 }
2201 
2202 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2203 {
2204 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2205 
2206 	if (enable) {
2207 		hclgevf_task_schedule(hdev, 0);
2208 	} else {
2209 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2210 
2211 		/* flush memory to make sure DOWN is seen by service task */
2212 		smp_mb__before_atomic();
2213 		hclgevf_flush_link_update(hdev);
2214 	}
2215 }
2216 
2217 static int hclgevf_ae_start(struct hnae3_handle *handle)
2218 {
2219 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2220 
2221 	hclgevf_reset_tqp_stats(handle);
2222 
2223 	hclgevf_request_link_info(hdev);
2224 
2225 	hclgevf_update_link_mode(hdev);
2226 
2227 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2228 
2229 	return 0;
2230 }
2231 
2232 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2233 {
2234 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2235 	int i;
2236 
2237 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2238 
2239 	if (hdev->reset_type != HNAE3_VF_RESET)
2240 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2241 			if (hclgevf_reset_tqp(handle, i))
2242 				break;
2243 
2244 	hclgevf_reset_tqp_stats(handle);
2245 	hclgevf_update_link_status(hdev, 0);
2246 }
2247 
2248 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2249 {
2250 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2251 	u8 msg_data;
2252 
2253 	msg_data = alive ? 1 : 0;
2254 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
2255 				    0, &msg_data, 1, false, NULL, 0);
2256 }
2257 
2258 static int hclgevf_client_start(struct hnae3_handle *handle)
2259 {
2260 	int ret;
2261 
2262 	ret = hclgevf_set_alive(handle, true);
2263 	if (ret)
2264 		return ret;
2265 
2266 	return 0;
2267 }
2268 
2269 static void hclgevf_client_stop(struct hnae3_handle *handle)
2270 {
2271 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2272 	int ret;
2273 
2274 	ret = hclgevf_set_alive(handle, false);
2275 	if (ret)
2276 		dev_warn(&hdev->pdev->dev,
2277 			 "%s failed %d\n", __func__, ret);
2278 }
2279 
2280 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2281 {
2282 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2283 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2284 
2285 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2286 
2287 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2288 
2289 	/* bring the device down */
2290 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2291 }
2292 
2293 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2294 {
2295 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2296 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2297 
2298 	if (hdev->service_task.work.func)
2299 		cancel_delayed_work_sync(&hdev->service_task);
2300 
2301 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2302 }
2303 
2304 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2305 {
2306 	struct pci_dev *pdev = hdev->pdev;
2307 	int vectors;
2308 	int i;
2309 
2310 	if (hnae3_dev_roce_supported(hdev))
2311 		vectors = pci_alloc_irq_vectors(pdev,
2312 						hdev->roce_base_msix_offset + 1,
2313 						hdev->num_msi,
2314 						PCI_IRQ_MSIX);
2315 	else
2316 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2317 						hdev->num_msi,
2318 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2319 
2320 	if (vectors < 0) {
2321 		dev_err(&pdev->dev,
2322 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2323 			vectors);
2324 		return vectors;
2325 	}
2326 	if (vectors < hdev->num_msi)
2327 		dev_warn(&hdev->pdev->dev,
2328 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2329 			 hdev->num_msi, vectors);
2330 
2331 	hdev->num_msi = vectors;
2332 	hdev->num_msi_left = vectors;
2333 
2334 	hdev->base_msi_vector = pdev->irq;
2335 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2336 
2337 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2338 					   sizeof(u16), GFP_KERNEL);
2339 	if (!hdev->vector_status) {
2340 		pci_free_irq_vectors(pdev);
2341 		return -ENOMEM;
2342 	}
2343 
2344 	for (i = 0; i < hdev->num_msi; i++)
2345 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2346 
2347 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2348 					sizeof(int), GFP_KERNEL);
2349 	if (!hdev->vector_irq) {
2350 		devm_kfree(&pdev->dev, hdev->vector_status);
2351 		pci_free_irq_vectors(pdev);
2352 		return -ENOMEM;
2353 	}
2354 
2355 	return 0;
2356 }
2357 
2358 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2359 {
2360 	struct pci_dev *pdev = hdev->pdev;
2361 
2362 	devm_kfree(&pdev->dev, hdev->vector_status);
2363 	devm_kfree(&pdev->dev, hdev->vector_irq);
2364 	pci_free_irq_vectors(pdev);
2365 }
2366 
2367 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2368 {
2369 	int ret;
2370 
2371 	hclgevf_get_misc_vector(hdev);
2372 
2373 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2374 			  0, "hclgevf_cmd", hdev);
2375 	if (ret) {
2376 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2377 			hdev->misc_vector.vector_irq);
2378 		return ret;
2379 	}
2380 
2381 	hclgevf_clear_event_cause(hdev, 0);
2382 
2383 	/* enable misc. vector(vector 0) */
2384 	hclgevf_enable_vector(&hdev->misc_vector, true);
2385 
2386 	return ret;
2387 }
2388 
2389 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2390 {
2391 	/* disable misc vector(vector 0) */
2392 	hclgevf_enable_vector(&hdev->misc_vector, false);
2393 	synchronize_irq(hdev->misc_vector.vector_irq);
2394 	free_irq(hdev->misc_vector.vector_irq, hdev);
2395 	hclgevf_free_vector(hdev, 0);
2396 }
2397 
2398 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2399 {
2400 	struct device *dev = &hdev->pdev->dev;
2401 
2402 	dev_info(dev, "VF info begin:\n");
2403 
2404 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2405 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2406 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2407 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2408 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2409 	dev_info(dev, "PF media type of this VF: %u\n",
2410 		 hdev->hw.mac.media_type);
2411 
2412 	dev_info(dev, "VF info end.\n");
2413 }
2414 
2415 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2416 					    struct hnae3_client *client)
2417 {
2418 	struct hclgevf_dev *hdev = ae_dev->priv;
2419 	int ret;
2420 
2421 	ret = client->ops->init_instance(&hdev->nic);
2422 	if (ret)
2423 		return ret;
2424 
2425 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2426 	hnae3_set_client_init_flag(client, ae_dev, 1);
2427 
2428 	if (netif_msg_drv(&hdev->nic))
2429 		hclgevf_info_show(hdev);
2430 
2431 	return 0;
2432 }
2433 
2434 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2435 					     struct hnae3_client *client)
2436 {
2437 	struct hclgevf_dev *hdev = ae_dev->priv;
2438 	int ret;
2439 
2440 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2441 	    !hdev->nic_client)
2442 		return 0;
2443 
2444 	ret = hclgevf_init_roce_base_info(hdev);
2445 	if (ret)
2446 		return ret;
2447 
2448 	ret = client->ops->init_instance(&hdev->roce);
2449 	if (ret)
2450 		return ret;
2451 
2452 	hnae3_set_client_init_flag(client, ae_dev, 1);
2453 
2454 	return 0;
2455 }
2456 
2457 static int hclgevf_init_client_instance(struct hnae3_client *client,
2458 					struct hnae3_ae_dev *ae_dev)
2459 {
2460 	struct hclgevf_dev *hdev = ae_dev->priv;
2461 	int ret;
2462 
2463 	switch (client->type) {
2464 	case HNAE3_CLIENT_KNIC:
2465 		hdev->nic_client = client;
2466 		hdev->nic.client = client;
2467 
2468 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2469 		if (ret)
2470 			goto clear_nic;
2471 
2472 		ret = hclgevf_init_roce_client_instance(ae_dev,
2473 							hdev->roce_client);
2474 		if (ret)
2475 			goto clear_roce;
2476 
2477 		break;
2478 	case HNAE3_CLIENT_ROCE:
2479 		if (hnae3_dev_roce_supported(hdev)) {
2480 			hdev->roce_client = client;
2481 			hdev->roce.client = client;
2482 		}
2483 
2484 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2485 		if (ret)
2486 			goto clear_roce;
2487 
2488 		break;
2489 	default:
2490 		return -EINVAL;
2491 	}
2492 
2493 	return 0;
2494 
2495 clear_nic:
2496 	hdev->nic_client = NULL;
2497 	hdev->nic.client = NULL;
2498 	return ret;
2499 clear_roce:
2500 	hdev->roce_client = NULL;
2501 	hdev->roce.client = NULL;
2502 	return ret;
2503 }
2504 
2505 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2506 					   struct hnae3_ae_dev *ae_dev)
2507 {
2508 	struct hclgevf_dev *hdev = ae_dev->priv;
2509 
2510 	/* un-init roce, if it exists */
2511 	if (hdev->roce_client) {
2512 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2513 		hdev->roce_client = NULL;
2514 		hdev->roce.client = NULL;
2515 	}
2516 
2517 	/* un-init nic/unic, if this was not called by roce client */
2518 	if (client->ops->uninit_instance && hdev->nic_client &&
2519 	    client->type != HNAE3_CLIENT_ROCE) {
2520 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2521 
2522 		client->ops->uninit_instance(&hdev->nic, 0);
2523 		hdev->nic_client = NULL;
2524 		hdev->nic.client = NULL;
2525 	}
2526 }
2527 
2528 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2529 {
2530 	struct pci_dev *pdev = hdev->pdev;
2531 	struct hclgevf_hw *hw;
2532 	int ret;
2533 
2534 	ret = pci_enable_device(pdev);
2535 	if (ret) {
2536 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2537 		return ret;
2538 	}
2539 
2540 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2541 	if (ret) {
2542 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2543 		goto err_disable_device;
2544 	}
2545 
2546 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2547 	if (ret) {
2548 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2549 		goto err_disable_device;
2550 	}
2551 
2552 	pci_set_master(pdev);
2553 	hw = &hdev->hw;
2554 	hw->hdev = hdev;
2555 	hw->io_base = pci_iomap(pdev, 2, 0);
2556 	if (!hw->io_base) {
2557 		dev_err(&pdev->dev, "can't map configuration register space\n");
2558 		ret = -ENOMEM;
2559 		goto err_clr_master;
2560 	}
2561 
2562 	return 0;
2563 
2564 err_clr_master:
2565 	pci_clear_master(pdev);
2566 	pci_release_regions(pdev);
2567 err_disable_device:
2568 	pci_disable_device(pdev);
2569 
2570 	return ret;
2571 }
2572 
2573 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2574 {
2575 	struct pci_dev *pdev = hdev->pdev;
2576 
2577 	pci_iounmap(pdev, hdev->hw.io_base);
2578 	pci_clear_master(pdev);
2579 	pci_release_regions(pdev);
2580 	pci_disable_device(pdev);
2581 }
2582 
2583 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2584 {
2585 	struct hclgevf_query_res_cmd *req;
2586 	struct hclgevf_desc desc;
2587 	int ret;
2588 
2589 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2590 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2591 	if (ret) {
2592 		dev_err(&hdev->pdev->dev,
2593 			"query vf resource failed, ret = %d.\n", ret);
2594 		return ret;
2595 	}
2596 
2597 	req = (struct hclgevf_query_res_cmd *)desc.data;
2598 
2599 	if (hnae3_dev_roce_supported(hdev)) {
2600 		hdev->roce_base_msix_offset =
2601 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2602 				HCLGEVF_MSIX_OFT_ROCEE_M,
2603 				HCLGEVF_MSIX_OFT_ROCEE_S);
2604 		hdev->num_roce_msix =
2605 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2606 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2607 
2608 		/* nic's msix numbers is always equals to the roce's. */
2609 		hdev->num_nic_msix = hdev->num_roce_msix;
2610 
2611 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2612 		 * are queued before Roce vectors. The offset is fixed to 64.
2613 		 */
2614 		hdev->num_msi = hdev->num_roce_msix +
2615 				hdev->roce_base_msix_offset;
2616 	} else {
2617 		hdev->num_msi =
2618 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2619 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2620 
2621 		hdev->num_nic_msix = hdev->num_msi;
2622 	}
2623 
2624 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2625 		dev_err(&hdev->pdev->dev,
2626 			"Just %u msi resources, not enough for vf(min:2).\n",
2627 			hdev->num_nic_msix);
2628 		return -EINVAL;
2629 	}
2630 
2631 	return 0;
2632 }
2633 
2634 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2635 {
2636 	struct pci_dev *pdev = hdev->pdev;
2637 	int ret = 0;
2638 
2639 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2640 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2641 		hclgevf_misc_irq_uninit(hdev);
2642 		hclgevf_uninit_msi(hdev);
2643 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2644 	}
2645 
2646 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2647 		pci_set_master(pdev);
2648 		ret = hclgevf_init_msi(hdev);
2649 		if (ret) {
2650 			dev_err(&pdev->dev,
2651 				"failed(%d) to init MSI/MSI-X\n", ret);
2652 			return ret;
2653 		}
2654 
2655 		ret = hclgevf_misc_irq_init(hdev);
2656 		if (ret) {
2657 			hclgevf_uninit_msi(hdev);
2658 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2659 				ret);
2660 			return ret;
2661 		}
2662 
2663 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2664 	}
2665 
2666 	return ret;
2667 }
2668 
2669 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2670 {
2671 	struct pci_dev *pdev = hdev->pdev;
2672 	int ret;
2673 
2674 	ret = hclgevf_pci_reset(hdev);
2675 	if (ret) {
2676 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2677 		return ret;
2678 	}
2679 
2680 	ret = hclgevf_cmd_init(hdev);
2681 	if (ret) {
2682 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2683 		return ret;
2684 	}
2685 
2686 	ret = hclgevf_rss_init_hw(hdev);
2687 	if (ret) {
2688 		dev_err(&hdev->pdev->dev,
2689 			"failed(%d) to initialize RSS\n", ret);
2690 		return ret;
2691 	}
2692 
2693 	ret = hclgevf_config_gro(hdev, true);
2694 	if (ret)
2695 		return ret;
2696 
2697 	ret = hclgevf_init_vlan_config(hdev);
2698 	if (ret) {
2699 		dev_err(&hdev->pdev->dev,
2700 			"failed(%d) to initialize VLAN config\n", ret);
2701 		return ret;
2702 	}
2703 
2704 	dev_info(&hdev->pdev->dev, "Reset done\n");
2705 
2706 	return 0;
2707 }
2708 
2709 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2710 {
2711 	struct pci_dev *pdev = hdev->pdev;
2712 	int ret;
2713 
2714 	ret = hclgevf_pci_init(hdev);
2715 	if (ret) {
2716 		dev_err(&pdev->dev, "PCI initialization failed\n");
2717 		return ret;
2718 	}
2719 
2720 	ret = hclgevf_cmd_queue_init(hdev);
2721 	if (ret) {
2722 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2723 		goto err_cmd_queue_init;
2724 	}
2725 
2726 	ret = hclgevf_cmd_init(hdev);
2727 	if (ret)
2728 		goto err_cmd_init;
2729 
2730 	/* Get vf resource */
2731 	ret = hclgevf_query_vf_resource(hdev);
2732 	if (ret) {
2733 		dev_err(&hdev->pdev->dev,
2734 			"Query vf status error, ret = %d.\n", ret);
2735 		goto err_cmd_init;
2736 	}
2737 
2738 	ret = hclgevf_init_msi(hdev);
2739 	if (ret) {
2740 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2741 		goto err_cmd_init;
2742 	}
2743 
2744 	hclgevf_state_init(hdev);
2745 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2746 
2747 	ret = hclgevf_misc_irq_init(hdev);
2748 	if (ret) {
2749 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2750 			ret);
2751 		goto err_misc_irq_init;
2752 	}
2753 
2754 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2755 
2756 	ret = hclgevf_configure(hdev);
2757 	if (ret) {
2758 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2759 		goto err_config;
2760 	}
2761 
2762 	ret = hclgevf_alloc_tqps(hdev);
2763 	if (ret) {
2764 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2765 		goto err_config;
2766 	}
2767 
2768 	ret = hclgevf_set_handle_info(hdev);
2769 	if (ret) {
2770 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2771 		goto err_config;
2772 	}
2773 
2774 	ret = hclgevf_config_gro(hdev, true);
2775 	if (ret)
2776 		goto err_config;
2777 
2778 	/* Initialize RSS for this VF */
2779 	ret = hclgevf_rss_init_hw(hdev);
2780 	if (ret) {
2781 		dev_err(&hdev->pdev->dev,
2782 			"failed(%d) to initialize RSS\n", ret);
2783 		goto err_config;
2784 	}
2785 
2786 	ret = hclgevf_init_vlan_config(hdev);
2787 	if (ret) {
2788 		dev_err(&hdev->pdev->dev,
2789 			"failed(%d) to initialize VLAN config\n", ret);
2790 		goto err_config;
2791 	}
2792 
2793 	hdev->last_reset_time = jiffies;
2794 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
2795 		 HCLGEVF_DRIVER_NAME);
2796 
2797 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
2798 
2799 	return 0;
2800 
2801 err_config:
2802 	hclgevf_misc_irq_uninit(hdev);
2803 err_misc_irq_init:
2804 	hclgevf_state_uninit(hdev);
2805 	hclgevf_uninit_msi(hdev);
2806 err_cmd_init:
2807 	hclgevf_cmd_uninit(hdev);
2808 err_cmd_queue_init:
2809 	hclgevf_pci_uninit(hdev);
2810 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2811 	return ret;
2812 }
2813 
2814 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2815 {
2816 	hclgevf_state_uninit(hdev);
2817 
2818 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2819 		hclgevf_misc_irq_uninit(hdev);
2820 		hclgevf_uninit_msi(hdev);
2821 	}
2822 
2823 	hclgevf_pci_uninit(hdev);
2824 	hclgevf_cmd_uninit(hdev);
2825 }
2826 
2827 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2828 {
2829 	struct pci_dev *pdev = ae_dev->pdev;
2830 	int ret;
2831 
2832 	ret = hclgevf_alloc_hdev(ae_dev);
2833 	if (ret) {
2834 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2835 		return ret;
2836 	}
2837 
2838 	ret = hclgevf_init_hdev(ae_dev->priv);
2839 	if (ret) {
2840 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2841 		return ret;
2842 	}
2843 
2844 	return 0;
2845 }
2846 
2847 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2848 {
2849 	struct hclgevf_dev *hdev = ae_dev->priv;
2850 
2851 	hclgevf_uninit_hdev(hdev);
2852 	ae_dev->priv = NULL;
2853 }
2854 
2855 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2856 {
2857 	struct hnae3_handle *nic = &hdev->nic;
2858 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2859 
2860 	return min_t(u32, hdev->rss_size_max,
2861 		     hdev->num_tqps / kinfo->num_tc);
2862 }
2863 
2864 /**
2865  * hclgevf_get_channels - Get the current channels enabled and max supported.
2866  * @handle: hardware information for network interface
2867  * @ch: ethtool channels structure
2868  *
2869  * We don't support separate tx and rx queues as channels. The other count
2870  * represents how many queues are being used for control. max_combined counts
2871  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2872  * q_vectors since we support a lot more queue pairs than q_vectors.
2873  **/
2874 static void hclgevf_get_channels(struct hnae3_handle *handle,
2875 				 struct ethtool_channels *ch)
2876 {
2877 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2878 
2879 	ch->max_combined = hclgevf_get_max_channels(hdev);
2880 	ch->other_count = 0;
2881 	ch->max_other = 0;
2882 	ch->combined_count = handle->kinfo.rss_size;
2883 }
2884 
2885 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2886 					  u16 *alloc_tqps, u16 *max_rss_size)
2887 {
2888 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2889 
2890 	*alloc_tqps = hdev->num_tqps;
2891 	*max_rss_size = hdev->rss_size_max;
2892 }
2893 
2894 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
2895 				    u32 new_tqps_num)
2896 {
2897 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
2898 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2899 	u16 max_rss_size;
2900 
2901 	kinfo->req_rss_size = new_tqps_num;
2902 
2903 	max_rss_size = min_t(u16, hdev->rss_size_max,
2904 			     hdev->num_tqps / kinfo->num_tc);
2905 
2906 	/* Use the user's configuration when it is not larger than
2907 	 * max_rss_size, otherwise, use the maximum specification value.
2908 	 */
2909 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
2910 	    kinfo->req_rss_size <= max_rss_size)
2911 		kinfo->rss_size = kinfo->req_rss_size;
2912 	else if (kinfo->rss_size > max_rss_size ||
2913 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
2914 		kinfo->rss_size = max_rss_size;
2915 
2916 	kinfo->num_tqps = kinfo->num_tc * kinfo->rss_size;
2917 }
2918 
2919 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
2920 				bool rxfh_configured)
2921 {
2922 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2923 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
2924 	u16 cur_rss_size = kinfo->rss_size;
2925 	u16 cur_tqps = kinfo->num_tqps;
2926 	u32 *rss_indir;
2927 	unsigned int i;
2928 	int ret;
2929 
2930 	hclgevf_update_rss_size(handle, new_tqps_num);
2931 
2932 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
2933 	if (ret)
2934 		return ret;
2935 
2936 	/* RSS indirection table has been configuared by user */
2937 	if (rxfh_configured)
2938 		goto out;
2939 
2940 	/* Reinitializes the rss indirect table according to the new RSS size */
2941 	rss_indir = kcalloc(HCLGEVF_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL);
2942 	if (!rss_indir)
2943 		return -ENOMEM;
2944 
2945 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2946 		rss_indir[i] = i % kinfo->rss_size;
2947 
2948 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
2949 	if (ret)
2950 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
2951 			ret);
2952 
2953 	kfree(rss_indir);
2954 
2955 out:
2956 	if (!ret)
2957 		dev_info(&hdev->pdev->dev,
2958 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
2959 			 cur_rss_size, kinfo->rss_size,
2960 			 cur_tqps, kinfo->rss_size * kinfo->num_tc);
2961 
2962 	return ret;
2963 }
2964 
2965 static int hclgevf_get_status(struct hnae3_handle *handle)
2966 {
2967 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2968 
2969 	return hdev->hw.mac.link;
2970 }
2971 
2972 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2973 					    u8 *auto_neg, u32 *speed,
2974 					    u8 *duplex)
2975 {
2976 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2977 
2978 	if (speed)
2979 		*speed = hdev->hw.mac.speed;
2980 	if (duplex)
2981 		*duplex = hdev->hw.mac.duplex;
2982 	if (auto_neg)
2983 		*auto_neg = AUTONEG_DISABLE;
2984 }
2985 
2986 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2987 				 u8 duplex)
2988 {
2989 	hdev->hw.mac.speed = speed;
2990 	hdev->hw.mac.duplex = duplex;
2991 }
2992 
2993 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
2994 {
2995 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2996 
2997 	return hclgevf_config_gro(hdev, enable);
2998 }
2999 
3000 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3001 				   u8 *module_type)
3002 {
3003 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3004 
3005 	if (media_type)
3006 		*media_type = hdev->hw.mac.media_type;
3007 
3008 	if (module_type)
3009 		*module_type = hdev->hw.mac.module_type;
3010 }
3011 
3012 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3013 {
3014 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3015 
3016 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3017 }
3018 
3019 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3020 {
3021 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3022 
3023 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3024 }
3025 
3026 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3027 {
3028 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3029 
3030 	return hdev->rst_stats.hw_rst_done_cnt;
3031 }
3032 
3033 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3034 				  unsigned long *supported,
3035 				  unsigned long *advertising)
3036 {
3037 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3038 
3039 	*supported = hdev->hw.mac.supported;
3040 	*advertising = hdev->hw.mac.advertising;
3041 }
3042 
3043 #define MAX_SEPARATE_NUM	4
3044 #define SEPARATOR_VALUE		0xFFFFFFFF
3045 #define REG_NUM_PER_LINE	4
3046 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3047 
3048 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3049 {
3050 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3051 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3052 
3053 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3054 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3055 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3056 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3057 
3058 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3059 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3060 }
3061 
3062 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3063 			     void *data)
3064 {
3065 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3066 	int i, j, reg_um, separator_num;
3067 	u32 *reg = data;
3068 
3069 	*version = hdev->fw_version;
3070 
3071 	/* fetching per-VF registers values from VF PCIe register space */
3072 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3073 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3074 	for (i = 0; i < reg_um; i++)
3075 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3076 	for (i = 0; i < separator_num; i++)
3077 		*reg++ = SEPARATOR_VALUE;
3078 
3079 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3080 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3081 	for (i = 0; i < reg_um; i++)
3082 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3083 	for (i = 0; i < separator_num; i++)
3084 		*reg++ = SEPARATOR_VALUE;
3085 
3086 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3087 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3088 	for (j = 0; j < hdev->num_tqps; j++) {
3089 		for (i = 0; i < reg_um; i++)
3090 			*reg++ = hclgevf_read_dev(&hdev->hw,
3091 						  ring_reg_addr_list[i] +
3092 						  0x200 * j);
3093 		for (i = 0; i < separator_num; i++)
3094 			*reg++ = SEPARATOR_VALUE;
3095 	}
3096 
3097 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3098 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3099 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3100 		for (i = 0; i < reg_um; i++)
3101 			*reg++ = hclgevf_read_dev(&hdev->hw,
3102 						  tqp_intr_reg_addr_list[i] +
3103 						  4 * j);
3104 		for (i = 0; i < separator_num; i++)
3105 			*reg++ = SEPARATOR_VALUE;
3106 	}
3107 }
3108 
3109 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3110 					u8 *port_base_vlan_info, u8 data_size)
3111 {
3112 	struct hnae3_handle *nic = &hdev->nic;
3113 
3114 	rtnl_lock();
3115 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3116 	rtnl_unlock();
3117 
3118 	/* send msg to PF and wait update port based vlan info */
3119 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
3120 			     HCLGE_MBX_PORT_BASE_VLAN_CFG,
3121 			     port_base_vlan_info, data_size,
3122 			     false, NULL, 0);
3123 
3124 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3125 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
3126 	else
3127 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3128 
3129 	rtnl_lock();
3130 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3131 	rtnl_unlock();
3132 }
3133 
3134 static const struct hnae3_ae_ops hclgevf_ops = {
3135 	.init_ae_dev = hclgevf_init_ae_dev,
3136 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3137 	.flr_prepare = hclgevf_flr_prepare,
3138 	.flr_done = hclgevf_flr_done,
3139 	.init_client_instance = hclgevf_init_client_instance,
3140 	.uninit_client_instance = hclgevf_uninit_client_instance,
3141 	.start = hclgevf_ae_start,
3142 	.stop = hclgevf_ae_stop,
3143 	.client_start = hclgevf_client_start,
3144 	.client_stop = hclgevf_client_stop,
3145 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3146 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3147 	.get_vector = hclgevf_get_vector,
3148 	.put_vector = hclgevf_put_vector,
3149 	.reset_queue = hclgevf_reset_tqp,
3150 	.get_mac_addr = hclgevf_get_mac_addr,
3151 	.set_mac_addr = hclgevf_set_mac_addr,
3152 	.add_uc_addr = hclgevf_add_uc_addr,
3153 	.rm_uc_addr = hclgevf_rm_uc_addr,
3154 	.add_mc_addr = hclgevf_add_mc_addr,
3155 	.rm_mc_addr = hclgevf_rm_mc_addr,
3156 	.get_stats = hclgevf_get_stats,
3157 	.update_stats = hclgevf_update_stats,
3158 	.get_strings = hclgevf_get_strings,
3159 	.get_sset_count = hclgevf_get_sset_count,
3160 	.get_rss_key_size = hclgevf_get_rss_key_size,
3161 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
3162 	.get_rss = hclgevf_get_rss,
3163 	.set_rss = hclgevf_set_rss,
3164 	.get_rss_tuple = hclgevf_get_rss_tuple,
3165 	.set_rss_tuple = hclgevf_set_rss_tuple,
3166 	.get_tc_size = hclgevf_get_tc_size,
3167 	.get_fw_version = hclgevf_get_fw_version,
3168 	.set_vlan_filter = hclgevf_set_vlan_filter,
3169 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3170 	.reset_event = hclgevf_reset_event,
3171 	.set_default_reset_request = hclgevf_set_def_reset_request,
3172 	.set_channels = hclgevf_set_channels,
3173 	.get_channels = hclgevf_get_channels,
3174 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3175 	.get_regs_len = hclgevf_get_regs_len,
3176 	.get_regs = hclgevf_get_regs,
3177 	.get_status = hclgevf_get_status,
3178 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3179 	.get_media_type = hclgevf_get_media_type,
3180 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3181 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3182 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3183 	.set_gro_en = hclgevf_gro_en,
3184 	.set_mtu = hclgevf_set_mtu,
3185 	.get_global_queue_id = hclgevf_get_qid_global,
3186 	.set_timer_task = hclgevf_set_timer_task,
3187 	.get_link_mode = hclgevf_get_link_mode,
3188 	.set_promisc_mode = hclgevf_set_promisc_mode,
3189 };
3190 
3191 static struct hnae3_ae_algo ae_algovf = {
3192 	.ops = &hclgevf_ops,
3193 	.pdev_id_table = ae_algovf_pci_tbl,
3194 };
3195 
3196 static int hclgevf_init(void)
3197 {
3198 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3199 
3200 	hnae3_register_ae_algo(&ae_algovf);
3201 
3202 	return 0;
3203 }
3204 
3205 static void hclgevf_exit(void)
3206 {
3207 	hnae3_unregister_ae_algo(&ae_algovf);
3208 }
3209 module_init(hclgevf_init);
3210 module_exit(hclgevf_exit);
3211 
3212 MODULE_LICENSE("GPL");
3213 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3214 MODULE_DESCRIPTION("HCLGEVF Driver");
3215 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3216