1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright (c) 2016-2017 Hisilicon Limited. 3 4 #include <linux/etherdevice.h> 5 #include <net/rtnetlink.h> 6 #include "hclgevf_cmd.h" 7 #include "hclgevf_main.h" 8 #include "hclge_mbx.h" 9 #include "hnae3.h" 10 11 #define HCLGEVF_NAME "hclgevf" 12 13 static int hclgevf_init_hdev(struct hclgevf_dev *hdev); 14 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev); 15 static struct hnae3_ae_algo ae_algovf; 16 17 static const struct pci_device_id ae_algovf_pci_tbl[] = { 18 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0}, 19 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0}, 20 /* required last entry */ 21 {0, } 22 }; 23 24 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl); 25 26 static inline struct hclgevf_dev *hclgevf_ae_get_hdev( 27 struct hnae3_handle *handle) 28 { 29 return container_of(handle, struct hclgevf_dev, nic); 30 } 31 32 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle) 33 { 34 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 35 struct hnae3_queue *queue; 36 struct hclgevf_desc desc; 37 struct hclgevf_tqp *tqp; 38 int status; 39 int i; 40 41 for (i = 0; i < hdev->num_tqps; i++) { 42 queue = handle->kinfo.tqp[i]; 43 tqp = container_of(queue, struct hclgevf_tqp, q); 44 hclgevf_cmd_setup_basic_desc(&desc, 45 HCLGEVF_OPC_QUERY_RX_STATUS, 46 true); 47 48 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff); 49 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 50 if (status) { 51 dev_err(&hdev->pdev->dev, 52 "Query tqp stat fail, status = %d,queue = %d\n", 53 status, i); 54 return status; 55 } 56 tqp->tqp_stats.rcb_rx_ring_pktnum_rcd += 57 le32_to_cpu(desc.data[1]); 58 59 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS, 60 true); 61 62 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff); 63 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 64 if (status) { 65 dev_err(&hdev->pdev->dev, 66 "Query tqp stat fail, status = %d,queue = %d\n", 67 status, i); 68 return status; 69 } 70 tqp->tqp_stats.rcb_tx_ring_pktnum_rcd += 71 le32_to_cpu(desc.data[1]); 72 } 73 74 return 0; 75 } 76 77 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data) 78 { 79 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 80 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 81 struct hclgevf_tqp *tqp; 82 u64 *buff = data; 83 int i; 84 85 for (i = 0; i < hdev->num_tqps; i++) { 86 tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q); 87 *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd; 88 } 89 for (i = 0; i < kinfo->num_tqps; i++) { 90 tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q); 91 *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd; 92 } 93 94 return buff; 95 } 96 97 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset) 98 { 99 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 100 101 return hdev->num_tqps * 2; 102 } 103 104 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data) 105 { 106 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 107 u8 *buff = data; 108 int i = 0; 109 110 for (i = 0; i < hdev->num_tqps; i++) { 111 struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i], 112 struct hclgevf_tqp, q); 113 snprintf(buff, ETH_GSTRING_LEN, "txq#%d_pktnum_rcd", 114 tqp->index); 115 buff += ETH_GSTRING_LEN; 116 } 117 118 for (i = 0; i < hdev->num_tqps; i++) { 119 struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i], 120 struct hclgevf_tqp, q); 121 snprintf(buff, ETH_GSTRING_LEN, "rxq#%d_pktnum_rcd", 122 tqp->index); 123 buff += ETH_GSTRING_LEN; 124 } 125 126 return buff; 127 } 128 129 static void hclgevf_update_stats(struct hnae3_handle *handle, 130 struct net_device_stats *net_stats) 131 { 132 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 133 int status; 134 135 status = hclgevf_tqps_update_stats(handle); 136 if (status) 137 dev_err(&hdev->pdev->dev, 138 "VF update of TQPS stats fail, status = %d.\n", 139 status); 140 } 141 142 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset) 143 { 144 if (strset == ETH_SS_TEST) 145 return -EOPNOTSUPP; 146 else if (strset == ETH_SS_STATS) 147 return hclgevf_tqps_get_sset_count(handle, strset); 148 149 return 0; 150 } 151 152 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset, 153 u8 *data) 154 { 155 u8 *p = (char *)data; 156 157 if (strset == ETH_SS_STATS) 158 p = hclgevf_tqps_get_strings(handle, p); 159 } 160 161 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data) 162 { 163 hclgevf_tqps_get_stats(handle, data); 164 } 165 166 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev) 167 { 168 u8 resp_msg; 169 int status; 170 171 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0, 172 true, &resp_msg, sizeof(u8)); 173 if (status) { 174 dev_err(&hdev->pdev->dev, 175 "VF request to get TC info from PF failed %d", 176 status); 177 return status; 178 } 179 180 hdev->hw_tc_map = resp_msg; 181 182 return 0; 183 } 184 185 static int hclge_get_queue_info(struct hclgevf_dev *hdev) 186 { 187 #define HCLGEVF_TQPS_RSS_INFO_LEN 8 188 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN]; 189 int status; 190 191 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0, 192 true, resp_msg, 193 HCLGEVF_TQPS_RSS_INFO_LEN); 194 if (status) { 195 dev_err(&hdev->pdev->dev, 196 "VF request to get tqp info from PF failed %d", 197 status); 198 return status; 199 } 200 201 memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16)); 202 memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16)); 203 memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16)); 204 memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16)); 205 206 return 0; 207 } 208 209 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev) 210 { 211 struct hclgevf_tqp *tqp; 212 int i; 213 214 /* if this is on going reset then we need to re-allocate the TPQs 215 * since we cannot assume we would get same number of TPQs back from PF 216 */ 217 if (hclgevf_dev_ongoing_reset(hdev)) 218 devm_kfree(&hdev->pdev->dev, hdev->htqp); 219 220 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps, 221 sizeof(struct hclgevf_tqp), GFP_KERNEL); 222 if (!hdev->htqp) 223 return -ENOMEM; 224 225 tqp = hdev->htqp; 226 227 for (i = 0; i < hdev->num_tqps; i++) { 228 tqp->dev = &hdev->pdev->dev; 229 tqp->index = i; 230 231 tqp->q.ae_algo = &ae_algovf; 232 tqp->q.buf_size = hdev->rx_buf_len; 233 tqp->q.desc_num = hdev->num_desc; 234 tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET + 235 i * HCLGEVF_TQP_REG_SIZE; 236 237 tqp++; 238 } 239 240 return 0; 241 } 242 243 static int hclgevf_knic_setup(struct hclgevf_dev *hdev) 244 { 245 struct hnae3_handle *nic = &hdev->nic; 246 struct hnae3_knic_private_info *kinfo; 247 u16 new_tqps = hdev->num_tqps; 248 int i; 249 250 kinfo = &nic->kinfo; 251 kinfo->num_tc = 0; 252 kinfo->num_desc = hdev->num_desc; 253 kinfo->rx_buf_len = hdev->rx_buf_len; 254 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) 255 if (hdev->hw_tc_map & BIT(i)) 256 kinfo->num_tc++; 257 258 kinfo->rss_size 259 = min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc); 260 new_tqps = kinfo->rss_size * kinfo->num_tc; 261 kinfo->num_tqps = min(new_tqps, hdev->num_tqps); 262 263 /* if this is on going reset then we need to re-allocate the hnae queues 264 * as well since number of TPQs from PF might have changed. 265 */ 266 if (hclgevf_dev_ongoing_reset(hdev)) 267 devm_kfree(&hdev->pdev->dev, kinfo->tqp); 268 269 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps, 270 sizeof(struct hnae3_queue *), GFP_KERNEL); 271 if (!kinfo->tqp) 272 return -ENOMEM; 273 274 for (i = 0; i < kinfo->num_tqps; i++) { 275 hdev->htqp[i].q.handle = &hdev->nic; 276 hdev->htqp[i].q.tqp_index = i; 277 kinfo->tqp[i] = &hdev->htqp[i].q; 278 } 279 280 return 0; 281 } 282 283 static void hclgevf_request_link_info(struct hclgevf_dev *hdev) 284 { 285 int status; 286 u8 resp_msg; 287 288 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL, 289 0, false, &resp_msg, sizeof(u8)); 290 if (status) 291 dev_err(&hdev->pdev->dev, 292 "VF failed to fetch link status(%d) from PF", status); 293 } 294 295 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state) 296 { 297 struct hnae3_handle *handle = &hdev->nic; 298 struct hnae3_client *client; 299 300 client = handle->client; 301 302 if (link_state != hdev->hw.mac.link) { 303 client->ops->link_status_change(handle, !!link_state); 304 hdev->hw.mac.link = link_state; 305 } 306 } 307 308 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev) 309 { 310 struct hnae3_handle *nic = &hdev->nic; 311 int ret; 312 313 nic->ae_algo = &ae_algovf; 314 nic->pdev = hdev->pdev; 315 nic->numa_node_mask = hdev->numa_node_mask; 316 nic->flags |= HNAE3_SUPPORT_VF; 317 318 if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) { 319 dev_err(&hdev->pdev->dev, "unsupported device type %d\n", 320 hdev->ae_dev->dev_type); 321 return -EINVAL; 322 } 323 324 ret = hclgevf_knic_setup(hdev); 325 if (ret) 326 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n", 327 ret); 328 return ret; 329 } 330 331 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id) 332 { 333 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT; 334 hdev->num_msi_left += 1; 335 hdev->num_msi_used -= 1; 336 } 337 338 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num, 339 struct hnae3_vector_info *vector_info) 340 { 341 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 342 struct hnae3_vector_info *vector = vector_info; 343 int alloc = 0; 344 int i, j; 345 346 vector_num = min(hdev->num_msi_left, vector_num); 347 348 for (j = 0; j < vector_num; j++) { 349 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) { 350 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) { 351 vector->vector = pci_irq_vector(hdev->pdev, i); 352 vector->io_addr = hdev->hw.io_base + 353 HCLGEVF_VECTOR_REG_BASE + 354 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET; 355 hdev->vector_status[i] = 0; 356 hdev->vector_irq[i] = vector->vector; 357 358 vector++; 359 alloc++; 360 361 break; 362 } 363 } 364 } 365 hdev->num_msi_left -= alloc; 366 hdev->num_msi_used += alloc; 367 368 return alloc; 369 } 370 371 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector) 372 { 373 int i; 374 375 for (i = 0; i < hdev->num_msi; i++) 376 if (vector == hdev->vector_irq[i]) 377 return i; 378 379 return -EINVAL; 380 } 381 382 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle) 383 { 384 return HCLGEVF_RSS_KEY_SIZE; 385 } 386 387 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle) 388 { 389 return HCLGEVF_RSS_IND_TBL_SIZE; 390 } 391 392 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev) 393 { 394 const u8 *indir = hdev->rss_cfg.rss_indirection_tbl; 395 struct hclgevf_rss_indirection_table_cmd *req; 396 struct hclgevf_desc desc; 397 int status; 398 int i, j; 399 400 req = (struct hclgevf_rss_indirection_table_cmd *)desc.data; 401 402 for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) { 403 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE, 404 false); 405 req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE; 406 req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK; 407 for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++) 408 req->rss_result[j] = 409 indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j]; 410 411 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 412 if (status) { 413 dev_err(&hdev->pdev->dev, 414 "VF failed(=%d) to set RSS indirection table\n", 415 status); 416 return status; 417 } 418 } 419 420 return 0; 421 } 422 423 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev, u16 rss_size) 424 { 425 struct hclgevf_rss_tc_mode_cmd *req; 426 u16 tc_offset[HCLGEVF_MAX_TC_NUM]; 427 u16 tc_valid[HCLGEVF_MAX_TC_NUM]; 428 u16 tc_size[HCLGEVF_MAX_TC_NUM]; 429 struct hclgevf_desc desc; 430 u16 roundup_size; 431 int status; 432 int i; 433 434 req = (struct hclgevf_rss_tc_mode_cmd *)desc.data; 435 436 roundup_size = roundup_pow_of_two(rss_size); 437 roundup_size = ilog2(roundup_size); 438 439 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) { 440 tc_valid[i] = !!(hdev->hw_tc_map & BIT(i)); 441 tc_size[i] = roundup_size; 442 tc_offset[i] = rss_size * i; 443 } 444 445 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false); 446 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) { 447 hnae_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B, 448 (tc_valid[i] & 0x1)); 449 hnae_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M, 450 HCLGEVF_RSS_TC_SIZE_S, tc_size[i]); 451 hnae_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M, 452 HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]); 453 } 454 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 455 if (status) 456 dev_err(&hdev->pdev->dev, 457 "VF failed(=%d) to set rss tc mode\n", status); 458 459 return status; 460 } 461 462 static int hclgevf_get_rss_hw_cfg(struct hnae3_handle *handle, u8 *hash, 463 u8 *key) 464 { 465 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 466 struct hclgevf_rss_config_cmd *req; 467 int lkup_times = key ? 3 : 1; 468 struct hclgevf_desc desc; 469 int key_offset; 470 int key_size; 471 int status; 472 473 req = (struct hclgevf_rss_config_cmd *)desc.data; 474 lkup_times = (lkup_times == 3) ? 3 : ((hash) ? 1 : 0); 475 476 for (key_offset = 0; key_offset < lkup_times; key_offset++) { 477 hclgevf_cmd_setup_basic_desc(&desc, 478 HCLGEVF_OPC_RSS_GENERIC_CONFIG, 479 true); 480 req->hash_config |= (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET); 481 482 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 483 if (status) { 484 dev_err(&hdev->pdev->dev, 485 "failed to get hardware RSS cfg, status = %d\n", 486 status); 487 return status; 488 } 489 490 if (key_offset == 2) 491 key_size = 492 HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2; 493 else 494 key_size = HCLGEVF_RSS_HASH_KEY_NUM; 495 496 if (key) 497 memcpy(key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, 498 req->hash_key, 499 key_size); 500 } 501 502 if (hash) { 503 if ((req->hash_config & 0xf) == HCLGEVF_RSS_HASH_ALGO_TOEPLITZ) 504 *hash = ETH_RSS_HASH_TOP; 505 else 506 *hash = ETH_RSS_HASH_UNKNOWN; 507 } 508 509 return 0; 510 } 511 512 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key, 513 u8 *hfunc) 514 { 515 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 516 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 517 int i; 518 519 if (indir) 520 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++) 521 indir[i] = rss_cfg->rss_indirection_tbl[i]; 522 523 return hclgevf_get_rss_hw_cfg(handle, hfunc, key); 524 } 525 526 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir, 527 const u8 *key, const u8 hfunc) 528 { 529 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 530 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 531 int i; 532 533 /* update the shadow RSS table with user specified qids */ 534 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++) 535 rss_cfg->rss_indirection_tbl[i] = indir[i]; 536 537 /* update the hardware */ 538 return hclgevf_set_rss_indir_table(hdev); 539 } 540 541 static int hclgevf_get_tc_size(struct hnae3_handle *handle) 542 { 543 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 544 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 545 546 return rss_cfg->rss_size; 547 } 548 549 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en, 550 int vector, 551 struct hnae3_ring_chain_node *ring_chain) 552 { 553 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 554 struct hnae3_ring_chain_node *node; 555 struct hclge_mbx_vf_to_pf_cmd *req; 556 struct hclgevf_desc desc; 557 int i = 0, vector_id; 558 int status; 559 u8 type; 560 561 req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data; 562 vector_id = hclgevf_get_vector_index(hdev, vector); 563 if (vector_id < 0) { 564 dev_err(&handle->pdev->dev, 565 "Get vector index fail. ret =%d\n", vector_id); 566 return vector_id; 567 } 568 569 for (node = ring_chain; node; node = node->next) { 570 int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM + 571 HCLGE_MBX_RING_NODE_VARIABLE_NUM * i; 572 573 if (i == 0) { 574 hclgevf_cmd_setup_basic_desc(&desc, 575 HCLGEVF_OPC_MBX_VF_TO_PF, 576 false); 577 type = en ? 578 HCLGE_MBX_MAP_RING_TO_VECTOR : 579 HCLGE_MBX_UNMAP_RING_TO_VECTOR; 580 req->msg[0] = type; 581 req->msg[1] = vector_id; 582 } 583 584 req->msg[idx_offset] = 585 hnae_get_bit(node->flag, HNAE3_RING_TYPE_B); 586 req->msg[idx_offset + 1] = node->tqp_index; 587 req->msg[idx_offset + 2] = hnae_get_field(node->int_gl_idx, 588 HNAE3_RING_GL_IDX_M, 589 HNAE3_RING_GL_IDX_S); 590 591 i++; 592 if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM - 593 HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) / 594 HCLGE_MBX_RING_NODE_VARIABLE_NUM) || 595 !node->next) { 596 req->msg[2] = i; 597 598 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 599 if (status) { 600 dev_err(&hdev->pdev->dev, 601 "Map TQP fail, status is %d.\n", 602 status); 603 return status; 604 } 605 i = 0; 606 hclgevf_cmd_setup_basic_desc(&desc, 607 HCLGEVF_OPC_MBX_VF_TO_PF, 608 false); 609 req->msg[0] = type; 610 req->msg[1] = vector_id; 611 } 612 } 613 614 return 0; 615 } 616 617 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector, 618 struct hnae3_ring_chain_node *ring_chain) 619 { 620 return hclgevf_bind_ring_to_vector(handle, true, vector, ring_chain); 621 } 622 623 static int hclgevf_unmap_ring_from_vector( 624 struct hnae3_handle *handle, 625 int vector, 626 struct hnae3_ring_chain_node *ring_chain) 627 { 628 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 629 int ret, vector_id; 630 631 vector_id = hclgevf_get_vector_index(hdev, vector); 632 if (vector_id < 0) { 633 dev_err(&handle->pdev->dev, 634 "Get vector index fail. ret =%d\n", vector_id); 635 return vector_id; 636 } 637 638 ret = hclgevf_bind_ring_to_vector(handle, false, vector, ring_chain); 639 if (ret) 640 dev_err(&handle->pdev->dev, 641 "Unmap ring from vector fail. vector=%d, ret =%d\n", 642 vector_id, 643 ret); 644 645 return ret; 646 } 647 648 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector) 649 { 650 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 651 652 hclgevf_free_vector(hdev, vector); 653 654 return 0; 655 } 656 657 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev, u32 en) 658 { 659 struct hclge_mbx_vf_to_pf_cmd *req; 660 struct hclgevf_desc desc; 661 int status; 662 663 req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data; 664 665 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false); 666 req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE; 667 req->msg[1] = en; 668 669 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 670 if (status) 671 dev_err(&hdev->pdev->dev, 672 "Set promisc mode fail, status is %d.\n", status); 673 674 return status; 675 } 676 677 static void hclgevf_set_promisc_mode(struct hnae3_handle *handle, u32 en) 678 { 679 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 680 681 hclgevf_cmd_set_promisc_mode(hdev, en); 682 } 683 684 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id, 685 int stream_id, bool enable) 686 { 687 struct hclgevf_cfg_com_tqp_queue_cmd *req; 688 struct hclgevf_desc desc; 689 int status; 690 691 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data; 692 693 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE, 694 false); 695 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK); 696 req->stream_id = cpu_to_le16(stream_id); 697 req->enable |= enable << HCLGEVF_TQP_ENABLE_B; 698 699 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 700 if (status) 701 dev_err(&hdev->pdev->dev, 702 "TQP enable fail, status =%d.\n", status); 703 704 return status; 705 } 706 707 static int hclgevf_get_queue_id(struct hnae3_queue *queue) 708 { 709 struct hclgevf_tqp *tqp = container_of(queue, struct hclgevf_tqp, q); 710 711 return tqp->index; 712 } 713 714 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle) 715 { 716 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 717 struct hnae3_queue *queue; 718 struct hclgevf_tqp *tqp; 719 int i; 720 721 for (i = 0; i < hdev->num_tqps; i++) { 722 queue = handle->kinfo.tqp[i]; 723 tqp = container_of(queue, struct hclgevf_tqp, q); 724 memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats)); 725 } 726 } 727 728 static int hclgevf_cfg_func_mta_filter(struct hnae3_handle *handle, bool en) 729 { 730 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 731 u8 msg[2] = {0}; 732 733 msg[0] = en; 734 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST, 735 HCLGE_MBX_MAC_VLAN_MC_FUNC_MTA_ENABLE, 736 msg, 1, false, NULL, 0); 737 } 738 739 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p) 740 { 741 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 742 743 ether_addr_copy(p, hdev->hw.mac.mac_addr); 744 } 745 746 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p, 747 bool is_first) 748 { 749 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 750 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr; 751 u8 *new_mac_addr = (u8 *)p; 752 u8 msg_data[ETH_ALEN * 2]; 753 u16 subcode; 754 int status; 755 756 ether_addr_copy(msg_data, new_mac_addr); 757 ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr); 758 759 subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD : 760 HCLGE_MBX_MAC_VLAN_UC_MODIFY; 761 762 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST, 763 subcode, msg_data, ETH_ALEN * 2, 764 true, NULL, 0); 765 if (!status) 766 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr); 767 768 return status; 769 } 770 771 static int hclgevf_add_uc_addr(struct hnae3_handle *handle, 772 const unsigned char *addr) 773 { 774 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 775 776 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST, 777 HCLGE_MBX_MAC_VLAN_UC_ADD, 778 addr, ETH_ALEN, false, NULL, 0); 779 } 780 781 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle, 782 const unsigned char *addr) 783 { 784 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 785 786 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST, 787 HCLGE_MBX_MAC_VLAN_UC_REMOVE, 788 addr, ETH_ALEN, false, NULL, 0); 789 } 790 791 static int hclgevf_add_mc_addr(struct hnae3_handle *handle, 792 const unsigned char *addr) 793 { 794 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 795 796 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST, 797 HCLGE_MBX_MAC_VLAN_MC_ADD, 798 addr, ETH_ALEN, false, NULL, 0); 799 } 800 801 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle, 802 const unsigned char *addr) 803 { 804 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 805 806 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST, 807 HCLGE_MBX_MAC_VLAN_MC_REMOVE, 808 addr, ETH_ALEN, false, NULL, 0); 809 } 810 811 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle, 812 __be16 proto, u16 vlan_id, 813 bool is_kill) 814 { 815 #define HCLGEVF_VLAN_MBX_MSG_LEN 5 816 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 817 u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN]; 818 819 if (vlan_id > 4095) 820 return -EINVAL; 821 822 if (proto != htons(ETH_P_8021Q)) 823 return -EPROTONOSUPPORT; 824 825 msg_data[0] = is_kill; 826 memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id)); 827 memcpy(&msg_data[3], &proto, sizeof(proto)); 828 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN, 829 HCLGE_MBX_VLAN_FILTER, msg_data, 830 HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0); 831 } 832 833 static void hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id) 834 { 835 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 836 u8 msg_data[2]; 837 int ret; 838 839 memcpy(&msg_data[0], &queue_id, sizeof(queue_id)); 840 841 /* disable vf queue before send queue reset msg to PF */ 842 ret = hclgevf_tqp_enable(hdev, queue_id, 0, false); 843 if (ret) 844 return; 845 846 hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data, 847 2, true, NULL, 0); 848 } 849 850 static int hclgevf_notify_client(struct hclgevf_dev *hdev, 851 enum hnae3_reset_notify_type type) 852 { 853 struct hnae3_client *client = hdev->nic_client; 854 struct hnae3_handle *handle = &hdev->nic; 855 856 if (!client->ops->reset_notify) 857 return -EOPNOTSUPP; 858 859 return client->ops->reset_notify(handle, type); 860 } 861 862 static int hclgevf_reset_wait(struct hclgevf_dev *hdev) 863 { 864 #define HCLGEVF_RESET_WAIT_MS 500 865 #define HCLGEVF_RESET_WAIT_CNT 20 866 u32 val, cnt = 0; 867 868 /* wait to check the hardware reset completion status */ 869 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING); 870 while (hnae_get_bit(val, HCLGEVF_FUN_RST_ING_B) && 871 (cnt < HCLGEVF_RESET_WAIT_CNT)) { 872 msleep(HCLGEVF_RESET_WAIT_MS); 873 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING); 874 cnt++; 875 } 876 877 /* hardware completion status should be available by this time */ 878 if (cnt >= HCLGEVF_RESET_WAIT_CNT) { 879 dev_warn(&hdev->pdev->dev, 880 "could'nt get reset done status from h/w, timeout!\n"); 881 return -EBUSY; 882 } 883 884 /* we will wait a bit more to let reset of the stack to complete. This 885 * might happen in case reset assertion was made by PF. Yes, this also 886 * means we might end up waiting bit more even for VF reset. 887 */ 888 msleep(5000); 889 890 return 0; 891 } 892 893 static int hclgevf_reset_stack(struct hclgevf_dev *hdev) 894 { 895 int ret; 896 897 /* uninitialize the nic client */ 898 hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT); 899 900 /* re-initialize the hclge device */ 901 ret = hclgevf_init_hdev(hdev); 902 if (ret) { 903 dev_err(&hdev->pdev->dev, 904 "hclge device re-init failed, VF is disabled!\n"); 905 return ret; 906 } 907 908 /* bring up the nic client again */ 909 hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT); 910 911 return 0; 912 } 913 914 static int hclgevf_reset(struct hclgevf_dev *hdev) 915 { 916 int ret; 917 918 rtnl_lock(); 919 920 /* bring down the nic to stop any ongoing TX/RX */ 921 hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); 922 923 /* check if VF could successfully fetch the hardware reset completion 924 * status from the hardware 925 */ 926 ret = hclgevf_reset_wait(hdev); 927 if (ret) { 928 /* can't do much in this situation, will disable VF */ 929 dev_err(&hdev->pdev->dev, 930 "VF failed(=%d) to fetch H/W reset completion status\n", 931 ret); 932 933 dev_warn(&hdev->pdev->dev, "VF reset failed, disabling VF!\n"); 934 hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT); 935 936 rtnl_unlock(); 937 return ret; 938 } 939 940 /* now, re-initialize the nic client and ae device*/ 941 ret = hclgevf_reset_stack(hdev); 942 if (ret) 943 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n"); 944 945 /* bring up the nic to enable TX/RX again */ 946 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); 947 948 rtnl_unlock(); 949 950 return ret; 951 } 952 953 static int hclgevf_do_reset(struct hclgevf_dev *hdev) 954 { 955 int status; 956 u8 respmsg; 957 958 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL, 959 0, false, &respmsg, sizeof(u8)); 960 if (status) 961 dev_err(&hdev->pdev->dev, 962 "VF reset request to PF failed(=%d)\n", status); 963 964 return status; 965 } 966 967 static void hclgevf_reset_event(struct hnae3_handle *handle) 968 { 969 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 970 971 dev_info(&hdev->pdev->dev, "received reset request from VF enet\n"); 972 973 handle->reset_level = HNAE3_VF_RESET; 974 975 /* reset of this VF requested */ 976 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state); 977 hclgevf_reset_task_schedule(hdev); 978 979 handle->last_reset_time = jiffies; 980 } 981 982 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle) 983 { 984 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 985 986 return hdev->fw_version; 987 } 988 989 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev) 990 { 991 struct hclgevf_misc_vector *vector = &hdev->misc_vector; 992 993 vector->vector_irq = pci_irq_vector(hdev->pdev, 994 HCLGEVF_MISC_VECTOR_NUM); 995 vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE; 996 /* vector status always valid for Vector 0 */ 997 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0; 998 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq; 999 1000 hdev->num_msi_left -= 1; 1001 hdev->num_msi_used += 1; 1002 } 1003 1004 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev) 1005 { 1006 if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) && 1007 !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) { 1008 set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state); 1009 schedule_work(&hdev->rst_service_task); 1010 } 1011 } 1012 1013 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev) 1014 { 1015 if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) && 1016 !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) { 1017 set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state); 1018 schedule_work(&hdev->mbx_service_task); 1019 } 1020 } 1021 1022 static void hclgevf_task_schedule(struct hclgevf_dev *hdev) 1023 { 1024 if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state) && 1025 !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state)) 1026 schedule_work(&hdev->service_task); 1027 } 1028 1029 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev) 1030 { 1031 /* if we have any pending mailbox event then schedule the mbx task */ 1032 if (hdev->mbx_event_pending) 1033 hclgevf_mbx_task_schedule(hdev); 1034 1035 if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state)) 1036 hclgevf_reset_task_schedule(hdev); 1037 } 1038 1039 static void hclgevf_service_timer(struct timer_list *t) 1040 { 1041 struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer); 1042 1043 mod_timer(&hdev->service_timer, jiffies + 5 * HZ); 1044 1045 hclgevf_task_schedule(hdev); 1046 } 1047 1048 static void hclgevf_reset_service_task(struct work_struct *work) 1049 { 1050 struct hclgevf_dev *hdev = 1051 container_of(work, struct hclgevf_dev, rst_service_task); 1052 int ret; 1053 1054 if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) 1055 return; 1056 1057 clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state); 1058 1059 if (test_and_clear_bit(HCLGEVF_RESET_PENDING, 1060 &hdev->reset_state)) { 1061 /* PF has initmated that it is about to reset the hardware. 1062 * We now have to poll & check if harware has actually completed 1063 * the reset sequence. On hardware reset completion, VF needs to 1064 * reset the client and ae device. 1065 */ 1066 hdev->reset_attempts = 0; 1067 1068 ret = hclgevf_reset(hdev); 1069 if (ret) 1070 dev_err(&hdev->pdev->dev, "VF stack reset failed.\n"); 1071 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED, 1072 &hdev->reset_state)) { 1073 /* we could be here when either of below happens: 1074 * 1. reset was initiated due to watchdog timeout due to 1075 * a. IMP was earlier reset and our TX got choked down and 1076 * which resulted in watchdog reacting and inducing VF 1077 * reset. This also means our cmdq would be unreliable. 1078 * b. problem in TX due to other lower layer(example link 1079 * layer not functioning properly etc.) 1080 * 2. VF reset might have been initiated due to some config 1081 * change. 1082 * 1083 * NOTE: Theres no clear way to detect above cases than to react 1084 * to the response of PF for this reset request. PF will ack the 1085 * 1b and 2. cases but we will not get any intimation about 1a 1086 * from PF as cmdq would be in unreliable state i.e. mailbox 1087 * communication between PF and VF would be broken. 1088 */ 1089 1090 /* if we are never geting into pending state it means either: 1091 * 1. PF is not receiving our request which could be due to IMP 1092 * reset 1093 * 2. PF is screwed 1094 * We cannot do much for 2. but to check first we can try reset 1095 * our PCIe + stack and see if it alleviates the problem. 1096 */ 1097 if (hdev->reset_attempts > 3) { 1098 /* prepare for full reset of stack + pcie interface */ 1099 hdev->nic.reset_level = HNAE3_VF_FULL_RESET; 1100 1101 /* "defer" schedule the reset task again */ 1102 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1103 } else { 1104 hdev->reset_attempts++; 1105 1106 /* request PF for resetting this VF via mailbox */ 1107 ret = hclgevf_do_reset(hdev); 1108 if (ret) 1109 dev_warn(&hdev->pdev->dev, 1110 "VF rst fail, stack will call\n"); 1111 } 1112 } 1113 1114 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1115 } 1116 1117 static void hclgevf_mailbox_service_task(struct work_struct *work) 1118 { 1119 struct hclgevf_dev *hdev; 1120 1121 hdev = container_of(work, struct hclgevf_dev, mbx_service_task); 1122 1123 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) 1124 return; 1125 1126 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state); 1127 1128 hclgevf_mbx_async_handler(hdev); 1129 1130 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); 1131 } 1132 1133 static void hclgevf_service_task(struct work_struct *work) 1134 { 1135 struct hclgevf_dev *hdev; 1136 1137 hdev = container_of(work, struct hclgevf_dev, service_task); 1138 1139 /* request the link status from the PF. PF would be able to tell VF 1140 * about such updates in future so we might remove this later 1141 */ 1142 hclgevf_request_link_info(hdev); 1143 1144 hclgevf_deferred_task_schedule(hdev); 1145 1146 clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state); 1147 } 1148 1149 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr) 1150 { 1151 hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr); 1152 } 1153 1154 static bool hclgevf_check_event_cause(struct hclgevf_dev *hdev, u32 *clearval) 1155 { 1156 u32 cmdq_src_reg; 1157 1158 /* fetch the events from their corresponding regs */ 1159 cmdq_src_reg = hclgevf_read_dev(&hdev->hw, 1160 HCLGEVF_VECTOR0_CMDQ_SRC_REG); 1161 1162 /* check for vector0 mailbox(=CMDQ RX) event source */ 1163 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) { 1164 cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B); 1165 *clearval = cmdq_src_reg; 1166 return true; 1167 } 1168 1169 dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n"); 1170 1171 return false; 1172 } 1173 1174 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en) 1175 { 1176 writel(en ? 1 : 0, vector->addr); 1177 } 1178 1179 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data) 1180 { 1181 struct hclgevf_dev *hdev = data; 1182 u32 clearval; 1183 1184 hclgevf_enable_vector(&hdev->misc_vector, false); 1185 if (!hclgevf_check_event_cause(hdev, &clearval)) 1186 goto skip_sched; 1187 1188 hclgevf_mbx_handler(hdev); 1189 1190 hclgevf_clear_event_cause(hdev, clearval); 1191 1192 skip_sched: 1193 hclgevf_enable_vector(&hdev->misc_vector, true); 1194 1195 return IRQ_HANDLED; 1196 } 1197 1198 static int hclgevf_configure(struct hclgevf_dev *hdev) 1199 { 1200 int ret; 1201 1202 /* get queue configuration from PF */ 1203 ret = hclge_get_queue_info(hdev); 1204 if (ret) 1205 return ret; 1206 /* get tc configuration from PF */ 1207 return hclgevf_get_tc_info(hdev); 1208 } 1209 1210 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev) 1211 { 1212 struct pci_dev *pdev = ae_dev->pdev; 1213 struct hclgevf_dev *hdev = ae_dev->priv; 1214 1215 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL); 1216 if (!hdev) 1217 return -ENOMEM; 1218 1219 hdev->pdev = pdev; 1220 hdev->ae_dev = ae_dev; 1221 ae_dev->priv = hdev; 1222 1223 return 0; 1224 } 1225 1226 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev) 1227 { 1228 struct hnae3_handle *roce = &hdev->roce; 1229 struct hnae3_handle *nic = &hdev->nic; 1230 1231 roce->rinfo.num_vectors = HCLGEVF_ROCEE_VECTOR_NUM; 1232 1233 if (hdev->num_msi_left < roce->rinfo.num_vectors || 1234 hdev->num_msi_left == 0) 1235 return -EINVAL; 1236 1237 roce->rinfo.base_vector = 1238 hdev->vector_status[hdev->num_msi_used]; 1239 1240 roce->rinfo.netdev = nic->kinfo.netdev; 1241 roce->rinfo.roce_io_base = hdev->hw.io_base; 1242 1243 roce->pdev = nic->pdev; 1244 roce->ae_algo = nic->ae_algo; 1245 roce->numa_node_mask = nic->numa_node_mask; 1246 1247 return 0; 1248 } 1249 1250 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev) 1251 { 1252 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 1253 int i, ret; 1254 1255 rss_cfg->rss_size = hdev->rss_size_max; 1256 1257 /* Initialize RSS indirect table for each vport */ 1258 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++) 1259 rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max; 1260 1261 ret = hclgevf_set_rss_indir_table(hdev); 1262 if (ret) 1263 return ret; 1264 1265 return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max); 1266 } 1267 1268 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev) 1269 { 1270 /* other vlan config(like, VLAN TX/RX offload) would also be added 1271 * here later 1272 */ 1273 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0, 1274 false); 1275 } 1276 1277 static int hclgevf_ae_start(struct hnae3_handle *handle) 1278 { 1279 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1280 int i, queue_id; 1281 1282 for (i = 0; i < handle->kinfo.num_tqps; i++) { 1283 /* ring enable */ 1284 queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]); 1285 if (queue_id < 0) { 1286 dev_warn(&hdev->pdev->dev, 1287 "Get invalid queue id, ignore it\n"); 1288 continue; 1289 } 1290 1291 hclgevf_tqp_enable(hdev, queue_id, 0, true); 1292 } 1293 1294 /* reset tqp stats */ 1295 hclgevf_reset_tqp_stats(handle); 1296 1297 hclgevf_request_link_info(hdev); 1298 1299 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state); 1300 mod_timer(&hdev->service_timer, jiffies + HZ); 1301 1302 return 0; 1303 } 1304 1305 static void hclgevf_ae_stop(struct hnae3_handle *handle) 1306 { 1307 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1308 int i, queue_id; 1309 1310 for (i = 0; i < hdev->num_tqps; i++) { 1311 /* Ring disable */ 1312 queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]); 1313 if (queue_id < 0) { 1314 dev_warn(&hdev->pdev->dev, 1315 "Get invalid queue id, ignore it\n"); 1316 continue; 1317 } 1318 1319 hclgevf_tqp_enable(hdev, queue_id, 0, false); 1320 } 1321 1322 /* reset tqp stats */ 1323 hclgevf_reset_tqp_stats(handle); 1324 del_timer_sync(&hdev->service_timer); 1325 cancel_work_sync(&hdev->service_task); 1326 hclgevf_update_link_status(hdev, 0); 1327 } 1328 1329 static void hclgevf_state_init(struct hclgevf_dev *hdev) 1330 { 1331 /* if this is on going reset then skip this initialization */ 1332 if (hclgevf_dev_ongoing_reset(hdev)) 1333 return; 1334 1335 /* setup tasks for the MBX */ 1336 INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task); 1337 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state); 1338 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); 1339 1340 /* setup tasks for service timer */ 1341 timer_setup(&hdev->service_timer, hclgevf_service_timer, 0); 1342 1343 INIT_WORK(&hdev->service_task, hclgevf_service_task); 1344 clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state); 1345 1346 INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task); 1347 1348 mutex_init(&hdev->mbx_resp.mbx_mutex); 1349 1350 /* bring the device down */ 1351 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 1352 } 1353 1354 static void hclgevf_state_uninit(struct hclgevf_dev *hdev) 1355 { 1356 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 1357 1358 if (hdev->service_timer.function) 1359 del_timer_sync(&hdev->service_timer); 1360 if (hdev->service_task.func) 1361 cancel_work_sync(&hdev->service_task); 1362 if (hdev->mbx_service_task.func) 1363 cancel_work_sync(&hdev->mbx_service_task); 1364 if (hdev->rst_service_task.func) 1365 cancel_work_sync(&hdev->rst_service_task); 1366 1367 mutex_destroy(&hdev->mbx_resp.mbx_mutex); 1368 } 1369 1370 static int hclgevf_init_msi(struct hclgevf_dev *hdev) 1371 { 1372 struct pci_dev *pdev = hdev->pdev; 1373 int vectors; 1374 int i; 1375 1376 /* if this is on going reset then skip this initialization */ 1377 if (hclgevf_dev_ongoing_reset(hdev)) 1378 return 0; 1379 1380 hdev->num_msi = HCLGEVF_MAX_VF_VECTOR_NUM; 1381 1382 vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi, 1383 PCI_IRQ_MSI | PCI_IRQ_MSIX); 1384 if (vectors < 0) { 1385 dev_err(&pdev->dev, 1386 "failed(%d) to allocate MSI/MSI-X vectors\n", 1387 vectors); 1388 return vectors; 1389 } 1390 if (vectors < hdev->num_msi) 1391 dev_warn(&hdev->pdev->dev, 1392 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n", 1393 hdev->num_msi, vectors); 1394 1395 hdev->num_msi = vectors; 1396 hdev->num_msi_left = vectors; 1397 hdev->base_msi_vector = pdev->irq; 1398 1399 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi, 1400 sizeof(u16), GFP_KERNEL); 1401 if (!hdev->vector_status) { 1402 pci_free_irq_vectors(pdev); 1403 return -ENOMEM; 1404 } 1405 1406 for (i = 0; i < hdev->num_msi; i++) 1407 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT; 1408 1409 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi, 1410 sizeof(int), GFP_KERNEL); 1411 if (!hdev->vector_irq) { 1412 pci_free_irq_vectors(pdev); 1413 return -ENOMEM; 1414 } 1415 1416 return 0; 1417 } 1418 1419 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev) 1420 { 1421 struct pci_dev *pdev = hdev->pdev; 1422 1423 pci_free_irq_vectors(pdev); 1424 } 1425 1426 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev) 1427 { 1428 int ret = 0; 1429 1430 /* if this is on going reset then skip this initialization */ 1431 if (hclgevf_dev_ongoing_reset(hdev)) 1432 return 0; 1433 1434 hclgevf_get_misc_vector(hdev); 1435 1436 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle, 1437 0, "hclgevf_cmd", hdev); 1438 if (ret) { 1439 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n", 1440 hdev->misc_vector.vector_irq); 1441 return ret; 1442 } 1443 1444 /* enable misc. vector(vector 0) */ 1445 hclgevf_enable_vector(&hdev->misc_vector, true); 1446 1447 return ret; 1448 } 1449 1450 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev) 1451 { 1452 /* disable misc vector(vector 0) */ 1453 hclgevf_enable_vector(&hdev->misc_vector, false); 1454 free_irq(hdev->misc_vector.vector_irq, hdev); 1455 hclgevf_free_vector(hdev, 0); 1456 } 1457 1458 static int hclgevf_init_instance(struct hclgevf_dev *hdev, 1459 struct hnae3_client *client) 1460 { 1461 int ret; 1462 1463 switch (client->type) { 1464 case HNAE3_CLIENT_KNIC: 1465 hdev->nic_client = client; 1466 hdev->nic.client = client; 1467 1468 ret = client->ops->init_instance(&hdev->nic); 1469 if (ret) 1470 return ret; 1471 1472 if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) { 1473 struct hnae3_client *rc = hdev->roce_client; 1474 1475 ret = hclgevf_init_roce_base_info(hdev); 1476 if (ret) 1477 return ret; 1478 ret = rc->ops->init_instance(&hdev->roce); 1479 if (ret) 1480 return ret; 1481 } 1482 break; 1483 case HNAE3_CLIENT_UNIC: 1484 hdev->nic_client = client; 1485 hdev->nic.client = client; 1486 1487 ret = client->ops->init_instance(&hdev->nic); 1488 if (ret) 1489 return ret; 1490 break; 1491 case HNAE3_CLIENT_ROCE: 1492 hdev->roce_client = client; 1493 hdev->roce.client = client; 1494 1495 if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) { 1496 ret = hclgevf_init_roce_base_info(hdev); 1497 if (ret) 1498 return ret; 1499 1500 ret = client->ops->init_instance(&hdev->roce); 1501 if (ret) 1502 return ret; 1503 } 1504 } 1505 1506 return 0; 1507 } 1508 1509 static void hclgevf_uninit_instance(struct hclgevf_dev *hdev, 1510 struct hnae3_client *client) 1511 { 1512 /* un-init roce, if it exists */ 1513 if (hdev->roce_client) 1514 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0); 1515 1516 /* un-init nic/unic, if this was not called by roce client */ 1517 if ((client->ops->uninit_instance) && 1518 (client->type != HNAE3_CLIENT_ROCE)) 1519 client->ops->uninit_instance(&hdev->nic, 0); 1520 } 1521 1522 static int hclgevf_register_client(struct hnae3_client *client, 1523 struct hnae3_ae_dev *ae_dev) 1524 { 1525 struct hclgevf_dev *hdev = ae_dev->priv; 1526 1527 return hclgevf_init_instance(hdev, client); 1528 } 1529 1530 static void hclgevf_unregister_client(struct hnae3_client *client, 1531 struct hnae3_ae_dev *ae_dev) 1532 { 1533 struct hclgevf_dev *hdev = ae_dev->priv; 1534 1535 hclgevf_uninit_instance(hdev, client); 1536 } 1537 1538 static int hclgevf_pci_init(struct hclgevf_dev *hdev) 1539 { 1540 struct pci_dev *pdev = hdev->pdev; 1541 struct hclgevf_hw *hw; 1542 int ret; 1543 1544 /* check if we need to skip initialization of pci. This will happen if 1545 * device is undergoing VF reset. Otherwise, we would need to 1546 * re-initialize pci interface again i.e. when device is not going 1547 * through *any* reset or actually undergoing full reset. 1548 */ 1549 if (hclgevf_dev_ongoing_reset(hdev)) 1550 return 0; 1551 1552 ret = pci_enable_device(pdev); 1553 if (ret) { 1554 dev_err(&pdev->dev, "failed to enable PCI device\n"); 1555 goto err_no_drvdata; 1556 } 1557 1558 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1559 if (ret) { 1560 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting"); 1561 goto err_disable_device; 1562 } 1563 1564 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME); 1565 if (ret) { 1566 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret); 1567 goto err_disable_device; 1568 } 1569 1570 pci_set_master(pdev); 1571 hw = &hdev->hw; 1572 hw->hdev = hdev; 1573 hw->io_base = pci_iomap(pdev, 2, 0); 1574 if (!hw->io_base) { 1575 dev_err(&pdev->dev, "can't map configuration register space\n"); 1576 ret = -ENOMEM; 1577 goto err_clr_master; 1578 } 1579 1580 return 0; 1581 1582 err_clr_master: 1583 pci_clear_master(pdev); 1584 pci_release_regions(pdev); 1585 err_disable_device: 1586 pci_disable_device(pdev); 1587 err_no_drvdata: 1588 pci_set_drvdata(pdev, NULL); 1589 return ret; 1590 } 1591 1592 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev) 1593 { 1594 struct pci_dev *pdev = hdev->pdev; 1595 1596 pci_iounmap(pdev, hdev->hw.io_base); 1597 pci_clear_master(pdev); 1598 pci_release_regions(pdev); 1599 pci_disable_device(pdev); 1600 pci_set_drvdata(pdev, NULL); 1601 } 1602 1603 static int hclgevf_init_hdev(struct hclgevf_dev *hdev) 1604 { 1605 struct pci_dev *pdev = hdev->pdev; 1606 int ret; 1607 1608 /* check if device is on-going full reset(i.e. pcie as well) */ 1609 if (hclgevf_dev_ongoing_full_reset(hdev)) { 1610 dev_warn(&pdev->dev, "device is going full reset\n"); 1611 hclgevf_uninit_hdev(hdev); 1612 } 1613 1614 ret = hclgevf_pci_init(hdev); 1615 if (ret) { 1616 dev_err(&pdev->dev, "PCI initialization failed\n"); 1617 return ret; 1618 } 1619 1620 ret = hclgevf_init_msi(hdev); 1621 if (ret) { 1622 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret); 1623 goto err_irq_init; 1624 } 1625 1626 hclgevf_state_init(hdev); 1627 1628 ret = hclgevf_misc_irq_init(hdev); 1629 if (ret) { 1630 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n", 1631 ret); 1632 goto err_misc_irq_init; 1633 } 1634 1635 ret = hclgevf_cmd_init(hdev); 1636 if (ret) 1637 goto err_cmd_init; 1638 1639 ret = hclgevf_configure(hdev); 1640 if (ret) { 1641 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret); 1642 goto err_config; 1643 } 1644 1645 ret = hclgevf_alloc_tqps(hdev); 1646 if (ret) { 1647 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret); 1648 goto err_config; 1649 } 1650 1651 ret = hclgevf_set_handle_info(hdev); 1652 if (ret) { 1653 dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret); 1654 goto err_config; 1655 } 1656 1657 /* Initialize VF's MTA */ 1658 hdev->accept_mta_mc = true; 1659 ret = hclgevf_cfg_func_mta_filter(&hdev->nic, hdev->accept_mta_mc); 1660 if (ret) { 1661 dev_err(&hdev->pdev->dev, 1662 "failed(%d) to set mta filter mode\n", ret); 1663 goto err_config; 1664 } 1665 1666 /* Initialize RSS for this VF */ 1667 ret = hclgevf_rss_init_hw(hdev); 1668 if (ret) { 1669 dev_err(&hdev->pdev->dev, 1670 "failed(%d) to initialize RSS\n", ret); 1671 goto err_config; 1672 } 1673 1674 ret = hclgevf_init_vlan_config(hdev); 1675 if (ret) { 1676 dev_err(&hdev->pdev->dev, 1677 "failed(%d) to initialize VLAN config\n", ret); 1678 goto err_config; 1679 } 1680 1681 pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME); 1682 1683 return 0; 1684 1685 err_config: 1686 hclgevf_cmd_uninit(hdev); 1687 err_cmd_init: 1688 hclgevf_misc_irq_uninit(hdev); 1689 err_misc_irq_init: 1690 hclgevf_state_uninit(hdev); 1691 hclgevf_uninit_msi(hdev); 1692 err_irq_init: 1693 hclgevf_pci_uninit(hdev); 1694 return ret; 1695 } 1696 1697 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev) 1698 { 1699 hclgevf_cmd_uninit(hdev); 1700 hclgevf_misc_irq_uninit(hdev); 1701 hclgevf_state_uninit(hdev); 1702 hclgevf_uninit_msi(hdev); 1703 hclgevf_pci_uninit(hdev); 1704 } 1705 1706 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev) 1707 { 1708 struct pci_dev *pdev = ae_dev->pdev; 1709 int ret; 1710 1711 ret = hclgevf_alloc_hdev(ae_dev); 1712 if (ret) { 1713 dev_err(&pdev->dev, "hclge device allocation failed\n"); 1714 return ret; 1715 } 1716 1717 ret = hclgevf_init_hdev(ae_dev->priv); 1718 if (ret) 1719 dev_err(&pdev->dev, "hclge device initialization failed\n"); 1720 1721 return ret; 1722 } 1723 1724 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev) 1725 { 1726 struct hclgevf_dev *hdev = ae_dev->priv; 1727 1728 hclgevf_uninit_hdev(hdev); 1729 ae_dev->priv = NULL; 1730 } 1731 1732 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev) 1733 { 1734 struct hnae3_handle *nic = &hdev->nic; 1735 struct hnae3_knic_private_info *kinfo = &nic->kinfo; 1736 1737 return min_t(u32, hdev->rss_size_max * kinfo->num_tc, hdev->num_tqps); 1738 } 1739 1740 /** 1741 * hclgevf_get_channels - Get the current channels enabled and max supported. 1742 * @handle: hardware information for network interface 1743 * @ch: ethtool channels structure 1744 * 1745 * We don't support separate tx and rx queues as channels. The other count 1746 * represents how many queues are being used for control. max_combined counts 1747 * how many queue pairs we can support. They may not be mapped 1 to 1 with 1748 * q_vectors since we support a lot more queue pairs than q_vectors. 1749 **/ 1750 static void hclgevf_get_channels(struct hnae3_handle *handle, 1751 struct ethtool_channels *ch) 1752 { 1753 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1754 1755 ch->max_combined = hclgevf_get_max_channels(hdev); 1756 ch->other_count = 0; 1757 ch->max_other = 0; 1758 ch->combined_count = hdev->num_tqps; 1759 } 1760 1761 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle, 1762 u16 *free_tqps, u16 *max_rss_size) 1763 { 1764 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1765 1766 *free_tqps = 0; 1767 *max_rss_size = hdev->rss_size_max; 1768 } 1769 1770 static int hclgevf_get_status(struct hnae3_handle *handle) 1771 { 1772 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1773 1774 return hdev->hw.mac.link; 1775 } 1776 1777 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle, 1778 u8 *auto_neg, u32 *speed, 1779 u8 *duplex) 1780 { 1781 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1782 1783 if (speed) 1784 *speed = hdev->hw.mac.speed; 1785 if (duplex) 1786 *duplex = hdev->hw.mac.duplex; 1787 if (auto_neg) 1788 *auto_neg = AUTONEG_DISABLE; 1789 } 1790 1791 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed, 1792 u8 duplex) 1793 { 1794 hdev->hw.mac.speed = speed; 1795 hdev->hw.mac.duplex = duplex; 1796 } 1797 1798 static const struct hnae3_ae_ops hclgevf_ops = { 1799 .init_ae_dev = hclgevf_init_ae_dev, 1800 .uninit_ae_dev = hclgevf_uninit_ae_dev, 1801 .init_client_instance = hclgevf_register_client, 1802 .uninit_client_instance = hclgevf_unregister_client, 1803 .start = hclgevf_ae_start, 1804 .stop = hclgevf_ae_stop, 1805 .map_ring_to_vector = hclgevf_map_ring_to_vector, 1806 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector, 1807 .get_vector = hclgevf_get_vector, 1808 .put_vector = hclgevf_put_vector, 1809 .reset_queue = hclgevf_reset_tqp, 1810 .set_promisc_mode = hclgevf_set_promisc_mode, 1811 .get_mac_addr = hclgevf_get_mac_addr, 1812 .set_mac_addr = hclgevf_set_mac_addr, 1813 .add_uc_addr = hclgevf_add_uc_addr, 1814 .rm_uc_addr = hclgevf_rm_uc_addr, 1815 .add_mc_addr = hclgevf_add_mc_addr, 1816 .rm_mc_addr = hclgevf_rm_mc_addr, 1817 .get_stats = hclgevf_get_stats, 1818 .update_stats = hclgevf_update_stats, 1819 .get_strings = hclgevf_get_strings, 1820 .get_sset_count = hclgevf_get_sset_count, 1821 .get_rss_key_size = hclgevf_get_rss_key_size, 1822 .get_rss_indir_size = hclgevf_get_rss_indir_size, 1823 .get_rss = hclgevf_get_rss, 1824 .set_rss = hclgevf_set_rss, 1825 .get_tc_size = hclgevf_get_tc_size, 1826 .get_fw_version = hclgevf_get_fw_version, 1827 .set_vlan_filter = hclgevf_set_vlan_filter, 1828 .reset_event = hclgevf_reset_event, 1829 .get_channels = hclgevf_get_channels, 1830 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info, 1831 .get_status = hclgevf_get_status, 1832 .get_ksettings_an_result = hclgevf_get_ksettings_an_result, 1833 }; 1834 1835 static struct hnae3_ae_algo ae_algovf = { 1836 .ops = &hclgevf_ops, 1837 .name = HCLGEVF_NAME, 1838 .pdev_id_table = ae_algovf_pci_tbl, 1839 }; 1840 1841 static int hclgevf_init(void) 1842 { 1843 pr_info("%s is initializing\n", HCLGEVF_NAME); 1844 1845 return hnae3_register_ae_algo(&ae_algovf); 1846 } 1847 1848 static void hclgevf_exit(void) 1849 { 1850 hnae3_unregister_ae_algo(&ae_algovf); 1851 } 1852 module_init(hclgevf_init); 1853 module_exit(hclgevf_exit); 1854 1855 MODULE_LICENSE("GPL"); 1856 MODULE_AUTHOR("Huawei Tech. Co., Ltd."); 1857 MODULE_DESCRIPTION("HCLGEVF Driver"); 1858 MODULE_VERSION(HCLGEVF_MOD_VERSION); 1859