1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
25 
26 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
27 	struct hnae3_handle *handle)
28 {
29 	return container_of(handle, struct hclgevf_dev, nic);
30 }
31 
32 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
33 {
34 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
35 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
36 	struct hclgevf_desc desc;
37 	struct hclgevf_tqp *tqp;
38 	int status;
39 	int i;
40 
41 	for (i = 0; i < kinfo->num_tqps; i++) {
42 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
43 		hclgevf_cmd_setup_basic_desc(&desc,
44 					     HCLGEVF_OPC_QUERY_RX_STATUS,
45 					     true);
46 
47 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
48 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
49 		if (status) {
50 			dev_err(&hdev->pdev->dev,
51 				"Query tqp stat fail, status = %d,queue = %d\n",
52 				status,	i);
53 			return status;
54 		}
55 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
56 			le32_to_cpu(desc.data[1]);
57 
58 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
59 					     true);
60 
61 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
62 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
63 		if (status) {
64 			dev_err(&hdev->pdev->dev,
65 				"Query tqp stat fail, status = %d,queue = %d\n",
66 				status, i);
67 			return status;
68 		}
69 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
70 			le32_to_cpu(desc.data[1]);
71 	}
72 
73 	return 0;
74 }
75 
76 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
77 {
78 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
79 	struct hclgevf_tqp *tqp;
80 	u64 *buff = data;
81 	int i;
82 
83 	for (i = 0; i < kinfo->num_tqps; i++) {
84 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
85 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
86 	}
87 	for (i = 0; i < kinfo->num_tqps; i++) {
88 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
89 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
90 	}
91 
92 	return buff;
93 }
94 
95 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
96 {
97 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
98 
99 	return kinfo->num_tqps * 2;
100 }
101 
102 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
103 {
104 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
105 	u8 *buff = data;
106 	int i = 0;
107 
108 	for (i = 0; i < kinfo->num_tqps; i++) {
109 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
110 						       struct hclgevf_tqp, q);
111 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
112 			 tqp->index);
113 		buff += ETH_GSTRING_LEN;
114 	}
115 
116 	for (i = 0; i < kinfo->num_tqps; i++) {
117 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
118 						       struct hclgevf_tqp, q);
119 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
120 			 tqp->index);
121 		buff += ETH_GSTRING_LEN;
122 	}
123 
124 	return buff;
125 }
126 
127 static void hclgevf_update_stats(struct hnae3_handle *handle,
128 				 struct net_device_stats *net_stats)
129 {
130 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
131 	int status;
132 
133 	status = hclgevf_tqps_update_stats(handle);
134 	if (status)
135 		dev_err(&hdev->pdev->dev,
136 			"VF update of TQPS stats fail, status = %d.\n",
137 			status);
138 }
139 
140 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
141 {
142 	if (strset == ETH_SS_TEST)
143 		return -EOPNOTSUPP;
144 	else if (strset == ETH_SS_STATS)
145 		return hclgevf_tqps_get_sset_count(handle, strset);
146 
147 	return 0;
148 }
149 
150 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
151 				u8 *data)
152 {
153 	u8 *p = (char *)data;
154 
155 	if (strset == ETH_SS_STATS)
156 		p = hclgevf_tqps_get_strings(handle, p);
157 }
158 
159 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
160 {
161 	hclgevf_tqps_get_stats(handle, data);
162 }
163 
164 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
165 {
166 	u8 resp_msg;
167 	int status;
168 
169 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
170 				      true, &resp_msg, sizeof(u8));
171 	if (status) {
172 		dev_err(&hdev->pdev->dev,
173 			"VF request to get TC info from PF failed %d",
174 			status);
175 		return status;
176 	}
177 
178 	hdev->hw_tc_map = resp_msg;
179 
180 	return 0;
181 }
182 
183 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
184 {
185 #define HCLGEVF_TQPS_RSS_INFO_LEN	8
186 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
187 	int status;
188 
189 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
190 				      true, resp_msg,
191 				      HCLGEVF_TQPS_RSS_INFO_LEN);
192 	if (status) {
193 		dev_err(&hdev->pdev->dev,
194 			"VF request to get tqp info from PF failed %d",
195 			status);
196 		return status;
197 	}
198 
199 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
200 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
201 	memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16));
202 	memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16));
203 
204 	return 0;
205 }
206 
207 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
208 {
209 	struct hclgevf_tqp *tqp;
210 	int i;
211 
212 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
213 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
214 	if (!hdev->htqp)
215 		return -ENOMEM;
216 
217 	tqp = hdev->htqp;
218 
219 	for (i = 0; i < hdev->num_tqps; i++) {
220 		tqp->dev = &hdev->pdev->dev;
221 		tqp->index = i;
222 
223 		tqp->q.ae_algo = &ae_algovf;
224 		tqp->q.buf_size = hdev->rx_buf_len;
225 		tqp->q.desc_num = hdev->num_desc;
226 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
227 			i * HCLGEVF_TQP_REG_SIZE;
228 
229 		tqp++;
230 	}
231 
232 	return 0;
233 }
234 
235 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
236 {
237 	struct hnae3_handle *nic = &hdev->nic;
238 	struct hnae3_knic_private_info *kinfo;
239 	u16 new_tqps = hdev->num_tqps;
240 	int i;
241 
242 	kinfo = &nic->kinfo;
243 	kinfo->num_tc = 0;
244 	kinfo->num_desc = hdev->num_desc;
245 	kinfo->rx_buf_len = hdev->rx_buf_len;
246 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
247 		if (hdev->hw_tc_map & BIT(i))
248 			kinfo->num_tc++;
249 
250 	kinfo->rss_size
251 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
252 	new_tqps = kinfo->rss_size * kinfo->num_tc;
253 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
254 
255 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
256 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
257 	if (!kinfo->tqp)
258 		return -ENOMEM;
259 
260 	for (i = 0; i < kinfo->num_tqps; i++) {
261 		hdev->htqp[i].q.handle = &hdev->nic;
262 		hdev->htqp[i].q.tqp_index = i;
263 		kinfo->tqp[i] = &hdev->htqp[i].q;
264 	}
265 
266 	return 0;
267 }
268 
269 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
270 {
271 	int status;
272 	u8 resp_msg;
273 
274 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
275 				      0, false, &resp_msg, sizeof(u8));
276 	if (status)
277 		dev_err(&hdev->pdev->dev,
278 			"VF failed to fetch link status(%d) from PF", status);
279 }
280 
281 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
282 {
283 	struct hnae3_handle *handle = &hdev->nic;
284 	struct hnae3_client *client;
285 
286 	client = handle->client;
287 
288 	link_state =
289 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
290 
291 	if (link_state != hdev->hw.mac.link) {
292 		client->ops->link_status_change(handle, !!link_state);
293 		hdev->hw.mac.link = link_state;
294 	}
295 }
296 
297 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
298 {
299 	struct hnae3_handle *nic = &hdev->nic;
300 	int ret;
301 
302 	nic->ae_algo = &ae_algovf;
303 	nic->pdev = hdev->pdev;
304 	nic->numa_node_mask = hdev->numa_node_mask;
305 	nic->flags |= HNAE3_SUPPORT_VF;
306 
307 	if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
308 		dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
309 			hdev->ae_dev->dev_type);
310 		return -EINVAL;
311 	}
312 
313 	ret = hclgevf_knic_setup(hdev);
314 	if (ret)
315 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
316 			ret);
317 	return ret;
318 }
319 
320 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
321 {
322 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
323 		dev_warn(&hdev->pdev->dev,
324 			 "vector(vector_id %d) has been freed.\n", vector_id);
325 		return;
326 	}
327 
328 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
329 	hdev->num_msi_left += 1;
330 	hdev->num_msi_used -= 1;
331 }
332 
333 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
334 			      struct hnae3_vector_info *vector_info)
335 {
336 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
337 	struct hnae3_vector_info *vector = vector_info;
338 	int alloc = 0;
339 	int i, j;
340 
341 	vector_num = min(hdev->num_msi_left, vector_num);
342 
343 	for (j = 0; j < vector_num; j++) {
344 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
345 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
346 				vector->vector = pci_irq_vector(hdev->pdev, i);
347 				vector->io_addr = hdev->hw.io_base +
348 					HCLGEVF_VECTOR_REG_BASE +
349 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
350 				hdev->vector_status[i] = 0;
351 				hdev->vector_irq[i] = vector->vector;
352 
353 				vector++;
354 				alloc++;
355 
356 				break;
357 			}
358 		}
359 	}
360 	hdev->num_msi_left -= alloc;
361 	hdev->num_msi_used += alloc;
362 
363 	return alloc;
364 }
365 
366 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
367 {
368 	int i;
369 
370 	for (i = 0; i < hdev->num_msi; i++)
371 		if (vector == hdev->vector_irq[i])
372 			return i;
373 
374 	return -EINVAL;
375 }
376 
377 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
378 				    const u8 hfunc, const u8 *key)
379 {
380 	struct hclgevf_rss_config_cmd *req;
381 	struct hclgevf_desc desc;
382 	int key_offset;
383 	int key_size;
384 	int ret;
385 
386 	req = (struct hclgevf_rss_config_cmd *)desc.data;
387 
388 	for (key_offset = 0; key_offset < 3; key_offset++) {
389 		hclgevf_cmd_setup_basic_desc(&desc,
390 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
391 					     false);
392 
393 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
394 		req->hash_config |=
395 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
396 
397 		if (key_offset == 2)
398 			key_size =
399 			HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
400 		else
401 			key_size = HCLGEVF_RSS_HASH_KEY_NUM;
402 
403 		memcpy(req->hash_key,
404 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
405 
406 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
407 		if (ret) {
408 			dev_err(&hdev->pdev->dev,
409 				"Configure RSS config fail, status = %d\n",
410 				ret);
411 			return ret;
412 		}
413 	}
414 
415 	return 0;
416 }
417 
418 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
419 {
420 	return HCLGEVF_RSS_KEY_SIZE;
421 }
422 
423 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
424 {
425 	return HCLGEVF_RSS_IND_TBL_SIZE;
426 }
427 
428 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
429 {
430 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
431 	struct hclgevf_rss_indirection_table_cmd *req;
432 	struct hclgevf_desc desc;
433 	int status;
434 	int i, j;
435 
436 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
437 
438 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
439 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
440 					     false);
441 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
442 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
443 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
444 			req->rss_result[j] =
445 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
446 
447 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
448 		if (status) {
449 			dev_err(&hdev->pdev->dev,
450 				"VF failed(=%d) to set RSS indirection table\n",
451 				status);
452 			return status;
453 		}
454 	}
455 
456 	return 0;
457 }
458 
459 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
460 {
461 	struct hclgevf_rss_tc_mode_cmd *req;
462 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
463 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
464 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
465 	struct hclgevf_desc desc;
466 	u16 roundup_size;
467 	int status;
468 	int i;
469 
470 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
471 
472 	roundup_size = roundup_pow_of_two(rss_size);
473 	roundup_size = ilog2(roundup_size);
474 
475 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
476 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
477 		tc_size[i] = roundup_size;
478 		tc_offset[i] = rss_size * i;
479 	}
480 
481 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
482 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
483 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
484 			      (tc_valid[i] & 0x1));
485 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
486 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
487 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
488 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
489 	}
490 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
491 	if (status)
492 		dev_err(&hdev->pdev->dev,
493 			"VF failed(=%d) to set rss tc mode\n", status);
494 
495 	return status;
496 }
497 
498 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
499 			   u8 *hfunc)
500 {
501 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
502 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
503 	int i;
504 
505 	if (handle->pdev->revision >= 0x21) {
506 		/* Get hash algorithm */
507 		if (hfunc) {
508 			switch (rss_cfg->hash_algo) {
509 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
510 				*hfunc = ETH_RSS_HASH_TOP;
511 				break;
512 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
513 				*hfunc = ETH_RSS_HASH_XOR;
514 				break;
515 			default:
516 				*hfunc = ETH_RSS_HASH_UNKNOWN;
517 				break;
518 			}
519 		}
520 
521 		/* Get the RSS Key required by the user */
522 		if (key)
523 			memcpy(key, rss_cfg->rss_hash_key,
524 			       HCLGEVF_RSS_KEY_SIZE);
525 	}
526 
527 	if (indir)
528 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
529 			indir[i] = rss_cfg->rss_indirection_tbl[i];
530 
531 	return 0;
532 }
533 
534 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
535 			   const  u8 *key, const  u8 hfunc)
536 {
537 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
538 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
539 	int ret, i;
540 
541 	if (handle->pdev->revision >= 0x21) {
542 		/* Set the RSS Hash Key if specififed by the user */
543 		if (key) {
544 			switch (hfunc) {
545 			case ETH_RSS_HASH_TOP:
546 				rss_cfg->hash_algo =
547 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
548 				break;
549 			case ETH_RSS_HASH_XOR:
550 				rss_cfg->hash_algo =
551 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
552 				break;
553 			case ETH_RSS_HASH_NO_CHANGE:
554 				break;
555 			default:
556 				return -EINVAL;
557 			}
558 
559 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
560 						       key);
561 			if (ret)
562 				return ret;
563 
564 			/* Update the shadow RSS key with user specified qids */
565 			memcpy(rss_cfg->rss_hash_key, key,
566 			       HCLGEVF_RSS_KEY_SIZE);
567 		}
568 	}
569 
570 	/* update the shadow RSS table with user specified qids */
571 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
572 		rss_cfg->rss_indirection_tbl[i] = indir[i];
573 
574 	/* update the hardware */
575 	return hclgevf_set_rss_indir_table(hdev);
576 }
577 
578 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
579 {
580 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
581 
582 	if (nfc->data & RXH_L4_B_2_3)
583 		hash_sets |= HCLGEVF_D_PORT_BIT;
584 	else
585 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
586 
587 	if (nfc->data & RXH_IP_SRC)
588 		hash_sets |= HCLGEVF_S_IP_BIT;
589 	else
590 		hash_sets &= ~HCLGEVF_S_IP_BIT;
591 
592 	if (nfc->data & RXH_IP_DST)
593 		hash_sets |= HCLGEVF_D_IP_BIT;
594 	else
595 		hash_sets &= ~HCLGEVF_D_IP_BIT;
596 
597 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
598 		hash_sets |= HCLGEVF_V_TAG_BIT;
599 
600 	return hash_sets;
601 }
602 
603 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
604 				 struct ethtool_rxnfc *nfc)
605 {
606 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
607 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
608 	struct hclgevf_rss_input_tuple_cmd *req;
609 	struct hclgevf_desc desc;
610 	u8 tuple_sets;
611 	int ret;
612 
613 	if (handle->pdev->revision == 0x20)
614 		return -EOPNOTSUPP;
615 
616 	if (nfc->data &
617 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
618 		return -EINVAL;
619 
620 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
621 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
622 
623 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
624 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
625 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
626 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
627 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
628 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
629 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
630 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
631 
632 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
633 	switch (nfc->flow_type) {
634 	case TCP_V4_FLOW:
635 		req->ipv4_tcp_en = tuple_sets;
636 		break;
637 	case TCP_V6_FLOW:
638 		req->ipv6_tcp_en = tuple_sets;
639 		break;
640 	case UDP_V4_FLOW:
641 		req->ipv4_udp_en = tuple_sets;
642 		break;
643 	case UDP_V6_FLOW:
644 		req->ipv6_udp_en = tuple_sets;
645 		break;
646 	case SCTP_V4_FLOW:
647 		req->ipv4_sctp_en = tuple_sets;
648 		break;
649 	case SCTP_V6_FLOW:
650 		if ((nfc->data & RXH_L4_B_0_1) ||
651 		    (nfc->data & RXH_L4_B_2_3))
652 			return -EINVAL;
653 
654 		req->ipv6_sctp_en = tuple_sets;
655 		break;
656 	case IPV4_FLOW:
657 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
658 		break;
659 	case IPV6_FLOW:
660 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
661 		break;
662 	default:
663 		return -EINVAL;
664 	}
665 
666 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
667 	if (ret) {
668 		dev_err(&hdev->pdev->dev,
669 			"Set rss tuple fail, status = %d\n", ret);
670 		return ret;
671 	}
672 
673 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
674 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
675 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
676 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
677 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
678 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
679 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
680 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
681 	return 0;
682 }
683 
684 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
685 				 struct ethtool_rxnfc *nfc)
686 {
687 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
688 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
689 	u8 tuple_sets;
690 
691 	if (handle->pdev->revision == 0x20)
692 		return -EOPNOTSUPP;
693 
694 	nfc->data = 0;
695 
696 	switch (nfc->flow_type) {
697 	case TCP_V4_FLOW:
698 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
699 		break;
700 	case UDP_V4_FLOW:
701 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
702 		break;
703 	case TCP_V6_FLOW:
704 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
705 		break;
706 	case UDP_V6_FLOW:
707 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
708 		break;
709 	case SCTP_V4_FLOW:
710 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
711 		break;
712 	case SCTP_V6_FLOW:
713 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
714 		break;
715 	case IPV4_FLOW:
716 	case IPV6_FLOW:
717 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
718 		break;
719 	default:
720 		return -EINVAL;
721 	}
722 
723 	if (!tuple_sets)
724 		return 0;
725 
726 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
727 		nfc->data |= RXH_L4_B_2_3;
728 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
729 		nfc->data |= RXH_L4_B_0_1;
730 	if (tuple_sets & HCLGEVF_D_IP_BIT)
731 		nfc->data |= RXH_IP_DST;
732 	if (tuple_sets & HCLGEVF_S_IP_BIT)
733 		nfc->data |= RXH_IP_SRC;
734 
735 	return 0;
736 }
737 
738 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
739 				       struct hclgevf_rss_cfg *rss_cfg)
740 {
741 	struct hclgevf_rss_input_tuple_cmd *req;
742 	struct hclgevf_desc desc;
743 	int ret;
744 
745 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
746 
747 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
748 
749 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
750 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
751 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
752 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
753 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
754 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
755 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
756 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
757 
758 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
759 	if (ret)
760 		dev_err(&hdev->pdev->dev,
761 			"Configure rss input fail, status = %d\n", ret);
762 	return ret;
763 }
764 
765 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
766 {
767 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
768 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
769 
770 	return rss_cfg->rss_size;
771 }
772 
773 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
774 				       int vector_id,
775 				       struct hnae3_ring_chain_node *ring_chain)
776 {
777 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
778 	struct hnae3_ring_chain_node *node;
779 	struct hclge_mbx_vf_to_pf_cmd *req;
780 	struct hclgevf_desc desc;
781 	int i = 0;
782 	int status;
783 	u8 type;
784 
785 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
786 
787 	for (node = ring_chain; node; node = node->next) {
788 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
789 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
790 
791 		if (i == 0) {
792 			hclgevf_cmd_setup_basic_desc(&desc,
793 						     HCLGEVF_OPC_MBX_VF_TO_PF,
794 						     false);
795 			type = en ?
796 				HCLGE_MBX_MAP_RING_TO_VECTOR :
797 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
798 			req->msg[0] = type;
799 			req->msg[1] = vector_id;
800 		}
801 
802 		req->msg[idx_offset] =
803 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
804 		req->msg[idx_offset + 1] = node->tqp_index;
805 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
806 							   HNAE3_RING_GL_IDX_M,
807 							   HNAE3_RING_GL_IDX_S);
808 
809 		i++;
810 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
811 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
812 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
813 		    !node->next) {
814 			req->msg[2] = i;
815 
816 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
817 			if (status) {
818 				dev_err(&hdev->pdev->dev,
819 					"Map TQP fail, status is %d.\n",
820 					status);
821 				return status;
822 			}
823 			i = 0;
824 			hclgevf_cmd_setup_basic_desc(&desc,
825 						     HCLGEVF_OPC_MBX_VF_TO_PF,
826 						     false);
827 			req->msg[0] = type;
828 			req->msg[1] = vector_id;
829 		}
830 	}
831 
832 	return 0;
833 }
834 
835 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
836 				      struct hnae3_ring_chain_node *ring_chain)
837 {
838 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
839 	int vector_id;
840 
841 	vector_id = hclgevf_get_vector_index(hdev, vector);
842 	if (vector_id < 0) {
843 		dev_err(&handle->pdev->dev,
844 			"Get vector index fail. ret =%d\n", vector_id);
845 		return vector_id;
846 	}
847 
848 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
849 }
850 
851 static int hclgevf_unmap_ring_from_vector(
852 				struct hnae3_handle *handle,
853 				int vector,
854 				struct hnae3_ring_chain_node *ring_chain)
855 {
856 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
857 	int ret, vector_id;
858 
859 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
860 		return 0;
861 
862 	vector_id = hclgevf_get_vector_index(hdev, vector);
863 	if (vector_id < 0) {
864 		dev_err(&handle->pdev->dev,
865 			"Get vector index fail. ret =%d\n", vector_id);
866 		return vector_id;
867 	}
868 
869 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
870 	if (ret)
871 		dev_err(&handle->pdev->dev,
872 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
873 			vector_id,
874 			ret);
875 
876 	return ret;
877 }
878 
879 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
880 {
881 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
882 	int vector_id;
883 
884 	vector_id = hclgevf_get_vector_index(hdev, vector);
885 	if (vector_id < 0) {
886 		dev_err(&handle->pdev->dev,
887 			"hclgevf_put_vector get vector index fail. ret =%d\n",
888 			vector_id);
889 		return vector_id;
890 	}
891 
892 	hclgevf_free_vector(hdev, vector_id);
893 
894 	return 0;
895 }
896 
897 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
898 					bool en_uc_pmc, bool en_mc_pmc)
899 {
900 	struct hclge_mbx_vf_to_pf_cmd *req;
901 	struct hclgevf_desc desc;
902 	int status;
903 
904 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
905 
906 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
907 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
908 	req->msg[1] = en_uc_pmc ? 1 : 0;
909 	req->msg[2] = en_mc_pmc ? 1 : 0;
910 
911 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
912 	if (status)
913 		dev_err(&hdev->pdev->dev,
914 			"Set promisc mode fail, status is %d.\n", status);
915 
916 	return status;
917 }
918 
919 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle,
920 				    bool en_uc_pmc, bool en_mc_pmc)
921 {
922 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
923 
924 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc);
925 }
926 
927 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
928 			      int stream_id, bool enable)
929 {
930 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
931 	struct hclgevf_desc desc;
932 	int status;
933 
934 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
935 
936 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
937 				     false);
938 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
939 	req->stream_id = cpu_to_le16(stream_id);
940 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
941 
942 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
943 	if (status)
944 		dev_err(&hdev->pdev->dev,
945 			"TQP enable fail, status =%d.\n", status);
946 
947 	return status;
948 }
949 
950 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
951 {
952 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
953 	struct hclgevf_tqp *tqp;
954 	int i;
955 
956 	for (i = 0; i < kinfo->num_tqps; i++) {
957 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
958 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
959 	}
960 }
961 
962 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
963 {
964 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
965 
966 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
967 }
968 
969 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
970 				bool is_first)
971 {
972 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
973 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
974 	u8 *new_mac_addr = (u8 *)p;
975 	u8 msg_data[ETH_ALEN * 2];
976 	u16 subcode;
977 	int status;
978 
979 	ether_addr_copy(msg_data, new_mac_addr);
980 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
981 
982 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
983 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
984 
985 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
986 				      subcode, msg_data, ETH_ALEN * 2,
987 				      true, NULL, 0);
988 	if (!status)
989 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
990 
991 	return status;
992 }
993 
994 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
995 			       const unsigned char *addr)
996 {
997 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
998 
999 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1000 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1001 				    addr, ETH_ALEN, false, NULL, 0);
1002 }
1003 
1004 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1005 			      const unsigned char *addr)
1006 {
1007 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1008 
1009 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1010 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1011 				    addr, ETH_ALEN, false, NULL, 0);
1012 }
1013 
1014 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1015 			       const unsigned char *addr)
1016 {
1017 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1018 
1019 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1020 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1021 				    addr, ETH_ALEN, false, NULL, 0);
1022 }
1023 
1024 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1025 			      const unsigned char *addr)
1026 {
1027 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1028 
1029 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1030 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1031 				    addr, ETH_ALEN, false, NULL, 0);
1032 }
1033 
1034 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1035 				   __be16 proto, u16 vlan_id,
1036 				   bool is_kill)
1037 {
1038 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1039 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1040 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1041 
1042 	if (vlan_id > 4095)
1043 		return -EINVAL;
1044 
1045 	if (proto != htons(ETH_P_8021Q))
1046 		return -EPROTONOSUPPORT;
1047 
1048 	msg_data[0] = is_kill;
1049 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1050 	memcpy(&msg_data[3], &proto, sizeof(proto));
1051 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1052 				    HCLGE_MBX_VLAN_FILTER, msg_data,
1053 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1054 }
1055 
1056 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1057 {
1058 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1059 	u8 msg_data;
1060 
1061 	msg_data = enable ? 1 : 0;
1062 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1063 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1064 				    1, false, NULL, 0);
1065 }
1066 
1067 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1068 {
1069 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1070 	u8 msg_data[2];
1071 	int ret;
1072 
1073 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
1074 
1075 	/* disable vf queue before send queue reset msg to PF */
1076 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1077 	if (ret)
1078 		return ret;
1079 
1080 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1081 				    2, true, NULL, 0);
1082 }
1083 
1084 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1085 				 enum hnae3_reset_notify_type type)
1086 {
1087 	struct hnae3_client *client = hdev->nic_client;
1088 	struct hnae3_handle *handle = &hdev->nic;
1089 
1090 	if (!client->ops->reset_notify)
1091 		return -EOPNOTSUPP;
1092 
1093 	return client->ops->reset_notify(handle, type);
1094 }
1095 
1096 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1097 {
1098 #define HCLGEVF_RESET_WAIT_US	20000
1099 #define HCLGEVF_RESET_WAIT_CNT	2000
1100 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1101 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1102 
1103 	u32 val;
1104 	int ret;
1105 
1106 	/* wait to check the hardware reset completion status */
1107 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1108 	dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1109 
1110 	ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1111 				 !(val & HCLGEVF_RST_ING_BITS),
1112 				 HCLGEVF_RESET_WAIT_US,
1113 				 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1114 
1115 	/* hardware completion status should be available by this time */
1116 	if (ret) {
1117 		dev_err(&hdev->pdev->dev,
1118 			"could'nt get reset done status from h/w, timeout!\n");
1119 		return ret;
1120 	}
1121 
1122 	/* we will wait a bit more to let reset of the stack to complete. This
1123 	 * might happen in case reset assertion was made by PF. Yes, this also
1124 	 * means we might end up waiting bit more even for VF reset.
1125 	 */
1126 	msleep(5000);
1127 
1128 	return 0;
1129 }
1130 
1131 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1132 {
1133 	int ret;
1134 
1135 	/* uninitialize the nic client */
1136 	hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1137 
1138 	/* re-initialize the hclge device */
1139 	ret = hclgevf_reset_hdev(hdev);
1140 	if (ret) {
1141 		dev_err(&hdev->pdev->dev,
1142 			"hclge device re-init failed, VF is disabled!\n");
1143 		return ret;
1144 	}
1145 
1146 	/* bring up the nic client again */
1147 	hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1148 
1149 	return 0;
1150 }
1151 
1152 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1153 {
1154 	int ret = 0;
1155 
1156 	switch (hdev->reset_type) {
1157 	case HNAE3_VF_FUNC_RESET:
1158 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1159 					   0, true, NULL, sizeof(u8));
1160 		break;
1161 	default:
1162 		break;
1163 	}
1164 
1165 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1166 
1167 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1168 		 hdev->reset_type, ret);
1169 
1170 	return ret;
1171 }
1172 
1173 static int hclgevf_reset(struct hclgevf_dev *hdev)
1174 {
1175 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1176 	int ret;
1177 
1178 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1179 	 * know if device is undergoing reset
1180 	 */
1181 	ae_dev->reset_type = hdev->reset_type;
1182 	hdev->reset_count++;
1183 	rtnl_lock();
1184 
1185 	/* bring down the nic to stop any ongoing TX/RX */
1186 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1187 
1188 	rtnl_unlock();
1189 
1190 	hclgevf_reset_prepare_wait(hdev);
1191 
1192 	/* check if VF could successfully fetch the hardware reset completion
1193 	 * status from the hardware
1194 	 */
1195 	ret = hclgevf_reset_wait(hdev);
1196 	if (ret) {
1197 		/* can't do much in this situation, will disable VF */
1198 		dev_err(&hdev->pdev->dev,
1199 			"VF failed(=%d) to fetch H/W reset completion status\n",
1200 			ret);
1201 
1202 		dev_warn(&hdev->pdev->dev, "VF reset failed, disabling VF!\n");
1203 		rtnl_lock();
1204 		hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1205 
1206 		rtnl_unlock();
1207 		return ret;
1208 	}
1209 
1210 	rtnl_lock();
1211 
1212 	/* now, re-initialize the nic client and ae device*/
1213 	ret = hclgevf_reset_stack(hdev);
1214 	if (ret)
1215 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1216 
1217 	/* bring up the nic to enable TX/RX again */
1218 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1219 
1220 	rtnl_unlock();
1221 
1222 	return ret;
1223 }
1224 
1225 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1226 						     unsigned long *addr)
1227 {
1228 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1229 
1230 	/* return the highest priority reset level amongst all */
1231 	if (test_bit(HNAE3_VF_RESET, addr)) {
1232 		rst_level = HNAE3_VF_RESET;
1233 		clear_bit(HNAE3_VF_RESET, addr);
1234 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1235 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1236 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1237 		rst_level = HNAE3_VF_FULL_RESET;
1238 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1239 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1240 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1241 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1242 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1243 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1244 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1245 		rst_level = HNAE3_VF_FUNC_RESET;
1246 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1247 	}
1248 
1249 	return rst_level;
1250 }
1251 
1252 static void hclgevf_reset_event(struct pci_dev *pdev,
1253 				struct hnae3_handle *handle)
1254 {
1255 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1256 
1257 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1258 
1259 	if (!hdev->default_reset_request)
1260 		hdev->reset_level =
1261 			hclgevf_get_reset_level(hdev,
1262 						&hdev->default_reset_request);
1263 	else
1264 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1265 
1266 	/* reset of this VF requested */
1267 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1268 	hclgevf_reset_task_schedule(hdev);
1269 
1270 	hdev->last_reset_time = jiffies;
1271 }
1272 
1273 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1274 					  enum hnae3_reset_type rst_type)
1275 {
1276 	struct hclgevf_dev *hdev = ae_dev->priv;
1277 
1278 	set_bit(rst_type, &hdev->default_reset_request);
1279 }
1280 
1281 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1282 {
1283 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1284 
1285 	return hdev->fw_version;
1286 }
1287 
1288 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1289 {
1290 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1291 
1292 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1293 					    HCLGEVF_MISC_VECTOR_NUM);
1294 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1295 	/* vector status always valid for Vector 0 */
1296 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1297 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1298 
1299 	hdev->num_msi_left -= 1;
1300 	hdev->num_msi_used += 1;
1301 }
1302 
1303 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1304 {
1305 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1306 	    !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
1307 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1308 		schedule_work(&hdev->rst_service_task);
1309 	}
1310 }
1311 
1312 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1313 {
1314 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1315 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1316 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1317 		schedule_work(&hdev->mbx_service_task);
1318 	}
1319 }
1320 
1321 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1322 {
1323 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1324 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1325 		schedule_work(&hdev->service_task);
1326 }
1327 
1328 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1329 {
1330 	/* if we have any pending mailbox event then schedule the mbx task */
1331 	if (hdev->mbx_event_pending)
1332 		hclgevf_mbx_task_schedule(hdev);
1333 
1334 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1335 		hclgevf_reset_task_schedule(hdev);
1336 }
1337 
1338 static void hclgevf_service_timer(struct timer_list *t)
1339 {
1340 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1341 
1342 	mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1343 
1344 	hclgevf_task_schedule(hdev);
1345 }
1346 
1347 static void hclgevf_reset_service_task(struct work_struct *work)
1348 {
1349 	struct hclgevf_dev *hdev =
1350 		container_of(work, struct hclgevf_dev, rst_service_task);
1351 	int ret;
1352 
1353 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1354 		return;
1355 
1356 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1357 
1358 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1359 			       &hdev->reset_state)) {
1360 		/* PF has initmated that it is about to reset the hardware.
1361 		 * We now have to poll & check if harware has actually completed
1362 		 * the reset sequence. On hardware reset completion, VF needs to
1363 		 * reset the client and ae device.
1364 		 */
1365 		hdev->reset_attempts = 0;
1366 
1367 		hdev->last_reset_time = jiffies;
1368 		while ((hdev->reset_type =
1369 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1370 		       != HNAE3_NONE_RESET) {
1371 			ret = hclgevf_reset(hdev);
1372 			if (ret)
1373 				dev_err(&hdev->pdev->dev,
1374 					"VF stack reset failed %d.\n", ret);
1375 		}
1376 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1377 				      &hdev->reset_state)) {
1378 		/* we could be here when either of below happens:
1379 		 * 1. reset was initiated due to watchdog timeout due to
1380 		 *    a. IMP was earlier reset and our TX got choked down and
1381 		 *       which resulted in watchdog reacting and inducing VF
1382 		 *       reset. This also means our cmdq would be unreliable.
1383 		 *    b. problem in TX due to other lower layer(example link
1384 		 *       layer not functioning properly etc.)
1385 		 * 2. VF reset might have been initiated due to some config
1386 		 *    change.
1387 		 *
1388 		 * NOTE: Theres no clear way to detect above cases than to react
1389 		 * to the response of PF for this reset request. PF will ack the
1390 		 * 1b and 2. cases but we will not get any intimation about 1a
1391 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1392 		 * communication between PF and VF would be broken.
1393 		 */
1394 
1395 		/* if we are never geting into pending state it means either:
1396 		 * 1. PF is not receiving our request which could be due to IMP
1397 		 *    reset
1398 		 * 2. PF is screwed
1399 		 * We cannot do much for 2. but to check first we can try reset
1400 		 * our PCIe + stack and see if it alleviates the problem.
1401 		 */
1402 		if (hdev->reset_attempts > 3) {
1403 			/* prepare for full reset of stack + pcie interface */
1404 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1405 
1406 			/* "defer" schedule the reset task again */
1407 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1408 		} else {
1409 			hdev->reset_attempts++;
1410 
1411 			set_bit(hdev->reset_level, &hdev->reset_pending);
1412 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1413 		}
1414 		hclgevf_reset_task_schedule(hdev);
1415 	}
1416 
1417 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1418 }
1419 
1420 static void hclgevf_mailbox_service_task(struct work_struct *work)
1421 {
1422 	struct hclgevf_dev *hdev;
1423 
1424 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1425 
1426 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1427 		return;
1428 
1429 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1430 
1431 	hclgevf_mbx_async_handler(hdev);
1432 
1433 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1434 }
1435 
1436 static void hclgevf_service_task(struct work_struct *work)
1437 {
1438 	struct hclgevf_dev *hdev;
1439 
1440 	hdev = container_of(work, struct hclgevf_dev, service_task);
1441 
1442 	/* request the link status from the PF. PF would be able to tell VF
1443 	 * about such updates in future so we might remove this later
1444 	 */
1445 	hclgevf_request_link_info(hdev);
1446 
1447 	hclgevf_deferred_task_schedule(hdev);
1448 
1449 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1450 }
1451 
1452 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1453 {
1454 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1455 }
1456 
1457 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1458 						      u32 *clearval)
1459 {
1460 	u32 cmdq_src_reg, rst_ing_reg;
1461 
1462 	/* fetch the events from their corresponding regs */
1463 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1464 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1465 
1466 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1467 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1468 		dev_info(&hdev->pdev->dev,
1469 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1470 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1471 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1472 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1473 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1474 		*clearval = cmdq_src_reg;
1475 		return HCLGEVF_VECTOR0_EVENT_RST;
1476 	}
1477 
1478 	/* check for vector0 mailbox(=CMDQ RX) event source */
1479 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1480 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1481 		*clearval = cmdq_src_reg;
1482 		return HCLGEVF_VECTOR0_EVENT_MBX;
1483 	}
1484 
1485 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1486 
1487 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1488 }
1489 
1490 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1491 {
1492 	writel(en ? 1 : 0, vector->addr);
1493 }
1494 
1495 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1496 {
1497 	enum hclgevf_evt_cause event_cause;
1498 	struct hclgevf_dev *hdev = data;
1499 	u32 clearval;
1500 
1501 	hclgevf_enable_vector(&hdev->misc_vector, false);
1502 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1503 
1504 	switch (event_cause) {
1505 	case HCLGEVF_VECTOR0_EVENT_RST:
1506 		hclgevf_reset_task_schedule(hdev);
1507 		break;
1508 	case HCLGEVF_VECTOR0_EVENT_MBX:
1509 		hclgevf_mbx_handler(hdev);
1510 		break;
1511 	default:
1512 		break;
1513 	}
1514 
1515 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1516 		hclgevf_clear_event_cause(hdev, clearval);
1517 		hclgevf_enable_vector(&hdev->misc_vector, true);
1518 	}
1519 
1520 	return IRQ_HANDLED;
1521 }
1522 
1523 static int hclgevf_configure(struct hclgevf_dev *hdev)
1524 {
1525 	int ret;
1526 
1527 	hdev->hw.mac.media_type = HNAE3_MEDIA_TYPE_NONE;
1528 
1529 	/* get queue configuration from PF */
1530 	ret = hclgevf_get_queue_info(hdev);
1531 	if (ret)
1532 		return ret;
1533 	/* get tc configuration from PF */
1534 	return hclgevf_get_tc_info(hdev);
1535 }
1536 
1537 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1538 {
1539 	struct pci_dev *pdev = ae_dev->pdev;
1540 	struct hclgevf_dev *hdev = ae_dev->priv;
1541 
1542 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1543 	if (!hdev)
1544 		return -ENOMEM;
1545 
1546 	hdev->pdev = pdev;
1547 	hdev->ae_dev = ae_dev;
1548 	ae_dev->priv = hdev;
1549 
1550 	return 0;
1551 }
1552 
1553 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1554 {
1555 	struct hnae3_handle *roce = &hdev->roce;
1556 	struct hnae3_handle *nic = &hdev->nic;
1557 
1558 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1559 
1560 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1561 	    hdev->num_msi_left == 0)
1562 		return -EINVAL;
1563 
1564 	roce->rinfo.base_vector = hdev->roce_base_vector;
1565 
1566 	roce->rinfo.netdev = nic->kinfo.netdev;
1567 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1568 
1569 	roce->pdev = nic->pdev;
1570 	roce->ae_algo = nic->ae_algo;
1571 	roce->numa_node_mask = nic->numa_node_mask;
1572 
1573 	return 0;
1574 }
1575 
1576 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1577 {
1578 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1579 	int i, ret;
1580 
1581 	rss_cfg->rss_size = hdev->rss_size_max;
1582 
1583 	if (hdev->pdev->revision >= 0x21) {
1584 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
1585 		netdev_rss_key_fill(rss_cfg->rss_hash_key,
1586 				    HCLGEVF_RSS_KEY_SIZE);
1587 
1588 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
1589 					       rss_cfg->rss_hash_key);
1590 		if (ret)
1591 			return ret;
1592 
1593 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
1594 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1595 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
1596 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1597 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
1598 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1599 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
1600 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1601 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
1602 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1603 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
1604 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1605 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
1606 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1607 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
1608 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1609 
1610 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
1611 		if (ret)
1612 			return ret;
1613 
1614 	}
1615 
1616 	/* Initialize RSS indirect table for each vport */
1617 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1618 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1619 
1620 	ret = hclgevf_set_rss_indir_table(hdev);
1621 	if (ret)
1622 		return ret;
1623 
1624 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1625 }
1626 
1627 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
1628 {
1629 	/* other vlan config(like, VLAN TX/RX offload) would also be added
1630 	 * here later
1631 	 */
1632 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
1633 				       false);
1634 }
1635 
1636 static int hclgevf_ae_start(struct hnae3_handle *handle)
1637 {
1638 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1639 
1640 	/* reset tqp stats */
1641 	hclgevf_reset_tqp_stats(handle);
1642 
1643 	hclgevf_request_link_info(hdev);
1644 
1645 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1646 	mod_timer(&hdev->service_timer, jiffies + HZ);
1647 
1648 	return 0;
1649 }
1650 
1651 static void hclgevf_ae_stop(struct hnae3_handle *handle)
1652 {
1653 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1654 
1655 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1656 
1657 	/* reset tqp stats */
1658 	hclgevf_reset_tqp_stats(handle);
1659 	del_timer_sync(&hdev->service_timer);
1660 	cancel_work_sync(&hdev->service_task);
1661 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1662 	hclgevf_update_link_status(hdev, 0);
1663 }
1664 
1665 static void hclgevf_state_init(struct hclgevf_dev *hdev)
1666 {
1667 	/* setup tasks for the MBX */
1668 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
1669 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1670 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1671 
1672 	/* setup tasks for service timer */
1673 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
1674 
1675 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
1676 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1677 
1678 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
1679 
1680 	mutex_init(&hdev->mbx_resp.mbx_mutex);
1681 
1682 	/* bring the device down */
1683 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1684 }
1685 
1686 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
1687 {
1688 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1689 
1690 	if (hdev->service_timer.function)
1691 		del_timer_sync(&hdev->service_timer);
1692 	if (hdev->service_task.func)
1693 		cancel_work_sync(&hdev->service_task);
1694 	if (hdev->mbx_service_task.func)
1695 		cancel_work_sync(&hdev->mbx_service_task);
1696 	if (hdev->rst_service_task.func)
1697 		cancel_work_sync(&hdev->rst_service_task);
1698 
1699 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
1700 }
1701 
1702 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
1703 {
1704 	struct pci_dev *pdev = hdev->pdev;
1705 	int vectors;
1706 	int i;
1707 
1708 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
1709 		vectors = pci_alloc_irq_vectors(pdev,
1710 						hdev->roce_base_msix_offset + 1,
1711 						hdev->num_msi,
1712 						PCI_IRQ_MSIX);
1713 	else
1714 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
1715 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
1716 
1717 	if (vectors < 0) {
1718 		dev_err(&pdev->dev,
1719 			"failed(%d) to allocate MSI/MSI-X vectors\n",
1720 			vectors);
1721 		return vectors;
1722 	}
1723 	if (vectors < hdev->num_msi)
1724 		dev_warn(&hdev->pdev->dev,
1725 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
1726 			 hdev->num_msi, vectors);
1727 
1728 	hdev->num_msi = vectors;
1729 	hdev->num_msi_left = vectors;
1730 	hdev->base_msi_vector = pdev->irq;
1731 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
1732 
1733 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
1734 					   sizeof(u16), GFP_KERNEL);
1735 	if (!hdev->vector_status) {
1736 		pci_free_irq_vectors(pdev);
1737 		return -ENOMEM;
1738 	}
1739 
1740 	for (i = 0; i < hdev->num_msi; i++)
1741 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
1742 
1743 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
1744 					sizeof(int), GFP_KERNEL);
1745 	if (!hdev->vector_irq) {
1746 		pci_free_irq_vectors(pdev);
1747 		return -ENOMEM;
1748 	}
1749 
1750 	return 0;
1751 }
1752 
1753 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
1754 {
1755 	struct pci_dev *pdev = hdev->pdev;
1756 
1757 	pci_free_irq_vectors(pdev);
1758 }
1759 
1760 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
1761 {
1762 	int ret = 0;
1763 
1764 	hclgevf_get_misc_vector(hdev);
1765 
1766 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
1767 			  0, "hclgevf_cmd", hdev);
1768 	if (ret) {
1769 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
1770 			hdev->misc_vector.vector_irq);
1771 		return ret;
1772 	}
1773 
1774 	hclgevf_clear_event_cause(hdev, 0);
1775 
1776 	/* enable misc. vector(vector 0) */
1777 	hclgevf_enable_vector(&hdev->misc_vector, true);
1778 
1779 	return ret;
1780 }
1781 
1782 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
1783 {
1784 	/* disable misc vector(vector 0) */
1785 	hclgevf_enable_vector(&hdev->misc_vector, false);
1786 	synchronize_irq(hdev->misc_vector.vector_irq);
1787 	free_irq(hdev->misc_vector.vector_irq, hdev);
1788 	hclgevf_free_vector(hdev, 0);
1789 }
1790 
1791 static int hclgevf_init_client_instance(struct hnae3_client *client,
1792 					struct hnae3_ae_dev *ae_dev)
1793 {
1794 	struct hclgevf_dev *hdev = ae_dev->priv;
1795 	int ret;
1796 
1797 	switch (client->type) {
1798 	case HNAE3_CLIENT_KNIC:
1799 		hdev->nic_client = client;
1800 		hdev->nic.client = client;
1801 
1802 		ret = client->ops->init_instance(&hdev->nic);
1803 		if (ret)
1804 			goto clear_nic;
1805 
1806 		hnae3_set_client_init_flag(client, ae_dev, 1);
1807 
1808 		if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
1809 			struct hnae3_client *rc = hdev->roce_client;
1810 
1811 			ret = hclgevf_init_roce_base_info(hdev);
1812 			if (ret)
1813 				goto clear_roce;
1814 			ret = rc->ops->init_instance(&hdev->roce);
1815 			if (ret)
1816 				goto clear_roce;
1817 
1818 			hnae3_set_client_init_flag(hdev->roce_client, ae_dev,
1819 						   1);
1820 		}
1821 		break;
1822 	case HNAE3_CLIENT_UNIC:
1823 		hdev->nic_client = client;
1824 		hdev->nic.client = client;
1825 
1826 		ret = client->ops->init_instance(&hdev->nic);
1827 		if (ret)
1828 			goto clear_nic;
1829 
1830 		hnae3_set_client_init_flag(client, ae_dev, 1);
1831 		break;
1832 	case HNAE3_CLIENT_ROCE:
1833 		if (hnae3_dev_roce_supported(hdev)) {
1834 			hdev->roce_client = client;
1835 			hdev->roce.client = client;
1836 		}
1837 
1838 		if (hdev->roce_client && hdev->nic_client) {
1839 			ret = hclgevf_init_roce_base_info(hdev);
1840 			if (ret)
1841 				goto clear_roce;
1842 
1843 			ret = client->ops->init_instance(&hdev->roce);
1844 			if (ret)
1845 				goto clear_roce;
1846 		}
1847 
1848 		hnae3_set_client_init_flag(client, ae_dev, 1);
1849 		break;
1850 	default:
1851 		return -EINVAL;
1852 	}
1853 
1854 	return 0;
1855 
1856 clear_nic:
1857 	hdev->nic_client = NULL;
1858 	hdev->nic.client = NULL;
1859 	return ret;
1860 clear_roce:
1861 	hdev->roce_client = NULL;
1862 	hdev->roce.client = NULL;
1863 	return ret;
1864 }
1865 
1866 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
1867 					   struct hnae3_ae_dev *ae_dev)
1868 {
1869 	struct hclgevf_dev *hdev = ae_dev->priv;
1870 
1871 	/* un-init roce, if it exists */
1872 	if (hdev->roce_client) {
1873 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
1874 		hdev->roce_client = NULL;
1875 		hdev->roce.client = NULL;
1876 	}
1877 
1878 	/* un-init nic/unic, if this was not called by roce client */
1879 	if (client->ops->uninit_instance && hdev->nic_client &&
1880 	    client->type != HNAE3_CLIENT_ROCE) {
1881 		client->ops->uninit_instance(&hdev->nic, 0);
1882 		hdev->nic_client = NULL;
1883 		hdev->nic.client = NULL;
1884 	}
1885 }
1886 
1887 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
1888 {
1889 	struct pci_dev *pdev = hdev->pdev;
1890 	struct hclgevf_hw *hw;
1891 	int ret;
1892 
1893 	ret = pci_enable_device(pdev);
1894 	if (ret) {
1895 		dev_err(&pdev->dev, "failed to enable PCI device\n");
1896 		return ret;
1897 	}
1898 
1899 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1900 	if (ret) {
1901 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
1902 		goto err_disable_device;
1903 	}
1904 
1905 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
1906 	if (ret) {
1907 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
1908 		goto err_disable_device;
1909 	}
1910 
1911 	pci_set_master(pdev);
1912 	hw = &hdev->hw;
1913 	hw->hdev = hdev;
1914 	hw->io_base = pci_iomap(pdev, 2, 0);
1915 	if (!hw->io_base) {
1916 		dev_err(&pdev->dev, "can't map configuration register space\n");
1917 		ret = -ENOMEM;
1918 		goto err_clr_master;
1919 	}
1920 
1921 	return 0;
1922 
1923 err_clr_master:
1924 	pci_clear_master(pdev);
1925 	pci_release_regions(pdev);
1926 err_disable_device:
1927 	pci_disable_device(pdev);
1928 
1929 	return ret;
1930 }
1931 
1932 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
1933 {
1934 	struct pci_dev *pdev = hdev->pdev;
1935 
1936 	pci_iounmap(pdev, hdev->hw.io_base);
1937 	pci_clear_master(pdev);
1938 	pci_release_regions(pdev);
1939 	pci_disable_device(pdev);
1940 }
1941 
1942 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
1943 {
1944 	struct hclgevf_query_res_cmd *req;
1945 	struct hclgevf_desc desc;
1946 	int ret;
1947 
1948 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
1949 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1950 	if (ret) {
1951 		dev_err(&hdev->pdev->dev,
1952 			"query vf resource failed, ret = %d.\n", ret);
1953 		return ret;
1954 	}
1955 
1956 	req = (struct hclgevf_query_res_cmd *)desc.data;
1957 
1958 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
1959 		hdev->roce_base_msix_offset =
1960 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
1961 				HCLGEVF_MSIX_OFT_ROCEE_M,
1962 				HCLGEVF_MSIX_OFT_ROCEE_S);
1963 		hdev->num_roce_msix =
1964 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
1965 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
1966 
1967 		/* VF should have NIC vectors and Roce vectors, NIC vectors
1968 		 * are queued before Roce vectors. The offset is fixed to 64.
1969 		 */
1970 		hdev->num_msi = hdev->num_roce_msix +
1971 				hdev->roce_base_msix_offset;
1972 	} else {
1973 		hdev->num_msi =
1974 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
1975 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
1976 	}
1977 
1978 	return 0;
1979 }
1980 
1981 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
1982 {
1983 	struct pci_dev *pdev = hdev->pdev;
1984 	int ret;
1985 
1986 	ret = hclgevf_cmd_init(hdev);
1987 	if (ret) {
1988 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
1989 		return ret;
1990 	}
1991 
1992 	ret = hclgevf_rss_init_hw(hdev);
1993 	if (ret) {
1994 		dev_err(&hdev->pdev->dev,
1995 			"failed(%d) to initialize RSS\n", ret);
1996 		return ret;
1997 	}
1998 
1999 	ret = hclgevf_init_vlan_config(hdev);
2000 	if (ret) {
2001 		dev_err(&hdev->pdev->dev,
2002 			"failed(%d) to initialize VLAN config\n", ret);
2003 		return ret;
2004 	}
2005 
2006 	dev_info(&hdev->pdev->dev, "Reset done\n");
2007 
2008 	return 0;
2009 }
2010 
2011 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2012 {
2013 	struct pci_dev *pdev = hdev->pdev;
2014 	int ret;
2015 
2016 	ret = hclgevf_pci_init(hdev);
2017 	if (ret) {
2018 		dev_err(&pdev->dev, "PCI initialization failed\n");
2019 		return ret;
2020 	}
2021 
2022 	ret = hclgevf_cmd_queue_init(hdev);
2023 	if (ret) {
2024 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2025 		goto err_cmd_queue_init;
2026 	}
2027 
2028 	ret = hclgevf_cmd_init(hdev);
2029 	if (ret)
2030 		goto err_cmd_init;
2031 
2032 	/* Get vf resource */
2033 	ret = hclgevf_query_vf_resource(hdev);
2034 	if (ret) {
2035 		dev_err(&hdev->pdev->dev,
2036 			"Query vf status error, ret = %d.\n", ret);
2037 		goto err_cmd_init;
2038 	}
2039 
2040 	ret = hclgevf_init_msi(hdev);
2041 	if (ret) {
2042 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2043 		goto err_cmd_init;
2044 	}
2045 
2046 	hclgevf_state_init(hdev);
2047 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2048 
2049 	ret = hclgevf_misc_irq_init(hdev);
2050 	if (ret) {
2051 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2052 			ret);
2053 		goto err_misc_irq_init;
2054 	}
2055 
2056 	ret = hclgevf_configure(hdev);
2057 	if (ret) {
2058 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2059 		goto err_config;
2060 	}
2061 
2062 	ret = hclgevf_alloc_tqps(hdev);
2063 	if (ret) {
2064 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2065 		goto err_config;
2066 	}
2067 
2068 	ret = hclgevf_set_handle_info(hdev);
2069 	if (ret) {
2070 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2071 		goto err_config;
2072 	}
2073 
2074 	/* Initialize RSS for this VF */
2075 	ret = hclgevf_rss_init_hw(hdev);
2076 	if (ret) {
2077 		dev_err(&hdev->pdev->dev,
2078 			"failed(%d) to initialize RSS\n", ret);
2079 		goto err_config;
2080 	}
2081 
2082 	ret = hclgevf_init_vlan_config(hdev);
2083 	if (ret) {
2084 		dev_err(&hdev->pdev->dev,
2085 			"failed(%d) to initialize VLAN config\n", ret);
2086 		goto err_config;
2087 	}
2088 
2089 	hdev->last_reset_time = jiffies;
2090 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2091 
2092 	return 0;
2093 
2094 err_config:
2095 	hclgevf_misc_irq_uninit(hdev);
2096 err_misc_irq_init:
2097 	hclgevf_state_uninit(hdev);
2098 	hclgevf_uninit_msi(hdev);
2099 err_cmd_init:
2100 	hclgevf_cmd_uninit(hdev);
2101 err_cmd_queue_init:
2102 	hclgevf_pci_uninit(hdev);
2103 	return ret;
2104 }
2105 
2106 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2107 {
2108 	hclgevf_state_uninit(hdev);
2109 	hclgevf_misc_irq_uninit(hdev);
2110 	hclgevf_cmd_uninit(hdev);
2111 	hclgevf_uninit_msi(hdev);
2112 	hclgevf_pci_uninit(hdev);
2113 }
2114 
2115 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2116 {
2117 	struct pci_dev *pdev = ae_dev->pdev;
2118 	int ret;
2119 
2120 	ret = hclgevf_alloc_hdev(ae_dev);
2121 	if (ret) {
2122 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2123 		return ret;
2124 	}
2125 
2126 	ret = hclgevf_init_hdev(ae_dev->priv);
2127 	if (ret)
2128 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2129 
2130 	return ret;
2131 }
2132 
2133 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2134 {
2135 	struct hclgevf_dev *hdev = ae_dev->priv;
2136 
2137 	hclgevf_uninit_hdev(hdev);
2138 	ae_dev->priv = NULL;
2139 }
2140 
2141 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2142 {
2143 	struct hnae3_handle *nic = &hdev->nic;
2144 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2145 
2146 	return min_t(u32, hdev->rss_size_max * kinfo->num_tc, hdev->num_tqps);
2147 }
2148 
2149 /**
2150  * hclgevf_get_channels - Get the current channels enabled and max supported.
2151  * @handle: hardware information for network interface
2152  * @ch: ethtool channels structure
2153  *
2154  * We don't support separate tx and rx queues as channels. The other count
2155  * represents how many queues are being used for control. max_combined counts
2156  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2157  * q_vectors since we support a lot more queue pairs than q_vectors.
2158  **/
2159 static void hclgevf_get_channels(struct hnae3_handle *handle,
2160 				 struct ethtool_channels *ch)
2161 {
2162 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2163 
2164 	ch->max_combined = hclgevf_get_max_channels(hdev);
2165 	ch->other_count = 0;
2166 	ch->max_other = 0;
2167 	ch->combined_count = hdev->num_tqps;
2168 }
2169 
2170 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2171 					  u16 *alloc_tqps, u16 *max_rss_size)
2172 {
2173 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2174 
2175 	*alloc_tqps = hdev->num_tqps;
2176 	*max_rss_size = hdev->rss_size_max;
2177 }
2178 
2179 static int hclgevf_get_status(struct hnae3_handle *handle)
2180 {
2181 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2182 
2183 	return hdev->hw.mac.link;
2184 }
2185 
2186 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2187 					    u8 *auto_neg, u32 *speed,
2188 					    u8 *duplex)
2189 {
2190 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2191 
2192 	if (speed)
2193 		*speed = hdev->hw.mac.speed;
2194 	if (duplex)
2195 		*duplex = hdev->hw.mac.duplex;
2196 	if (auto_neg)
2197 		*auto_neg = AUTONEG_DISABLE;
2198 }
2199 
2200 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2201 				 u8 duplex)
2202 {
2203 	hdev->hw.mac.speed = speed;
2204 	hdev->hw.mac.duplex = duplex;
2205 }
2206 
2207 static void hclgevf_get_media_type(struct hnae3_handle *handle,
2208 				  u8 *media_type)
2209 {
2210 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2211 	if (media_type)
2212 		*media_type = hdev->hw.mac.media_type;
2213 }
2214 
2215 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2216 {
2217 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2218 
2219 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2220 }
2221 
2222 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2223 {
2224 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2225 
2226 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2227 }
2228 
2229 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2230 {
2231 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2232 
2233 	return hdev->reset_count;
2234 }
2235 
2236 static const struct hnae3_ae_ops hclgevf_ops = {
2237 	.init_ae_dev = hclgevf_init_ae_dev,
2238 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2239 	.init_client_instance = hclgevf_init_client_instance,
2240 	.uninit_client_instance = hclgevf_uninit_client_instance,
2241 	.start = hclgevf_ae_start,
2242 	.stop = hclgevf_ae_stop,
2243 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
2244 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2245 	.get_vector = hclgevf_get_vector,
2246 	.put_vector = hclgevf_put_vector,
2247 	.reset_queue = hclgevf_reset_tqp,
2248 	.set_promisc_mode = hclgevf_set_promisc_mode,
2249 	.get_mac_addr = hclgevf_get_mac_addr,
2250 	.set_mac_addr = hclgevf_set_mac_addr,
2251 	.add_uc_addr = hclgevf_add_uc_addr,
2252 	.rm_uc_addr = hclgevf_rm_uc_addr,
2253 	.add_mc_addr = hclgevf_add_mc_addr,
2254 	.rm_mc_addr = hclgevf_rm_mc_addr,
2255 	.get_stats = hclgevf_get_stats,
2256 	.update_stats = hclgevf_update_stats,
2257 	.get_strings = hclgevf_get_strings,
2258 	.get_sset_count = hclgevf_get_sset_count,
2259 	.get_rss_key_size = hclgevf_get_rss_key_size,
2260 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2261 	.get_rss = hclgevf_get_rss,
2262 	.set_rss = hclgevf_set_rss,
2263 	.get_rss_tuple = hclgevf_get_rss_tuple,
2264 	.set_rss_tuple = hclgevf_set_rss_tuple,
2265 	.get_tc_size = hclgevf_get_tc_size,
2266 	.get_fw_version = hclgevf_get_fw_version,
2267 	.set_vlan_filter = hclgevf_set_vlan_filter,
2268 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2269 	.reset_event = hclgevf_reset_event,
2270 	.set_default_reset_request = hclgevf_set_def_reset_request,
2271 	.get_channels = hclgevf_get_channels,
2272 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2273 	.get_status = hclgevf_get_status,
2274 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2275 	.get_media_type = hclgevf_get_media_type,
2276 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
2277 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
2278 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
2279 };
2280 
2281 static struct hnae3_ae_algo ae_algovf = {
2282 	.ops = &hclgevf_ops,
2283 	.pdev_id_table = ae_algovf_pci_tbl,
2284 };
2285 
2286 static int hclgevf_init(void)
2287 {
2288 	pr_info("%s is initializing\n", HCLGEVF_NAME);
2289 
2290 	hnae3_register_ae_algo(&ae_algovf);
2291 
2292 	return 0;
2293 }
2294 
2295 static void hclgevf_exit(void)
2296 {
2297 	hnae3_unregister_ae_algo(&ae_algovf);
2298 }
2299 module_init(hclgevf_init);
2300 module_exit(hclgevf_exit);
2301 
2302 MODULE_LICENSE("GPL");
2303 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
2304 MODULE_DESCRIPTION("HCLGEVF Driver");
2305 MODULE_VERSION(HCLGEVF_MOD_VERSION);
2306