1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <net/rtnetlink.h>
6 #include "hclgevf_cmd.h"
7 #include "hclgevf_main.h"
8 #include "hclge_mbx.h"
9 #include "hnae3.h"
10 
11 #define HCLGEVF_NAME	"hclgevf"
12 
13 static int hclgevf_init_hdev(struct hclgevf_dev *hdev);
14 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
25 
26 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
27 	struct hnae3_handle *handle)
28 {
29 	return container_of(handle, struct hclgevf_dev, nic);
30 }
31 
32 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
33 {
34 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
35 	struct hnae3_queue *queue;
36 	struct hclgevf_desc desc;
37 	struct hclgevf_tqp *tqp;
38 	int status;
39 	int i;
40 
41 	for (i = 0; i < hdev->num_tqps; i++) {
42 		queue = handle->kinfo.tqp[i];
43 		tqp = container_of(queue, struct hclgevf_tqp, q);
44 		hclgevf_cmd_setup_basic_desc(&desc,
45 					     HCLGEVF_OPC_QUERY_RX_STATUS,
46 					     true);
47 
48 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
49 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
50 		if (status) {
51 			dev_err(&hdev->pdev->dev,
52 				"Query tqp stat fail, status = %d,queue = %d\n",
53 				status,	i);
54 			return status;
55 		}
56 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
57 			le32_to_cpu(desc.data[1]);
58 
59 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
60 					     true);
61 
62 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
63 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
64 		if (status) {
65 			dev_err(&hdev->pdev->dev,
66 				"Query tqp stat fail, status = %d,queue = %d\n",
67 				status, i);
68 			return status;
69 		}
70 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
71 			le32_to_cpu(desc.data[1]);
72 	}
73 
74 	return 0;
75 }
76 
77 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
78 {
79 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
80 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
81 	struct hclgevf_tqp *tqp;
82 	u64 *buff = data;
83 	int i;
84 
85 	for (i = 0; i < hdev->num_tqps; i++) {
86 		tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q);
87 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
88 	}
89 	for (i = 0; i < kinfo->num_tqps; i++) {
90 		tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q);
91 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
92 	}
93 
94 	return buff;
95 }
96 
97 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
98 {
99 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
100 
101 	return hdev->num_tqps * 2;
102 }
103 
104 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
105 {
106 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
107 	u8 *buff = data;
108 	int i = 0;
109 
110 	for (i = 0; i < hdev->num_tqps; i++) {
111 		struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i],
112 			struct hclgevf_tqp, q);
113 		snprintf(buff, ETH_GSTRING_LEN, "txq#%d_pktnum_rcd",
114 			 tqp->index);
115 		buff += ETH_GSTRING_LEN;
116 	}
117 
118 	for (i = 0; i < hdev->num_tqps; i++) {
119 		struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i],
120 			struct hclgevf_tqp, q);
121 		snprintf(buff, ETH_GSTRING_LEN, "rxq#%d_pktnum_rcd",
122 			 tqp->index);
123 		buff += ETH_GSTRING_LEN;
124 	}
125 
126 	return buff;
127 }
128 
129 static void hclgevf_update_stats(struct hnae3_handle *handle,
130 				 struct net_device_stats *net_stats)
131 {
132 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
133 	int status;
134 
135 	status = hclgevf_tqps_update_stats(handle);
136 	if (status)
137 		dev_err(&hdev->pdev->dev,
138 			"VF update of TQPS stats fail, status = %d.\n",
139 			status);
140 }
141 
142 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
143 {
144 	if (strset == ETH_SS_TEST)
145 		return -EOPNOTSUPP;
146 	else if (strset == ETH_SS_STATS)
147 		return hclgevf_tqps_get_sset_count(handle, strset);
148 
149 	return 0;
150 }
151 
152 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
153 				u8 *data)
154 {
155 	u8 *p = (char *)data;
156 
157 	if (strset == ETH_SS_STATS)
158 		p = hclgevf_tqps_get_strings(handle, p);
159 }
160 
161 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
162 {
163 	hclgevf_tqps_get_stats(handle, data);
164 }
165 
166 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
167 {
168 	u8 resp_msg;
169 	int status;
170 
171 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
172 				      true, &resp_msg, sizeof(u8));
173 	if (status) {
174 		dev_err(&hdev->pdev->dev,
175 			"VF request to get TC info from PF failed %d",
176 			status);
177 		return status;
178 	}
179 
180 	hdev->hw_tc_map = resp_msg;
181 
182 	return 0;
183 }
184 
185 static int hclge_get_queue_info(struct hclgevf_dev *hdev)
186 {
187 #define HCLGEVF_TQPS_RSS_INFO_LEN	8
188 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
189 	int status;
190 
191 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
192 				      true, resp_msg,
193 				      HCLGEVF_TQPS_RSS_INFO_LEN);
194 	if (status) {
195 		dev_err(&hdev->pdev->dev,
196 			"VF request to get tqp info from PF failed %d",
197 			status);
198 		return status;
199 	}
200 
201 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
202 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
203 	memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16));
204 	memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16));
205 
206 	return 0;
207 }
208 
209 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
210 {
211 	struct hclgevf_tqp *tqp;
212 	int i;
213 
214 	/* if this is on going reset then we need to re-allocate the TPQs
215 	 * since we cannot assume we would get same number of TPQs back from PF
216 	 */
217 	if (hclgevf_dev_ongoing_reset(hdev))
218 		devm_kfree(&hdev->pdev->dev, hdev->htqp);
219 
220 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
221 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
222 	if (!hdev->htqp)
223 		return -ENOMEM;
224 
225 	tqp = hdev->htqp;
226 
227 	for (i = 0; i < hdev->num_tqps; i++) {
228 		tqp->dev = &hdev->pdev->dev;
229 		tqp->index = i;
230 
231 		tqp->q.ae_algo = &ae_algovf;
232 		tqp->q.buf_size = hdev->rx_buf_len;
233 		tqp->q.desc_num = hdev->num_desc;
234 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
235 			i * HCLGEVF_TQP_REG_SIZE;
236 
237 		tqp++;
238 	}
239 
240 	return 0;
241 }
242 
243 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
244 {
245 	struct hnae3_handle *nic = &hdev->nic;
246 	struct hnae3_knic_private_info *kinfo;
247 	u16 new_tqps = hdev->num_tqps;
248 	int i;
249 
250 	kinfo = &nic->kinfo;
251 	kinfo->num_tc = 0;
252 	kinfo->num_desc = hdev->num_desc;
253 	kinfo->rx_buf_len = hdev->rx_buf_len;
254 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
255 		if (hdev->hw_tc_map & BIT(i))
256 			kinfo->num_tc++;
257 
258 	kinfo->rss_size
259 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
260 	new_tqps = kinfo->rss_size * kinfo->num_tc;
261 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
262 
263 	/* if this is on going reset then we need to re-allocate the hnae queues
264 	 * as well since number of TPQs from PF might have changed.
265 	 */
266 	if (hclgevf_dev_ongoing_reset(hdev))
267 		devm_kfree(&hdev->pdev->dev, kinfo->tqp);
268 
269 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
270 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
271 	if (!kinfo->tqp)
272 		return -ENOMEM;
273 
274 	for (i = 0; i < kinfo->num_tqps; i++) {
275 		hdev->htqp[i].q.handle = &hdev->nic;
276 		hdev->htqp[i].q.tqp_index = i;
277 		kinfo->tqp[i] = &hdev->htqp[i].q;
278 	}
279 
280 	return 0;
281 }
282 
283 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
284 {
285 	int status;
286 	u8 resp_msg;
287 
288 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
289 				      0, false, &resp_msg, sizeof(u8));
290 	if (status)
291 		dev_err(&hdev->pdev->dev,
292 			"VF failed to fetch link status(%d) from PF", status);
293 }
294 
295 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
296 {
297 	struct hnae3_handle *handle = &hdev->nic;
298 	struct hnae3_client *client;
299 
300 	client = handle->client;
301 
302 	if (link_state != hdev->hw.mac.link) {
303 		client->ops->link_status_change(handle, !!link_state);
304 		hdev->hw.mac.link = link_state;
305 	}
306 }
307 
308 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
309 {
310 	struct hnae3_handle *nic = &hdev->nic;
311 	int ret;
312 
313 	nic->ae_algo = &ae_algovf;
314 	nic->pdev = hdev->pdev;
315 	nic->numa_node_mask = hdev->numa_node_mask;
316 	nic->flags |= HNAE3_SUPPORT_VF;
317 
318 	if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
319 		dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
320 			hdev->ae_dev->dev_type);
321 		return -EINVAL;
322 	}
323 
324 	ret = hclgevf_knic_setup(hdev);
325 	if (ret)
326 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
327 			ret);
328 	return ret;
329 }
330 
331 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
332 {
333 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
334 		dev_warn(&hdev->pdev->dev,
335 			 "vector(vector_id %d) has been freed.\n", vector_id);
336 		return;
337 	}
338 
339 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
340 	hdev->num_msi_left += 1;
341 	hdev->num_msi_used -= 1;
342 }
343 
344 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
345 			      struct hnae3_vector_info *vector_info)
346 {
347 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
348 	struct hnae3_vector_info *vector = vector_info;
349 	int alloc = 0;
350 	int i, j;
351 
352 	vector_num = min(hdev->num_msi_left, vector_num);
353 
354 	for (j = 0; j < vector_num; j++) {
355 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
356 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
357 				vector->vector = pci_irq_vector(hdev->pdev, i);
358 				vector->io_addr = hdev->hw.io_base +
359 					HCLGEVF_VECTOR_REG_BASE +
360 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
361 				hdev->vector_status[i] = 0;
362 				hdev->vector_irq[i] = vector->vector;
363 
364 				vector++;
365 				alloc++;
366 
367 				break;
368 			}
369 		}
370 	}
371 	hdev->num_msi_left -= alloc;
372 	hdev->num_msi_used += alloc;
373 
374 	return alloc;
375 }
376 
377 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
378 {
379 	int i;
380 
381 	for (i = 0; i < hdev->num_msi; i++)
382 		if (vector == hdev->vector_irq[i])
383 			return i;
384 
385 	return -EINVAL;
386 }
387 
388 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
389 {
390 	return HCLGEVF_RSS_KEY_SIZE;
391 }
392 
393 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
394 {
395 	return HCLGEVF_RSS_IND_TBL_SIZE;
396 }
397 
398 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
399 {
400 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
401 	struct hclgevf_rss_indirection_table_cmd *req;
402 	struct hclgevf_desc desc;
403 	int status;
404 	int i, j;
405 
406 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
407 
408 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
409 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
410 					     false);
411 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
412 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
413 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
414 			req->rss_result[j] =
415 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
416 
417 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
418 		if (status) {
419 			dev_err(&hdev->pdev->dev,
420 				"VF failed(=%d) to set RSS indirection table\n",
421 				status);
422 			return status;
423 		}
424 	}
425 
426 	return 0;
427 }
428 
429 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
430 {
431 	struct hclgevf_rss_tc_mode_cmd *req;
432 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
433 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
434 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
435 	struct hclgevf_desc desc;
436 	u16 roundup_size;
437 	int status;
438 	int i;
439 
440 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
441 
442 	roundup_size = roundup_pow_of_two(rss_size);
443 	roundup_size = ilog2(roundup_size);
444 
445 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
446 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
447 		tc_size[i] = roundup_size;
448 		tc_offset[i] = rss_size * i;
449 	}
450 
451 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
452 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
453 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
454 			      (tc_valid[i] & 0x1));
455 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
456 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
457 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
458 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
459 	}
460 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
461 	if (status)
462 		dev_err(&hdev->pdev->dev,
463 			"VF failed(=%d) to set rss tc mode\n", status);
464 
465 	return status;
466 }
467 
468 static int hclgevf_get_rss_hw_cfg(struct hnae3_handle *handle, u8 *hash,
469 				  u8 *key)
470 {
471 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
472 	struct hclgevf_rss_config_cmd *req;
473 	int lkup_times = key ? 3 : 1;
474 	struct hclgevf_desc desc;
475 	int key_offset;
476 	int key_size;
477 	int status;
478 
479 	req = (struct hclgevf_rss_config_cmd *)desc.data;
480 	lkup_times = (lkup_times == 3) ? 3 : ((hash) ? 1 : 0);
481 
482 	for (key_offset = 0; key_offset < lkup_times; key_offset++) {
483 		hclgevf_cmd_setup_basic_desc(&desc,
484 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
485 					     true);
486 		req->hash_config |= (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET);
487 
488 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
489 		if (status) {
490 			dev_err(&hdev->pdev->dev,
491 				"failed to get hardware RSS cfg, status = %d\n",
492 				status);
493 			return status;
494 		}
495 
496 		if (key_offset == 2)
497 			key_size =
498 			HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
499 		else
500 			key_size = HCLGEVF_RSS_HASH_KEY_NUM;
501 
502 		if (key)
503 			memcpy(key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM,
504 			       req->hash_key,
505 			       key_size);
506 	}
507 
508 	if (hash) {
509 		if ((req->hash_config & 0xf) == HCLGEVF_RSS_HASH_ALGO_TOEPLITZ)
510 			*hash = ETH_RSS_HASH_TOP;
511 		else
512 			*hash = ETH_RSS_HASH_UNKNOWN;
513 	}
514 
515 	return 0;
516 }
517 
518 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
519 			   u8 *hfunc)
520 {
521 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
522 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
523 	int i;
524 
525 	if (indir)
526 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
527 			indir[i] = rss_cfg->rss_indirection_tbl[i];
528 
529 	return hclgevf_get_rss_hw_cfg(handle, hfunc, key);
530 }
531 
532 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
533 			   const  u8 *key, const  u8 hfunc)
534 {
535 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
536 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
537 	int i;
538 
539 	/* update the shadow RSS table with user specified qids */
540 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
541 		rss_cfg->rss_indirection_tbl[i] = indir[i];
542 
543 	/* update the hardware */
544 	return hclgevf_set_rss_indir_table(hdev);
545 }
546 
547 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
548 {
549 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
550 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
551 
552 	return rss_cfg->rss_size;
553 }
554 
555 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
556 				       int vector_id,
557 				       struct hnae3_ring_chain_node *ring_chain)
558 {
559 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
560 	struct hnae3_ring_chain_node *node;
561 	struct hclge_mbx_vf_to_pf_cmd *req;
562 	struct hclgevf_desc desc;
563 	int i = 0;
564 	int status;
565 	u8 type;
566 
567 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
568 
569 	for (node = ring_chain; node; node = node->next) {
570 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
571 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
572 
573 		if (i == 0) {
574 			hclgevf_cmd_setup_basic_desc(&desc,
575 						     HCLGEVF_OPC_MBX_VF_TO_PF,
576 						     false);
577 			type = en ?
578 				HCLGE_MBX_MAP_RING_TO_VECTOR :
579 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
580 			req->msg[0] = type;
581 			req->msg[1] = vector_id;
582 		}
583 
584 		req->msg[idx_offset] =
585 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
586 		req->msg[idx_offset + 1] = node->tqp_index;
587 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
588 							   HNAE3_RING_GL_IDX_M,
589 							   HNAE3_RING_GL_IDX_S);
590 
591 		i++;
592 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
593 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
594 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
595 		    !node->next) {
596 			req->msg[2] = i;
597 
598 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
599 			if (status) {
600 				dev_err(&hdev->pdev->dev,
601 					"Map TQP fail, status is %d.\n",
602 					status);
603 				return status;
604 			}
605 			i = 0;
606 			hclgevf_cmd_setup_basic_desc(&desc,
607 						     HCLGEVF_OPC_MBX_VF_TO_PF,
608 						     false);
609 			req->msg[0] = type;
610 			req->msg[1] = vector_id;
611 		}
612 	}
613 
614 	return 0;
615 }
616 
617 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
618 				      struct hnae3_ring_chain_node *ring_chain)
619 {
620 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
621 	int vector_id;
622 
623 	vector_id = hclgevf_get_vector_index(hdev, vector);
624 	if (vector_id < 0) {
625 		dev_err(&handle->pdev->dev,
626 			"Get vector index fail. ret =%d\n", vector_id);
627 		return vector_id;
628 	}
629 
630 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
631 }
632 
633 static int hclgevf_unmap_ring_from_vector(
634 				struct hnae3_handle *handle,
635 				int vector,
636 				struct hnae3_ring_chain_node *ring_chain)
637 {
638 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
639 	int ret, vector_id;
640 
641 	vector_id = hclgevf_get_vector_index(hdev, vector);
642 	if (vector_id < 0) {
643 		dev_err(&handle->pdev->dev,
644 			"Get vector index fail. ret =%d\n", vector_id);
645 		return vector_id;
646 	}
647 
648 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
649 	if (ret)
650 		dev_err(&handle->pdev->dev,
651 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
652 			vector_id,
653 			ret);
654 
655 	return ret;
656 }
657 
658 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
659 {
660 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
661 
662 	hclgevf_free_vector(hdev, vector);
663 
664 	return 0;
665 }
666 
667 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
668 					bool en_uc_pmc, bool en_mc_pmc)
669 {
670 	struct hclge_mbx_vf_to_pf_cmd *req;
671 	struct hclgevf_desc desc;
672 	int status;
673 
674 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
675 
676 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
677 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
678 	req->msg[1] = en_uc_pmc ? 1 : 0;
679 	req->msg[2] = en_mc_pmc ? 1 : 0;
680 
681 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
682 	if (status)
683 		dev_err(&hdev->pdev->dev,
684 			"Set promisc mode fail, status is %d.\n", status);
685 
686 	return status;
687 }
688 
689 static void hclgevf_set_promisc_mode(struct hnae3_handle *handle,
690 				     bool en_uc_pmc, bool en_mc_pmc)
691 {
692 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
693 
694 	hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc);
695 }
696 
697 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
698 			      int stream_id, bool enable)
699 {
700 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
701 	struct hclgevf_desc desc;
702 	int status;
703 
704 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
705 
706 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
707 				     false);
708 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
709 	req->stream_id = cpu_to_le16(stream_id);
710 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
711 
712 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
713 	if (status)
714 		dev_err(&hdev->pdev->dev,
715 			"TQP enable fail, status =%d.\n", status);
716 
717 	return status;
718 }
719 
720 static int hclgevf_get_queue_id(struct hnae3_queue *queue)
721 {
722 	struct hclgevf_tqp *tqp = container_of(queue, struct hclgevf_tqp, q);
723 
724 	return tqp->index;
725 }
726 
727 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
728 {
729 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
730 	struct hnae3_queue *queue;
731 	struct hclgevf_tqp *tqp;
732 	int i;
733 
734 	for (i = 0; i < hdev->num_tqps; i++) {
735 		queue = handle->kinfo.tqp[i];
736 		tqp = container_of(queue, struct hclgevf_tqp, q);
737 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
738 	}
739 }
740 
741 static int hclgevf_cfg_func_mta_type(struct hclgevf_dev *hdev)
742 {
743 	u8 resp_msg = HCLGEVF_MTA_TYPE_SEL_MAX;
744 	int ret;
745 
746 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
747 				   HCLGE_MBX_MAC_VLAN_MTA_TYPE_READ,
748 				   NULL, 0, true, &resp_msg, sizeof(u8));
749 
750 	if (ret) {
751 		dev_err(&hdev->pdev->dev,
752 			"Read mta type fail, ret=%d.\n", ret);
753 		return ret;
754 	}
755 
756 	if (resp_msg > HCLGEVF_MTA_TYPE_SEL_MAX) {
757 		dev_err(&hdev->pdev->dev,
758 			"Read mta type invalid, resp=%d.\n", resp_msg);
759 		return -EINVAL;
760 	}
761 
762 	hdev->mta_mac_sel_type = resp_msg;
763 
764 	return 0;
765 }
766 
767 static u16 hclgevf_get_mac_addr_to_mta_index(struct hclgevf_dev *hdev,
768 					     const u8 *addr)
769 {
770 	u32 rsh = HCLGEVF_MTA_TYPE_SEL_MAX - hdev->mta_mac_sel_type;
771 	u16 high_val = addr[1] | (addr[0] << 8);
772 
773 	return (high_val >> rsh) & 0xfff;
774 }
775 
776 static int hclgevf_do_update_mta_status(struct hclgevf_dev *hdev,
777 					unsigned long *status)
778 {
779 #define HCLGEVF_MTA_STATUS_MSG_SIZE 13
780 #define HCLGEVF_MTA_STATUS_MSG_BITS \
781 			(HCLGEVF_MTA_STATUS_MSG_SIZE * BITS_PER_BYTE)
782 #define HCLGEVF_MTA_STATUS_MSG_END_BITS \
783 			(HCLGEVF_MTA_TBL_SIZE % HCLGEVF_MTA_STATUS_MSG_BITS)
784 	u16 tbl_cnt;
785 	u16 tbl_idx;
786 	u8 msg_cnt;
787 	u8 msg_idx;
788 	int ret;
789 
790 	msg_cnt = DIV_ROUND_UP(HCLGEVF_MTA_TBL_SIZE,
791 			       HCLGEVF_MTA_STATUS_MSG_BITS);
792 	tbl_idx = 0;
793 	msg_idx = 0;
794 	while (msg_cnt--) {
795 		u8 msg[HCLGEVF_MTA_STATUS_MSG_SIZE + 1];
796 		u8 *p = &msg[1];
797 		u8 msg_ofs;
798 		u8 msg_bit;
799 
800 		memset(msg, 0, sizeof(msg));
801 
802 		/* set index field */
803 		msg[0] = 0x7F & msg_idx;
804 
805 		/* set end flag field */
806 		if (msg_cnt == 0) {
807 			msg[0] |= 0x80;
808 			tbl_cnt = HCLGEVF_MTA_STATUS_MSG_END_BITS;
809 		} else {
810 			tbl_cnt = HCLGEVF_MTA_STATUS_MSG_BITS;
811 		}
812 
813 		/* set status field */
814 		msg_ofs = 0;
815 		msg_bit = 0;
816 		while (tbl_cnt--) {
817 			if (test_bit(tbl_idx, status))
818 				p[msg_ofs] |= BIT(msg_bit);
819 
820 			tbl_idx++;
821 
822 			msg_bit++;
823 			if (msg_bit == BITS_PER_BYTE) {
824 				msg_bit = 0;
825 				msg_ofs++;
826 			}
827 		}
828 
829 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
830 					   HCLGE_MBX_MAC_VLAN_MTA_STATUS_UPDATE,
831 					   msg, sizeof(msg), false, NULL, 0);
832 		if (ret)
833 			break;
834 
835 		msg_idx++;
836 	}
837 
838 	return ret;
839 }
840 
841 static int hclgevf_update_mta_status(struct hnae3_handle *handle)
842 {
843 	unsigned long mta_status[BITS_TO_LONGS(HCLGEVF_MTA_TBL_SIZE)];
844 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
845 	struct net_device *netdev = hdev->nic.kinfo.netdev;
846 	struct netdev_hw_addr *ha;
847 	u16 tbl_idx;
848 
849 	/* clear status */
850 	memset(mta_status, 0, sizeof(mta_status));
851 
852 	/* update status from mc addr list */
853 	netdev_for_each_mc_addr(ha, netdev) {
854 		tbl_idx = hclgevf_get_mac_addr_to_mta_index(hdev, ha->addr);
855 		set_bit(tbl_idx, mta_status);
856 	}
857 
858 	return hclgevf_do_update_mta_status(hdev, mta_status);
859 }
860 
861 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
862 {
863 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
864 
865 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
866 }
867 
868 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
869 				bool is_first)
870 {
871 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
872 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
873 	u8 *new_mac_addr = (u8 *)p;
874 	u8 msg_data[ETH_ALEN * 2];
875 	u16 subcode;
876 	int status;
877 
878 	ether_addr_copy(msg_data, new_mac_addr);
879 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
880 
881 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
882 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
883 
884 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
885 				      subcode, msg_data, ETH_ALEN * 2,
886 				      true, NULL, 0);
887 	if (!status)
888 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
889 
890 	return status;
891 }
892 
893 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
894 			       const unsigned char *addr)
895 {
896 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
897 
898 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
899 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
900 				    addr, ETH_ALEN, false, NULL, 0);
901 }
902 
903 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
904 			      const unsigned char *addr)
905 {
906 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
907 
908 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
909 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
910 				    addr, ETH_ALEN, false, NULL, 0);
911 }
912 
913 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
914 			       const unsigned char *addr)
915 {
916 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
917 
918 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
919 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
920 				    addr, ETH_ALEN, false, NULL, 0);
921 }
922 
923 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
924 			      const unsigned char *addr)
925 {
926 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
927 
928 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
929 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
930 				    addr, ETH_ALEN, false, NULL, 0);
931 }
932 
933 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
934 				   __be16 proto, u16 vlan_id,
935 				   bool is_kill)
936 {
937 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
938 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
939 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
940 
941 	if (vlan_id > 4095)
942 		return -EINVAL;
943 
944 	if (proto != htons(ETH_P_8021Q))
945 		return -EPROTONOSUPPORT;
946 
947 	msg_data[0] = is_kill;
948 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
949 	memcpy(&msg_data[3], &proto, sizeof(proto));
950 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
951 				    HCLGE_MBX_VLAN_FILTER, msg_data,
952 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
953 }
954 
955 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
956 {
957 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
958 	u8 msg_data;
959 
960 	msg_data = enable ? 1 : 0;
961 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
962 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
963 				    1, false, NULL, 0);
964 }
965 
966 static void hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
967 {
968 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
969 	u8 msg_data[2];
970 	int ret;
971 
972 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
973 
974 	/* disable vf queue before send queue reset msg to PF */
975 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
976 	if (ret)
977 		return;
978 
979 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
980 			     2, true, NULL, 0);
981 }
982 
983 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
984 				 enum hnae3_reset_notify_type type)
985 {
986 	struct hnae3_client *client = hdev->nic_client;
987 	struct hnae3_handle *handle = &hdev->nic;
988 
989 	if (!client->ops->reset_notify)
990 		return -EOPNOTSUPP;
991 
992 	return client->ops->reset_notify(handle, type);
993 }
994 
995 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
996 {
997 #define HCLGEVF_RESET_WAIT_MS	500
998 #define HCLGEVF_RESET_WAIT_CNT	20
999 	u32 val, cnt = 0;
1000 
1001 	/* wait to check the hardware reset completion status */
1002 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING);
1003 	while (hnae3_get_bit(val, HCLGEVF_FUN_RST_ING_B) &&
1004 	       (cnt < HCLGEVF_RESET_WAIT_CNT)) {
1005 		msleep(HCLGEVF_RESET_WAIT_MS);
1006 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING);
1007 		cnt++;
1008 	}
1009 
1010 	/* hardware completion status should be available by this time */
1011 	if (cnt >= HCLGEVF_RESET_WAIT_CNT) {
1012 		dev_warn(&hdev->pdev->dev,
1013 			 "could'nt get reset done status from h/w, timeout!\n");
1014 		return -EBUSY;
1015 	}
1016 
1017 	/* we will wait a bit more to let reset of the stack to complete. This
1018 	 * might happen in case reset assertion was made by PF. Yes, this also
1019 	 * means we might end up waiting bit more even for VF reset.
1020 	 */
1021 	msleep(5000);
1022 
1023 	return 0;
1024 }
1025 
1026 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1027 {
1028 	int ret;
1029 
1030 	/* uninitialize the nic client */
1031 	hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1032 
1033 	/* re-initialize the hclge device */
1034 	ret = hclgevf_init_hdev(hdev);
1035 	if (ret) {
1036 		dev_err(&hdev->pdev->dev,
1037 			"hclge device re-init failed, VF is disabled!\n");
1038 		return ret;
1039 	}
1040 
1041 	/* bring up the nic client again */
1042 	hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1043 
1044 	return 0;
1045 }
1046 
1047 static int hclgevf_reset(struct hclgevf_dev *hdev)
1048 {
1049 	int ret;
1050 
1051 	rtnl_lock();
1052 
1053 	/* bring down the nic to stop any ongoing TX/RX */
1054 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1055 
1056 	/* check if VF could successfully fetch the hardware reset completion
1057 	 * status from the hardware
1058 	 */
1059 	ret = hclgevf_reset_wait(hdev);
1060 	if (ret) {
1061 		/* can't do much in this situation, will disable VF */
1062 		dev_err(&hdev->pdev->dev,
1063 			"VF failed(=%d) to fetch H/W reset completion status\n",
1064 			ret);
1065 
1066 		dev_warn(&hdev->pdev->dev, "VF reset failed, disabling VF!\n");
1067 		hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1068 
1069 		rtnl_unlock();
1070 		return ret;
1071 	}
1072 
1073 	/* now, re-initialize the nic client and ae device*/
1074 	ret = hclgevf_reset_stack(hdev);
1075 	if (ret)
1076 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1077 
1078 	/* bring up the nic to enable TX/RX again */
1079 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1080 
1081 	rtnl_unlock();
1082 
1083 	return ret;
1084 }
1085 
1086 static int hclgevf_do_reset(struct hclgevf_dev *hdev)
1087 {
1088 	int status;
1089 	u8 respmsg;
1090 
1091 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1092 				      0, false, &respmsg, sizeof(u8));
1093 	if (status)
1094 		dev_err(&hdev->pdev->dev,
1095 			"VF reset request to PF failed(=%d)\n", status);
1096 
1097 	return status;
1098 }
1099 
1100 static void hclgevf_reset_event(struct hnae3_handle *handle)
1101 {
1102 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1103 
1104 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1105 
1106 	handle->reset_level = HNAE3_VF_RESET;
1107 
1108 	/* reset of this VF requested */
1109 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1110 	hclgevf_reset_task_schedule(hdev);
1111 
1112 	handle->last_reset_time = jiffies;
1113 }
1114 
1115 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1116 {
1117 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1118 
1119 	return hdev->fw_version;
1120 }
1121 
1122 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1123 {
1124 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1125 
1126 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1127 					    HCLGEVF_MISC_VECTOR_NUM);
1128 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1129 	/* vector status always valid for Vector 0 */
1130 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1131 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1132 
1133 	hdev->num_msi_left -= 1;
1134 	hdev->num_msi_used += 1;
1135 }
1136 
1137 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1138 {
1139 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1140 	    !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
1141 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1142 		schedule_work(&hdev->rst_service_task);
1143 	}
1144 }
1145 
1146 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1147 {
1148 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1149 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1150 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1151 		schedule_work(&hdev->mbx_service_task);
1152 	}
1153 }
1154 
1155 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1156 {
1157 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1158 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1159 		schedule_work(&hdev->service_task);
1160 }
1161 
1162 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1163 {
1164 	/* if we have any pending mailbox event then schedule the mbx task */
1165 	if (hdev->mbx_event_pending)
1166 		hclgevf_mbx_task_schedule(hdev);
1167 
1168 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1169 		hclgevf_reset_task_schedule(hdev);
1170 }
1171 
1172 static void hclgevf_service_timer(struct timer_list *t)
1173 {
1174 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1175 
1176 	mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1177 
1178 	hclgevf_task_schedule(hdev);
1179 }
1180 
1181 static void hclgevf_reset_service_task(struct work_struct *work)
1182 {
1183 	struct hclgevf_dev *hdev =
1184 		container_of(work, struct hclgevf_dev, rst_service_task);
1185 	int ret;
1186 
1187 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1188 		return;
1189 
1190 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1191 
1192 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1193 			       &hdev->reset_state)) {
1194 		/* PF has initmated that it is about to reset the hardware.
1195 		 * We now have to poll & check if harware has actually completed
1196 		 * the reset sequence. On hardware reset completion, VF needs to
1197 		 * reset the client and ae device.
1198 		 */
1199 		hdev->reset_attempts = 0;
1200 
1201 		ret = hclgevf_reset(hdev);
1202 		if (ret)
1203 			dev_err(&hdev->pdev->dev, "VF stack reset failed.\n");
1204 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1205 				      &hdev->reset_state)) {
1206 		/* we could be here when either of below happens:
1207 		 * 1. reset was initiated due to watchdog timeout due to
1208 		 *    a. IMP was earlier reset and our TX got choked down and
1209 		 *       which resulted in watchdog reacting and inducing VF
1210 		 *       reset. This also means our cmdq would be unreliable.
1211 		 *    b. problem in TX due to other lower layer(example link
1212 		 *       layer not functioning properly etc.)
1213 		 * 2. VF reset might have been initiated due to some config
1214 		 *    change.
1215 		 *
1216 		 * NOTE: Theres no clear way to detect above cases than to react
1217 		 * to the response of PF for this reset request. PF will ack the
1218 		 * 1b and 2. cases but we will not get any intimation about 1a
1219 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1220 		 * communication between PF and VF would be broken.
1221 		 */
1222 
1223 		/* if we are never geting into pending state it means either:
1224 		 * 1. PF is not receiving our request which could be due to IMP
1225 		 *    reset
1226 		 * 2. PF is screwed
1227 		 * We cannot do much for 2. but to check first we can try reset
1228 		 * our PCIe + stack and see if it alleviates the problem.
1229 		 */
1230 		if (hdev->reset_attempts > 3) {
1231 			/* prepare for full reset of stack + pcie interface */
1232 			hdev->nic.reset_level = HNAE3_VF_FULL_RESET;
1233 
1234 			/* "defer" schedule the reset task again */
1235 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1236 		} else {
1237 			hdev->reset_attempts++;
1238 
1239 			/* request PF for resetting this VF via mailbox */
1240 			ret = hclgevf_do_reset(hdev);
1241 			if (ret)
1242 				dev_warn(&hdev->pdev->dev,
1243 					 "VF rst fail, stack will call\n");
1244 		}
1245 	}
1246 
1247 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1248 }
1249 
1250 static void hclgevf_mailbox_service_task(struct work_struct *work)
1251 {
1252 	struct hclgevf_dev *hdev;
1253 
1254 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1255 
1256 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1257 		return;
1258 
1259 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1260 
1261 	hclgevf_mbx_async_handler(hdev);
1262 
1263 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1264 }
1265 
1266 static void hclgevf_service_task(struct work_struct *work)
1267 {
1268 	struct hclgevf_dev *hdev;
1269 
1270 	hdev = container_of(work, struct hclgevf_dev, service_task);
1271 
1272 	/* request the link status from the PF. PF would be able to tell VF
1273 	 * about such updates in future so we might remove this later
1274 	 */
1275 	hclgevf_request_link_info(hdev);
1276 
1277 	hclgevf_deferred_task_schedule(hdev);
1278 
1279 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1280 }
1281 
1282 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1283 {
1284 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1285 }
1286 
1287 static bool hclgevf_check_event_cause(struct hclgevf_dev *hdev, u32 *clearval)
1288 {
1289 	u32 cmdq_src_reg;
1290 
1291 	/* fetch the events from their corresponding regs */
1292 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1293 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1294 
1295 	/* check for vector0 mailbox(=CMDQ RX) event source */
1296 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1297 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1298 		*clearval = cmdq_src_reg;
1299 		return true;
1300 	}
1301 
1302 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1303 
1304 	return false;
1305 }
1306 
1307 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1308 {
1309 	writel(en ? 1 : 0, vector->addr);
1310 }
1311 
1312 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1313 {
1314 	struct hclgevf_dev *hdev = data;
1315 	u32 clearval;
1316 
1317 	hclgevf_enable_vector(&hdev->misc_vector, false);
1318 	if (!hclgevf_check_event_cause(hdev, &clearval))
1319 		goto skip_sched;
1320 
1321 	hclgevf_mbx_handler(hdev);
1322 
1323 	hclgevf_clear_event_cause(hdev, clearval);
1324 
1325 skip_sched:
1326 	hclgevf_enable_vector(&hdev->misc_vector, true);
1327 
1328 	return IRQ_HANDLED;
1329 }
1330 
1331 static int hclgevf_configure(struct hclgevf_dev *hdev)
1332 {
1333 	int ret;
1334 
1335 	/* get queue configuration from PF */
1336 	ret = hclge_get_queue_info(hdev);
1337 	if (ret)
1338 		return ret;
1339 	/* get tc configuration from PF */
1340 	return hclgevf_get_tc_info(hdev);
1341 }
1342 
1343 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1344 {
1345 	struct pci_dev *pdev = ae_dev->pdev;
1346 	struct hclgevf_dev *hdev = ae_dev->priv;
1347 
1348 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1349 	if (!hdev)
1350 		return -ENOMEM;
1351 
1352 	hdev->pdev = pdev;
1353 	hdev->ae_dev = ae_dev;
1354 	ae_dev->priv = hdev;
1355 
1356 	return 0;
1357 }
1358 
1359 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1360 {
1361 	struct hnae3_handle *roce = &hdev->roce;
1362 	struct hnae3_handle *nic = &hdev->nic;
1363 
1364 	roce->rinfo.num_vectors = HCLGEVF_ROCEE_VECTOR_NUM;
1365 
1366 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1367 	    hdev->num_msi_left == 0)
1368 		return -EINVAL;
1369 
1370 	roce->rinfo.base_vector =
1371 		hdev->vector_status[hdev->num_msi_used];
1372 
1373 	roce->rinfo.netdev = nic->kinfo.netdev;
1374 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1375 
1376 	roce->pdev = nic->pdev;
1377 	roce->ae_algo = nic->ae_algo;
1378 	roce->numa_node_mask = nic->numa_node_mask;
1379 
1380 	return 0;
1381 }
1382 
1383 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1384 {
1385 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1386 	int i, ret;
1387 
1388 	rss_cfg->rss_size = hdev->rss_size_max;
1389 
1390 	/* Initialize RSS indirect table for each vport */
1391 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1392 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1393 
1394 	ret = hclgevf_set_rss_indir_table(hdev);
1395 	if (ret)
1396 		return ret;
1397 
1398 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1399 }
1400 
1401 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
1402 {
1403 	/* other vlan config(like, VLAN TX/RX offload) would also be added
1404 	 * here later
1405 	 */
1406 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
1407 				       false);
1408 }
1409 
1410 static int hclgevf_ae_start(struct hnae3_handle *handle)
1411 {
1412 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1413 	int i, queue_id;
1414 
1415 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
1416 		/* ring enable */
1417 		queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]);
1418 		if (queue_id < 0) {
1419 			dev_warn(&hdev->pdev->dev,
1420 				 "Get invalid queue id, ignore it\n");
1421 			continue;
1422 		}
1423 
1424 		hclgevf_tqp_enable(hdev, queue_id, 0, true);
1425 	}
1426 
1427 	/* reset tqp stats */
1428 	hclgevf_reset_tqp_stats(handle);
1429 
1430 	hclgevf_request_link_info(hdev);
1431 
1432 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1433 	mod_timer(&hdev->service_timer, jiffies + HZ);
1434 
1435 	return 0;
1436 }
1437 
1438 static void hclgevf_ae_stop(struct hnae3_handle *handle)
1439 {
1440 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1441 	int i, queue_id;
1442 
1443 	for (i = 0; i < hdev->num_tqps; i++) {
1444 		/* Ring disable */
1445 		queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]);
1446 		if (queue_id < 0) {
1447 			dev_warn(&hdev->pdev->dev,
1448 				 "Get invalid queue id, ignore it\n");
1449 			continue;
1450 		}
1451 
1452 		hclgevf_tqp_enable(hdev, queue_id, 0, false);
1453 	}
1454 
1455 	/* reset tqp stats */
1456 	hclgevf_reset_tqp_stats(handle);
1457 	del_timer_sync(&hdev->service_timer);
1458 	cancel_work_sync(&hdev->service_task);
1459 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1460 	hclgevf_update_link_status(hdev, 0);
1461 }
1462 
1463 static void hclgevf_state_init(struct hclgevf_dev *hdev)
1464 {
1465 	/* if this is on going reset then skip this initialization */
1466 	if (hclgevf_dev_ongoing_reset(hdev))
1467 		return;
1468 
1469 	/* setup tasks for the MBX */
1470 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
1471 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1472 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1473 
1474 	/* setup tasks for service timer */
1475 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
1476 
1477 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
1478 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1479 
1480 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
1481 
1482 	mutex_init(&hdev->mbx_resp.mbx_mutex);
1483 
1484 	/* bring the device down */
1485 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1486 }
1487 
1488 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
1489 {
1490 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1491 
1492 	if (hdev->service_timer.function)
1493 		del_timer_sync(&hdev->service_timer);
1494 	if (hdev->service_task.func)
1495 		cancel_work_sync(&hdev->service_task);
1496 	if (hdev->mbx_service_task.func)
1497 		cancel_work_sync(&hdev->mbx_service_task);
1498 	if (hdev->rst_service_task.func)
1499 		cancel_work_sync(&hdev->rst_service_task);
1500 
1501 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
1502 }
1503 
1504 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
1505 {
1506 	struct pci_dev *pdev = hdev->pdev;
1507 	int vectors;
1508 	int i;
1509 
1510 	/* if this is on going reset then skip this initialization */
1511 	if (hclgevf_dev_ongoing_reset(hdev))
1512 		return 0;
1513 
1514 	hdev->num_msi = HCLGEVF_MAX_VF_VECTOR_NUM;
1515 
1516 	vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
1517 					PCI_IRQ_MSI | PCI_IRQ_MSIX);
1518 	if (vectors < 0) {
1519 		dev_err(&pdev->dev,
1520 			"failed(%d) to allocate MSI/MSI-X vectors\n",
1521 			vectors);
1522 		return vectors;
1523 	}
1524 	if (vectors < hdev->num_msi)
1525 		dev_warn(&hdev->pdev->dev,
1526 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
1527 			 hdev->num_msi, vectors);
1528 
1529 	hdev->num_msi = vectors;
1530 	hdev->num_msi_left = vectors;
1531 	hdev->base_msi_vector = pdev->irq;
1532 
1533 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
1534 					   sizeof(u16), GFP_KERNEL);
1535 	if (!hdev->vector_status) {
1536 		pci_free_irq_vectors(pdev);
1537 		return -ENOMEM;
1538 	}
1539 
1540 	for (i = 0; i < hdev->num_msi; i++)
1541 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
1542 
1543 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
1544 					sizeof(int), GFP_KERNEL);
1545 	if (!hdev->vector_irq) {
1546 		pci_free_irq_vectors(pdev);
1547 		return -ENOMEM;
1548 	}
1549 
1550 	return 0;
1551 }
1552 
1553 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
1554 {
1555 	struct pci_dev *pdev = hdev->pdev;
1556 
1557 	pci_free_irq_vectors(pdev);
1558 }
1559 
1560 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
1561 {
1562 	int ret = 0;
1563 
1564 	/* if this is on going reset then skip this initialization */
1565 	if (hclgevf_dev_ongoing_reset(hdev))
1566 		return 0;
1567 
1568 	hclgevf_get_misc_vector(hdev);
1569 
1570 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
1571 			  0, "hclgevf_cmd", hdev);
1572 	if (ret) {
1573 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
1574 			hdev->misc_vector.vector_irq);
1575 		return ret;
1576 	}
1577 
1578 	hclgevf_clear_event_cause(hdev, 0);
1579 
1580 	/* enable misc. vector(vector 0) */
1581 	hclgevf_enable_vector(&hdev->misc_vector, true);
1582 
1583 	return ret;
1584 }
1585 
1586 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
1587 {
1588 	/* disable misc vector(vector 0) */
1589 	hclgevf_enable_vector(&hdev->misc_vector, false);
1590 	synchronize_irq(hdev->misc_vector.vector_irq);
1591 	free_irq(hdev->misc_vector.vector_irq, hdev);
1592 	hclgevf_free_vector(hdev, 0);
1593 }
1594 
1595 static int hclgevf_init_client_instance(struct hnae3_client *client,
1596 					struct hnae3_ae_dev *ae_dev)
1597 {
1598 	struct hclgevf_dev *hdev = ae_dev->priv;
1599 	int ret;
1600 
1601 	switch (client->type) {
1602 	case HNAE3_CLIENT_KNIC:
1603 		hdev->nic_client = client;
1604 		hdev->nic.client = client;
1605 
1606 		ret = client->ops->init_instance(&hdev->nic);
1607 		if (ret)
1608 			return ret;
1609 
1610 		if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
1611 			struct hnae3_client *rc = hdev->roce_client;
1612 
1613 			ret = hclgevf_init_roce_base_info(hdev);
1614 			if (ret)
1615 				return ret;
1616 			ret = rc->ops->init_instance(&hdev->roce);
1617 			if (ret)
1618 				return ret;
1619 		}
1620 		break;
1621 	case HNAE3_CLIENT_UNIC:
1622 		hdev->nic_client = client;
1623 		hdev->nic.client = client;
1624 
1625 		ret = client->ops->init_instance(&hdev->nic);
1626 		if (ret)
1627 			return ret;
1628 		break;
1629 	case HNAE3_CLIENT_ROCE:
1630 		if (hnae3_dev_roce_supported(hdev)) {
1631 			hdev->roce_client = client;
1632 			hdev->roce.client = client;
1633 		}
1634 
1635 		if (hdev->roce_client && hdev->nic_client) {
1636 			ret = hclgevf_init_roce_base_info(hdev);
1637 			if (ret)
1638 				return ret;
1639 
1640 			ret = client->ops->init_instance(&hdev->roce);
1641 			if (ret)
1642 				return ret;
1643 		}
1644 	}
1645 
1646 	return 0;
1647 }
1648 
1649 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
1650 					   struct hnae3_ae_dev *ae_dev)
1651 {
1652 	struct hclgevf_dev *hdev = ae_dev->priv;
1653 
1654 	/* un-init roce, if it exists */
1655 	if (hdev->roce_client)
1656 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
1657 
1658 	/* un-init nic/unic, if this was not called by roce client */
1659 	if ((client->ops->uninit_instance) &&
1660 	    (client->type != HNAE3_CLIENT_ROCE))
1661 		client->ops->uninit_instance(&hdev->nic, 0);
1662 }
1663 
1664 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
1665 {
1666 	struct pci_dev *pdev = hdev->pdev;
1667 	struct hclgevf_hw *hw;
1668 	int ret;
1669 
1670 	/* check if we need to skip initialization of pci. This will happen if
1671 	 * device is undergoing VF reset. Otherwise, we would need to
1672 	 * re-initialize pci interface again i.e. when device is not going
1673 	 * through *any* reset or actually undergoing full reset.
1674 	 */
1675 	if (hclgevf_dev_ongoing_reset(hdev))
1676 		return 0;
1677 
1678 	ret = pci_enable_device(pdev);
1679 	if (ret) {
1680 		dev_err(&pdev->dev, "failed to enable PCI device\n");
1681 		return ret;
1682 	}
1683 
1684 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1685 	if (ret) {
1686 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
1687 		goto err_disable_device;
1688 	}
1689 
1690 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
1691 	if (ret) {
1692 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
1693 		goto err_disable_device;
1694 	}
1695 
1696 	pci_set_master(pdev);
1697 	hw = &hdev->hw;
1698 	hw->hdev = hdev;
1699 	hw->io_base = pci_iomap(pdev, 2, 0);
1700 	if (!hw->io_base) {
1701 		dev_err(&pdev->dev, "can't map configuration register space\n");
1702 		ret = -ENOMEM;
1703 		goto err_clr_master;
1704 	}
1705 
1706 	return 0;
1707 
1708 err_clr_master:
1709 	pci_clear_master(pdev);
1710 	pci_release_regions(pdev);
1711 err_disable_device:
1712 	pci_disable_device(pdev);
1713 
1714 	return ret;
1715 }
1716 
1717 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
1718 {
1719 	struct pci_dev *pdev = hdev->pdev;
1720 
1721 	pci_iounmap(pdev, hdev->hw.io_base);
1722 	pci_clear_master(pdev);
1723 	pci_release_regions(pdev);
1724 	pci_disable_device(pdev);
1725 }
1726 
1727 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
1728 {
1729 	struct pci_dev *pdev = hdev->pdev;
1730 	int ret;
1731 
1732 	/* check if device is on-going full reset(i.e. pcie as well) */
1733 	if (hclgevf_dev_ongoing_full_reset(hdev)) {
1734 		dev_warn(&pdev->dev, "device is going full reset\n");
1735 		hclgevf_uninit_hdev(hdev);
1736 	}
1737 
1738 	ret = hclgevf_pci_init(hdev);
1739 	if (ret) {
1740 		dev_err(&pdev->dev, "PCI initialization failed\n");
1741 		return ret;
1742 	}
1743 
1744 	ret = hclgevf_init_msi(hdev);
1745 	if (ret) {
1746 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
1747 		goto err_irq_init;
1748 	}
1749 
1750 	hclgevf_state_init(hdev);
1751 
1752 	ret = hclgevf_cmd_init(hdev);
1753 	if (ret)
1754 		goto err_cmd_init;
1755 
1756 	ret = hclgevf_misc_irq_init(hdev);
1757 	if (ret) {
1758 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
1759 			ret);
1760 		goto err_misc_irq_init;
1761 	}
1762 
1763 	ret = hclgevf_configure(hdev);
1764 	if (ret) {
1765 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
1766 		goto err_config;
1767 	}
1768 
1769 	ret = hclgevf_alloc_tqps(hdev);
1770 	if (ret) {
1771 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
1772 		goto err_config;
1773 	}
1774 
1775 	ret = hclgevf_set_handle_info(hdev);
1776 	if (ret) {
1777 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
1778 		goto err_config;
1779 	}
1780 
1781 	/* Initialize mta type for this VF */
1782 	ret = hclgevf_cfg_func_mta_type(hdev);
1783 	if (ret) {
1784 		dev_err(&hdev->pdev->dev,
1785 			"failed(%d) to initialize MTA type\n", ret);
1786 		goto err_config;
1787 	}
1788 
1789 	/* Initialize RSS for this VF */
1790 	ret = hclgevf_rss_init_hw(hdev);
1791 	if (ret) {
1792 		dev_err(&hdev->pdev->dev,
1793 			"failed(%d) to initialize RSS\n", ret);
1794 		goto err_config;
1795 	}
1796 
1797 	ret = hclgevf_init_vlan_config(hdev);
1798 	if (ret) {
1799 		dev_err(&hdev->pdev->dev,
1800 			"failed(%d) to initialize VLAN config\n", ret);
1801 		goto err_config;
1802 	}
1803 
1804 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
1805 
1806 	return 0;
1807 
1808 err_config:
1809 	hclgevf_misc_irq_uninit(hdev);
1810 err_misc_irq_init:
1811 	hclgevf_cmd_uninit(hdev);
1812 err_cmd_init:
1813 	hclgevf_state_uninit(hdev);
1814 	hclgevf_uninit_msi(hdev);
1815 err_irq_init:
1816 	hclgevf_pci_uninit(hdev);
1817 	return ret;
1818 }
1819 
1820 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
1821 {
1822 	hclgevf_state_uninit(hdev);
1823 	hclgevf_misc_irq_uninit(hdev);
1824 	hclgevf_cmd_uninit(hdev);
1825 	hclgevf_uninit_msi(hdev);
1826 	hclgevf_pci_uninit(hdev);
1827 }
1828 
1829 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
1830 {
1831 	struct pci_dev *pdev = ae_dev->pdev;
1832 	int ret;
1833 
1834 	ret = hclgevf_alloc_hdev(ae_dev);
1835 	if (ret) {
1836 		dev_err(&pdev->dev, "hclge device allocation failed\n");
1837 		return ret;
1838 	}
1839 
1840 	ret = hclgevf_init_hdev(ae_dev->priv);
1841 	if (ret)
1842 		dev_err(&pdev->dev, "hclge device initialization failed\n");
1843 
1844 	return ret;
1845 }
1846 
1847 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
1848 {
1849 	struct hclgevf_dev *hdev = ae_dev->priv;
1850 
1851 	hclgevf_uninit_hdev(hdev);
1852 	ae_dev->priv = NULL;
1853 }
1854 
1855 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
1856 {
1857 	struct hnae3_handle *nic = &hdev->nic;
1858 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
1859 
1860 	return min_t(u32, hdev->rss_size_max * kinfo->num_tc, hdev->num_tqps);
1861 }
1862 
1863 /**
1864  * hclgevf_get_channels - Get the current channels enabled and max supported.
1865  * @handle: hardware information for network interface
1866  * @ch: ethtool channels structure
1867  *
1868  * We don't support separate tx and rx queues as channels. The other count
1869  * represents how many queues are being used for control. max_combined counts
1870  * how many queue pairs we can support. They may not be mapped 1 to 1 with
1871  * q_vectors since we support a lot more queue pairs than q_vectors.
1872  **/
1873 static void hclgevf_get_channels(struct hnae3_handle *handle,
1874 				 struct ethtool_channels *ch)
1875 {
1876 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1877 
1878 	ch->max_combined = hclgevf_get_max_channels(hdev);
1879 	ch->other_count = 0;
1880 	ch->max_other = 0;
1881 	ch->combined_count = hdev->num_tqps;
1882 }
1883 
1884 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
1885 					  u16 *free_tqps, u16 *max_rss_size)
1886 {
1887 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1888 
1889 	*free_tqps = 0;
1890 	*max_rss_size = hdev->rss_size_max;
1891 }
1892 
1893 static int hclgevf_get_status(struct hnae3_handle *handle)
1894 {
1895 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1896 
1897 	return hdev->hw.mac.link;
1898 }
1899 
1900 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
1901 					    u8 *auto_neg, u32 *speed,
1902 					    u8 *duplex)
1903 {
1904 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1905 
1906 	if (speed)
1907 		*speed = hdev->hw.mac.speed;
1908 	if (duplex)
1909 		*duplex = hdev->hw.mac.duplex;
1910 	if (auto_neg)
1911 		*auto_neg = AUTONEG_DISABLE;
1912 }
1913 
1914 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
1915 				 u8 duplex)
1916 {
1917 	hdev->hw.mac.speed = speed;
1918 	hdev->hw.mac.duplex = duplex;
1919 }
1920 
1921 static const struct hnae3_ae_ops hclgevf_ops = {
1922 	.init_ae_dev = hclgevf_init_ae_dev,
1923 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
1924 	.init_client_instance = hclgevf_init_client_instance,
1925 	.uninit_client_instance = hclgevf_uninit_client_instance,
1926 	.start = hclgevf_ae_start,
1927 	.stop = hclgevf_ae_stop,
1928 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
1929 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
1930 	.get_vector = hclgevf_get_vector,
1931 	.put_vector = hclgevf_put_vector,
1932 	.reset_queue = hclgevf_reset_tqp,
1933 	.set_promisc_mode = hclgevf_set_promisc_mode,
1934 	.get_mac_addr = hclgevf_get_mac_addr,
1935 	.set_mac_addr = hclgevf_set_mac_addr,
1936 	.add_uc_addr = hclgevf_add_uc_addr,
1937 	.rm_uc_addr = hclgevf_rm_uc_addr,
1938 	.add_mc_addr = hclgevf_add_mc_addr,
1939 	.rm_mc_addr = hclgevf_rm_mc_addr,
1940 	.update_mta_status = hclgevf_update_mta_status,
1941 	.get_stats = hclgevf_get_stats,
1942 	.update_stats = hclgevf_update_stats,
1943 	.get_strings = hclgevf_get_strings,
1944 	.get_sset_count = hclgevf_get_sset_count,
1945 	.get_rss_key_size = hclgevf_get_rss_key_size,
1946 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
1947 	.get_rss = hclgevf_get_rss,
1948 	.set_rss = hclgevf_set_rss,
1949 	.get_tc_size = hclgevf_get_tc_size,
1950 	.get_fw_version = hclgevf_get_fw_version,
1951 	.set_vlan_filter = hclgevf_set_vlan_filter,
1952 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
1953 	.reset_event = hclgevf_reset_event,
1954 	.get_channels = hclgevf_get_channels,
1955 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
1956 	.get_status = hclgevf_get_status,
1957 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
1958 };
1959 
1960 static struct hnae3_ae_algo ae_algovf = {
1961 	.ops = &hclgevf_ops,
1962 	.pdev_id_table = ae_algovf_pci_tbl,
1963 };
1964 
1965 static int hclgevf_init(void)
1966 {
1967 	pr_info("%s is initializing\n", HCLGEVF_NAME);
1968 
1969 	hnae3_register_ae_algo(&ae_algovf);
1970 
1971 	return 0;
1972 }
1973 
1974 static void hclgevf_exit(void)
1975 {
1976 	hnae3_unregister_ae_algo(&ae_algovf);
1977 }
1978 module_init(hclgevf_init);
1979 module_exit(hclgevf_exit);
1980 
1981 MODULE_LICENSE("GPL");
1982 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
1983 MODULE_DESCRIPTION("HCLGEVF Driver");
1984 MODULE_VERSION(HCLGEVF_MOD_VERSION);
1985