1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
15 
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static struct hnae3_ae_algo ae_algovf;
18 
19 static struct workqueue_struct *hclgevf_wq;
20 
21 static const struct pci_device_id ae_algovf_pci_tbl[] = {
22 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
23 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
24 	/* required last entry */
25 	{0, }
26 };
27 
28 static const u8 hclgevf_hash_key[] = {
29 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
30 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
31 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
32 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
33 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
34 };
35 
36 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
37 
38 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
39 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
40 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
41 					 HCLGEVF_CMDQ_TX_TAIL_REG,
42 					 HCLGEVF_CMDQ_TX_HEAD_REG,
43 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
44 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
45 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
46 					 HCLGEVF_CMDQ_RX_TAIL_REG,
47 					 HCLGEVF_CMDQ_RX_HEAD_REG,
48 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
49 					 HCLGEVF_CMDQ_INTR_STS_REG,
50 					 HCLGEVF_CMDQ_INTR_EN_REG,
51 					 HCLGEVF_CMDQ_INTR_GEN_REG};
52 
53 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
54 					   HCLGEVF_RST_ING,
55 					   HCLGEVF_GRO_EN_REG};
56 
57 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
58 					 HCLGEVF_RING_RX_ADDR_H_REG,
59 					 HCLGEVF_RING_RX_BD_NUM_REG,
60 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
61 					 HCLGEVF_RING_RX_MERGE_EN_REG,
62 					 HCLGEVF_RING_RX_TAIL_REG,
63 					 HCLGEVF_RING_RX_HEAD_REG,
64 					 HCLGEVF_RING_RX_FBD_NUM_REG,
65 					 HCLGEVF_RING_RX_OFFSET_REG,
66 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
67 					 HCLGEVF_RING_RX_STASH_REG,
68 					 HCLGEVF_RING_RX_BD_ERR_REG,
69 					 HCLGEVF_RING_TX_ADDR_L_REG,
70 					 HCLGEVF_RING_TX_ADDR_H_REG,
71 					 HCLGEVF_RING_TX_BD_NUM_REG,
72 					 HCLGEVF_RING_TX_PRIORITY_REG,
73 					 HCLGEVF_RING_TX_TC_REG,
74 					 HCLGEVF_RING_TX_MERGE_EN_REG,
75 					 HCLGEVF_RING_TX_TAIL_REG,
76 					 HCLGEVF_RING_TX_HEAD_REG,
77 					 HCLGEVF_RING_TX_FBD_NUM_REG,
78 					 HCLGEVF_RING_TX_OFFSET_REG,
79 					 HCLGEVF_RING_TX_EBD_NUM_REG,
80 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
81 					 HCLGEVF_RING_TX_BD_ERR_REG,
82 					 HCLGEVF_RING_EN_REG};
83 
84 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
85 					     HCLGEVF_TQP_INTR_GL0_REG,
86 					     HCLGEVF_TQP_INTR_GL1_REG,
87 					     HCLGEVF_TQP_INTR_GL2_REG,
88 					     HCLGEVF_TQP_INTR_RL_REG};
89 
90 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
91 {
92 	if (!handle->client)
93 		return container_of(handle, struct hclgevf_dev, nic);
94 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
95 		return container_of(handle, struct hclgevf_dev, roce);
96 	else
97 		return container_of(handle, struct hclgevf_dev, nic);
98 }
99 
100 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
101 {
102 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
103 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
104 	struct hclgevf_desc desc;
105 	struct hclgevf_tqp *tqp;
106 	int status;
107 	int i;
108 
109 	for (i = 0; i < kinfo->num_tqps; i++) {
110 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
111 		hclgevf_cmd_setup_basic_desc(&desc,
112 					     HCLGEVF_OPC_QUERY_RX_STATUS,
113 					     true);
114 
115 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
116 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
117 		if (status) {
118 			dev_err(&hdev->pdev->dev,
119 				"Query tqp stat fail, status = %d,queue = %d\n",
120 				status,	i);
121 			return status;
122 		}
123 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
124 			le32_to_cpu(desc.data[1]);
125 
126 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
127 					     true);
128 
129 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
130 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
131 		if (status) {
132 			dev_err(&hdev->pdev->dev,
133 				"Query tqp stat fail, status = %d,queue = %d\n",
134 				status, i);
135 			return status;
136 		}
137 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
138 			le32_to_cpu(desc.data[1]);
139 	}
140 
141 	return 0;
142 }
143 
144 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
145 {
146 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
147 	struct hclgevf_tqp *tqp;
148 	u64 *buff = data;
149 	int i;
150 
151 	for (i = 0; i < kinfo->num_tqps; i++) {
152 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
153 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
154 	}
155 	for (i = 0; i < kinfo->num_tqps; i++) {
156 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
158 	}
159 
160 	return buff;
161 }
162 
163 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
164 {
165 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
166 
167 	return kinfo->num_tqps * 2;
168 }
169 
170 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
171 {
172 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
173 	u8 *buff = data;
174 	int i = 0;
175 
176 	for (i = 0; i < kinfo->num_tqps; i++) {
177 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
178 						       struct hclgevf_tqp, q);
179 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
180 			 tqp->index);
181 		buff += ETH_GSTRING_LEN;
182 	}
183 
184 	for (i = 0; i < kinfo->num_tqps; i++) {
185 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
186 						       struct hclgevf_tqp, q);
187 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
188 			 tqp->index);
189 		buff += ETH_GSTRING_LEN;
190 	}
191 
192 	return buff;
193 }
194 
195 static void hclgevf_update_stats(struct hnae3_handle *handle,
196 				 struct net_device_stats *net_stats)
197 {
198 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
199 	int status;
200 
201 	status = hclgevf_tqps_update_stats(handle);
202 	if (status)
203 		dev_err(&hdev->pdev->dev,
204 			"VF update of TQPS stats fail, status = %d.\n",
205 			status);
206 }
207 
208 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
209 {
210 	if (strset == ETH_SS_TEST)
211 		return -EOPNOTSUPP;
212 	else if (strset == ETH_SS_STATS)
213 		return hclgevf_tqps_get_sset_count(handle, strset);
214 
215 	return 0;
216 }
217 
218 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
219 				u8 *data)
220 {
221 	u8 *p = (char *)data;
222 
223 	if (strset == ETH_SS_STATS)
224 		p = hclgevf_tqps_get_strings(handle, p);
225 }
226 
227 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
228 {
229 	hclgevf_tqps_get_stats(handle, data);
230 }
231 
232 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
233 				   u8 subcode)
234 {
235 	if (msg) {
236 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
237 		msg->code = code;
238 		msg->subcode = subcode;
239 	}
240 }
241 
242 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
243 {
244 	struct hclge_vf_to_pf_msg send_msg;
245 	u8 resp_msg;
246 	int status;
247 
248 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
249 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
250 				      sizeof(resp_msg));
251 	if (status) {
252 		dev_err(&hdev->pdev->dev,
253 			"VF request to get TC info from PF failed %d",
254 			status);
255 		return status;
256 	}
257 
258 	hdev->hw_tc_map = resp_msg;
259 
260 	return 0;
261 }
262 
263 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
264 {
265 	struct hnae3_handle *nic = &hdev->nic;
266 	struct hclge_vf_to_pf_msg send_msg;
267 	u8 resp_msg;
268 	int ret;
269 
270 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
271 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
272 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
273 				   sizeof(u8));
274 	if (ret) {
275 		dev_err(&hdev->pdev->dev,
276 			"VF request to get port based vlan state failed %d",
277 			ret);
278 		return ret;
279 	}
280 
281 	nic->port_base_vlan_state = resp_msg;
282 
283 	return 0;
284 }
285 
286 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
287 {
288 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
289 #define HCLGEVF_TQPS_ALLOC_OFFSET	0
290 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
291 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4
292 
293 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
294 	struct hclge_vf_to_pf_msg send_msg;
295 	int status;
296 
297 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
298 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
299 				      HCLGEVF_TQPS_RSS_INFO_LEN);
300 	if (status) {
301 		dev_err(&hdev->pdev->dev,
302 			"VF request to get tqp info from PF failed %d",
303 			status);
304 		return status;
305 	}
306 
307 	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
308 	       sizeof(u16));
309 	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
310 	       sizeof(u16));
311 	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
312 	       sizeof(u16));
313 
314 	return 0;
315 }
316 
317 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
318 {
319 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
320 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
321 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2
322 
323 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
324 	struct hclge_vf_to_pf_msg send_msg;
325 	int ret;
326 
327 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
328 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
329 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
330 	if (ret) {
331 		dev_err(&hdev->pdev->dev,
332 			"VF request to get tqp depth info from PF failed %d",
333 			ret);
334 		return ret;
335 	}
336 
337 	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
338 	       sizeof(u16));
339 	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
340 	       sizeof(u16));
341 
342 	return 0;
343 }
344 
345 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
346 {
347 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
348 	struct hclge_vf_to_pf_msg send_msg;
349 	u16 qid_in_pf = 0;
350 	u8 resp_data[2];
351 	int ret;
352 
353 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
354 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
355 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
356 				   sizeof(resp_data));
357 	if (!ret)
358 		qid_in_pf = *(u16 *)resp_data;
359 
360 	return qid_in_pf;
361 }
362 
363 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
364 {
365 	struct hclge_vf_to_pf_msg send_msg;
366 	u8 resp_msg[2];
367 	int ret;
368 
369 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
370 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
371 				   sizeof(resp_msg));
372 	if (ret) {
373 		dev_err(&hdev->pdev->dev,
374 			"VF request to get the pf port media type failed %d",
375 			ret);
376 		return ret;
377 	}
378 
379 	hdev->hw.mac.media_type = resp_msg[0];
380 	hdev->hw.mac.module_type = resp_msg[1];
381 
382 	return 0;
383 }
384 
385 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
386 {
387 	struct hclgevf_tqp *tqp;
388 	int i;
389 
390 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
391 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
392 	if (!hdev->htqp)
393 		return -ENOMEM;
394 
395 	tqp = hdev->htqp;
396 
397 	for (i = 0; i < hdev->num_tqps; i++) {
398 		tqp->dev = &hdev->pdev->dev;
399 		tqp->index = i;
400 
401 		tqp->q.ae_algo = &ae_algovf;
402 		tqp->q.buf_size = hdev->rx_buf_len;
403 		tqp->q.tx_desc_num = hdev->num_tx_desc;
404 		tqp->q.rx_desc_num = hdev->num_rx_desc;
405 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
406 			i * HCLGEVF_TQP_REG_SIZE;
407 
408 		tqp++;
409 	}
410 
411 	return 0;
412 }
413 
414 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
415 {
416 	struct hnae3_handle *nic = &hdev->nic;
417 	struct hnae3_knic_private_info *kinfo;
418 	u16 new_tqps = hdev->num_tqps;
419 	unsigned int i;
420 
421 	kinfo = &nic->kinfo;
422 	kinfo->num_tc = 0;
423 	kinfo->num_tx_desc = hdev->num_tx_desc;
424 	kinfo->num_rx_desc = hdev->num_rx_desc;
425 	kinfo->rx_buf_len = hdev->rx_buf_len;
426 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
427 		if (hdev->hw_tc_map & BIT(i))
428 			kinfo->num_tc++;
429 
430 	kinfo->rss_size
431 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
432 	new_tqps = kinfo->rss_size * kinfo->num_tc;
433 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
434 
435 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
436 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
437 	if (!kinfo->tqp)
438 		return -ENOMEM;
439 
440 	for (i = 0; i < kinfo->num_tqps; i++) {
441 		hdev->htqp[i].q.handle = &hdev->nic;
442 		hdev->htqp[i].q.tqp_index = i;
443 		kinfo->tqp[i] = &hdev->htqp[i].q;
444 	}
445 
446 	/* after init the max rss_size and tqps, adjust the default tqp numbers
447 	 * and rss size with the actual vector numbers
448 	 */
449 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
450 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / kinfo->num_tc,
451 				kinfo->rss_size);
452 
453 	return 0;
454 }
455 
456 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
457 {
458 	struct hclge_vf_to_pf_msg send_msg;
459 	int status;
460 
461 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
462 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
463 	if (status)
464 		dev_err(&hdev->pdev->dev,
465 			"VF failed to fetch link status(%d) from PF", status);
466 }
467 
468 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
469 {
470 	struct hnae3_handle *rhandle = &hdev->roce;
471 	struct hnae3_handle *handle = &hdev->nic;
472 	struct hnae3_client *rclient;
473 	struct hnae3_client *client;
474 
475 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
476 		return;
477 
478 	client = handle->client;
479 	rclient = hdev->roce_client;
480 
481 	link_state =
482 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
483 
484 	if (link_state != hdev->hw.mac.link) {
485 		client->ops->link_status_change(handle, !!link_state);
486 		if (rclient && rclient->ops->link_status_change)
487 			rclient->ops->link_status_change(rhandle, !!link_state);
488 		hdev->hw.mac.link = link_state;
489 	}
490 
491 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
492 }
493 
494 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
495 {
496 #define HCLGEVF_ADVERTISING	0
497 #define HCLGEVF_SUPPORTED	1
498 
499 	struct hclge_vf_to_pf_msg send_msg;
500 
501 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
502 	send_msg.data[0] = HCLGEVF_ADVERTISING;
503 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
504 	send_msg.data[0] = HCLGEVF_SUPPORTED;
505 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
506 }
507 
508 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
509 {
510 	struct hnae3_handle *nic = &hdev->nic;
511 	int ret;
512 
513 	nic->ae_algo = &ae_algovf;
514 	nic->pdev = hdev->pdev;
515 	nic->numa_node_mask = hdev->numa_node_mask;
516 	nic->flags |= HNAE3_SUPPORT_VF;
517 
518 	ret = hclgevf_knic_setup(hdev);
519 	if (ret)
520 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
521 			ret);
522 	return ret;
523 }
524 
525 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
526 {
527 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
528 		dev_warn(&hdev->pdev->dev,
529 			 "vector(vector_id %d) has been freed.\n", vector_id);
530 		return;
531 	}
532 
533 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
534 	hdev->num_msi_left += 1;
535 	hdev->num_msi_used -= 1;
536 }
537 
538 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
539 			      struct hnae3_vector_info *vector_info)
540 {
541 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
542 	struct hnae3_vector_info *vector = vector_info;
543 	int alloc = 0;
544 	int i, j;
545 
546 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
547 	vector_num = min(hdev->num_msi_left, vector_num);
548 
549 	for (j = 0; j < vector_num; j++) {
550 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
551 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
552 				vector->vector = pci_irq_vector(hdev->pdev, i);
553 				vector->io_addr = hdev->hw.io_base +
554 					HCLGEVF_VECTOR_REG_BASE +
555 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
556 				hdev->vector_status[i] = 0;
557 				hdev->vector_irq[i] = vector->vector;
558 
559 				vector++;
560 				alloc++;
561 
562 				break;
563 			}
564 		}
565 	}
566 	hdev->num_msi_left -= alloc;
567 	hdev->num_msi_used += alloc;
568 
569 	return alloc;
570 }
571 
572 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
573 {
574 	int i;
575 
576 	for (i = 0; i < hdev->num_msi; i++)
577 		if (vector == hdev->vector_irq[i])
578 			return i;
579 
580 	return -EINVAL;
581 }
582 
583 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
584 				    const u8 hfunc, const u8 *key)
585 {
586 	struct hclgevf_rss_config_cmd *req;
587 	unsigned int key_offset = 0;
588 	struct hclgevf_desc desc;
589 	int key_counts;
590 	int key_size;
591 	int ret;
592 
593 	key_counts = HCLGEVF_RSS_KEY_SIZE;
594 	req = (struct hclgevf_rss_config_cmd *)desc.data;
595 
596 	while (key_counts) {
597 		hclgevf_cmd_setup_basic_desc(&desc,
598 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
599 					     false);
600 
601 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
602 		req->hash_config |=
603 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
604 
605 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
606 		memcpy(req->hash_key,
607 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
608 
609 		key_counts -= key_size;
610 		key_offset++;
611 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
612 		if (ret) {
613 			dev_err(&hdev->pdev->dev,
614 				"Configure RSS config fail, status = %d\n",
615 				ret);
616 			return ret;
617 		}
618 	}
619 
620 	return 0;
621 }
622 
623 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
624 {
625 	return HCLGEVF_RSS_KEY_SIZE;
626 }
627 
628 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
629 {
630 	return HCLGEVF_RSS_IND_TBL_SIZE;
631 }
632 
633 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
634 {
635 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
636 	struct hclgevf_rss_indirection_table_cmd *req;
637 	struct hclgevf_desc desc;
638 	int status;
639 	int i, j;
640 
641 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
642 
643 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
644 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
645 					     false);
646 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
647 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
648 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
649 			req->rss_result[j] =
650 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
651 
652 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
653 		if (status) {
654 			dev_err(&hdev->pdev->dev,
655 				"VF failed(=%d) to set RSS indirection table\n",
656 				status);
657 			return status;
658 		}
659 	}
660 
661 	return 0;
662 }
663 
664 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
665 {
666 	struct hclgevf_rss_tc_mode_cmd *req;
667 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
668 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
669 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
670 	struct hclgevf_desc desc;
671 	u16 roundup_size;
672 	int status;
673 	unsigned int i;
674 
675 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
676 
677 	roundup_size = roundup_pow_of_two(rss_size);
678 	roundup_size = ilog2(roundup_size);
679 
680 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
681 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
682 		tc_size[i] = roundup_size;
683 		tc_offset[i] = rss_size * i;
684 	}
685 
686 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
687 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
688 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
689 			      (tc_valid[i] & 0x1));
690 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
691 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
692 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
693 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
694 	}
695 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
696 	if (status)
697 		dev_err(&hdev->pdev->dev,
698 			"VF failed(=%d) to set rss tc mode\n", status);
699 
700 	return status;
701 }
702 
703 /* for revision 0x20, vf shared the same rss config with pf */
704 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
705 {
706 #define HCLGEVF_RSS_MBX_RESP_LEN	8
707 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
708 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
709 	struct hclge_vf_to_pf_msg send_msg;
710 	u16 msg_num, hash_key_index;
711 	u8 index;
712 	int ret;
713 
714 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
715 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
716 			HCLGEVF_RSS_MBX_RESP_LEN;
717 	for (index = 0; index < msg_num; index++) {
718 		send_msg.data[0] = index;
719 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
720 					   HCLGEVF_RSS_MBX_RESP_LEN);
721 		if (ret) {
722 			dev_err(&hdev->pdev->dev,
723 				"VF get rss hash key from PF failed, ret=%d",
724 				ret);
725 			return ret;
726 		}
727 
728 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
729 		if (index == msg_num - 1)
730 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
731 			       &resp_msg[0],
732 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
733 		else
734 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
735 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
736 	}
737 
738 	return 0;
739 }
740 
741 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
742 			   u8 *hfunc)
743 {
744 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
745 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
746 	int i, ret;
747 
748 	if (handle->pdev->revision >= 0x21) {
749 		/* Get hash algorithm */
750 		if (hfunc) {
751 			switch (rss_cfg->hash_algo) {
752 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
753 				*hfunc = ETH_RSS_HASH_TOP;
754 				break;
755 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
756 				*hfunc = ETH_RSS_HASH_XOR;
757 				break;
758 			default:
759 				*hfunc = ETH_RSS_HASH_UNKNOWN;
760 				break;
761 			}
762 		}
763 
764 		/* Get the RSS Key required by the user */
765 		if (key)
766 			memcpy(key, rss_cfg->rss_hash_key,
767 			       HCLGEVF_RSS_KEY_SIZE);
768 	} else {
769 		if (hfunc)
770 			*hfunc = ETH_RSS_HASH_TOP;
771 		if (key) {
772 			ret = hclgevf_get_rss_hash_key(hdev);
773 			if (ret)
774 				return ret;
775 			memcpy(key, rss_cfg->rss_hash_key,
776 			       HCLGEVF_RSS_KEY_SIZE);
777 		}
778 	}
779 
780 	if (indir)
781 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
782 			indir[i] = rss_cfg->rss_indirection_tbl[i];
783 
784 	return 0;
785 }
786 
787 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
788 			   const u8 *key, const u8 hfunc)
789 {
790 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
791 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
792 	int ret, i;
793 
794 	if (handle->pdev->revision >= 0x21) {
795 		/* Set the RSS Hash Key if specififed by the user */
796 		if (key) {
797 			switch (hfunc) {
798 			case ETH_RSS_HASH_TOP:
799 				rss_cfg->hash_algo =
800 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
801 				break;
802 			case ETH_RSS_HASH_XOR:
803 				rss_cfg->hash_algo =
804 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
805 				break;
806 			case ETH_RSS_HASH_NO_CHANGE:
807 				break;
808 			default:
809 				return -EINVAL;
810 			}
811 
812 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
813 						       key);
814 			if (ret)
815 				return ret;
816 
817 			/* Update the shadow RSS key with user specified qids */
818 			memcpy(rss_cfg->rss_hash_key, key,
819 			       HCLGEVF_RSS_KEY_SIZE);
820 		}
821 	}
822 
823 	/* update the shadow RSS table with user specified qids */
824 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
825 		rss_cfg->rss_indirection_tbl[i] = indir[i];
826 
827 	/* update the hardware */
828 	return hclgevf_set_rss_indir_table(hdev);
829 }
830 
831 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
832 {
833 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
834 
835 	if (nfc->data & RXH_L4_B_2_3)
836 		hash_sets |= HCLGEVF_D_PORT_BIT;
837 	else
838 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
839 
840 	if (nfc->data & RXH_IP_SRC)
841 		hash_sets |= HCLGEVF_S_IP_BIT;
842 	else
843 		hash_sets &= ~HCLGEVF_S_IP_BIT;
844 
845 	if (nfc->data & RXH_IP_DST)
846 		hash_sets |= HCLGEVF_D_IP_BIT;
847 	else
848 		hash_sets &= ~HCLGEVF_D_IP_BIT;
849 
850 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
851 		hash_sets |= HCLGEVF_V_TAG_BIT;
852 
853 	return hash_sets;
854 }
855 
856 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
857 				 struct ethtool_rxnfc *nfc)
858 {
859 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
860 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
861 	struct hclgevf_rss_input_tuple_cmd *req;
862 	struct hclgevf_desc desc;
863 	u8 tuple_sets;
864 	int ret;
865 
866 	if (handle->pdev->revision == 0x20)
867 		return -EOPNOTSUPP;
868 
869 	if (nfc->data &
870 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
871 		return -EINVAL;
872 
873 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
874 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
875 
876 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
877 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
878 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
879 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
880 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
881 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
882 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
883 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
884 
885 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
886 	switch (nfc->flow_type) {
887 	case TCP_V4_FLOW:
888 		req->ipv4_tcp_en = tuple_sets;
889 		break;
890 	case TCP_V6_FLOW:
891 		req->ipv6_tcp_en = tuple_sets;
892 		break;
893 	case UDP_V4_FLOW:
894 		req->ipv4_udp_en = tuple_sets;
895 		break;
896 	case UDP_V6_FLOW:
897 		req->ipv6_udp_en = tuple_sets;
898 		break;
899 	case SCTP_V4_FLOW:
900 		req->ipv4_sctp_en = tuple_sets;
901 		break;
902 	case SCTP_V6_FLOW:
903 		if ((nfc->data & RXH_L4_B_0_1) ||
904 		    (nfc->data & RXH_L4_B_2_3))
905 			return -EINVAL;
906 
907 		req->ipv6_sctp_en = tuple_sets;
908 		break;
909 	case IPV4_FLOW:
910 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
911 		break;
912 	case IPV6_FLOW:
913 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
914 		break;
915 	default:
916 		return -EINVAL;
917 	}
918 
919 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
920 	if (ret) {
921 		dev_err(&hdev->pdev->dev,
922 			"Set rss tuple fail, status = %d\n", ret);
923 		return ret;
924 	}
925 
926 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
927 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
928 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
929 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
930 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
931 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
932 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
933 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
934 	return 0;
935 }
936 
937 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
938 				 struct ethtool_rxnfc *nfc)
939 {
940 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
941 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
942 	u8 tuple_sets;
943 
944 	if (handle->pdev->revision == 0x20)
945 		return -EOPNOTSUPP;
946 
947 	nfc->data = 0;
948 
949 	switch (nfc->flow_type) {
950 	case TCP_V4_FLOW:
951 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
952 		break;
953 	case UDP_V4_FLOW:
954 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
955 		break;
956 	case TCP_V6_FLOW:
957 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
958 		break;
959 	case UDP_V6_FLOW:
960 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
961 		break;
962 	case SCTP_V4_FLOW:
963 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
964 		break;
965 	case SCTP_V6_FLOW:
966 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
967 		break;
968 	case IPV4_FLOW:
969 	case IPV6_FLOW:
970 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
971 		break;
972 	default:
973 		return -EINVAL;
974 	}
975 
976 	if (!tuple_sets)
977 		return 0;
978 
979 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
980 		nfc->data |= RXH_L4_B_2_3;
981 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
982 		nfc->data |= RXH_L4_B_0_1;
983 	if (tuple_sets & HCLGEVF_D_IP_BIT)
984 		nfc->data |= RXH_IP_DST;
985 	if (tuple_sets & HCLGEVF_S_IP_BIT)
986 		nfc->data |= RXH_IP_SRC;
987 
988 	return 0;
989 }
990 
991 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
992 				       struct hclgevf_rss_cfg *rss_cfg)
993 {
994 	struct hclgevf_rss_input_tuple_cmd *req;
995 	struct hclgevf_desc desc;
996 	int ret;
997 
998 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
999 
1000 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1001 
1002 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1003 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1004 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1005 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1006 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1007 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1008 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1009 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1010 
1011 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1012 	if (ret)
1013 		dev_err(&hdev->pdev->dev,
1014 			"Configure rss input fail, status = %d\n", ret);
1015 	return ret;
1016 }
1017 
1018 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1019 {
1020 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1021 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1022 
1023 	return rss_cfg->rss_size;
1024 }
1025 
1026 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1027 				       int vector_id,
1028 				       struct hnae3_ring_chain_node *ring_chain)
1029 {
1030 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1031 	struct hclge_vf_to_pf_msg send_msg;
1032 	struct hnae3_ring_chain_node *node;
1033 	int status;
1034 	int i = 0;
1035 
1036 	memset(&send_msg, 0, sizeof(send_msg));
1037 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1038 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1039 	send_msg.vector_id = vector_id;
1040 
1041 	for (node = ring_chain; node; node = node->next) {
1042 		send_msg.param[i].ring_type =
1043 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1044 
1045 		send_msg.param[i].tqp_index = node->tqp_index;
1046 		send_msg.param[i].int_gl_index =
1047 					hnae3_get_field(node->int_gl_idx,
1048 							HNAE3_RING_GL_IDX_M,
1049 							HNAE3_RING_GL_IDX_S);
1050 
1051 		i++;
1052 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1053 			send_msg.ring_num = i;
1054 
1055 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1056 						      NULL, 0);
1057 			if (status) {
1058 				dev_err(&hdev->pdev->dev,
1059 					"Map TQP fail, status is %d.\n",
1060 					status);
1061 				return status;
1062 			}
1063 			i = 0;
1064 		}
1065 	}
1066 
1067 	return 0;
1068 }
1069 
1070 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1071 				      struct hnae3_ring_chain_node *ring_chain)
1072 {
1073 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1074 	int vector_id;
1075 
1076 	vector_id = hclgevf_get_vector_index(hdev, vector);
1077 	if (vector_id < 0) {
1078 		dev_err(&handle->pdev->dev,
1079 			"Get vector index fail. ret =%d\n", vector_id);
1080 		return vector_id;
1081 	}
1082 
1083 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1084 }
1085 
1086 static int hclgevf_unmap_ring_from_vector(
1087 				struct hnae3_handle *handle,
1088 				int vector,
1089 				struct hnae3_ring_chain_node *ring_chain)
1090 {
1091 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1092 	int ret, vector_id;
1093 
1094 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1095 		return 0;
1096 
1097 	vector_id = hclgevf_get_vector_index(hdev, vector);
1098 	if (vector_id < 0) {
1099 		dev_err(&handle->pdev->dev,
1100 			"Get vector index fail. ret =%d\n", vector_id);
1101 		return vector_id;
1102 	}
1103 
1104 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1105 	if (ret)
1106 		dev_err(&handle->pdev->dev,
1107 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1108 			vector_id,
1109 			ret);
1110 
1111 	return ret;
1112 }
1113 
1114 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1115 {
1116 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1117 	int vector_id;
1118 
1119 	vector_id = hclgevf_get_vector_index(hdev, vector);
1120 	if (vector_id < 0) {
1121 		dev_err(&handle->pdev->dev,
1122 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1123 			vector_id);
1124 		return vector_id;
1125 	}
1126 
1127 	hclgevf_free_vector(hdev, vector_id);
1128 
1129 	return 0;
1130 }
1131 
1132 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1133 					bool en_uc_pmc, bool en_mc_pmc,
1134 					bool en_bc_pmc)
1135 {
1136 	struct hclge_vf_to_pf_msg send_msg;
1137 	int ret;
1138 
1139 	memset(&send_msg, 0, sizeof(send_msg));
1140 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1141 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
1142 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
1143 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
1144 
1145 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1146 
1147 	if (ret)
1148 		dev_err(&hdev->pdev->dev,
1149 			"Set promisc mode fail, status is %d.\n", ret);
1150 
1151 	return ret;
1152 }
1153 
1154 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1155 				    bool en_mc_pmc)
1156 {
1157 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1158 	struct pci_dev *pdev = hdev->pdev;
1159 	bool en_bc_pmc;
1160 
1161 	en_bc_pmc = pdev->revision != 0x20;
1162 
1163 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1164 					    en_bc_pmc);
1165 }
1166 
1167 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1168 			      int stream_id, bool enable)
1169 {
1170 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1171 	struct hclgevf_desc desc;
1172 	int status;
1173 
1174 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1175 
1176 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1177 				     false);
1178 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1179 	req->stream_id = cpu_to_le16(stream_id);
1180 	if (enable)
1181 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1182 
1183 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1184 	if (status)
1185 		dev_err(&hdev->pdev->dev,
1186 			"TQP enable fail, status =%d.\n", status);
1187 
1188 	return status;
1189 }
1190 
1191 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1192 {
1193 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1194 	struct hclgevf_tqp *tqp;
1195 	int i;
1196 
1197 	for (i = 0; i < kinfo->num_tqps; i++) {
1198 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1199 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1200 	}
1201 }
1202 
1203 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1204 {
1205 	struct hclge_vf_to_pf_msg send_msg;
1206 	u8 host_mac[ETH_ALEN];
1207 	int status;
1208 
1209 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1210 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1211 				      ETH_ALEN);
1212 	if (status) {
1213 		dev_err(&hdev->pdev->dev,
1214 			"fail to get VF MAC from host %d", status);
1215 		return status;
1216 	}
1217 
1218 	ether_addr_copy(p, host_mac);
1219 
1220 	return 0;
1221 }
1222 
1223 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1224 {
1225 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1226 	u8 host_mac_addr[ETH_ALEN];
1227 
1228 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1229 		return;
1230 
1231 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1232 	if (hdev->has_pf_mac)
1233 		ether_addr_copy(p, host_mac_addr);
1234 	else
1235 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1236 }
1237 
1238 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1239 				bool is_first)
1240 {
1241 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1242 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1243 	struct hclge_vf_to_pf_msg send_msg;
1244 	u8 *new_mac_addr = (u8 *)p;
1245 	int status;
1246 
1247 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1248 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1249 	ether_addr_copy(send_msg.data, new_mac_addr);
1250 	if (is_first && !hdev->has_pf_mac)
1251 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
1252 	else
1253 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1254 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1255 	if (!status)
1256 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1257 
1258 	return status;
1259 }
1260 
1261 static struct hclgevf_mac_addr_node *
1262 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1263 {
1264 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1265 
1266 	list_for_each_entry_safe(mac_node, tmp, list, node)
1267 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1268 			return mac_node;
1269 
1270 	return NULL;
1271 }
1272 
1273 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1274 				    enum HCLGEVF_MAC_NODE_STATE state)
1275 {
1276 	switch (state) {
1277 	/* from set_rx_mode or tmp_add_list */
1278 	case HCLGEVF_MAC_TO_ADD:
1279 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1280 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1281 		break;
1282 	/* only from set_rx_mode */
1283 	case HCLGEVF_MAC_TO_DEL:
1284 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1285 			list_del(&mac_node->node);
1286 			kfree(mac_node);
1287 		} else {
1288 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1289 		}
1290 		break;
1291 	/* only from tmp_add_list, the mac_node->state won't be
1292 	 * HCLGEVF_MAC_ACTIVE
1293 	 */
1294 	case HCLGEVF_MAC_ACTIVE:
1295 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1296 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1297 		break;
1298 	}
1299 }
1300 
1301 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1302 				   enum HCLGEVF_MAC_NODE_STATE state,
1303 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1304 				   const unsigned char *addr)
1305 {
1306 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1307 	struct hclgevf_mac_addr_node *mac_node;
1308 	struct list_head *list;
1309 
1310 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1311 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1312 
1313 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1314 
1315 	/* if the mac addr is already in the mac list, no need to add a new
1316 	 * one into it, just check the mac addr state, convert it to a new
1317 	 * new state, or just remove it, or do nothing.
1318 	 */
1319 	mac_node = hclgevf_find_mac_node(list, addr);
1320 	if (mac_node) {
1321 		hclgevf_update_mac_node(mac_node, state);
1322 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1323 		return 0;
1324 	}
1325 	/* if this address is never added, unnecessary to delete */
1326 	if (state == HCLGEVF_MAC_TO_DEL) {
1327 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1328 		return -ENOENT;
1329 	}
1330 
1331 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1332 	if (!mac_node) {
1333 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1334 		return -ENOMEM;
1335 	}
1336 
1337 	mac_node->state = state;
1338 	ether_addr_copy(mac_node->mac_addr, addr);
1339 	list_add_tail(&mac_node->node, list);
1340 
1341 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1342 	return 0;
1343 }
1344 
1345 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1346 			       const unsigned char *addr)
1347 {
1348 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1349 				       HCLGEVF_MAC_ADDR_UC, addr);
1350 }
1351 
1352 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1353 			      const unsigned char *addr)
1354 {
1355 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1356 				       HCLGEVF_MAC_ADDR_UC, addr);
1357 }
1358 
1359 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1360 			       const unsigned char *addr)
1361 {
1362 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1363 				       HCLGEVF_MAC_ADDR_MC, addr);
1364 }
1365 
1366 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1367 			      const unsigned char *addr)
1368 {
1369 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1370 				       HCLGEVF_MAC_ADDR_MC, addr);
1371 }
1372 
1373 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1374 				    struct hclgevf_mac_addr_node *mac_node,
1375 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1376 {
1377 	struct hclge_vf_to_pf_msg send_msg;
1378 	u8 code, subcode;
1379 
1380 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1381 		code = HCLGE_MBX_SET_UNICAST;
1382 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1383 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1384 		else
1385 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1386 	} else {
1387 		code = HCLGE_MBX_SET_MULTICAST;
1388 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1389 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1390 		else
1391 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1392 	}
1393 
1394 	hclgevf_build_send_msg(&send_msg, code, subcode);
1395 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1396 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1397 }
1398 
1399 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1400 				    struct list_head *list,
1401 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1402 {
1403 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1404 	int ret;
1405 
1406 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1407 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1408 		if  (ret) {
1409 			dev_err(&hdev->pdev->dev,
1410 				"failed to configure mac %pM, state = %d, ret = %d\n",
1411 				mac_node->mac_addr, mac_node->state, ret);
1412 			return;
1413 		}
1414 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1415 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1416 		} else {
1417 			list_del(&mac_node->node);
1418 			kfree(mac_node);
1419 		}
1420 	}
1421 }
1422 
1423 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1424 				       struct list_head *mac_list)
1425 {
1426 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1427 
1428 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1429 		/* if the mac address from tmp_add_list is not in the
1430 		 * uc/mc_mac_list, it means have received a TO_DEL request
1431 		 * during the time window of sending mac config request to PF
1432 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1433 		 * then it will be removed at next time. If is TO_ADD, it means
1434 		 * send TO_ADD request failed, so just remove the mac node.
1435 		 */
1436 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1437 		if (new_node) {
1438 			hclgevf_update_mac_node(new_node, mac_node->state);
1439 			list_del(&mac_node->node);
1440 			kfree(mac_node);
1441 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1442 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1443 			list_del(&mac_node->node);
1444 			list_add_tail(&mac_node->node, mac_list);
1445 		} else {
1446 			list_del(&mac_node->node);
1447 			kfree(mac_node);
1448 		}
1449 	}
1450 }
1451 
1452 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1453 				       struct list_head *mac_list)
1454 {
1455 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1456 
1457 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1458 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1459 		if (new_node) {
1460 			/* If the mac addr is exist in the mac list, it means
1461 			 * received a new request TO_ADD during the time window
1462 			 * of sending mac addr configurrequest to PF, so just
1463 			 * change the mac state to ACTIVE.
1464 			 */
1465 			new_node->state = HCLGEVF_MAC_ACTIVE;
1466 			list_del(&mac_node->node);
1467 			kfree(mac_node);
1468 		} else {
1469 			list_del(&mac_node->node);
1470 			list_add_tail(&mac_node->node, mac_list);
1471 		}
1472 	}
1473 }
1474 
1475 static void hclgevf_clear_list(struct list_head *list)
1476 {
1477 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1478 
1479 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1480 		list_del(&mac_node->node);
1481 		kfree(mac_node);
1482 	}
1483 }
1484 
1485 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1486 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1487 {
1488 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1489 	struct list_head tmp_add_list, tmp_del_list;
1490 	struct list_head *list;
1491 
1492 	INIT_LIST_HEAD(&tmp_add_list);
1493 	INIT_LIST_HEAD(&tmp_del_list);
1494 
1495 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1496 	 * we can add/delete these mac addr outside the spin lock
1497 	 */
1498 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1499 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1500 
1501 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1502 
1503 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1504 		switch (mac_node->state) {
1505 		case HCLGEVF_MAC_TO_DEL:
1506 			list_del(&mac_node->node);
1507 			list_add_tail(&mac_node->node, &tmp_del_list);
1508 			break;
1509 		case HCLGEVF_MAC_TO_ADD:
1510 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1511 			if (!new_node)
1512 				goto stop_traverse;
1513 
1514 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1515 			new_node->state = mac_node->state;
1516 			list_add_tail(&new_node->node, &tmp_add_list);
1517 			break;
1518 		default:
1519 			break;
1520 		}
1521 	}
1522 
1523 stop_traverse:
1524 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1525 
1526 	/* delete first, in order to get max mac table space for adding */
1527 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1528 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1529 
1530 	/* if some mac addresses were added/deleted fail, move back to the
1531 	 * mac_list, and retry at next time.
1532 	 */
1533 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1534 
1535 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1536 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1537 
1538 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1539 }
1540 
1541 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1542 {
1543 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1544 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1545 }
1546 
1547 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1548 {
1549 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1550 
1551 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1552 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1553 
1554 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1555 }
1556 
1557 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1558 				   __be16 proto, u16 vlan_id,
1559 				   bool is_kill)
1560 {
1561 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
1562 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
1563 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3
1564 
1565 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1566 	struct hclge_vf_to_pf_msg send_msg;
1567 	int ret;
1568 
1569 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1570 		return -EINVAL;
1571 
1572 	if (proto != htons(ETH_P_8021Q))
1573 		return -EPROTONOSUPPORT;
1574 
1575 	/* When device is resetting, firmware is unable to handle
1576 	 * mailbox. Just record the vlan id, and remove it after
1577 	 * reset finished.
1578 	 */
1579 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) && is_kill) {
1580 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1581 		return -EBUSY;
1582 	}
1583 
1584 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1585 			       HCLGE_MBX_VLAN_FILTER);
1586 	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1587 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1588 	       sizeof(vlan_id));
1589 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1590 	       sizeof(proto));
1591 	/* when remove hw vlan filter failed, record the vlan id,
1592 	 * and try to remove it from hw later, to be consistence
1593 	 * with stack.
1594 	 */
1595 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1596 	if (is_kill && ret)
1597 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1598 
1599 	return ret;
1600 }
1601 
1602 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1603 {
1604 #define HCLGEVF_MAX_SYNC_COUNT	60
1605 	struct hnae3_handle *handle = &hdev->nic;
1606 	int ret, sync_cnt = 0;
1607 	u16 vlan_id;
1608 
1609 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1610 	while (vlan_id != VLAN_N_VID) {
1611 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1612 					      vlan_id, true);
1613 		if (ret)
1614 			return;
1615 
1616 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1617 		sync_cnt++;
1618 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1619 			return;
1620 
1621 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1622 	}
1623 }
1624 
1625 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1626 {
1627 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1628 	struct hclge_vf_to_pf_msg send_msg;
1629 
1630 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1631 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1632 	send_msg.data[0] = enable ? 1 : 0;
1633 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1634 }
1635 
1636 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1637 {
1638 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1639 	struct hclge_vf_to_pf_msg send_msg;
1640 	int ret;
1641 
1642 	/* disable vf queue before send queue reset msg to PF */
1643 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1644 	if (ret)
1645 		return ret;
1646 
1647 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1648 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
1649 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1650 }
1651 
1652 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1653 {
1654 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1655 	struct hclge_vf_to_pf_msg send_msg;
1656 
1657 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1658 	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1659 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1660 }
1661 
1662 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1663 				 enum hnae3_reset_notify_type type)
1664 {
1665 	struct hnae3_client *client = hdev->nic_client;
1666 	struct hnae3_handle *handle = &hdev->nic;
1667 	int ret;
1668 
1669 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1670 	    !client)
1671 		return 0;
1672 
1673 	if (!client->ops->reset_notify)
1674 		return -EOPNOTSUPP;
1675 
1676 	ret = client->ops->reset_notify(handle, type);
1677 	if (ret)
1678 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1679 			type, ret);
1680 
1681 	return ret;
1682 }
1683 
1684 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1685 {
1686 #define HCLGEVF_RESET_WAIT_US	20000
1687 #define HCLGEVF_RESET_WAIT_CNT	2000
1688 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1689 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1690 
1691 	u32 val;
1692 	int ret;
1693 
1694 	if (hdev->reset_type == HNAE3_VF_RESET)
1695 		ret = readl_poll_timeout(hdev->hw.io_base +
1696 					 HCLGEVF_VF_RST_ING, val,
1697 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1698 					 HCLGEVF_RESET_WAIT_US,
1699 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1700 	else
1701 		ret = readl_poll_timeout(hdev->hw.io_base +
1702 					 HCLGEVF_RST_ING, val,
1703 					 !(val & HCLGEVF_RST_ING_BITS),
1704 					 HCLGEVF_RESET_WAIT_US,
1705 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1706 
1707 	/* hardware completion status should be available by this time */
1708 	if (ret) {
1709 		dev_err(&hdev->pdev->dev,
1710 			"could'nt get reset done status from h/w, timeout!\n");
1711 		return ret;
1712 	}
1713 
1714 	/* we will wait a bit more to let reset of the stack to complete. This
1715 	 * might happen in case reset assertion was made by PF. Yes, this also
1716 	 * means we might end up waiting bit more even for VF reset.
1717 	 */
1718 	msleep(5000);
1719 
1720 	return 0;
1721 }
1722 
1723 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1724 {
1725 	u32 reg_val;
1726 
1727 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1728 	if (enable)
1729 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1730 	else
1731 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1732 
1733 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1734 			  reg_val);
1735 }
1736 
1737 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1738 {
1739 	int ret;
1740 
1741 	/* uninitialize the nic client */
1742 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1743 	if (ret)
1744 		return ret;
1745 
1746 	/* re-initialize the hclge device */
1747 	ret = hclgevf_reset_hdev(hdev);
1748 	if (ret) {
1749 		dev_err(&hdev->pdev->dev,
1750 			"hclge device re-init failed, VF is disabled!\n");
1751 		return ret;
1752 	}
1753 
1754 	/* bring up the nic client again */
1755 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1756 	if (ret)
1757 		return ret;
1758 
1759 	ret = hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1760 	if (ret)
1761 		return ret;
1762 
1763 	/* clear handshake status with IMP */
1764 	hclgevf_reset_handshake(hdev, false);
1765 
1766 	/* bring up the nic to enable TX/RX again */
1767 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1768 }
1769 
1770 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1771 {
1772 #define HCLGEVF_RESET_SYNC_TIME 100
1773 
1774 	struct hclge_vf_to_pf_msg send_msg;
1775 	int ret = 0;
1776 
1777 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1778 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1779 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1780 		hdev->rst_stats.vf_func_rst_cnt++;
1781 	}
1782 
1783 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1784 	/* inform hardware that preparatory work is done */
1785 	msleep(HCLGEVF_RESET_SYNC_TIME);
1786 	hclgevf_reset_handshake(hdev, true);
1787 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1788 		 hdev->reset_type, ret);
1789 
1790 	return ret;
1791 }
1792 
1793 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1794 {
1795 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1796 		 hdev->rst_stats.vf_func_rst_cnt);
1797 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1798 		 hdev->rst_stats.flr_rst_cnt);
1799 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1800 		 hdev->rst_stats.vf_rst_cnt);
1801 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1802 		 hdev->rst_stats.rst_done_cnt);
1803 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1804 		 hdev->rst_stats.hw_rst_done_cnt);
1805 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1806 		 hdev->rst_stats.rst_cnt);
1807 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1808 		 hdev->rst_stats.rst_fail_cnt);
1809 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1810 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1811 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1812 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STAT_REG));
1813 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1814 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1815 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1816 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1817 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1818 }
1819 
1820 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1821 {
1822 	/* recover handshake status with IMP when reset fail */
1823 	hclgevf_reset_handshake(hdev, true);
1824 	hdev->rst_stats.rst_fail_cnt++;
1825 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1826 		hdev->rst_stats.rst_fail_cnt);
1827 
1828 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1829 		set_bit(hdev->reset_type, &hdev->reset_pending);
1830 
1831 	if (hclgevf_is_reset_pending(hdev)) {
1832 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1833 		hclgevf_reset_task_schedule(hdev);
1834 	} else {
1835 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1836 		hclgevf_dump_rst_info(hdev);
1837 	}
1838 }
1839 
1840 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1841 {
1842 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1843 	int ret;
1844 
1845 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1846 	 * know if device is undergoing reset
1847 	 */
1848 	ae_dev->reset_type = hdev->reset_type;
1849 	hdev->rst_stats.rst_cnt++;
1850 
1851 	rtnl_lock();
1852 	/* bring down the nic to stop any ongoing TX/RX */
1853 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1854 	rtnl_unlock();
1855 	if (ret)
1856 		return ret;
1857 
1858 	return hclgevf_reset_prepare_wait(hdev);
1859 }
1860 
1861 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1862 {
1863 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1864 	int ret;
1865 
1866 	hdev->rst_stats.hw_rst_done_cnt++;
1867 
1868 	rtnl_lock();
1869 	/* now, re-initialize the nic client and ae device */
1870 	ret = hclgevf_reset_stack(hdev);
1871 	rtnl_unlock();
1872 	if (ret) {
1873 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1874 		return ret;
1875 	}
1876 
1877 	hdev->last_reset_time = jiffies;
1878 	ae_dev->reset_type = HNAE3_NONE_RESET;
1879 	hdev->rst_stats.rst_done_cnt++;
1880 	hdev->rst_stats.rst_fail_cnt = 0;
1881 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1882 
1883 	return 0;
1884 }
1885 
1886 static void hclgevf_reset(struct hclgevf_dev *hdev)
1887 {
1888 	if (hclgevf_reset_prepare(hdev))
1889 		goto err_reset;
1890 
1891 	/* check if VF could successfully fetch the hardware reset completion
1892 	 * status from the hardware
1893 	 */
1894 	if (hclgevf_reset_wait(hdev)) {
1895 		/* can't do much in this situation, will disable VF */
1896 		dev_err(&hdev->pdev->dev,
1897 			"failed to fetch H/W reset completion status\n");
1898 		goto err_reset;
1899 	}
1900 
1901 	if (hclgevf_reset_rebuild(hdev))
1902 		goto err_reset;
1903 
1904 	return;
1905 
1906 err_reset:
1907 	hclgevf_reset_err_handle(hdev);
1908 }
1909 
1910 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1911 						     unsigned long *addr)
1912 {
1913 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1914 
1915 	/* return the highest priority reset level amongst all */
1916 	if (test_bit(HNAE3_VF_RESET, addr)) {
1917 		rst_level = HNAE3_VF_RESET;
1918 		clear_bit(HNAE3_VF_RESET, addr);
1919 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1920 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1921 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1922 		rst_level = HNAE3_VF_FULL_RESET;
1923 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1924 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1925 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1926 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1927 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1928 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1929 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1930 		rst_level = HNAE3_VF_FUNC_RESET;
1931 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1932 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1933 		rst_level = HNAE3_FLR_RESET;
1934 		clear_bit(HNAE3_FLR_RESET, addr);
1935 	}
1936 
1937 	return rst_level;
1938 }
1939 
1940 static void hclgevf_reset_event(struct pci_dev *pdev,
1941 				struct hnae3_handle *handle)
1942 {
1943 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1944 	struct hclgevf_dev *hdev = ae_dev->priv;
1945 
1946 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1947 
1948 	if (hdev->default_reset_request)
1949 		hdev->reset_level =
1950 			hclgevf_get_reset_level(hdev,
1951 						&hdev->default_reset_request);
1952 	else
1953 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1954 
1955 	/* reset of this VF requested */
1956 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1957 	hclgevf_reset_task_schedule(hdev);
1958 
1959 	hdev->last_reset_time = jiffies;
1960 }
1961 
1962 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1963 					  enum hnae3_reset_type rst_type)
1964 {
1965 	struct hclgevf_dev *hdev = ae_dev->priv;
1966 
1967 	set_bit(rst_type, &hdev->default_reset_request);
1968 }
1969 
1970 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1971 {
1972 	writel(en ? 1 : 0, vector->addr);
1973 }
1974 
1975 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1976 {
1977 #define HCLGEVF_FLR_RETRY_WAIT_MS	500
1978 #define HCLGEVF_FLR_RETRY_CNT		5
1979 
1980 	struct hclgevf_dev *hdev = ae_dev->priv;
1981 	int retry_cnt = 0;
1982 	int ret;
1983 
1984 retry:
1985 	down(&hdev->reset_sem);
1986 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1987 	hdev->reset_type = HNAE3_FLR_RESET;
1988 	ret = hclgevf_reset_prepare(hdev);
1989 	if (ret) {
1990 		dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n",
1991 			ret);
1992 		if (hdev->reset_pending ||
1993 		    retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) {
1994 			dev_err(&hdev->pdev->dev,
1995 				"reset_pending:0x%lx, retry_cnt:%d\n",
1996 				hdev->reset_pending, retry_cnt);
1997 			clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1998 			up(&hdev->reset_sem);
1999 			msleep(HCLGEVF_FLR_RETRY_WAIT_MS);
2000 			goto retry;
2001 		}
2002 	}
2003 
2004 	/* disable misc vector before FLR done */
2005 	hclgevf_enable_vector(&hdev->misc_vector, false);
2006 	hdev->rst_stats.flr_rst_cnt++;
2007 }
2008 
2009 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
2010 {
2011 	struct hclgevf_dev *hdev = ae_dev->priv;
2012 	int ret;
2013 
2014 	hclgevf_enable_vector(&hdev->misc_vector, true);
2015 
2016 	ret = hclgevf_reset_rebuild(hdev);
2017 	if (ret)
2018 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2019 			 ret);
2020 
2021 	hdev->reset_type = HNAE3_NONE_RESET;
2022 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2023 	up(&hdev->reset_sem);
2024 }
2025 
2026 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2027 {
2028 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2029 
2030 	return hdev->fw_version;
2031 }
2032 
2033 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2034 {
2035 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2036 
2037 	vector->vector_irq = pci_irq_vector(hdev->pdev,
2038 					    HCLGEVF_MISC_VECTOR_NUM);
2039 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2040 	/* vector status always valid for Vector 0 */
2041 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2042 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2043 
2044 	hdev->num_msi_left -= 1;
2045 	hdev->num_msi_used += 1;
2046 }
2047 
2048 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2049 {
2050 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2051 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2052 			      &hdev->state))
2053 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2054 }
2055 
2056 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2057 {
2058 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2059 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2060 			      &hdev->state))
2061 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2062 }
2063 
2064 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2065 				  unsigned long delay)
2066 {
2067 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2068 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2069 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2070 }
2071 
2072 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2073 {
2074 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
2075 
2076 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2077 		return;
2078 
2079 	down(&hdev->reset_sem);
2080 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2081 
2082 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2083 			       &hdev->reset_state)) {
2084 		/* PF has initmated that it is about to reset the hardware.
2085 		 * We now have to poll & check if hardware has actually
2086 		 * completed the reset sequence. On hardware reset completion,
2087 		 * VF needs to reset the client and ae device.
2088 		 */
2089 		hdev->reset_attempts = 0;
2090 
2091 		hdev->last_reset_time = jiffies;
2092 		while ((hdev->reset_type =
2093 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2094 		       != HNAE3_NONE_RESET)
2095 			hclgevf_reset(hdev);
2096 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2097 				      &hdev->reset_state)) {
2098 		/* we could be here when either of below happens:
2099 		 * 1. reset was initiated due to watchdog timeout caused by
2100 		 *    a. IMP was earlier reset and our TX got choked down and
2101 		 *       which resulted in watchdog reacting and inducing VF
2102 		 *       reset. This also means our cmdq would be unreliable.
2103 		 *    b. problem in TX due to other lower layer(example link
2104 		 *       layer not functioning properly etc.)
2105 		 * 2. VF reset might have been initiated due to some config
2106 		 *    change.
2107 		 *
2108 		 * NOTE: Theres no clear way to detect above cases than to react
2109 		 * to the response of PF for this reset request. PF will ack the
2110 		 * 1b and 2. cases but we will not get any intimation about 1a
2111 		 * from PF as cmdq would be in unreliable state i.e. mailbox
2112 		 * communication between PF and VF would be broken.
2113 		 *
2114 		 * if we are never geting into pending state it means either:
2115 		 * 1. PF is not receiving our request which could be due to IMP
2116 		 *    reset
2117 		 * 2. PF is screwed
2118 		 * We cannot do much for 2. but to check first we can try reset
2119 		 * our PCIe + stack and see if it alleviates the problem.
2120 		 */
2121 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2122 			/* prepare for full reset of stack + pcie interface */
2123 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2124 
2125 			/* "defer" schedule the reset task again */
2126 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2127 		} else {
2128 			hdev->reset_attempts++;
2129 
2130 			set_bit(hdev->reset_level, &hdev->reset_pending);
2131 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2132 		}
2133 		hclgevf_reset_task_schedule(hdev);
2134 	}
2135 
2136 	hdev->reset_type = HNAE3_NONE_RESET;
2137 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2138 	up(&hdev->reset_sem);
2139 }
2140 
2141 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2142 {
2143 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2144 		return;
2145 
2146 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2147 		return;
2148 
2149 	hclgevf_mbx_async_handler(hdev);
2150 
2151 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2152 }
2153 
2154 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2155 {
2156 	struct hclge_vf_to_pf_msg send_msg;
2157 	int ret;
2158 
2159 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2160 		return;
2161 
2162 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2163 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2164 	if (ret)
2165 		dev_err(&hdev->pdev->dev,
2166 			"VF sends keep alive cmd failed(=%d)\n", ret);
2167 }
2168 
2169 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2170 {
2171 	unsigned long delta = round_jiffies_relative(HZ);
2172 	struct hnae3_handle *handle = &hdev->nic;
2173 
2174 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2175 		delta = jiffies - hdev->last_serv_processed;
2176 
2177 		if (delta < round_jiffies_relative(HZ)) {
2178 			delta = round_jiffies_relative(HZ) - delta;
2179 			goto out;
2180 		}
2181 	}
2182 
2183 	hdev->serv_processed_cnt++;
2184 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2185 		hclgevf_keep_alive(hdev);
2186 
2187 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2188 		hdev->last_serv_processed = jiffies;
2189 		goto out;
2190 	}
2191 
2192 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2193 		hclgevf_tqps_update_stats(handle);
2194 
2195 	/* request the link status from the PF. PF would be able to tell VF
2196 	 * about such updates in future so we might remove this later
2197 	 */
2198 	hclgevf_request_link_info(hdev);
2199 
2200 	hclgevf_update_link_mode(hdev);
2201 
2202 	hclgevf_sync_vlan_filter(hdev);
2203 
2204 	hclgevf_sync_mac_table(hdev);
2205 
2206 	hdev->last_serv_processed = jiffies;
2207 
2208 out:
2209 	hclgevf_task_schedule(hdev, delta);
2210 }
2211 
2212 static void hclgevf_service_task(struct work_struct *work)
2213 {
2214 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2215 						service_task.work);
2216 
2217 	hclgevf_reset_service_task(hdev);
2218 	hclgevf_mailbox_service_task(hdev);
2219 	hclgevf_periodic_service_task(hdev);
2220 
2221 	/* Handle reset and mbx again in case periodical task delays the
2222 	 * handling by calling hclgevf_task_schedule() in
2223 	 * hclgevf_periodic_service_task()
2224 	 */
2225 	hclgevf_reset_service_task(hdev);
2226 	hclgevf_mailbox_service_task(hdev);
2227 }
2228 
2229 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2230 {
2231 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2232 }
2233 
2234 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2235 						      u32 *clearval)
2236 {
2237 	u32 val, cmdq_stat_reg, rst_ing_reg;
2238 
2239 	/* fetch the events from their corresponding regs */
2240 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2241 					 HCLGEVF_VECTOR0_CMDQ_STAT_REG);
2242 
2243 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2244 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2245 		dev_info(&hdev->pdev->dev,
2246 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2247 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2248 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2249 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2250 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2251 		hdev->rst_stats.vf_rst_cnt++;
2252 		/* set up VF hardware reset status, its PF will clear
2253 		 * this status when PF has initialized done.
2254 		 */
2255 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2256 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2257 				  val | HCLGEVF_VF_RST_ING_BIT);
2258 		return HCLGEVF_VECTOR0_EVENT_RST;
2259 	}
2260 
2261 	/* check for vector0 mailbox(=CMDQ RX) event source */
2262 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2263 		/* for revision 0x21, clearing interrupt is writing bit 0
2264 		 * to the clear register, writing bit 1 means to keep the
2265 		 * old value.
2266 		 * for revision 0x20, the clear register is a read & write
2267 		 * register, so we should just write 0 to the bit we are
2268 		 * handling, and keep other bits as cmdq_stat_reg.
2269 		 */
2270 		if (hdev->pdev->revision >= 0x21)
2271 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2272 		else
2273 			*clearval = cmdq_stat_reg &
2274 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2275 
2276 		return HCLGEVF_VECTOR0_EVENT_MBX;
2277 	}
2278 
2279 	/* print other vector0 event source */
2280 	dev_info(&hdev->pdev->dev,
2281 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2282 		 cmdq_stat_reg);
2283 
2284 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2285 }
2286 
2287 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2288 {
2289 	enum hclgevf_evt_cause event_cause;
2290 	struct hclgevf_dev *hdev = data;
2291 	u32 clearval;
2292 
2293 	hclgevf_enable_vector(&hdev->misc_vector, false);
2294 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2295 
2296 	switch (event_cause) {
2297 	case HCLGEVF_VECTOR0_EVENT_RST:
2298 		hclgevf_reset_task_schedule(hdev);
2299 		break;
2300 	case HCLGEVF_VECTOR0_EVENT_MBX:
2301 		hclgevf_mbx_handler(hdev);
2302 		break;
2303 	default:
2304 		break;
2305 	}
2306 
2307 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2308 		hclgevf_clear_event_cause(hdev, clearval);
2309 		hclgevf_enable_vector(&hdev->misc_vector, true);
2310 	}
2311 
2312 	return IRQ_HANDLED;
2313 }
2314 
2315 static int hclgevf_configure(struct hclgevf_dev *hdev)
2316 {
2317 	int ret;
2318 
2319 	/* get current port based vlan state from PF */
2320 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2321 	if (ret)
2322 		return ret;
2323 
2324 	/* get queue configuration from PF */
2325 	ret = hclgevf_get_queue_info(hdev);
2326 	if (ret)
2327 		return ret;
2328 
2329 	/* get queue depth info from PF */
2330 	ret = hclgevf_get_queue_depth(hdev);
2331 	if (ret)
2332 		return ret;
2333 
2334 	ret = hclgevf_get_pf_media_type(hdev);
2335 	if (ret)
2336 		return ret;
2337 
2338 	/* get tc configuration from PF */
2339 	return hclgevf_get_tc_info(hdev);
2340 }
2341 
2342 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2343 {
2344 	struct pci_dev *pdev = ae_dev->pdev;
2345 	struct hclgevf_dev *hdev;
2346 
2347 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2348 	if (!hdev)
2349 		return -ENOMEM;
2350 
2351 	hdev->pdev = pdev;
2352 	hdev->ae_dev = ae_dev;
2353 	ae_dev->priv = hdev;
2354 
2355 	return 0;
2356 }
2357 
2358 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2359 {
2360 	struct hnae3_handle *roce = &hdev->roce;
2361 	struct hnae3_handle *nic = &hdev->nic;
2362 
2363 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2364 
2365 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2366 	    hdev->num_msi_left == 0)
2367 		return -EINVAL;
2368 
2369 	roce->rinfo.base_vector = hdev->roce_base_vector;
2370 
2371 	roce->rinfo.netdev = nic->kinfo.netdev;
2372 	roce->rinfo.roce_io_base = hdev->hw.io_base;
2373 
2374 	roce->pdev = nic->pdev;
2375 	roce->ae_algo = nic->ae_algo;
2376 	roce->numa_node_mask = nic->numa_node_mask;
2377 
2378 	return 0;
2379 }
2380 
2381 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2382 {
2383 	struct hclgevf_cfg_gro_status_cmd *req;
2384 	struct hclgevf_desc desc;
2385 	int ret;
2386 
2387 	if (!hnae3_dev_gro_supported(hdev))
2388 		return 0;
2389 
2390 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2391 				     false);
2392 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2393 
2394 	req->gro_en = cpu_to_le16(en ? 1 : 0);
2395 
2396 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2397 	if (ret)
2398 		dev_err(&hdev->pdev->dev,
2399 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2400 
2401 	return ret;
2402 }
2403 
2404 static void hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2405 {
2406 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2407 	struct hclgevf_rss_tuple_cfg *tuple_sets;
2408 	u32 i;
2409 
2410 	rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2411 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2412 	tuple_sets = &rss_cfg->rss_tuple_sets;
2413 	if (hdev->pdev->revision >= 0x21) {
2414 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2415 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2416 		       HCLGEVF_RSS_KEY_SIZE);
2417 
2418 		tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2419 		tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2420 		tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2421 		tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2422 		tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2423 		tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2424 		tuple_sets->ipv6_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2425 		tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2426 	}
2427 
2428 	/* Initialize RSS indirect table */
2429 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2430 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2431 }
2432 
2433 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2434 {
2435 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2436 	int ret;
2437 
2438 	if (hdev->pdev->revision >= 0x21) {
2439 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2440 					       rss_cfg->rss_hash_key);
2441 		if (ret)
2442 			return ret;
2443 
2444 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2445 		if (ret)
2446 			return ret;
2447 	}
2448 
2449 	ret = hclgevf_set_rss_indir_table(hdev);
2450 	if (ret)
2451 		return ret;
2452 
2453 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2454 }
2455 
2456 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2457 {
2458 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2459 				       false);
2460 }
2461 
2462 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2463 {
2464 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2465 
2466 	unsigned long last = hdev->serv_processed_cnt;
2467 	int i = 0;
2468 
2469 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2470 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2471 	       last == hdev->serv_processed_cnt)
2472 		usleep_range(1, 1);
2473 }
2474 
2475 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2476 {
2477 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2478 
2479 	if (enable) {
2480 		hclgevf_task_schedule(hdev, 0);
2481 	} else {
2482 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2483 
2484 		/* flush memory to make sure DOWN is seen by service task */
2485 		smp_mb__before_atomic();
2486 		hclgevf_flush_link_update(hdev);
2487 	}
2488 }
2489 
2490 static int hclgevf_ae_start(struct hnae3_handle *handle)
2491 {
2492 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2493 
2494 	hclgevf_reset_tqp_stats(handle);
2495 
2496 	hclgevf_request_link_info(hdev);
2497 
2498 	hclgevf_update_link_mode(hdev);
2499 
2500 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2501 
2502 	return 0;
2503 }
2504 
2505 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2506 {
2507 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2508 	int i;
2509 
2510 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2511 
2512 	if (hdev->reset_type != HNAE3_VF_RESET)
2513 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2514 			if (hclgevf_reset_tqp(handle, i))
2515 				break;
2516 
2517 	hclgevf_reset_tqp_stats(handle);
2518 	hclgevf_update_link_status(hdev, 0);
2519 }
2520 
2521 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2522 {
2523 #define HCLGEVF_STATE_ALIVE	1
2524 #define HCLGEVF_STATE_NOT_ALIVE	0
2525 
2526 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2527 	struct hclge_vf_to_pf_msg send_msg;
2528 
2529 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2530 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2531 				HCLGEVF_STATE_NOT_ALIVE;
2532 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2533 }
2534 
2535 static int hclgevf_client_start(struct hnae3_handle *handle)
2536 {
2537 	int ret;
2538 
2539 	ret = hclgevf_set_alive(handle, true);
2540 	if (ret)
2541 		return ret;
2542 
2543 	return 0;
2544 }
2545 
2546 static void hclgevf_client_stop(struct hnae3_handle *handle)
2547 {
2548 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2549 	int ret;
2550 
2551 	ret = hclgevf_set_alive(handle, false);
2552 	if (ret)
2553 		dev_warn(&hdev->pdev->dev,
2554 			 "%s failed %d\n", __func__, ret);
2555 }
2556 
2557 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2558 {
2559 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2560 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2561 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2562 
2563 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2564 
2565 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2566 	sema_init(&hdev->reset_sem, 1);
2567 
2568 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2569 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2570 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2571 
2572 	/* bring the device down */
2573 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2574 }
2575 
2576 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2577 {
2578 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2579 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2580 
2581 	if (hdev->service_task.work.func)
2582 		cancel_delayed_work_sync(&hdev->service_task);
2583 
2584 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2585 }
2586 
2587 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2588 {
2589 	struct pci_dev *pdev = hdev->pdev;
2590 	int vectors;
2591 	int i;
2592 
2593 	if (hnae3_dev_roce_supported(hdev))
2594 		vectors = pci_alloc_irq_vectors(pdev,
2595 						hdev->roce_base_msix_offset + 1,
2596 						hdev->num_msi,
2597 						PCI_IRQ_MSIX);
2598 	else
2599 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2600 						hdev->num_msi,
2601 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2602 
2603 	if (vectors < 0) {
2604 		dev_err(&pdev->dev,
2605 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2606 			vectors);
2607 		return vectors;
2608 	}
2609 	if (vectors < hdev->num_msi)
2610 		dev_warn(&hdev->pdev->dev,
2611 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2612 			 hdev->num_msi, vectors);
2613 
2614 	hdev->num_msi = vectors;
2615 	hdev->num_msi_left = vectors;
2616 
2617 	hdev->base_msi_vector = pdev->irq;
2618 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2619 
2620 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2621 					   sizeof(u16), GFP_KERNEL);
2622 	if (!hdev->vector_status) {
2623 		pci_free_irq_vectors(pdev);
2624 		return -ENOMEM;
2625 	}
2626 
2627 	for (i = 0; i < hdev->num_msi; i++)
2628 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2629 
2630 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2631 					sizeof(int), GFP_KERNEL);
2632 	if (!hdev->vector_irq) {
2633 		devm_kfree(&pdev->dev, hdev->vector_status);
2634 		pci_free_irq_vectors(pdev);
2635 		return -ENOMEM;
2636 	}
2637 
2638 	return 0;
2639 }
2640 
2641 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2642 {
2643 	struct pci_dev *pdev = hdev->pdev;
2644 
2645 	devm_kfree(&pdev->dev, hdev->vector_status);
2646 	devm_kfree(&pdev->dev, hdev->vector_irq);
2647 	pci_free_irq_vectors(pdev);
2648 }
2649 
2650 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2651 {
2652 	int ret;
2653 
2654 	hclgevf_get_misc_vector(hdev);
2655 
2656 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2657 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2658 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2659 			  0, hdev->misc_vector.name, hdev);
2660 	if (ret) {
2661 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2662 			hdev->misc_vector.vector_irq);
2663 		return ret;
2664 	}
2665 
2666 	hclgevf_clear_event_cause(hdev, 0);
2667 
2668 	/* enable misc. vector(vector 0) */
2669 	hclgevf_enable_vector(&hdev->misc_vector, true);
2670 
2671 	return ret;
2672 }
2673 
2674 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2675 {
2676 	/* disable misc vector(vector 0) */
2677 	hclgevf_enable_vector(&hdev->misc_vector, false);
2678 	synchronize_irq(hdev->misc_vector.vector_irq);
2679 	free_irq(hdev->misc_vector.vector_irq, hdev);
2680 	hclgevf_free_vector(hdev, 0);
2681 }
2682 
2683 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2684 {
2685 	struct device *dev = &hdev->pdev->dev;
2686 
2687 	dev_info(dev, "VF info begin:\n");
2688 
2689 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2690 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2691 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2692 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2693 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2694 	dev_info(dev, "PF media type of this VF: %u\n",
2695 		 hdev->hw.mac.media_type);
2696 
2697 	dev_info(dev, "VF info end.\n");
2698 }
2699 
2700 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2701 					    struct hnae3_client *client)
2702 {
2703 	struct hclgevf_dev *hdev = ae_dev->priv;
2704 	int ret;
2705 
2706 	ret = client->ops->init_instance(&hdev->nic);
2707 	if (ret)
2708 		return ret;
2709 
2710 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2711 	hnae3_set_client_init_flag(client, ae_dev, 1);
2712 
2713 	if (netif_msg_drv(&hdev->nic))
2714 		hclgevf_info_show(hdev);
2715 
2716 	return 0;
2717 }
2718 
2719 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2720 					     struct hnae3_client *client)
2721 {
2722 	struct hclgevf_dev *hdev = ae_dev->priv;
2723 	int ret;
2724 
2725 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2726 	    !hdev->nic_client)
2727 		return 0;
2728 
2729 	ret = hclgevf_init_roce_base_info(hdev);
2730 	if (ret)
2731 		return ret;
2732 
2733 	ret = client->ops->init_instance(&hdev->roce);
2734 	if (ret)
2735 		return ret;
2736 
2737 	hnae3_set_client_init_flag(client, ae_dev, 1);
2738 
2739 	return 0;
2740 }
2741 
2742 static int hclgevf_init_client_instance(struct hnae3_client *client,
2743 					struct hnae3_ae_dev *ae_dev)
2744 {
2745 	struct hclgevf_dev *hdev = ae_dev->priv;
2746 	int ret;
2747 
2748 	switch (client->type) {
2749 	case HNAE3_CLIENT_KNIC:
2750 		hdev->nic_client = client;
2751 		hdev->nic.client = client;
2752 
2753 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2754 		if (ret)
2755 			goto clear_nic;
2756 
2757 		ret = hclgevf_init_roce_client_instance(ae_dev,
2758 							hdev->roce_client);
2759 		if (ret)
2760 			goto clear_roce;
2761 
2762 		break;
2763 	case HNAE3_CLIENT_ROCE:
2764 		if (hnae3_dev_roce_supported(hdev)) {
2765 			hdev->roce_client = client;
2766 			hdev->roce.client = client;
2767 		}
2768 
2769 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2770 		if (ret)
2771 			goto clear_roce;
2772 
2773 		break;
2774 	default:
2775 		return -EINVAL;
2776 	}
2777 
2778 	return 0;
2779 
2780 clear_nic:
2781 	hdev->nic_client = NULL;
2782 	hdev->nic.client = NULL;
2783 	return ret;
2784 clear_roce:
2785 	hdev->roce_client = NULL;
2786 	hdev->roce.client = NULL;
2787 	return ret;
2788 }
2789 
2790 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2791 					   struct hnae3_ae_dev *ae_dev)
2792 {
2793 	struct hclgevf_dev *hdev = ae_dev->priv;
2794 
2795 	/* un-init roce, if it exists */
2796 	if (hdev->roce_client) {
2797 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2798 		hdev->roce_client = NULL;
2799 		hdev->roce.client = NULL;
2800 	}
2801 
2802 	/* un-init nic/unic, if this was not called by roce client */
2803 	if (client->ops->uninit_instance && hdev->nic_client &&
2804 	    client->type != HNAE3_CLIENT_ROCE) {
2805 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2806 
2807 		client->ops->uninit_instance(&hdev->nic, 0);
2808 		hdev->nic_client = NULL;
2809 		hdev->nic.client = NULL;
2810 	}
2811 }
2812 
2813 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2814 {
2815 	struct pci_dev *pdev = hdev->pdev;
2816 	struct hclgevf_hw *hw;
2817 	int ret;
2818 
2819 	ret = pci_enable_device(pdev);
2820 	if (ret) {
2821 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2822 		return ret;
2823 	}
2824 
2825 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2826 	if (ret) {
2827 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2828 		goto err_disable_device;
2829 	}
2830 
2831 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2832 	if (ret) {
2833 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2834 		goto err_disable_device;
2835 	}
2836 
2837 	pci_set_master(pdev);
2838 	hw = &hdev->hw;
2839 	hw->hdev = hdev;
2840 	hw->io_base = pci_iomap(pdev, 2, 0);
2841 	if (!hw->io_base) {
2842 		dev_err(&pdev->dev, "can't map configuration register space\n");
2843 		ret = -ENOMEM;
2844 		goto err_clr_master;
2845 	}
2846 
2847 	return 0;
2848 
2849 err_clr_master:
2850 	pci_clear_master(pdev);
2851 	pci_release_regions(pdev);
2852 err_disable_device:
2853 	pci_disable_device(pdev);
2854 
2855 	return ret;
2856 }
2857 
2858 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2859 {
2860 	struct pci_dev *pdev = hdev->pdev;
2861 
2862 	pci_iounmap(pdev, hdev->hw.io_base);
2863 	pci_clear_master(pdev);
2864 	pci_release_regions(pdev);
2865 	pci_disable_device(pdev);
2866 }
2867 
2868 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2869 {
2870 	struct hclgevf_query_res_cmd *req;
2871 	struct hclgevf_desc desc;
2872 	int ret;
2873 
2874 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2875 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2876 	if (ret) {
2877 		dev_err(&hdev->pdev->dev,
2878 			"query vf resource failed, ret = %d.\n", ret);
2879 		return ret;
2880 	}
2881 
2882 	req = (struct hclgevf_query_res_cmd *)desc.data;
2883 
2884 	if (hnae3_dev_roce_supported(hdev)) {
2885 		hdev->roce_base_msix_offset =
2886 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2887 				HCLGEVF_MSIX_OFT_ROCEE_M,
2888 				HCLGEVF_MSIX_OFT_ROCEE_S);
2889 		hdev->num_roce_msix =
2890 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2891 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2892 
2893 		/* nic's msix numbers is always equals to the roce's. */
2894 		hdev->num_nic_msix = hdev->num_roce_msix;
2895 
2896 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2897 		 * are queued before Roce vectors. The offset is fixed to 64.
2898 		 */
2899 		hdev->num_msi = hdev->num_roce_msix +
2900 				hdev->roce_base_msix_offset;
2901 	} else {
2902 		hdev->num_msi =
2903 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2904 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2905 
2906 		hdev->num_nic_msix = hdev->num_msi;
2907 	}
2908 
2909 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2910 		dev_err(&hdev->pdev->dev,
2911 			"Just %u msi resources, not enough for vf(min:2).\n",
2912 			hdev->num_nic_msix);
2913 		return -EINVAL;
2914 	}
2915 
2916 	return 0;
2917 }
2918 
2919 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2920 {
2921 	struct pci_dev *pdev = hdev->pdev;
2922 	int ret = 0;
2923 
2924 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2925 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2926 		hclgevf_misc_irq_uninit(hdev);
2927 		hclgevf_uninit_msi(hdev);
2928 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2929 	}
2930 
2931 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2932 		pci_set_master(pdev);
2933 		ret = hclgevf_init_msi(hdev);
2934 		if (ret) {
2935 			dev_err(&pdev->dev,
2936 				"failed(%d) to init MSI/MSI-X\n", ret);
2937 			return ret;
2938 		}
2939 
2940 		ret = hclgevf_misc_irq_init(hdev);
2941 		if (ret) {
2942 			hclgevf_uninit_msi(hdev);
2943 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2944 				ret);
2945 			return ret;
2946 		}
2947 
2948 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2949 	}
2950 
2951 	return ret;
2952 }
2953 
2954 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2955 {
2956 	struct pci_dev *pdev = hdev->pdev;
2957 	int ret;
2958 
2959 	ret = hclgevf_pci_reset(hdev);
2960 	if (ret) {
2961 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2962 		return ret;
2963 	}
2964 
2965 	ret = hclgevf_cmd_init(hdev);
2966 	if (ret) {
2967 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2968 		return ret;
2969 	}
2970 
2971 	ret = hclgevf_rss_init_hw(hdev);
2972 	if (ret) {
2973 		dev_err(&hdev->pdev->dev,
2974 			"failed(%d) to initialize RSS\n", ret);
2975 		return ret;
2976 	}
2977 
2978 	ret = hclgevf_config_gro(hdev, true);
2979 	if (ret)
2980 		return ret;
2981 
2982 	ret = hclgevf_init_vlan_config(hdev);
2983 	if (ret) {
2984 		dev_err(&hdev->pdev->dev,
2985 			"failed(%d) to initialize VLAN config\n", ret);
2986 		return ret;
2987 	}
2988 
2989 	dev_info(&hdev->pdev->dev, "Reset done\n");
2990 
2991 	return 0;
2992 }
2993 
2994 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2995 {
2996 	struct pci_dev *pdev = hdev->pdev;
2997 	int ret;
2998 
2999 	ret = hclgevf_pci_init(hdev);
3000 	if (ret)
3001 		return ret;
3002 
3003 	ret = hclgevf_cmd_queue_init(hdev);
3004 	if (ret)
3005 		goto err_cmd_queue_init;
3006 
3007 	ret = hclgevf_cmd_init(hdev);
3008 	if (ret)
3009 		goto err_cmd_init;
3010 
3011 	/* Get vf resource */
3012 	ret = hclgevf_query_vf_resource(hdev);
3013 	if (ret)
3014 		goto err_cmd_init;
3015 
3016 	ret = hclgevf_init_msi(hdev);
3017 	if (ret) {
3018 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3019 		goto err_cmd_init;
3020 	}
3021 
3022 	hclgevf_state_init(hdev);
3023 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3024 	hdev->reset_type = HNAE3_NONE_RESET;
3025 
3026 	ret = hclgevf_misc_irq_init(hdev);
3027 	if (ret)
3028 		goto err_misc_irq_init;
3029 
3030 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3031 
3032 	ret = hclgevf_configure(hdev);
3033 	if (ret) {
3034 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3035 		goto err_config;
3036 	}
3037 
3038 	ret = hclgevf_alloc_tqps(hdev);
3039 	if (ret) {
3040 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3041 		goto err_config;
3042 	}
3043 
3044 	ret = hclgevf_set_handle_info(hdev);
3045 	if (ret)
3046 		goto err_config;
3047 
3048 	ret = hclgevf_config_gro(hdev, true);
3049 	if (ret)
3050 		goto err_config;
3051 
3052 	/* Initialize RSS for this VF */
3053 	hclgevf_rss_init_cfg(hdev);
3054 	ret = hclgevf_rss_init_hw(hdev);
3055 	if (ret) {
3056 		dev_err(&hdev->pdev->dev,
3057 			"failed(%d) to initialize RSS\n", ret);
3058 		goto err_config;
3059 	}
3060 
3061 	ret = hclgevf_init_vlan_config(hdev);
3062 	if (ret) {
3063 		dev_err(&hdev->pdev->dev,
3064 			"failed(%d) to initialize VLAN config\n", ret);
3065 		goto err_config;
3066 	}
3067 
3068 	hdev->last_reset_time = jiffies;
3069 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3070 		 HCLGEVF_DRIVER_NAME);
3071 
3072 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3073 
3074 	return 0;
3075 
3076 err_config:
3077 	hclgevf_misc_irq_uninit(hdev);
3078 err_misc_irq_init:
3079 	hclgevf_state_uninit(hdev);
3080 	hclgevf_uninit_msi(hdev);
3081 err_cmd_init:
3082 	hclgevf_cmd_uninit(hdev);
3083 err_cmd_queue_init:
3084 	hclgevf_pci_uninit(hdev);
3085 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3086 	return ret;
3087 }
3088 
3089 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3090 {
3091 	struct hclge_vf_to_pf_msg send_msg;
3092 
3093 	hclgevf_state_uninit(hdev);
3094 
3095 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3096 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3097 
3098 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3099 		hclgevf_misc_irq_uninit(hdev);
3100 		hclgevf_uninit_msi(hdev);
3101 	}
3102 
3103 	hclgevf_pci_uninit(hdev);
3104 	hclgevf_cmd_uninit(hdev);
3105 	hclgevf_uninit_mac_list(hdev);
3106 }
3107 
3108 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3109 {
3110 	struct pci_dev *pdev = ae_dev->pdev;
3111 	int ret;
3112 
3113 	ret = hclgevf_alloc_hdev(ae_dev);
3114 	if (ret) {
3115 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3116 		return ret;
3117 	}
3118 
3119 	ret = hclgevf_init_hdev(ae_dev->priv);
3120 	if (ret) {
3121 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3122 		return ret;
3123 	}
3124 
3125 	return 0;
3126 }
3127 
3128 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3129 {
3130 	struct hclgevf_dev *hdev = ae_dev->priv;
3131 
3132 	hclgevf_uninit_hdev(hdev);
3133 	ae_dev->priv = NULL;
3134 }
3135 
3136 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3137 {
3138 	struct hnae3_handle *nic = &hdev->nic;
3139 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3140 
3141 	return min_t(u32, hdev->rss_size_max,
3142 		     hdev->num_tqps / kinfo->num_tc);
3143 }
3144 
3145 /**
3146  * hclgevf_get_channels - Get the current channels enabled and max supported.
3147  * @handle: hardware information for network interface
3148  * @ch: ethtool channels structure
3149  *
3150  * We don't support separate tx and rx queues as channels. The other count
3151  * represents how many queues are being used for control. max_combined counts
3152  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3153  * q_vectors since we support a lot more queue pairs than q_vectors.
3154  **/
3155 static void hclgevf_get_channels(struct hnae3_handle *handle,
3156 				 struct ethtool_channels *ch)
3157 {
3158 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3159 
3160 	ch->max_combined = hclgevf_get_max_channels(hdev);
3161 	ch->other_count = 0;
3162 	ch->max_other = 0;
3163 	ch->combined_count = handle->kinfo.rss_size;
3164 }
3165 
3166 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3167 					  u16 *alloc_tqps, u16 *max_rss_size)
3168 {
3169 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3170 
3171 	*alloc_tqps = hdev->num_tqps;
3172 	*max_rss_size = hdev->rss_size_max;
3173 }
3174 
3175 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3176 				    u32 new_tqps_num)
3177 {
3178 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3179 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3180 	u16 max_rss_size;
3181 
3182 	kinfo->req_rss_size = new_tqps_num;
3183 
3184 	max_rss_size = min_t(u16, hdev->rss_size_max,
3185 			     hdev->num_tqps / kinfo->num_tc);
3186 
3187 	/* Use the user's configuration when it is not larger than
3188 	 * max_rss_size, otherwise, use the maximum specification value.
3189 	 */
3190 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3191 	    kinfo->req_rss_size <= max_rss_size)
3192 		kinfo->rss_size = kinfo->req_rss_size;
3193 	else if (kinfo->rss_size > max_rss_size ||
3194 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3195 		kinfo->rss_size = max_rss_size;
3196 
3197 	kinfo->num_tqps = kinfo->num_tc * kinfo->rss_size;
3198 }
3199 
3200 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3201 				bool rxfh_configured)
3202 {
3203 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3204 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3205 	u16 cur_rss_size = kinfo->rss_size;
3206 	u16 cur_tqps = kinfo->num_tqps;
3207 	u32 *rss_indir;
3208 	unsigned int i;
3209 	int ret;
3210 
3211 	hclgevf_update_rss_size(handle, new_tqps_num);
3212 
3213 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3214 	if (ret)
3215 		return ret;
3216 
3217 	/* RSS indirection table has been configuared by user */
3218 	if (rxfh_configured)
3219 		goto out;
3220 
3221 	/* Reinitializes the rss indirect table according to the new RSS size */
3222 	rss_indir = kcalloc(HCLGEVF_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL);
3223 	if (!rss_indir)
3224 		return -ENOMEM;
3225 
3226 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
3227 		rss_indir[i] = i % kinfo->rss_size;
3228 
3229 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3230 
3231 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3232 	if (ret)
3233 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3234 			ret);
3235 
3236 	kfree(rss_indir);
3237 
3238 out:
3239 	if (!ret)
3240 		dev_info(&hdev->pdev->dev,
3241 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3242 			 cur_rss_size, kinfo->rss_size,
3243 			 cur_tqps, kinfo->rss_size * kinfo->num_tc);
3244 
3245 	return ret;
3246 }
3247 
3248 static int hclgevf_get_status(struct hnae3_handle *handle)
3249 {
3250 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3251 
3252 	return hdev->hw.mac.link;
3253 }
3254 
3255 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3256 					    u8 *auto_neg, u32 *speed,
3257 					    u8 *duplex)
3258 {
3259 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3260 
3261 	if (speed)
3262 		*speed = hdev->hw.mac.speed;
3263 	if (duplex)
3264 		*duplex = hdev->hw.mac.duplex;
3265 	if (auto_neg)
3266 		*auto_neg = AUTONEG_DISABLE;
3267 }
3268 
3269 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3270 				 u8 duplex)
3271 {
3272 	hdev->hw.mac.speed = speed;
3273 	hdev->hw.mac.duplex = duplex;
3274 }
3275 
3276 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3277 {
3278 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3279 
3280 	return hclgevf_config_gro(hdev, enable);
3281 }
3282 
3283 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3284 				   u8 *module_type)
3285 {
3286 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3287 
3288 	if (media_type)
3289 		*media_type = hdev->hw.mac.media_type;
3290 
3291 	if (module_type)
3292 		*module_type = hdev->hw.mac.module_type;
3293 }
3294 
3295 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3296 {
3297 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3298 
3299 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3300 }
3301 
3302 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3303 {
3304 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3305 
3306 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3307 }
3308 
3309 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3310 {
3311 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3312 
3313 	return hdev->rst_stats.hw_rst_done_cnt;
3314 }
3315 
3316 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3317 				  unsigned long *supported,
3318 				  unsigned long *advertising)
3319 {
3320 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3321 
3322 	*supported = hdev->hw.mac.supported;
3323 	*advertising = hdev->hw.mac.advertising;
3324 }
3325 
3326 #define MAX_SEPARATE_NUM	4
3327 #define SEPARATOR_VALUE		0xFFFFFFFF
3328 #define REG_NUM_PER_LINE	4
3329 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3330 
3331 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3332 {
3333 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3334 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3335 
3336 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3337 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3338 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3339 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3340 
3341 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3342 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3343 }
3344 
3345 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3346 			     void *data)
3347 {
3348 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3349 	int i, j, reg_um, separator_num;
3350 	u32 *reg = data;
3351 
3352 	*version = hdev->fw_version;
3353 
3354 	/* fetching per-VF registers values from VF PCIe register space */
3355 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3356 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3357 	for (i = 0; i < reg_um; i++)
3358 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3359 	for (i = 0; i < separator_num; i++)
3360 		*reg++ = SEPARATOR_VALUE;
3361 
3362 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3363 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3364 	for (i = 0; i < reg_um; i++)
3365 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3366 	for (i = 0; i < separator_num; i++)
3367 		*reg++ = SEPARATOR_VALUE;
3368 
3369 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3370 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3371 	for (j = 0; j < hdev->num_tqps; j++) {
3372 		for (i = 0; i < reg_um; i++)
3373 			*reg++ = hclgevf_read_dev(&hdev->hw,
3374 						  ring_reg_addr_list[i] +
3375 						  0x200 * j);
3376 		for (i = 0; i < separator_num; i++)
3377 			*reg++ = SEPARATOR_VALUE;
3378 	}
3379 
3380 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3381 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3382 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3383 		for (i = 0; i < reg_um; i++)
3384 			*reg++ = hclgevf_read_dev(&hdev->hw,
3385 						  tqp_intr_reg_addr_list[i] +
3386 						  4 * j);
3387 		for (i = 0; i < separator_num; i++)
3388 			*reg++ = SEPARATOR_VALUE;
3389 	}
3390 }
3391 
3392 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3393 					u8 *port_base_vlan_info, u8 data_size)
3394 {
3395 	struct hnae3_handle *nic = &hdev->nic;
3396 	struct hclge_vf_to_pf_msg send_msg;
3397 
3398 	rtnl_lock();
3399 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3400 	rtnl_unlock();
3401 
3402 	/* send msg to PF and wait update port based vlan info */
3403 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3404 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3405 	memcpy(send_msg.data, port_base_vlan_info, data_size);
3406 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3407 
3408 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3409 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
3410 	else
3411 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3412 
3413 	rtnl_lock();
3414 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3415 	rtnl_unlock();
3416 }
3417 
3418 static const struct hnae3_ae_ops hclgevf_ops = {
3419 	.init_ae_dev = hclgevf_init_ae_dev,
3420 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3421 	.flr_prepare = hclgevf_flr_prepare,
3422 	.flr_done = hclgevf_flr_done,
3423 	.init_client_instance = hclgevf_init_client_instance,
3424 	.uninit_client_instance = hclgevf_uninit_client_instance,
3425 	.start = hclgevf_ae_start,
3426 	.stop = hclgevf_ae_stop,
3427 	.client_start = hclgevf_client_start,
3428 	.client_stop = hclgevf_client_stop,
3429 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3430 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3431 	.get_vector = hclgevf_get_vector,
3432 	.put_vector = hclgevf_put_vector,
3433 	.reset_queue = hclgevf_reset_tqp,
3434 	.get_mac_addr = hclgevf_get_mac_addr,
3435 	.set_mac_addr = hclgevf_set_mac_addr,
3436 	.add_uc_addr = hclgevf_add_uc_addr,
3437 	.rm_uc_addr = hclgevf_rm_uc_addr,
3438 	.add_mc_addr = hclgevf_add_mc_addr,
3439 	.rm_mc_addr = hclgevf_rm_mc_addr,
3440 	.get_stats = hclgevf_get_stats,
3441 	.update_stats = hclgevf_update_stats,
3442 	.get_strings = hclgevf_get_strings,
3443 	.get_sset_count = hclgevf_get_sset_count,
3444 	.get_rss_key_size = hclgevf_get_rss_key_size,
3445 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
3446 	.get_rss = hclgevf_get_rss,
3447 	.set_rss = hclgevf_set_rss,
3448 	.get_rss_tuple = hclgevf_get_rss_tuple,
3449 	.set_rss_tuple = hclgevf_set_rss_tuple,
3450 	.get_tc_size = hclgevf_get_tc_size,
3451 	.get_fw_version = hclgevf_get_fw_version,
3452 	.set_vlan_filter = hclgevf_set_vlan_filter,
3453 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3454 	.reset_event = hclgevf_reset_event,
3455 	.set_default_reset_request = hclgevf_set_def_reset_request,
3456 	.set_channels = hclgevf_set_channels,
3457 	.get_channels = hclgevf_get_channels,
3458 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3459 	.get_regs_len = hclgevf_get_regs_len,
3460 	.get_regs = hclgevf_get_regs,
3461 	.get_status = hclgevf_get_status,
3462 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3463 	.get_media_type = hclgevf_get_media_type,
3464 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3465 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3466 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3467 	.set_gro_en = hclgevf_gro_en,
3468 	.set_mtu = hclgevf_set_mtu,
3469 	.get_global_queue_id = hclgevf_get_qid_global,
3470 	.set_timer_task = hclgevf_set_timer_task,
3471 	.get_link_mode = hclgevf_get_link_mode,
3472 	.set_promisc_mode = hclgevf_set_promisc_mode,
3473 };
3474 
3475 static struct hnae3_ae_algo ae_algovf = {
3476 	.ops = &hclgevf_ops,
3477 	.pdev_id_table = ae_algovf_pci_tbl,
3478 };
3479 
3480 static int hclgevf_init(void)
3481 {
3482 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3483 
3484 	hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3485 	if (!hclgevf_wq) {
3486 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3487 		return -ENOMEM;
3488 	}
3489 
3490 	hnae3_register_ae_algo(&ae_algovf);
3491 
3492 	return 0;
3493 }
3494 
3495 static void hclgevf_exit(void)
3496 {
3497 	hnae3_unregister_ae_algo(&ae_algovf);
3498 	destroy_workqueue(hclgevf_wq);
3499 }
3500 module_init(hclgevf_init);
3501 module_exit(hclgevf_exit);
3502 
3503 MODULE_LICENSE("GPL");
3504 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3505 MODULE_DESCRIPTION("HCLGEVF Driver");
3506 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3507