1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <net/rtnetlink.h>
6 #include "hclgevf_cmd.h"
7 #include "hclgevf_main.h"
8 #include "hclge_mbx.h"
9 #include "hnae3.h"
10 
11 #define HCLGEVF_NAME	"hclgevf"
12 
13 static int hclgevf_init_hdev(struct hclgevf_dev *hdev);
14 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
25 
26 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
27 	struct hnae3_handle *handle)
28 {
29 	return container_of(handle, struct hclgevf_dev, nic);
30 }
31 
32 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
33 {
34 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
35 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
36 	struct hclgevf_desc desc;
37 	struct hclgevf_tqp *tqp;
38 	int status;
39 	int i;
40 
41 	for (i = 0; i < kinfo->num_tqps; i++) {
42 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
43 		hclgevf_cmd_setup_basic_desc(&desc,
44 					     HCLGEVF_OPC_QUERY_RX_STATUS,
45 					     true);
46 
47 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
48 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
49 		if (status) {
50 			dev_err(&hdev->pdev->dev,
51 				"Query tqp stat fail, status = %d,queue = %d\n",
52 				status,	i);
53 			return status;
54 		}
55 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
56 			le32_to_cpu(desc.data[1]);
57 
58 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
59 					     true);
60 
61 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
62 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
63 		if (status) {
64 			dev_err(&hdev->pdev->dev,
65 				"Query tqp stat fail, status = %d,queue = %d\n",
66 				status, i);
67 			return status;
68 		}
69 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
70 			le32_to_cpu(desc.data[1]);
71 	}
72 
73 	return 0;
74 }
75 
76 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
77 {
78 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
79 	struct hclgevf_tqp *tqp;
80 	u64 *buff = data;
81 	int i;
82 
83 	for (i = 0; i < kinfo->num_tqps; i++) {
84 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
85 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
86 	}
87 	for (i = 0; i < kinfo->num_tqps; i++) {
88 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
89 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
90 	}
91 
92 	return buff;
93 }
94 
95 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
96 {
97 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
98 
99 	return kinfo->num_tqps * 2;
100 }
101 
102 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
103 {
104 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
105 	u8 *buff = data;
106 	int i = 0;
107 
108 	for (i = 0; i < kinfo->num_tqps; i++) {
109 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
110 						       struct hclgevf_tqp, q);
111 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
112 			 tqp->index);
113 		buff += ETH_GSTRING_LEN;
114 	}
115 
116 	for (i = 0; i < kinfo->num_tqps; i++) {
117 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
118 						       struct hclgevf_tqp, q);
119 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
120 			 tqp->index);
121 		buff += ETH_GSTRING_LEN;
122 	}
123 
124 	return buff;
125 }
126 
127 static void hclgevf_update_stats(struct hnae3_handle *handle,
128 				 struct net_device_stats *net_stats)
129 {
130 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
131 	int status;
132 
133 	status = hclgevf_tqps_update_stats(handle);
134 	if (status)
135 		dev_err(&hdev->pdev->dev,
136 			"VF update of TQPS stats fail, status = %d.\n",
137 			status);
138 }
139 
140 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
141 {
142 	if (strset == ETH_SS_TEST)
143 		return -EOPNOTSUPP;
144 	else if (strset == ETH_SS_STATS)
145 		return hclgevf_tqps_get_sset_count(handle, strset);
146 
147 	return 0;
148 }
149 
150 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
151 				u8 *data)
152 {
153 	u8 *p = (char *)data;
154 
155 	if (strset == ETH_SS_STATS)
156 		p = hclgevf_tqps_get_strings(handle, p);
157 }
158 
159 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
160 {
161 	hclgevf_tqps_get_stats(handle, data);
162 }
163 
164 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
165 {
166 	u8 resp_msg;
167 	int status;
168 
169 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
170 				      true, &resp_msg, sizeof(u8));
171 	if (status) {
172 		dev_err(&hdev->pdev->dev,
173 			"VF request to get TC info from PF failed %d",
174 			status);
175 		return status;
176 	}
177 
178 	hdev->hw_tc_map = resp_msg;
179 
180 	return 0;
181 }
182 
183 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
184 {
185 #define HCLGEVF_TQPS_RSS_INFO_LEN	8
186 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
187 	int status;
188 
189 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
190 				      true, resp_msg,
191 				      HCLGEVF_TQPS_RSS_INFO_LEN);
192 	if (status) {
193 		dev_err(&hdev->pdev->dev,
194 			"VF request to get tqp info from PF failed %d",
195 			status);
196 		return status;
197 	}
198 
199 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
200 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
201 	memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16));
202 	memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16));
203 
204 	return 0;
205 }
206 
207 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
208 {
209 	struct hclgevf_tqp *tqp;
210 	int i;
211 
212 	/* if this is on going reset then we need to re-allocate the TPQs
213 	 * since we cannot assume we would get same number of TPQs back from PF
214 	 */
215 	if (hclgevf_dev_ongoing_reset(hdev))
216 		devm_kfree(&hdev->pdev->dev, hdev->htqp);
217 
218 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
219 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
220 	if (!hdev->htqp)
221 		return -ENOMEM;
222 
223 	tqp = hdev->htqp;
224 
225 	for (i = 0; i < hdev->num_tqps; i++) {
226 		tqp->dev = &hdev->pdev->dev;
227 		tqp->index = i;
228 
229 		tqp->q.ae_algo = &ae_algovf;
230 		tqp->q.buf_size = hdev->rx_buf_len;
231 		tqp->q.desc_num = hdev->num_desc;
232 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
233 			i * HCLGEVF_TQP_REG_SIZE;
234 
235 		tqp++;
236 	}
237 
238 	return 0;
239 }
240 
241 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
242 {
243 	struct hnae3_handle *nic = &hdev->nic;
244 	struct hnae3_knic_private_info *kinfo;
245 	u16 new_tqps = hdev->num_tqps;
246 	int i;
247 
248 	kinfo = &nic->kinfo;
249 	kinfo->num_tc = 0;
250 	kinfo->num_desc = hdev->num_desc;
251 	kinfo->rx_buf_len = hdev->rx_buf_len;
252 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
253 		if (hdev->hw_tc_map & BIT(i))
254 			kinfo->num_tc++;
255 
256 	kinfo->rss_size
257 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
258 	new_tqps = kinfo->rss_size * kinfo->num_tc;
259 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
260 
261 	/* if this is on going reset then we need to re-allocate the hnae queues
262 	 * as well since number of TPQs from PF might have changed.
263 	 */
264 	if (hclgevf_dev_ongoing_reset(hdev))
265 		devm_kfree(&hdev->pdev->dev, kinfo->tqp);
266 
267 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
268 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
269 	if (!kinfo->tqp)
270 		return -ENOMEM;
271 
272 	for (i = 0; i < kinfo->num_tqps; i++) {
273 		hdev->htqp[i].q.handle = &hdev->nic;
274 		hdev->htqp[i].q.tqp_index = i;
275 		kinfo->tqp[i] = &hdev->htqp[i].q;
276 	}
277 
278 	return 0;
279 }
280 
281 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
282 {
283 	int status;
284 	u8 resp_msg;
285 
286 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
287 				      0, false, &resp_msg, sizeof(u8));
288 	if (status)
289 		dev_err(&hdev->pdev->dev,
290 			"VF failed to fetch link status(%d) from PF", status);
291 }
292 
293 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
294 {
295 	struct hnae3_handle *handle = &hdev->nic;
296 	struct hnae3_client *client;
297 
298 	client = handle->client;
299 
300 	link_state =
301 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
302 
303 	if (link_state != hdev->hw.mac.link) {
304 		client->ops->link_status_change(handle, !!link_state);
305 		hdev->hw.mac.link = link_state;
306 	}
307 }
308 
309 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
310 {
311 	struct hnae3_handle *nic = &hdev->nic;
312 	int ret;
313 
314 	nic->ae_algo = &ae_algovf;
315 	nic->pdev = hdev->pdev;
316 	nic->numa_node_mask = hdev->numa_node_mask;
317 	nic->flags |= HNAE3_SUPPORT_VF;
318 
319 	if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
320 		dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
321 			hdev->ae_dev->dev_type);
322 		return -EINVAL;
323 	}
324 
325 	ret = hclgevf_knic_setup(hdev);
326 	if (ret)
327 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
328 			ret);
329 	return ret;
330 }
331 
332 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
333 {
334 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
335 		dev_warn(&hdev->pdev->dev,
336 			 "vector(vector_id %d) has been freed.\n", vector_id);
337 		return;
338 	}
339 
340 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
341 	hdev->num_msi_left += 1;
342 	hdev->num_msi_used -= 1;
343 }
344 
345 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
346 			      struct hnae3_vector_info *vector_info)
347 {
348 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
349 	struct hnae3_vector_info *vector = vector_info;
350 	int alloc = 0;
351 	int i, j;
352 
353 	vector_num = min(hdev->num_msi_left, vector_num);
354 
355 	for (j = 0; j < vector_num; j++) {
356 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
357 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
358 				vector->vector = pci_irq_vector(hdev->pdev, i);
359 				vector->io_addr = hdev->hw.io_base +
360 					HCLGEVF_VECTOR_REG_BASE +
361 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
362 				hdev->vector_status[i] = 0;
363 				hdev->vector_irq[i] = vector->vector;
364 
365 				vector++;
366 				alloc++;
367 
368 				break;
369 			}
370 		}
371 	}
372 	hdev->num_msi_left -= alloc;
373 	hdev->num_msi_used += alloc;
374 
375 	return alloc;
376 }
377 
378 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
379 {
380 	int i;
381 
382 	for (i = 0; i < hdev->num_msi; i++)
383 		if (vector == hdev->vector_irq[i])
384 			return i;
385 
386 	return -EINVAL;
387 }
388 
389 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
390 {
391 	return HCLGEVF_RSS_KEY_SIZE;
392 }
393 
394 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
395 {
396 	return HCLGEVF_RSS_IND_TBL_SIZE;
397 }
398 
399 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
400 {
401 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
402 	struct hclgevf_rss_indirection_table_cmd *req;
403 	struct hclgevf_desc desc;
404 	int status;
405 	int i, j;
406 
407 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
408 
409 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
410 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
411 					     false);
412 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
413 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
414 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
415 			req->rss_result[j] =
416 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
417 
418 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
419 		if (status) {
420 			dev_err(&hdev->pdev->dev,
421 				"VF failed(=%d) to set RSS indirection table\n",
422 				status);
423 			return status;
424 		}
425 	}
426 
427 	return 0;
428 }
429 
430 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
431 {
432 	struct hclgevf_rss_tc_mode_cmd *req;
433 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
434 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
435 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
436 	struct hclgevf_desc desc;
437 	u16 roundup_size;
438 	int status;
439 	int i;
440 
441 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
442 
443 	roundup_size = roundup_pow_of_two(rss_size);
444 	roundup_size = ilog2(roundup_size);
445 
446 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
447 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
448 		tc_size[i] = roundup_size;
449 		tc_offset[i] = rss_size * i;
450 	}
451 
452 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
453 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
454 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
455 			      (tc_valid[i] & 0x1));
456 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
457 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
458 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
459 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
460 	}
461 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
462 	if (status)
463 		dev_err(&hdev->pdev->dev,
464 			"VF failed(=%d) to set rss tc mode\n", status);
465 
466 	return status;
467 }
468 
469 static int hclgevf_get_rss_hw_cfg(struct hnae3_handle *handle, u8 *hash,
470 				  u8 *key)
471 {
472 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
473 	struct hclgevf_rss_config_cmd *req;
474 	int lkup_times = key ? 3 : 1;
475 	struct hclgevf_desc desc;
476 	int key_offset;
477 	int key_size;
478 	int status;
479 
480 	req = (struct hclgevf_rss_config_cmd *)desc.data;
481 	lkup_times = (lkup_times == 3) ? 3 : ((hash) ? 1 : 0);
482 
483 	for (key_offset = 0; key_offset < lkup_times; key_offset++) {
484 		hclgevf_cmd_setup_basic_desc(&desc,
485 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
486 					     true);
487 		req->hash_config |= (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET);
488 
489 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
490 		if (status) {
491 			dev_err(&hdev->pdev->dev,
492 				"failed to get hardware RSS cfg, status = %d\n",
493 				status);
494 			return status;
495 		}
496 
497 		if (key_offset == 2)
498 			key_size =
499 			HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
500 		else
501 			key_size = HCLGEVF_RSS_HASH_KEY_NUM;
502 
503 		if (key)
504 			memcpy(key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM,
505 			       req->hash_key,
506 			       key_size);
507 	}
508 
509 	if (hash) {
510 		if ((req->hash_config & 0xf) == HCLGEVF_RSS_HASH_ALGO_TOEPLITZ)
511 			*hash = ETH_RSS_HASH_TOP;
512 		else
513 			*hash = ETH_RSS_HASH_UNKNOWN;
514 	}
515 
516 	return 0;
517 }
518 
519 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
520 			   u8 *hfunc)
521 {
522 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
523 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
524 	int i;
525 
526 	if (indir)
527 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
528 			indir[i] = rss_cfg->rss_indirection_tbl[i];
529 
530 	return hclgevf_get_rss_hw_cfg(handle, hfunc, key);
531 }
532 
533 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
534 			   const  u8 *key, const  u8 hfunc)
535 {
536 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
537 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
538 	int i;
539 
540 	/* update the shadow RSS table with user specified qids */
541 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
542 		rss_cfg->rss_indirection_tbl[i] = indir[i];
543 
544 	/* update the hardware */
545 	return hclgevf_set_rss_indir_table(hdev);
546 }
547 
548 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
549 {
550 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
551 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
552 
553 	return rss_cfg->rss_size;
554 }
555 
556 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
557 				       int vector_id,
558 				       struct hnae3_ring_chain_node *ring_chain)
559 {
560 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
561 	struct hnae3_ring_chain_node *node;
562 	struct hclge_mbx_vf_to_pf_cmd *req;
563 	struct hclgevf_desc desc;
564 	int i = 0;
565 	int status;
566 	u8 type;
567 
568 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
569 
570 	for (node = ring_chain; node; node = node->next) {
571 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
572 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
573 
574 		if (i == 0) {
575 			hclgevf_cmd_setup_basic_desc(&desc,
576 						     HCLGEVF_OPC_MBX_VF_TO_PF,
577 						     false);
578 			type = en ?
579 				HCLGE_MBX_MAP_RING_TO_VECTOR :
580 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
581 			req->msg[0] = type;
582 			req->msg[1] = vector_id;
583 		}
584 
585 		req->msg[idx_offset] =
586 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
587 		req->msg[idx_offset + 1] = node->tqp_index;
588 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
589 							   HNAE3_RING_GL_IDX_M,
590 							   HNAE3_RING_GL_IDX_S);
591 
592 		i++;
593 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
594 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
595 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
596 		    !node->next) {
597 			req->msg[2] = i;
598 
599 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
600 			if (status) {
601 				dev_err(&hdev->pdev->dev,
602 					"Map TQP fail, status is %d.\n",
603 					status);
604 				return status;
605 			}
606 			i = 0;
607 			hclgevf_cmd_setup_basic_desc(&desc,
608 						     HCLGEVF_OPC_MBX_VF_TO_PF,
609 						     false);
610 			req->msg[0] = type;
611 			req->msg[1] = vector_id;
612 		}
613 	}
614 
615 	return 0;
616 }
617 
618 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
619 				      struct hnae3_ring_chain_node *ring_chain)
620 {
621 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
622 	int vector_id;
623 
624 	vector_id = hclgevf_get_vector_index(hdev, vector);
625 	if (vector_id < 0) {
626 		dev_err(&handle->pdev->dev,
627 			"Get vector index fail. ret =%d\n", vector_id);
628 		return vector_id;
629 	}
630 
631 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
632 }
633 
634 static int hclgevf_unmap_ring_from_vector(
635 				struct hnae3_handle *handle,
636 				int vector,
637 				struct hnae3_ring_chain_node *ring_chain)
638 {
639 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
640 	int ret, vector_id;
641 
642 	vector_id = hclgevf_get_vector_index(hdev, vector);
643 	if (vector_id < 0) {
644 		dev_err(&handle->pdev->dev,
645 			"Get vector index fail. ret =%d\n", vector_id);
646 		return vector_id;
647 	}
648 
649 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
650 	if (ret)
651 		dev_err(&handle->pdev->dev,
652 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
653 			vector_id,
654 			ret);
655 
656 	return ret;
657 }
658 
659 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
660 {
661 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
662 	int vector_id;
663 
664 	vector_id = hclgevf_get_vector_index(hdev, vector);
665 	if (vector_id < 0) {
666 		dev_err(&handle->pdev->dev,
667 			"hclgevf_put_vector get vector index fail. ret =%d\n",
668 			vector_id);
669 		return vector_id;
670 	}
671 
672 	hclgevf_free_vector(hdev, vector_id);
673 
674 	return 0;
675 }
676 
677 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
678 					bool en_uc_pmc, bool en_mc_pmc)
679 {
680 	struct hclge_mbx_vf_to_pf_cmd *req;
681 	struct hclgevf_desc desc;
682 	int status;
683 
684 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
685 
686 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
687 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
688 	req->msg[1] = en_uc_pmc ? 1 : 0;
689 	req->msg[2] = en_mc_pmc ? 1 : 0;
690 
691 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
692 	if (status)
693 		dev_err(&hdev->pdev->dev,
694 			"Set promisc mode fail, status is %d.\n", status);
695 
696 	return status;
697 }
698 
699 static void hclgevf_set_promisc_mode(struct hnae3_handle *handle,
700 				     bool en_uc_pmc, bool en_mc_pmc)
701 {
702 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
703 
704 	hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc);
705 }
706 
707 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
708 			      int stream_id, bool enable)
709 {
710 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
711 	struct hclgevf_desc desc;
712 	int status;
713 
714 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
715 
716 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
717 				     false);
718 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
719 	req->stream_id = cpu_to_le16(stream_id);
720 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
721 
722 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
723 	if (status)
724 		dev_err(&hdev->pdev->dev,
725 			"TQP enable fail, status =%d.\n", status);
726 
727 	return status;
728 }
729 
730 static int hclgevf_get_queue_id(struct hnae3_queue *queue)
731 {
732 	struct hclgevf_tqp *tqp = container_of(queue, struct hclgevf_tqp, q);
733 
734 	return tqp->index;
735 }
736 
737 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
738 {
739 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
740 	struct hclgevf_tqp *tqp;
741 	int i;
742 
743 	for (i = 0; i < kinfo->num_tqps; i++) {
744 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
745 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
746 	}
747 }
748 
749 static int hclgevf_cfg_func_mta_type(struct hclgevf_dev *hdev)
750 {
751 	u8 resp_msg = HCLGEVF_MTA_TYPE_SEL_MAX;
752 	int ret;
753 
754 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
755 				   HCLGE_MBX_MAC_VLAN_MTA_TYPE_READ,
756 				   NULL, 0, true, &resp_msg, sizeof(u8));
757 
758 	if (ret) {
759 		dev_err(&hdev->pdev->dev,
760 			"Read mta type fail, ret=%d.\n", ret);
761 		return ret;
762 	}
763 
764 	if (resp_msg > HCLGEVF_MTA_TYPE_SEL_MAX) {
765 		dev_err(&hdev->pdev->dev,
766 			"Read mta type invalid, resp=%d.\n", resp_msg);
767 		return -EINVAL;
768 	}
769 
770 	hdev->mta_mac_sel_type = resp_msg;
771 
772 	return 0;
773 }
774 
775 static u16 hclgevf_get_mac_addr_to_mta_index(struct hclgevf_dev *hdev,
776 					     const u8 *addr)
777 {
778 	u32 rsh = HCLGEVF_MTA_TYPE_SEL_MAX - hdev->mta_mac_sel_type;
779 	u16 high_val = addr[1] | (addr[0] << 8);
780 
781 	return (high_val >> rsh) & 0xfff;
782 }
783 
784 static int hclgevf_do_update_mta_status(struct hclgevf_dev *hdev,
785 					unsigned long *status)
786 {
787 #define HCLGEVF_MTA_STATUS_MSG_SIZE 13
788 #define HCLGEVF_MTA_STATUS_MSG_BITS \
789 			(HCLGEVF_MTA_STATUS_MSG_SIZE * BITS_PER_BYTE)
790 #define HCLGEVF_MTA_STATUS_MSG_END_BITS \
791 			(HCLGEVF_MTA_TBL_SIZE % HCLGEVF_MTA_STATUS_MSG_BITS)
792 	u16 tbl_cnt;
793 	u16 tbl_idx;
794 	u8 msg_cnt;
795 	u8 msg_idx;
796 	int ret;
797 
798 	msg_cnt = DIV_ROUND_UP(HCLGEVF_MTA_TBL_SIZE,
799 			       HCLGEVF_MTA_STATUS_MSG_BITS);
800 	tbl_idx = 0;
801 	msg_idx = 0;
802 	while (msg_cnt--) {
803 		u8 msg[HCLGEVF_MTA_STATUS_MSG_SIZE + 1];
804 		u8 *p = &msg[1];
805 		u8 msg_ofs;
806 		u8 msg_bit;
807 
808 		memset(msg, 0, sizeof(msg));
809 
810 		/* set index field */
811 		msg[0] = 0x7F & msg_idx;
812 
813 		/* set end flag field */
814 		if (msg_cnt == 0) {
815 			msg[0] |= 0x80;
816 			tbl_cnt = HCLGEVF_MTA_STATUS_MSG_END_BITS;
817 		} else {
818 			tbl_cnt = HCLGEVF_MTA_STATUS_MSG_BITS;
819 		}
820 
821 		/* set status field */
822 		msg_ofs = 0;
823 		msg_bit = 0;
824 		while (tbl_cnt--) {
825 			if (test_bit(tbl_idx, status))
826 				p[msg_ofs] |= BIT(msg_bit);
827 
828 			tbl_idx++;
829 
830 			msg_bit++;
831 			if (msg_bit == BITS_PER_BYTE) {
832 				msg_bit = 0;
833 				msg_ofs++;
834 			}
835 		}
836 
837 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
838 					   HCLGE_MBX_MAC_VLAN_MTA_STATUS_UPDATE,
839 					   msg, sizeof(msg), false, NULL, 0);
840 		if (ret)
841 			break;
842 
843 		msg_idx++;
844 	}
845 
846 	return ret;
847 }
848 
849 static int hclgevf_update_mta_status(struct hnae3_handle *handle)
850 {
851 	unsigned long mta_status[BITS_TO_LONGS(HCLGEVF_MTA_TBL_SIZE)];
852 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
853 	struct net_device *netdev = hdev->nic.kinfo.netdev;
854 	struct netdev_hw_addr *ha;
855 	u16 tbl_idx;
856 
857 	/* clear status */
858 	memset(mta_status, 0, sizeof(mta_status));
859 
860 	/* update status from mc addr list */
861 	netdev_for_each_mc_addr(ha, netdev) {
862 		tbl_idx = hclgevf_get_mac_addr_to_mta_index(hdev, ha->addr);
863 		set_bit(tbl_idx, mta_status);
864 	}
865 
866 	return hclgevf_do_update_mta_status(hdev, mta_status);
867 }
868 
869 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
870 {
871 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
872 
873 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
874 }
875 
876 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
877 				bool is_first)
878 {
879 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
880 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
881 	u8 *new_mac_addr = (u8 *)p;
882 	u8 msg_data[ETH_ALEN * 2];
883 	u16 subcode;
884 	int status;
885 
886 	ether_addr_copy(msg_data, new_mac_addr);
887 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
888 
889 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
890 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
891 
892 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
893 				      subcode, msg_data, ETH_ALEN * 2,
894 				      true, NULL, 0);
895 	if (!status)
896 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
897 
898 	return status;
899 }
900 
901 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
902 			       const unsigned char *addr)
903 {
904 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
905 
906 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
907 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
908 				    addr, ETH_ALEN, false, NULL, 0);
909 }
910 
911 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
912 			      const unsigned char *addr)
913 {
914 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
915 
916 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
917 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
918 				    addr, ETH_ALEN, false, NULL, 0);
919 }
920 
921 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
922 			       const unsigned char *addr)
923 {
924 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
925 
926 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
927 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
928 				    addr, ETH_ALEN, false, NULL, 0);
929 }
930 
931 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
932 			      const unsigned char *addr)
933 {
934 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
935 
936 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
937 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
938 				    addr, ETH_ALEN, false, NULL, 0);
939 }
940 
941 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
942 				   __be16 proto, u16 vlan_id,
943 				   bool is_kill)
944 {
945 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
946 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
947 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
948 
949 	if (vlan_id > 4095)
950 		return -EINVAL;
951 
952 	if (proto != htons(ETH_P_8021Q))
953 		return -EPROTONOSUPPORT;
954 
955 	msg_data[0] = is_kill;
956 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
957 	memcpy(&msg_data[3], &proto, sizeof(proto));
958 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
959 				    HCLGE_MBX_VLAN_FILTER, msg_data,
960 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
961 }
962 
963 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
964 {
965 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
966 	u8 msg_data;
967 
968 	msg_data = enable ? 1 : 0;
969 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
970 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
971 				    1, false, NULL, 0);
972 }
973 
974 static void hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
975 {
976 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
977 	u8 msg_data[2];
978 	int ret;
979 
980 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
981 
982 	/* disable vf queue before send queue reset msg to PF */
983 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
984 	if (ret)
985 		return;
986 
987 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
988 			     2, true, NULL, 0);
989 }
990 
991 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
992 				 enum hnae3_reset_notify_type type)
993 {
994 	struct hnae3_client *client = hdev->nic_client;
995 	struct hnae3_handle *handle = &hdev->nic;
996 
997 	if (!client->ops->reset_notify)
998 		return -EOPNOTSUPP;
999 
1000 	return client->ops->reset_notify(handle, type);
1001 }
1002 
1003 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1004 {
1005 #define HCLGEVF_RESET_WAIT_MS	500
1006 #define HCLGEVF_RESET_WAIT_CNT	20
1007 	u32 val, cnt = 0;
1008 
1009 	/* wait to check the hardware reset completion status */
1010 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING);
1011 	while (hnae3_get_bit(val, HCLGEVF_FUN_RST_ING_B) &&
1012 	       (cnt < HCLGEVF_RESET_WAIT_CNT)) {
1013 		msleep(HCLGEVF_RESET_WAIT_MS);
1014 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING);
1015 		cnt++;
1016 	}
1017 
1018 	/* hardware completion status should be available by this time */
1019 	if (cnt >= HCLGEVF_RESET_WAIT_CNT) {
1020 		dev_warn(&hdev->pdev->dev,
1021 			 "could'nt get reset done status from h/w, timeout!\n");
1022 		return -EBUSY;
1023 	}
1024 
1025 	/* we will wait a bit more to let reset of the stack to complete. This
1026 	 * might happen in case reset assertion was made by PF. Yes, this also
1027 	 * means we might end up waiting bit more even for VF reset.
1028 	 */
1029 	msleep(5000);
1030 
1031 	return 0;
1032 }
1033 
1034 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1035 {
1036 	int ret;
1037 
1038 	/* uninitialize the nic client */
1039 	hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1040 
1041 	/* re-initialize the hclge device */
1042 	ret = hclgevf_init_hdev(hdev);
1043 	if (ret) {
1044 		dev_err(&hdev->pdev->dev,
1045 			"hclge device re-init failed, VF is disabled!\n");
1046 		return ret;
1047 	}
1048 
1049 	/* bring up the nic client again */
1050 	hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1051 
1052 	return 0;
1053 }
1054 
1055 static int hclgevf_reset(struct hclgevf_dev *hdev)
1056 {
1057 	int ret;
1058 
1059 	rtnl_lock();
1060 
1061 	/* bring down the nic to stop any ongoing TX/RX */
1062 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1063 
1064 	/* check if VF could successfully fetch the hardware reset completion
1065 	 * status from the hardware
1066 	 */
1067 	ret = hclgevf_reset_wait(hdev);
1068 	if (ret) {
1069 		/* can't do much in this situation, will disable VF */
1070 		dev_err(&hdev->pdev->dev,
1071 			"VF failed(=%d) to fetch H/W reset completion status\n",
1072 			ret);
1073 
1074 		dev_warn(&hdev->pdev->dev, "VF reset failed, disabling VF!\n");
1075 		hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1076 
1077 		rtnl_unlock();
1078 		return ret;
1079 	}
1080 
1081 	/* now, re-initialize the nic client and ae device*/
1082 	ret = hclgevf_reset_stack(hdev);
1083 	if (ret)
1084 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1085 
1086 	/* bring up the nic to enable TX/RX again */
1087 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1088 
1089 	rtnl_unlock();
1090 
1091 	return ret;
1092 }
1093 
1094 static int hclgevf_do_reset(struct hclgevf_dev *hdev)
1095 {
1096 	int status;
1097 	u8 respmsg;
1098 
1099 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1100 				      0, false, &respmsg, sizeof(u8));
1101 	if (status)
1102 		dev_err(&hdev->pdev->dev,
1103 			"VF reset request to PF failed(=%d)\n", status);
1104 
1105 	return status;
1106 }
1107 
1108 static void hclgevf_reset_event(struct hnae3_handle *handle)
1109 {
1110 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1111 
1112 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1113 
1114 	handle->reset_level = HNAE3_VF_RESET;
1115 
1116 	/* reset of this VF requested */
1117 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1118 	hclgevf_reset_task_schedule(hdev);
1119 
1120 	handle->last_reset_time = jiffies;
1121 }
1122 
1123 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1124 {
1125 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1126 
1127 	return hdev->fw_version;
1128 }
1129 
1130 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1131 {
1132 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1133 
1134 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1135 					    HCLGEVF_MISC_VECTOR_NUM);
1136 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1137 	/* vector status always valid for Vector 0 */
1138 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1139 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1140 
1141 	hdev->num_msi_left -= 1;
1142 	hdev->num_msi_used += 1;
1143 }
1144 
1145 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1146 {
1147 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1148 	    !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
1149 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1150 		schedule_work(&hdev->rst_service_task);
1151 	}
1152 }
1153 
1154 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1155 {
1156 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1157 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1158 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1159 		schedule_work(&hdev->mbx_service_task);
1160 	}
1161 }
1162 
1163 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1164 {
1165 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1166 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1167 		schedule_work(&hdev->service_task);
1168 }
1169 
1170 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1171 {
1172 	/* if we have any pending mailbox event then schedule the mbx task */
1173 	if (hdev->mbx_event_pending)
1174 		hclgevf_mbx_task_schedule(hdev);
1175 
1176 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1177 		hclgevf_reset_task_schedule(hdev);
1178 }
1179 
1180 static void hclgevf_service_timer(struct timer_list *t)
1181 {
1182 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1183 
1184 	mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1185 
1186 	hclgevf_task_schedule(hdev);
1187 }
1188 
1189 static void hclgevf_reset_service_task(struct work_struct *work)
1190 {
1191 	struct hclgevf_dev *hdev =
1192 		container_of(work, struct hclgevf_dev, rst_service_task);
1193 	int ret;
1194 
1195 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1196 		return;
1197 
1198 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1199 
1200 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1201 			       &hdev->reset_state)) {
1202 		/* PF has initmated that it is about to reset the hardware.
1203 		 * We now have to poll & check if harware has actually completed
1204 		 * the reset sequence. On hardware reset completion, VF needs to
1205 		 * reset the client and ae device.
1206 		 */
1207 		hdev->reset_attempts = 0;
1208 
1209 		ret = hclgevf_reset(hdev);
1210 		if (ret)
1211 			dev_err(&hdev->pdev->dev, "VF stack reset failed.\n");
1212 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1213 				      &hdev->reset_state)) {
1214 		/* we could be here when either of below happens:
1215 		 * 1. reset was initiated due to watchdog timeout due to
1216 		 *    a. IMP was earlier reset and our TX got choked down and
1217 		 *       which resulted in watchdog reacting and inducing VF
1218 		 *       reset. This also means our cmdq would be unreliable.
1219 		 *    b. problem in TX due to other lower layer(example link
1220 		 *       layer not functioning properly etc.)
1221 		 * 2. VF reset might have been initiated due to some config
1222 		 *    change.
1223 		 *
1224 		 * NOTE: Theres no clear way to detect above cases than to react
1225 		 * to the response of PF for this reset request. PF will ack the
1226 		 * 1b and 2. cases but we will not get any intimation about 1a
1227 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1228 		 * communication between PF and VF would be broken.
1229 		 */
1230 
1231 		/* if we are never geting into pending state it means either:
1232 		 * 1. PF is not receiving our request which could be due to IMP
1233 		 *    reset
1234 		 * 2. PF is screwed
1235 		 * We cannot do much for 2. but to check first we can try reset
1236 		 * our PCIe + stack and see if it alleviates the problem.
1237 		 */
1238 		if (hdev->reset_attempts > 3) {
1239 			/* prepare for full reset of stack + pcie interface */
1240 			hdev->nic.reset_level = HNAE3_VF_FULL_RESET;
1241 
1242 			/* "defer" schedule the reset task again */
1243 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1244 		} else {
1245 			hdev->reset_attempts++;
1246 
1247 			/* request PF for resetting this VF via mailbox */
1248 			ret = hclgevf_do_reset(hdev);
1249 			if (ret)
1250 				dev_warn(&hdev->pdev->dev,
1251 					 "VF rst fail, stack will call\n");
1252 		}
1253 	}
1254 
1255 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1256 }
1257 
1258 static void hclgevf_mailbox_service_task(struct work_struct *work)
1259 {
1260 	struct hclgevf_dev *hdev;
1261 
1262 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1263 
1264 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1265 		return;
1266 
1267 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1268 
1269 	hclgevf_mbx_async_handler(hdev);
1270 
1271 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1272 }
1273 
1274 static void hclgevf_service_task(struct work_struct *work)
1275 {
1276 	struct hclgevf_dev *hdev;
1277 
1278 	hdev = container_of(work, struct hclgevf_dev, service_task);
1279 
1280 	/* request the link status from the PF. PF would be able to tell VF
1281 	 * about such updates in future so we might remove this later
1282 	 */
1283 	hclgevf_request_link_info(hdev);
1284 
1285 	hclgevf_deferred_task_schedule(hdev);
1286 
1287 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1288 }
1289 
1290 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1291 {
1292 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1293 }
1294 
1295 static bool hclgevf_check_event_cause(struct hclgevf_dev *hdev, u32 *clearval)
1296 {
1297 	u32 cmdq_src_reg;
1298 
1299 	/* fetch the events from their corresponding regs */
1300 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1301 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1302 
1303 	/* check for vector0 mailbox(=CMDQ RX) event source */
1304 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1305 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1306 		*clearval = cmdq_src_reg;
1307 		return true;
1308 	}
1309 
1310 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1311 
1312 	return false;
1313 }
1314 
1315 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1316 {
1317 	writel(en ? 1 : 0, vector->addr);
1318 }
1319 
1320 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1321 {
1322 	struct hclgevf_dev *hdev = data;
1323 	u32 clearval;
1324 
1325 	hclgevf_enable_vector(&hdev->misc_vector, false);
1326 	if (!hclgevf_check_event_cause(hdev, &clearval))
1327 		goto skip_sched;
1328 
1329 	hclgevf_mbx_handler(hdev);
1330 
1331 	hclgevf_clear_event_cause(hdev, clearval);
1332 
1333 skip_sched:
1334 	hclgevf_enable_vector(&hdev->misc_vector, true);
1335 
1336 	return IRQ_HANDLED;
1337 }
1338 
1339 static int hclgevf_configure(struct hclgevf_dev *hdev)
1340 {
1341 	int ret;
1342 
1343 	/* get queue configuration from PF */
1344 	ret = hclgevf_get_queue_info(hdev);
1345 	if (ret)
1346 		return ret;
1347 	/* get tc configuration from PF */
1348 	return hclgevf_get_tc_info(hdev);
1349 }
1350 
1351 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1352 {
1353 	struct pci_dev *pdev = ae_dev->pdev;
1354 	struct hclgevf_dev *hdev = ae_dev->priv;
1355 
1356 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1357 	if (!hdev)
1358 		return -ENOMEM;
1359 
1360 	hdev->pdev = pdev;
1361 	hdev->ae_dev = ae_dev;
1362 	ae_dev->priv = hdev;
1363 
1364 	return 0;
1365 }
1366 
1367 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1368 {
1369 	struct hnae3_handle *roce = &hdev->roce;
1370 	struct hnae3_handle *nic = &hdev->nic;
1371 
1372 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1373 
1374 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1375 	    hdev->num_msi_left == 0)
1376 		return -EINVAL;
1377 
1378 	roce->rinfo.base_vector = hdev->roce_base_vector;
1379 
1380 	roce->rinfo.netdev = nic->kinfo.netdev;
1381 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1382 
1383 	roce->pdev = nic->pdev;
1384 	roce->ae_algo = nic->ae_algo;
1385 	roce->numa_node_mask = nic->numa_node_mask;
1386 
1387 	return 0;
1388 }
1389 
1390 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1391 {
1392 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1393 	int i, ret;
1394 
1395 	rss_cfg->rss_size = hdev->rss_size_max;
1396 
1397 	/* Initialize RSS indirect table for each vport */
1398 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1399 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1400 
1401 	ret = hclgevf_set_rss_indir_table(hdev);
1402 	if (ret)
1403 		return ret;
1404 
1405 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1406 }
1407 
1408 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
1409 {
1410 	/* other vlan config(like, VLAN TX/RX offload) would also be added
1411 	 * here later
1412 	 */
1413 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
1414 				       false);
1415 }
1416 
1417 static int hclgevf_ae_start(struct hnae3_handle *handle)
1418 {
1419 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1420 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1421 	int i, queue_id;
1422 
1423 	for (i = 0; i < kinfo->num_tqps; i++) {
1424 		/* ring enable */
1425 		queue_id = hclgevf_get_queue_id(kinfo->tqp[i]);
1426 		if (queue_id < 0) {
1427 			dev_warn(&hdev->pdev->dev,
1428 				 "Get invalid queue id, ignore it\n");
1429 			continue;
1430 		}
1431 
1432 		hclgevf_tqp_enable(hdev, queue_id, 0, true);
1433 	}
1434 
1435 	/* reset tqp stats */
1436 	hclgevf_reset_tqp_stats(handle);
1437 
1438 	hclgevf_request_link_info(hdev);
1439 
1440 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1441 	mod_timer(&hdev->service_timer, jiffies + HZ);
1442 
1443 	return 0;
1444 }
1445 
1446 static void hclgevf_ae_stop(struct hnae3_handle *handle)
1447 {
1448 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1449 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1450 	int i, queue_id;
1451 
1452 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1453 
1454 	for (i = 0; i < kinfo->num_tqps; i++) {
1455 		/* Ring disable */
1456 		queue_id = hclgevf_get_queue_id(kinfo->tqp[i]);
1457 		if (queue_id < 0) {
1458 			dev_warn(&hdev->pdev->dev,
1459 				 "Get invalid queue id, ignore it\n");
1460 			continue;
1461 		}
1462 
1463 		hclgevf_tqp_enable(hdev, queue_id, 0, false);
1464 	}
1465 
1466 	/* reset tqp stats */
1467 	hclgevf_reset_tqp_stats(handle);
1468 	del_timer_sync(&hdev->service_timer);
1469 	cancel_work_sync(&hdev->service_task);
1470 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1471 	hclgevf_update_link_status(hdev, 0);
1472 }
1473 
1474 static void hclgevf_state_init(struct hclgevf_dev *hdev)
1475 {
1476 	/* if this is on going reset then skip this initialization */
1477 	if (hclgevf_dev_ongoing_reset(hdev))
1478 		return;
1479 
1480 	/* setup tasks for the MBX */
1481 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
1482 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1483 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1484 
1485 	/* setup tasks for service timer */
1486 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
1487 
1488 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
1489 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1490 
1491 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
1492 
1493 	mutex_init(&hdev->mbx_resp.mbx_mutex);
1494 
1495 	/* bring the device down */
1496 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1497 }
1498 
1499 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
1500 {
1501 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1502 
1503 	if (hdev->service_timer.function)
1504 		del_timer_sync(&hdev->service_timer);
1505 	if (hdev->service_task.func)
1506 		cancel_work_sync(&hdev->service_task);
1507 	if (hdev->mbx_service_task.func)
1508 		cancel_work_sync(&hdev->mbx_service_task);
1509 	if (hdev->rst_service_task.func)
1510 		cancel_work_sync(&hdev->rst_service_task);
1511 
1512 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
1513 }
1514 
1515 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
1516 {
1517 	struct pci_dev *pdev = hdev->pdev;
1518 	int vectors;
1519 	int i;
1520 
1521 	/* if this is on going reset then skip this initialization */
1522 	if (hclgevf_dev_ongoing_reset(hdev))
1523 		return 0;
1524 
1525 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
1526 		vectors = pci_alloc_irq_vectors(pdev,
1527 						hdev->roce_base_msix_offset + 1,
1528 						hdev->num_msi,
1529 						PCI_IRQ_MSIX);
1530 	else
1531 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
1532 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
1533 
1534 	if (vectors < 0) {
1535 		dev_err(&pdev->dev,
1536 			"failed(%d) to allocate MSI/MSI-X vectors\n",
1537 			vectors);
1538 		return vectors;
1539 	}
1540 	if (vectors < hdev->num_msi)
1541 		dev_warn(&hdev->pdev->dev,
1542 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
1543 			 hdev->num_msi, vectors);
1544 
1545 	hdev->num_msi = vectors;
1546 	hdev->num_msi_left = vectors;
1547 	hdev->base_msi_vector = pdev->irq;
1548 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
1549 
1550 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
1551 					   sizeof(u16), GFP_KERNEL);
1552 	if (!hdev->vector_status) {
1553 		pci_free_irq_vectors(pdev);
1554 		return -ENOMEM;
1555 	}
1556 
1557 	for (i = 0; i < hdev->num_msi; i++)
1558 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
1559 
1560 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
1561 					sizeof(int), GFP_KERNEL);
1562 	if (!hdev->vector_irq) {
1563 		pci_free_irq_vectors(pdev);
1564 		return -ENOMEM;
1565 	}
1566 
1567 	return 0;
1568 }
1569 
1570 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
1571 {
1572 	struct pci_dev *pdev = hdev->pdev;
1573 
1574 	pci_free_irq_vectors(pdev);
1575 }
1576 
1577 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
1578 {
1579 	int ret = 0;
1580 
1581 	/* if this is on going reset then skip this initialization */
1582 	if (hclgevf_dev_ongoing_reset(hdev))
1583 		return 0;
1584 
1585 	hclgevf_get_misc_vector(hdev);
1586 
1587 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
1588 			  0, "hclgevf_cmd", hdev);
1589 	if (ret) {
1590 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
1591 			hdev->misc_vector.vector_irq);
1592 		return ret;
1593 	}
1594 
1595 	hclgevf_clear_event_cause(hdev, 0);
1596 
1597 	/* enable misc. vector(vector 0) */
1598 	hclgevf_enable_vector(&hdev->misc_vector, true);
1599 
1600 	return ret;
1601 }
1602 
1603 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
1604 {
1605 	/* disable misc vector(vector 0) */
1606 	hclgevf_enable_vector(&hdev->misc_vector, false);
1607 	synchronize_irq(hdev->misc_vector.vector_irq);
1608 	free_irq(hdev->misc_vector.vector_irq, hdev);
1609 	hclgevf_free_vector(hdev, 0);
1610 }
1611 
1612 static int hclgevf_init_client_instance(struct hnae3_client *client,
1613 					struct hnae3_ae_dev *ae_dev)
1614 {
1615 	struct hclgevf_dev *hdev = ae_dev->priv;
1616 	int ret;
1617 
1618 	switch (client->type) {
1619 	case HNAE3_CLIENT_KNIC:
1620 		hdev->nic_client = client;
1621 		hdev->nic.client = client;
1622 
1623 		ret = client->ops->init_instance(&hdev->nic);
1624 		if (ret)
1625 			goto clear_nic;
1626 
1627 		hnae3_set_client_init_flag(client, ae_dev, 1);
1628 
1629 		if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
1630 			struct hnae3_client *rc = hdev->roce_client;
1631 
1632 			ret = hclgevf_init_roce_base_info(hdev);
1633 			if (ret)
1634 				goto clear_roce;
1635 			ret = rc->ops->init_instance(&hdev->roce);
1636 			if (ret)
1637 				goto clear_roce;
1638 
1639 			hnae3_set_client_init_flag(hdev->roce_client, ae_dev,
1640 						   1);
1641 		}
1642 		break;
1643 	case HNAE3_CLIENT_UNIC:
1644 		hdev->nic_client = client;
1645 		hdev->nic.client = client;
1646 
1647 		ret = client->ops->init_instance(&hdev->nic);
1648 		if (ret)
1649 			goto clear_nic;
1650 
1651 		hnae3_set_client_init_flag(client, ae_dev, 1);
1652 		break;
1653 	case HNAE3_CLIENT_ROCE:
1654 		if (hnae3_dev_roce_supported(hdev)) {
1655 			hdev->roce_client = client;
1656 			hdev->roce.client = client;
1657 		}
1658 
1659 		if (hdev->roce_client && hdev->nic_client) {
1660 			ret = hclgevf_init_roce_base_info(hdev);
1661 			if (ret)
1662 				goto clear_roce;
1663 
1664 			ret = client->ops->init_instance(&hdev->roce);
1665 			if (ret)
1666 				goto clear_roce;
1667 		}
1668 
1669 		hnae3_set_client_init_flag(client, ae_dev, 1);
1670 		break;
1671 	default:
1672 		return -EINVAL;
1673 	}
1674 
1675 	return 0;
1676 
1677 clear_nic:
1678 	hdev->nic_client = NULL;
1679 	hdev->nic.client = NULL;
1680 	return ret;
1681 clear_roce:
1682 	hdev->roce_client = NULL;
1683 	hdev->roce.client = NULL;
1684 	return ret;
1685 }
1686 
1687 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
1688 					   struct hnae3_ae_dev *ae_dev)
1689 {
1690 	struct hclgevf_dev *hdev = ae_dev->priv;
1691 
1692 	/* un-init roce, if it exists */
1693 	if (hdev->roce_client) {
1694 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
1695 		hdev->roce_client = NULL;
1696 		hdev->roce.client = NULL;
1697 	}
1698 
1699 	/* un-init nic/unic, if this was not called by roce client */
1700 	if (client->ops->uninit_instance && hdev->nic_client &&
1701 	    client->type != HNAE3_CLIENT_ROCE) {
1702 		client->ops->uninit_instance(&hdev->nic, 0);
1703 		hdev->nic_client = NULL;
1704 		hdev->nic.client = NULL;
1705 	}
1706 }
1707 
1708 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
1709 {
1710 	struct pci_dev *pdev = hdev->pdev;
1711 	struct hclgevf_hw *hw;
1712 	int ret;
1713 
1714 	/* check if we need to skip initialization of pci. This will happen if
1715 	 * device is undergoing VF reset. Otherwise, we would need to
1716 	 * re-initialize pci interface again i.e. when device is not going
1717 	 * through *any* reset or actually undergoing full reset.
1718 	 */
1719 	if (hclgevf_dev_ongoing_reset(hdev))
1720 		return 0;
1721 
1722 	ret = pci_enable_device(pdev);
1723 	if (ret) {
1724 		dev_err(&pdev->dev, "failed to enable PCI device\n");
1725 		return ret;
1726 	}
1727 
1728 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1729 	if (ret) {
1730 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
1731 		goto err_disable_device;
1732 	}
1733 
1734 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
1735 	if (ret) {
1736 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
1737 		goto err_disable_device;
1738 	}
1739 
1740 	pci_set_master(pdev);
1741 	hw = &hdev->hw;
1742 	hw->hdev = hdev;
1743 	hw->io_base = pci_iomap(pdev, 2, 0);
1744 	if (!hw->io_base) {
1745 		dev_err(&pdev->dev, "can't map configuration register space\n");
1746 		ret = -ENOMEM;
1747 		goto err_clr_master;
1748 	}
1749 
1750 	return 0;
1751 
1752 err_clr_master:
1753 	pci_clear_master(pdev);
1754 	pci_release_regions(pdev);
1755 err_disable_device:
1756 	pci_disable_device(pdev);
1757 
1758 	return ret;
1759 }
1760 
1761 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
1762 {
1763 	struct pci_dev *pdev = hdev->pdev;
1764 
1765 	pci_iounmap(pdev, hdev->hw.io_base);
1766 	pci_clear_master(pdev);
1767 	pci_release_regions(pdev);
1768 	pci_disable_device(pdev);
1769 }
1770 
1771 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
1772 {
1773 	struct hclgevf_query_res_cmd *req;
1774 	struct hclgevf_desc desc;
1775 	int ret;
1776 
1777 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
1778 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1779 	if (ret) {
1780 		dev_err(&hdev->pdev->dev,
1781 			"query vf resource failed, ret = %d.\n", ret);
1782 		return ret;
1783 	}
1784 
1785 	req = (struct hclgevf_query_res_cmd *)desc.data;
1786 
1787 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
1788 		hdev->roce_base_msix_offset =
1789 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
1790 				HCLGEVF_MSIX_OFT_ROCEE_M,
1791 				HCLGEVF_MSIX_OFT_ROCEE_S);
1792 		hdev->num_roce_msix =
1793 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
1794 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
1795 
1796 		/* VF should have NIC vectors and Roce vectors, NIC vectors
1797 		 * are queued before Roce vectors. The offset is fixed to 64.
1798 		 */
1799 		hdev->num_msi = hdev->num_roce_msix +
1800 				hdev->roce_base_msix_offset;
1801 	} else {
1802 		hdev->num_msi =
1803 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
1804 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
1805 	}
1806 
1807 	return 0;
1808 }
1809 
1810 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
1811 {
1812 	struct pci_dev *pdev = hdev->pdev;
1813 	int ret;
1814 
1815 	/* check if device is on-going full reset(i.e. pcie as well) */
1816 	if (hclgevf_dev_ongoing_full_reset(hdev)) {
1817 		dev_warn(&pdev->dev, "device is going full reset\n");
1818 		hclgevf_uninit_hdev(hdev);
1819 	}
1820 
1821 	ret = hclgevf_pci_init(hdev);
1822 	if (ret) {
1823 		dev_err(&pdev->dev, "PCI initialization failed\n");
1824 		return ret;
1825 	}
1826 
1827 	ret = hclgevf_cmd_init(hdev);
1828 	if (ret)
1829 		goto err_cmd_init;
1830 
1831 	/* Get vf resource */
1832 	ret = hclgevf_query_vf_resource(hdev);
1833 	if (ret) {
1834 		dev_err(&hdev->pdev->dev,
1835 			"Query vf status error, ret = %d.\n", ret);
1836 		goto err_query_vf;
1837 	}
1838 
1839 	ret = hclgevf_init_msi(hdev);
1840 	if (ret) {
1841 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
1842 		goto err_query_vf;
1843 	}
1844 
1845 	hclgevf_state_init(hdev);
1846 
1847 	ret = hclgevf_misc_irq_init(hdev);
1848 	if (ret) {
1849 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
1850 			ret);
1851 		goto err_misc_irq_init;
1852 	}
1853 
1854 	ret = hclgevf_configure(hdev);
1855 	if (ret) {
1856 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
1857 		goto err_config;
1858 	}
1859 
1860 	ret = hclgevf_alloc_tqps(hdev);
1861 	if (ret) {
1862 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
1863 		goto err_config;
1864 	}
1865 
1866 	ret = hclgevf_set_handle_info(hdev);
1867 	if (ret) {
1868 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
1869 		goto err_config;
1870 	}
1871 
1872 	/* Initialize mta type for this VF */
1873 	ret = hclgevf_cfg_func_mta_type(hdev);
1874 	if (ret) {
1875 		dev_err(&hdev->pdev->dev,
1876 			"failed(%d) to initialize MTA type\n", ret);
1877 		goto err_config;
1878 	}
1879 
1880 	/* Initialize RSS for this VF */
1881 	ret = hclgevf_rss_init_hw(hdev);
1882 	if (ret) {
1883 		dev_err(&hdev->pdev->dev,
1884 			"failed(%d) to initialize RSS\n", ret);
1885 		goto err_config;
1886 	}
1887 
1888 	ret = hclgevf_init_vlan_config(hdev);
1889 	if (ret) {
1890 		dev_err(&hdev->pdev->dev,
1891 			"failed(%d) to initialize VLAN config\n", ret);
1892 		goto err_config;
1893 	}
1894 
1895 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
1896 
1897 	return 0;
1898 
1899 err_config:
1900 	hclgevf_misc_irq_uninit(hdev);
1901 err_misc_irq_init:
1902 	hclgevf_state_uninit(hdev);
1903 	hclgevf_uninit_msi(hdev);
1904 err_query_vf:
1905 	hclgevf_cmd_uninit(hdev);
1906 err_cmd_init:
1907 	hclgevf_pci_uninit(hdev);
1908 	return ret;
1909 }
1910 
1911 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
1912 {
1913 	hclgevf_state_uninit(hdev);
1914 	hclgevf_misc_irq_uninit(hdev);
1915 	hclgevf_cmd_uninit(hdev);
1916 	hclgevf_uninit_msi(hdev);
1917 	hclgevf_pci_uninit(hdev);
1918 }
1919 
1920 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
1921 {
1922 	struct pci_dev *pdev = ae_dev->pdev;
1923 	int ret;
1924 
1925 	ret = hclgevf_alloc_hdev(ae_dev);
1926 	if (ret) {
1927 		dev_err(&pdev->dev, "hclge device allocation failed\n");
1928 		return ret;
1929 	}
1930 
1931 	ret = hclgevf_init_hdev(ae_dev->priv);
1932 	if (ret)
1933 		dev_err(&pdev->dev, "hclge device initialization failed\n");
1934 
1935 	return ret;
1936 }
1937 
1938 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
1939 {
1940 	struct hclgevf_dev *hdev = ae_dev->priv;
1941 
1942 	hclgevf_uninit_hdev(hdev);
1943 	ae_dev->priv = NULL;
1944 }
1945 
1946 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
1947 {
1948 	struct hnae3_handle *nic = &hdev->nic;
1949 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
1950 
1951 	return min_t(u32, hdev->rss_size_max * kinfo->num_tc, hdev->num_tqps);
1952 }
1953 
1954 /**
1955  * hclgevf_get_channels - Get the current channels enabled and max supported.
1956  * @handle: hardware information for network interface
1957  * @ch: ethtool channels structure
1958  *
1959  * We don't support separate tx and rx queues as channels. The other count
1960  * represents how many queues are being used for control. max_combined counts
1961  * how many queue pairs we can support. They may not be mapped 1 to 1 with
1962  * q_vectors since we support a lot more queue pairs than q_vectors.
1963  **/
1964 static void hclgevf_get_channels(struct hnae3_handle *handle,
1965 				 struct ethtool_channels *ch)
1966 {
1967 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1968 
1969 	ch->max_combined = hclgevf_get_max_channels(hdev);
1970 	ch->other_count = 0;
1971 	ch->max_other = 0;
1972 	ch->combined_count = hdev->num_tqps;
1973 }
1974 
1975 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
1976 					  u16 *free_tqps, u16 *max_rss_size)
1977 {
1978 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1979 
1980 	*free_tqps = 0;
1981 	*max_rss_size = hdev->rss_size_max;
1982 }
1983 
1984 static int hclgevf_get_status(struct hnae3_handle *handle)
1985 {
1986 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1987 
1988 	return hdev->hw.mac.link;
1989 }
1990 
1991 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
1992 					    u8 *auto_neg, u32 *speed,
1993 					    u8 *duplex)
1994 {
1995 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1996 
1997 	if (speed)
1998 		*speed = hdev->hw.mac.speed;
1999 	if (duplex)
2000 		*duplex = hdev->hw.mac.duplex;
2001 	if (auto_neg)
2002 		*auto_neg = AUTONEG_DISABLE;
2003 }
2004 
2005 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2006 				 u8 duplex)
2007 {
2008 	hdev->hw.mac.speed = speed;
2009 	hdev->hw.mac.duplex = duplex;
2010 }
2011 
2012 static const struct hnae3_ae_ops hclgevf_ops = {
2013 	.init_ae_dev = hclgevf_init_ae_dev,
2014 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2015 	.init_client_instance = hclgevf_init_client_instance,
2016 	.uninit_client_instance = hclgevf_uninit_client_instance,
2017 	.start = hclgevf_ae_start,
2018 	.stop = hclgevf_ae_stop,
2019 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
2020 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2021 	.get_vector = hclgevf_get_vector,
2022 	.put_vector = hclgevf_put_vector,
2023 	.reset_queue = hclgevf_reset_tqp,
2024 	.set_promisc_mode = hclgevf_set_promisc_mode,
2025 	.get_mac_addr = hclgevf_get_mac_addr,
2026 	.set_mac_addr = hclgevf_set_mac_addr,
2027 	.add_uc_addr = hclgevf_add_uc_addr,
2028 	.rm_uc_addr = hclgevf_rm_uc_addr,
2029 	.add_mc_addr = hclgevf_add_mc_addr,
2030 	.rm_mc_addr = hclgevf_rm_mc_addr,
2031 	.update_mta_status = hclgevf_update_mta_status,
2032 	.get_stats = hclgevf_get_stats,
2033 	.update_stats = hclgevf_update_stats,
2034 	.get_strings = hclgevf_get_strings,
2035 	.get_sset_count = hclgevf_get_sset_count,
2036 	.get_rss_key_size = hclgevf_get_rss_key_size,
2037 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2038 	.get_rss = hclgevf_get_rss,
2039 	.set_rss = hclgevf_set_rss,
2040 	.get_tc_size = hclgevf_get_tc_size,
2041 	.get_fw_version = hclgevf_get_fw_version,
2042 	.set_vlan_filter = hclgevf_set_vlan_filter,
2043 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2044 	.reset_event = hclgevf_reset_event,
2045 	.get_channels = hclgevf_get_channels,
2046 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2047 	.get_status = hclgevf_get_status,
2048 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2049 };
2050 
2051 static struct hnae3_ae_algo ae_algovf = {
2052 	.ops = &hclgevf_ops,
2053 	.pdev_id_table = ae_algovf_pci_tbl,
2054 };
2055 
2056 static int hclgevf_init(void)
2057 {
2058 	pr_info("%s is initializing\n", HCLGEVF_NAME);
2059 
2060 	hnae3_register_ae_algo(&ae_algovf);
2061 
2062 	return 0;
2063 }
2064 
2065 static void hclgevf_exit(void)
2066 {
2067 	hnae3_unregister_ae_algo(&ae_algovf);
2068 }
2069 module_init(hclgevf_init);
2070 module_exit(hclgevf_exit);
2071 
2072 MODULE_LICENSE("GPL");
2073 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
2074 MODULE_DESCRIPTION("HCLGEVF Driver");
2075 MODULE_VERSION(HCLGEVF_MOD_VERSION);
2076