1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
25 
26 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
27 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
28 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
29 					 HCLGEVF_CMDQ_TX_TAIL_REG,
30 					 HCLGEVF_CMDQ_TX_HEAD_REG,
31 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
32 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
33 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
34 					 HCLGEVF_CMDQ_RX_TAIL_REG,
35 					 HCLGEVF_CMDQ_RX_HEAD_REG,
36 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
37 					 HCLGEVF_CMDQ_INTR_STS_REG,
38 					 HCLGEVF_CMDQ_INTR_EN_REG,
39 					 HCLGEVF_CMDQ_INTR_GEN_REG};
40 
41 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
42 					   HCLGEVF_RST_ING,
43 					   HCLGEVF_GRO_EN_REG};
44 
45 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
46 					 HCLGEVF_RING_RX_ADDR_H_REG,
47 					 HCLGEVF_RING_RX_BD_NUM_REG,
48 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
49 					 HCLGEVF_RING_RX_MERGE_EN_REG,
50 					 HCLGEVF_RING_RX_TAIL_REG,
51 					 HCLGEVF_RING_RX_HEAD_REG,
52 					 HCLGEVF_RING_RX_FBD_NUM_REG,
53 					 HCLGEVF_RING_RX_OFFSET_REG,
54 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
55 					 HCLGEVF_RING_RX_STASH_REG,
56 					 HCLGEVF_RING_RX_BD_ERR_REG,
57 					 HCLGEVF_RING_TX_ADDR_L_REG,
58 					 HCLGEVF_RING_TX_ADDR_H_REG,
59 					 HCLGEVF_RING_TX_BD_NUM_REG,
60 					 HCLGEVF_RING_TX_PRIORITY_REG,
61 					 HCLGEVF_RING_TX_TC_REG,
62 					 HCLGEVF_RING_TX_MERGE_EN_REG,
63 					 HCLGEVF_RING_TX_TAIL_REG,
64 					 HCLGEVF_RING_TX_HEAD_REG,
65 					 HCLGEVF_RING_TX_FBD_NUM_REG,
66 					 HCLGEVF_RING_TX_OFFSET_REG,
67 					 HCLGEVF_RING_TX_EBD_NUM_REG,
68 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
69 					 HCLGEVF_RING_TX_BD_ERR_REG,
70 					 HCLGEVF_RING_EN_REG};
71 
72 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
73 					     HCLGEVF_TQP_INTR_GL0_REG,
74 					     HCLGEVF_TQP_INTR_GL1_REG,
75 					     HCLGEVF_TQP_INTR_GL2_REG,
76 					     HCLGEVF_TQP_INTR_RL_REG};
77 
78 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
79 	struct hnae3_handle *handle)
80 {
81 	return container_of(handle, struct hclgevf_dev, nic);
82 }
83 
84 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
85 {
86 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
87 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
88 	struct hclgevf_desc desc;
89 	struct hclgevf_tqp *tqp;
90 	int status;
91 	int i;
92 
93 	for (i = 0; i < kinfo->num_tqps; i++) {
94 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
95 		hclgevf_cmd_setup_basic_desc(&desc,
96 					     HCLGEVF_OPC_QUERY_RX_STATUS,
97 					     true);
98 
99 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
100 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
101 		if (status) {
102 			dev_err(&hdev->pdev->dev,
103 				"Query tqp stat fail, status = %d,queue = %d\n",
104 				status,	i);
105 			return status;
106 		}
107 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
108 			le32_to_cpu(desc.data[1]);
109 
110 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
111 					     true);
112 
113 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
114 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
115 		if (status) {
116 			dev_err(&hdev->pdev->dev,
117 				"Query tqp stat fail, status = %d,queue = %d\n",
118 				status, i);
119 			return status;
120 		}
121 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
122 			le32_to_cpu(desc.data[1]);
123 	}
124 
125 	return 0;
126 }
127 
128 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
129 {
130 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
131 	struct hclgevf_tqp *tqp;
132 	u64 *buff = data;
133 	int i;
134 
135 	for (i = 0; i < kinfo->num_tqps; i++) {
136 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
137 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
138 	}
139 	for (i = 0; i < kinfo->num_tqps; i++) {
140 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
141 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
142 	}
143 
144 	return buff;
145 }
146 
147 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
148 {
149 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
150 
151 	return kinfo->num_tqps * 2;
152 }
153 
154 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
155 {
156 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
157 	u8 *buff = data;
158 	int i = 0;
159 
160 	for (i = 0; i < kinfo->num_tqps; i++) {
161 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
162 						       struct hclgevf_tqp, q);
163 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
164 			 tqp->index);
165 		buff += ETH_GSTRING_LEN;
166 	}
167 
168 	for (i = 0; i < kinfo->num_tqps; i++) {
169 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
170 						       struct hclgevf_tqp, q);
171 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
172 			 tqp->index);
173 		buff += ETH_GSTRING_LEN;
174 	}
175 
176 	return buff;
177 }
178 
179 static void hclgevf_update_stats(struct hnae3_handle *handle,
180 				 struct net_device_stats *net_stats)
181 {
182 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
183 	int status;
184 
185 	status = hclgevf_tqps_update_stats(handle);
186 	if (status)
187 		dev_err(&hdev->pdev->dev,
188 			"VF update of TQPS stats fail, status = %d.\n",
189 			status);
190 }
191 
192 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
193 {
194 	if (strset == ETH_SS_TEST)
195 		return -EOPNOTSUPP;
196 	else if (strset == ETH_SS_STATS)
197 		return hclgevf_tqps_get_sset_count(handle, strset);
198 
199 	return 0;
200 }
201 
202 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
203 				u8 *data)
204 {
205 	u8 *p = (char *)data;
206 
207 	if (strset == ETH_SS_STATS)
208 		p = hclgevf_tqps_get_strings(handle, p);
209 }
210 
211 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
212 {
213 	hclgevf_tqps_get_stats(handle, data);
214 }
215 
216 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
217 {
218 	u8 resp_msg;
219 	int status;
220 
221 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
222 				      true, &resp_msg, sizeof(u8));
223 	if (status) {
224 		dev_err(&hdev->pdev->dev,
225 			"VF request to get TC info from PF failed %d",
226 			status);
227 		return status;
228 	}
229 
230 	hdev->hw_tc_map = resp_msg;
231 
232 	return 0;
233 }
234 
235 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
236 {
237 #define HCLGEVF_TQPS_RSS_INFO_LEN	8
238 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
239 	int status;
240 
241 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
242 				      true, resp_msg,
243 				      HCLGEVF_TQPS_RSS_INFO_LEN);
244 	if (status) {
245 		dev_err(&hdev->pdev->dev,
246 			"VF request to get tqp info from PF failed %d",
247 			status);
248 		return status;
249 	}
250 
251 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
252 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
253 	memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16));
254 	memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16));
255 
256 	return 0;
257 }
258 
259 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
260 {
261 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
262 	u8 msg_data[2], resp_data[2];
263 	u16 qid_in_pf = 0;
264 	int ret;
265 
266 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
267 
268 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
269 				   2, true, resp_data, 2);
270 	if (!ret)
271 		qid_in_pf = *(u16 *)resp_data;
272 
273 	return qid_in_pf;
274 }
275 
276 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
277 {
278 	struct hclgevf_tqp *tqp;
279 	int i;
280 
281 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
282 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
283 	if (!hdev->htqp)
284 		return -ENOMEM;
285 
286 	tqp = hdev->htqp;
287 
288 	for (i = 0; i < hdev->num_tqps; i++) {
289 		tqp->dev = &hdev->pdev->dev;
290 		tqp->index = i;
291 
292 		tqp->q.ae_algo = &ae_algovf;
293 		tqp->q.buf_size = hdev->rx_buf_len;
294 		tqp->q.desc_num = hdev->num_desc;
295 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
296 			i * HCLGEVF_TQP_REG_SIZE;
297 
298 		tqp++;
299 	}
300 
301 	return 0;
302 }
303 
304 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
305 {
306 	struct hnae3_handle *nic = &hdev->nic;
307 	struct hnae3_knic_private_info *kinfo;
308 	u16 new_tqps = hdev->num_tqps;
309 	int i;
310 
311 	kinfo = &nic->kinfo;
312 	kinfo->num_tc = 0;
313 	kinfo->num_desc = hdev->num_desc;
314 	kinfo->rx_buf_len = hdev->rx_buf_len;
315 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
316 		if (hdev->hw_tc_map & BIT(i))
317 			kinfo->num_tc++;
318 
319 	kinfo->rss_size
320 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
321 	new_tqps = kinfo->rss_size * kinfo->num_tc;
322 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
323 
324 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
325 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
326 	if (!kinfo->tqp)
327 		return -ENOMEM;
328 
329 	for (i = 0; i < kinfo->num_tqps; i++) {
330 		hdev->htqp[i].q.handle = &hdev->nic;
331 		hdev->htqp[i].q.tqp_index = i;
332 		kinfo->tqp[i] = &hdev->htqp[i].q;
333 	}
334 
335 	return 0;
336 }
337 
338 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
339 {
340 	int status;
341 	u8 resp_msg;
342 
343 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
344 				      0, false, &resp_msg, sizeof(u8));
345 	if (status)
346 		dev_err(&hdev->pdev->dev,
347 			"VF failed to fetch link status(%d) from PF", status);
348 }
349 
350 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
351 {
352 	struct hnae3_handle *rhandle = &hdev->roce;
353 	struct hnae3_handle *handle = &hdev->nic;
354 	struct hnae3_client *rclient;
355 	struct hnae3_client *client;
356 
357 	client = handle->client;
358 	rclient = hdev->roce_client;
359 
360 	link_state =
361 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
362 
363 	if (link_state != hdev->hw.mac.link) {
364 		client->ops->link_status_change(handle, !!link_state);
365 		if (rclient && rclient->ops->link_status_change)
366 			rclient->ops->link_status_change(rhandle, !!link_state);
367 		hdev->hw.mac.link = link_state;
368 	}
369 }
370 
371 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
372 {
373 	struct hnae3_handle *nic = &hdev->nic;
374 	int ret;
375 
376 	nic->ae_algo = &ae_algovf;
377 	nic->pdev = hdev->pdev;
378 	nic->numa_node_mask = hdev->numa_node_mask;
379 	nic->flags |= HNAE3_SUPPORT_VF;
380 
381 	if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
382 		dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
383 			hdev->ae_dev->dev_type);
384 		return -EINVAL;
385 	}
386 
387 	ret = hclgevf_knic_setup(hdev);
388 	if (ret)
389 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
390 			ret);
391 	return ret;
392 }
393 
394 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
395 {
396 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
397 		dev_warn(&hdev->pdev->dev,
398 			 "vector(vector_id %d) has been freed.\n", vector_id);
399 		return;
400 	}
401 
402 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
403 	hdev->num_msi_left += 1;
404 	hdev->num_msi_used -= 1;
405 }
406 
407 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
408 			      struct hnae3_vector_info *vector_info)
409 {
410 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
411 	struct hnae3_vector_info *vector = vector_info;
412 	int alloc = 0;
413 	int i, j;
414 
415 	vector_num = min(hdev->num_msi_left, vector_num);
416 
417 	for (j = 0; j < vector_num; j++) {
418 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
419 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
420 				vector->vector = pci_irq_vector(hdev->pdev, i);
421 				vector->io_addr = hdev->hw.io_base +
422 					HCLGEVF_VECTOR_REG_BASE +
423 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
424 				hdev->vector_status[i] = 0;
425 				hdev->vector_irq[i] = vector->vector;
426 
427 				vector++;
428 				alloc++;
429 
430 				break;
431 			}
432 		}
433 	}
434 	hdev->num_msi_left -= alloc;
435 	hdev->num_msi_used += alloc;
436 
437 	return alloc;
438 }
439 
440 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
441 {
442 	int i;
443 
444 	for (i = 0; i < hdev->num_msi; i++)
445 		if (vector == hdev->vector_irq[i])
446 			return i;
447 
448 	return -EINVAL;
449 }
450 
451 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
452 				    const u8 hfunc, const u8 *key)
453 {
454 	struct hclgevf_rss_config_cmd *req;
455 	struct hclgevf_desc desc;
456 	int key_offset;
457 	int key_size;
458 	int ret;
459 
460 	req = (struct hclgevf_rss_config_cmd *)desc.data;
461 
462 	for (key_offset = 0; key_offset < 3; key_offset++) {
463 		hclgevf_cmd_setup_basic_desc(&desc,
464 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
465 					     false);
466 
467 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
468 		req->hash_config |=
469 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
470 
471 		if (key_offset == 2)
472 			key_size =
473 			HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
474 		else
475 			key_size = HCLGEVF_RSS_HASH_KEY_NUM;
476 
477 		memcpy(req->hash_key,
478 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
479 
480 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
481 		if (ret) {
482 			dev_err(&hdev->pdev->dev,
483 				"Configure RSS config fail, status = %d\n",
484 				ret);
485 			return ret;
486 		}
487 	}
488 
489 	return 0;
490 }
491 
492 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
493 {
494 	return HCLGEVF_RSS_KEY_SIZE;
495 }
496 
497 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
498 {
499 	return HCLGEVF_RSS_IND_TBL_SIZE;
500 }
501 
502 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
503 {
504 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
505 	struct hclgevf_rss_indirection_table_cmd *req;
506 	struct hclgevf_desc desc;
507 	int status;
508 	int i, j;
509 
510 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
511 
512 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
513 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
514 					     false);
515 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
516 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
517 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
518 			req->rss_result[j] =
519 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
520 
521 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
522 		if (status) {
523 			dev_err(&hdev->pdev->dev,
524 				"VF failed(=%d) to set RSS indirection table\n",
525 				status);
526 			return status;
527 		}
528 	}
529 
530 	return 0;
531 }
532 
533 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
534 {
535 	struct hclgevf_rss_tc_mode_cmd *req;
536 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
537 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
538 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
539 	struct hclgevf_desc desc;
540 	u16 roundup_size;
541 	int status;
542 	int i;
543 
544 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
545 
546 	roundup_size = roundup_pow_of_two(rss_size);
547 	roundup_size = ilog2(roundup_size);
548 
549 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
550 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
551 		tc_size[i] = roundup_size;
552 		tc_offset[i] = rss_size * i;
553 	}
554 
555 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
556 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
557 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
558 			      (tc_valid[i] & 0x1));
559 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
560 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
561 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
562 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
563 	}
564 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
565 	if (status)
566 		dev_err(&hdev->pdev->dev,
567 			"VF failed(=%d) to set rss tc mode\n", status);
568 
569 	return status;
570 }
571 
572 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
573 			   u8 *hfunc)
574 {
575 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
576 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
577 	int i;
578 
579 	if (handle->pdev->revision >= 0x21) {
580 		/* Get hash algorithm */
581 		if (hfunc) {
582 			switch (rss_cfg->hash_algo) {
583 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
584 				*hfunc = ETH_RSS_HASH_TOP;
585 				break;
586 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
587 				*hfunc = ETH_RSS_HASH_XOR;
588 				break;
589 			default:
590 				*hfunc = ETH_RSS_HASH_UNKNOWN;
591 				break;
592 			}
593 		}
594 
595 		/* Get the RSS Key required by the user */
596 		if (key)
597 			memcpy(key, rss_cfg->rss_hash_key,
598 			       HCLGEVF_RSS_KEY_SIZE);
599 	}
600 
601 	if (indir)
602 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
603 			indir[i] = rss_cfg->rss_indirection_tbl[i];
604 
605 	return 0;
606 }
607 
608 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
609 			   const  u8 *key, const  u8 hfunc)
610 {
611 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
612 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
613 	int ret, i;
614 
615 	if (handle->pdev->revision >= 0x21) {
616 		/* Set the RSS Hash Key if specififed by the user */
617 		if (key) {
618 			switch (hfunc) {
619 			case ETH_RSS_HASH_TOP:
620 				rss_cfg->hash_algo =
621 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
622 				break;
623 			case ETH_RSS_HASH_XOR:
624 				rss_cfg->hash_algo =
625 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
626 				break;
627 			case ETH_RSS_HASH_NO_CHANGE:
628 				break;
629 			default:
630 				return -EINVAL;
631 			}
632 
633 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
634 						       key);
635 			if (ret)
636 				return ret;
637 
638 			/* Update the shadow RSS key with user specified qids */
639 			memcpy(rss_cfg->rss_hash_key, key,
640 			       HCLGEVF_RSS_KEY_SIZE);
641 		}
642 	}
643 
644 	/* update the shadow RSS table with user specified qids */
645 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
646 		rss_cfg->rss_indirection_tbl[i] = indir[i];
647 
648 	/* update the hardware */
649 	return hclgevf_set_rss_indir_table(hdev);
650 }
651 
652 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
653 {
654 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
655 
656 	if (nfc->data & RXH_L4_B_2_3)
657 		hash_sets |= HCLGEVF_D_PORT_BIT;
658 	else
659 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
660 
661 	if (nfc->data & RXH_IP_SRC)
662 		hash_sets |= HCLGEVF_S_IP_BIT;
663 	else
664 		hash_sets &= ~HCLGEVF_S_IP_BIT;
665 
666 	if (nfc->data & RXH_IP_DST)
667 		hash_sets |= HCLGEVF_D_IP_BIT;
668 	else
669 		hash_sets &= ~HCLGEVF_D_IP_BIT;
670 
671 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
672 		hash_sets |= HCLGEVF_V_TAG_BIT;
673 
674 	return hash_sets;
675 }
676 
677 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
678 				 struct ethtool_rxnfc *nfc)
679 {
680 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
681 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
682 	struct hclgevf_rss_input_tuple_cmd *req;
683 	struct hclgevf_desc desc;
684 	u8 tuple_sets;
685 	int ret;
686 
687 	if (handle->pdev->revision == 0x20)
688 		return -EOPNOTSUPP;
689 
690 	if (nfc->data &
691 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
692 		return -EINVAL;
693 
694 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
695 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
696 
697 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
698 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
699 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
700 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
701 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
702 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
703 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
704 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
705 
706 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
707 	switch (nfc->flow_type) {
708 	case TCP_V4_FLOW:
709 		req->ipv4_tcp_en = tuple_sets;
710 		break;
711 	case TCP_V6_FLOW:
712 		req->ipv6_tcp_en = tuple_sets;
713 		break;
714 	case UDP_V4_FLOW:
715 		req->ipv4_udp_en = tuple_sets;
716 		break;
717 	case UDP_V6_FLOW:
718 		req->ipv6_udp_en = tuple_sets;
719 		break;
720 	case SCTP_V4_FLOW:
721 		req->ipv4_sctp_en = tuple_sets;
722 		break;
723 	case SCTP_V6_FLOW:
724 		if ((nfc->data & RXH_L4_B_0_1) ||
725 		    (nfc->data & RXH_L4_B_2_3))
726 			return -EINVAL;
727 
728 		req->ipv6_sctp_en = tuple_sets;
729 		break;
730 	case IPV4_FLOW:
731 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
732 		break;
733 	case IPV6_FLOW:
734 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
735 		break;
736 	default:
737 		return -EINVAL;
738 	}
739 
740 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
741 	if (ret) {
742 		dev_err(&hdev->pdev->dev,
743 			"Set rss tuple fail, status = %d\n", ret);
744 		return ret;
745 	}
746 
747 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
748 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
749 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
750 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
751 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
752 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
753 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
754 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
755 	return 0;
756 }
757 
758 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
759 				 struct ethtool_rxnfc *nfc)
760 {
761 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
762 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
763 	u8 tuple_sets;
764 
765 	if (handle->pdev->revision == 0x20)
766 		return -EOPNOTSUPP;
767 
768 	nfc->data = 0;
769 
770 	switch (nfc->flow_type) {
771 	case TCP_V4_FLOW:
772 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
773 		break;
774 	case UDP_V4_FLOW:
775 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
776 		break;
777 	case TCP_V6_FLOW:
778 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
779 		break;
780 	case UDP_V6_FLOW:
781 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
782 		break;
783 	case SCTP_V4_FLOW:
784 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
785 		break;
786 	case SCTP_V6_FLOW:
787 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
788 		break;
789 	case IPV4_FLOW:
790 	case IPV6_FLOW:
791 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
792 		break;
793 	default:
794 		return -EINVAL;
795 	}
796 
797 	if (!tuple_sets)
798 		return 0;
799 
800 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
801 		nfc->data |= RXH_L4_B_2_3;
802 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
803 		nfc->data |= RXH_L4_B_0_1;
804 	if (tuple_sets & HCLGEVF_D_IP_BIT)
805 		nfc->data |= RXH_IP_DST;
806 	if (tuple_sets & HCLGEVF_S_IP_BIT)
807 		nfc->data |= RXH_IP_SRC;
808 
809 	return 0;
810 }
811 
812 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
813 				       struct hclgevf_rss_cfg *rss_cfg)
814 {
815 	struct hclgevf_rss_input_tuple_cmd *req;
816 	struct hclgevf_desc desc;
817 	int ret;
818 
819 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
820 
821 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
822 
823 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
824 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
825 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
826 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
827 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
828 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
829 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
830 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
831 
832 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
833 	if (ret)
834 		dev_err(&hdev->pdev->dev,
835 			"Configure rss input fail, status = %d\n", ret);
836 	return ret;
837 }
838 
839 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
840 {
841 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
842 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
843 
844 	return rss_cfg->rss_size;
845 }
846 
847 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
848 				       int vector_id,
849 				       struct hnae3_ring_chain_node *ring_chain)
850 {
851 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
852 	struct hnae3_ring_chain_node *node;
853 	struct hclge_mbx_vf_to_pf_cmd *req;
854 	struct hclgevf_desc desc;
855 	int i = 0;
856 	int status;
857 	u8 type;
858 
859 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
860 
861 	for (node = ring_chain; node; node = node->next) {
862 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
863 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
864 
865 		if (i == 0) {
866 			hclgevf_cmd_setup_basic_desc(&desc,
867 						     HCLGEVF_OPC_MBX_VF_TO_PF,
868 						     false);
869 			type = en ?
870 				HCLGE_MBX_MAP_RING_TO_VECTOR :
871 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
872 			req->msg[0] = type;
873 			req->msg[1] = vector_id;
874 		}
875 
876 		req->msg[idx_offset] =
877 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
878 		req->msg[idx_offset + 1] = node->tqp_index;
879 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
880 							   HNAE3_RING_GL_IDX_M,
881 							   HNAE3_RING_GL_IDX_S);
882 
883 		i++;
884 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
885 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
886 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
887 		    !node->next) {
888 			req->msg[2] = i;
889 
890 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
891 			if (status) {
892 				dev_err(&hdev->pdev->dev,
893 					"Map TQP fail, status is %d.\n",
894 					status);
895 				return status;
896 			}
897 			i = 0;
898 			hclgevf_cmd_setup_basic_desc(&desc,
899 						     HCLGEVF_OPC_MBX_VF_TO_PF,
900 						     false);
901 			req->msg[0] = type;
902 			req->msg[1] = vector_id;
903 		}
904 	}
905 
906 	return 0;
907 }
908 
909 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
910 				      struct hnae3_ring_chain_node *ring_chain)
911 {
912 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
913 	int vector_id;
914 
915 	vector_id = hclgevf_get_vector_index(hdev, vector);
916 	if (vector_id < 0) {
917 		dev_err(&handle->pdev->dev,
918 			"Get vector index fail. ret =%d\n", vector_id);
919 		return vector_id;
920 	}
921 
922 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
923 }
924 
925 static int hclgevf_unmap_ring_from_vector(
926 				struct hnae3_handle *handle,
927 				int vector,
928 				struct hnae3_ring_chain_node *ring_chain)
929 {
930 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
931 	int ret, vector_id;
932 
933 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
934 		return 0;
935 
936 	vector_id = hclgevf_get_vector_index(hdev, vector);
937 	if (vector_id < 0) {
938 		dev_err(&handle->pdev->dev,
939 			"Get vector index fail. ret =%d\n", vector_id);
940 		return vector_id;
941 	}
942 
943 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
944 	if (ret)
945 		dev_err(&handle->pdev->dev,
946 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
947 			vector_id,
948 			ret);
949 
950 	return ret;
951 }
952 
953 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
954 {
955 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
956 	int vector_id;
957 
958 	vector_id = hclgevf_get_vector_index(hdev, vector);
959 	if (vector_id < 0) {
960 		dev_err(&handle->pdev->dev,
961 			"hclgevf_put_vector get vector index fail. ret =%d\n",
962 			vector_id);
963 		return vector_id;
964 	}
965 
966 	hclgevf_free_vector(hdev, vector_id);
967 
968 	return 0;
969 }
970 
971 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
972 					bool en_bc_pmc)
973 {
974 	struct hclge_mbx_vf_to_pf_cmd *req;
975 	struct hclgevf_desc desc;
976 	int ret;
977 
978 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
979 
980 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
981 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
982 	req->msg[1] = en_bc_pmc ? 1 : 0;
983 
984 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
985 	if (ret)
986 		dev_err(&hdev->pdev->dev,
987 			"Set promisc mode fail, status is %d.\n", ret);
988 
989 	return ret;
990 }
991 
992 static int hclgevf_set_promisc_mode(struct hclgevf_dev *hdev, bool en_bc_pmc)
993 {
994 	return hclgevf_cmd_set_promisc_mode(hdev, en_bc_pmc);
995 }
996 
997 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
998 			      int stream_id, bool enable)
999 {
1000 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1001 	struct hclgevf_desc desc;
1002 	int status;
1003 
1004 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1005 
1006 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1007 				     false);
1008 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1009 	req->stream_id = cpu_to_le16(stream_id);
1010 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
1011 
1012 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1013 	if (status)
1014 		dev_err(&hdev->pdev->dev,
1015 			"TQP enable fail, status =%d.\n", status);
1016 
1017 	return status;
1018 }
1019 
1020 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1021 {
1022 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1023 	struct hclgevf_tqp *tqp;
1024 	int i;
1025 
1026 	for (i = 0; i < kinfo->num_tqps; i++) {
1027 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1028 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1029 	}
1030 }
1031 
1032 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1033 {
1034 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1035 
1036 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
1037 }
1038 
1039 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1040 				bool is_first)
1041 {
1042 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1043 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1044 	u8 *new_mac_addr = (u8 *)p;
1045 	u8 msg_data[ETH_ALEN * 2];
1046 	u16 subcode;
1047 	int status;
1048 
1049 	ether_addr_copy(msg_data, new_mac_addr);
1050 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1051 
1052 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1053 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1054 
1055 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1056 				      subcode, msg_data, ETH_ALEN * 2,
1057 				      true, NULL, 0);
1058 	if (!status)
1059 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1060 
1061 	return status;
1062 }
1063 
1064 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1065 			       const unsigned char *addr)
1066 {
1067 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1068 
1069 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1070 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1071 				    addr, ETH_ALEN, false, NULL, 0);
1072 }
1073 
1074 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1075 			      const unsigned char *addr)
1076 {
1077 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1078 
1079 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1080 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1081 				    addr, ETH_ALEN, false, NULL, 0);
1082 }
1083 
1084 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1085 			       const unsigned char *addr)
1086 {
1087 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1088 
1089 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1090 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1091 				    addr, ETH_ALEN, false, NULL, 0);
1092 }
1093 
1094 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1095 			      const unsigned char *addr)
1096 {
1097 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1098 
1099 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1100 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1101 				    addr, ETH_ALEN, false, NULL, 0);
1102 }
1103 
1104 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1105 				   __be16 proto, u16 vlan_id,
1106 				   bool is_kill)
1107 {
1108 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1109 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1110 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1111 
1112 	if (vlan_id > 4095)
1113 		return -EINVAL;
1114 
1115 	if (proto != htons(ETH_P_8021Q))
1116 		return -EPROTONOSUPPORT;
1117 
1118 	msg_data[0] = is_kill;
1119 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1120 	memcpy(&msg_data[3], &proto, sizeof(proto));
1121 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1122 				    HCLGE_MBX_VLAN_FILTER, msg_data,
1123 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1124 }
1125 
1126 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1127 {
1128 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1129 	u8 msg_data;
1130 
1131 	msg_data = enable ? 1 : 0;
1132 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1133 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1134 				    1, false, NULL, 0);
1135 }
1136 
1137 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1138 {
1139 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1140 	u8 msg_data[2];
1141 	int ret;
1142 
1143 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
1144 
1145 	/* disable vf queue before send queue reset msg to PF */
1146 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1147 	if (ret)
1148 		return ret;
1149 
1150 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1151 				    2, true, NULL, 0);
1152 }
1153 
1154 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1155 {
1156 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1157 
1158 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1159 				    sizeof(new_mtu), true, NULL, 0);
1160 }
1161 
1162 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1163 				 enum hnae3_reset_notify_type type)
1164 {
1165 	struct hnae3_client *client = hdev->nic_client;
1166 	struct hnae3_handle *handle = &hdev->nic;
1167 	int ret;
1168 
1169 	if (!client->ops->reset_notify)
1170 		return -EOPNOTSUPP;
1171 
1172 	ret = client->ops->reset_notify(handle, type);
1173 	if (ret)
1174 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1175 			type, ret);
1176 
1177 	return ret;
1178 }
1179 
1180 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1181 {
1182 	struct hclgevf_dev *hdev = ae_dev->priv;
1183 
1184 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1185 }
1186 
1187 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1188 				    unsigned long delay_us,
1189 				    unsigned long wait_cnt)
1190 {
1191 	unsigned long cnt = 0;
1192 
1193 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1194 	       cnt++ < wait_cnt)
1195 		usleep_range(delay_us, delay_us * 2);
1196 
1197 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1198 		dev_err(&hdev->pdev->dev,
1199 			"flr wait timeout\n");
1200 		return -ETIMEDOUT;
1201 	}
1202 
1203 	return 0;
1204 }
1205 
1206 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1207 {
1208 #define HCLGEVF_RESET_WAIT_US	20000
1209 #define HCLGEVF_RESET_WAIT_CNT	2000
1210 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1211 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1212 
1213 	u32 val;
1214 	int ret;
1215 
1216 	/* wait to check the hardware reset completion status */
1217 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1218 	dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1219 
1220 	if (hdev->reset_type == HNAE3_FLR_RESET)
1221 		return hclgevf_flr_poll_timeout(hdev,
1222 						HCLGEVF_RESET_WAIT_US,
1223 						HCLGEVF_RESET_WAIT_CNT);
1224 
1225 	ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1226 				 !(val & HCLGEVF_RST_ING_BITS),
1227 				 HCLGEVF_RESET_WAIT_US,
1228 				 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1229 
1230 	/* hardware completion status should be available by this time */
1231 	if (ret) {
1232 		dev_err(&hdev->pdev->dev,
1233 			"could'nt get reset done status from h/w, timeout!\n");
1234 		return ret;
1235 	}
1236 
1237 	/* we will wait a bit more to let reset of the stack to complete. This
1238 	 * might happen in case reset assertion was made by PF. Yes, this also
1239 	 * means we might end up waiting bit more even for VF reset.
1240 	 */
1241 	msleep(5000);
1242 
1243 	return 0;
1244 }
1245 
1246 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1247 {
1248 	int ret;
1249 
1250 	/* uninitialize the nic client */
1251 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1252 	if (ret)
1253 		return ret;
1254 
1255 	/* re-initialize the hclge device */
1256 	ret = hclgevf_reset_hdev(hdev);
1257 	if (ret) {
1258 		dev_err(&hdev->pdev->dev,
1259 			"hclge device re-init failed, VF is disabled!\n");
1260 		return ret;
1261 	}
1262 
1263 	/* bring up the nic client again */
1264 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1265 	if (ret)
1266 		return ret;
1267 
1268 	return hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1269 }
1270 
1271 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1272 {
1273 	int ret = 0;
1274 
1275 	switch (hdev->reset_type) {
1276 	case HNAE3_VF_FUNC_RESET:
1277 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1278 					   0, true, NULL, sizeof(u8));
1279 		break;
1280 	case HNAE3_FLR_RESET:
1281 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1282 		break;
1283 	default:
1284 		break;
1285 	}
1286 
1287 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1288 
1289 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1290 		 hdev->reset_type, ret);
1291 
1292 	return ret;
1293 }
1294 
1295 static int hclgevf_reset(struct hclgevf_dev *hdev)
1296 {
1297 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1298 	int ret;
1299 
1300 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1301 	 * know if device is undergoing reset
1302 	 */
1303 	ae_dev->reset_type = hdev->reset_type;
1304 	hdev->reset_count++;
1305 	rtnl_lock();
1306 
1307 	/* bring down the nic to stop any ongoing TX/RX */
1308 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1309 	if (ret)
1310 		goto err_reset_lock;
1311 
1312 	rtnl_unlock();
1313 
1314 	ret = hclgevf_reset_prepare_wait(hdev);
1315 	if (ret)
1316 		goto err_reset;
1317 
1318 	/* check if VF could successfully fetch the hardware reset completion
1319 	 * status from the hardware
1320 	 */
1321 	ret = hclgevf_reset_wait(hdev);
1322 	if (ret) {
1323 		/* can't do much in this situation, will disable VF */
1324 		dev_err(&hdev->pdev->dev,
1325 			"VF failed(=%d) to fetch H/W reset completion status\n",
1326 			ret);
1327 		goto err_reset;
1328 	}
1329 
1330 	rtnl_lock();
1331 
1332 	/* now, re-initialize the nic client and ae device*/
1333 	ret = hclgevf_reset_stack(hdev);
1334 	if (ret) {
1335 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1336 		goto err_reset_lock;
1337 	}
1338 
1339 	/* bring up the nic to enable TX/RX again */
1340 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1341 	if (ret)
1342 		goto err_reset_lock;
1343 
1344 	rtnl_unlock();
1345 
1346 	hdev->last_reset_time = jiffies;
1347 	ae_dev->reset_type = HNAE3_NONE_RESET;
1348 
1349 	return ret;
1350 err_reset_lock:
1351 	rtnl_unlock();
1352 err_reset:
1353 	/* When VF reset failed, only the higher level reset asserted by PF
1354 	 * can restore it, so re-initialize the command queue to receive
1355 	 * this higher reset event.
1356 	 */
1357 	hclgevf_cmd_init(hdev);
1358 	dev_err(&hdev->pdev->dev, "failed to reset VF\n");
1359 
1360 	return ret;
1361 }
1362 
1363 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1364 						     unsigned long *addr)
1365 {
1366 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1367 
1368 	/* return the highest priority reset level amongst all */
1369 	if (test_bit(HNAE3_VF_RESET, addr)) {
1370 		rst_level = HNAE3_VF_RESET;
1371 		clear_bit(HNAE3_VF_RESET, addr);
1372 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1373 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1374 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1375 		rst_level = HNAE3_VF_FULL_RESET;
1376 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1377 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1378 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1379 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1380 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1381 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1382 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1383 		rst_level = HNAE3_VF_FUNC_RESET;
1384 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1385 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1386 		rst_level = HNAE3_FLR_RESET;
1387 		clear_bit(HNAE3_FLR_RESET, addr);
1388 	}
1389 
1390 	return rst_level;
1391 }
1392 
1393 static void hclgevf_reset_event(struct pci_dev *pdev,
1394 				struct hnae3_handle *handle)
1395 {
1396 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1397 	struct hclgevf_dev *hdev = ae_dev->priv;
1398 
1399 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1400 
1401 	if (hdev->default_reset_request)
1402 		hdev->reset_level =
1403 			hclgevf_get_reset_level(hdev,
1404 						&hdev->default_reset_request);
1405 	else
1406 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1407 
1408 	/* reset of this VF requested */
1409 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1410 	hclgevf_reset_task_schedule(hdev);
1411 
1412 	hdev->last_reset_time = jiffies;
1413 }
1414 
1415 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1416 					  enum hnae3_reset_type rst_type)
1417 {
1418 	struct hclgevf_dev *hdev = ae_dev->priv;
1419 
1420 	set_bit(rst_type, &hdev->default_reset_request);
1421 }
1422 
1423 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1424 {
1425 #define HCLGEVF_FLR_WAIT_MS	100
1426 #define HCLGEVF_FLR_WAIT_CNT	50
1427 	struct hclgevf_dev *hdev = ae_dev->priv;
1428 	int cnt = 0;
1429 
1430 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1431 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1432 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1433 	hclgevf_reset_event(hdev->pdev, NULL);
1434 
1435 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1436 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1437 		msleep(HCLGEVF_FLR_WAIT_MS);
1438 
1439 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1440 		dev_err(&hdev->pdev->dev,
1441 			"flr wait down timeout: %d\n", cnt);
1442 }
1443 
1444 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1445 {
1446 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1447 
1448 	return hdev->fw_version;
1449 }
1450 
1451 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1452 {
1453 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1454 
1455 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1456 					    HCLGEVF_MISC_VECTOR_NUM);
1457 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1458 	/* vector status always valid for Vector 0 */
1459 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1460 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1461 
1462 	hdev->num_msi_left -= 1;
1463 	hdev->num_msi_used += 1;
1464 }
1465 
1466 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1467 {
1468 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1469 	    !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
1470 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1471 		schedule_work(&hdev->rst_service_task);
1472 	}
1473 }
1474 
1475 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1476 {
1477 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1478 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1479 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1480 		schedule_work(&hdev->mbx_service_task);
1481 	}
1482 }
1483 
1484 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1485 {
1486 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1487 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1488 		schedule_work(&hdev->service_task);
1489 }
1490 
1491 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1492 {
1493 	/* if we have any pending mailbox event then schedule the mbx task */
1494 	if (hdev->mbx_event_pending)
1495 		hclgevf_mbx_task_schedule(hdev);
1496 
1497 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1498 		hclgevf_reset_task_schedule(hdev);
1499 }
1500 
1501 static void hclgevf_service_timer(struct timer_list *t)
1502 {
1503 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1504 
1505 	mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1506 
1507 	hclgevf_task_schedule(hdev);
1508 }
1509 
1510 static void hclgevf_reset_service_task(struct work_struct *work)
1511 {
1512 	struct hclgevf_dev *hdev =
1513 		container_of(work, struct hclgevf_dev, rst_service_task);
1514 	int ret;
1515 
1516 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1517 		return;
1518 
1519 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1520 
1521 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1522 			       &hdev->reset_state)) {
1523 		/* PF has initmated that it is about to reset the hardware.
1524 		 * We now have to poll & check if harware has actually completed
1525 		 * the reset sequence. On hardware reset completion, VF needs to
1526 		 * reset the client and ae device.
1527 		 */
1528 		hdev->reset_attempts = 0;
1529 
1530 		hdev->last_reset_time = jiffies;
1531 		while ((hdev->reset_type =
1532 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1533 		       != HNAE3_NONE_RESET) {
1534 			ret = hclgevf_reset(hdev);
1535 			if (ret)
1536 				dev_err(&hdev->pdev->dev,
1537 					"VF stack reset failed %d.\n", ret);
1538 		}
1539 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1540 				      &hdev->reset_state)) {
1541 		/* we could be here when either of below happens:
1542 		 * 1. reset was initiated due to watchdog timeout due to
1543 		 *    a. IMP was earlier reset and our TX got choked down and
1544 		 *       which resulted in watchdog reacting and inducing VF
1545 		 *       reset. This also means our cmdq would be unreliable.
1546 		 *    b. problem in TX due to other lower layer(example link
1547 		 *       layer not functioning properly etc.)
1548 		 * 2. VF reset might have been initiated due to some config
1549 		 *    change.
1550 		 *
1551 		 * NOTE: Theres no clear way to detect above cases than to react
1552 		 * to the response of PF for this reset request. PF will ack the
1553 		 * 1b and 2. cases but we will not get any intimation about 1a
1554 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1555 		 * communication between PF and VF would be broken.
1556 		 */
1557 
1558 		/* if we are never geting into pending state it means either:
1559 		 * 1. PF is not receiving our request which could be due to IMP
1560 		 *    reset
1561 		 * 2. PF is screwed
1562 		 * We cannot do much for 2. but to check first we can try reset
1563 		 * our PCIe + stack and see if it alleviates the problem.
1564 		 */
1565 		if (hdev->reset_attempts > 3) {
1566 			/* prepare for full reset of stack + pcie interface */
1567 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1568 
1569 			/* "defer" schedule the reset task again */
1570 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1571 		} else {
1572 			hdev->reset_attempts++;
1573 
1574 			set_bit(hdev->reset_level, &hdev->reset_pending);
1575 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1576 		}
1577 		hclgevf_reset_task_schedule(hdev);
1578 	}
1579 
1580 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1581 }
1582 
1583 static void hclgevf_mailbox_service_task(struct work_struct *work)
1584 {
1585 	struct hclgevf_dev *hdev;
1586 
1587 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1588 
1589 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1590 		return;
1591 
1592 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1593 
1594 	hclgevf_mbx_async_handler(hdev);
1595 
1596 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1597 }
1598 
1599 static void hclgevf_keep_alive_timer(struct timer_list *t)
1600 {
1601 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1602 
1603 	schedule_work(&hdev->keep_alive_task);
1604 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
1605 }
1606 
1607 static void hclgevf_keep_alive_task(struct work_struct *work)
1608 {
1609 	struct hclgevf_dev *hdev;
1610 	u8 respmsg;
1611 	int ret;
1612 
1613 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1614 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1615 				   0, false, &respmsg, sizeof(u8));
1616 	if (ret)
1617 		dev_err(&hdev->pdev->dev,
1618 			"VF sends keep alive cmd failed(=%d)\n", ret);
1619 }
1620 
1621 static void hclgevf_service_task(struct work_struct *work)
1622 {
1623 	struct hclgevf_dev *hdev;
1624 
1625 	hdev = container_of(work, struct hclgevf_dev, service_task);
1626 
1627 	/* request the link status from the PF. PF would be able to tell VF
1628 	 * about such updates in future so we might remove this later
1629 	 */
1630 	hclgevf_request_link_info(hdev);
1631 
1632 	hclgevf_deferred_task_schedule(hdev);
1633 
1634 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1635 }
1636 
1637 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1638 {
1639 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1640 }
1641 
1642 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1643 						      u32 *clearval)
1644 {
1645 	u32 cmdq_src_reg, rst_ing_reg;
1646 
1647 	/* fetch the events from their corresponding regs */
1648 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1649 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1650 
1651 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1652 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1653 		dev_info(&hdev->pdev->dev,
1654 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1655 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1656 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1657 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1658 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1659 		*clearval = cmdq_src_reg;
1660 		return HCLGEVF_VECTOR0_EVENT_RST;
1661 	}
1662 
1663 	/* check for vector0 mailbox(=CMDQ RX) event source */
1664 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1665 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1666 		*clearval = cmdq_src_reg;
1667 		return HCLGEVF_VECTOR0_EVENT_MBX;
1668 	}
1669 
1670 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1671 
1672 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1673 }
1674 
1675 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1676 {
1677 	writel(en ? 1 : 0, vector->addr);
1678 }
1679 
1680 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1681 {
1682 	enum hclgevf_evt_cause event_cause;
1683 	struct hclgevf_dev *hdev = data;
1684 	u32 clearval;
1685 
1686 	hclgevf_enable_vector(&hdev->misc_vector, false);
1687 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1688 
1689 	switch (event_cause) {
1690 	case HCLGEVF_VECTOR0_EVENT_RST:
1691 		hclgevf_reset_task_schedule(hdev);
1692 		break;
1693 	case HCLGEVF_VECTOR0_EVENT_MBX:
1694 		hclgevf_mbx_handler(hdev);
1695 		break;
1696 	default:
1697 		break;
1698 	}
1699 
1700 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1701 		hclgevf_clear_event_cause(hdev, clearval);
1702 		hclgevf_enable_vector(&hdev->misc_vector, true);
1703 	}
1704 
1705 	return IRQ_HANDLED;
1706 }
1707 
1708 static int hclgevf_configure(struct hclgevf_dev *hdev)
1709 {
1710 	int ret;
1711 
1712 	hdev->hw.mac.media_type = HNAE3_MEDIA_TYPE_NONE;
1713 
1714 	/* get queue configuration from PF */
1715 	ret = hclgevf_get_queue_info(hdev);
1716 	if (ret)
1717 		return ret;
1718 	/* get tc configuration from PF */
1719 	return hclgevf_get_tc_info(hdev);
1720 }
1721 
1722 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1723 {
1724 	struct pci_dev *pdev = ae_dev->pdev;
1725 	struct hclgevf_dev *hdev;
1726 
1727 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1728 	if (!hdev)
1729 		return -ENOMEM;
1730 
1731 	hdev->pdev = pdev;
1732 	hdev->ae_dev = ae_dev;
1733 	ae_dev->priv = hdev;
1734 
1735 	return 0;
1736 }
1737 
1738 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1739 {
1740 	struct hnae3_handle *roce = &hdev->roce;
1741 	struct hnae3_handle *nic = &hdev->nic;
1742 
1743 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1744 
1745 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1746 	    hdev->num_msi_left == 0)
1747 		return -EINVAL;
1748 
1749 	roce->rinfo.base_vector = hdev->roce_base_vector;
1750 
1751 	roce->rinfo.netdev = nic->kinfo.netdev;
1752 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1753 
1754 	roce->pdev = nic->pdev;
1755 	roce->ae_algo = nic->ae_algo;
1756 	roce->numa_node_mask = nic->numa_node_mask;
1757 
1758 	return 0;
1759 }
1760 
1761 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
1762 {
1763 	struct hclgevf_cfg_gro_status_cmd *req;
1764 	struct hclgevf_desc desc;
1765 	int ret;
1766 
1767 	if (!hnae3_dev_gro_supported(hdev))
1768 		return 0;
1769 
1770 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
1771 				     false);
1772 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
1773 
1774 	req->gro_en = cpu_to_le16(en ? 1 : 0);
1775 
1776 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1777 	if (ret)
1778 		dev_err(&hdev->pdev->dev,
1779 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
1780 
1781 	return ret;
1782 }
1783 
1784 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1785 {
1786 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1787 	int i, ret;
1788 
1789 	rss_cfg->rss_size = hdev->rss_size_max;
1790 
1791 	if (hdev->pdev->revision >= 0x21) {
1792 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
1793 		netdev_rss_key_fill(rss_cfg->rss_hash_key,
1794 				    HCLGEVF_RSS_KEY_SIZE);
1795 
1796 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
1797 					       rss_cfg->rss_hash_key);
1798 		if (ret)
1799 			return ret;
1800 
1801 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
1802 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1803 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
1804 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1805 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
1806 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1807 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
1808 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1809 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
1810 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1811 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
1812 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1813 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
1814 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1815 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
1816 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1817 
1818 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
1819 		if (ret)
1820 			return ret;
1821 
1822 	}
1823 
1824 	/* Initialize RSS indirect table for each vport */
1825 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1826 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1827 
1828 	ret = hclgevf_set_rss_indir_table(hdev);
1829 	if (ret)
1830 		return ret;
1831 
1832 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1833 }
1834 
1835 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
1836 {
1837 	/* other vlan config(like, VLAN TX/RX offload) would also be added
1838 	 * here later
1839 	 */
1840 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
1841 				       false);
1842 }
1843 
1844 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
1845 {
1846 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1847 
1848 	if (enable) {
1849 		mod_timer(&hdev->service_timer, jiffies + HZ);
1850 	} else {
1851 		del_timer_sync(&hdev->service_timer);
1852 		cancel_work_sync(&hdev->service_task);
1853 		clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1854 	}
1855 }
1856 
1857 static int hclgevf_ae_start(struct hnae3_handle *handle)
1858 {
1859 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1860 
1861 	/* reset tqp stats */
1862 	hclgevf_reset_tqp_stats(handle);
1863 
1864 	hclgevf_request_link_info(hdev);
1865 
1866 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1867 
1868 	return 0;
1869 }
1870 
1871 static void hclgevf_ae_stop(struct hnae3_handle *handle)
1872 {
1873 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1874 	int i;
1875 
1876 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1877 
1878 	for (i = 0; i < handle->kinfo.num_tqps; i++)
1879 		hclgevf_reset_tqp(handle, i);
1880 
1881 	/* reset tqp stats */
1882 	hclgevf_reset_tqp_stats(handle);
1883 	hclgevf_update_link_status(hdev, 0);
1884 }
1885 
1886 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
1887 {
1888 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1889 	u8 msg_data;
1890 
1891 	msg_data = alive ? 1 : 0;
1892 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
1893 				    0, &msg_data, 1, false, NULL, 0);
1894 }
1895 
1896 static int hclgevf_client_start(struct hnae3_handle *handle)
1897 {
1898 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1899 
1900 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
1901 	return hclgevf_set_alive(handle, true);
1902 }
1903 
1904 static void hclgevf_client_stop(struct hnae3_handle *handle)
1905 {
1906 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1907 	int ret;
1908 
1909 	ret = hclgevf_set_alive(handle, false);
1910 	if (ret)
1911 		dev_warn(&hdev->pdev->dev,
1912 			 "%s failed %d\n", __func__, ret);
1913 
1914 	del_timer_sync(&hdev->keep_alive_timer);
1915 	cancel_work_sync(&hdev->keep_alive_task);
1916 }
1917 
1918 static void hclgevf_state_init(struct hclgevf_dev *hdev)
1919 {
1920 	/* setup tasks for the MBX */
1921 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
1922 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1923 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1924 
1925 	/* setup tasks for service timer */
1926 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
1927 
1928 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
1929 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1930 
1931 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
1932 
1933 	mutex_init(&hdev->mbx_resp.mbx_mutex);
1934 
1935 	/* bring the device down */
1936 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1937 }
1938 
1939 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
1940 {
1941 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1942 
1943 	if (hdev->service_timer.function)
1944 		del_timer_sync(&hdev->service_timer);
1945 	if (hdev->service_task.func)
1946 		cancel_work_sync(&hdev->service_task);
1947 	if (hdev->mbx_service_task.func)
1948 		cancel_work_sync(&hdev->mbx_service_task);
1949 	if (hdev->rst_service_task.func)
1950 		cancel_work_sync(&hdev->rst_service_task);
1951 
1952 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
1953 }
1954 
1955 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
1956 {
1957 	struct pci_dev *pdev = hdev->pdev;
1958 	int vectors;
1959 	int i;
1960 
1961 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
1962 		vectors = pci_alloc_irq_vectors(pdev,
1963 						hdev->roce_base_msix_offset + 1,
1964 						hdev->num_msi,
1965 						PCI_IRQ_MSIX);
1966 	else
1967 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
1968 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
1969 
1970 	if (vectors < 0) {
1971 		dev_err(&pdev->dev,
1972 			"failed(%d) to allocate MSI/MSI-X vectors\n",
1973 			vectors);
1974 		return vectors;
1975 	}
1976 	if (vectors < hdev->num_msi)
1977 		dev_warn(&hdev->pdev->dev,
1978 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
1979 			 hdev->num_msi, vectors);
1980 
1981 	hdev->num_msi = vectors;
1982 	hdev->num_msi_left = vectors;
1983 	hdev->base_msi_vector = pdev->irq;
1984 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
1985 
1986 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
1987 					   sizeof(u16), GFP_KERNEL);
1988 	if (!hdev->vector_status) {
1989 		pci_free_irq_vectors(pdev);
1990 		return -ENOMEM;
1991 	}
1992 
1993 	for (i = 0; i < hdev->num_msi; i++)
1994 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
1995 
1996 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
1997 					sizeof(int), GFP_KERNEL);
1998 	if (!hdev->vector_irq) {
1999 		devm_kfree(&pdev->dev, hdev->vector_status);
2000 		pci_free_irq_vectors(pdev);
2001 		return -ENOMEM;
2002 	}
2003 
2004 	return 0;
2005 }
2006 
2007 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2008 {
2009 	struct pci_dev *pdev = hdev->pdev;
2010 
2011 	devm_kfree(&pdev->dev, hdev->vector_status);
2012 	devm_kfree(&pdev->dev, hdev->vector_irq);
2013 	pci_free_irq_vectors(pdev);
2014 }
2015 
2016 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2017 {
2018 	int ret = 0;
2019 
2020 	hclgevf_get_misc_vector(hdev);
2021 
2022 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2023 			  0, "hclgevf_cmd", hdev);
2024 	if (ret) {
2025 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2026 			hdev->misc_vector.vector_irq);
2027 		return ret;
2028 	}
2029 
2030 	hclgevf_clear_event_cause(hdev, 0);
2031 
2032 	/* enable misc. vector(vector 0) */
2033 	hclgevf_enable_vector(&hdev->misc_vector, true);
2034 
2035 	return ret;
2036 }
2037 
2038 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2039 {
2040 	/* disable misc vector(vector 0) */
2041 	hclgevf_enable_vector(&hdev->misc_vector, false);
2042 	synchronize_irq(hdev->misc_vector.vector_irq);
2043 	free_irq(hdev->misc_vector.vector_irq, hdev);
2044 	hclgevf_free_vector(hdev, 0);
2045 }
2046 
2047 static int hclgevf_init_client_instance(struct hnae3_client *client,
2048 					struct hnae3_ae_dev *ae_dev)
2049 {
2050 	struct hclgevf_dev *hdev = ae_dev->priv;
2051 	int ret;
2052 
2053 	switch (client->type) {
2054 	case HNAE3_CLIENT_KNIC:
2055 		hdev->nic_client = client;
2056 		hdev->nic.client = client;
2057 
2058 		ret = client->ops->init_instance(&hdev->nic);
2059 		if (ret)
2060 			goto clear_nic;
2061 
2062 		hnae3_set_client_init_flag(client, ae_dev, 1);
2063 
2064 		if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
2065 			struct hnae3_client *rc = hdev->roce_client;
2066 
2067 			ret = hclgevf_init_roce_base_info(hdev);
2068 			if (ret)
2069 				goto clear_roce;
2070 			ret = rc->ops->init_instance(&hdev->roce);
2071 			if (ret)
2072 				goto clear_roce;
2073 
2074 			hnae3_set_client_init_flag(hdev->roce_client, ae_dev,
2075 						   1);
2076 		}
2077 		break;
2078 	case HNAE3_CLIENT_UNIC:
2079 		hdev->nic_client = client;
2080 		hdev->nic.client = client;
2081 
2082 		ret = client->ops->init_instance(&hdev->nic);
2083 		if (ret)
2084 			goto clear_nic;
2085 
2086 		hnae3_set_client_init_flag(client, ae_dev, 1);
2087 		break;
2088 	case HNAE3_CLIENT_ROCE:
2089 		if (hnae3_dev_roce_supported(hdev)) {
2090 			hdev->roce_client = client;
2091 			hdev->roce.client = client;
2092 		}
2093 
2094 		if (hdev->roce_client && hdev->nic_client) {
2095 			ret = hclgevf_init_roce_base_info(hdev);
2096 			if (ret)
2097 				goto clear_roce;
2098 
2099 			ret = client->ops->init_instance(&hdev->roce);
2100 			if (ret)
2101 				goto clear_roce;
2102 		}
2103 
2104 		hnae3_set_client_init_flag(client, ae_dev, 1);
2105 		break;
2106 	default:
2107 		return -EINVAL;
2108 	}
2109 
2110 	return 0;
2111 
2112 clear_nic:
2113 	hdev->nic_client = NULL;
2114 	hdev->nic.client = NULL;
2115 	return ret;
2116 clear_roce:
2117 	hdev->roce_client = NULL;
2118 	hdev->roce.client = NULL;
2119 	return ret;
2120 }
2121 
2122 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2123 					   struct hnae3_ae_dev *ae_dev)
2124 {
2125 	struct hclgevf_dev *hdev = ae_dev->priv;
2126 
2127 	/* un-init roce, if it exists */
2128 	if (hdev->roce_client) {
2129 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2130 		hdev->roce_client = NULL;
2131 		hdev->roce.client = NULL;
2132 	}
2133 
2134 	/* un-init nic/unic, if this was not called by roce client */
2135 	if (client->ops->uninit_instance && hdev->nic_client &&
2136 	    client->type != HNAE3_CLIENT_ROCE) {
2137 		client->ops->uninit_instance(&hdev->nic, 0);
2138 		hdev->nic_client = NULL;
2139 		hdev->nic.client = NULL;
2140 	}
2141 }
2142 
2143 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2144 {
2145 	struct pci_dev *pdev = hdev->pdev;
2146 	struct hclgevf_hw *hw;
2147 	int ret;
2148 
2149 	ret = pci_enable_device(pdev);
2150 	if (ret) {
2151 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2152 		return ret;
2153 	}
2154 
2155 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2156 	if (ret) {
2157 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2158 		goto err_disable_device;
2159 	}
2160 
2161 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2162 	if (ret) {
2163 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2164 		goto err_disable_device;
2165 	}
2166 
2167 	pci_set_master(pdev);
2168 	hw = &hdev->hw;
2169 	hw->hdev = hdev;
2170 	hw->io_base = pci_iomap(pdev, 2, 0);
2171 	if (!hw->io_base) {
2172 		dev_err(&pdev->dev, "can't map configuration register space\n");
2173 		ret = -ENOMEM;
2174 		goto err_clr_master;
2175 	}
2176 
2177 	return 0;
2178 
2179 err_clr_master:
2180 	pci_clear_master(pdev);
2181 	pci_release_regions(pdev);
2182 err_disable_device:
2183 	pci_disable_device(pdev);
2184 
2185 	return ret;
2186 }
2187 
2188 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2189 {
2190 	struct pci_dev *pdev = hdev->pdev;
2191 
2192 	pci_iounmap(pdev, hdev->hw.io_base);
2193 	pci_clear_master(pdev);
2194 	pci_release_regions(pdev);
2195 	pci_disable_device(pdev);
2196 }
2197 
2198 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2199 {
2200 	struct hclgevf_query_res_cmd *req;
2201 	struct hclgevf_desc desc;
2202 	int ret;
2203 
2204 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2205 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2206 	if (ret) {
2207 		dev_err(&hdev->pdev->dev,
2208 			"query vf resource failed, ret = %d.\n", ret);
2209 		return ret;
2210 	}
2211 
2212 	req = (struct hclgevf_query_res_cmd *)desc.data;
2213 
2214 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2215 		hdev->roce_base_msix_offset =
2216 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2217 				HCLGEVF_MSIX_OFT_ROCEE_M,
2218 				HCLGEVF_MSIX_OFT_ROCEE_S);
2219 		hdev->num_roce_msix =
2220 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2221 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2222 
2223 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2224 		 * are queued before Roce vectors. The offset is fixed to 64.
2225 		 */
2226 		hdev->num_msi = hdev->num_roce_msix +
2227 				hdev->roce_base_msix_offset;
2228 	} else {
2229 		hdev->num_msi =
2230 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2231 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2232 	}
2233 
2234 	return 0;
2235 }
2236 
2237 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2238 {
2239 	struct pci_dev *pdev = hdev->pdev;
2240 	int ret = 0;
2241 
2242 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2243 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2244 		hclgevf_misc_irq_uninit(hdev);
2245 		hclgevf_uninit_msi(hdev);
2246 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2247 	}
2248 
2249 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2250 		pci_set_master(pdev);
2251 		ret = hclgevf_init_msi(hdev);
2252 		if (ret) {
2253 			dev_err(&pdev->dev,
2254 				"failed(%d) to init MSI/MSI-X\n", ret);
2255 			return ret;
2256 		}
2257 
2258 		ret = hclgevf_misc_irq_init(hdev);
2259 		if (ret) {
2260 			hclgevf_uninit_msi(hdev);
2261 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2262 				ret);
2263 			return ret;
2264 		}
2265 
2266 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2267 	}
2268 
2269 	return ret;
2270 }
2271 
2272 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2273 {
2274 	struct pci_dev *pdev = hdev->pdev;
2275 	int ret;
2276 
2277 	ret = hclgevf_pci_reset(hdev);
2278 	if (ret) {
2279 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2280 		return ret;
2281 	}
2282 
2283 	ret = hclgevf_cmd_init(hdev);
2284 	if (ret) {
2285 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2286 		return ret;
2287 	}
2288 
2289 	ret = hclgevf_rss_init_hw(hdev);
2290 	if (ret) {
2291 		dev_err(&hdev->pdev->dev,
2292 			"failed(%d) to initialize RSS\n", ret);
2293 		return ret;
2294 	}
2295 
2296 	ret = hclgevf_config_gro(hdev, true);
2297 	if (ret)
2298 		return ret;
2299 
2300 	ret = hclgevf_init_vlan_config(hdev);
2301 	if (ret) {
2302 		dev_err(&hdev->pdev->dev,
2303 			"failed(%d) to initialize VLAN config\n", ret);
2304 		return ret;
2305 	}
2306 
2307 	dev_info(&hdev->pdev->dev, "Reset done\n");
2308 
2309 	return 0;
2310 }
2311 
2312 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2313 {
2314 	struct pci_dev *pdev = hdev->pdev;
2315 	int ret;
2316 
2317 	ret = hclgevf_pci_init(hdev);
2318 	if (ret) {
2319 		dev_err(&pdev->dev, "PCI initialization failed\n");
2320 		return ret;
2321 	}
2322 
2323 	ret = hclgevf_cmd_queue_init(hdev);
2324 	if (ret) {
2325 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2326 		goto err_cmd_queue_init;
2327 	}
2328 
2329 	ret = hclgevf_cmd_init(hdev);
2330 	if (ret)
2331 		goto err_cmd_init;
2332 
2333 	/* Get vf resource */
2334 	ret = hclgevf_query_vf_resource(hdev);
2335 	if (ret) {
2336 		dev_err(&hdev->pdev->dev,
2337 			"Query vf status error, ret = %d.\n", ret);
2338 		goto err_cmd_init;
2339 	}
2340 
2341 	ret = hclgevf_init_msi(hdev);
2342 	if (ret) {
2343 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2344 		goto err_cmd_init;
2345 	}
2346 
2347 	hclgevf_state_init(hdev);
2348 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2349 
2350 	ret = hclgevf_misc_irq_init(hdev);
2351 	if (ret) {
2352 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2353 			ret);
2354 		goto err_misc_irq_init;
2355 	}
2356 
2357 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2358 
2359 	ret = hclgevf_configure(hdev);
2360 	if (ret) {
2361 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2362 		goto err_config;
2363 	}
2364 
2365 	ret = hclgevf_alloc_tqps(hdev);
2366 	if (ret) {
2367 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2368 		goto err_config;
2369 	}
2370 
2371 	ret = hclgevf_set_handle_info(hdev);
2372 	if (ret) {
2373 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2374 		goto err_config;
2375 	}
2376 
2377 	ret = hclgevf_config_gro(hdev, true);
2378 	if (ret)
2379 		goto err_config;
2380 
2381 	/* vf is not allowed to enable unicast/multicast promisc mode.
2382 	 * For revision 0x20, default to disable broadcast promisc mode,
2383 	 * firmware makes sure broadcast packets can be accepted.
2384 	 * For revision 0x21, default to enable broadcast promisc mode.
2385 	 */
2386 	ret = hclgevf_set_promisc_mode(hdev, true);
2387 	if (ret)
2388 		goto err_config;
2389 
2390 	/* Initialize RSS for this VF */
2391 	ret = hclgevf_rss_init_hw(hdev);
2392 	if (ret) {
2393 		dev_err(&hdev->pdev->dev,
2394 			"failed(%d) to initialize RSS\n", ret);
2395 		goto err_config;
2396 	}
2397 
2398 	ret = hclgevf_init_vlan_config(hdev);
2399 	if (ret) {
2400 		dev_err(&hdev->pdev->dev,
2401 			"failed(%d) to initialize VLAN config\n", ret);
2402 		goto err_config;
2403 	}
2404 
2405 	hdev->last_reset_time = jiffies;
2406 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2407 
2408 	return 0;
2409 
2410 err_config:
2411 	hclgevf_misc_irq_uninit(hdev);
2412 err_misc_irq_init:
2413 	hclgevf_state_uninit(hdev);
2414 	hclgevf_uninit_msi(hdev);
2415 err_cmd_init:
2416 	hclgevf_cmd_uninit(hdev);
2417 err_cmd_queue_init:
2418 	hclgevf_pci_uninit(hdev);
2419 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2420 	return ret;
2421 }
2422 
2423 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2424 {
2425 	hclgevf_state_uninit(hdev);
2426 
2427 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2428 		hclgevf_misc_irq_uninit(hdev);
2429 		hclgevf_uninit_msi(hdev);
2430 	}
2431 
2432 	hclgevf_pci_uninit(hdev);
2433 	hclgevf_cmd_uninit(hdev);
2434 }
2435 
2436 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2437 {
2438 	struct pci_dev *pdev = ae_dev->pdev;
2439 	struct hclgevf_dev *hdev;
2440 	int ret;
2441 
2442 	ret = hclgevf_alloc_hdev(ae_dev);
2443 	if (ret) {
2444 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2445 		return ret;
2446 	}
2447 
2448 	ret = hclgevf_init_hdev(ae_dev->priv);
2449 	if (ret) {
2450 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2451 		return ret;
2452 	}
2453 
2454 	hdev = ae_dev->priv;
2455 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2456 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2457 
2458 	return 0;
2459 }
2460 
2461 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2462 {
2463 	struct hclgevf_dev *hdev = ae_dev->priv;
2464 
2465 	hclgevf_uninit_hdev(hdev);
2466 	ae_dev->priv = NULL;
2467 }
2468 
2469 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2470 {
2471 	struct hnae3_handle *nic = &hdev->nic;
2472 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2473 
2474 	return min_t(u32, hdev->rss_size_max,
2475 		     hdev->num_tqps / kinfo->num_tc);
2476 }
2477 
2478 /**
2479  * hclgevf_get_channels - Get the current channels enabled and max supported.
2480  * @handle: hardware information for network interface
2481  * @ch: ethtool channels structure
2482  *
2483  * We don't support separate tx and rx queues as channels. The other count
2484  * represents how many queues are being used for control. max_combined counts
2485  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2486  * q_vectors since we support a lot more queue pairs than q_vectors.
2487  **/
2488 static void hclgevf_get_channels(struct hnae3_handle *handle,
2489 				 struct ethtool_channels *ch)
2490 {
2491 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2492 
2493 	ch->max_combined = hclgevf_get_max_channels(hdev);
2494 	ch->other_count = 0;
2495 	ch->max_other = 0;
2496 	ch->combined_count = handle->kinfo.rss_size;
2497 }
2498 
2499 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2500 					  u16 *alloc_tqps, u16 *max_rss_size)
2501 {
2502 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2503 
2504 	*alloc_tqps = hdev->num_tqps;
2505 	*max_rss_size = hdev->rss_size_max;
2506 }
2507 
2508 static int hclgevf_get_status(struct hnae3_handle *handle)
2509 {
2510 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2511 
2512 	return hdev->hw.mac.link;
2513 }
2514 
2515 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2516 					    u8 *auto_neg, u32 *speed,
2517 					    u8 *duplex)
2518 {
2519 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2520 
2521 	if (speed)
2522 		*speed = hdev->hw.mac.speed;
2523 	if (duplex)
2524 		*duplex = hdev->hw.mac.duplex;
2525 	if (auto_neg)
2526 		*auto_neg = AUTONEG_DISABLE;
2527 }
2528 
2529 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2530 				 u8 duplex)
2531 {
2532 	hdev->hw.mac.speed = speed;
2533 	hdev->hw.mac.duplex = duplex;
2534 }
2535 
2536 static int hclgevf_gro_en(struct hnae3_handle *handle, int enable)
2537 {
2538 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2539 
2540 	return hclgevf_config_gro(hdev, enable);
2541 }
2542 
2543 static void hclgevf_get_media_type(struct hnae3_handle *handle,
2544 				  u8 *media_type)
2545 {
2546 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2547 	if (media_type)
2548 		*media_type = hdev->hw.mac.media_type;
2549 }
2550 
2551 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2552 {
2553 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2554 
2555 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2556 }
2557 
2558 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2559 {
2560 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2561 
2562 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2563 }
2564 
2565 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2566 {
2567 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2568 
2569 	return hdev->reset_count;
2570 }
2571 
2572 #define MAX_SEPARATE_NUM	4
2573 #define SEPARATOR_VALUE		0xFFFFFFFF
2574 #define REG_NUM_PER_LINE	4
2575 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
2576 
2577 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2578 {
2579 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2580 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2581 
2582 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2583 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2584 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2585 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2586 
2587 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2588 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2589 }
2590 
2591 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
2592 			     void *data)
2593 {
2594 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2595 	int i, j, reg_um, separator_num;
2596 	u32 *reg = data;
2597 
2598 	*version = hdev->fw_version;
2599 
2600 	/* fetching per-VF registers values from VF PCIe register space */
2601 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
2602 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2603 	for (i = 0; i < reg_um; i++)
2604 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
2605 	for (i = 0; i < separator_num; i++)
2606 		*reg++ = SEPARATOR_VALUE;
2607 
2608 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
2609 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2610 	for (i = 0; i < reg_um; i++)
2611 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
2612 	for (i = 0; i < separator_num; i++)
2613 		*reg++ = SEPARATOR_VALUE;
2614 
2615 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
2616 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2617 	for (j = 0; j < hdev->num_tqps; j++) {
2618 		for (i = 0; i < reg_um; i++)
2619 			*reg++ = hclgevf_read_dev(&hdev->hw,
2620 						  ring_reg_addr_list[i] +
2621 						  0x200 * j);
2622 		for (i = 0; i < separator_num; i++)
2623 			*reg++ = SEPARATOR_VALUE;
2624 	}
2625 
2626 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
2627 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2628 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
2629 		for (i = 0; i < reg_um; i++)
2630 			*reg++ = hclgevf_read_dev(&hdev->hw,
2631 						  tqp_intr_reg_addr_list[i] +
2632 						  4 * j);
2633 		for (i = 0; i < separator_num; i++)
2634 			*reg++ = SEPARATOR_VALUE;
2635 	}
2636 }
2637 
2638 static const struct hnae3_ae_ops hclgevf_ops = {
2639 	.init_ae_dev = hclgevf_init_ae_dev,
2640 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2641 	.flr_prepare = hclgevf_flr_prepare,
2642 	.flr_done = hclgevf_flr_done,
2643 	.init_client_instance = hclgevf_init_client_instance,
2644 	.uninit_client_instance = hclgevf_uninit_client_instance,
2645 	.start = hclgevf_ae_start,
2646 	.stop = hclgevf_ae_stop,
2647 	.client_start = hclgevf_client_start,
2648 	.client_stop = hclgevf_client_stop,
2649 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
2650 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2651 	.get_vector = hclgevf_get_vector,
2652 	.put_vector = hclgevf_put_vector,
2653 	.reset_queue = hclgevf_reset_tqp,
2654 	.get_mac_addr = hclgevf_get_mac_addr,
2655 	.set_mac_addr = hclgevf_set_mac_addr,
2656 	.add_uc_addr = hclgevf_add_uc_addr,
2657 	.rm_uc_addr = hclgevf_rm_uc_addr,
2658 	.add_mc_addr = hclgevf_add_mc_addr,
2659 	.rm_mc_addr = hclgevf_rm_mc_addr,
2660 	.get_stats = hclgevf_get_stats,
2661 	.update_stats = hclgevf_update_stats,
2662 	.get_strings = hclgevf_get_strings,
2663 	.get_sset_count = hclgevf_get_sset_count,
2664 	.get_rss_key_size = hclgevf_get_rss_key_size,
2665 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2666 	.get_rss = hclgevf_get_rss,
2667 	.set_rss = hclgevf_set_rss,
2668 	.get_rss_tuple = hclgevf_get_rss_tuple,
2669 	.set_rss_tuple = hclgevf_set_rss_tuple,
2670 	.get_tc_size = hclgevf_get_tc_size,
2671 	.get_fw_version = hclgevf_get_fw_version,
2672 	.set_vlan_filter = hclgevf_set_vlan_filter,
2673 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2674 	.reset_event = hclgevf_reset_event,
2675 	.set_default_reset_request = hclgevf_set_def_reset_request,
2676 	.get_channels = hclgevf_get_channels,
2677 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2678 	.get_regs_len = hclgevf_get_regs_len,
2679 	.get_regs = hclgevf_get_regs,
2680 	.get_status = hclgevf_get_status,
2681 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2682 	.get_media_type = hclgevf_get_media_type,
2683 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
2684 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
2685 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
2686 	.set_gro_en = hclgevf_gro_en,
2687 	.set_mtu = hclgevf_set_mtu,
2688 	.get_global_queue_id = hclgevf_get_qid_global,
2689 	.set_timer_task = hclgevf_set_timer_task,
2690 };
2691 
2692 static struct hnae3_ae_algo ae_algovf = {
2693 	.ops = &hclgevf_ops,
2694 	.pdev_id_table = ae_algovf_pci_tbl,
2695 };
2696 
2697 static int hclgevf_init(void)
2698 {
2699 	pr_info("%s is initializing\n", HCLGEVF_NAME);
2700 
2701 	hnae3_register_ae_algo(&ae_algovf);
2702 
2703 	return 0;
2704 }
2705 
2706 static void hclgevf_exit(void)
2707 {
2708 	hnae3_unregister_ae_algo(&ae_algovf);
2709 }
2710 module_init(hclgevf_init);
2711 module_exit(hclgevf_exit);
2712 
2713 MODULE_LICENSE("GPL");
2714 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
2715 MODULE_DESCRIPTION("HCLGEVF Driver");
2716 MODULE_VERSION(HCLGEVF_MOD_VERSION);
2717