1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <net/rtnetlink.h>
6 #include "hclgevf_cmd.h"
7 #include "hclgevf_main.h"
8 #include "hclge_mbx.h"
9 #include "hnae3.h"
10 
11 #define HCLGEVF_NAME	"hclgevf"
12 
13 static int hclgevf_init_hdev(struct hclgevf_dev *hdev);
14 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
25 
26 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
27 	struct hnae3_handle *handle)
28 {
29 	return container_of(handle, struct hclgevf_dev, nic);
30 }
31 
32 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
33 {
34 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
35 	struct hnae3_queue *queue;
36 	struct hclgevf_desc desc;
37 	struct hclgevf_tqp *tqp;
38 	int status;
39 	int i;
40 
41 	for (i = 0; i < hdev->num_tqps; i++) {
42 		queue = handle->kinfo.tqp[i];
43 		tqp = container_of(queue, struct hclgevf_tqp, q);
44 		hclgevf_cmd_setup_basic_desc(&desc,
45 					     HCLGEVF_OPC_QUERY_RX_STATUS,
46 					     true);
47 
48 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
49 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
50 		if (status) {
51 			dev_err(&hdev->pdev->dev,
52 				"Query tqp stat fail, status = %d,queue = %d\n",
53 				status,	i);
54 			return status;
55 		}
56 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
57 			le32_to_cpu(desc.data[1]);
58 
59 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
60 					     true);
61 
62 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
63 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
64 		if (status) {
65 			dev_err(&hdev->pdev->dev,
66 				"Query tqp stat fail, status = %d,queue = %d\n",
67 				status, i);
68 			return status;
69 		}
70 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
71 			le32_to_cpu(desc.data[1]);
72 	}
73 
74 	return 0;
75 }
76 
77 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
78 {
79 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
80 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
81 	struct hclgevf_tqp *tqp;
82 	u64 *buff = data;
83 	int i;
84 
85 	for (i = 0; i < hdev->num_tqps; i++) {
86 		tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q);
87 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
88 	}
89 	for (i = 0; i < kinfo->num_tqps; i++) {
90 		tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q);
91 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
92 	}
93 
94 	return buff;
95 }
96 
97 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
98 {
99 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
100 
101 	return hdev->num_tqps * 2;
102 }
103 
104 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
105 {
106 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
107 	u8 *buff = data;
108 	int i = 0;
109 
110 	for (i = 0; i < hdev->num_tqps; i++) {
111 		struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i],
112 			struct hclgevf_tqp, q);
113 		snprintf(buff, ETH_GSTRING_LEN, "txq#%d_pktnum_rcd",
114 			 tqp->index);
115 		buff += ETH_GSTRING_LEN;
116 	}
117 
118 	for (i = 0; i < hdev->num_tqps; i++) {
119 		struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i],
120 			struct hclgevf_tqp, q);
121 		snprintf(buff, ETH_GSTRING_LEN, "rxq#%d_pktnum_rcd",
122 			 tqp->index);
123 		buff += ETH_GSTRING_LEN;
124 	}
125 
126 	return buff;
127 }
128 
129 static void hclgevf_update_stats(struct hnae3_handle *handle,
130 				 struct net_device_stats *net_stats)
131 {
132 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
133 	int status;
134 
135 	status = hclgevf_tqps_update_stats(handle);
136 	if (status)
137 		dev_err(&hdev->pdev->dev,
138 			"VF update of TQPS stats fail, status = %d.\n",
139 			status);
140 }
141 
142 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
143 {
144 	if (strset == ETH_SS_TEST)
145 		return -EOPNOTSUPP;
146 	else if (strset == ETH_SS_STATS)
147 		return hclgevf_tqps_get_sset_count(handle, strset);
148 
149 	return 0;
150 }
151 
152 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
153 				u8 *data)
154 {
155 	u8 *p = (char *)data;
156 
157 	if (strset == ETH_SS_STATS)
158 		p = hclgevf_tqps_get_strings(handle, p);
159 }
160 
161 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
162 {
163 	hclgevf_tqps_get_stats(handle, data);
164 }
165 
166 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
167 {
168 	u8 resp_msg;
169 	int status;
170 
171 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
172 				      true, &resp_msg, sizeof(u8));
173 	if (status) {
174 		dev_err(&hdev->pdev->dev,
175 			"VF request to get TC info from PF failed %d",
176 			status);
177 		return status;
178 	}
179 
180 	hdev->hw_tc_map = resp_msg;
181 
182 	return 0;
183 }
184 
185 static int hclge_get_queue_info(struct hclgevf_dev *hdev)
186 {
187 #define HCLGEVF_TQPS_RSS_INFO_LEN	8
188 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
189 	int status;
190 
191 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
192 				      true, resp_msg,
193 				      HCLGEVF_TQPS_RSS_INFO_LEN);
194 	if (status) {
195 		dev_err(&hdev->pdev->dev,
196 			"VF request to get tqp info from PF failed %d",
197 			status);
198 		return status;
199 	}
200 
201 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
202 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
203 	memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16));
204 	memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16));
205 
206 	return 0;
207 }
208 
209 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
210 {
211 	struct hclgevf_tqp *tqp;
212 	int i;
213 
214 	/* if this is on going reset then we need to re-allocate the TPQs
215 	 * since we cannot assume we would get same number of TPQs back from PF
216 	 */
217 	if (hclgevf_dev_ongoing_reset(hdev))
218 		devm_kfree(&hdev->pdev->dev, hdev->htqp);
219 
220 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
221 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
222 	if (!hdev->htqp)
223 		return -ENOMEM;
224 
225 	tqp = hdev->htqp;
226 
227 	for (i = 0; i < hdev->num_tqps; i++) {
228 		tqp->dev = &hdev->pdev->dev;
229 		tqp->index = i;
230 
231 		tqp->q.ae_algo = &ae_algovf;
232 		tqp->q.buf_size = hdev->rx_buf_len;
233 		tqp->q.desc_num = hdev->num_desc;
234 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
235 			i * HCLGEVF_TQP_REG_SIZE;
236 
237 		tqp++;
238 	}
239 
240 	return 0;
241 }
242 
243 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
244 {
245 	struct hnae3_handle *nic = &hdev->nic;
246 	struct hnae3_knic_private_info *kinfo;
247 	u16 new_tqps = hdev->num_tqps;
248 	int i;
249 
250 	kinfo = &nic->kinfo;
251 	kinfo->num_tc = 0;
252 	kinfo->num_desc = hdev->num_desc;
253 	kinfo->rx_buf_len = hdev->rx_buf_len;
254 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
255 		if (hdev->hw_tc_map & BIT(i))
256 			kinfo->num_tc++;
257 
258 	kinfo->rss_size
259 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
260 	new_tqps = kinfo->rss_size * kinfo->num_tc;
261 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
262 
263 	/* if this is on going reset then we need to re-allocate the hnae queues
264 	 * as well since number of TPQs from PF might have changed.
265 	 */
266 	if (hclgevf_dev_ongoing_reset(hdev))
267 		devm_kfree(&hdev->pdev->dev, kinfo->tqp);
268 
269 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
270 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
271 	if (!kinfo->tqp)
272 		return -ENOMEM;
273 
274 	for (i = 0; i < kinfo->num_tqps; i++) {
275 		hdev->htqp[i].q.handle = &hdev->nic;
276 		hdev->htqp[i].q.tqp_index = i;
277 		kinfo->tqp[i] = &hdev->htqp[i].q;
278 	}
279 
280 	return 0;
281 }
282 
283 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
284 {
285 	int status;
286 	u8 resp_msg;
287 
288 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
289 				      0, false, &resp_msg, sizeof(u8));
290 	if (status)
291 		dev_err(&hdev->pdev->dev,
292 			"VF failed to fetch link status(%d) from PF", status);
293 }
294 
295 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
296 {
297 	struct hnae3_handle *handle = &hdev->nic;
298 	struct hnae3_client *client;
299 
300 	client = handle->client;
301 
302 	if (link_state != hdev->hw.mac.link) {
303 		client->ops->link_status_change(handle, !!link_state);
304 		hdev->hw.mac.link = link_state;
305 	}
306 }
307 
308 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
309 {
310 	struct hnae3_handle *nic = &hdev->nic;
311 	int ret;
312 
313 	nic->ae_algo = &ae_algovf;
314 	nic->pdev = hdev->pdev;
315 	nic->numa_node_mask = hdev->numa_node_mask;
316 	nic->flags |= HNAE3_SUPPORT_VF;
317 
318 	if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
319 		dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
320 			hdev->ae_dev->dev_type);
321 		return -EINVAL;
322 	}
323 
324 	ret = hclgevf_knic_setup(hdev);
325 	if (ret)
326 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
327 			ret);
328 	return ret;
329 }
330 
331 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
332 {
333 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
334 	hdev->num_msi_left += 1;
335 	hdev->num_msi_used -= 1;
336 }
337 
338 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
339 			      struct hnae3_vector_info *vector_info)
340 {
341 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
342 	struct hnae3_vector_info *vector = vector_info;
343 	int alloc = 0;
344 	int i, j;
345 
346 	vector_num = min(hdev->num_msi_left, vector_num);
347 
348 	for (j = 0; j < vector_num; j++) {
349 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
350 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
351 				vector->vector = pci_irq_vector(hdev->pdev, i);
352 				vector->io_addr = hdev->hw.io_base +
353 					HCLGEVF_VECTOR_REG_BASE +
354 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
355 				hdev->vector_status[i] = 0;
356 				hdev->vector_irq[i] = vector->vector;
357 
358 				vector++;
359 				alloc++;
360 
361 				break;
362 			}
363 		}
364 	}
365 	hdev->num_msi_left -= alloc;
366 	hdev->num_msi_used += alloc;
367 
368 	return alloc;
369 }
370 
371 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
372 {
373 	int i;
374 
375 	for (i = 0; i < hdev->num_msi; i++)
376 		if (vector == hdev->vector_irq[i])
377 			return i;
378 
379 	return -EINVAL;
380 }
381 
382 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
383 {
384 	return HCLGEVF_RSS_KEY_SIZE;
385 }
386 
387 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
388 {
389 	return HCLGEVF_RSS_IND_TBL_SIZE;
390 }
391 
392 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
393 {
394 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
395 	struct hclgevf_rss_indirection_table_cmd *req;
396 	struct hclgevf_desc desc;
397 	int status;
398 	int i, j;
399 
400 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
401 
402 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
403 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
404 					     false);
405 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
406 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
407 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
408 			req->rss_result[j] =
409 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
410 
411 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
412 		if (status) {
413 			dev_err(&hdev->pdev->dev,
414 				"VF failed(=%d) to set RSS indirection table\n",
415 				status);
416 			return status;
417 		}
418 	}
419 
420 	return 0;
421 }
422 
423 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
424 {
425 	struct hclgevf_rss_tc_mode_cmd *req;
426 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
427 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
428 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
429 	struct hclgevf_desc desc;
430 	u16 roundup_size;
431 	int status;
432 	int i;
433 
434 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
435 
436 	roundup_size = roundup_pow_of_two(rss_size);
437 	roundup_size = ilog2(roundup_size);
438 
439 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
440 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
441 		tc_size[i] = roundup_size;
442 		tc_offset[i] = rss_size * i;
443 	}
444 
445 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
446 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
447 		hnae_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
448 			     (tc_valid[i] & 0x1));
449 		hnae_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
450 			       HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
451 		hnae_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
452 			       HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
453 	}
454 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
455 	if (status)
456 		dev_err(&hdev->pdev->dev,
457 			"VF failed(=%d) to set rss tc mode\n", status);
458 
459 	return status;
460 }
461 
462 static int hclgevf_get_rss_hw_cfg(struct hnae3_handle *handle, u8 *hash,
463 				  u8 *key)
464 {
465 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
466 	struct hclgevf_rss_config_cmd *req;
467 	int lkup_times = key ? 3 : 1;
468 	struct hclgevf_desc desc;
469 	int key_offset;
470 	int key_size;
471 	int status;
472 
473 	req = (struct hclgevf_rss_config_cmd *)desc.data;
474 	lkup_times = (lkup_times == 3) ? 3 : ((hash) ? 1 : 0);
475 
476 	for (key_offset = 0; key_offset < lkup_times; key_offset++) {
477 		hclgevf_cmd_setup_basic_desc(&desc,
478 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
479 					     true);
480 		req->hash_config |= (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET);
481 
482 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
483 		if (status) {
484 			dev_err(&hdev->pdev->dev,
485 				"failed to get hardware RSS cfg, status = %d\n",
486 				status);
487 			return status;
488 		}
489 
490 		if (key_offset == 2)
491 			key_size =
492 			HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
493 		else
494 			key_size = HCLGEVF_RSS_HASH_KEY_NUM;
495 
496 		if (key)
497 			memcpy(key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM,
498 			       req->hash_key,
499 			       key_size);
500 	}
501 
502 	if (hash) {
503 		if ((req->hash_config & 0xf) == HCLGEVF_RSS_HASH_ALGO_TOEPLITZ)
504 			*hash = ETH_RSS_HASH_TOP;
505 		else
506 			*hash = ETH_RSS_HASH_UNKNOWN;
507 	}
508 
509 	return 0;
510 }
511 
512 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
513 			   u8 *hfunc)
514 {
515 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
516 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
517 	int i;
518 
519 	if (indir)
520 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
521 			indir[i] = rss_cfg->rss_indirection_tbl[i];
522 
523 	return hclgevf_get_rss_hw_cfg(handle, hfunc, key);
524 }
525 
526 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
527 			   const  u8 *key, const  u8 hfunc)
528 {
529 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
530 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
531 	int i;
532 
533 	/* update the shadow RSS table with user specified qids */
534 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
535 		rss_cfg->rss_indirection_tbl[i] = indir[i];
536 
537 	/* update the hardware */
538 	return hclgevf_set_rss_indir_table(hdev);
539 }
540 
541 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
542 {
543 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
544 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
545 
546 	return rss_cfg->rss_size;
547 }
548 
549 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
550 				       int vector,
551 				       struct hnae3_ring_chain_node *ring_chain)
552 {
553 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
554 	struct hnae3_ring_chain_node *node;
555 	struct hclge_mbx_vf_to_pf_cmd *req;
556 	struct hclgevf_desc desc;
557 	int i = 0, vector_id;
558 	int status;
559 	u8 type;
560 
561 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
562 	vector_id = hclgevf_get_vector_index(hdev, vector);
563 	if (vector_id < 0) {
564 		dev_err(&handle->pdev->dev,
565 			"Get vector index fail. ret =%d\n", vector_id);
566 		return vector_id;
567 	}
568 
569 	for (node = ring_chain; node; node = node->next) {
570 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
571 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
572 
573 		if (i == 0) {
574 			hclgevf_cmd_setup_basic_desc(&desc,
575 						     HCLGEVF_OPC_MBX_VF_TO_PF,
576 						     false);
577 			type = en ?
578 				HCLGE_MBX_MAP_RING_TO_VECTOR :
579 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
580 			req->msg[0] = type;
581 			req->msg[1] = vector_id;
582 		}
583 
584 		req->msg[idx_offset] =
585 				hnae_get_bit(node->flag, HNAE3_RING_TYPE_B);
586 		req->msg[idx_offset + 1] = node->tqp_index;
587 		req->msg[idx_offset + 2] = hnae_get_field(node->int_gl_idx,
588 							  HNAE3_RING_GL_IDX_M,
589 							  HNAE3_RING_GL_IDX_S);
590 
591 		i++;
592 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
593 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
594 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
595 		    !node->next) {
596 			req->msg[2] = i;
597 
598 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
599 			if (status) {
600 				dev_err(&hdev->pdev->dev,
601 					"Map TQP fail, status is %d.\n",
602 					status);
603 				return status;
604 			}
605 			i = 0;
606 			hclgevf_cmd_setup_basic_desc(&desc,
607 						     HCLGEVF_OPC_MBX_VF_TO_PF,
608 						     false);
609 			req->msg[0] = type;
610 			req->msg[1] = vector_id;
611 		}
612 	}
613 
614 	return 0;
615 }
616 
617 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
618 				      struct hnae3_ring_chain_node *ring_chain)
619 {
620 	return hclgevf_bind_ring_to_vector(handle, true, vector, ring_chain);
621 }
622 
623 static int hclgevf_unmap_ring_from_vector(
624 				struct hnae3_handle *handle,
625 				int vector,
626 				struct hnae3_ring_chain_node *ring_chain)
627 {
628 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
629 	int ret, vector_id;
630 
631 	vector_id = hclgevf_get_vector_index(hdev, vector);
632 	if (vector_id < 0) {
633 		dev_err(&handle->pdev->dev,
634 			"Get vector index fail. ret =%d\n", vector_id);
635 		return vector_id;
636 	}
637 
638 	ret = hclgevf_bind_ring_to_vector(handle, false, vector, ring_chain);
639 	if (ret)
640 		dev_err(&handle->pdev->dev,
641 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
642 			vector_id,
643 			ret);
644 
645 	return ret;
646 }
647 
648 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
649 {
650 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
651 
652 	hclgevf_free_vector(hdev, vector);
653 
654 	return 0;
655 }
656 
657 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev, u32 en)
658 {
659 	struct hclge_mbx_vf_to_pf_cmd *req;
660 	struct hclgevf_desc desc;
661 	int status;
662 
663 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
664 
665 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
666 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
667 	req->msg[1] = en;
668 
669 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
670 	if (status)
671 		dev_err(&hdev->pdev->dev,
672 			"Set promisc mode fail, status is %d.\n", status);
673 
674 	return status;
675 }
676 
677 static void hclgevf_set_promisc_mode(struct hnae3_handle *handle, u32 en)
678 {
679 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
680 
681 	hclgevf_cmd_set_promisc_mode(hdev, en);
682 }
683 
684 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
685 			      int stream_id, bool enable)
686 {
687 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
688 	struct hclgevf_desc desc;
689 	int status;
690 
691 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
692 
693 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
694 				     false);
695 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
696 	req->stream_id = cpu_to_le16(stream_id);
697 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
698 
699 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
700 	if (status)
701 		dev_err(&hdev->pdev->dev,
702 			"TQP enable fail, status =%d.\n", status);
703 
704 	return status;
705 }
706 
707 static int hclgevf_get_queue_id(struct hnae3_queue *queue)
708 {
709 	struct hclgevf_tqp *tqp = container_of(queue, struct hclgevf_tqp, q);
710 
711 	return tqp->index;
712 }
713 
714 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
715 {
716 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
717 	struct hnae3_queue *queue;
718 	struct hclgevf_tqp *tqp;
719 	int i;
720 
721 	for (i = 0; i < hdev->num_tqps; i++) {
722 		queue = handle->kinfo.tqp[i];
723 		tqp = container_of(queue, struct hclgevf_tqp, q);
724 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
725 	}
726 }
727 
728 static int hclgevf_cfg_func_mta_filter(struct hnae3_handle *handle, bool en)
729 {
730 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
731 	u8 msg[2] = {0};
732 
733 	msg[0] = en;
734 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
735 				    HCLGE_MBX_MAC_VLAN_MC_FUNC_MTA_ENABLE,
736 				    msg, 1, false, NULL, 0);
737 }
738 
739 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
740 {
741 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
742 
743 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
744 }
745 
746 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
747 				bool is_first)
748 {
749 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
750 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
751 	u8 *new_mac_addr = (u8 *)p;
752 	u8 msg_data[ETH_ALEN * 2];
753 	u16 subcode;
754 	int status;
755 
756 	ether_addr_copy(msg_data, new_mac_addr);
757 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
758 
759 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
760 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
761 
762 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
763 				      subcode, msg_data, ETH_ALEN * 2,
764 				      true, NULL, 0);
765 	if (!status)
766 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
767 
768 	return status;
769 }
770 
771 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
772 			       const unsigned char *addr)
773 {
774 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
775 
776 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
777 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
778 				    addr, ETH_ALEN, false, NULL, 0);
779 }
780 
781 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
782 			      const unsigned char *addr)
783 {
784 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
785 
786 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
787 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
788 				    addr, ETH_ALEN, false, NULL, 0);
789 }
790 
791 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
792 			       const unsigned char *addr)
793 {
794 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
795 
796 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
797 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
798 				    addr, ETH_ALEN, false, NULL, 0);
799 }
800 
801 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
802 			      const unsigned char *addr)
803 {
804 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
805 
806 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
807 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
808 				    addr, ETH_ALEN, false, NULL, 0);
809 }
810 
811 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
812 				   __be16 proto, u16 vlan_id,
813 				   bool is_kill)
814 {
815 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
816 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
817 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
818 
819 	if (vlan_id > 4095)
820 		return -EINVAL;
821 
822 	if (proto != htons(ETH_P_8021Q))
823 		return -EPROTONOSUPPORT;
824 
825 	msg_data[0] = is_kill;
826 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
827 	memcpy(&msg_data[3], &proto, sizeof(proto));
828 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
829 				    HCLGE_MBX_VLAN_FILTER, msg_data,
830 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
831 }
832 
833 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
834 {
835 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
836 	u8 msg_data;
837 
838 	msg_data = enable ? 1 : 0;
839 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
840 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
841 				    1, false, NULL, 0);
842 }
843 
844 static void hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
845 {
846 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
847 	u8 msg_data[2];
848 	int ret;
849 
850 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
851 
852 	/* disable vf queue before send queue reset msg to PF */
853 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
854 	if (ret)
855 		return;
856 
857 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
858 			     2, true, NULL, 0);
859 }
860 
861 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
862 				 enum hnae3_reset_notify_type type)
863 {
864 	struct hnae3_client *client = hdev->nic_client;
865 	struct hnae3_handle *handle = &hdev->nic;
866 
867 	if (!client->ops->reset_notify)
868 		return -EOPNOTSUPP;
869 
870 	return client->ops->reset_notify(handle, type);
871 }
872 
873 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
874 {
875 #define HCLGEVF_RESET_WAIT_MS	500
876 #define HCLGEVF_RESET_WAIT_CNT	20
877 	u32 val, cnt = 0;
878 
879 	/* wait to check the hardware reset completion status */
880 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING);
881 	while (hnae_get_bit(val, HCLGEVF_FUN_RST_ING_B) &&
882 			    (cnt < HCLGEVF_RESET_WAIT_CNT)) {
883 		msleep(HCLGEVF_RESET_WAIT_MS);
884 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING);
885 		cnt++;
886 	}
887 
888 	/* hardware completion status should be available by this time */
889 	if (cnt >= HCLGEVF_RESET_WAIT_CNT) {
890 		dev_warn(&hdev->pdev->dev,
891 			 "could'nt get reset done status from h/w, timeout!\n");
892 		return -EBUSY;
893 	}
894 
895 	/* we will wait a bit more to let reset of the stack to complete. This
896 	 * might happen in case reset assertion was made by PF. Yes, this also
897 	 * means we might end up waiting bit more even for VF reset.
898 	 */
899 	msleep(5000);
900 
901 	return 0;
902 }
903 
904 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
905 {
906 	int ret;
907 
908 	/* uninitialize the nic client */
909 	hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
910 
911 	/* re-initialize the hclge device */
912 	ret = hclgevf_init_hdev(hdev);
913 	if (ret) {
914 		dev_err(&hdev->pdev->dev,
915 			"hclge device re-init failed, VF is disabled!\n");
916 		return ret;
917 	}
918 
919 	/* bring up the nic client again */
920 	hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
921 
922 	return 0;
923 }
924 
925 static int hclgevf_reset(struct hclgevf_dev *hdev)
926 {
927 	int ret;
928 
929 	rtnl_lock();
930 
931 	/* bring down the nic to stop any ongoing TX/RX */
932 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
933 
934 	/* check if VF could successfully fetch the hardware reset completion
935 	 * status from the hardware
936 	 */
937 	ret = hclgevf_reset_wait(hdev);
938 	if (ret) {
939 		/* can't do much in this situation, will disable VF */
940 		dev_err(&hdev->pdev->dev,
941 			"VF failed(=%d) to fetch H/W reset completion status\n",
942 			ret);
943 
944 		dev_warn(&hdev->pdev->dev, "VF reset failed, disabling VF!\n");
945 		hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
946 
947 		rtnl_unlock();
948 		return ret;
949 	}
950 
951 	/* now, re-initialize the nic client and ae device*/
952 	ret = hclgevf_reset_stack(hdev);
953 	if (ret)
954 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
955 
956 	/* bring up the nic to enable TX/RX again */
957 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
958 
959 	rtnl_unlock();
960 
961 	return ret;
962 }
963 
964 static int hclgevf_do_reset(struct hclgevf_dev *hdev)
965 {
966 	int status;
967 	u8 respmsg;
968 
969 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
970 				      0, false, &respmsg, sizeof(u8));
971 	if (status)
972 		dev_err(&hdev->pdev->dev,
973 			"VF reset request to PF failed(=%d)\n", status);
974 
975 	return status;
976 }
977 
978 static void hclgevf_reset_event(struct hnae3_handle *handle)
979 {
980 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
981 
982 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
983 
984 	handle->reset_level = HNAE3_VF_RESET;
985 
986 	/* reset of this VF requested */
987 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
988 	hclgevf_reset_task_schedule(hdev);
989 
990 	handle->last_reset_time = jiffies;
991 }
992 
993 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
994 {
995 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
996 
997 	return hdev->fw_version;
998 }
999 
1000 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1001 {
1002 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1003 
1004 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1005 					    HCLGEVF_MISC_VECTOR_NUM);
1006 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1007 	/* vector status always valid for Vector 0 */
1008 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1009 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1010 
1011 	hdev->num_msi_left -= 1;
1012 	hdev->num_msi_used += 1;
1013 }
1014 
1015 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1016 {
1017 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1018 	    !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
1019 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1020 		schedule_work(&hdev->rst_service_task);
1021 	}
1022 }
1023 
1024 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1025 {
1026 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1027 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1028 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1029 		schedule_work(&hdev->mbx_service_task);
1030 	}
1031 }
1032 
1033 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1034 {
1035 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1036 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1037 		schedule_work(&hdev->service_task);
1038 }
1039 
1040 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1041 {
1042 	/* if we have any pending mailbox event then schedule the mbx task */
1043 	if (hdev->mbx_event_pending)
1044 		hclgevf_mbx_task_schedule(hdev);
1045 
1046 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1047 		hclgevf_reset_task_schedule(hdev);
1048 }
1049 
1050 static void hclgevf_service_timer(struct timer_list *t)
1051 {
1052 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1053 
1054 	mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1055 
1056 	hclgevf_task_schedule(hdev);
1057 }
1058 
1059 static void hclgevf_reset_service_task(struct work_struct *work)
1060 {
1061 	struct hclgevf_dev *hdev =
1062 		container_of(work, struct hclgevf_dev, rst_service_task);
1063 	int ret;
1064 
1065 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1066 		return;
1067 
1068 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1069 
1070 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1071 			       &hdev->reset_state)) {
1072 		/* PF has initmated that it is about to reset the hardware.
1073 		 * We now have to poll & check if harware has actually completed
1074 		 * the reset sequence. On hardware reset completion, VF needs to
1075 		 * reset the client and ae device.
1076 		 */
1077 		hdev->reset_attempts = 0;
1078 
1079 		ret = hclgevf_reset(hdev);
1080 		if (ret)
1081 			dev_err(&hdev->pdev->dev, "VF stack reset failed.\n");
1082 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1083 				      &hdev->reset_state)) {
1084 		/* we could be here when either of below happens:
1085 		 * 1. reset was initiated due to watchdog timeout due to
1086 		 *    a. IMP was earlier reset and our TX got choked down and
1087 		 *       which resulted in watchdog reacting and inducing VF
1088 		 *       reset. This also means our cmdq would be unreliable.
1089 		 *    b. problem in TX due to other lower layer(example link
1090 		 *       layer not functioning properly etc.)
1091 		 * 2. VF reset might have been initiated due to some config
1092 		 *    change.
1093 		 *
1094 		 * NOTE: Theres no clear way to detect above cases than to react
1095 		 * to the response of PF for this reset request. PF will ack the
1096 		 * 1b and 2. cases but we will not get any intimation about 1a
1097 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1098 		 * communication between PF and VF would be broken.
1099 		 */
1100 
1101 		/* if we are never geting into pending state it means either:
1102 		 * 1. PF is not receiving our request which could be due to IMP
1103 		 *    reset
1104 		 * 2. PF is screwed
1105 		 * We cannot do much for 2. but to check first we can try reset
1106 		 * our PCIe + stack and see if it alleviates the problem.
1107 		 */
1108 		if (hdev->reset_attempts > 3) {
1109 			/* prepare for full reset of stack + pcie interface */
1110 			hdev->nic.reset_level = HNAE3_VF_FULL_RESET;
1111 
1112 			/* "defer" schedule the reset task again */
1113 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1114 		} else {
1115 			hdev->reset_attempts++;
1116 
1117 			/* request PF for resetting this VF via mailbox */
1118 			ret = hclgevf_do_reset(hdev);
1119 			if (ret)
1120 				dev_warn(&hdev->pdev->dev,
1121 					 "VF rst fail, stack will call\n");
1122 		}
1123 	}
1124 
1125 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1126 }
1127 
1128 static void hclgevf_mailbox_service_task(struct work_struct *work)
1129 {
1130 	struct hclgevf_dev *hdev;
1131 
1132 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1133 
1134 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1135 		return;
1136 
1137 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1138 
1139 	hclgevf_mbx_async_handler(hdev);
1140 
1141 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1142 }
1143 
1144 static void hclgevf_service_task(struct work_struct *work)
1145 {
1146 	struct hclgevf_dev *hdev;
1147 
1148 	hdev = container_of(work, struct hclgevf_dev, service_task);
1149 
1150 	/* request the link status from the PF. PF would be able to tell VF
1151 	 * about such updates in future so we might remove this later
1152 	 */
1153 	hclgevf_request_link_info(hdev);
1154 
1155 	hclgevf_deferred_task_schedule(hdev);
1156 
1157 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1158 }
1159 
1160 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1161 {
1162 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1163 }
1164 
1165 static bool hclgevf_check_event_cause(struct hclgevf_dev *hdev, u32 *clearval)
1166 {
1167 	u32 cmdq_src_reg;
1168 
1169 	/* fetch the events from their corresponding regs */
1170 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1171 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1172 
1173 	/* check for vector0 mailbox(=CMDQ RX) event source */
1174 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1175 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1176 		*clearval = cmdq_src_reg;
1177 		return true;
1178 	}
1179 
1180 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1181 
1182 	return false;
1183 }
1184 
1185 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1186 {
1187 	writel(en ? 1 : 0, vector->addr);
1188 }
1189 
1190 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1191 {
1192 	struct hclgevf_dev *hdev = data;
1193 	u32 clearval;
1194 
1195 	hclgevf_enable_vector(&hdev->misc_vector, false);
1196 	if (!hclgevf_check_event_cause(hdev, &clearval))
1197 		goto skip_sched;
1198 
1199 	hclgevf_mbx_handler(hdev);
1200 
1201 	hclgevf_clear_event_cause(hdev, clearval);
1202 
1203 skip_sched:
1204 	hclgevf_enable_vector(&hdev->misc_vector, true);
1205 
1206 	return IRQ_HANDLED;
1207 }
1208 
1209 static int hclgevf_configure(struct hclgevf_dev *hdev)
1210 {
1211 	int ret;
1212 
1213 	/* get queue configuration from PF */
1214 	ret = hclge_get_queue_info(hdev);
1215 	if (ret)
1216 		return ret;
1217 	/* get tc configuration from PF */
1218 	return hclgevf_get_tc_info(hdev);
1219 }
1220 
1221 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1222 {
1223 	struct pci_dev *pdev = ae_dev->pdev;
1224 	struct hclgevf_dev *hdev = ae_dev->priv;
1225 
1226 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1227 	if (!hdev)
1228 		return -ENOMEM;
1229 
1230 	hdev->pdev = pdev;
1231 	hdev->ae_dev = ae_dev;
1232 	ae_dev->priv = hdev;
1233 
1234 	return 0;
1235 }
1236 
1237 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1238 {
1239 	struct hnae3_handle *roce = &hdev->roce;
1240 	struct hnae3_handle *nic = &hdev->nic;
1241 
1242 	roce->rinfo.num_vectors = HCLGEVF_ROCEE_VECTOR_NUM;
1243 
1244 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1245 	    hdev->num_msi_left == 0)
1246 		return -EINVAL;
1247 
1248 	roce->rinfo.base_vector =
1249 		hdev->vector_status[hdev->num_msi_used];
1250 
1251 	roce->rinfo.netdev = nic->kinfo.netdev;
1252 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1253 
1254 	roce->pdev = nic->pdev;
1255 	roce->ae_algo = nic->ae_algo;
1256 	roce->numa_node_mask = nic->numa_node_mask;
1257 
1258 	return 0;
1259 }
1260 
1261 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1262 {
1263 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1264 	int i, ret;
1265 
1266 	rss_cfg->rss_size = hdev->rss_size_max;
1267 
1268 	/* Initialize RSS indirect table for each vport */
1269 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1270 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1271 
1272 	ret = hclgevf_set_rss_indir_table(hdev);
1273 	if (ret)
1274 		return ret;
1275 
1276 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1277 }
1278 
1279 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
1280 {
1281 	/* other vlan config(like, VLAN TX/RX offload) would also be added
1282 	 * here later
1283 	 */
1284 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
1285 				       false);
1286 }
1287 
1288 static int hclgevf_ae_start(struct hnae3_handle *handle)
1289 {
1290 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1291 	int i, queue_id;
1292 
1293 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
1294 		/* ring enable */
1295 		queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]);
1296 		if (queue_id < 0) {
1297 			dev_warn(&hdev->pdev->dev,
1298 				 "Get invalid queue id, ignore it\n");
1299 			continue;
1300 		}
1301 
1302 		hclgevf_tqp_enable(hdev, queue_id, 0, true);
1303 	}
1304 
1305 	/* reset tqp stats */
1306 	hclgevf_reset_tqp_stats(handle);
1307 
1308 	hclgevf_request_link_info(hdev);
1309 
1310 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1311 	mod_timer(&hdev->service_timer, jiffies + HZ);
1312 
1313 	return 0;
1314 }
1315 
1316 static void hclgevf_ae_stop(struct hnae3_handle *handle)
1317 {
1318 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1319 	int i, queue_id;
1320 
1321 	for (i = 0; i < hdev->num_tqps; i++) {
1322 		/* Ring disable */
1323 		queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]);
1324 		if (queue_id < 0) {
1325 			dev_warn(&hdev->pdev->dev,
1326 				 "Get invalid queue id, ignore it\n");
1327 			continue;
1328 		}
1329 
1330 		hclgevf_tqp_enable(hdev, queue_id, 0, false);
1331 	}
1332 
1333 	/* reset tqp stats */
1334 	hclgevf_reset_tqp_stats(handle);
1335 	del_timer_sync(&hdev->service_timer);
1336 	cancel_work_sync(&hdev->service_task);
1337 	hclgevf_update_link_status(hdev, 0);
1338 }
1339 
1340 static void hclgevf_state_init(struct hclgevf_dev *hdev)
1341 {
1342 	/* if this is on going reset then skip this initialization */
1343 	if (hclgevf_dev_ongoing_reset(hdev))
1344 		return;
1345 
1346 	/* setup tasks for the MBX */
1347 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
1348 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1349 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1350 
1351 	/* setup tasks for service timer */
1352 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
1353 
1354 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
1355 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1356 
1357 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
1358 
1359 	mutex_init(&hdev->mbx_resp.mbx_mutex);
1360 
1361 	/* bring the device down */
1362 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1363 }
1364 
1365 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
1366 {
1367 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1368 
1369 	if (hdev->service_timer.function)
1370 		del_timer_sync(&hdev->service_timer);
1371 	if (hdev->service_task.func)
1372 		cancel_work_sync(&hdev->service_task);
1373 	if (hdev->mbx_service_task.func)
1374 		cancel_work_sync(&hdev->mbx_service_task);
1375 	if (hdev->rst_service_task.func)
1376 		cancel_work_sync(&hdev->rst_service_task);
1377 
1378 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
1379 }
1380 
1381 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
1382 {
1383 	struct pci_dev *pdev = hdev->pdev;
1384 	int vectors;
1385 	int i;
1386 
1387 	/* if this is on going reset then skip this initialization */
1388 	if (hclgevf_dev_ongoing_reset(hdev))
1389 		return 0;
1390 
1391 	hdev->num_msi = HCLGEVF_MAX_VF_VECTOR_NUM;
1392 
1393 	vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
1394 					PCI_IRQ_MSI | PCI_IRQ_MSIX);
1395 	if (vectors < 0) {
1396 		dev_err(&pdev->dev,
1397 			"failed(%d) to allocate MSI/MSI-X vectors\n",
1398 			vectors);
1399 		return vectors;
1400 	}
1401 	if (vectors < hdev->num_msi)
1402 		dev_warn(&hdev->pdev->dev,
1403 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
1404 			 hdev->num_msi, vectors);
1405 
1406 	hdev->num_msi = vectors;
1407 	hdev->num_msi_left = vectors;
1408 	hdev->base_msi_vector = pdev->irq;
1409 
1410 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
1411 					   sizeof(u16), GFP_KERNEL);
1412 	if (!hdev->vector_status) {
1413 		pci_free_irq_vectors(pdev);
1414 		return -ENOMEM;
1415 	}
1416 
1417 	for (i = 0; i < hdev->num_msi; i++)
1418 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
1419 
1420 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
1421 					sizeof(int), GFP_KERNEL);
1422 	if (!hdev->vector_irq) {
1423 		pci_free_irq_vectors(pdev);
1424 		return -ENOMEM;
1425 	}
1426 
1427 	return 0;
1428 }
1429 
1430 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
1431 {
1432 	struct pci_dev *pdev = hdev->pdev;
1433 
1434 	pci_free_irq_vectors(pdev);
1435 }
1436 
1437 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
1438 {
1439 	int ret = 0;
1440 
1441 	/* if this is on going reset then skip this initialization */
1442 	if (hclgevf_dev_ongoing_reset(hdev))
1443 		return 0;
1444 
1445 	hclgevf_get_misc_vector(hdev);
1446 
1447 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
1448 			  0, "hclgevf_cmd", hdev);
1449 	if (ret) {
1450 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
1451 			hdev->misc_vector.vector_irq);
1452 		return ret;
1453 	}
1454 
1455 	/* enable misc. vector(vector 0) */
1456 	hclgevf_enable_vector(&hdev->misc_vector, true);
1457 
1458 	return ret;
1459 }
1460 
1461 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
1462 {
1463 	/* disable misc vector(vector 0) */
1464 	hclgevf_enable_vector(&hdev->misc_vector, false);
1465 	free_irq(hdev->misc_vector.vector_irq, hdev);
1466 	hclgevf_free_vector(hdev, 0);
1467 }
1468 
1469 static int hclgevf_init_instance(struct hclgevf_dev *hdev,
1470 				 struct hnae3_client *client)
1471 {
1472 	int ret;
1473 
1474 	switch (client->type) {
1475 	case HNAE3_CLIENT_KNIC:
1476 		hdev->nic_client = client;
1477 		hdev->nic.client = client;
1478 
1479 		ret = client->ops->init_instance(&hdev->nic);
1480 		if (ret)
1481 			return ret;
1482 
1483 		if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
1484 			struct hnae3_client *rc = hdev->roce_client;
1485 
1486 			ret = hclgevf_init_roce_base_info(hdev);
1487 			if (ret)
1488 				return ret;
1489 			ret = rc->ops->init_instance(&hdev->roce);
1490 			if (ret)
1491 				return ret;
1492 		}
1493 		break;
1494 	case HNAE3_CLIENT_UNIC:
1495 		hdev->nic_client = client;
1496 		hdev->nic.client = client;
1497 
1498 		ret = client->ops->init_instance(&hdev->nic);
1499 		if (ret)
1500 			return ret;
1501 		break;
1502 	case HNAE3_CLIENT_ROCE:
1503 		hdev->roce_client = client;
1504 		hdev->roce.client = client;
1505 
1506 		if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
1507 			ret = hclgevf_init_roce_base_info(hdev);
1508 			if (ret)
1509 				return ret;
1510 
1511 			ret = client->ops->init_instance(&hdev->roce);
1512 			if (ret)
1513 				return ret;
1514 		}
1515 	}
1516 
1517 	return 0;
1518 }
1519 
1520 static void hclgevf_uninit_instance(struct hclgevf_dev *hdev,
1521 				    struct hnae3_client *client)
1522 {
1523 	/* un-init roce, if it exists */
1524 	if (hdev->roce_client)
1525 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
1526 
1527 	/* un-init nic/unic, if this was not called by roce client */
1528 	if ((client->ops->uninit_instance) &&
1529 	    (client->type != HNAE3_CLIENT_ROCE))
1530 		client->ops->uninit_instance(&hdev->nic, 0);
1531 }
1532 
1533 static int hclgevf_register_client(struct hnae3_client *client,
1534 				   struct hnae3_ae_dev *ae_dev)
1535 {
1536 	struct hclgevf_dev *hdev = ae_dev->priv;
1537 
1538 	return hclgevf_init_instance(hdev, client);
1539 }
1540 
1541 static void hclgevf_unregister_client(struct hnae3_client *client,
1542 				      struct hnae3_ae_dev *ae_dev)
1543 {
1544 	struct hclgevf_dev *hdev = ae_dev->priv;
1545 
1546 	hclgevf_uninit_instance(hdev, client);
1547 }
1548 
1549 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
1550 {
1551 	struct pci_dev *pdev = hdev->pdev;
1552 	struct hclgevf_hw *hw;
1553 	int ret;
1554 
1555 	/* check if we need to skip initialization of pci. This will happen if
1556 	 * device is undergoing VF reset. Otherwise, we would need to
1557 	 * re-initialize pci interface again i.e. when device is not going
1558 	 * through *any* reset or actually undergoing full reset.
1559 	 */
1560 	if (hclgevf_dev_ongoing_reset(hdev))
1561 		return 0;
1562 
1563 	ret = pci_enable_device(pdev);
1564 	if (ret) {
1565 		dev_err(&pdev->dev, "failed to enable PCI device\n");
1566 		return ret;
1567 	}
1568 
1569 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1570 	if (ret) {
1571 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
1572 		goto err_disable_device;
1573 	}
1574 
1575 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
1576 	if (ret) {
1577 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
1578 		goto err_disable_device;
1579 	}
1580 
1581 	pci_set_master(pdev);
1582 	hw = &hdev->hw;
1583 	hw->hdev = hdev;
1584 	hw->io_base = pci_iomap(pdev, 2, 0);
1585 	if (!hw->io_base) {
1586 		dev_err(&pdev->dev, "can't map configuration register space\n");
1587 		ret = -ENOMEM;
1588 		goto err_clr_master;
1589 	}
1590 
1591 	return 0;
1592 
1593 err_clr_master:
1594 	pci_clear_master(pdev);
1595 	pci_release_regions(pdev);
1596 err_disable_device:
1597 	pci_disable_device(pdev);
1598 
1599 	return ret;
1600 }
1601 
1602 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
1603 {
1604 	struct pci_dev *pdev = hdev->pdev;
1605 
1606 	pci_iounmap(pdev, hdev->hw.io_base);
1607 	pci_clear_master(pdev);
1608 	pci_release_regions(pdev);
1609 	pci_disable_device(pdev);
1610 }
1611 
1612 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
1613 {
1614 	struct pci_dev *pdev = hdev->pdev;
1615 	int ret;
1616 
1617 	/* check if device is on-going full reset(i.e. pcie as well) */
1618 	if (hclgevf_dev_ongoing_full_reset(hdev)) {
1619 		dev_warn(&pdev->dev, "device is going full reset\n");
1620 		hclgevf_uninit_hdev(hdev);
1621 	}
1622 
1623 	ret = hclgevf_pci_init(hdev);
1624 	if (ret) {
1625 		dev_err(&pdev->dev, "PCI initialization failed\n");
1626 		return ret;
1627 	}
1628 
1629 	ret = hclgevf_init_msi(hdev);
1630 	if (ret) {
1631 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
1632 		goto err_irq_init;
1633 	}
1634 
1635 	hclgevf_state_init(hdev);
1636 
1637 	ret = hclgevf_cmd_init(hdev);
1638 	if (ret)
1639 		goto err_cmd_init;
1640 
1641 	ret = hclgevf_misc_irq_init(hdev);
1642 	if (ret) {
1643 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
1644 			ret);
1645 		goto err_misc_irq_init;
1646 	}
1647 
1648 	ret = hclgevf_configure(hdev);
1649 	if (ret) {
1650 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
1651 		goto err_config;
1652 	}
1653 
1654 	ret = hclgevf_alloc_tqps(hdev);
1655 	if (ret) {
1656 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
1657 		goto err_config;
1658 	}
1659 
1660 	ret = hclgevf_set_handle_info(hdev);
1661 	if (ret) {
1662 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
1663 		goto err_config;
1664 	}
1665 
1666 	/* Initialize VF's MTA */
1667 	hdev->accept_mta_mc = true;
1668 	ret = hclgevf_cfg_func_mta_filter(&hdev->nic, hdev->accept_mta_mc);
1669 	if (ret) {
1670 		dev_err(&hdev->pdev->dev,
1671 			"failed(%d) to set mta filter mode\n", ret);
1672 		goto err_config;
1673 	}
1674 
1675 	/* Initialize RSS for this VF */
1676 	ret = hclgevf_rss_init_hw(hdev);
1677 	if (ret) {
1678 		dev_err(&hdev->pdev->dev,
1679 			"failed(%d) to initialize RSS\n", ret);
1680 		goto err_config;
1681 	}
1682 
1683 	ret = hclgevf_init_vlan_config(hdev);
1684 	if (ret) {
1685 		dev_err(&hdev->pdev->dev,
1686 			"failed(%d) to initialize VLAN config\n", ret);
1687 		goto err_config;
1688 	}
1689 
1690 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
1691 
1692 	return 0;
1693 
1694 err_config:
1695 	hclgevf_misc_irq_uninit(hdev);
1696 err_misc_irq_init:
1697 	hclgevf_cmd_uninit(hdev);
1698 err_cmd_init:
1699 	hclgevf_state_uninit(hdev);
1700 	hclgevf_uninit_msi(hdev);
1701 err_irq_init:
1702 	hclgevf_pci_uninit(hdev);
1703 	return ret;
1704 }
1705 
1706 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
1707 {
1708 	hclgevf_state_uninit(hdev);
1709 	hclgevf_misc_irq_uninit(hdev);
1710 	hclgevf_cmd_uninit(hdev);
1711 	hclgevf_uninit_msi(hdev);
1712 	hclgevf_pci_uninit(hdev);
1713 }
1714 
1715 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
1716 {
1717 	struct pci_dev *pdev = ae_dev->pdev;
1718 	int ret;
1719 
1720 	ret = hclgevf_alloc_hdev(ae_dev);
1721 	if (ret) {
1722 		dev_err(&pdev->dev, "hclge device allocation failed\n");
1723 		return ret;
1724 	}
1725 
1726 	ret = hclgevf_init_hdev(ae_dev->priv);
1727 	if (ret)
1728 		dev_err(&pdev->dev, "hclge device initialization failed\n");
1729 
1730 	return ret;
1731 }
1732 
1733 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
1734 {
1735 	struct hclgevf_dev *hdev = ae_dev->priv;
1736 
1737 	hclgevf_uninit_hdev(hdev);
1738 	ae_dev->priv = NULL;
1739 }
1740 
1741 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
1742 {
1743 	struct hnae3_handle *nic = &hdev->nic;
1744 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
1745 
1746 	return min_t(u32, hdev->rss_size_max * kinfo->num_tc, hdev->num_tqps);
1747 }
1748 
1749 /**
1750  * hclgevf_get_channels - Get the current channels enabled and max supported.
1751  * @handle: hardware information for network interface
1752  * @ch: ethtool channels structure
1753  *
1754  * We don't support separate tx and rx queues as channels. The other count
1755  * represents how many queues are being used for control. max_combined counts
1756  * how many queue pairs we can support. They may not be mapped 1 to 1 with
1757  * q_vectors since we support a lot more queue pairs than q_vectors.
1758  **/
1759 static void hclgevf_get_channels(struct hnae3_handle *handle,
1760 				 struct ethtool_channels *ch)
1761 {
1762 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1763 
1764 	ch->max_combined = hclgevf_get_max_channels(hdev);
1765 	ch->other_count = 0;
1766 	ch->max_other = 0;
1767 	ch->combined_count = hdev->num_tqps;
1768 }
1769 
1770 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
1771 					  u16 *free_tqps, u16 *max_rss_size)
1772 {
1773 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1774 
1775 	*free_tqps = 0;
1776 	*max_rss_size = hdev->rss_size_max;
1777 }
1778 
1779 static int hclgevf_get_status(struct hnae3_handle *handle)
1780 {
1781 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1782 
1783 	return hdev->hw.mac.link;
1784 }
1785 
1786 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
1787 					    u8 *auto_neg, u32 *speed,
1788 					    u8 *duplex)
1789 {
1790 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1791 
1792 	if (speed)
1793 		*speed = hdev->hw.mac.speed;
1794 	if (duplex)
1795 		*duplex = hdev->hw.mac.duplex;
1796 	if (auto_neg)
1797 		*auto_neg = AUTONEG_DISABLE;
1798 }
1799 
1800 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
1801 				 u8 duplex)
1802 {
1803 	hdev->hw.mac.speed = speed;
1804 	hdev->hw.mac.duplex = duplex;
1805 }
1806 
1807 static const struct hnae3_ae_ops hclgevf_ops = {
1808 	.init_ae_dev = hclgevf_init_ae_dev,
1809 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
1810 	.init_client_instance = hclgevf_register_client,
1811 	.uninit_client_instance = hclgevf_unregister_client,
1812 	.start = hclgevf_ae_start,
1813 	.stop = hclgevf_ae_stop,
1814 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
1815 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
1816 	.get_vector = hclgevf_get_vector,
1817 	.put_vector = hclgevf_put_vector,
1818 	.reset_queue = hclgevf_reset_tqp,
1819 	.set_promisc_mode = hclgevf_set_promisc_mode,
1820 	.get_mac_addr = hclgevf_get_mac_addr,
1821 	.set_mac_addr = hclgevf_set_mac_addr,
1822 	.add_uc_addr = hclgevf_add_uc_addr,
1823 	.rm_uc_addr = hclgevf_rm_uc_addr,
1824 	.add_mc_addr = hclgevf_add_mc_addr,
1825 	.rm_mc_addr = hclgevf_rm_mc_addr,
1826 	.get_stats = hclgevf_get_stats,
1827 	.update_stats = hclgevf_update_stats,
1828 	.get_strings = hclgevf_get_strings,
1829 	.get_sset_count = hclgevf_get_sset_count,
1830 	.get_rss_key_size = hclgevf_get_rss_key_size,
1831 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
1832 	.get_rss = hclgevf_get_rss,
1833 	.set_rss = hclgevf_set_rss,
1834 	.get_tc_size = hclgevf_get_tc_size,
1835 	.get_fw_version = hclgevf_get_fw_version,
1836 	.set_vlan_filter = hclgevf_set_vlan_filter,
1837 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
1838 	.reset_event = hclgevf_reset_event,
1839 	.get_channels = hclgevf_get_channels,
1840 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
1841 	.get_status = hclgevf_get_status,
1842 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
1843 };
1844 
1845 static struct hnae3_ae_algo ae_algovf = {
1846 	.ops = &hclgevf_ops,
1847 	.name = HCLGEVF_NAME,
1848 	.pdev_id_table = ae_algovf_pci_tbl,
1849 };
1850 
1851 static int hclgevf_init(void)
1852 {
1853 	pr_info("%s is initializing\n", HCLGEVF_NAME);
1854 
1855 	hnae3_register_ae_algo(&ae_algovf);
1856 
1857 	return 0;
1858 }
1859 
1860 static void hclgevf_exit(void)
1861 {
1862 	hnae3_unregister_ae_algo(&ae_algovf);
1863 }
1864 module_init(hclgevf_init);
1865 module_exit(hclgevf_exit);
1866 
1867 MODULE_LICENSE("GPL");
1868 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
1869 MODULE_DESCRIPTION("HCLGEVF Driver");
1870 MODULE_VERSION(HCLGEVF_MOD_VERSION);
1871