1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 static const u8 hclgevf_hash_key[] = {
25 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
26 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
27 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
28 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
29 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
30 };
31 
32 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
33 
34 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
35 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
36 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
37 					 HCLGEVF_CMDQ_TX_TAIL_REG,
38 					 HCLGEVF_CMDQ_TX_HEAD_REG,
39 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
40 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
41 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
42 					 HCLGEVF_CMDQ_RX_TAIL_REG,
43 					 HCLGEVF_CMDQ_RX_HEAD_REG,
44 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
45 					 HCLGEVF_CMDQ_INTR_STS_REG,
46 					 HCLGEVF_CMDQ_INTR_EN_REG,
47 					 HCLGEVF_CMDQ_INTR_GEN_REG};
48 
49 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
50 					   HCLGEVF_RST_ING,
51 					   HCLGEVF_GRO_EN_REG};
52 
53 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
54 					 HCLGEVF_RING_RX_ADDR_H_REG,
55 					 HCLGEVF_RING_RX_BD_NUM_REG,
56 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
57 					 HCLGEVF_RING_RX_MERGE_EN_REG,
58 					 HCLGEVF_RING_RX_TAIL_REG,
59 					 HCLGEVF_RING_RX_HEAD_REG,
60 					 HCLGEVF_RING_RX_FBD_NUM_REG,
61 					 HCLGEVF_RING_RX_OFFSET_REG,
62 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
63 					 HCLGEVF_RING_RX_STASH_REG,
64 					 HCLGEVF_RING_RX_BD_ERR_REG,
65 					 HCLGEVF_RING_TX_ADDR_L_REG,
66 					 HCLGEVF_RING_TX_ADDR_H_REG,
67 					 HCLGEVF_RING_TX_BD_NUM_REG,
68 					 HCLGEVF_RING_TX_PRIORITY_REG,
69 					 HCLGEVF_RING_TX_TC_REG,
70 					 HCLGEVF_RING_TX_MERGE_EN_REG,
71 					 HCLGEVF_RING_TX_TAIL_REG,
72 					 HCLGEVF_RING_TX_HEAD_REG,
73 					 HCLGEVF_RING_TX_FBD_NUM_REG,
74 					 HCLGEVF_RING_TX_OFFSET_REG,
75 					 HCLGEVF_RING_TX_EBD_NUM_REG,
76 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
77 					 HCLGEVF_RING_TX_BD_ERR_REG,
78 					 HCLGEVF_RING_EN_REG};
79 
80 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
81 					     HCLGEVF_TQP_INTR_GL0_REG,
82 					     HCLGEVF_TQP_INTR_GL1_REG,
83 					     HCLGEVF_TQP_INTR_GL2_REG,
84 					     HCLGEVF_TQP_INTR_RL_REG};
85 
86 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
87 {
88 	if (!handle->client)
89 		return container_of(handle, struct hclgevf_dev, nic);
90 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
91 		return container_of(handle, struct hclgevf_dev, roce);
92 	else
93 		return container_of(handle, struct hclgevf_dev, nic);
94 }
95 
96 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
97 {
98 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
99 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
100 	struct hclgevf_desc desc;
101 	struct hclgevf_tqp *tqp;
102 	int status;
103 	int i;
104 
105 	for (i = 0; i < kinfo->num_tqps; i++) {
106 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
107 		hclgevf_cmd_setup_basic_desc(&desc,
108 					     HCLGEVF_OPC_QUERY_RX_STATUS,
109 					     true);
110 
111 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
112 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
113 		if (status) {
114 			dev_err(&hdev->pdev->dev,
115 				"Query tqp stat fail, status = %d,queue = %d\n",
116 				status,	i);
117 			return status;
118 		}
119 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
120 			le32_to_cpu(desc.data[1]);
121 
122 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
123 					     true);
124 
125 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
126 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
127 		if (status) {
128 			dev_err(&hdev->pdev->dev,
129 				"Query tqp stat fail, status = %d,queue = %d\n",
130 				status, i);
131 			return status;
132 		}
133 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
134 			le32_to_cpu(desc.data[1]);
135 	}
136 
137 	return 0;
138 }
139 
140 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
141 {
142 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
143 	struct hclgevf_tqp *tqp;
144 	u64 *buff = data;
145 	int i;
146 
147 	for (i = 0; i < kinfo->num_tqps; i++) {
148 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
149 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
150 	}
151 	for (i = 0; i < kinfo->num_tqps; i++) {
152 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
153 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
154 	}
155 
156 	return buff;
157 }
158 
159 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
160 {
161 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
162 
163 	return kinfo->num_tqps * 2;
164 }
165 
166 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
167 {
168 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
169 	u8 *buff = data;
170 	int i = 0;
171 
172 	for (i = 0; i < kinfo->num_tqps; i++) {
173 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
174 						       struct hclgevf_tqp, q);
175 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
176 			 tqp->index);
177 		buff += ETH_GSTRING_LEN;
178 	}
179 
180 	for (i = 0; i < kinfo->num_tqps; i++) {
181 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
182 						       struct hclgevf_tqp, q);
183 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
184 			 tqp->index);
185 		buff += ETH_GSTRING_LEN;
186 	}
187 
188 	return buff;
189 }
190 
191 static void hclgevf_update_stats(struct hnae3_handle *handle,
192 				 struct net_device_stats *net_stats)
193 {
194 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
195 	int status;
196 
197 	status = hclgevf_tqps_update_stats(handle);
198 	if (status)
199 		dev_err(&hdev->pdev->dev,
200 			"VF update of TQPS stats fail, status = %d.\n",
201 			status);
202 }
203 
204 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
205 {
206 	if (strset == ETH_SS_TEST)
207 		return -EOPNOTSUPP;
208 	else if (strset == ETH_SS_STATS)
209 		return hclgevf_tqps_get_sset_count(handle, strset);
210 
211 	return 0;
212 }
213 
214 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
215 				u8 *data)
216 {
217 	u8 *p = (char *)data;
218 
219 	if (strset == ETH_SS_STATS)
220 		p = hclgevf_tqps_get_strings(handle, p);
221 }
222 
223 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
224 {
225 	hclgevf_tqps_get_stats(handle, data);
226 }
227 
228 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
229 {
230 	u8 resp_msg;
231 	int status;
232 
233 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
234 				      true, &resp_msg, sizeof(resp_msg));
235 	if (status) {
236 		dev_err(&hdev->pdev->dev,
237 			"VF request to get TC info from PF failed %d",
238 			status);
239 		return status;
240 	}
241 
242 	hdev->hw_tc_map = resp_msg;
243 
244 	return 0;
245 }
246 
247 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
248 {
249 	struct hnae3_handle *nic = &hdev->nic;
250 	u8 resp_msg;
251 	int ret;
252 
253 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
254 				   HCLGE_MBX_GET_PORT_BASE_VLAN_STATE,
255 				   NULL, 0, true, &resp_msg, sizeof(u8));
256 	if (ret) {
257 		dev_err(&hdev->pdev->dev,
258 			"VF request to get port based vlan state failed %d",
259 			ret);
260 		return ret;
261 	}
262 
263 	nic->port_base_vlan_state = resp_msg;
264 
265 	return 0;
266 }
267 
268 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
269 {
270 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
271 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
272 	int status;
273 
274 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
275 				      true, resp_msg,
276 				      HCLGEVF_TQPS_RSS_INFO_LEN);
277 	if (status) {
278 		dev_err(&hdev->pdev->dev,
279 			"VF request to get tqp info from PF failed %d",
280 			status);
281 		return status;
282 	}
283 
284 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
285 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
286 	memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));
287 
288 	return 0;
289 }
290 
291 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
292 {
293 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
294 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
295 	int ret;
296 
297 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
298 				   true, resp_msg,
299 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
300 	if (ret) {
301 		dev_err(&hdev->pdev->dev,
302 			"VF request to get tqp depth info from PF failed %d",
303 			ret);
304 		return ret;
305 	}
306 
307 	memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
308 	memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));
309 
310 	return 0;
311 }
312 
313 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
314 {
315 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
316 	u8 msg_data[2], resp_data[2];
317 	u16 qid_in_pf = 0;
318 	int ret;
319 
320 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
321 
322 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
323 				   sizeof(msg_data), true, resp_data,
324 				   sizeof(resp_data));
325 	if (!ret)
326 		qid_in_pf = *(u16 *)resp_data;
327 
328 	return qid_in_pf;
329 }
330 
331 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
332 {
333 	u8 resp_msg[2];
334 	int ret;
335 
336 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MEDIA_TYPE, 0, NULL, 0,
337 				   true, resp_msg, sizeof(resp_msg));
338 	if (ret) {
339 		dev_err(&hdev->pdev->dev,
340 			"VF request to get the pf port media type failed %d",
341 			ret);
342 		return ret;
343 	}
344 
345 	hdev->hw.mac.media_type = resp_msg[0];
346 	hdev->hw.mac.module_type = resp_msg[1];
347 
348 	return 0;
349 }
350 
351 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
352 {
353 	struct hclgevf_tqp *tqp;
354 	int i;
355 
356 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
357 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
358 	if (!hdev->htqp)
359 		return -ENOMEM;
360 
361 	tqp = hdev->htqp;
362 
363 	for (i = 0; i < hdev->num_tqps; i++) {
364 		tqp->dev = &hdev->pdev->dev;
365 		tqp->index = i;
366 
367 		tqp->q.ae_algo = &ae_algovf;
368 		tqp->q.buf_size = hdev->rx_buf_len;
369 		tqp->q.tx_desc_num = hdev->num_tx_desc;
370 		tqp->q.rx_desc_num = hdev->num_rx_desc;
371 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
372 			i * HCLGEVF_TQP_REG_SIZE;
373 
374 		tqp++;
375 	}
376 
377 	return 0;
378 }
379 
380 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
381 {
382 	struct hnae3_handle *nic = &hdev->nic;
383 	struct hnae3_knic_private_info *kinfo;
384 	u16 new_tqps = hdev->num_tqps;
385 	unsigned int i;
386 
387 	kinfo = &nic->kinfo;
388 	kinfo->num_tc = 0;
389 	kinfo->num_tx_desc = hdev->num_tx_desc;
390 	kinfo->num_rx_desc = hdev->num_rx_desc;
391 	kinfo->rx_buf_len = hdev->rx_buf_len;
392 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
393 		if (hdev->hw_tc_map & BIT(i))
394 			kinfo->num_tc++;
395 
396 	kinfo->rss_size
397 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
398 	new_tqps = kinfo->rss_size * kinfo->num_tc;
399 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
400 
401 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
402 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
403 	if (!kinfo->tqp)
404 		return -ENOMEM;
405 
406 	for (i = 0; i < kinfo->num_tqps; i++) {
407 		hdev->htqp[i].q.handle = &hdev->nic;
408 		hdev->htqp[i].q.tqp_index = i;
409 		kinfo->tqp[i] = &hdev->htqp[i].q;
410 	}
411 
412 	return 0;
413 }
414 
415 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
416 {
417 	int status;
418 	u8 resp_msg;
419 
420 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
421 				      0, false, &resp_msg, sizeof(resp_msg));
422 	if (status)
423 		dev_err(&hdev->pdev->dev,
424 			"VF failed to fetch link status(%d) from PF", status);
425 }
426 
427 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
428 {
429 	struct hnae3_handle *rhandle = &hdev->roce;
430 	struct hnae3_handle *handle = &hdev->nic;
431 	struct hnae3_client *rclient;
432 	struct hnae3_client *client;
433 
434 	client = handle->client;
435 	rclient = hdev->roce_client;
436 
437 	link_state =
438 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
439 
440 	if (link_state != hdev->hw.mac.link) {
441 		client->ops->link_status_change(handle, !!link_state);
442 		if (rclient && rclient->ops->link_status_change)
443 			rclient->ops->link_status_change(rhandle, !!link_state);
444 		hdev->hw.mac.link = link_state;
445 	}
446 }
447 
448 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
449 {
450 #define HCLGEVF_ADVERTISING 0
451 #define HCLGEVF_SUPPORTED   1
452 	u8 send_msg;
453 	u8 resp_msg;
454 
455 	send_msg = HCLGEVF_ADVERTISING;
456 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
457 			     &send_msg, sizeof(send_msg), false,
458 			     &resp_msg, sizeof(resp_msg));
459 	send_msg = HCLGEVF_SUPPORTED;
460 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
461 			     &send_msg, sizeof(send_msg), false,
462 			     &resp_msg, sizeof(resp_msg));
463 }
464 
465 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
466 {
467 	struct hnae3_handle *nic = &hdev->nic;
468 	int ret;
469 
470 	nic->ae_algo = &ae_algovf;
471 	nic->pdev = hdev->pdev;
472 	nic->numa_node_mask = hdev->numa_node_mask;
473 	nic->flags |= HNAE3_SUPPORT_VF;
474 
475 	ret = hclgevf_knic_setup(hdev);
476 	if (ret)
477 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
478 			ret);
479 	return ret;
480 }
481 
482 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
483 {
484 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
485 		dev_warn(&hdev->pdev->dev,
486 			 "vector(vector_id %d) has been freed.\n", vector_id);
487 		return;
488 	}
489 
490 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
491 	hdev->num_msi_left += 1;
492 	hdev->num_msi_used -= 1;
493 }
494 
495 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
496 			      struct hnae3_vector_info *vector_info)
497 {
498 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
499 	struct hnae3_vector_info *vector = vector_info;
500 	int alloc = 0;
501 	int i, j;
502 
503 	vector_num = min(hdev->num_msi_left, vector_num);
504 
505 	for (j = 0; j < vector_num; j++) {
506 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
507 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
508 				vector->vector = pci_irq_vector(hdev->pdev, i);
509 				vector->io_addr = hdev->hw.io_base +
510 					HCLGEVF_VECTOR_REG_BASE +
511 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
512 				hdev->vector_status[i] = 0;
513 				hdev->vector_irq[i] = vector->vector;
514 
515 				vector++;
516 				alloc++;
517 
518 				break;
519 			}
520 		}
521 	}
522 	hdev->num_msi_left -= alloc;
523 	hdev->num_msi_used += alloc;
524 
525 	return alloc;
526 }
527 
528 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
529 {
530 	int i;
531 
532 	for (i = 0; i < hdev->num_msi; i++)
533 		if (vector == hdev->vector_irq[i])
534 			return i;
535 
536 	return -EINVAL;
537 }
538 
539 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
540 				    const u8 hfunc, const u8 *key)
541 {
542 	struct hclgevf_rss_config_cmd *req;
543 	unsigned int key_offset = 0;
544 	struct hclgevf_desc desc;
545 	int key_counts;
546 	int key_size;
547 	int ret;
548 
549 	key_counts = HCLGEVF_RSS_KEY_SIZE;
550 	req = (struct hclgevf_rss_config_cmd *)desc.data;
551 
552 	while (key_counts) {
553 		hclgevf_cmd_setup_basic_desc(&desc,
554 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
555 					     false);
556 
557 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
558 		req->hash_config |=
559 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
560 
561 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
562 		memcpy(req->hash_key,
563 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
564 
565 		key_counts -= key_size;
566 		key_offset++;
567 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
568 		if (ret) {
569 			dev_err(&hdev->pdev->dev,
570 				"Configure RSS config fail, status = %d\n",
571 				ret);
572 			return ret;
573 		}
574 	}
575 
576 	return 0;
577 }
578 
579 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
580 {
581 	return HCLGEVF_RSS_KEY_SIZE;
582 }
583 
584 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
585 {
586 	return HCLGEVF_RSS_IND_TBL_SIZE;
587 }
588 
589 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
590 {
591 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
592 	struct hclgevf_rss_indirection_table_cmd *req;
593 	struct hclgevf_desc desc;
594 	int status;
595 	int i, j;
596 
597 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
598 
599 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
600 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
601 					     false);
602 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
603 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
604 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
605 			req->rss_result[j] =
606 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
607 
608 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
609 		if (status) {
610 			dev_err(&hdev->pdev->dev,
611 				"VF failed(=%d) to set RSS indirection table\n",
612 				status);
613 			return status;
614 		}
615 	}
616 
617 	return 0;
618 }
619 
620 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
621 {
622 	struct hclgevf_rss_tc_mode_cmd *req;
623 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
624 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
625 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
626 	struct hclgevf_desc desc;
627 	u16 roundup_size;
628 	int status;
629 	unsigned int i;
630 
631 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
632 
633 	roundup_size = roundup_pow_of_two(rss_size);
634 	roundup_size = ilog2(roundup_size);
635 
636 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
637 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
638 		tc_size[i] = roundup_size;
639 		tc_offset[i] = rss_size * i;
640 	}
641 
642 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
643 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
644 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
645 			      (tc_valid[i] & 0x1));
646 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
647 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
648 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
649 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
650 	}
651 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
652 	if (status)
653 		dev_err(&hdev->pdev->dev,
654 			"VF failed(=%d) to set rss tc mode\n", status);
655 
656 	return status;
657 }
658 
659 /* for revision 0x20, vf shared the same rss config with pf */
660 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
661 {
662 #define HCLGEVF_RSS_MBX_RESP_LEN	8
663 
664 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
665 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
666 	u16 msg_num, hash_key_index;
667 	u8 index;
668 	int ret;
669 
670 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
671 			HCLGEVF_RSS_MBX_RESP_LEN;
672 	for (index = 0; index < msg_num; index++) {
673 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_RSS_KEY, 0,
674 					   &index, sizeof(index),
675 					   true, resp_msg,
676 					   HCLGEVF_RSS_MBX_RESP_LEN);
677 		if (ret) {
678 			dev_err(&hdev->pdev->dev,
679 				"VF get rss hash key from PF failed, ret=%d",
680 				ret);
681 			return ret;
682 		}
683 
684 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
685 		if (index == msg_num - 1)
686 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
687 			       &resp_msg[0],
688 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
689 		else
690 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
691 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
692 	}
693 
694 	return 0;
695 }
696 
697 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
698 			   u8 *hfunc)
699 {
700 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
701 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
702 	int i, ret;
703 
704 	if (handle->pdev->revision >= 0x21) {
705 		/* Get hash algorithm */
706 		if (hfunc) {
707 			switch (rss_cfg->hash_algo) {
708 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
709 				*hfunc = ETH_RSS_HASH_TOP;
710 				break;
711 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
712 				*hfunc = ETH_RSS_HASH_XOR;
713 				break;
714 			default:
715 				*hfunc = ETH_RSS_HASH_UNKNOWN;
716 				break;
717 			}
718 		}
719 
720 		/* Get the RSS Key required by the user */
721 		if (key)
722 			memcpy(key, rss_cfg->rss_hash_key,
723 			       HCLGEVF_RSS_KEY_SIZE);
724 	} else {
725 		if (hfunc)
726 			*hfunc = ETH_RSS_HASH_TOP;
727 		if (key) {
728 			ret = hclgevf_get_rss_hash_key(hdev);
729 			if (ret)
730 				return ret;
731 			memcpy(key, rss_cfg->rss_hash_key,
732 			       HCLGEVF_RSS_KEY_SIZE);
733 		}
734 	}
735 
736 	if (indir)
737 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
738 			indir[i] = rss_cfg->rss_indirection_tbl[i];
739 
740 	return 0;
741 }
742 
743 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
744 			   const  u8 *key, const  u8 hfunc)
745 {
746 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
747 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
748 	int ret, i;
749 
750 	if (handle->pdev->revision >= 0x21) {
751 		/* Set the RSS Hash Key if specififed by the user */
752 		if (key) {
753 			switch (hfunc) {
754 			case ETH_RSS_HASH_TOP:
755 				rss_cfg->hash_algo =
756 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
757 				break;
758 			case ETH_RSS_HASH_XOR:
759 				rss_cfg->hash_algo =
760 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
761 				break;
762 			case ETH_RSS_HASH_NO_CHANGE:
763 				break;
764 			default:
765 				return -EINVAL;
766 			}
767 
768 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
769 						       key);
770 			if (ret)
771 				return ret;
772 
773 			/* Update the shadow RSS key with user specified qids */
774 			memcpy(rss_cfg->rss_hash_key, key,
775 			       HCLGEVF_RSS_KEY_SIZE);
776 		}
777 	}
778 
779 	/* update the shadow RSS table with user specified qids */
780 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
781 		rss_cfg->rss_indirection_tbl[i] = indir[i];
782 
783 	/* update the hardware */
784 	return hclgevf_set_rss_indir_table(hdev);
785 }
786 
787 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
788 {
789 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
790 
791 	if (nfc->data & RXH_L4_B_2_3)
792 		hash_sets |= HCLGEVF_D_PORT_BIT;
793 	else
794 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
795 
796 	if (nfc->data & RXH_IP_SRC)
797 		hash_sets |= HCLGEVF_S_IP_BIT;
798 	else
799 		hash_sets &= ~HCLGEVF_S_IP_BIT;
800 
801 	if (nfc->data & RXH_IP_DST)
802 		hash_sets |= HCLGEVF_D_IP_BIT;
803 	else
804 		hash_sets &= ~HCLGEVF_D_IP_BIT;
805 
806 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
807 		hash_sets |= HCLGEVF_V_TAG_BIT;
808 
809 	return hash_sets;
810 }
811 
812 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
813 				 struct ethtool_rxnfc *nfc)
814 {
815 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
816 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
817 	struct hclgevf_rss_input_tuple_cmd *req;
818 	struct hclgevf_desc desc;
819 	u8 tuple_sets;
820 	int ret;
821 
822 	if (handle->pdev->revision == 0x20)
823 		return -EOPNOTSUPP;
824 
825 	if (nfc->data &
826 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
827 		return -EINVAL;
828 
829 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
830 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
831 
832 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
833 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
834 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
835 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
836 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
837 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
838 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
839 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
840 
841 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
842 	switch (nfc->flow_type) {
843 	case TCP_V4_FLOW:
844 		req->ipv4_tcp_en = tuple_sets;
845 		break;
846 	case TCP_V6_FLOW:
847 		req->ipv6_tcp_en = tuple_sets;
848 		break;
849 	case UDP_V4_FLOW:
850 		req->ipv4_udp_en = tuple_sets;
851 		break;
852 	case UDP_V6_FLOW:
853 		req->ipv6_udp_en = tuple_sets;
854 		break;
855 	case SCTP_V4_FLOW:
856 		req->ipv4_sctp_en = tuple_sets;
857 		break;
858 	case SCTP_V6_FLOW:
859 		if ((nfc->data & RXH_L4_B_0_1) ||
860 		    (nfc->data & RXH_L4_B_2_3))
861 			return -EINVAL;
862 
863 		req->ipv6_sctp_en = tuple_sets;
864 		break;
865 	case IPV4_FLOW:
866 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
867 		break;
868 	case IPV6_FLOW:
869 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
870 		break;
871 	default:
872 		return -EINVAL;
873 	}
874 
875 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
876 	if (ret) {
877 		dev_err(&hdev->pdev->dev,
878 			"Set rss tuple fail, status = %d\n", ret);
879 		return ret;
880 	}
881 
882 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
883 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
884 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
885 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
886 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
887 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
888 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
889 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
890 	return 0;
891 }
892 
893 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
894 				 struct ethtool_rxnfc *nfc)
895 {
896 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
897 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
898 	u8 tuple_sets;
899 
900 	if (handle->pdev->revision == 0x20)
901 		return -EOPNOTSUPP;
902 
903 	nfc->data = 0;
904 
905 	switch (nfc->flow_type) {
906 	case TCP_V4_FLOW:
907 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
908 		break;
909 	case UDP_V4_FLOW:
910 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
911 		break;
912 	case TCP_V6_FLOW:
913 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
914 		break;
915 	case UDP_V6_FLOW:
916 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
917 		break;
918 	case SCTP_V4_FLOW:
919 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
920 		break;
921 	case SCTP_V6_FLOW:
922 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
923 		break;
924 	case IPV4_FLOW:
925 	case IPV6_FLOW:
926 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
927 		break;
928 	default:
929 		return -EINVAL;
930 	}
931 
932 	if (!tuple_sets)
933 		return 0;
934 
935 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
936 		nfc->data |= RXH_L4_B_2_3;
937 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
938 		nfc->data |= RXH_L4_B_0_1;
939 	if (tuple_sets & HCLGEVF_D_IP_BIT)
940 		nfc->data |= RXH_IP_DST;
941 	if (tuple_sets & HCLGEVF_S_IP_BIT)
942 		nfc->data |= RXH_IP_SRC;
943 
944 	return 0;
945 }
946 
947 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
948 				       struct hclgevf_rss_cfg *rss_cfg)
949 {
950 	struct hclgevf_rss_input_tuple_cmd *req;
951 	struct hclgevf_desc desc;
952 	int ret;
953 
954 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
955 
956 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
957 
958 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
959 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
960 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
961 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
962 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
963 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
964 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
965 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
966 
967 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
968 	if (ret)
969 		dev_err(&hdev->pdev->dev,
970 			"Configure rss input fail, status = %d\n", ret);
971 	return ret;
972 }
973 
974 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
975 {
976 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
977 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
978 
979 	return rss_cfg->rss_size;
980 }
981 
982 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
983 				       int vector_id,
984 				       struct hnae3_ring_chain_node *ring_chain)
985 {
986 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
987 	struct hnae3_ring_chain_node *node;
988 	struct hclge_mbx_vf_to_pf_cmd *req;
989 	struct hclgevf_desc desc;
990 	int i = 0;
991 	int status;
992 	u8 type;
993 
994 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
995 
996 	for (node = ring_chain; node; node = node->next) {
997 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
998 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
999 
1000 		if (i == 0) {
1001 			hclgevf_cmd_setup_basic_desc(&desc,
1002 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1003 						     false);
1004 			type = en ?
1005 				HCLGE_MBX_MAP_RING_TO_VECTOR :
1006 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1007 			req->msg[0] = type;
1008 			req->msg[1] = vector_id;
1009 		}
1010 
1011 		req->msg[idx_offset] =
1012 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1013 		req->msg[idx_offset + 1] = node->tqp_index;
1014 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
1015 							   HNAE3_RING_GL_IDX_M,
1016 							   HNAE3_RING_GL_IDX_S);
1017 
1018 		i++;
1019 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
1020 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
1021 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
1022 		    !node->next) {
1023 			req->msg[2] = i;
1024 
1025 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1026 			if (status) {
1027 				dev_err(&hdev->pdev->dev,
1028 					"Map TQP fail, status is %d.\n",
1029 					status);
1030 				return status;
1031 			}
1032 			i = 0;
1033 			hclgevf_cmd_setup_basic_desc(&desc,
1034 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1035 						     false);
1036 			req->msg[0] = type;
1037 			req->msg[1] = vector_id;
1038 		}
1039 	}
1040 
1041 	return 0;
1042 }
1043 
1044 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1045 				      struct hnae3_ring_chain_node *ring_chain)
1046 {
1047 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1048 	int vector_id;
1049 
1050 	vector_id = hclgevf_get_vector_index(hdev, vector);
1051 	if (vector_id < 0) {
1052 		dev_err(&handle->pdev->dev,
1053 			"Get vector index fail. ret =%d\n", vector_id);
1054 		return vector_id;
1055 	}
1056 
1057 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1058 }
1059 
1060 static int hclgevf_unmap_ring_from_vector(
1061 				struct hnae3_handle *handle,
1062 				int vector,
1063 				struct hnae3_ring_chain_node *ring_chain)
1064 {
1065 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1066 	int ret, vector_id;
1067 
1068 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1069 		return 0;
1070 
1071 	vector_id = hclgevf_get_vector_index(hdev, vector);
1072 	if (vector_id < 0) {
1073 		dev_err(&handle->pdev->dev,
1074 			"Get vector index fail. ret =%d\n", vector_id);
1075 		return vector_id;
1076 	}
1077 
1078 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1079 	if (ret)
1080 		dev_err(&handle->pdev->dev,
1081 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1082 			vector_id,
1083 			ret);
1084 
1085 	return ret;
1086 }
1087 
1088 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1089 {
1090 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1091 	int vector_id;
1092 
1093 	vector_id = hclgevf_get_vector_index(hdev, vector);
1094 	if (vector_id < 0) {
1095 		dev_err(&handle->pdev->dev,
1096 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1097 			vector_id);
1098 		return vector_id;
1099 	}
1100 
1101 	hclgevf_free_vector(hdev, vector_id);
1102 
1103 	return 0;
1104 }
1105 
1106 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1107 					bool en_bc_pmc)
1108 {
1109 	struct hclge_mbx_vf_to_pf_cmd *req;
1110 	struct hclgevf_desc desc;
1111 	int ret;
1112 
1113 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1114 
1115 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
1116 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1117 	req->msg[1] = en_bc_pmc ? 1 : 0;
1118 
1119 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1120 	if (ret)
1121 		dev_err(&hdev->pdev->dev,
1122 			"Set promisc mode fail, status is %d.\n", ret);
1123 
1124 	return ret;
1125 }
1126 
1127 static int hclgevf_set_promisc_mode(struct hclgevf_dev *hdev, bool en_bc_pmc)
1128 {
1129 	return hclgevf_cmd_set_promisc_mode(hdev, en_bc_pmc);
1130 }
1131 
1132 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1133 			      int stream_id, bool enable)
1134 {
1135 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1136 	struct hclgevf_desc desc;
1137 	int status;
1138 
1139 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1140 
1141 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1142 				     false);
1143 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1144 	req->stream_id = cpu_to_le16(stream_id);
1145 	if (enable)
1146 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1147 
1148 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1149 	if (status)
1150 		dev_err(&hdev->pdev->dev,
1151 			"TQP enable fail, status =%d.\n", status);
1152 
1153 	return status;
1154 }
1155 
1156 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1157 {
1158 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1159 	struct hclgevf_tqp *tqp;
1160 	int i;
1161 
1162 	for (i = 0; i < kinfo->num_tqps; i++) {
1163 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1164 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1165 	}
1166 }
1167 
1168 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1169 {
1170 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1171 
1172 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
1173 }
1174 
1175 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1176 				bool is_first)
1177 {
1178 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1179 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1180 	u8 *new_mac_addr = (u8 *)p;
1181 	u8 msg_data[ETH_ALEN * 2];
1182 	u16 subcode;
1183 	int status;
1184 
1185 	ether_addr_copy(msg_data, new_mac_addr);
1186 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1187 
1188 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1189 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1190 
1191 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1192 				      subcode, msg_data, sizeof(msg_data),
1193 				      true, NULL, 0);
1194 	if (!status)
1195 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1196 
1197 	return status;
1198 }
1199 
1200 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1201 			       const unsigned char *addr)
1202 {
1203 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1204 
1205 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1206 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1207 				    addr, ETH_ALEN, false, NULL, 0);
1208 }
1209 
1210 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1211 			      const unsigned char *addr)
1212 {
1213 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1214 
1215 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1216 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1217 				    addr, ETH_ALEN, false, NULL, 0);
1218 }
1219 
1220 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1221 			       const unsigned char *addr)
1222 {
1223 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1224 
1225 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1226 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1227 				    addr, ETH_ALEN, false, NULL, 0);
1228 }
1229 
1230 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1231 			      const unsigned char *addr)
1232 {
1233 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1234 
1235 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1236 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1237 				    addr, ETH_ALEN, false, NULL, 0);
1238 }
1239 
1240 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1241 				   __be16 proto, u16 vlan_id,
1242 				   bool is_kill)
1243 {
1244 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1245 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1246 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1247 
1248 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1249 		return -EINVAL;
1250 
1251 	if (proto != htons(ETH_P_8021Q))
1252 		return -EPROTONOSUPPORT;
1253 
1254 	msg_data[0] = is_kill;
1255 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1256 	memcpy(&msg_data[3], &proto, sizeof(proto));
1257 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1258 				    HCLGE_MBX_VLAN_FILTER, msg_data,
1259 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1260 }
1261 
1262 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1263 {
1264 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1265 	u8 msg_data;
1266 
1267 	msg_data = enable ? 1 : 0;
1268 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1269 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1270 				    1, false, NULL, 0);
1271 }
1272 
1273 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1274 {
1275 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1276 	u8 msg_data[2];
1277 	int ret;
1278 
1279 	memcpy(msg_data, &queue_id, sizeof(queue_id));
1280 
1281 	/* disable vf queue before send queue reset msg to PF */
1282 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1283 	if (ret)
1284 		return ret;
1285 
1286 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1287 				    sizeof(msg_data), true, NULL, 0);
1288 }
1289 
1290 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1291 {
1292 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1293 
1294 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1295 				    sizeof(new_mtu), true, NULL, 0);
1296 }
1297 
1298 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1299 				 enum hnae3_reset_notify_type type)
1300 {
1301 	struct hnae3_client *client = hdev->nic_client;
1302 	struct hnae3_handle *handle = &hdev->nic;
1303 	int ret;
1304 
1305 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1306 	    !client)
1307 		return 0;
1308 
1309 	if (!client->ops->reset_notify)
1310 		return -EOPNOTSUPP;
1311 
1312 	ret = client->ops->reset_notify(handle, type);
1313 	if (ret)
1314 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1315 			type, ret);
1316 
1317 	return ret;
1318 }
1319 
1320 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1321 {
1322 	struct hclgevf_dev *hdev = ae_dev->priv;
1323 
1324 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1325 }
1326 
1327 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1328 				    unsigned long delay_us,
1329 				    unsigned long wait_cnt)
1330 {
1331 	unsigned long cnt = 0;
1332 
1333 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1334 	       cnt++ < wait_cnt)
1335 		usleep_range(delay_us, delay_us * 2);
1336 
1337 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1338 		dev_err(&hdev->pdev->dev,
1339 			"flr wait timeout\n");
1340 		return -ETIMEDOUT;
1341 	}
1342 
1343 	return 0;
1344 }
1345 
1346 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1347 {
1348 #define HCLGEVF_RESET_WAIT_US	20000
1349 #define HCLGEVF_RESET_WAIT_CNT	2000
1350 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1351 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1352 
1353 	u32 val;
1354 	int ret;
1355 
1356 	/* wait to check the hardware reset completion status */
1357 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1358 	dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1359 
1360 	if (hdev->reset_type == HNAE3_FLR_RESET)
1361 		return hclgevf_flr_poll_timeout(hdev,
1362 						HCLGEVF_RESET_WAIT_US,
1363 						HCLGEVF_RESET_WAIT_CNT);
1364 
1365 	ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1366 				 !(val & HCLGEVF_RST_ING_BITS),
1367 				 HCLGEVF_RESET_WAIT_US,
1368 				 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1369 
1370 	/* hardware completion status should be available by this time */
1371 	if (ret) {
1372 		dev_err(&hdev->pdev->dev,
1373 			"could'nt get reset done status from h/w, timeout!\n");
1374 		return ret;
1375 	}
1376 
1377 	/* we will wait a bit more to let reset of the stack to complete. This
1378 	 * might happen in case reset assertion was made by PF. Yes, this also
1379 	 * means we might end up waiting bit more even for VF reset.
1380 	 */
1381 	msleep(5000);
1382 
1383 	return 0;
1384 }
1385 
1386 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1387 {
1388 	int ret;
1389 
1390 	/* uninitialize the nic client */
1391 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1392 	if (ret)
1393 		return ret;
1394 
1395 	/* re-initialize the hclge device */
1396 	ret = hclgevf_reset_hdev(hdev);
1397 	if (ret) {
1398 		dev_err(&hdev->pdev->dev,
1399 			"hclge device re-init failed, VF is disabled!\n");
1400 		return ret;
1401 	}
1402 
1403 	/* bring up the nic client again */
1404 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1405 	if (ret)
1406 		return ret;
1407 
1408 	return hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1409 }
1410 
1411 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1412 {
1413 #define HCLGEVF_RESET_SYNC_TIME 100
1414 
1415 	int ret = 0;
1416 
1417 	switch (hdev->reset_type) {
1418 	case HNAE3_VF_FUNC_RESET:
1419 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1420 					   0, true, NULL, sizeof(u8));
1421 		hdev->rst_stats.vf_func_rst_cnt++;
1422 		break;
1423 	case HNAE3_FLR_RESET:
1424 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1425 		hdev->rst_stats.flr_rst_cnt++;
1426 		break;
1427 	default:
1428 		break;
1429 	}
1430 
1431 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1432 	/* inform hardware that preparatory work is done */
1433 	msleep(HCLGEVF_RESET_SYNC_TIME);
1434 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1435 			  HCLGEVF_NIC_CMQ_ENABLE);
1436 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1437 		 hdev->reset_type, ret);
1438 
1439 	return ret;
1440 }
1441 
1442 static int hclgevf_reset(struct hclgevf_dev *hdev)
1443 {
1444 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1445 	int ret;
1446 
1447 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1448 	 * know if device is undergoing reset
1449 	 */
1450 	ae_dev->reset_type = hdev->reset_type;
1451 	hdev->rst_stats.rst_cnt++;
1452 	rtnl_lock();
1453 
1454 	/* bring down the nic to stop any ongoing TX/RX */
1455 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1456 	if (ret)
1457 		goto err_reset_lock;
1458 
1459 	rtnl_unlock();
1460 
1461 	ret = hclgevf_reset_prepare_wait(hdev);
1462 	if (ret)
1463 		goto err_reset;
1464 
1465 	/* check if VF could successfully fetch the hardware reset completion
1466 	 * status from the hardware
1467 	 */
1468 	ret = hclgevf_reset_wait(hdev);
1469 	if (ret) {
1470 		/* can't do much in this situation, will disable VF */
1471 		dev_err(&hdev->pdev->dev,
1472 			"VF failed(=%d) to fetch H/W reset completion status\n",
1473 			ret);
1474 		goto err_reset;
1475 	}
1476 
1477 	hdev->rst_stats.hw_rst_done_cnt++;
1478 
1479 	rtnl_lock();
1480 
1481 	/* now, re-initialize the nic client and ae device*/
1482 	ret = hclgevf_reset_stack(hdev);
1483 	if (ret) {
1484 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1485 		goto err_reset_lock;
1486 	}
1487 
1488 	/* bring up the nic to enable TX/RX again */
1489 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1490 	if (ret)
1491 		goto err_reset_lock;
1492 
1493 	rtnl_unlock();
1494 
1495 	hdev->last_reset_time = jiffies;
1496 	ae_dev->reset_type = HNAE3_NONE_RESET;
1497 	hdev->rst_stats.rst_done_cnt++;
1498 
1499 	return ret;
1500 err_reset_lock:
1501 	rtnl_unlock();
1502 err_reset:
1503 	/* When VF reset failed, only the higher level reset asserted by PF
1504 	 * can restore it, so re-initialize the command queue to receive
1505 	 * this higher reset event.
1506 	 */
1507 	hclgevf_cmd_init(hdev);
1508 	dev_err(&hdev->pdev->dev, "failed to reset VF\n");
1509 	if (hclgevf_is_reset_pending(hdev))
1510 		hclgevf_reset_task_schedule(hdev);
1511 
1512 	return ret;
1513 }
1514 
1515 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1516 						     unsigned long *addr)
1517 {
1518 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1519 
1520 	/* return the highest priority reset level amongst all */
1521 	if (test_bit(HNAE3_VF_RESET, addr)) {
1522 		rst_level = HNAE3_VF_RESET;
1523 		clear_bit(HNAE3_VF_RESET, addr);
1524 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1525 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1526 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1527 		rst_level = HNAE3_VF_FULL_RESET;
1528 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1529 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1530 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1531 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1532 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1533 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1534 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1535 		rst_level = HNAE3_VF_FUNC_RESET;
1536 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1537 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1538 		rst_level = HNAE3_FLR_RESET;
1539 		clear_bit(HNAE3_FLR_RESET, addr);
1540 	}
1541 
1542 	return rst_level;
1543 }
1544 
1545 static void hclgevf_reset_event(struct pci_dev *pdev,
1546 				struct hnae3_handle *handle)
1547 {
1548 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1549 	struct hclgevf_dev *hdev = ae_dev->priv;
1550 
1551 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1552 
1553 	if (hdev->default_reset_request)
1554 		hdev->reset_level =
1555 			hclgevf_get_reset_level(hdev,
1556 						&hdev->default_reset_request);
1557 	else
1558 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1559 
1560 	/* reset of this VF requested */
1561 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1562 	hclgevf_reset_task_schedule(hdev);
1563 
1564 	hdev->last_reset_time = jiffies;
1565 }
1566 
1567 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1568 					  enum hnae3_reset_type rst_type)
1569 {
1570 	struct hclgevf_dev *hdev = ae_dev->priv;
1571 
1572 	set_bit(rst_type, &hdev->default_reset_request);
1573 }
1574 
1575 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1576 {
1577 #define HCLGEVF_FLR_WAIT_MS	100
1578 #define HCLGEVF_FLR_WAIT_CNT	50
1579 	struct hclgevf_dev *hdev = ae_dev->priv;
1580 	int cnt = 0;
1581 
1582 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1583 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1584 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1585 	hclgevf_reset_event(hdev->pdev, NULL);
1586 
1587 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1588 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1589 		msleep(HCLGEVF_FLR_WAIT_MS);
1590 
1591 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1592 		dev_err(&hdev->pdev->dev,
1593 			"flr wait down timeout: %d\n", cnt);
1594 }
1595 
1596 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1597 {
1598 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1599 
1600 	return hdev->fw_version;
1601 }
1602 
1603 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1604 {
1605 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1606 
1607 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1608 					    HCLGEVF_MISC_VECTOR_NUM);
1609 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1610 	/* vector status always valid for Vector 0 */
1611 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1612 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1613 
1614 	hdev->num_msi_left -= 1;
1615 	hdev->num_msi_used += 1;
1616 }
1617 
1618 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1619 {
1620 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1621 	    !test_bit(HCLGEVF_STATE_REMOVING, &hdev->state)) {
1622 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1623 		schedule_work(&hdev->rst_service_task);
1624 	}
1625 }
1626 
1627 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1628 {
1629 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1630 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1631 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1632 		schedule_work(&hdev->mbx_service_task);
1633 	}
1634 }
1635 
1636 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1637 {
1638 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1639 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1640 		schedule_work(&hdev->service_task);
1641 }
1642 
1643 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1644 {
1645 	/* if we have any pending mailbox event then schedule the mbx task */
1646 	if (hdev->mbx_event_pending)
1647 		hclgevf_mbx_task_schedule(hdev);
1648 
1649 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1650 		hclgevf_reset_task_schedule(hdev);
1651 }
1652 
1653 static void hclgevf_service_timer(struct timer_list *t)
1654 {
1655 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1656 
1657 	mod_timer(&hdev->service_timer, jiffies +
1658 		  HCLGEVF_GENERAL_TASK_INTERVAL * HZ);
1659 
1660 	hdev->stats_timer++;
1661 	hclgevf_task_schedule(hdev);
1662 }
1663 
1664 static void hclgevf_reset_service_task(struct work_struct *work)
1665 {
1666 	struct hclgevf_dev *hdev =
1667 		container_of(work, struct hclgevf_dev, rst_service_task);
1668 	int ret;
1669 
1670 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1671 		return;
1672 
1673 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1674 
1675 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1676 			       &hdev->reset_state)) {
1677 		/* PF has initmated that it is about to reset the hardware.
1678 		 * We now have to poll & check if hardware has actually
1679 		 * completed the reset sequence. On hardware reset completion,
1680 		 * VF needs to reset the client and ae device.
1681 		 */
1682 		hdev->reset_attempts = 0;
1683 
1684 		hdev->last_reset_time = jiffies;
1685 		while ((hdev->reset_type =
1686 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1687 		       != HNAE3_NONE_RESET) {
1688 			ret = hclgevf_reset(hdev);
1689 			if (ret)
1690 				dev_err(&hdev->pdev->dev,
1691 					"VF stack reset failed %d.\n", ret);
1692 		}
1693 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1694 				      &hdev->reset_state)) {
1695 		/* we could be here when either of below happens:
1696 		 * 1. reset was initiated due to watchdog timeout caused by
1697 		 *    a. IMP was earlier reset and our TX got choked down and
1698 		 *       which resulted in watchdog reacting and inducing VF
1699 		 *       reset. This also means our cmdq would be unreliable.
1700 		 *    b. problem in TX due to other lower layer(example link
1701 		 *       layer not functioning properly etc.)
1702 		 * 2. VF reset might have been initiated due to some config
1703 		 *    change.
1704 		 *
1705 		 * NOTE: Theres no clear way to detect above cases than to react
1706 		 * to the response of PF for this reset request. PF will ack the
1707 		 * 1b and 2. cases but we will not get any intimation about 1a
1708 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1709 		 * communication between PF and VF would be broken.
1710 		 */
1711 
1712 		/* if we are never geting into pending state it means either:
1713 		 * 1. PF is not receiving our request which could be due to IMP
1714 		 *    reset
1715 		 * 2. PF is screwed
1716 		 * We cannot do much for 2. but to check first we can try reset
1717 		 * our PCIe + stack and see if it alleviates the problem.
1718 		 */
1719 		if (hdev->reset_attempts > 3) {
1720 			/* prepare for full reset of stack + pcie interface */
1721 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1722 
1723 			/* "defer" schedule the reset task again */
1724 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1725 		} else {
1726 			hdev->reset_attempts++;
1727 
1728 			set_bit(hdev->reset_level, &hdev->reset_pending);
1729 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1730 		}
1731 		hclgevf_reset_task_schedule(hdev);
1732 	}
1733 
1734 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1735 }
1736 
1737 static void hclgevf_mailbox_service_task(struct work_struct *work)
1738 {
1739 	struct hclgevf_dev *hdev;
1740 
1741 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1742 
1743 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1744 		return;
1745 
1746 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1747 
1748 	hclgevf_mbx_async_handler(hdev);
1749 
1750 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1751 }
1752 
1753 static void hclgevf_keep_alive_timer(struct timer_list *t)
1754 {
1755 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1756 
1757 	schedule_work(&hdev->keep_alive_task);
1758 	mod_timer(&hdev->keep_alive_timer, jiffies +
1759 		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
1760 }
1761 
1762 static void hclgevf_keep_alive_task(struct work_struct *work)
1763 {
1764 	struct hclgevf_dev *hdev;
1765 	u8 respmsg;
1766 	int ret;
1767 
1768 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1769 
1770 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
1771 		return;
1772 
1773 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1774 				   0, false, &respmsg, sizeof(respmsg));
1775 	if (ret)
1776 		dev_err(&hdev->pdev->dev,
1777 			"VF sends keep alive cmd failed(=%d)\n", ret);
1778 }
1779 
1780 static void hclgevf_service_task(struct work_struct *work)
1781 {
1782 	struct hnae3_handle *handle;
1783 	struct hclgevf_dev *hdev;
1784 
1785 	hdev = container_of(work, struct hclgevf_dev, service_task);
1786 	handle = &hdev->nic;
1787 
1788 	if (hdev->stats_timer >= HCLGEVF_STATS_TIMER_INTERVAL) {
1789 		hclgevf_tqps_update_stats(handle);
1790 		hdev->stats_timer = 0;
1791 	}
1792 
1793 	/* request the link status from the PF. PF would be able to tell VF
1794 	 * about such updates in future so we might remove this later
1795 	 */
1796 	hclgevf_request_link_info(hdev);
1797 
1798 	hclgevf_update_link_mode(hdev);
1799 
1800 	hclgevf_deferred_task_schedule(hdev);
1801 
1802 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1803 }
1804 
1805 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1806 {
1807 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1808 }
1809 
1810 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1811 						      u32 *clearval)
1812 {
1813 	u32 cmdq_src_reg, rst_ing_reg;
1814 
1815 	/* fetch the events from their corresponding regs */
1816 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1817 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1818 
1819 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1820 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1821 		dev_info(&hdev->pdev->dev,
1822 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1823 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1824 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1825 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1826 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1827 		*clearval = cmdq_src_reg;
1828 		hdev->rst_stats.vf_rst_cnt++;
1829 		return HCLGEVF_VECTOR0_EVENT_RST;
1830 	}
1831 
1832 	/* check for vector0 mailbox(=CMDQ RX) event source */
1833 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1834 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1835 		*clearval = cmdq_src_reg;
1836 		return HCLGEVF_VECTOR0_EVENT_MBX;
1837 	}
1838 
1839 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1840 
1841 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1842 }
1843 
1844 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1845 {
1846 	writel(en ? 1 : 0, vector->addr);
1847 }
1848 
1849 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1850 {
1851 	enum hclgevf_evt_cause event_cause;
1852 	struct hclgevf_dev *hdev = data;
1853 	u32 clearval;
1854 
1855 	hclgevf_enable_vector(&hdev->misc_vector, false);
1856 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1857 
1858 	switch (event_cause) {
1859 	case HCLGEVF_VECTOR0_EVENT_RST:
1860 		hclgevf_reset_task_schedule(hdev);
1861 		break;
1862 	case HCLGEVF_VECTOR0_EVENT_MBX:
1863 		hclgevf_mbx_handler(hdev);
1864 		break;
1865 	default:
1866 		break;
1867 	}
1868 
1869 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1870 		hclgevf_clear_event_cause(hdev, clearval);
1871 		hclgevf_enable_vector(&hdev->misc_vector, true);
1872 	}
1873 
1874 	return IRQ_HANDLED;
1875 }
1876 
1877 static int hclgevf_configure(struct hclgevf_dev *hdev)
1878 {
1879 	int ret;
1880 
1881 	/* get current port based vlan state from PF */
1882 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
1883 	if (ret)
1884 		return ret;
1885 
1886 	/* get queue configuration from PF */
1887 	ret = hclgevf_get_queue_info(hdev);
1888 	if (ret)
1889 		return ret;
1890 
1891 	/* get queue depth info from PF */
1892 	ret = hclgevf_get_queue_depth(hdev);
1893 	if (ret)
1894 		return ret;
1895 
1896 	ret = hclgevf_get_pf_media_type(hdev);
1897 	if (ret)
1898 		return ret;
1899 
1900 	/* get tc configuration from PF */
1901 	return hclgevf_get_tc_info(hdev);
1902 }
1903 
1904 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1905 {
1906 	struct pci_dev *pdev = ae_dev->pdev;
1907 	struct hclgevf_dev *hdev;
1908 
1909 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1910 	if (!hdev)
1911 		return -ENOMEM;
1912 
1913 	hdev->pdev = pdev;
1914 	hdev->ae_dev = ae_dev;
1915 	ae_dev->priv = hdev;
1916 
1917 	return 0;
1918 }
1919 
1920 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1921 {
1922 	struct hnae3_handle *roce = &hdev->roce;
1923 	struct hnae3_handle *nic = &hdev->nic;
1924 
1925 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1926 
1927 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1928 	    hdev->num_msi_left == 0)
1929 		return -EINVAL;
1930 
1931 	roce->rinfo.base_vector = hdev->roce_base_vector;
1932 
1933 	roce->rinfo.netdev = nic->kinfo.netdev;
1934 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1935 
1936 	roce->pdev = nic->pdev;
1937 	roce->ae_algo = nic->ae_algo;
1938 	roce->numa_node_mask = nic->numa_node_mask;
1939 
1940 	return 0;
1941 }
1942 
1943 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
1944 {
1945 	struct hclgevf_cfg_gro_status_cmd *req;
1946 	struct hclgevf_desc desc;
1947 	int ret;
1948 
1949 	if (!hnae3_dev_gro_supported(hdev))
1950 		return 0;
1951 
1952 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
1953 				     false);
1954 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
1955 
1956 	req->gro_en = cpu_to_le16(en ? 1 : 0);
1957 
1958 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1959 	if (ret)
1960 		dev_err(&hdev->pdev->dev,
1961 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
1962 
1963 	return ret;
1964 }
1965 
1966 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1967 {
1968 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1969 	int i, ret;
1970 
1971 	rss_cfg->rss_size = hdev->rss_size_max;
1972 
1973 	if (hdev->pdev->revision >= 0x21) {
1974 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
1975 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
1976 		       HCLGEVF_RSS_KEY_SIZE);
1977 
1978 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
1979 					       rss_cfg->rss_hash_key);
1980 		if (ret)
1981 			return ret;
1982 
1983 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
1984 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1985 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
1986 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1987 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
1988 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1989 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
1990 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1991 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
1992 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1993 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
1994 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1995 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
1996 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1997 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
1998 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1999 
2000 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2001 		if (ret)
2002 			return ret;
2003 
2004 	}
2005 
2006 	/* Initialize RSS indirect table */
2007 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2008 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
2009 
2010 	ret = hclgevf_set_rss_indir_table(hdev);
2011 	if (ret)
2012 		return ret;
2013 
2014 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
2015 }
2016 
2017 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2018 {
2019 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2020 				       false);
2021 }
2022 
2023 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2024 {
2025 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2026 
2027 	if (enable) {
2028 		mod_timer(&hdev->service_timer, jiffies + HZ);
2029 	} else {
2030 		del_timer_sync(&hdev->service_timer);
2031 		cancel_work_sync(&hdev->service_task);
2032 		clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2033 	}
2034 }
2035 
2036 static int hclgevf_ae_start(struct hnae3_handle *handle)
2037 {
2038 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2039 
2040 	hclgevf_reset_tqp_stats(handle);
2041 
2042 	hclgevf_request_link_info(hdev);
2043 
2044 	hclgevf_update_link_mode(hdev);
2045 
2046 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2047 
2048 	return 0;
2049 }
2050 
2051 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2052 {
2053 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2054 	int i;
2055 
2056 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2057 
2058 	if (hdev->reset_type != HNAE3_VF_RESET)
2059 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2060 			if (hclgevf_reset_tqp(handle, i))
2061 				break;
2062 
2063 	hclgevf_reset_tqp_stats(handle);
2064 	hclgevf_update_link_status(hdev, 0);
2065 }
2066 
2067 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2068 {
2069 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2070 	u8 msg_data;
2071 
2072 	msg_data = alive ? 1 : 0;
2073 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
2074 				    0, &msg_data, 1, false, NULL, 0);
2075 }
2076 
2077 static int hclgevf_client_start(struct hnae3_handle *handle)
2078 {
2079 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2080 	int ret;
2081 
2082 	ret = hclgevf_set_alive(handle, true);
2083 	if (ret)
2084 		return ret;
2085 
2086 	mod_timer(&hdev->keep_alive_timer, jiffies +
2087 		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
2088 
2089 	return 0;
2090 }
2091 
2092 static void hclgevf_client_stop(struct hnae3_handle *handle)
2093 {
2094 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2095 	int ret;
2096 
2097 	ret = hclgevf_set_alive(handle, false);
2098 	if (ret)
2099 		dev_warn(&hdev->pdev->dev,
2100 			 "%s failed %d\n", __func__, ret);
2101 
2102 	del_timer_sync(&hdev->keep_alive_timer);
2103 	cancel_work_sync(&hdev->keep_alive_task);
2104 }
2105 
2106 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2107 {
2108 	/* setup tasks for the MBX */
2109 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
2110 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2111 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2112 
2113 	/* setup tasks for service timer */
2114 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
2115 
2116 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
2117 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2118 
2119 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
2120 
2121 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2122 
2123 	/* bring the device down */
2124 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2125 }
2126 
2127 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2128 {
2129 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2130 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2131 
2132 	if (hdev->keep_alive_timer.function)
2133 		del_timer_sync(&hdev->keep_alive_timer);
2134 	if (hdev->keep_alive_task.func)
2135 		cancel_work_sync(&hdev->keep_alive_task);
2136 	if (hdev->service_timer.function)
2137 		del_timer_sync(&hdev->service_timer);
2138 	if (hdev->service_task.func)
2139 		cancel_work_sync(&hdev->service_task);
2140 	if (hdev->mbx_service_task.func)
2141 		cancel_work_sync(&hdev->mbx_service_task);
2142 	if (hdev->rst_service_task.func)
2143 		cancel_work_sync(&hdev->rst_service_task);
2144 
2145 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2146 }
2147 
2148 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2149 {
2150 	struct pci_dev *pdev = hdev->pdev;
2151 	int vectors;
2152 	int i;
2153 
2154 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
2155 		vectors = pci_alloc_irq_vectors(pdev,
2156 						hdev->roce_base_msix_offset + 1,
2157 						hdev->num_msi,
2158 						PCI_IRQ_MSIX);
2159 	else
2160 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
2161 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2162 
2163 	if (vectors < 0) {
2164 		dev_err(&pdev->dev,
2165 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2166 			vectors);
2167 		return vectors;
2168 	}
2169 	if (vectors < hdev->num_msi)
2170 		dev_warn(&hdev->pdev->dev,
2171 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2172 			 hdev->num_msi, vectors);
2173 
2174 	hdev->num_msi = vectors;
2175 	hdev->num_msi_left = vectors;
2176 	hdev->base_msi_vector = pdev->irq;
2177 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2178 
2179 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2180 					   sizeof(u16), GFP_KERNEL);
2181 	if (!hdev->vector_status) {
2182 		pci_free_irq_vectors(pdev);
2183 		return -ENOMEM;
2184 	}
2185 
2186 	for (i = 0; i < hdev->num_msi; i++)
2187 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2188 
2189 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2190 					sizeof(int), GFP_KERNEL);
2191 	if (!hdev->vector_irq) {
2192 		devm_kfree(&pdev->dev, hdev->vector_status);
2193 		pci_free_irq_vectors(pdev);
2194 		return -ENOMEM;
2195 	}
2196 
2197 	return 0;
2198 }
2199 
2200 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2201 {
2202 	struct pci_dev *pdev = hdev->pdev;
2203 
2204 	devm_kfree(&pdev->dev, hdev->vector_status);
2205 	devm_kfree(&pdev->dev, hdev->vector_irq);
2206 	pci_free_irq_vectors(pdev);
2207 }
2208 
2209 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2210 {
2211 	int ret = 0;
2212 
2213 	hclgevf_get_misc_vector(hdev);
2214 
2215 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2216 			  0, "hclgevf_cmd", hdev);
2217 	if (ret) {
2218 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2219 			hdev->misc_vector.vector_irq);
2220 		return ret;
2221 	}
2222 
2223 	hclgevf_clear_event_cause(hdev, 0);
2224 
2225 	/* enable misc. vector(vector 0) */
2226 	hclgevf_enable_vector(&hdev->misc_vector, true);
2227 
2228 	return ret;
2229 }
2230 
2231 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2232 {
2233 	/* disable misc vector(vector 0) */
2234 	hclgevf_enable_vector(&hdev->misc_vector, false);
2235 	synchronize_irq(hdev->misc_vector.vector_irq);
2236 	free_irq(hdev->misc_vector.vector_irq, hdev);
2237 	hclgevf_free_vector(hdev, 0);
2238 }
2239 
2240 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2241 {
2242 	struct device *dev = &hdev->pdev->dev;
2243 
2244 	dev_info(dev, "VF info begin:\n");
2245 
2246 	dev_info(dev, "Task queue pairs numbers: %d\n", hdev->num_tqps);
2247 	dev_info(dev, "Desc num per TX queue: %d\n", hdev->num_tx_desc);
2248 	dev_info(dev, "Desc num per RX queue: %d\n", hdev->num_rx_desc);
2249 	dev_info(dev, "Numbers of vports: %d\n", hdev->num_alloc_vport);
2250 	dev_info(dev, "HW tc map: %d\n", hdev->hw_tc_map);
2251 	dev_info(dev, "PF media type of this VF: %d\n",
2252 		 hdev->hw.mac.media_type);
2253 
2254 	dev_info(dev, "VF info end.\n");
2255 }
2256 
2257 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2258 					    struct hnae3_client *client)
2259 {
2260 	struct hclgevf_dev *hdev = ae_dev->priv;
2261 	int ret;
2262 
2263 	ret = client->ops->init_instance(&hdev->nic);
2264 	if (ret)
2265 		return ret;
2266 
2267 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2268 	hnae3_set_client_init_flag(client, ae_dev, 1);
2269 
2270 	if (netif_msg_drv(&hdev->nic))
2271 		hclgevf_info_show(hdev);
2272 
2273 	return 0;
2274 }
2275 
2276 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2277 					     struct hnae3_client *client)
2278 {
2279 	struct hclgevf_dev *hdev = ae_dev->priv;
2280 	int ret;
2281 
2282 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2283 	    !hdev->nic_client)
2284 		return 0;
2285 
2286 	ret = hclgevf_init_roce_base_info(hdev);
2287 	if (ret)
2288 		return ret;
2289 
2290 	ret = client->ops->init_instance(&hdev->roce);
2291 	if (ret)
2292 		return ret;
2293 
2294 	hnae3_set_client_init_flag(client, ae_dev, 1);
2295 
2296 	return 0;
2297 }
2298 
2299 static int hclgevf_init_client_instance(struct hnae3_client *client,
2300 					struct hnae3_ae_dev *ae_dev)
2301 {
2302 	struct hclgevf_dev *hdev = ae_dev->priv;
2303 	int ret;
2304 
2305 	switch (client->type) {
2306 	case HNAE3_CLIENT_KNIC:
2307 		hdev->nic_client = client;
2308 		hdev->nic.client = client;
2309 
2310 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2311 		if (ret)
2312 			goto clear_nic;
2313 
2314 		ret = hclgevf_init_roce_client_instance(ae_dev,
2315 							hdev->roce_client);
2316 		if (ret)
2317 			goto clear_roce;
2318 
2319 		break;
2320 	case HNAE3_CLIENT_ROCE:
2321 		if (hnae3_dev_roce_supported(hdev)) {
2322 			hdev->roce_client = client;
2323 			hdev->roce.client = client;
2324 		}
2325 
2326 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2327 		if (ret)
2328 			goto clear_roce;
2329 
2330 		break;
2331 	default:
2332 		return -EINVAL;
2333 	}
2334 
2335 	return 0;
2336 
2337 clear_nic:
2338 	hdev->nic_client = NULL;
2339 	hdev->nic.client = NULL;
2340 	return ret;
2341 clear_roce:
2342 	hdev->roce_client = NULL;
2343 	hdev->roce.client = NULL;
2344 	return ret;
2345 }
2346 
2347 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2348 					   struct hnae3_ae_dev *ae_dev)
2349 {
2350 	struct hclgevf_dev *hdev = ae_dev->priv;
2351 
2352 	/* un-init roce, if it exists */
2353 	if (hdev->roce_client) {
2354 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2355 		hdev->roce_client = NULL;
2356 		hdev->roce.client = NULL;
2357 	}
2358 
2359 	/* un-init nic/unic, if this was not called by roce client */
2360 	if (client->ops->uninit_instance && hdev->nic_client &&
2361 	    client->type != HNAE3_CLIENT_ROCE) {
2362 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2363 
2364 		client->ops->uninit_instance(&hdev->nic, 0);
2365 		hdev->nic_client = NULL;
2366 		hdev->nic.client = NULL;
2367 	}
2368 }
2369 
2370 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2371 {
2372 	struct pci_dev *pdev = hdev->pdev;
2373 	struct hclgevf_hw *hw;
2374 	int ret;
2375 
2376 	ret = pci_enable_device(pdev);
2377 	if (ret) {
2378 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2379 		return ret;
2380 	}
2381 
2382 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2383 	if (ret) {
2384 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2385 		goto err_disable_device;
2386 	}
2387 
2388 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2389 	if (ret) {
2390 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2391 		goto err_disable_device;
2392 	}
2393 
2394 	pci_set_master(pdev);
2395 	hw = &hdev->hw;
2396 	hw->hdev = hdev;
2397 	hw->io_base = pci_iomap(pdev, 2, 0);
2398 	if (!hw->io_base) {
2399 		dev_err(&pdev->dev, "can't map configuration register space\n");
2400 		ret = -ENOMEM;
2401 		goto err_clr_master;
2402 	}
2403 
2404 	return 0;
2405 
2406 err_clr_master:
2407 	pci_clear_master(pdev);
2408 	pci_release_regions(pdev);
2409 err_disable_device:
2410 	pci_disable_device(pdev);
2411 
2412 	return ret;
2413 }
2414 
2415 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2416 {
2417 	struct pci_dev *pdev = hdev->pdev;
2418 
2419 	pci_iounmap(pdev, hdev->hw.io_base);
2420 	pci_clear_master(pdev);
2421 	pci_release_regions(pdev);
2422 	pci_disable_device(pdev);
2423 }
2424 
2425 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2426 {
2427 	struct hclgevf_query_res_cmd *req;
2428 	struct hclgevf_desc desc;
2429 	int ret;
2430 
2431 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2432 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2433 	if (ret) {
2434 		dev_err(&hdev->pdev->dev,
2435 			"query vf resource failed, ret = %d.\n", ret);
2436 		return ret;
2437 	}
2438 
2439 	req = (struct hclgevf_query_res_cmd *)desc.data;
2440 
2441 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2442 		hdev->roce_base_msix_offset =
2443 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2444 				HCLGEVF_MSIX_OFT_ROCEE_M,
2445 				HCLGEVF_MSIX_OFT_ROCEE_S);
2446 		hdev->num_roce_msix =
2447 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2448 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2449 
2450 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2451 		 * are queued before Roce vectors. The offset is fixed to 64.
2452 		 */
2453 		hdev->num_msi = hdev->num_roce_msix +
2454 				hdev->roce_base_msix_offset;
2455 	} else {
2456 		hdev->num_msi =
2457 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2458 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2459 	}
2460 
2461 	return 0;
2462 }
2463 
2464 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2465 {
2466 	struct pci_dev *pdev = hdev->pdev;
2467 	int ret = 0;
2468 
2469 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2470 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2471 		hclgevf_misc_irq_uninit(hdev);
2472 		hclgevf_uninit_msi(hdev);
2473 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2474 	}
2475 
2476 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2477 		pci_set_master(pdev);
2478 		ret = hclgevf_init_msi(hdev);
2479 		if (ret) {
2480 			dev_err(&pdev->dev,
2481 				"failed(%d) to init MSI/MSI-X\n", ret);
2482 			return ret;
2483 		}
2484 
2485 		ret = hclgevf_misc_irq_init(hdev);
2486 		if (ret) {
2487 			hclgevf_uninit_msi(hdev);
2488 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2489 				ret);
2490 			return ret;
2491 		}
2492 
2493 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2494 	}
2495 
2496 	return ret;
2497 }
2498 
2499 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2500 {
2501 	struct pci_dev *pdev = hdev->pdev;
2502 	int ret;
2503 
2504 	ret = hclgevf_pci_reset(hdev);
2505 	if (ret) {
2506 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2507 		return ret;
2508 	}
2509 
2510 	ret = hclgevf_cmd_init(hdev);
2511 	if (ret) {
2512 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2513 		return ret;
2514 	}
2515 
2516 	ret = hclgevf_rss_init_hw(hdev);
2517 	if (ret) {
2518 		dev_err(&hdev->pdev->dev,
2519 			"failed(%d) to initialize RSS\n", ret);
2520 		return ret;
2521 	}
2522 
2523 	ret = hclgevf_config_gro(hdev, true);
2524 	if (ret)
2525 		return ret;
2526 
2527 	ret = hclgevf_init_vlan_config(hdev);
2528 	if (ret) {
2529 		dev_err(&hdev->pdev->dev,
2530 			"failed(%d) to initialize VLAN config\n", ret);
2531 		return ret;
2532 	}
2533 
2534 	dev_info(&hdev->pdev->dev, "Reset done\n");
2535 
2536 	return 0;
2537 }
2538 
2539 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2540 {
2541 	struct pci_dev *pdev = hdev->pdev;
2542 	int ret;
2543 
2544 	ret = hclgevf_pci_init(hdev);
2545 	if (ret) {
2546 		dev_err(&pdev->dev, "PCI initialization failed\n");
2547 		return ret;
2548 	}
2549 
2550 	ret = hclgevf_cmd_queue_init(hdev);
2551 	if (ret) {
2552 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2553 		goto err_cmd_queue_init;
2554 	}
2555 
2556 	ret = hclgevf_cmd_init(hdev);
2557 	if (ret)
2558 		goto err_cmd_init;
2559 
2560 	/* Get vf resource */
2561 	ret = hclgevf_query_vf_resource(hdev);
2562 	if (ret) {
2563 		dev_err(&hdev->pdev->dev,
2564 			"Query vf status error, ret = %d.\n", ret);
2565 		goto err_cmd_init;
2566 	}
2567 
2568 	ret = hclgevf_init_msi(hdev);
2569 	if (ret) {
2570 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2571 		goto err_cmd_init;
2572 	}
2573 
2574 	hclgevf_state_init(hdev);
2575 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2576 
2577 	ret = hclgevf_misc_irq_init(hdev);
2578 	if (ret) {
2579 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2580 			ret);
2581 		goto err_misc_irq_init;
2582 	}
2583 
2584 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2585 
2586 	ret = hclgevf_configure(hdev);
2587 	if (ret) {
2588 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2589 		goto err_config;
2590 	}
2591 
2592 	ret = hclgevf_alloc_tqps(hdev);
2593 	if (ret) {
2594 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2595 		goto err_config;
2596 	}
2597 
2598 	ret = hclgevf_set_handle_info(hdev);
2599 	if (ret) {
2600 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2601 		goto err_config;
2602 	}
2603 
2604 	ret = hclgevf_config_gro(hdev, true);
2605 	if (ret)
2606 		goto err_config;
2607 
2608 	/* vf is not allowed to enable unicast/multicast promisc mode.
2609 	 * For revision 0x20, default to disable broadcast promisc mode,
2610 	 * firmware makes sure broadcast packets can be accepted.
2611 	 * For revision 0x21, default to enable broadcast promisc mode.
2612 	 */
2613 	ret = hclgevf_set_promisc_mode(hdev, true);
2614 	if (ret)
2615 		goto err_config;
2616 
2617 	/* Initialize RSS for this VF */
2618 	ret = hclgevf_rss_init_hw(hdev);
2619 	if (ret) {
2620 		dev_err(&hdev->pdev->dev,
2621 			"failed(%d) to initialize RSS\n", ret);
2622 		goto err_config;
2623 	}
2624 
2625 	ret = hclgevf_init_vlan_config(hdev);
2626 	if (ret) {
2627 		dev_err(&hdev->pdev->dev,
2628 			"failed(%d) to initialize VLAN config\n", ret);
2629 		goto err_config;
2630 	}
2631 
2632 	hdev->last_reset_time = jiffies;
2633 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2634 
2635 	return 0;
2636 
2637 err_config:
2638 	hclgevf_misc_irq_uninit(hdev);
2639 err_misc_irq_init:
2640 	hclgevf_state_uninit(hdev);
2641 	hclgevf_uninit_msi(hdev);
2642 err_cmd_init:
2643 	hclgevf_cmd_uninit(hdev);
2644 err_cmd_queue_init:
2645 	hclgevf_pci_uninit(hdev);
2646 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2647 	return ret;
2648 }
2649 
2650 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2651 {
2652 	hclgevf_state_uninit(hdev);
2653 
2654 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2655 		hclgevf_misc_irq_uninit(hdev);
2656 		hclgevf_uninit_msi(hdev);
2657 	}
2658 
2659 	hclgevf_pci_uninit(hdev);
2660 	hclgevf_cmd_uninit(hdev);
2661 }
2662 
2663 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2664 {
2665 	struct pci_dev *pdev = ae_dev->pdev;
2666 	struct hclgevf_dev *hdev;
2667 	int ret;
2668 
2669 	ret = hclgevf_alloc_hdev(ae_dev);
2670 	if (ret) {
2671 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2672 		return ret;
2673 	}
2674 
2675 	ret = hclgevf_init_hdev(ae_dev->priv);
2676 	if (ret) {
2677 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2678 		return ret;
2679 	}
2680 
2681 	hdev = ae_dev->priv;
2682 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2683 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2684 
2685 	return 0;
2686 }
2687 
2688 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2689 {
2690 	struct hclgevf_dev *hdev = ae_dev->priv;
2691 
2692 	hclgevf_uninit_hdev(hdev);
2693 	ae_dev->priv = NULL;
2694 }
2695 
2696 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2697 {
2698 	struct hnae3_handle *nic = &hdev->nic;
2699 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2700 
2701 	return min_t(u32, hdev->rss_size_max,
2702 		     hdev->num_tqps / kinfo->num_tc);
2703 }
2704 
2705 /**
2706  * hclgevf_get_channels - Get the current channels enabled and max supported.
2707  * @handle: hardware information for network interface
2708  * @ch: ethtool channels structure
2709  *
2710  * We don't support separate tx and rx queues as channels. The other count
2711  * represents how many queues are being used for control. max_combined counts
2712  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2713  * q_vectors since we support a lot more queue pairs than q_vectors.
2714  **/
2715 static void hclgevf_get_channels(struct hnae3_handle *handle,
2716 				 struct ethtool_channels *ch)
2717 {
2718 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2719 
2720 	ch->max_combined = hclgevf_get_max_channels(hdev);
2721 	ch->other_count = 0;
2722 	ch->max_other = 0;
2723 	ch->combined_count = handle->kinfo.rss_size;
2724 }
2725 
2726 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2727 					  u16 *alloc_tqps, u16 *max_rss_size)
2728 {
2729 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2730 
2731 	*alloc_tqps = hdev->num_tqps;
2732 	*max_rss_size = hdev->rss_size_max;
2733 }
2734 
2735 static int hclgevf_get_status(struct hnae3_handle *handle)
2736 {
2737 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2738 
2739 	return hdev->hw.mac.link;
2740 }
2741 
2742 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2743 					    u8 *auto_neg, u32 *speed,
2744 					    u8 *duplex)
2745 {
2746 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2747 
2748 	if (speed)
2749 		*speed = hdev->hw.mac.speed;
2750 	if (duplex)
2751 		*duplex = hdev->hw.mac.duplex;
2752 	if (auto_neg)
2753 		*auto_neg = AUTONEG_DISABLE;
2754 }
2755 
2756 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2757 				 u8 duplex)
2758 {
2759 	hdev->hw.mac.speed = speed;
2760 	hdev->hw.mac.duplex = duplex;
2761 }
2762 
2763 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
2764 {
2765 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2766 
2767 	return hclgevf_config_gro(hdev, enable);
2768 }
2769 
2770 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
2771 				   u8 *module_type)
2772 {
2773 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2774 
2775 	if (media_type)
2776 		*media_type = hdev->hw.mac.media_type;
2777 
2778 	if (module_type)
2779 		*module_type = hdev->hw.mac.module_type;
2780 }
2781 
2782 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2783 {
2784 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2785 
2786 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2787 }
2788 
2789 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2790 {
2791 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2792 
2793 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2794 }
2795 
2796 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2797 {
2798 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2799 
2800 	return hdev->rst_stats.hw_rst_done_cnt;
2801 }
2802 
2803 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
2804 				  unsigned long *supported,
2805 				  unsigned long *advertising)
2806 {
2807 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2808 
2809 	*supported = hdev->hw.mac.supported;
2810 	*advertising = hdev->hw.mac.advertising;
2811 }
2812 
2813 #define MAX_SEPARATE_NUM	4
2814 #define SEPARATOR_VALUE		0xFFFFFFFF
2815 #define REG_NUM_PER_LINE	4
2816 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
2817 
2818 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2819 {
2820 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2821 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2822 
2823 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2824 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2825 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2826 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2827 
2828 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2829 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2830 }
2831 
2832 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
2833 			     void *data)
2834 {
2835 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2836 	int i, j, reg_um, separator_num;
2837 	u32 *reg = data;
2838 
2839 	*version = hdev->fw_version;
2840 
2841 	/* fetching per-VF registers values from VF PCIe register space */
2842 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
2843 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2844 	for (i = 0; i < reg_um; i++)
2845 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
2846 	for (i = 0; i < separator_num; i++)
2847 		*reg++ = SEPARATOR_VALUE;
2848 
2849 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
2850 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2851 	for (i = 0; i < reg_um; i++)
2852 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
2853 	for (i = 0; i < separator_num; i++)
2854 		*reg++ = SEPARATOR_VALUE;
2855 
2856 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
2857 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2858 	for (j = 0; j < hdev->num_tqps; j++) {
2859 		for (i = 0; i < reg_um; i++)
2860 			*reg++ = hclgevf_read_dev(&hdev->hw,
2861 						  ring_reg_addr_list[i] +
2862 						  0x200 * j);
2863 		for (i = 0; i < separator_num; i++)
2864 			*reg++ = SEPARATOR_VALUE;
2865 	}
2866 
2867 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
2868 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2869 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
2870 		for (i = 0; i < reg_um; i++)
2871 			*reg++ = hclgevf_read_dev(&hdev->hw,
2872 						  tqp_intr_reg_addr_list[i] +
2873 						  4 * j);
2874 		for (i = 0; i < separator_num; i++)
2875 			*reg++ = SEPARATOR_VALUE;
2876 	}
2877 }
2878 
2879 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
2880 					u8 *port_base_vlan_info, u8 data_size)
2881 {
2882 	struct hnae3_handle *nic = &hdev->nic;
2883 
2884 	rtnl_lock();
2885 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
2886 	rtnl_unlock();
2887 
2888 	/* send msg to PF and wait update port based vlan info */
2889 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
2890 			     HCLGE_MBX_PORT_BASE_VLAN_CFG,
2891 			     port_base_vlan_info, data_size,
2892 			     false, NULL, 0);
2893 
2894 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
2895 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
2896 	else
2897 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
2898 
2899 	rtnl_lock();
2900 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
2901 	rtnl_unlock();
2902 }
2903 
2904 static const struct hnae3_ae_ops hclgevf_ops = {
2905 	.init_ae_dev = hclgevf_init_ae_dev,
2906 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2907 	.flr_prepare = hclgevf_flr_prepare,
2908 	.flr_done = hclgevf_flr_done,
2909 	.init_client_instance = hclgevf_init_client_instance,
2910 	.uninit_client_instance = hclgevf_uninit_client_instance,
2911 	.start = hclgevf_ae_start,
2912 	.stop = hclgevf_ae_stop,
2913 	.client_start = hclgevf_client_start,
2914 	.client_stop = hclgevf_client_stop,
2915 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
2916 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2917 	.get_vector = hclgevf_get_vector,
2918 	.put_vector = hclgevf_put_vector,
2919 	.reset_queue = hclgevf_reset_tqp,
2920 	.get_mac_addr = hclgevf_get_mac_addr,
2921 	.set_mac_addr = hclgevf_set_mac_addr,
2922 	.add_uc_addr = hclgevf_add_uc_addr,
2923 	.rm_uc_addr = hclgevf_rm_uc_addr,
2924 	.add_mc_addr = hclgevf_add_mc_addr,
2925 	.rm_mc_addr = hclgevf_rm_mc_addr,
2926 	.get_stats = hclgevf_get_stats,
2927 	.update_stats = hclgevf_update_stats,
2928 	.get_strings = hclgevf_get_strings,
2929 	.get_sset_count = hclgevf_get_sset_count,
2930 	.get_rss_key_size = hclgevf_get_rss_key_size,
2931 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2932 	.get_rss = hclgevf_get_rss,
2933 	.set_rss = hclgevf_set_rss,
2934 	.get_rss_tuple = hclgevf_get_rss_tuple,
2935 	.set_rss_tuple = hclgevf_set_rss_tuple,
2936 	.get_tc_size = hclgevf_get_tc_size,
2937 	.get_fw_version = hclgevf_get_fw_version,
2938 	.set_vlan_filter = hclgevf_set_vlan_filter,
2939 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2940 	.reset_event = hclgevf_reset_event,
2941 	.set_default_reset_request = hclgevf_set_def_reset_request,
2942 	.get_channels = hclgevf_get_channels,
2943 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2944 	.get_regs_len = hclgevf_get_regs_len,
2945 	.get_regs = hclgevf_get_regs,
2946 	.get_status = hclgevf_get_status,
2947 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2948 	.get_media_type = hclgevf_get_media_type,
2949 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
2950 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
2951 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
2952 	.set_gro_en = hclgevf_gro_en,
2953 	.set_mtu = hclgevf_set_mtu,
2954 	.get_global_queue_id = hclgevf_get_qid_global,
2955 	.set_timer_task = hclgevf_set_timer_task,
2956 	.get_link_mode = hclgevf_get_link_mode,
2957 };
2958 
2959 static struct hnae3_ae_algo ae_algovf = {
2960 	.ops = &hclgevf_ops,
2961 	.pdev_id_table = ae_algovf_pci_tbl,
2962 };
2963 
2964 static int hclgevf_init(void)
2965 {
2966 	pr_info("%s is initializing\n", HCLGEVF_NAME);
2967 
2968 	hnae3_register_ae_algo(&ae_algovf);
2969 
2970 	return 0;
2971 }
2972 
2973 static void hclgevf_exit(void)
2974 {
2975 	hnae3_unregister_ae_algo(&ae_algovf);
2976 }
2977 module_init(hclgevf_init);
2978 module_exit(hclgevf_exit);
2979 
2980 MODULE_LICENSE("GPL");
2981 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
2982 MODULE_DESCRIPTION("HCLGEVF Driver");
2983 MODULE_VERSION(HCLGEVF_MOD_VERSION);
2984