1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 static const u8 hclgevf_hash_key[] = {
25 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
26 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
27 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
28 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
29 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
30 };
31 
32 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
33 
34 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
35 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
36 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
37 					 HCLGEVF_CMDQ_TX_TAIL_REG,
38 					 HCLGEVF_CMDQ_TX_HEAD_REG,
39 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
40 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
41 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
42 					 HCLGEVF_CMDQ_RX_TAIL_REG,
43 					 HCLGEVF_CMDQ_RX_HEAD_REG,
44 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
45 					 HCLGEVF_CMDQ_INTR_STS_REG,
46 					 HCLGEVF_CMDQ_INTR_EN_REG,
47 					 HCLGEVF_CMDQ_INTR_GEN_REG};
48 
49 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
50 					   HCLGEVF_RST_ING,
51 					   HCLGEVF_GRO_EN_REG};
52 
53 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
54 					 HCLGEVF_RING_RX_ADDR_H_REG,
55 					 HCLGEVF_RING_RX_BD_NUM_REG,
56 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
57 					 HCLGEVF_RING_RX_MERGE_EN_REG,
58 					 HCLGEVF_RING_RX_TAIL_REG,
59 					 HCLGEVF_RING_RX_HEAD_REG,
60 					 HCLGEVF_RING_RX_FBD_NUM_REG,
61 					 HCLGEVF_RING_RX_OFFSET_REG,
62 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
63 					 HCLGEVF_RING_RX_STASH_REG,
64 					 HCLGEVF_RING_RX_BD_ERR_REG,
65 					 HCLGEVF_RING_TX_ADDR_L_REG,
66 					 HCLGEVF_RING_TX_ADDR_H_REG,
67 					 HCLGEVF_RING_TX_BD_NUM_REG,
68 					 HCLGEVF_RING_TX_PRIORITY_REG,
69 					 HCLGEVF_RING_TX_TC_REG,
70 					 HCLGEVF_RING_TX_MERGE_EN_REG,
71 					 HCLGEVF_RING_TX_TAIL_REG,
72 					 HCLGEVF_RING_TX_HEAD_REG,
73 					 HCLGEVF_RING_TX_FBD_NUM_REG,
74 					 HCLGEVF_RING_TX_OFFSET_REG,
75 					 HCLGEVF_RING_TX_EBD_NUM_REG,
76 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
77 					 HCLGEVF_RING_TX_BD_ERR_REG,
78 					 HCLGEVF_RING_EN_REG};
79 
80 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
81 					     HCLGEVF_TQP_INTR_GL0_REG,
82 					     HCLGEVF_TQP_INTR_GL1_REG,
83 					     HCLGEVF_TQP_INTR_GL2_REG,
84 					     HCLGEVF_TQP_INTR_RL_REG};
85 
86 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
87 {
88 	if (!handle->client)
89 		return container_of(handle, struct hclgevf_dev, nic);
90 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
91 		return container_of(handle, struct hclgevf_dev, roce);
92 	else
93 		return container_of(handle, struct hclgevf_dev, nic);
94 }
95 
96 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
97 {
98 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
99 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
100 	struct hclgevf_desc desc;
101 	struct hclgevf_tqp *tqp;
102 	int status;
103 	int i;
104 
105 	for (i = 0; i < kinfo->num_tqps; i++) {
106 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
107 		hclgevf_cmd_setup_basic_desc(&desc,
108 					     HCLGEVF_OPC_QUERY_RX_STATUS,
109 					     true);
110 
111 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
112 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
113 		if (status) {
114 			dev_err(&hdev->pdev->dev,
115 				"Query tqp stat fail, status = %d,queue = %d\n",
116 				status,	i);
117 			return status;
118 		}
119 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
120 			le32_to_cpu(desc.data[1]);
121 
122 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
123 					     true);
124 
125 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
126 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
127 		if (status) {
128 			dev_err(&hdev->pdev->dev,
129 				"Query tqp stat fail, status = %d,queue = %d\n",
130 				status, i);
131 			return status;
132 		}
133 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
134 			le32_to_cpu(desc.data[1]);
135 	}
136 
137 	return 0;
138 }
139 
140 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
141 {
142 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
143 	struct hclgevf_tqp *tqp;
144 	u64 *buff = data;
145 	int i;
146 
147 	for (i = 0; i < kinfo->num_tqps; i++) {
148 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
149 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
150 	}
151 	for (i = 0; i < kinfo->num_tqps; i++) {
152 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
153 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
154 	}
155 
156 	return buff;
157 }
158 
159 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
160 {
161 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
162 
163 	return kinfo->num_tqps * 2;
164 }
165 
166 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
167 {
168 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
169 	u8 *buff = data;
170 	int i = 0;
171 
172 	for (i = 0; i < kinfo->num_tqps; i++) {
173 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
174 						       struct hclgevf_tqp, q);
175 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
176 			 tqp->index);
177 		buff += ETH_GSTRING_LEN;
178 	}
179 
180 	for (i = 0; i < kinfo->num_tqps; i++) {
181 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
182 						       struct hclgevf_tqp, q);
183 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
184 			 tqp->index);
185 		buff += ETH_GSTRING_LEN;
186 	}
187 
188 	return buff;
189 }
190 
191 static void hclgevf_update_stats(struct hnae3_handle *handle,
192 				 struct net_device_stats *net_stats)
193 {
194 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
195 	int status;
196 
197 	status = hclgevf_tqps_update_stats(handle);
198 	if (status)
199 		dev_err(&hdev->pdev->dev,
200 			"VF update of TQPS stats fail, status = %d.\n",
201 			status);
202 }
203 
204 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
205 {
206 	if (strset == ETH_SS_TEST)
207 		return -EOPNOTSUPP;
208 	else if (strset == ETH_SS_STATS)
209 		return hclgevf_tqps_get_sset_count(handle, strset);
210 
211 	return 0;
212 }
213 
214 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
215 				u8 *data)
216 {
217 	u8 *p = (char *)data;
218 
219 	if (strset == ETH_SS_STATS)
220 		p = hclgevf_tqps_get_strings(handle, p);
221 }
222 
223 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
224 {
225 	hclgevf_tqps_get_stats(handle, data);
226 }
227 
228 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
229 {
230 	u8 resp_msg;
231 	int status;
232 
233 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
234 				      true, &resp_msg, sizeof(resp_msg));
235 	if (status) {
236 		dev_err(&hdev->pdev->dev,
237 			"VF request to get TC info from PF failed %d",
238 			status);
239 		return status;
240 	}
241 
242 	hdev->hw_tc_map = resp_msg;
243 
244 	return 0;
245 }
246 
247 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
248 {
249 	struct hnae3_handle *nic = &hdev->nic;
250 	u8 resp_msg;
251 	int ret;
252 
253 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
254 				   HCLGE_MBX_GET_PORT_BASE_VLAN_STATE,
255 				   NULL, 0, true, &resp_msg, sizeof(u8));
256 	if (ret) {
257 		dev_err(&hdev->pdev->dev,
258 			"VF request to get port based vlan state failed %d",
259 			ret);
260 		return ret;
261 	}
262 
263 	nic->port_base_vlan_state = resp_msg;
264 
265 	return 0;
266 }
267 
268 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
269 {
270 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
271 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
272 	int status;
273 
274 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
275 				      true, resp_msg,
276 				      HCLGEVF_TQPS_RSS_INFO_LEN);
277 	if (status) {
278 		dev_err(&hdev->pdev->dev,
279 			"VF request to get tqp info from PF failed %d",
280 			status);
281 		return status;
282 	}
283 
284 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
285 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
286 	memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));
287 
288 	return 0;
289 }
290 
291 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
292 {
293 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
294 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
295 	int ret;
296 
297 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
298 				   true, resp_msg,
299 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
300 	if (ret) {
301 		dev_err(&hdev->pdev->dev,
302 			"VF request to get tqp depth info from PF failed %d",
303 			ret);
304 		return ret;
305 	}
306 
307 	memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
308 	memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));
309 
310 	return 0;
311 }
312 
313 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
314 {
315 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
316 	u8 msg_data[2], resp_data[2];
317 	u16 qid_in_pf = 0;
318 	int ret;
319 
320 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
321 
322 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
323 				   sizeof(msg_data), true, resp_data,
324 				   sizeof(resp_data));
325 	if (!ret)
326 		qid_in_pf = *(u16 *)resp_data;
327 
328 	return qid_in_pf;
329 }
330 
331 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
332 {
333 	u8 resp_msg[2];
334 	int ret;
335 
336 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MEDIA_TYPE, 0, NULL, 0,
337 				   true, resp_msg, sizeof(resp_msg));
338 	if (ret) {
339 		dev_err(&hdev->pdev->dev,
340 			"VF request to get the pf port media type failed %d",
341 			ret);
342 		return ret;
343 	}
344 
345 	hdev->hw.mac.media_type = resp_msg[0];
346 	hdev->hw.mac.module_type = resp_msg[1];
347 
348 	return 0;
349 }
350 
351 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
352 {
353 	struct hclgevf_tqp *tqp;
354 	int i;
355 
356 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
357 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
358 	if (!hdev->htqp)
359 		return -ENOMEM;
360 
361 	tqp = hdev->htqp;
362 
363 	for (i = 0; i < hdev->num_tqps; i++) {
364 		tqp->dev = &hdev->pdev->dev;
365 		tqp->index = i;
366 
367 		tqp->q.ae_algo = &ae_algovf;
368 		tqp->q.buf_size = hdev->rx_buf_len;
369 		tqp->q.tx_desc_num = hdev->num_tx_desc;
370 		tqp->q.rx_desc_num = hdev->num_rx_desc;
371 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
372 			i * HCLGEVF_TQP_REG_SIZE;
373 
374 		tqp++;
375 	}
376 
377 	return 0;
378 }
379 
380 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
381 {
382 	struct hnae3_handle *nic = &hdev->nic;
383 	struct hnae3_knic_private_info *kinfo;
384 	u16 new_tqps = hdev->num_tqps;
385 	unsigned int i;
386 
387 	kinfo = &nic->kinfo;
388 	kinfo->num_tc = 0;
389 	kinfo->num_tx_desc = hdev->num_tx_desc;
390 	kinfo->num_rx_desc = hdev->num_rx_desc;
391 	kinfo->rx_buf_len = hdev->rx_buf_len;
392 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
393 		if (hdev->hw_tc_map & BIT(i))
394 			kinfo->num_tc++;
395 
396 	kinfo->rss_size
397 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
398 	new_tqps = kinfo->rss_size * kinfo->num_tc;
399 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
400 
401 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
402 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
403 	if (!kinfo->tqp)
404 		return -ENOMEM;
405 
406 	for (i = 0; i < kinfo->num_tqps; i++) {
407 		hdev->htqp[i].q.handle = &hdev->nic;
408 		hdev->htqp[i].q.tqp_index = i;
409 		kinfo->tqp[i] = &hdev->htqp[i].q;
410 	}
411 
412 	return 0;
413 }
414 
415 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
416 {
417 	int status;
418 	u8 resp_msg;
419 
420 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
421 				      0, false, &resp_msg, sizeof(resp_msg));
422 	if (status)
423 		dev_err(&hdev->pdev->dev,
424 			"VF failed to fetch link status(%d) from PF", status);
425 }
426 
427 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
428 {
429 	struct hnae3_handle *rhandle = &hdev->roce;
430 	struct hnae3_handle *handle = &hdev->nic;
431 	struct hnae3_client *rclient;
432 	struct hnae3_client *client;
433 
434 	client = handle->client;
435 	rclient = hdev->roce_client;
436 
437 	link_state =
438 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
439 
440 	if (link_state != hdev->hw.mac.link) {
441 		client->ops->link_status_change(handle, !!link_state);
442 		if (rclient && rclient->ops->link_status_change)
443 			rclient->ops->link_status_change(rhandle, !!link_state);
444 		hdev->hw.mac.link = link_state;
445 	}
446 }
447 
448 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
449 {
450 #define HCLGEVF_ADVERTISING 0
451 #define HCLGEVF_SUPPORTED   1
452 	u8 send_msg;
453 	u8 resp_msg;
454 
455 	send_msg = HCLGEVF_ADVERTISING;
456 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
457 			     &send_msg, sizeof(send_msg), false,
458 			     &resp_msg, sizeof(resp_msg));
459 	send_msg = HCLGEVF_SUPPORTED;
460 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
461 			     &send_msg, sizeof(send_msg), false,
462 			     &resp_msg, sizeof(resp_msg));
463 }
464 
465 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
466 {
467 	struct hnae3_handle *nic = &hdev->nic;
468 	int ret;
469 
470 	nic->ae_algo = &ae_algovf;
471 	nic->pdev = hdev->pdev;
472 	nic->numa_node_mask = hdev->numa_node_mask;
473 	nic->flags |= HNAE3_SUPPORT_VF;
474 
475 	ret = hclgevf_knic_setup(hdev);
476 	if (ret)
477 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
478 			ret);
479 	return ret;
480 }
481 
482 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
483 {
484 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
485 		dev_warn(&hdev->pdev->dev,
486 			 "vector(vector_id %d) has been freed.\n", vector_id);
487 		return;
488 	}
489 
490 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
491 	hdev->num_msi_left += 1;
492 	hdev->num_msi_used -= 1;
493 }
494 
495 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
496 			      struct hnae3_vector_info *vector_info)
497 {
498 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
499 	struct hnae3_vector_info *vector = vector_info;
500 	int alloc = 0;
501 	int i, j;
502 
503 	vector_num = min(hdev->num_msi_left, vector_num);
504 
505 	for (j = 0; j < vector_num; j++) {
506 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
507 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
508 				vector->vector = pci_irq_vector(hdev->pdev, i);
509 				vector->io_addr = hdev->hw.io_base +
510 					HCLGEVF_VECTOR_REG_BASE +
511 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
512 				hdev->vector_status[i] = 0;
513 				hdev->vector_irq[i] = vector->vector;
514 
515 				vector++;
516 				alloc++;
517 
518 				break;
519 			}
520 		}
521 	}
522 	hdev->num_msi_left -= alloc;
523 	hdev->num_msi_used += alloc;
524 
525 	return alloc;
526 }
527 
528 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
529 {
530 	int i;
531 
532 	for (i = 0; i < hdev->num_msi; i++)
533 		if (vector == hdev->vector_irq[i])
534 			return i;
535 
536 	return -EINVAL;
537 }
538 
539 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
540 				    const u8 hfunc, const u8 *key)
541 {
542 	struct hclgevf_rss_config_cmd *req;
543 	unsigned int key_offset = 0;
544 	struct hclgevf_desc desc;
545 	int key_counts;
546 	int key_size;
547 	int ret;
548 
549 	key_counts = HCLGEVF_RSS_KEY_SIZE;
550 	req = (struct hclgevf_rss_config_cmd *)desc.data;
551 
552 	while (key_counts) {
553 		hclgevf_cmd_setup_basic_desc(&desc,
554 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
555 					     false);
556 
557 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
558 		req->hash_config |=
559 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
560 
561 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
562 		memcpy(req->hash_key,
563 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
564 
565 		key_counts -= key_size;
566 		key_offset++;
567 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
568 		if (ret) {
569 			dev_err(&hdev->pdev->dev,
570 				"Configure RSS config fail, status = %d\n",
571 				ret);
572 			return ret;
573 		}
574 	}
575 
576 	return 0;
577 }
578 
579 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
580 {
581 	return HCLGEVF_RSS_KEY_SIZE;
582 }
583 
584 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
585 {
586 	return HCLGEVF_RSS_IND_TBL_SIZE;
587 }
588 
589 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
590 {
591 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
592 	struct hclgevf_rss_indirection_table_cmd *req;
593 	struct hclgevf_desc desc;
594 	int status;
595 	int i, j;
596 
597 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
598 
599 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
600 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
601 					     false);
602 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
603 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
604 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
605 			req->rss_result[j] =
606 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
607 
608 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
609 		if (status) {
610 			dev_err(&hdev->pdev->dev,
611 				"VF failed(=%d) to set RSS indirection table\n",
612 				status);
613 			return status;
614 		}
615 	}
616 
617 	return 0;
618 }
619 
620 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
621 {
622 	struct hclgevf_rss_tc_mode_cmd *req;
623 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
624 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
625 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
626 	struct hclgevf_desc desc;
627 	u16 roundup_size;
628 	int status;
629 	unsigned int i;
630 
631 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
632 
633 	roundup_size = roundup_pow_of_two(rss_size);
634 	roundup_size = ilog2(roundup_size);
635 
636 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
637 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
638 		tc_size[i] = roundup_size;
639 		tc_offset[i] = rss_size * i;
640 	}
641 
642 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
643 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
644 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
645 			      (tc_valid[i] & 0x1));
646 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
647 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
648 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
649 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
650 	}
651 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
652 	if (status)
653 		dev_err(&hdev->pdev->dev,
654 			"VF failed(=%d) to set rss tc mode\n", status);
655 
656 	return status;
657 }
658 
659 /* for revision 0x20, vf shared the same rss config with pf */
660 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
661 {
662 #define HCLGEVF_RSS_MBX_RESP_LEN	8
663 
664 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
665 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
666 	u16 msg_num, hash_key_index;
667 	u8 index;
668 	int ret;
669 
670 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
671 			HCLGEVF_RSS_MBX_RESP_LEN;
672 	for (index = 0; index < msg_num; index++) {
673 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_RSS_KEY, 0,
674 					   &index, sizeof(index),
675 					   true, resp_msg,
676 					   HCLGEVF_RSS_MBX_RESP_LEN);
677 		if (ret) {
678 			dev_err(&hdev->pdev->dev,
679 				"VF get rss hash key from PF failed, ret=%d",
680 				ret);
681 			return ret;
682 		}
683 
684 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
685 		if (index == msg_num - 1)
686 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
687 			       &resp_msg[0],
688 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
689 		else
690 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
691 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
692 	}
693 
694 	return 0;
695 }
696 
697 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
698 			   u8 *hfunc)
699 {
700 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
701 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
702 	int i, ret;
703 
704 	if (handle->pdev->revision >= 0x21) {
705 		/* Get hash algorithm */
706 		if (hfunc) {
707 			switch (rss_cfg->hash_algo) {
708 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
709 				*hfunc = ETH_RSS_HASH_TOP;
710 				break;
711 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
712 				*hfunc = ETH_RSS_HASH_XOR;
713 				break;
714 			default:
715 				*hfunc = ETH_RSS_HASH_UNKNOWN;
716 				break;
717 			}
718 		}
719 
720 		/* Get the RSS Key required by the user */
721 		if (key)
722 			memcpy(key, rss_cfg->rss_hash_key,
723 			       HCLGEVF_RSS_KEY_SIZE);
724 	} else {
725 		if (hfunc)
726 			*hfunc = ETH_RSS_HASH_TOP;
727 		if (key) {
728 			ret = hclgevf_get_rss_hash_key(hdev);
729 			if (ret)
730 				return ret;
731 			memcpy(key, rss_cfg->rss_hash_key,
732 			       HCLGEVF_RSS_KEY_SIZE);
733 		}
734 	}
735 
736 	if (indir)
737 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
738 			indir[i] = rss_cfg->rss_indirection_tbl[i];
739 
740 	return 0;
741 }
742 
743 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
744 			   const  u8 *key, const  u8 hfunc)
745 {
746 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
747 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
748 	int ret, i;
749 
750 	if (handle->pdev->revision >= 0x21) {
751 		/* Set the RSS Hash Key if specififed by the user */
752 		if (key) {
753 			switch (hfunc) {
754 			case ETH_RSS_HASH_TOP:
755 				rss_cfg->hash_algo =
756 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
757 				break;
758 			case ETH_RSS_HASH_XOR:
759 				rss_cfg->hash_algo =
760 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
761 				break;
762 			case ETH_RSS_HASH_NO_CHANGE:
763 				break;
764 			default:
765 				return -EINVAL;
766 			}
767 
768 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
769 						       key);
770 			if (ret)
771 				return ret;
772 
773 			/* Update the shadow RSS key with user specified qids */
774 			memcpy(rss_cfg->rss_hash_key, key,
775 			       HCLGEVF_RSS_KEY_SIZE);
776 		}
777 	}
778 
779 	/* update the shadow RSS table with user specified qids */
780 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
781 		rss_cfg->rss_indirection_tbl[i] = indir[i];
782 
783 	/* update the hardware */
784 	return hclgevf_set_rss_indir_table(hdev);
785 }
786 
787 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
788 {
789 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
790 
791 	if (nfc->data & RXH_L4_B_2_3)
792 		hash_sets |= HCLGEVF_D_PORT_BIT;
793 	else
794 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
795 
796 	if (nfc->data & RXH_IP_SRC)
797 		hash_sets |= HCLGEVF_S_IP_BIT;
798 	else
799 		hash_sets &= ~HCLGEVF_S_IP_BIT;
800 
801 	if (nfc->data & RXH_IP_DST)
802 		hash_sets |= HCLGEVF_D_IP_BIT;
803 	else
804 		hash_sets &= ~HCLGEVF_D_IP_BIT;
805 
806 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
807 		hash_sets |= HCLGEVF_V_TAG_BIT;
808 
809 	return hash_sets;
810 }
811 
812 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
813 				 struct ethtool_rxnfc *nfc)
814 {
815 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
816 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
817 	struct hclgevf_rss_input_tuple_cmd *req;
818 	struct hclgevf_desc desc;
819 	u8 tuple_sets;
820 	int ret;
821 
822 	if (handle->pdev->revision == 0x20)
823 		return -EOPNOTSUPP;
824 
825 	if (nfc->data &
826 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
827 		return -EINVAL;
828 
829 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
830 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
831 
832 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
833 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
834 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
835 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
836 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
837 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
838 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
839 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
840 
841 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
842 	switch (nfc->flow_type) {
843 	case TCP_V4_FLOW:
844 		req->ipv4_tcp_en = tuple_sets;
845 		break;
846 	case TCP_V6_FLOW:
847 		req->ipv6_tcp_en = tuple_sets;
848 		break;
849 	case UDP_V4_FLOW:
850 		req->ipv4_udp_en = tuple_sets;
851 		break;
852 	case UDP_V6_FLOW:
853 		req->ipv6_udp_en = tuple_sets;
854 		break;
855 	case SCTP_V4_FLOW:
856 		req->ipv4_sctp_en = tuple_sets;
857 		break;
858 	case SCTP_V6_FLOW:
859 		if ((nfc->data & RXH_L4_B_0_1) ||
860 		    (nfc->data & RXH_L4_B_2_3))
861 			return -EINVAL;
862 
863 		req->ipv6_sctp_en = tuple_sets;
864 		break;
865 	case IPV4_FLOW:
866 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
867 		break;
868 	case IPV6_FLOW:
869 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
870 		break;
871 	default:
872 		return -EINVAL;
873 	}
874 
875 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
876 	if (ret) {
877 		dev_err(&hdev->pdev->dev,
878 			"Set rss tuple fail, status = %d\n", ret);
879 		return ret;
880 	}
881 
882 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
883 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
884 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
885 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
886 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
887 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
888 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
889 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
890 	return 0;
891 }
892 
893 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
894 				 struct ethtool_rxnfc *nfc)
895 {
896 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
897 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
898 	u8 tuple_sets;
899 
900 	if (handle->pdev->revision == 0x20)
901 		return -EOPNOTSUPP;
902 
903 	nfc->data = 0;
904 
905 	switch (nfc->flow_type) {
906 	case TCP_V4_FLOW:
907 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
908 		break;
909 	case UDP_V4_FLOW:
910 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
911 		break;
912 	case TCP_V6_FLOW:
913 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
914 		break;
915 	case UDP_V6_FLOW:
916 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
917 		break;
918 	case SCTP_V4_FLOW:
919 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
920 		break;
921 	case SCTP_V6_FLOW:
922 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
923 		break;
924 	case IPV4_FLOW:
925 	case IPV6_FLOW:
926 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
927 		break;
928 	default:
929 		return -EINVAL;
930 	}
931 
932 	if (!tuple_sets)
933 		return 0;
934 
935 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
936 		nfc->data |= RXH_L4_B_2_3;
937 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
938 		nfc->data |= RXH_L4_B_0_1;
939 	if (tuple_sets & HCLGEVF_D_IP_BIT)
940 		nfc->data |= RXH_IP_DST;
941 	if (tuple_sets & HCLGEVF_S_IP_BIT)
942 		nfc->data |= RXH_IP_SRC;
943 
944 	return 0;
945 }
946 
947 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
948 				       struct hclgevf_rss_cfg *rss_cfg)
949 {
950 	struct hclgevf_rss_input_tuple_cmd *req;
951 	struct hclgevf_desc desc;
952 	int ret;
953 
954 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
955 
956 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
957 
958 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
959 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
960 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
961 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
962 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
963 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
964 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
965 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
966 
967 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
968 	if (ret)
969 		dev_err(&hdev->pdev->dev,
970 			"Configure rss input fail, status = %d\n", ret);
971 	return ret;
972 }
973 
974 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
975 {
976 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
977 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
978 
979 	return rss_cfg->rss_size;
980 }
981 
982 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
983 				       int vector_id,
984 				       struct hnae3_ring_chain_node *ring_chain)
985 {
986 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
987 	struct hnae3_ring_chain_node *node;
988 	struct hclge_mbx_vf_to_pf_cmd *req;
989 	struct hclgevf_desc desc;
990 	int i = 0;
991 	int status;
992 	u8 type;
993 
994 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
995 
996 	for (node = ring_chain; node; node = node->next) {
997 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
998 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
999 
1000 		if (i == 0) {
1001 			hclgevf_cmd_setup_basic_desc(&desc,
1002 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1003 						     false);
1004 			type = en ?
1005 				HCLGE_MBX_MAP_RING_TO_VECTOR :
1006 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1007 			req->msg[0] = type;
1008 			req->msg[1] = vector_id;
1009 		}
1010 
1011 		req->msg[idx_offset] =
1012 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1013 		req->msg[idx_offset + 1] = node->tqp_index;
1014 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
1015 							   HNAE3_RING_GL_IDX_M,
1016 							   HNAE3_RING_GL_IDX_S);
1017 
1018 		i++;
1019 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
1020 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
1021 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
1022 		    !node->next) {
1023 			req->msg[2] = i;
1024 
1025 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1026 			if (status) {
1027 				dev_err(&hdev->pdev->dev,
1028 					"Map TQP fail, status is %d.\n",
1029 					status);
1030 				return status;
1031 			}
1032 			i = 0;
1033 			hclgevf_cmd_setup_basic_desc(&desc,
1034 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1035 						     false);
1036 			req->msg[0] = type;
1037 			req->msg[1] = vector_id;
1038 		}
1039 	}
1040 
1041 	return 0;
1042 }
1043 
1044 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1045 				      struct hnae3_ring_chain_node *ring_chain)
1046 {
1047 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1048 	int vector_id;
1049 
1050 	vector_id = hclgevf_get_vector_index(hdev, vector);
1051 	if (vector_id < 0) {
1052 		dev_err(&handle->pdev->dev,
1053 			"Get vector index fail. ret =%d\n", vector_id);
1054 		return vector_id;
1055 	}
1056 
1057 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1058 }
1059 
1060 static int hclgevf_unmap_ring_from_vector(
1061 				struct hnae3_handle *handle,
1062 				int vector,
1063 				struct hnae3_ring_chain_node *ring_chain)
1064 {
1065 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1066 	int ret, vector_id;
1067 
1068 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1069 		return 0;
1070 
1071 	vector_id = hclgevf_get_vector_index(hdev, vector);
1072 	if (vector_id < 0) {
1073 		dev_err(&handle->pdev->dev,
1074 			"Get vector index fail. ret =%d\n", vector_id);
1075 		return vector_id;
1076 	}
1077 
1078 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1079 	if (ret)
1080 		dev_err(&handle->pdev->dev,
1081 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1082 			vector_id,
1083 			ret);
1084 
1085 	return ret;
1086 }
1087 
1088 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1089 {
1090 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1091 	int vector_id;
1092 
1093 	vector_id = hclgevf_get_vector_index(hdev, vector);
1094 	if (vector_id < 0) {
1095 		dev_err(&handle->pdev->dev,
1096 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1097 			vector_id);
1098 		return vector_id;
1099 	}
1100 
1101 	hclgevf_free_vector(hdev, vector_id);
1102 
1103 	return 0;
1104 }
1105 
1106 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1107 					bool en_bc_pmc)
1108 {
1109 	struct hclge_mbx_vf_to_pf_cmd *req;
1110 	struct hclgevf_desc desc;
1111 	int ret;
1112 
1113 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1114 
1115 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
1116 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1117 	req->msg[1] = en_bc_pmc ? 1 : 0;
1118 
1119 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1120 	if (ret)
1121 		dev_err(&hdev->pdev->dev,
1122 			"Set promisc mode fail, status is %d.\n", ret);
1123 
1124 	return ret;
1125 }
1126 
1127 static int hclgevf_set_promisc_mode(struct hclgevf_dev *hdev, bool en_bc_pmc)
1128 {
1129 	return hclgevf_cmd_set_promisc_mode(hdev, en_bc_pmc);
1130 }
1131 
1132 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1133 			      int stream_id, bool enable)
1134 {
1135 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1136 	struct hclgevf_desc desc;
1137 	int status;
1138 
1139 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1140 
1141 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1142 				     false);
1143 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1144 	req->stream_id = cpu_to_le16(stream_id);
1145 	if (enable)
1146 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1147 
1148 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1149 	if (status)
1150 		dev_err(&hdev->pdev->dev,
1151 			"TQP enable fail, status =%d.\n", status);
1152 
1153 	return status;
1154 }
1155 
1156 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1157 {
1158 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1159 	struct hclgevf_tqp *tqp;
1160 	int i;
1161 
1162 	for (i = 0; i < kinfo->num_tqps; i++) {
1163 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1164 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1165 	}
1166 }
1167 
1168 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1169 {
1170 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1171 
1172 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
1173 }
1174 
1175 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1176 				bool is_first)
1177 {
1178 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1179 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1180 	u8 *new_mac_addr = (u8 *)p;
1181 	u8 msg_data[ETH_ALEN * 2];
1182 	u16 subcode;
1183 	int status;
1184 
1185 	ether_addr_copy(msg_data, new_mac_addr);
1186 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1187 
1188 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1189 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1190 
1191 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1192 				      subcode, msg_data, sizeof(msg_data),
1193 				      true, NULL, 0);
1194 	if (!status)
1195 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1196 
1197 	return status;
1198 }
1199 
1200 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1201 			       const unsigned char *addr)
1202 {
1203 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1204 
1205 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1206 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1207 				    addr, ETH_ALEN, false, NULL, 0);
1208 }
1209 
1210 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1211 			      const unsigned char *addr)
1212 {
1213 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1214 
1215 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1216 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1217 				    addr, ETH_ALEN, false, NULL, 0);
1218 }
1219 
1220 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1221 			       const unsigned char *addr)
1222 {
1223 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1224 
1225 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1226 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1227 				    addr, ETH_ALEN, false, NULL, 0);
1228 }
1229 
1230 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1231 			      const unsigned char *addr)
1232 {
1233 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1234 
1235 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1236 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1237 				    addr, ETH_ALEN, false, NULL, 0);
1238 }
1239 
1240 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1241 				   __be16 proto, u16 vlan_id,
1242 				   bool is_kill)
1243 {
1244 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1245 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1246 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1247 	int ret;
1248 
1249 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1250 		return -EINVAL;
1251 
1252 	if (proto != htons(ETH_P_8021Q))
1253 		return -EPROTONOSUPPORT;
1254 
1255 	/* When device is resetting, firmware is unable to handle
1256 	 * mailbox. Just record the vlan id, and remove it after
1257 	 * reset finished.
1258 	 */
1259 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) && is_kill) {
1260 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1261 		return -EBUSY;
1262 	}
1263 
1264 	msg_data[0] = is_kill;
1265 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1266 	memcpy(&msg_data[3], &proto, sizeof(proto));
1267 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1268 				   HCLGE_MBX_VLAN_FILTER, msg_data,
1269 				   HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1270 
1271 	/* When remove hw vlan filter failed, record the vlan id,
1272 	 * and try to remove it from hw later, to be consistence
1273 	 * with stack.
1274 	 */
1275 	if (is_kill && ret)
1276 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1277 
1278 	return ret;
1279 }
1280 
1281 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1282 {
1283 #define HCLGEVF_MAX_SYNC_COUNT	60
1284 	struct hnae3_handle *handle = &hdev->nic;
1285 	int ret, sync_cnt = 0;
1286 	u16 vlan_id;
1287 
1288 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1289 	while (vlan_id != VLAN_N_VID) {
1290 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1291 					      vlan_id, true);
1292 		if (ret)
1293 			return;
1294 
1295 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1296 		sync_cnt++;
1297 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1298 			return;
1299 
1300 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1301 	}
1302 }
1303 
1304 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1305 {
1306 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1307 	u8 msg_data;
1308 
1309 	msg_data = enable ? 1 : 0;
1310 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1311 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1312 				    1, false, NULL, 0);
1313 }
1314 
1315 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1316 {
1317 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1318 	u8 msg_data[2];
1319 	int ret;
1320 
1321 	memcpy(msg_data, &queue_id, sizeof(queue_id));
1322 
1323 	/* disable vf queue before send queue reset msg to PF */
1324 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1325 	if (ret)
1326 		return ret;
1327 
1328 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1329 				    sizeof(msg_data), true, NULL, 0);
1330 }
1331 
1332 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1333 {
1334 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1335 
1336 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1337 				    sizeof(new_mtu), true, NULL, 0);
1338 }
1339 
1340 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1341 				 enum hnae3_reset_notify_type type)
1342 {
1343 	struct hnae3_client *client = hdev->nic_client;
1344 	struct hnae3_handle *handle = &hdev->nic;
1345 	int ret;
1346 
1347 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1348 	    !client)
1349 		return 0;
1350 
1351 	if (!client->ops->reset_notify)
1352 		return -EOPNOTSUPP;
1353 
1354 	ret = client->ops->reset_notify(handle, type);
1355 	if (ret)
1356 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1357 			type, ret);
1358 
1359 	return ret;
1360 }
1361 
1362 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1363 {
1364 	struct hclgevf_dev *hdev = ae_dev->priv;
1365 
1366 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1367 }
1368 
1369 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1370 				    unsigned long delay_us,
1371 				    unsigned long wait_cnt)
1372 {
1373 	unsigned long cnt = 0;
1374 
1375 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1376 	       cnt++ < wait_cnt)
1377 		usleep_range(delay_us, delay_us * 2);
1378 
1379 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1380 		dev_err(&hdev->pdev->dev,
1381 			"flr wait timeout\n");
1382 		return -ETIMEDOUT;
1383 	}
1384 
1385 	return 0;
1386 }
1387 
1388 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1389 {
1390 #define HCLGEVF_RESET_WAIT_US	20000
1391 #define HCLGEVF_RESET_WAIT_CNT	2000
1392 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1393 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1394 
1395 	u32 val;
1396 	int ret;
1397 
1398 	/* wait to check the hardware reset completion status */
1399 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1400 	dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1401 
1402 	if (hdev->reset_type == HNAE3_FLR_RESET)
1403 		return hclgevf_flr_poll_timeout(hdev,
1404 						HCLGEVF_RESET_WAIT_US,
1405 						HCLGEVF_RESET_WAIT_CNT);
1406 
1407 	ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1408 				 !(val & HCLGEVF_RST_ING_BITS),
1409 				 HCLGEVF_RESET_WAIT_US,
1410 				 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1411 
1412 	/* hardware completion status should be available by this time */
1413 	if (ret) {
1414 		dev_err(&hdev->pdev->dev,
1415 			"could'nt get reset done status from h/w, timeout!\n");
1416 		return ret;
1417 	}
1418 
1419 	/* we will wait a bit more to let reset of the stack to complete. This
1420 	 * might happen in case reset assertion was made by PF. Yes, this also
1421 	 * means we might end up waiting bit more even for VF reset.
1422 	 */
1423 	msleep(5000);
1424 
1425 	return 0;
1426 }
1427 
1428 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1429 {
1430 	int ret;
1431 
1432 	/* uninitialize the nic client */
1433 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1434 	if (ret)
1435 		return ret;
1436 
1437 	/* re-initialize the hclge device */
1438 	ret = hclgevf_reset_hdev(hdev);
1439 	if (ret) {
1440 		dev_err(&hdev->pdev->dev,
1441 			"hclge device re-init failed, VF is disabled!\n");
1442 		return ret;
1443 	}
1444 
1445 	/* bring up the nic client again */
1446 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1447 	if (ret)
1448 		return ret;
1449 
1450 	return hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1451 }
1452 
1453 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1454 {
1455 #define HCLGEVF_RESET_SYNC_TIME 100
1456 
1457 	int ret = 0;
1458 
1459 	switch (hdev->reset_type) {
1460 	case HNAE3_VF_FUNC_RESET:
1461 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1462 					   0, true, NULL, sizeof(u8));
1463 		hdev->rst_stats.vf_func_rst_cnt++;
1464 		break;
1465 	case HNAE3_FLR_RESET:
1466 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1467 		hdev->rst_stats.flr_rst_cnt++;
1468 		break;
1469 	default:
1470 		break;
1471 	}
1472 
1473 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1474 	/* inform hardware that preparatory work is done */
1475 	msleep(HCLGEVF_RESET_SYNC_TIME);
1476 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1477 			  HCLGEVF_NIC_CMQ_ENABLE);
1478 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1479 		 hdev->reset_type, ret);
1480 
1481 	return ret;
1482 }
1483 
1484 static int hclgevf_reset(struct hclgevf_dev *hdev)
1485 {
1486 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1487 	int ret;
1488 
1489 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1490 	 * know if device is undergoing reset
1491 	 */
1492 	ae_dev->reset_type = hdev->reset_type;
1493 	hdev->rst_stats.rst_cnt++;
1494 	rtnl_lock();
1495 
1496 	/* bring down the nic to stop any ongoing TX/RX */
1497 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1498 	if (ret)
1499 		goto err_reset_lock;
1500 
1501 	rtnl_unlock();
1502 
1503 	ret = hclgevf_reset_prepare_wait(hdev);
1504 	if (ret)
1505 		goto err_reset;
1506 
1507 	/* check if VF could successfully fetch the hardware reset completion
1508 	 * status from the hardware
1509 	 */
1510 	ret = hclgevf_reset_wait(hdev);
1511 	if (ret) {
1512 		/* can't do much in this situation, will disable VF */
1513 		dev_err(&hdev->pdev->dev,
1514 			"VF failed(=%d) to fetch H/W reset completion status\n",
1515 			ret);
1516 		goto err_reset;
1517 	}
1518 
1519 	hdev->rst_stats.hw_rst_done_cnt++;
1520 
1521 	rtnl_lock();
1522 
1523 	/* now, re-initialize the nic client and ae device*/
1524 	ret = hclgevf_reset_stack(hdev);
1525 	if (ret) {
1526 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1527 		goto err_reset_lock;
1528 	}
1529 
1530 	/* bring up the nic to enable TX/RX again */
1531 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1532 	if (ret)
1533 		goto err_reset_lock;
1534 
1535 	rtnl_unlock();
1536 
1537 	hdev->last_reset_time = jiffies;
1538 	ae_dev->reset_type = HNAE3_NONE_RESET;
1539 	hdev->rst_stats.rst_done_cnt++;
1540 
1541 	return ret;
1542 err_reset_lock:
1543 	rtnl_unlock();
1544 err_reset:
1545 	/* When VF reset failed, only the higher level reset asserted by PF
1546 	 * can restore it, so re-initialize the command queue to receive
1547 	 * this higher reset event.
1548 	 */
1549 	hclgevf_cmd_init(hdev);
1550 	dev_err(&hdev->pdev->dev, "failed to reset VF\n");
1551 	if (hclgevf_is_reset_pending(hdev))
1552 		hclgevf_reset_task_schedule(hdev);
1553 
1554 	return ret;
1555 }
1556 
1557 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1558 						     unsigned long *addr)
1559 {
1560 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1561 
1562 	/* return the highest priority reset level amongst all */
1563 	if (test_bit(HNAE3_VF_RESET, addr)) {
1564 		rst_level = HNAE3_VF_RESET;
1565 		clear_bit(HNAE3_VF_RESET, addr);
1566 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1567 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1568 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1569 		rst_level = HNAE3_VF_FULL_RESET;
1570 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1571 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1572 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1573 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1574 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1575 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1576 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1577 		rst_level = HNAE3_VF_FUNC_RESET;
1578 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1579 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1580 		rst_level = HNAE3_FLR_RESET;
1581 		clear_bit(HNAE3_FLR_RESET, addr);
1582 	}
1583 
1584 	return rst_level;
1585 }
1586 
1587 static void hclgevf_reset_event(struct pci_dev *pdev,
1588 				struct hnae3_handle *handle)
1589 {
1590 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1591 	struct hclgevf_dev *hdev = ae_dev->priv;
1592 
1593 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1594 
1595 	if (hdev->default_reset_request)
1596 		hdev->reset_level =
1597 			hclgevf_get_reset_level(hdev,
1598 						&hdev->default_reset_request);
1599 	else
1600 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1601 
1602 	/* reset of this VF requested */
1603 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1604 	hclgevf_reset_task_schedule(hdev);
1605 
1606 	hdev->last_reset_time = jiffies;
1607 }
1608 
1609 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1610 					  enum hnae3_reset_type rst_type)
1611 {
1612 	struct hclgevf_dev *hdev = ae_dev->priv;
1613 
1614 	set_bit(rst_type, &hdev->default_reset_request);
1615 }
1616 
1617 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1618 {
1619 #define HCLGEVF_FLR_WAIT_MS	100
1620 #define HCLGEVF_FLR_WAIT_CNT	50
1621 	struct hclgevf_dev *hdev = ae_dev->priv;
1622 	int cnt = 0;
1623 
1624 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1625 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1626 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1627 	hclgevf_reset_event(hdev->pdev, NULL);
1628 
1629 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1630 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1631 		msleep(HCLGEVF_FLR_WAIT_MS);
1632 
1633 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1634 		dev_err(&hdev->pdev->dev,
1635 			"flr wait down timeout: %d\n", cnt);
1636 }
1637 
1638 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1639 {
1640 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1641 
1642 	return hdev->fw_version;
1643 }
1644 
1645 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1646 {
1647 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1648 
1649 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1650 					    HCLGEVF_MISC_VECTOR_NUM);
1651 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1652 	/* vector status always valid for Vector 0 */
1653 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1654 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1655 
1656 	hdev->num_msi_left -= 1;
1657 	hdev->num_msi_used += 1;
1658 }
1659 
1660 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1661 {
1662 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1663 	    !test_bit(HCLGEVF_STATE_REMOVING, &hdev->state)) {
1664 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1665 		schedule_work(&hdev->rst_service_task);
1666 	}
1667 }
1668 
1669 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1670 {
1671 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1672 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1673 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1674 		schedule_work(&hdev->mbx_service_task);
1675 	}
1676 }
1677 
1678 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1679 {
1680 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1681 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1682 		schedule_work(&hdev->service_task);
1683 }
1684 
1685 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1686 {
1687 	/* if we have any pending mailbox event then schedule the mbx task */
1688 	if (hdev->mbx_event_pending)
1689 		hclgevf_mbx_task_schedule(hdev);
1690 
1691 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1692 		hclgevf_reset_task_schedule(hdev);
1693 }
1694 
1695 static void hclgevf_service_timer(struct timer_list *t)
1696 {
1697 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1698 
1699 	mod_timer(&hdev->service_timer, jiffies +
1700 		  HCLGEVF_GENERAL_TASK_INTERVAL * HZ);
1701 
1702 	hdev->stats_timer++;
1703 	hclgevf_task_schedule(hdev);
1704 }
1705 
1706 static void hclgevf_reset_service_task(struct work_struct *work)
1707 {
1708 	struct hclgevf_dev *hdev =
1709 		container_of(work, struct hclgevf_dev, rst_service_task);
1710 	int ret;
1711 
1712 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1713 		return;
1714 
1715 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1716 
1717 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1718 			       &hdev->reset_state)) {
1719 		/* PF has initmated that it is about to reset the hardware.
1720 		 * We now have to poll & check if hardware has actually
1721 		 * completed the reset sequence. On hardware reset completion,
1722 		 * VF needs to reset the client and ae device.
1723 		 */
1724 		hdev->reset_attempts = 0;
1725 
1726 		hdev->last_reset_time = jiffies;
1727 		while ((hdev->reset_type =
1728 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1729 		       != HNAE3_NONE_RESET) {
1730 			ret = hclgevf_reset(hdev);
1731 			if (ret)
1732 				dev_err(&hdev->pdev->dev,
1733 					"VF stack reset failed %d.\n", ret);
1734 		}
1735 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1736 				      &hdev->reset_state)) {
1737 		/* we could be here when either of below happens:
1738 		 * 1. reset was initiated due to watchdog timeout caused by
1739 		 *    a. IMP was earlier reset and our TX got choked down and
1740 		 *       which resulted in watchdog reacting and inducing VF
1741 		 *       reset. This also means our cmdq would be unreliable.
1742 		 *    b. problem in TX due to other lower layer(example link
1743 		 *       layer not functioning properly etc.)
1744 		 * 2. VF reset might have been initiated due to some config
1745 		 *    change.
1746 		 *
1747 		 * NOTE: Theres no clear way to detect above cases than to react
1748 		 * to the response of PF for this reset request. PF will ack the
1749 		 * 1b and 2. cases but we will not get any intimation about 1a
1750 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1751 		 * communication between PF and VF would be broken.
1752 		 */
1753 
1754 		/* if we are never geting into pending state it means either:
1755 		 * 1. PF is not receiving our request which could be due to IMP
1756 		 *    reset
1757 		 * 2. PF is screwed
1758 		 * We cannot do much for 2. but to check first we can try reset
1759 		 * our PCIe + stack and see if it alleviates the problem.
1760 		 */
1761 		if (hdev->reset_attempts > 3) {
1762 			/* prepare for full reset of stack + pcie interface */
1763 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1764 
1765 			/* "defer" schedule the reset task again */
1766 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1767 		} else {
1768 			hdev->reset_attempts++;
1769 
1770 			set_bit(hdev->reset_level, &hdev->reset_pending);
1771 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1772 		}
1773 		hclgevf_reset_task_schedule(hdev);
1774 	}
1775 
1776 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1777 }
1778 
1779 static void hclgevf_mailbox_service_task(struct work_struct *work)
1780 {
1781 	struct hclgevf_dev *hdev;
1782 
1783 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1784 
1785 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1786 		return;
1787 
1788 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1789 
1790 	hclgevf_mbx_async_handler(hdev);
1791 
1792 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1793 }
1794 
1795 static void hclgevf_keep_alive_timer(struct timer_list *t)
1796 {
1797 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1798 
1799 	schedule_work(&hdev->keep_alive_task);
1800 	mod_timer(&hdev->keep_alive_timer, jiffies +
1801 		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
1802 }
1803 
1804 static void hclgevf_keep_alive_task(struct work_struct *work)
1805 {
1806 	struct hclgevf_dev *hdev;
1807 	u8 respmsg;
1808 	int ret;
1809 
1810 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1811 
1812 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
1813 		return;
1814 
1815 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1816 				   0, false, &respmsg, sizeof(respmsg));
1817 	if (ret)
1818 		dev_err(&hdev->pdev->dev,
1819 			"VF sends keep alive cmd failed(=%d)\n", ret);
1820 }
1821 
1822 static void hclgevf_service_task(struct work_struct *work)
1823 {
1824 	struct hnae3_handle *handle;
1825 	struct hclgevf_dev *hdev;
1826 
1827 	hdev = container_of(work, struct hclgevf_dev, service_task);
1828 	handle = &hdev->nic;
1829 
1830 	if (hdev->stats_timer >= HCLGEVF_STATS_TIMER_INTERVAL) {
1831 		hclgevf_tqps_update_stats(handle);
1832 		hdev->stats_timer = 0;
1833 	}
1834 
1835 	/* request the link status from the PF. PF would be able to tell VF
1836 	 * about such updates in future so we might remove this later
1837 	 */
1838 	hclgevf_request_link_info(hdev);
1839 
1840 	hclgevf_update_link_mode(hdev);
1841 
1842 	hclgevf_sync_vlan_filter(hdev);
1843 
1844 	hclgevf_deferred_task_schedule(hdev);
1845 
1846 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1847 }
1848 
1849 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1850 {
1851 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1852 }
1853 
1854 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1855 						      u32 *clearval)
1856 {
1857 	u32 cmdq_src_reg, rst_ing_reg;
1858 
1859 	/* fetch the events from their corresponding regs */
1860 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1861 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1862 
1863 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1864 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1865 		dev_info(&hdev->pdev->dev,
1866 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1867 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1868 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1869 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1870 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1871 		*clearval = cmdq_src_reg;
1872 		hdev->rst_stats.vf_rst_cnt++;
1873 		return HCLGEVF_VECTOR0_EVENT_RST;
1874 	}
1875 
1876 	/* check for vector0 mailbox(=CMDQ RX) event source */
1877 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1878 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1879 		*clearval = cmdq_src_reg;
1880 		return HCLGEVF_VECTOR0_EVENT_MBX;
1881 	}
1882 
1883 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1884 
1885 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1886 }
1887 
1888 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1889 {
1890 	writel(en ? 1 : 0, vector->addr);
1891 }
1892 
1893 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1894 {
1895 	enum hclgevf_evt_cause event_cause;
1896 	struct hclgevf_dev *hdev = data;
1897 	u32 clearval;
1898 
1899 	hclgevf_enable_vector(&hdev->misc_vector, false);
1900 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1901 
1902 	switch (event_cause) {
1903 	case HCLGEVF_VECTOR0_EVENT_RST:
1904 		hclgevf_reset_task_schedule(hdev);
1905 		break;
1906 	case HCLGEVF_VECTOR0_EVENT_MBX:
1907 		hclgevf_mbx_handler(hdev);
1908 		break;
1909 	default:
1910 		break;
1911 	}
1912 
1913 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1914 		hclgevf_clear_event_cause(hdev, clearval);
1915 		hclgevf_enable_vector(&hdev->misc_vector, true);
1916 	}
1917 
1918 	return IRQ_HANDLED;
1919 }
1920 
1921 static int hclgevf_configure(struct hclgevf_dev *hdev)
1922 {
1923 	int ret;
1924 
1925 	/* get current port based vlan state from PF */
1926 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
1927 	if (ret)
1928 		return ret;
1929 
1930 	/* get queue configuration from PF */
1931 	ret = hclgevf_get_queue_info(hdev);
1932 	if (ret)
1933 		return ret;
1934 
1935 	/* get queue depth info from PF */
1936 	ret = hclgevf_get_queue_depth(hdev);
1937 	if (ret)
1938 		return ret;
1939 
1940 	ret = hclgevf_get_pf_media_type(hdev);
1941 	if (ret)
1942 		return ret;
1943 
1944 	/* get tc configuration from PF */
1945 	return hclgevf_get_tc_info(hdev);
1946 }
1947 
1948 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1949 {
1950 	struct pci_dev *pdev = ae_dev->pdev;
1951 	struct hclgevf_dev *hdev;
1952 
1953 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1954 	if (!hdev)
1955 		return -ENOMEM;
1956 
1957 	hdev->pdev = pdev;
1958 	hdev->ae_dev = ae_dev;
1959 	ae_dev->priv = hdev;
1960 
1961 	return 0;
1962 }
1963 
1964 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1965 {
1966 	struct hnae3_handle *roce = &hdev->roce;
1967 	struct hnae3_handle *nic = &hdev->nic;
1968 
1969 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1970 
1971 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1972 	    hdev->num_msi_left == 0)
1973 		return -EINVAL;
1974 
1975 	roce->rinfo.base_vector = hdev->roce_base_vector;
1976 
1977 	roce->rinfo.netdev = nic->kinfo.netdev;
1978 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1979 
1980 	roce->pdev = nic->pdev;
1981 	roce->ae_algo = nic->ae_algo;
1982 	roce->numa_node_mask = nic->numa_node_mask;
1983 
1984 	return 0;
1985 }
1986 
1987 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
1988 {
1989 	struct hclgevf_cfg_gro_status_cmd *req;
1990 	struct hclgevf_desc desc;
1991 	int ret;
1992 
1993 	if (!hnae3_dev_gro_supported(hdev))
1994 		return 0;
1995 
1996 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
1997 				     false);
1998 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
1999 
2000 	req->gro_en = cpu_to_le16(en ? 1 : 0);
2001 
2002 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2003 	if (ret)
2004 		dev_err(&hdev->pdev->dev,
2005 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2006 
2007 	return ret;
2008 }
2009 
2010 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2011 {
2012 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2013 	int i, ret;
2014 
2015 	rss_cfg->rss_size = hdev->rss_size_max;
2016 
2017 	if (hdev->pdev->revision >= 0x21) {
2018 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2019 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2020 		       HCLGEVF_RSS_KEY_SIZE);
2021 
2022 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2023 					       rss_cfg->rss_hash_key);
2024 		if (ret)
2025 			return ret;
2026 
2027 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
2028 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2029 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
2030 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2031 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
2032 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2033 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
2034 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2035 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
2036 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2037 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
2038 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2039 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
2040 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2041 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
2042 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2043 
2044 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2045 		if (ret)
2046 			return ret;
2047 
2048 	}
2049 
2050 	/* Initialize RSS indirect table */
2051 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2052 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
2053 
2054 	ret = hclgevf_set_rss_indir_table(hdev);
2055 	if (ret)
2056 		return ret;
2057 
2058 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
2059 }
2060 
2061 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2062 {
2063 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2064 				       false);
2065 }
2066 
2067 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2068 {
2069 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2070 
2071 	if (enable) {
2072 		mod_timer(&hdev->service_timer, jiffies + HZ);
2073 	} else {
2074 		del_timer_sync(&hdev->service_timer);
2075 		cancel_work_sync(&hdev->service_task);
2076 		clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2077 	}
2078 }
2079 
2080 static int hclgevf_ae_start(struct hnae3_handle *handle)
2081 {
2082 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2083 
2084 	hclgevf_reset_tqp_stats(handle);
2085 
2086 	hclgevf_request_link_info(hdev);
2087 
2088 	hclgevf_update_link_mode(hdev);
2089 
2090 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2091 
2092 	return 0;
2093 }
2094 
2095 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2096 {
2097 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2098 	int i;
2099 
2100 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2101 
2102 	if (hdev->reset_type != HNAE3_VF_RESET)
2103 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2104 			if (hclgevf_reset_tqp(handle, i))
2105 				break;
2106 
2107 	hclgevf_reset_tqp_stats(handle);
2108 	hclgevf_update_link_status(hdev, 0);
2109 }
2110 
2111 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2112 {
2113 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2114 	u8 msg_data;
2115 
2116 	msg_data = alive ? 1 : 0;
2117 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
2118 				    0, &msg_data, 1, false, NULL, 0);
2119 }
2120 
2121 static int hclgevf_client_start(struct hnae3_handle *handle)
2122 {
2123 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2124 	int ret;
2125 
2126 	ret = hclgevf_set_alive(handle, true);
2127 	if (ret)
2128 		return ret;
2129 
2130 	mod_timer(&hdev->keep_alive_timer, jiffies +
2131 		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
2132 
2133 	return 0;
2134 }
2135 
2136 static void hclgevf_client_stop(struct hnae3_handle *handle)
2137 {
2138 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2139 	int ret;
2140 
2141 	ret = hclgevf_set_alive(handle, false);
2142 	if (ret)
2143 		dev_warn(&hdev->pdev->dev,
2144 			 "%s failed %d\n", __func__, ret);
2145 
2146 	del_timer_sync(&hdev->keep_alive_timer);
2147 	cancel_work_sync(&hdev->keep_alive_task);
2148 }
2149 
2150 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2151 {
2152 	/* setup tasks for the MBX */
2153 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
2154 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2155 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2156 
2157 	/* setup tasks for service timer */
2158 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
2159 
2160 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
2161 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2162 
2163 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
2164 
2165 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2166 
2167 	/* bring the device down */
2168 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2169 }
2170 
2171 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2172 {
2173 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2174 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2175 
2176 	if (hdev->keep_alive_timer.function)
2177 		del_timer_sync(&hdev->keep_alive_timer);
2178 	if (hdev->keep_alive_task.func)
2179 		cancel_work_sync(&hdev->keep_alive_task);
2180 	if (hdev->service_timer.function)
2181 		del_timer_sync(&hdev->service_timer);
2182 	if (hdev->service_task.func)
2183 		cancel_work_sync(&hdev->service_task);
2184 	if (hdev->mbx_service_task.func)
2185 		cancel_work_sync(&hdev->mbx_service_task);
2186 	if (hdev->rst_service_task.func)
2187 		cancel_work_sync(&hdev->rst_service_task);
2188 
2189 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2190 }
2191 
2192 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2193 {
2194 	struct pci_dev *pdev = hdev->pdev;
2195 	int vectors;
2196 	int i;
2197 
2198 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
2199 		vectors = pci_alloc_irq_vectors(pdev,
2200 						hdev->roce_base_msix_offset + 1,
2201 						hdev->num_msi,
2202 						PCI_IRQ_MSIX);
2203 	else
2204 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
2205 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2206 
2207 	if (vectors < 0) {
2208 		dev_err(&pdev->dev,
2209 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2210 			vectors);
2211 		return vectors;
2212 	}
2213 	if (vectors < hdev->num_msi)
2214 		dev_warn(&hdev->pdev->dev,
2215 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2216 			 hdev->num_msi, vectors);
2217 
2218 	hdev->num_msi = vectors;
2219 	hdev->num_msi_left = vectors;
2220 	hdev->base_msi_vector = pdev->irq;
2221 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2222 
2223 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2224 					   sizeof(u16), GFP_KERNEL);
2225 	if (!hdev->vector_status) {
2226 		pci_free_irq_vectors(pdev);
2227 		return -ENOMEM;
2228 	}
2229 
2230 	for (i = 0; i < hdev->num_msi; i++)
2231 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2232 
2233 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2234 					sizeof(int), GFP_KERNEL);
2235 	if (!hdev->vector_irq) {
2236 		devm_kfree(&pdev->dev, hdev->vector_status);
2237 		pci_free_irq_vectors(pdev);
2238 		return -ENOMEM;
2239 	}
2240 
2241 	return 0;
2242 }
2243 
2244 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2245 {
2246 	struct pci_dev *pdev = hdev->pdev;
2247 
2248 	devm_kfree(&pdev->dev, hdev->vector_status);
2249 	devm_kfree(&pdev->dev, hdev->vector_irq);
2250 	pci_free_irq_vectors(pdev);
2251 }
2252 
2253 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2254 {
2255 	int ret = 0;
2256 
2257 	hclgevf_get_misc_vector(hdev);
2258 
2259 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2260 			  0, "hclgevf_cmd", hdev);
2261 	if (ret) {
2262 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2263 			hdev->misc_vector.vector_irq);
2264 		return ret;
2265 	}
2266 
2267 	hclgevf_clear_event_cause(hdev, 0);
2268 
2269 	/* enable misc. vector(vector 0) */
2270 	hclgevf_enable_vector(&hdev->misc_vector, true);
2271 
2272 	return ret;
2273 }
2274 
2275 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2276 {
2277 	/* disable misc vector(vector 0) */
2278 	hclgevf_enable_vector(&hdev->misc_vector, false);
2279 	synchronize_irq(hdev->misc_vector.vector_irq);
2280 	free_irq(hdev->misc_vector.vector_irq, hdev);
2281 	hclgevf_free_vector(hdev, 0);
2282 }
2283 
2284 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2285 {
2286 	struct device *dev = &hdev->pdev->dev;
2287 
2288 	dev_info(dev, "VF info begin:\n");
2289 
2290 	dev_info(dev, "Task queue pairs numbers: %d\n", hdev->num_tqps);
2291 	dev_info(dev, "Desc num per TX queue: %d\n", hdev->num_tx_desc);
2292 	dev_info(dev, "Desc num per RX queue: %d\n", hdev->num_rx_desc);
2293 	dev_info(dev, "Numbers of vports: %d\n", hdev->num_alloc_vport);
2294 	dev_info(dev, "HW tc map: %d\n", hdev->hw_tc_map);
2295 	dev_info(dev, "PF media type of this VF: %d\n",
2296 		 hdev->hw.mac.media_type);
2297 
2298 	dev_info(dev, "VF info end.\n");
2299 }
2300 
2301 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2302 					    struct hnae3_client *client)
2303 {
2304 	struct hclgevf_dev *hdev = ae_dev->priv;
2305 	int ret;
2306 
2307 	ret = client->ops->init_instance(&hdev->nic);
2308 	if (ret)
2309 		return ret;
2310 
2311 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2312 	hnae3_set_client_init_flag(client, ae_dev, 1);
2313 
2314 	if (netif_msg_drv(&hdev->nic))
2315 		hclgevf_info_show(hdev);
2316 
2317 	return 0;
2318 }
2319 
2320 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2321 					     struct hnae3_client *client)
2322 {
2323 	struct hclgevf_dev *hdev = ae_dev->priv;
2324 	int ret;
2325 
2326 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2327 	    !hdev->nic_client)
2328 		return 0;
2329 
2330 	ret = hclgevf_init_roce_base_info(hdev);
2331 	if (ret)
2332 		return ret;
2333 
2334 	ret = client->ops->init_instance(&hdev->roce);
2335 	if (ret)
2336 		return ret;
2337 
2338 	hnae3_set_client_init_flag(client, ae_dev, 1);
2339 
2340 	return 0;
2341 }
2342 
2343 static int hclgevf_init_client_instance(struct hnae3_client *client,
2344 					struct hnae3_ae_dev *ae_dev)
2345 {
2346 	struct hclgevf_dev *hdev = ae_dev->priv;
2347 	int ret;
2348 
2349 	switch (client->type) {
2350 	case HNAE3_CLIENT_KNIC:
2351 		hdev->nic_client = client;
2352 		hdev->nic.client = client;
2353 
2354 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2355 		if (ret)
2356 			goto clear_nic;
2357 
2358 		ret = hclgevf_init_roce_client_instance(ae_dev,
2359 							hdev->roce_client);
2360 		if (ret)
2361 			goto clear_roce;
2362 
2363 		break;
2364 	case HNAE3_CLIENT_ROCE:
2365 		if (hnae3_dev_roce_supported(hdev)) {
2366 			hdev->roce_client = client;
2367 			hdev->roce.client = client;
2368 		}
2369 
2370 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2371 		if (ret)
2372 			goto clear_roce;
2373 
2374 		break;
2375 	default:
2376 		return -EINVAL;
2377 	}
2378 
2379 	return 0;
2380 
2381 clear_nic:
2382 	hdev->nic_client = NULL;
2383 	hdev->nic.client = NULL;
2384 	return ret;
2385 clear_roce:
2386 	hdev->roce_client = NULL;
2387 	hdev->roce.client = NULL;
2388 	return ret;
2389 }
2390 
2391 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2392 					   struct hnae3_ae_dev *ae_dev)
2393 {
2394 	struct hclgevf_dev *hdev = ae_dev->priv;
2395 
2396 	/* un-init roce, if it exists */
2397 	if (hdev->roce_client) {
2398 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2399 		hdev->roce_client = NULL;
2400 		hdev->roce.client = NULL;
2401 	}
2402 
2403 	/* un-init nic/unic, if this was not called by roce client */
2404 	if (client->ops->uninit_instance && hdev->nic_client &&
2405 	    client->type != HNAE3_CLIENT_ROCE) {
2406 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2407 
2408 		client->ops->uninit_instance(&hdev->nic, 0);
2409 		hdev->nic_client = NULL;
2410 		hdev->nic.client = NULL;
2411 	}
2412 }
2413 
2414 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2415 {
2416 	struct pci_dev *pdev = hdev->pdev;
2417 	struct hclgevf_hw *hw;
2418 	int ret;
2419 
2420 	ret = pci_enable_device(pdev);
2421 	if (ret) {
2422 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2423 		return ret;
2424 	}
2425 
2426 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2427 	if (ret) {
2428 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2429 		goto err_disable_device;
2430 	}
2431 
2432 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2433 	if (ret) {
2434 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2435 		goto err_disable_device;
2436 	}
2437 
2438 	pci_set_master(pdev);
2439 	hw = &hdev->hw;
2440 	hw->hdev = hdev;
2441 	hw->io_base = pci_iomap(pdev, 2, 0);
2442 	if (!hw->io_base) {
2443 		dev_err(&pdev->dev, "can't map configuration register space\n");
2444 		ret = -ENOMEM;
2445 		goto err_clr_master;
2446 	}
2447 
2448 	return 0;
2449 
2450 err_clr_master:
2451 	pci_clear_master(pdev);
2452 	pci_release_regions(pdev);
2453 err_disable_device:
2454 	pci_disable_device(pdev);
2455 
2456 	return ret;
2457 }
2458 
2459 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2460 {
2461 	struct pci_dev *pdev = hdev->pdev;
2462 
2463 	pci_iounmap(pdev, hdev->hw.io_base);
2464 	pci_clear_master(pdev);
2465 	pci_release_regions(pdev);
2466 	pci_disable_device(pdev);
2467 }
2468 
2469 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2470 {
2471 	struct hclgevf_query_res_cmd *req;
2472 	struct hclgevf_desc desc;
2473 	int ret;
2474 
2475 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2476 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2477 	if (ret) {
2478 		dev_err(&hdev->pdev->dev,
2479 			"query vf resource failed, ret = %d.\n", ret);
2480 		return ret;
2481 	}
2482 
2483 	req = (struct hclgevf_query_res_cmd *)desc.data;
2484 
2485 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2486 		hdev->roce_base_msix_offset =
2487 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2488 				HCLGEVF_MSIX_OFT_ROCEE_M,
2489 				HCLGEVF_MSIX_OFT_ROCEE_S);
2490 		hdev->num_roce_msix =
2491 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2492 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2493 
2494 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2495 		 * are queued before Roce vectors. The offset is fixed to 64.
2496 		 */
2497 		hdev->num_msi = hdev->num_roce_msix +
2498 				hdev->roce_base_msix_offset;
2499 	} else {
2500 		hdev->num_msi =
2501 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2502 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2503 	}
2504 
2505 	return 0;
2506 }
2507 
2508 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2509 {
2510 	struct pci_dev *pdev = hdev->pdev;
2511 	int ret = 0;
2512 
2513 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2514 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2515 		hclgevf_misc_irq_uninit(hdev);
2516 		hclgevf_uninit_msi(hdev);
2517 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2518 	}
2519 
2520 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2521 		pci_set_master(pdev);
2522 		ret = hclgevf_init_msi(hdev);
2523 		if (ret) {
2524 			dev_err(&pdev->dev,
2525 				"failed(%d) to init MSI/MSI-X\n", ret);
2526 			return ret;
2527 		}
2528 
2529 		ret = hclgevf_misc_irq_init(hdev);
2530 		if (ret) {
2531 			hclgevf_uninit_msi(hdev);
2532 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2533 				ret);
2534 			return ret;
2535 		}
2536 
2537 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2538 	}
2539 
2540 	return ret;
2541 }
2542 
2543 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2544 {
2545 	struct pci_dev *pdev = hdev->pdev;
2546 	int ret;
2547 
2548 	ret = hclgevf_pci_reset(hdev);
2549 	if (ret) {
2550 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2551 		return ret;
2552 	}
2553 
2554 	ret = hclgevf_cmd_init(hdev);
2555 	if (ret) {
2556 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2557 		return ret;
2558 	}
2559 
2560 	ret = hclgevf_rss_init_hw(hdev);
2561 	if (ret) {
2562 		dev_err(&hdev->pdev->dev,
2563 			"failed(%d) to initialize RSS\n", ret);
2564 		return ret;
2565 	}
2566 
2567 	ret = hclgevf_config_gro(hdev, true);
2568 	if (ret)
2569 		return ret;
2570 
2571 	ret = hclgevf_init_vlan_config(hdev);
2572 	if (ret) {
2573 		dev_err(&hdev->pdev->dev,
2574 			"failed(%d) to initialize VLAN config\n", ret);
2575 		return ret;
2576 	}
2577 
2578 	dev_info(&hdev->pdev->dev, "Reset done\n");
2579 
2580 	return 0;
2581 }
2582 
2583 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2584 {
2585 	struct pci_dev *pdev = hdev->pdev;
2586 	int ret;
2587 
2588 	ret = hclgevf_pci_init(hdev);
2589 	if (ret) {
2590 		dev_err(&pdev->dev, "PCI initialization failed\n");
2591 		return ret;
2592 	}
2593 
2594 	ret = hclgevf_cmd_queue_init(hdev);
2595 	if (ret) {
2596 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2597 		goto err_cmd_queue_init;
2598 	}
2599 
2600 	ret = hclgevf_cmd_init(hdev);
2601 	if (ret)
2602 		goto err_cmd_init;
2603 
2604 	/* Get vf resource */
2605 	ret = hclgevf_query_vf_resource(hdev);
2606 	if (ret) {
2607 		dev_err(&hdev->pdev->dev,
2608 			"Query vf status error, ret = %d.\n", ret);
2609 		goto err_cmd_init;
2610 	}
2611 
2612 	ret = hclgevf_init_msi(hdev);
2613 	if (ret) {
2614 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2615 		goto err_cmd_init;
2616 	}
2617 
2618 	hclgevf_state_init(hdev);
2619 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2620 
2621 	ret = hclgevf_misc_irq_init(hdev);
2622 	if (ret) {
2623 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2624 			ret);
2625 		goto err_misc_irq_init;
2626 	}
2627 
2628 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2629 
2630 	ret = hclgevf_configure(hdev);
2631 	if (ret) {
2632 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2633 		goto err_config;
2634 	}
2635 
2636 	ret = hclgevf_alloc_tqps(hdev);
2637 	if (ret) {
2638 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2639 		goto err_config;
2640 	}
2641 
2642 	ret = hclgevf_set_handle_info(hdev);
2643 	if (ret) {
2644 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2645 		goto err_config;
2646 	}
2647 
2648 	ret = hclgevf_config_gro(hdev, true);
2649 	if (ret)
2650 		goto err_config;
2651 
2652 	/* vf is not allowed to enable unicast/multicast promisc mode.
2653 	 * For revision 0x20, default to disable broadcast promisc mode,
2654 	 * firmware makes sure broadcast packets can be accepted.
2655 	 * For revision 0x21, default to enable broadcast promisc mode.
2656 	 */
2657 	ret = hclgevf_set_promisc_mode(hdev, true);
2658 	if (ret)
2659 		goto err_config;
2660 
2661 	/* Initialize RSS for this VF */
2662 	ret = hclgevf_rss_init_hw(hdev);
2663 	if (ret) {
2664 		dev_err(&hdev->pdev->dev,
2665 			"failed(%d) to initialize RSS\n", ret);
2666 		goto err_config;
2667 	}
2668 
2669 	ret = hclgevf_init_vlan_config(hdev);
2670 	if (ret) {
2671 		dev_err(&hdev->pdev->dev,
2672 			"failed(%d) to initialize VLAN config\n", ret);
2673 		goto err_config;
2674 	}
2675 
2676 	hdev->last_reset_time = jiffies;
2677 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2678 
2679 	return 0;
2680 
2681 err_config:
2682 	hclgevf_misc_irq_uninit(hdev);
2683 err_misc_irq_init:
2684 	hclgevf_state_uninit(hdev);
2685 	hclgevf_uninit_msi(hdev);
2686 err_cmd_init:
2687 	hclgevf_cmd_uninit(hdev);
2688 err_cmd_queue_init:
2689 	hclgevf_pci_uninit(hdev);
2690 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2691 	return ret;
2692 }
2693 
2694 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2695 {
2696 	hclgevf_state_uninit(hdev);
2697 
2698 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2699 		hclgevf_misc_irq_uninit(hdev);
2700 		hclgevf_uninit_msi(hdev);
2701 	}
2702 
2703 	hclgevf_pci_uninit(hdev);
2704 	hclgevf_cmd_uninit(hdev);
2705 }
2706 
2707 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2708 {
2709 	struct pci_dev *pdev = ae_dev->pdev;
2710 	struct hclgevf_dev *hdev;
2711 	int ret;
2712 
2713 	ret = hclgevf_alloc_hdev(ae_dev);
2714 	if (ret) {
2715 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2716 		return ret;
2717 	}
2718 
2719 	ret = hclgevf_init_hdev(ae_dev->priv);
2720 	if (ret) {
2721 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2722 		return ret;
2723 	}
2724 
2725 	hdev = ae_dev->priv;
2726 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2727 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2728 
2729 	return 0;
2730 }
2731 
2732 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2733 {
2734 	struct hclgevf_dev *hdev = ae_dev->priv;
2735 
2736 	hclgevf_uninit_hdev(hdev);
2737 	ae_dev->priv = NULL;
2738 }
2739 
2740 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2741 {
2742 	struct hnae3_handle *nic = &hdev->nic;
2743 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2744 
2745 	return min_t(u32, hdev->rss_size_max,
2746 		     hdev->num_tqps / kinfo->num_tc);
2747 }
2748 
2749 /**
2750  * hclgevf_get_channels - Get the current channels enabled and max supported.
2751  * @handle: hardware information for network interface
2752  * @ch: ethtool channels structure
2753  *
2754  * We don't support separate tx and rx queues as channels. The other count
2755  * represents how many queues are being used for control. max_combined counts
2756  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2757  * q_vectors since we support a lot more queue pairs than q_vectors.
2758  **/
2759 static void hclgevf_get_channels(struct hnae3_handle *handle,
2760 				 struct ethtool_channels *ch)
2761 {
2762 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2763 
2764 	ch->max_combined = hclgevf_get_max_channels(hdev);
2765 	ch->other_count = 0;
2766 	ch->max_other = 0;
2767 	ch->combined_count = handle->kinfo.rss_size;
2768 }
2769 
2770 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2771 					  u16 *alloc_tqps, u16 *max_rss_size)
2772 {
2773 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2774 
2775 	*alloc_tqps = hdev->num_tqps;
2776 	*max_rss_size = hdev->rss_size_max;
2777 }
2778 
2779 static int hclgevf_get_status(struct hnae3_handle *handle)
2780 {
2781 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2782 
2783 	return hdev->hw.mac.link;
2784 }
2785 
2786 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2787 					    u8 *auto_neg, u32 *speed,
2788 					    u8 *duplex)
2789 {
2790 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2791 
2792 	if (speed)
2793 		*speed = hdev->hw.mac.speed;
2794 	if (duplex)
2795 		*duplex = hdev->hw.mac.duplex;
2796 	if (auto_neg)
2797 		*auto_neg = AUTONEG_DISABLE;
2798 }
2799 
2800 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2801 				 u8 duplex)
2802 {
2803 	hdev->hw.mac.speed = speed;
2804 	hdev->hw.mac.duplex = duplex;
2805 }
2806 
2807 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
2808 {
2809 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2810 
2811 	return hclgevf_config_gro(hdev, enable);
2812 }
2813 
2814 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
2815 				   u8 *module_type)
2816 {
2817 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2818 
2819 	if (media_type)
2820 		*media_type = hdev->hw.mac.media_type;
2821 
2822 	if (module_type)
2823 		*module_type = hdev->hw.mac.module_type;
2824 }
2825 
2826 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2827 {
2828 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2829 
2830 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2831 }
2832 
2833 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2834 {
2835 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2836 
2837 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2838 }
2839 
2840 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2841 {
2842 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2843 
2844 	return hdev->rst_stats.hw_rst_done_cnt;
2845 }
2846 
2847 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
2848 				  unsigned long *supported,
2849 				  unsigned long *advertising)
2850 {
2851 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2852 
2853 	*supported = hdev->hw.mac.supported;
2854 	*advertising = hdev->hw.mac.advertising;
2855 }
2856 
2857 #define MAX_SEPARATE_NUM	4
2858 #define SEPARATOR_VALUE		0xFFFFFFFF
2859 #define REG_NUM_PER_LINE	4
2860 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
2861 
2862 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2863 {
2864 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2865 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2866 
2867 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2868 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2869 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2870 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2871 
2872 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2873 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2874 }
2875 
2876 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
2877 			     void *data)
2878 {
2879 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2880 	int i, j, reg_um, separator_num;
2881 	u32 *reg = data;
2882 
2883 	*version = hdev->fw_version;
2884 
2885 	/* fetching per-VF registers values from VF PCIe register space */
2886 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
2887 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2888 	for (i = 0; i < reg_um; i++)
2889 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
2890 	for (i = 0; i < separator_num; i++)
2891 		*reg++ = SEPARATOR_VALUE;
2892 
2893 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
2894 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2895 	for (i = 0; i < reg_um; i++)
2896 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
2897 	for (i = 0; i < separator_num; i++)
2898 		*reg++ = SEPARATOR_VALUE;
2899 
2900 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
2901 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2902 	for (j = 0; j < hdev->num_tqps; j++) {
2903 		for (i = 0; i < reg_um; i++)
2904 			*reg++ = hclgevf_read_dev(&hdev->hw,
2905 						  ring_reg_addr_list[i] +
2906 						  0x200 * j);
2907 		for (i = 0; i < separator_num; i++)
2908 			*reg++ = SEPARATOR_VALUE;
2909 	}
2910 
2911 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
2912 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2913 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
2914 		for (i = 0; i < reg_um; i++)
2915 			*reg++ = hclgevf_read_dev(&hdev->hw,
2916 						  tqp_intr_reg_addr_list[i] +
2917 						  4 * j);
2918 		for (i = 0; i < separator_num; i++)
2919 			*reg++ = SEPARATOR_VALUE;
2920 	}
2921 }
2922 
2923 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
2924 					u8 *port_base_vlan_info, u8 data_size)
2925 {
2926 	struct hnae3_handle *nic = &hdev->nic;
2927 
2928 	rtnl_lock();
2929 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
2930 	rtnl_unlock();
2931 
2932 	/* send msg to PF and wait update port based vlan info */
2933 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
2934 			     HCLGE_MBX_PORT_BASE_VLAN_CFG,
2935 			     port_base_vlan_info, data_size,
2936 			     false, NULL, 0);
2937 
2938 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
2939 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
2940 	else
2941 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
2942 
2943 	rtnl_lock();
2944 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
2945 	rtnl_unlock();
2946 }
2947 
2948 static const struct hnae3_ae_ops hclgevf_ops = {
2949 	.init_ae_dev = hclgevf_init_ae_dev,
2950 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2951 	.flr_prepare = hclgevf_flr_prepare,
2952 	.flr_done = hclgevf_flr_done,
2953 	.init_client_instance = hclgevf_init_client_instance,
2954 	.uninit_client_instance = hclgevf_uninit_client_instance,
2955 	.start = hclgevf_ae_start,
2956 	.stop = hclgevf_ae_stop,
2957 	.client_start = hclgevf_client_start,
2958 	.client_stop = hclgevf_client_stop,
2959 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
2960 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2961 	.get_vector = hclgevf_get_vector,
2962 	.put_vector = hclgevf_put_vector,
2963 	.reset_queue = hclgevf_reset_tqp,
2964 	.get_mac_addr = hclgevf_get_mac_addr,
2965 	.set_mac_addr = hclgevf_set_mac_addr,
2966 	.add_uc_addr = hclgevf_add_uc_addr,
2967 	.rm_uc_addr = hclgevf_rm_uc_addr,
2968 	.add_mc_addr = hclgevf_add_mc_addr,
2969 	.rm_mc_addr = hclgevf_rm_mc_addr,
2970 	.get_stats = hclgevf_get_stats,
2971 	.update_stats = hclgevf_update_stats,
2972 	.get_strings = hclgevf_get_strings,
2973 	.get_sset_count = hclgevf_get_sset_count,
2974 	.get_rss_key_size = hclgevf_get_rss_key_size,
2975 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2976 	.get_rss = hclgevf_get_rss,
2977 	.set_rss = hclgevf_set_rss,
2978 	.get_rss_tuple = hclgevf_get_rss_tuple,
2979 	.set_rss_tuple = hclgevf_set_rss_tuple,
2980 	.get_tc_size = hclgevf_get_tc_size,
2981 	.get_fw_version = hclgevf_get_fw_version,
2982 	.set_vlan_filter = hclgevf_set_vlan_filter,
2983 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2984 	.reset_event = hclgevf_reset_event,
2985 	.set_default_reset_request = hclgevf_set_def_reset_request,
2986 	.get_channels = hclgevf_get_channels,
2987 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2988 	.get_regs_len = hclgevf_get_regs_len,
2989 	.get_regs = hclgevf_get_regs,
2990 	.get_status = hclgevf_get_status,
2991 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2992 	.get_media_type = hclgevf_get_media_type,
2993 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
2994 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
2995 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
2996 	.set_gro_en = hclgevf_gro_en,
2997 	.set_mtu = hclgevf_set_mtu,
2998 	.get_global_queue_id = hclgevf_get_qid_global,
2999 	.set_timer_task = hclgevf_set_timer_task,
3000 	.get_link_mode = hclgevf_get_link_mode,
3001 };
3002 
3003 static struct hnae3_ae_algo ae_algovf = {
3004 	.ops = &hclgevf_ops,
3005 	.pdev_id_table = ae_algovf_pci_tbl,
3006 };
3007 
3008 static int hclgevf_init(void)
3009 {
3010 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3011 
3012 	hnae3_register_ae_algo(&ae_algovf);
3013 
3014 	return 0;
3015 }
3016 
3017 static void hclgevf_exit(void)
3018 {
3019 	hnae3_unregister_ae_algo(&ae_algovf);
3020 }
3021 module_init(hclgevf_init);
3022 module_exit(hclgevf_exit);
3023 
3024 MODULE_LICENSE("GPL");
3025 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3026 MODULE_DESCRIPTION("HCLGEVF Driver");
3027 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3028