1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
15 
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static struct hnae3_ae_algo ae_algovf;
18 
19 static const struct pci_device_id ae_algovf_pci_tbl[] = {
20 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
21 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
22 	/* required last entry */
23 	{0, }
24 };
25 
26 static const u8 hclgevf_hash_key[] = {
27 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
28 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
29 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
30 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
31 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
32 };
33 
34 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
35 
36 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
37 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
38 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
39 					 HCLGEVF_CMDQ_TX_TAIL_REG,
40 					 HCLGEVF_CMDQ_TX_HEAD_REG,
41 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
42 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
43 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
44 					 HCLGEVF_CMDQ_RX_TAIL_REG,
45 					 HCLGEVF_CMDQ_RX_HEAD_REG,
46 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
47 					 HCLGEVF_CMDQ_INTR_STS_REG,
48 					 HCLGEVF_CMDQ_INTR_EN_REG,
49 					 HCLGEVF_CMDQ_INTR_GEN_REG};
50 
51 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
52 					   HCLGEVF_RST_ING,
53 					   HCLGEVF_GRO_EN_REG};
54 
55 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
56 					 HCLGEVF_RING_RX_ADDR_H_REG,
57 					 HCLGEVF_RING_RX_BD_NUM_REG,
58 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
59 					 HCLGEVF_RING_RX_MERGE_EN_REG,
60 					 HCLGEVF_RING_RX_TAIL_REG,
61 					 HCLGEVF_RING_RX_HEAD_REG,
62 					 HCLGEVF_RING_RX_FBD_NUM_REG,
63 					 HCLGEVF_RING_RX_OFFSET_REG,
64 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
65 					 HCLGEVF_RING_RX_STASH_REG,
66 					 HCLGEVF_RING_RX_BD_ERR_REG,
67 					 HCLGEVF_RING_TX_ADDR_L_REG,
68 					 HCLGEVF_RING_TX_ADDR_H_REG,
69 					 HCLGEVF_RING_TX_BD_NUM_REG,
70 					 HCLGEVF_RING_TX_PRIORITY_REG,
71 					 HCLGEVF_RING_TX_TC_REG,
72 					 HCLGEVF_RING_TX_MERGE_EN_REG,
73 					 HCLGEVF_RING_TX_TAIL_REG,
74 					 HCLGEVF_RING_TX_HEAD_REG,
75 					 HCLGEVF_RING_TX_FBD_NUM_REG,
76 					 HCLGEVF_RING_TX_OFFSET_REG,
77 					 HCLGEVF_RING_TX_EBD_NUM_REG,
78 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
79 					 HCLGEVF_RING_TX_BD_ERR_REG,
80 					 HCLGEVF_RING_EN_REG};
81 
82 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
83 					     HCLGEVF_TQP_INTR_GL0_REG,
84 					     HCLGEVF_TQP_INTR_GL1_REG,
85 					     HCLGEVF_TQP_INTR_GL2_REG,
86 					     HCLGEVF_TQP_INTR_RL_REG};
87 
88 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
89 {
90 	if (!handle->client)
91 		return container_of(handle, struct hclgevf_dev, nic);
92 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
93 		return container_of(handle, struct hclgevf_dev, roce);
94 	else
95 		return container_of(handle, struct hclgevf_dev, nic);
96 }
97 
98 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
99 {
100 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
101 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
102 	struct hclgevf_desc desc;
103 	struct hclgevf_tqp *tqp;
104 	int status;
105 	int i;
106 
107 	for (i = 0; i < kinfo->num_tqps; i++) {
108 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
109 		hclgevf_cmd_setup_basic_desc(&desc,
110 					     HCLGEVF_OPC_QUERY_RX_STATUS,
111 					     true);
112 
113 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
114 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
115 		if (status) {
116 			dev_err(&hdev->pdev->dev,
117 				"Query tqp stat fail, status = %d,queue = %d\n",
118 				status,	i);
119 			return status;
120 		}
121 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
122 			le32_to_cpu(desc.data[1]);
123 
124 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
125 					     true);
126 
127 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
128 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
129 		if (status) {
130 			dev_err(&hdev->pdev->dev,
131 				"Query tqp stat fail, status = %d,queue = %d\n",
132 				status, i);
133 			return status;
134 		}
135 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
136 			le32_to_cpu(desc.data[1]);
137 	}
138 
139 	return 0;
140 }
141 
142 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
143 {
144 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
145 	struct hclgevf_tqp *tqp;
146 	u64 *buff = data;
147 	int i;
148 
149 	for (i = 0; i < kinfo->num_tqps; i++) {
150 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
151 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
152 	}
153 	for (i = 0; i < kinfo->num_tqps; i++) {
154 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
155 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
156 	}
157 
158 	return buff;
159 }
160 
161 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
162 {
163 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
164 
165 	return kinfo->num_tqps * 2;
166 }
167 
168 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
169 {
170 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
171 	u8 *buff = data;
172 	int i = 0;
173 
174 	for (i = 0; i < kinfo->num_tqps; i++) {
175 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
176 						       struct hclgevf_tqp, q);
177 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
178 			 tqp->index);
179 		buff += ETH_GSTRING_LEN;
180 	}
181 
182 	for (i = 0; i < kinfo->num_tqps; i++) {
183 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
184 						       struct hclgevf_tqp, q);
185 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
186 			 tqp->index);
187 		buff += ETH_GSTRING_LEN;
188 	}
189 
190 	return buff;
191 }
192 
193 static void hclgevf_update_stats(struct hnae3_handle *handle,
194 				 struct net_device_stats *net_stats)
195 {
196 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
197 	int status;
198 
199 	status = hclgevf_tqps_update_stats(handle);
200 	if (status)
201 		dev_err(&hdev->pdev->dev,
202 			"VF update of TQPS stats fail, status = %d.\n",
203 			status);
204 }
205 
206 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
207 {
208 	if (strset == ETH_SS_TEST)
209 		return -EOPNOTSUPP;
210 	else if (strset == ETH_SS_STATS)
211 		return hclgevf_tqps_get_sset_count(handle, strset);
212 
213 	return 0;
214 }
215 
216 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
217 				u8 *data)
218 {
219 	u8 *p = (char *)data;
220 
221 	if (strset == ETH_SS_STATS)
222 		p = hclgevf_tqps_get_strings(handle, p);
223 }
224 
225 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
226 {
227 	hclgevf_tqps_get_stats(handle, data);
228 }
229 
230 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
231 {
232 	u8 resp_msg;
233 	int status;
234 
235 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
236 				      true, &resp_msg, sizeof(resp_msg));
237 	if (status) {
238 		dev_err(&hdev->pdev->dev,
239 			"VF request to get TC info from PF failed %d",
240 			status);
241 		return status;
242 	}
243 
244 	hdev->hw_tc_map = resp_msg;
245 
246 	return 0;
247 }
248 
249 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
250 {
251 	struct hnae3_handle *nic = &hdev->nic;
252 	u8 resp_msg;
253 	int ret;
254 
255 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
256 				   HCLGE_MBX_GET_PORT_BASE_VLAN_STATE,
257 				   NULL, 0, true, &resp_msg, sizeof(u8));
258 	if (ret) {
259 		dev_err(&hdev->pdev->dev,
260 			"VF request to get port based vlan state failed %d",
261 			ret);
262 		return ret;
263 	}
264 
265 	nic->port_base_vlan_state = resp_msg;
266 
267 	return 0;
268 }
269 
270 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
271 {
272 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
273 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
274 	int status;
275 
276 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
277 				      true, resp_msg,
278 				      HCLGEVF_TQPS_RSS_INFO_LEN);
279 	if (status) {
280 		dev_err(&hdev->pdev->dev,
281 			"VF request to get tqp info from PF failed %d",
282 			status);
283 		return status;
284 	}
285 
286 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
287 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
288 	memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));
289 
290 	return 0;
291 }
292 
293 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
294 {
295 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
296 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
297 	int ret;
298 
299 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
300 				   true, resp_msg,
301 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
302 	if (ret) {
303 		dev_err(&hdev->pdev->dev,
304 			"VF request to get tqp depth info from PF failed %d",
305 			ret);
306 		return ret;
307 	}
308 
309 	memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
310 	memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));
311 
312 	return 0;
313 }
314 
315 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
316 {
317 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
318 	u8 msg_data[2], resp_data[2];
319 	u16 qid_in_pf = 0;
320 	int ret;
321 
322 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
323 
324 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
325 				   sizeof(msg_data), true, resp_data,
326 				   sizeof(resp_data));
327 	if (!ret)
328 		qid_in_pf = *(u16 *)resp_data;
329 
330 	return qid_in_pf;
331 }
332 
333 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
334 {
335 	u8 resp_msg[2];
336 	int ret;
337 
338 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MEDIA_TYPE, 0, NULL, 0,
339 				   true, resp_msg, sizeof(resp_msg));
340 	if (ret) {
341 		dev_err(&hdev->pdev->dev,
342 			"VF request to get the pf port media type failed %d",
343 			ret);
344 		return ret;
345 	}
346 
347 	hdev->hw.mac.media_type = resp_msg[0];
348 	hdev->hw.mac.module_type = resp_msg[1];
349 
350 	return 0;
351 }
352 
353 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
354 {
355 	struct hclgevf_tqp *tqp;
356 	int i;
357 
358 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
359 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
360 	if (!hdev->htqp)
361 		return -ENOMEM;
362 
363 	tqp = hdev->htqp;
364 
365 	for (i = 0; i < hdev->num_tqps; i++) {
366 		tqp->dev = &hdev->pdev->dev;
367 		tqp->index = i;
368 
369 		tqp->q.ae_algo = &ae_algovf;
370 		tqp->q.buf_size = hdev->rx_buf_len;
371 		tqp->q.tx_desc_num = hdev->num_tx_desc;
372 		tqp->q.rx_desc_num = hdev->num_rx_desc;
373 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
374 			i * HCLGEVF_TQP_REG_SIZE;
375 
376 		tqp++;
377 	}
378 
379 	return 0;
380 }
381 
382 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
383 {
384 	struct hnae3_handle *nic = &hdev->nic;
385 	struct hnae3_knic_private_info *kinfo;
386 	u16 new_tqps = hdev->num_tqps;
387 	unsigned int i;
388 
389 	kinfo = &nic->kinfo;
390 	kinfo->num_tc = 0;
391 	kinfo->num_tx_desc = hdev->num_tx_desc;
392 	kinfo->num_rx_desc = hdev->num_rx_desc;
393 	kinfo->rx_buf_len = hdev->rx_buf_len;
394 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
395 		if (hdev->hw_tc_map & BIT(i))
396 			kinfo->num_tc++;
397 
398 	kinfo->rss_size
399 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
400 	new_tqps = kinfo->rss_size * kinfo->num_tc;
401 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
402 
403 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
404 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
405 	if (!kinfo->tqp)
406 		return -ENOMEM;
407 
408 	for (i = 0; i < kinfo->num_tqps; i++) {
409 		hdev->htqp[i].q.handle = &hdev->nic;
410 		hdev->htqp[i].q.tqp_index = i;
411 		kinfo->tqp[i] = &hdev->htqp[i].q;
412 	}
413 
414 	return 0;
415 }
416 
417 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
418 {
419 	int status;
420 	u8 resp_msg;
421 
422 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
423 				      0, false, &resp_msg, sizeof(resp_msg));
424 	if (status)
425 		dev_err(&hdev->pdev->dev,
426 			"VF failed to fetch link status(%d) from PF", status);
427 }
428 
429 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
430 {
431 	struct hnae3_handle *rhandle = &hdev->roce;
432 	struct hnae3_handle *handle = &hdev->nic;
433 	struct hnae3_client *rclient;
434 	struct hnae3_client *client;
435 
436 	client = handle->client;
437 	rclient = hdev->roce_client;
438 
439 	link_state =
440 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
441 
442 	if (link_state != hdev->hw.mac.link) {
443 		client->ops->link_status_change(handle, !!link_state);
444 		if (rclient && rclient->ops->link_status_change)
445 			rclient->ops->link_status_change(rhandle, !!link_state);
446 		hdev->hw.mac.link = link_state;
447 	}
448 }
449 
450 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
451 {
452 #define HCLGEVF_ADVERTISING 0
453 #define HCLGEVF_SUPPORTED   1
454 	u8 send_msg;
455 	u8 resp_msg;
456 
457 	send_msg = HCLGEVF_ADVERTISING;
458 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
459 			     &send_msg, sizeof(send_msg), false,
460 			     &resp_msg, sizeof(resp_msg));
461 	send_msg = HCLGEVF_SUPPORTED;
462 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
463 			     &send_msg, sizeof(send_msg), false,
464 			     &resp_msg, sizeof(resp_msg));
465 }
466 
467 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
468 {
469 	struct hnae3_handle *nic = &hdev->nic;
470 	int ret;
471 
472 	nic->ae_algo = &ae_algovf;
473 	nic->pdev = hdev->pdev;
474 	nic->numa_node_mask = hdev->numa_node_mask;
475 	nic->flags |= HNAE3_SUPPORT_VF;
476 
477 	ret = hclgevf_knic_setup(hdev);
478 	if (ret)
479 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
480 			ret);
481 	return ret;
482 }
483 
484 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
485 {
486 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
487 		dev_warn(&hdev->pdev->dev,
488 			 "vector(vector_id %d) has been freed.\n", vector_id);
489 		return;
490 	}
491 
492 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
493 	hdev->num_msi_left += 1;
494 	hdev->num_msi_used -= 1;
495 }
496 
497 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
498 			      struct hnae3_vector_info *vector_info)
499 {
500 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
501 	struct hnae3_vector_info *vector = vector_info;
502 	int alloc = 0;
503 	int i, j;
504 
505 	vector_num = min(hdev->num_msi_left, vector_num);
506 
507 	for (j = 0; j < vector_num; j++) {
508 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
509 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
510 				vector->vector = pci_irq_vector(hdev->pdev, i);
511 				vector->io_addr = hdev->hw.io_base +
512 					HCLGEVF_VECTOR_REG_BASE +
513 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
514 				hdev->vector_status[i] = 0;
515 				hdev->vector_irq[i] = vector->vector;
516 
517 				vector++;
518 				alloc++;
519 
520 				break;
521 			}
522 		}
523 	}
524 	hdev->num_msi_left -= alloc;
525 	hdev->num_msi_used += alloc;
526 
527 	return alloc;
528 }
529 
530 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
531 {
532 	int i;
533 
534 	for (i = 0; i < hdev->num_msi; i++)
535 		if (vector == hdev->vector_irq[i])
536 			return i;
537 
538 	return -EINVAL;
539 }
540 
541 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
542 				    const u8 hfunc, const u8 *key)
543 {
544 	struct hclgevf_rss_config_cmd *req;
545 	unsigned int key_offset = 0;
546 	struct hclgevf_desc desc;
547 	int key_counts;
548 	int key_size;
549 	int ret;
550 
551 	key_counts = HCLGEVF_RSS_KEY_SIZE;
552 	req = (struct hclgevf_rss_config_cmd *)desc.data;
553 
554 	while (key_counts) {
555 		hclgevf_cmd_setup_basic_desc(&desc,
556 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
557 					     false);
558 
559 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
560 		req->hash_config |=
561 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
562 
563 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
564 		memcpy(req->hash_key,
565 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
566 
567 		key_counts -= key_size;
568 		key_offset++;
569 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
570 		if (ret) {
571 			dev_err(&hdev->pdev->dev,
572 				"Configure RSS config fail, status = %d\n",
573 				ret);
574 			return ret;
575 		}
576 	}
577 
578 	return 0;
579 }
580 
581 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
582 {
583 	return HCLGEVF_RSS_KEY_SIZE;
584 }
585 
586 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
587 {
588 	return HCLGEVF_RSS_IND_TBL_SIZE;
589 }
590 
591 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
592 {
593 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
594 	struct hclgevf_rss_indirection_table_cmd *req;
595 	struct hclgevf_desc desc;
596 	int status;
597 	int i, j;
598 
599 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
600 
601 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
602 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
603 					     false);
604 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
605 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
606 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
607 			req->rss_result[j] =
608 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
609 
610 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
611 		if (status) {
612 			dev_err(&hdev->pdev->dev,
613 				"VF failed(=%d) to set RSS indirection table\n",
614 				status);
615 			return status;
616 		}
617 	}
618 
619 	return 0;
620 }
621 
622 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
623 {
624 	struct hclgevf_rss_tc_mode_cmd *req;
625 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
626 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
627 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
628 	struct hclgevf_desc desc;
629 	u16 roundup_size;
630 	int status;
631 	unsigned int i;
632 
633 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
634 
635 	roundup_size = roundup_pow_of_two(rss_size);
636 	roundup_size = ilog2(roundup_size);
637 
638 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
639 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
640 		tc_size[i] = roundup_size;
641 		tc_offset[i] = rss_size * i;
642 	}
643 
644 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
645 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
646 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
647 			      (tc_valid[i] & 0x1));
648 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
649 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
650 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
651 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
652 	}
653 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
654 	if (status)
655 		dev_err(&hdev->pdev->dev,
656 			"VF failed(=%d) to set rss tc mode\n", status);
657 
658 	return status;
659 }
660 
661 /* for revision 0x20, vf shared the same rss config with pf */
662 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
663 {
664 #define HCLGEVF_RSS_MBX_RESP_LEN	8
665 
666 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
667 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
668 	u16 msg_num, hash_key_index;
669 	u8 index;
670 	int ret;
671 
672 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
673 			HCLGEVF_RSS_MBX_RESP_LEN;
674 	for (index = 0; index < msg_num; index++) {
675 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_RSS_KEY, 0,
676 					   &index, sizeof(index),
677 					   true, resp_msg,
678 					   HCLGEVF_RSS_MBX_RESP_LEN);
679 		if (ret) {
680 			dev_err(&hdev->pdev->dev,
681 				"VF get rss hash key from PF failed, ret=%d",
682 				ret);
683 			return ret;
684 		}
685 
686 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
687 		if (index == msg_num - 1)
688 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
689 			       &resp_msg[0],
690 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
691 		else
692 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
693 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
694 	}
695 
696 	return 0;
697 }
698 
699 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
700 			   u8 *hfunc)
701 {
702 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
703 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
704 	int i, ret;
705 
706 	if (handle->pdev->revision >= 0x21) {
707 		/* Get hash algorithm */
708 		if (hfunc) {
709 			switch (rss_cfg->hash_algo) {
710 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
711 				*hfunc = ETH_RSS_HASH_TOP;
712 				break;
713 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
714 				*hfunc = ETH_RSS_HASH_XOR;
715 				break;
716 			default:
717 				*hfunc = ETH_RSS_HASH_UNKNOWN;
718 				break;
719 			}
720 		}
721 
722 		/* Get the RSS Key required by the user */
723 		if (key)
724 			memcpy(key, rss_cfg->rss_hash_key,
725 			       HCLGEVF_RSS_KEY_SIZE);
726 	} else {
727 		if (hfunc)
728 			*hfunc = ETH_RSS_HASH_TOP;
729 		if (key) {
730 			ret = hclgevf_get_rss_hash_key(hdev);
731 			if (ret)
732 				return ret;
733 			memcpy(key, rss_cfg->rss_hash_key,
734 			       HCLGEVF_RSS_KEY_SIZE);
735 		}
736 	}
737 
738 	if (indir)
739 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
740 			indir[i] = rss_cfg->rss_indirection_tbl[i];
741 
742 	return 0;
743 }
744 
745 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
746 			   const u8 *key, const u8 hfunc)
747 {
748 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
749 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
750 	int ret, i;
751 
752 	if (handle->pdev->revision >= 0x21) {
753 		/* Set the RSS Hash Key if specififed by the user */
754 		if (key) {
755 			switch (hfunc) {
756 			case ETH_RSS_HASH_TOP:
757 				rss_cfg->hash_algo =
758 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
759 				break;
760 			case ETH_RSS_HASH_XOR:
761 				rss_cfg->hash_algo =
762 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
763 				break;
764 			case ETH_RSS_HASH_NO_CHANGE:
765 				break;
766 			default:
767 				return -EINVAL;
768 			}
769 
770 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
771 						       key);
772 			if (ret)
773 				return ret;
774 
775 			/* Update the shadow RSS key with user specified qids */
776 			memcpy(rss_cfg->rss_hash_key, key,
777 			       HCLGEVF_RSS_KEY_SIZE);
778 		}
779 	}
780 
781 	/* update the shadow RSS table with user specified qids */
782 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
783 		rss_cfg->rss_indirection_tbl[i] = indir[i];
784 
785 	/* update the hardware */
786 	return hclgevf_set_rss_indir_table(hdev);
787 }
788 
789 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
790 {
791 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
792 
793 	if (nfc->data & RXH_L4_B_2_3)
794 		hash_sets |= HCLGEVF_D_PORT_BIT;
795 	else
796 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
797 
798 	if (nfc->data & RXH_IP_SRC)
799 		hash_sets |= HCLGEVF_S_IP_BIT;
800 	else
801 		hash_sets &= ~HCLGEVF_S_IP_BIT;
802 
803 	if (nfc->data & RXH_IP_DST)
804 		hash_sets |= HCLGEVF_D_IP_BIT;
805 	else
806 		hash_sets &= ~HCLGEVF_D_IP_BIT;
807 
808 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
809 		hash_sets |= HCLGEVF_V_TAG_BIT;
810 
811 	return hash_sets;
812 }
813 
814 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
815 				 struct ethtool_rxnfc *nfc)
816 {
817 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
818 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
819 	struct hclgevf_rss_input_tuple_cmd *req;
820 	struct hclgevf_desc desc;
821 	u8 tuple_sets;
822 	int ret;
823 
824 	if (handle->pdev->revision == 0x20)
825 		return -EOPNOTSUPP;
826 
827 	if (nfc->data &
828 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
829 		return -EINVAL;
830 
831 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
832 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
833 
834 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
835 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
836 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
837 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
838 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
839 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
840 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
841 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
842 
843 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
844 	switch (nfc->flow_type) {
845 	case TCP_V4_FLOW:
846 		req->ipv4_tcp_en = tuple_sets;
847 		break;
848 	case TCP_V6_FLOW:
849 		req->ipv6_tcp_en = tuple_sets;
850 		break;
851 	case UDP_V4_FLOW:
852 		req->ipv4_udp_en = tuple_sets;
853 		break;
854 	case UDP_V6_FLOW:
855 		req->ipv6_udp_en = tuple_sets;
856 		break;
857 	case SCTP_V4_FLOW:
858 		req->ipv4_sctp_en = tuple_sets;
859 		break;
860 	case SCTP_V6_FLOW:
861 		if ((nfc->data & RXH_L4_B_0_1) ||
862 		    (nfc->data & RXH_L4_B_2_3))
863 			return -EINVAL;
864 
865 		req->ipv6_sctp_en = tuple_sets;
866 		break;
867 	case IPV4_FLOW:
868 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
869 		break;
870 	case IPV6_FLOW:
871 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
872 		break;
873 	default:
874 		return -EINVAL;
875 	}
876 
877 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
878 	if (ret) {
879 		dev_err(&hdev->pdev->dev,
880 			"Set rss tuple fail, status = %d\n", ret);
881 		return ret;
882 	}
883 
884 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
885 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
886 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
887 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
888 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
889 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
890 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
891 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
892 	return 0;
893 }
894 
895 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
896 				 struct ethtool_rxnfc *nfc)
897 {
898 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
899 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
900 	u8 tuple_sets;
901 
902 	if (handle->pdev->revision == 0x20)
903 		return -EOPNOTSUPP;
904 
905 	nfc->data = 0;
906 
907 	switch (nfc->flow_type) {
908 	case TCP_V4_FLOW:
909 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
910 		break;
911 	case UDP_V4_FLOW:
912 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
913 		break;
914 	case TCP_V6_FLOW:
915 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
916 		break;
917 	case UDP_V6_FLOW:
918 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
919 		break;
920 	case SCTP_V4_FLOW:
921 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
922 		break;
923 	case SCTP_V6_FLOW:
924 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
925 		break;
926 	case IPV4_FLOW:
927 	case IPV6_FLOW:
928 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
929 		break;
930 	default:
931 		return -EINVAL;
932 	}
933 
934 	if (!tuple_sets)
935 		return 0;
936 
937 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
938 		nfc->data |= RXH_L4_B_2_3;
939 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
940 		nfc->data |= RXH_L4_B_0_1;
941 	if (tuple_sets & HCLGEVF_D_IP_BIT)
942 		nfc->data |= RXH_IP_DST;
943 	if (tuple_sets & HCLGEVF_S_IP_BIT)
944 		nfc->data |= RXH_IP_SRC;
945 
946 	return 0;
947 }
948 
949 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
950 				       struct hclgevf_rss_cfg *rss_cfg)
951 {
952 	struct hclgevf_rss_input_tuple_cmd *req;
953 	struct hclgevf_desc desc;
954 	int ret;
955 
956 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
957 
958 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
959 
960 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
961 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
962 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
963 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
964 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
965 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
966 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
967 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
968 
969 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
970 	if (ret)
971 		dev_err(&hdev->pdev->dev,
972 			"Configure rss input fail, status = %d\n", ret);
973 	return ret;
974 }
975 
976 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
977 {
978 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
979 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
980 
981 	return rss_cfg->rss_size;
982 }
983 
984 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
985 				       int vector_id,
986 				       struct hnae3_ring_chain_node *ring_chain)
987 {
988 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
989 	struct hnae3_ring_chain_node *node;
990 	struct hclge_mbx_vf_to_pf_cmd *req;
991 	struct hclgevf_desc desc;
992 	int i = 0;
993 	int status;
994 	u8 type;
995 
996 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
997 	type = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
998 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
999 
1000 	for (node = ring_chain; node; node = node->next) {
1001 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
1002 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
1003 
1004 		if (i == 0) {
1005 			hclgevf_cmd_setup_basic_desc(&desc,
1006 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1007 						     false);
1008 			req->msg[0] = type;
1009 			req->msg[1] = vector_id;
1010 		}
1011 
1012 		req->msg[idx_offset] =
1013 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1014 		req->msg[idx_offset + 1] = node->tqp_index;
1015 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
1016 							   HNAE3_RING_GL_IDX_M,
1017 							   HNAE3_RING_GL_IDX_S);
1018 
1019 		i++;
1020 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
1021 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
1022 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
1023 		    !node->next) {
1024 			req->msg[2] = i;
1025 
1026 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1027 			if (status) {
1028 				dev_err(&hdev->pdev->dev,
1029 					"Map TQP fail, status is %d.\n",
1030 					status);
1031 				return status;
1032 			}
1033 			i = 0;
1034 			hclgevf_cmd_setup_basic_desc(&desc,
1035 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1036 						     false);
1037 			req->msg[0] = type;
1038 			req->msg[1] = vector_id;
1039 		}
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1046 				      struct hnae3_ring_chain_node *ring_chain)
1047 {
1048 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1049 	int vector_id;
1050 
1051 	vector_id = hclgevf_get_vector_index(hdev, vector);
1052 	if (vector_id < 0) {
1053 		dev_err(&handle->pdev->dev,
1054 			"Get vector index fail. ret =%d\n", vector_id);
1055 		return vector_id;
1056 	}
1057 
1058 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1059 }
1060 
1061 static int hclgevf_unmap_ring_from_vector(
1062 				struct hnae3_handle *handle,
1063 				int vector,
1064 				struct hnae3_ring_chain_node *ring_chain)
1065 {
1066 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1067 	int ret, vector_id;
1068 
1069 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1070 		return 0;
1071 
1072 	vector_id = hclgevf_get_vector_index(hdev, vector);
1073 	if (vector_id < 0) {
1074 		dev_err(&handle->pdev->dev,
1075 			"Get vector index fail. ret =%d\n", vector_id);
1076 		return vector_id;
1077 	}
1078 
1079 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1080 	if (ret)
1081 		dev_err(&handle->pdev->dev,
1082 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1083 			vector_id,
1084 			ret);
1085 
1086 	return ret;
1087 }
1088 
1089 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1090 {
1091 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1092 	int vector_id;
1093 
1094 	vector_id = hclgevf_get_vector_index(hdev, vector);
1095 	if (vector_id < 0) {
1096 		dev_err(&handle->pdev->dev,
1097 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1098 			vector_id);
1099 		return vector_id;
1100 	}
1101 
1102 	hclgevf_free_vector(hdev, vector_id);
1103 
1104 	return 0;
1105 }
1106 
1107 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1108 					bool en_uc_pmc, bool en_mc_pmc,
1109 					bool en_bc_pmc)
1110 {
1111 	struct hclge_mbx_vf_to_pf_cmd *req;
1112 	struct hclgevf_desc desc;
1113 	int ret;
1114 
1115 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1116 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
1117 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1118 	req->msg[1] = en_bc_pmc ? 1 : 0;
1119 	req->msg[2] = en_uc_pmc ? 1 : 0;
1120 	req->msg[3] = en_mc_pmc ? 1 : 0;
1121 
1122 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1123 	if (ret)
1124 		dev_err(&hdev->pdev->dev,
1125 			"Set promisc mode fail, status is %d.\n", ret);
1126 
1127 	return ret;
1128 }
1129 
1130 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1131 				    bool en_mc_pmc)
1132 {
1133 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1134 	struct pci_dev *pdev = hdev->pdev;
1135 	bool en_bc_pmc;
1136 
1137 	en_bc_pmc = pdev->revision != 0x20;
1138 
1139 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1140 					    en_bc_pmc);
1141 }
1142 
1143 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1144 			      int stream_id, bool enable)
1145 {
1146 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1147 	struct hclgevf_desc desc;
1148 	int status;
1149 
1150 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1151 
1152 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1153 				     false);
1154 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1155 	req->stream_id = cpu_to_le16(stream_id);
1156 	if (enable)
1157 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1158 
1159 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1160 	if (status)
1161 		dev_err(&hdev->pdev->dev,
1162 			"TQP enable fail, status =%d.\n", status);
1163 
1164 	return status;
1165 }
1166 
1167 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1168 {
1169 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1170 	struct hclgevf_tqp *tqp;
1171 	int i;
1172 
1173 	for (i = 0; i < kinfo->num_tqps; i++) {
1174 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1175 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1176 	}
1177 }
1178 
1179 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1180 {
1181 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1182 
1183 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
1184 }
1185 
1186 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1187 				bool is_first)
1188 {
1189 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1190 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1191 	u8 *new_mac_addr = (u8 *)p;
1192 	u8 msg_data[ETH_ALEN * 2];
1193 	u16 subcode;
1194 	int status;
1195 
1196 	ether_addr_copy(msg_data, new_mac_addr);
1197 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1198 
1199 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1200 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1201 
1202 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1203 				      subcode, msg_data, sizeof(msg_data),
1204 				      true, NULL, 0);
1205 	if (!status)
1206 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1207 
1208 	return status;
1209 }
1210 
1211 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1212 			       const unsigned char *addr)
1213 {
1214 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1215 
1216 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1217 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1218 				    addr, ETH_ALEN, false, NULL, 0);
1219 }
1220 
1221 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1222 			      const unsigned char *addr)
1223 {
1224 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1225 
1226 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1227 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1228 				    addr, ETH_ALEN, false, NULL, 0);
1229 }
1230 
1231 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1232 			       const unsigned char *addr)
1233 {
1234 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1235 
1236 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1237 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1238 				    addr, ETH_ALEN, false, NULL, 0);
1239 }
1240 
1241 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1242 			      const unsigned char *addr)
1243 {
1244 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1245 
1246 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1247 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1248 				    addr, ETH_ALEN, false, NULL, 0);
1249 }
1250 
1251 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1252 				   __be16 proto, u16 vlan_id,
1253 				   bool is_kill)
1254 {
1255 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1256 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1257 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1258 	int ret;
1259 
1260 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1261 		return -EINVAL;
1262 
1263 	if (proto != htons(ETH_P_8021Q))
1264 		return -EPROTONOSUPPORT;
1265 
1266 	/* When device is resetting, firmware is unable to handle
1267 	 * mailbox. Just record the vlan id, and remove it after
1268 	 * reset finished.
1269 	 */
1270 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) && is_kill) {
1271 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1272 		return -EBUSY;
1273 	}
1274 
1275 	msg_data[0] = is_kill;
1276 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1277 	memcpy(&msg_data[3], &proto, sizeof(proto));
1278 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1279 				   HCLGE_MBX_VLAN_FILTER, msg_data,
1280 				   HCLGEVF_VLAN_MBX_MSG_LEN, true, NULL, 0);
1281 
1282 	/* when remove hw vlan filter failed, record the vlan id,
1283 	 * and try to remove it from hw later, to be consistence
1284 	 * with stack.
1285 	 */
1286 	if (is_kill && ret)
1287 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1288 
1289 	return ret;
1290 }
1291 
1292 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1293 {
1294 #define HCLGEVF_MAX_SYNC_COUNT	60
1295 	struct hnae3_handle *handle = &hdev->nic;
1296 	int ret, sync_cnt = 0;
1297 	u16 vlan_id;
1298 
1299 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1300 	while (vlan_id != VLAN_N_VID) {
1301 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1302 					      vlan_id, true);
1303 		if (ret)
1304 			return;
1305 
1306 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1307 		sync_cnt++;
1308 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1309 			return;
1310 
1311 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1312 	}
1313 }
1314 
1315 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1316 {
1317 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1318 	u8 msg_data;
1319 
1320 	msg_data = enable ? 1 : 0;
1321 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1322 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1323 				    1, false, NULL, 0);
1324 }
1325 
1326 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1327 {
1328 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1329 	u8 msg_data[2];
1330 	int ret;
1331 
1332 	memcpy(msg_data, &queue_id, sizeof(queue_id));
1333 
1334 	/* disable vf queue before send queue reset msg to PF */
1335 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1336 	if (ret)
1337 		return ret;
1338 
1339 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1340 				    sizeof(msg_data), true, NULL, 0);
1341 }
1342 
1343 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1344 {
1345 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1346 
1347 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1348 				    sizeof(new_mtu), true, NULL, 0);
1349 }
1350 
1351 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1352 				 enum hnae3_reset_notify_type type)
1353 {
1354 	struct hnae3_client *client = hdev->nic_client;
1355 	struct hnae3_handle *handle = &hdev->nic;
1356 	int ret;
1357 
1358 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1359 	    !client)
1360 		return 0;
1361 
1362 	if (!client->ops->reset_notify)
1363 		return -EOPNOTSUPP;
1364 
1365 	ret = client->ops->reset_notify(handle, type);
1366 	if (ret)
1367 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1368 			type, ret);
1369 
1370 	return ret;
1371 }
1372 
1373 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1374 {
1375 	struct hclgevf_dev *hdev = ae_dev->priv;
1376 
1377 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1378 }
1379 
1380 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1381 				    unsigned long delay_us,
1382 				    unsigned long wait_cnt)
1383 {
1384 	unsigned long cnt = 0;
1385 
1386 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1387 	       cnt++ < wait_cnt)
1388 		usleep_range(delay_us, delay_us * 2);
1389 
1390 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1391 		dev_err(&hdev->pdev->dev,
1392 			"flr wait timeout\n");
1393 		return -ETIMEDOUT;
1394 	}
1395 
1396 	return 0;
1397 }
1398 
1399 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1400 {
1401 #define HCLGEVF_RESET_WAIT_US	20000
1402 #define HCLGEVF_RESET_WAIT_CNT	2000
1403 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1404 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1405 
1406 	u32 val;
1407 	int ret;
1408 
1409 	if (hdev->reset_type == HNAE3_FLR_RESET)
1410 		return hclgevf_flr_poll_timeout(hdev,
1411 						HCLGEVF_RESET_WAIT_US,
1412 						HCLGEVF_RESET_WAIT_CNT);
1413 	else if (hdev->reset_type == HNAE3_VF_RESET)
1414 		ret = readl_poll_timeout(hdev->hw.io_base +
1415 					 HCLGEVF_VF_RST_ING, val,
1416 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1417 					 HCLGEVF_RESET_WAIT_US,
1418 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1419 	else
1420 		ret = readl_poll_timeout(hdev->hw.io_base +
1421 					 HCLGEVF_RST_ING, val,
1422 					 !(val & HCLGEVF_RST_ING_BITS),
1423 					 HCLGEVF_RESET_WAIT_US,
1424 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1425 
1426 	/* hardware completion status should be available by this time */
1427 	if (ret) {
1428 		dev_err(&hdev->pdev->dev,
1429 			"could'nt get reset done status from h/w, timeout!\n");
1430 		return ret;
1431 	}
1432 
1433 	/* we will wait a bit more to let reset of the stack to complete. This
1434 	 * might happen in case reset assertion was made by PF. Yes, this also
1435 	 * means we might end up waiting bit more even for VF reset.
1436 	 */
1437 	msleep(5000);
1438 
1439 	return 0;
1440 }
1441 
1442 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1443 {
1444 	u32 reg_val;
1445 
1446 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1447 	if (enable)
1448 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1449 	else
1450 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1451 
1452 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1453 			  reg_val);
1454 }
1455 
1456 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1457 {
1458 	int ret;
1459 
1460 	/* uninitialize the nic client */
1461 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1462 	if (ret)
1463 		return ret;
1464 
1465 	/* re-initialize the hclge device */
1466 	ret = hclgevf_reset_hdev(hdev);
1467 	if (ret) {
1468 		dev_err(&hdev->pdev->dev,
1469 			"hclge device re-init failed, VF is disabled!\n");
1470 		return ret;
1471 	}
1472 
1473 	/* bring up the nic client again */
1474 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1475 	if (ret)
1476 		return ret;
1477 
1478 	ret = hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1479 	if (ret)
1480 		return ret;
1481 
1482 	/* clear handshake status with IMP */
1483 	hclgevf_reset_handshake(hdev, false);
1484 
1485 	return 0;
1486 }
1487 
1488 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1489 {
1490 #define HCLGEVF_RESET_SYNC_TIME 100
1491 
1492 	int ret = 0;
1493 
1494 	switch (hdev->reset_type) {
1495 	case HNAE3_VF_FUNC_RESET:
1496 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1497 					   0, true, NULL, sizeof(u8));
1498 		hdev->rst_stats.vf_func_rst_cnt++;
1499 		break;
1500 	case HNAE3_FLR_RESET:
1501 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1502 		hdev->rst_stats.flr_rst_cnt++;
1503 		break;
1504 	default:
1505 		break;
1506 	}
1507 
1508 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1509 	/* inform hardware that preparatory work is done */
1510 	msleep(HCLGEVF_RESET_SYNC_TIME);
1511 	hclgevf_reset_handshake(hdev, true);
1512 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1513 		 hdev->reset_type, ret);
1514 
1515 	return ret;
1516 }
1517 
1518 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1519 {
1520 	/* recover handshake status with IMP when reset fail */
1521 	hclgevf_reset_handshake(hdev, true);
1522 	hdev->rst_stats.rst_fail_cnt++;
1523 	dev_err(&hdev->pdev->dev, "failed to reset VF(%d)\n",
1524 		hdev->rst_stats.rst_fail_cnt);
1525 
1526 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1527 		set_bit(hdev->reset_type, &hdev->reset_pending);
1528 
1529 	if (hclgevf_is_reset_pending(hdev)) {
1530 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1531 		hclgevf_reset_task_schedule(hdev);
1532 	}
1533 }
1534 
1535 static int hclgevf_reset(struct hclgevf_dev *hdev)
1536 {
1537 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1538 	int ret;
1539 
1540 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1541 	 * know if device is undergoing reset
1542 	 */
1543 	ae_dev->reset_type = hdev->reset_type;
1544 	hdev->rst_stats.rst_cnt++;
1545 	rtnl_lock();
1546 
1547 	/* bring down the nic to stop any ongoing TX/RX */
1548 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1549 	if (ret)
1550 		goto err_reset_lock;
1551 
1552 	rtnl_unlock();
1553 
1554 	ret = hclgevf_reset_prepare_wait(hdev);
1555 	if (ret)
1556 		goto err_reset;
1557 
1558 	/* check if VF could successfully fetch the hardware reset completion
1559 	 * status from the hardware
1560 	 */
1561 	ret = hclgevf_reset_wait(hdev);
1562 	if (ret) {
1563 		/* can't do much in this situation, will disable VF */
1564 		dev_err(&hdev->pdev->dev,
1565 			"VF failed(=%d) to fetch H/W reset completion status\n",
1566 			ret);
1567 		goto err_reset;
1568 	}
1569 
1570 	hdev->rst_stats.hw_rst_done_cnt++;
1571 
1572 	rtnl_lock();
1573 
1574 	/* now, re-initialize the nic client and ae device */
1575 	ret = hclgevf_reset_stack(hdev);
1576 	if (ret) {
1577 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1578 		goto err_reset_lock;
1579 	}
1580 
1581 	/* bring up the nic to enable TX/RX again */
1582 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1583 	if (ret)
1584 		goto err_reset_lock;
1585 
1586 	rtnl_unlock();
1587 
1588 	hdev->last_reset_time = jiffies;
1589 	ae_dev->reset_type = HNAE3_NONE_RESET;
1590 	hdev->rst_stats.rst_done_cnt++;
1591 	hdev->rst_stats.rst_fail_cnt = 0;
1592 
1593 	return ret;
1594 err_reset_lock:
1595 	rtnl_unlock();
1596 err_reset:
1597 	hclgevf_reset_err_handle(hdev);
1598 
1599 	return ret;
1600 }
1601 
1602 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1603 						     unsigned long *addr)
1604 {
1605 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1606 
1607 	/* return the highest priority reset level amongst all */
1608 	if (test_bit(HNAE3_VF_RESET, addr)) {
1609 		rst_level = HNAE3_VF_RESET;
1610 		clear_bit(HNAE3_VF_RESET, addr);
1611 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1612 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1613 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1614 		rst_level = HNAE3_VF_FULL_RESET;
1615 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1616 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1617 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1618 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1619 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1620 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1621 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1622 		rst_level = HNAE3_VF_FUNC_RESET;
1623 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1624 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1625 		rst_level = HNAE3_FLR_RESET;
1626 		clear_bit(HNAE3_FLR_RESET, addr);
1627 	}
1628 
1629 	return rst_level;
1630 }
1631 
1632 static void hclgevf_reset_event(struct pci_dev *pdev,
1633 				struct hnae3_handle *handle)
1634 {
1635 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1636 	struct hclgevf_dev *hdev = ae_dev->priv;
1637 
1638 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1639 
1640 	if (hdev->default_reset_request)
1641 		hdev->reset_level =
1642 			hclgevf_get_reset_level(hdev,
1643 						&hdev->default_reset_request);
1644 	else
1645 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1646 
1647 	/* reset of this VF requested */
1648 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1649 	hclgevf_reset_task_schedule(hdev);
1650 
1651 	hdev->last_reset_time = jiffies;
1652 }
1653 
1654 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1655 					  enum hnae3_reset_type rst_type)
1656 {
1657 	struct hclgevf_dev *hdev = ae_dev->priv;
1658 
1659 	set_bit(rst_type, &hdev->default_reset_request);
1660 }
1661 
1662 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1663 {
1664 #define HCLGEVF_FLR_WAIT_MS	100
1665 #define HCLGEVF_FLR_WAIT_CNT	50
1666 	struct hclgevf_dev *hdev = ae_dev->priv;
1667 	int cnt = 0;
1668 
1669 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1670 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1671 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1672 	hclgevf_reset_event(hdev->pdev, NULL);
1673 
1674 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1675 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1676 		msleep(HCLGEVF_FLR_WAIT_MS);
1677 
1678 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1679 		dev_err(&hdev->pdev->dev,
1680 			"flr wait down timeout: %d\n", cnt);
1681 }
1682 
1683 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1684 {
1685 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1686 
1687 	return hdev->fw_version;
1688 }
1689 
1690 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1691 {
1692 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1693 
1694 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1695 					    HCLGEVF_MISC_VECTOR_NUM);
1696 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1697 	/* vector status always valid for Vector 0 */
1698 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1699 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1700 
1701 	hdev->num_msi_left -= 1;
1702 	hdev->num_msi_used += 1;
1703 }
1704 
1705 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1706 {
1707 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1708 	    !test_bit(HCLGEVF_STATE_REMOVING, &hdev->state)) {
1709 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1710 		schedule_work(&hdev->rst_service_task);
1711 	}
1712 }
1713 
1714 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1715 {
1716 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1717 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1718 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1719 		schedule_work(&hdev->mbx_service_task);
1720 	}
1721 }
1722 
1723 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1724 {
1725 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1726 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1727 		schedule_work(&hdev->service_task);
1728 }
1729 
1730 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1731 {
1732 	/* if we have any pending mailbox event then schedule the mbx task */
1733 	if (hdev->mbx_event_pending)
1734 		hclgevf_mbx_task_schedule(hdev);
1735 
1736 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1737 		hclgevf_reset_task_schedule(hdev);
1738 }
1739 
1740 static void hclgevf_service_timer(struct timer_list *t)
1741 {
1742 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1743 
1744 	mod_timer(&hdev->service_timer, jiffies +
1745 		  HCLGEVF_GENERAL_TASK_INTERVAL * HZ);
1746 
1747 	hdev->stats_timer++;
1748 	hclgevf_task_schedule(hdev);
1749 }
1750 
1751 static void hclgevf_reset_service_task(struct work_struct *work)
1752 {
1753 	struct hclgevf_dev *hdev =
1754 		container_of(work, struct hclgevf_dev, rst_service_task);
1755 	int ret;
1756 
1757 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1758 		return;
1759 
1760 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1761 
1762 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1763 			       &hdev->reset_state)) {
1764 		/* PF has initmated that it is about to reset the hardware.
1765 		 * We now have to poll & check if hardware has actually
1766 		 * completed the reset sequence. On hardware reset completion,
1767 		 * VF needs to reset the client and ae device.
1768 		 */
1769 		hdev->reset_attempts = 0;
1770 
1771 		hdev->last_reset_time = jiffies;
1772 		while ((hdev->reset_type =
1773 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1774 		       != HNAE3_NONE_RESET) {
1775 			ret = hclgevf_reset(hdev);
1776 			if (ret)
1777 				dev_err(&hdev->pdev->dev,
1778 					"VF stack reset failed %d.\n", ret);
1779 		}
1780 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1781 				      &hdev->reset_state)) {
1782 		/* we could be here when either of below happens:
1783 		 * 1. reset was initiated due to watchdog timeout caused by
1784 		 *    a. IMP was earlier reset and our TX got choked down and
1785 		 *       which resulted in watchdog reacting and inducing VF
1786 		 *       reset. This also means our cmdq would be unreliable.
1787 		 *    b. problem in TX due to other lower layer(example link
1788 		 *       layer not functioning properly etc.)
1789 		 * 2. VF reset might have been initiated due to some config
1790 		 *    change.
1791 		 *
1792 		 * NOTE: Theres no clear way to detect above cases than to react
1793 		 * to the response of PF for this reset request. PF will ack the
1794 		 * 1b and 2. cases but we will not get any intimation about 1a
1795 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1796 		 * communication between PF and VF would be broken.
1797 		 *
1798 		 * if we are never geting into pending state it means either:
1799 		 * 1. PF is not receiving our request which could be due to IMP
1800 		 *    reset
1801 		 * 2. PF is screwed
1802 		 * We cannot do much for 2. but to check first we can try reset
1803 		 * our PCIe + stack and see if it alleviates the problem.
1804 		 */
1805 		if (hdev->reset_attempts > 3) {
1806 			/* prepare for full reset of stack + pcie interface */
1807 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1808 
1809 			/* "defer" schedule the reset task again */
1810 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1811 		} else {
1812 			hdev->reset_attempts++;
1813 
1814 			set_bit(hdev->reset_level, &hdev->reset_pending);
1815 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1816 		}
1817 		hclgevf_reset_task_schedule(hdev);
1818 	}
1819 
1820 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1821 }
1822 
1823 static void hclgevf_mailbox_service_task(struct work_struct *work)
1824 {
1825 	struct hclgevf_dev *hdev;
1826 
1827 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1828 
1829 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1830 		return;
1831 
1832 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1833 
1834 	hclgevf_mbx_async_handler(hdev);
1835 
1836 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1837 }
1838 
1839 static void hclgevf_keep_alive_timer(struct timer_list *t)
1840 {
1841 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1842 
1843 	schedule_work(&hdev->keep_alive_task);
1844 	mod_timer(&hdev->keep_alive_timer, jiffies +
1845 		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
1846 }
1847 
1848 static void hclgevf_keep_alive_task(struct work_struct *work)
1849 {
1850 	struct hclgevf_dev *hdev;
1851 	u8 respmsg;
1852 	int ret;
1853 
1854 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1855 
1856 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
1857 		return;
1858 
1859 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1860 				   0, false, &respmsg, sizeof(respmsg));
1861 	if (ret)
1862 		dev_err(&hdev->pdev->dev,
1863 			"VF sends keep alive cmd failed(=%d)\n", ret);
1864 }
1865 
1866 static void hclgevf_service_task(struct work_struct *work)
1867 {
1868 	struct hnae3_handle *handle;
1869 	struct hclgevf_dev *hdev;
1870 
1871 	hdev = container_of(work, struct hclgevf_dev, service_task);
1872 	handle = &hdev->nic;
1873 
1874 	if (hdev->stats_timer >= HCLGEVF_STATS_TIMER_INTERVAL) {
1875 		hclgevf_tqps_update_stats(handle);
1876 		hdev->stats_timer = 0;
1877 	}
1878 
1879 	/* request the link status from the PF. PF would be able to tell VF
1880 	 * about such updates in future so we might remove this later
1881 	 */
1882 	hclgevf_request_link_info(hdev);
1883 
1884 	hclgevf_update_link_mode(hdev);
1885 
1886 	hclgevf_sync_vlan_filter(hdev);
1887 
1888 	hclgevf_deferred_task_schedule(hdev);
1889 
1890 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1891 }
1892 
1893 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1894 {
1895 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1896 }
1897 
1898 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1899 						      u32 *clearval)
1900 {
1901 	u32 val, cmdq_stat_reg, rst_ing_reg;
1902 
1903 	/* fetch the events from their corresponding regs */
1904 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
1905 					 HCLGEVF_VECTOR0_CMDQ_STAT_REG);
1906 
1907 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1908 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1909 		dev_info(&hdev->pdev->dev,
1910 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1911 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1912 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1913 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1914 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
1915 		hdev->rst_stats.vf_rst_cnt++;
1916 		/* set up VF hardware reset status, its PF will clear
1917 		 * this status when PF has initialized done.
1918 		 */
1919 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
1920 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
1921 				  val | HCLGEVF_VF_RST_ING_BIT);
1922 		return HCLGEVF_VECTOR0_EVENT_RST;
1923 	}
1924 
1925 	/* check for vector0 mailbox(=CMDQ RX) event source */
1926 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1927 		/* for revision 0x21, clearing interrupt is writing bit 0
1928 		 * to the clear register, writing bit 1 means to keep the
1929 		 * old value.
1930 		 * for revision 0x20, the clear register is a read & write
1931 		 * register, so we should just write 0 to the bit we are
1932 		 * handling, and keep other bits as cmdq_stat_reg.
1933 		 */
1934 		if (hdev->pdev->revision >= 0x21)
1935 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1936 		else
1937 			*clearval = cmdq_stat_reg &
1938 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1939 
1940 		return HCLGEVF_VECTOR0_EVENT_MBX;
1941 	}
1942 
1943 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1944 
1945 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1946 }
1947 
1948 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1949 {
1950 	writel(en ? 1 : 0, vector->addr);
1951 }
1952 
1953 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1954 {
1955 	enum hclgevf_evt_cause event_cause;
1956 	struct hclgevf_dev *hdev = data;
1957 	u32 clearval;
1958 
1959 	hclgevf_enable_vector(&hdev->misc_vector, false);
1960 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1961 
1962 	switch (event_cause) {
1963 	case HCLGEVF_VECTOR0_EVENT_RST:
1964 		hclgevf_reset_task_schedule(hdev);
1965 		break;
1966 	case HCLGEVF_VECTOR0_EVENT_MBX:
1967 		hclgevf_mbx_handler(hdev);
1968 		break;
1969 	default:
1970 		break;
1971 	}
1972 
1973 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1974 		hclgevf_clear_event_cause(hdev, clearval);
1975 		hclgevf_enable_vector(&hdev->misc_vector, true);
1976 	}
1977 
1978 	return IRQ_HANDLED;
1979 }
1980 
1981 static int hclgevf_configure(struct hclgevf_dev *hdev)
1982 {
1983 	int ret;
1984 
1985 	/* get current port based vlan state from PF */
1986 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
1987 	if (ret)
1988 		return ret;
1989 
1990 	/* get queue configuration from PF */
1991 	ret = hclgevf_get_queue_info(hdev);
1992 	if (ret)
1993 		return ret;
1994 
1995 	/* get queue depth info from PF */
1996 	ret = hclgevf_get_queue_depth(hdev);
1997 	if (ret)
1998 		return ret;
1999 
2000 	ret = hclgevf_get_pf_media_type(hdev);
2001 	if (ret)
2002 		return ret;
2003 
2004 	/* get tc configuration from PF */
2005 	return hclgevf_get_tc_info(hdev);
2006 }
2007 
2008 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2009 {
2010 	struct pci_dev *pdev = ae_dev->pdev;
2011 	struct hclgevf_dev *hdev;
2012 
2013 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2014 	if (!hdev)
2015 		return -ENOMEM;
2016 
2017 	hdev->pdev = pdev;
2018 	hdev->ae_dev = ae_dev;
2019 	ae_dev->priv = hdev;
2020 
2021 	return 0;
2022 }
2023 
2024 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2025 {
2026 	struct hnae3_handle *roce = &hdev->roce;
2027 	struct hnae3_handle *nic = &hdev->nic;
2028 
2029 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2030 
2031 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2032 	    hdev->num_msi_left == 0)
2033 		return -EINVAL;
2034 
2035 	roce->rinfo.base_vector = hdev->roce_base_vector;
2036 
2037 	roce->rinfo.netdev = nic->kinfo.netdev;
2038 	roce->rinfo.roce_io_base = hdev->hw.io_base;
2039 
2040 	roce->pdev = nic->pdev;
2041 	roce->ae_algo = nic->ae_algo;
2042 	roce->numa_node_mask = nic->numa_node_mask;
2043 
2044 	return 0;
2045 }
2046 
2047 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2048 {
2049 	struct hclgevf_cfg_gro_status_cmd *req;
2050 	struct hclgevf_desc desc;
2051 	int ret;
2052 
2053 	if (!hnae3_dev_gro_supported(hdev))
2054 		return 0;
2055 
2056 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2057 				     false);
2058 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2059 
2060 	req->gro_en = cpu_to_le16(en ? 1 : 0);
2061 
2062 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2063 	if (ret)
2064 		dev_err(&hdev->pdev->dev,
2065 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2066 
2067 	return ret;
2068 }
2069 
2070 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2071 {
2072 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2073 	int ret;
2074 	u32 i;
2075 
2076 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2077 
2078 	if (hdev->pdev->revision >= 0x21) {
2079 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2080 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2081 		       HCLGEVF_RSS_KEY_SIZE);
2082 
2083 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2084 					       rss_cfg->rss_hash_key);
2085 		if (ret)
2086 			return ret;
2087 
2088 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
2089 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2090 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
2091 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2092 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
2093 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2094 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
2095 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2096 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
2097 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2098 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
2099 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2100 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
2101 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2102 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
2103 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2104 
2105 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2106 		if (ret)
2107 			return ret;
2108 
2109 	}
2110 
2111 	/* Initialize RSS indirect table */
2112 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2113 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2114 
2115 	ret = hclgevf_set_rss_indir_table(hdev);
2116 	if (ret)
2117 		return ret;
2118 
2119 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2120 }
2121 
2122 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2123 {
2124 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2125 				       false);
2126 }
2127 
2128 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2129 {
2130 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2131 
2132 	if (enable) {
2133 		mod_timer(&hdev->service_timer, jiffies + HZ);
2134 	} else {
2135 		del_timer_sync(&hdev->service_timer);
2136 		cancel_work_sync(&hdev->service_task);
2137 		clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2138 	}
2139 }
2140 
2141 static int hclgevf_ae_start(struct hnae3_handle *handle)
2142 {
2143 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2144 
2145 	hclgevf_reset_tqp_stats(handle);
2146 
2147 	hclgevf_request_link_info(hdev);
2148 
2149 	hclgevf_update_link_mode(hdev);
2150 
2151 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2152 
2153 	return 0;
2154 }
2155 
2156 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2157 {
2158 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2159 	int i;
2160 
2161 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2162 
2163 	if (hdev->reset_type != HNAE3_VF_RESET)
2164 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2165 			if (hclgevf_reset_tqp(handle, i))
2166 				break;
2167 
2168 	hclgevf_reset_tqp_stats(handle);
2169 	hclgevf_update_link_status(hdev, 0);
2170 }
2171 
2172 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2173 {
2174 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2175 	u8 msg_data;
2176 
2177 	msg_data = alive ? 1 : 0;
2178 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
2179 				    0, &msg_data, 1, false, NULL, 0);
2180 }
2181 
2182 static int hclgevf_client_start(struct hnae3_handle *handle)
2183 {
2184 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2185 	int ret;
2186 
2187 	ret = hclgevf_set_alive(handle, true);
2188 	if (ret)
2189 		return ret;
2190 
2191 	mod_timer(&hdev->keep_alive_timer, jiffies +
2192 		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
2193 
2194 	return 0;
2195 }
2196 
2197 static void hclgevf_client_stop(struct hnae3_handle *handle)
2198 {
2199 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2200 	int ret;
2201 
2202 	ret = hclgevf_set_alive(handle, false);
2203 	if (ret)
2204 		dev_warn(&hdev->pdev->dev,
2205 			 "%s failed %d\n", __func__, ret);
2206 
2207 	del_timer_sync(&hdev->keep_alive_timer);
2208 	cancel_work_sync(&hdev->keep_alive_task);
2209 }
2210 
2211 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2212 {
2213 	/* setup tasks for the MBX */
2214 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
2215 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2216 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2217 
2218 	/* setup tasks for service timer */
2219 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
2220 
2221 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
2222 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2223 
2224 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
2225 
2226 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2227 
2228 	/* bring the device down */
2229 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2230 }
2231 
2232 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2233 {
2234 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2235 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2236 
2237 	if (hdev->keep_alive_timer.function)
2238 		del_timer_sync(&hdev->keep_alive_timer);
2239 	if (hdev->keep_alive_task.func)
2240 		cancel_work_sync(&hdev->keep_alive_task);
2241 	if (hdev->service_timer.function)
2242 		del_timer_sync(&hdev->service_timer);
2243 	if (hdev->service_task.func)
2244 		cancel_work_sync(&hdev->service_task);
2245 	if (hdev->mbx_service_task.func)
2246 		cancel_work_sync(&hdev->mbx_service_task);
2247 	if (hdev->rst_service_task.func)
2248 		cancel_work_sync(&hdev->rst_service_task);
2249 
2250 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2251 }
2252 
2253 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2254 {
2255 	struct pci_dev *pdev = hdev->pdev;
2256 	int vectors;
2257 	int i;
2258 
2259 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
2260 		vectors = pci_alloc_irq_vectors(pdev,
2261 						hdev->roce_base_msix_offset + 1,
2262 						hdev->num_msi,
2263 						PCI_IRQ_MSIX);
2264 	else
2265 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
2266 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2267 
2268 	if (vectors < 0) {
2269 		dev_err(&pdev->dev,
2270 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2271 			vectors);
2272 		return vectors;
2273 	}
2274 	if (vectors < hdev->num_msi)
2275 		dev_warn(&hdev->pdev->dev,
2276 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2277 			 hdev->num_msi, vectors);
2278 
2279 	hdev->num_msi = vectors;
2280 	hdev->num_msi_left = vectors;
2281 	hdev->base_msi_vector = pdev->irq;
2282 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2283 
2284 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2285 					   sizeof(u16), GFP_KERNEL);
2286 	if (!hdev->vector_status) {
2287 		pci_free_irq_vectors(pdev);
2288 		return -ENOMEM;
2289 	}
2290 
2291 	for (i = 0; i < hdev->num_msi; i++)
2292 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2293 
2294 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2295 					sizeof(int), GFP_KERNEL);
2296 	if (!hdev->vector_irq) {
2297 		devm_kfree(&pdev->dev, hdev->vector_status);
2298 		pci_free_irq_vectors(pdev);
2299 		return -ENOMEM;
2300 	}
2301 
2302 	return 0;
2303 }
2304 
2305 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2306 {
2307 	struct pci_dev *pdev = hdev->pdev;
2308 
2309 	devm_kfree(&pdev->dev, hdev->vector_status);
2310 	devm_kfree(&pdev->dev, hdev->vector_irq);
2311 	pci_free_irq_vectors(pdev);
2312 }
2313 
2314 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2315 {
2316 	int ret;
2317 
2318 	hclgevf_get_misc_vector(hdev);
2319 
2320 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2321 			  0, "hclgevf_cmd", hdev);
2322 	if (ret) {
2323 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2324 			hdev->misc_vector.vector_irq);
2325 		return ret;
2326 	}
2327 
2328 	hclgevf_clear_event_cause(hdev, 0);
2329 
2330 	/* enable misc. vector(vector 0) */
2331 	hclgevf_enable_vector(&hdev->misc_vector, true);
2332 
2333 	return ret;
2334 }
2335 
2336 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2337 {
2338 	/* disable misc vector(vector 0) */
2339 	hclgevf_enable_vector(&hdev->misc_vector, false);
2340 	synchronize_irq(hdev->misc_vector.vector_irq);
2341 	free_irq(hdev->misc_vector.vector_irq, hdev);
2342 	hclgevf_free_vector(hdev, 0);
2343 }
2344 
2345 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2346 {
2347 	struct device *dev = &hdev->pdev->dev;
2348 
2349 	dev_info(dev, "VF info begin:\n");
2350 
2351 	dev_info(dev, "Task queue pairs numbers: %d\n", hdev->num_tqps);
2352 	dev_info(dev, "Desc num per TX queue: %d\n", hdev->num_tx_desc);
2353 	dev_info(dev, "Desc num per RX queue: %d\n", hdev->num_rx_desc);
2354 	dev_info(dev, "Numbers of vports: %d\n", hdev->num_alloc_vport);
2355 	dev_info(dev, "HW tc map: %d\n", hdev->hw_tc_map);
2356 	dev_info(dev, "PF media type of this VF: %d\n",
2357 		 hdev->hw.mac.media_type);
2358 
2359 	dev_info(dev, "VF info end.\n");
2360 }
2361 
2362 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2363 					    struct hnae3_client *client)
2364 {
2365 	struct hclgevf_dev *hdev = ae_dev->priv;
2366 	int ret;
2367 
2368 	ret = client->ops->init_instance(&hdev->nic);
2369 	if (ret)
2370 		return ret;
2371 
2372 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2373 	hnae3_set_client_init_flag(client, ae_dev, 1);
2374 
2375 	if (netif_msg_drv(&hdev->nic))
2376 		hclgevf_info_show(hdev);
2377 
2378 	return 0;
2379 }
2380 
2381 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2382 					     struct hnae3_client *client)
2383 {
2384 	struct hclgevf_dev *hdev = ae_dev->priv;
2385 	int ret;
2386 
2387 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2388 	    !hdev->nic_client)
2389 		return 0;
2390 
2391 	ret = hclgevf_init_roce_base_info(hdev);
2392 	if (ret)
2393 		return ret;
2394 
2395 	ret = client->ops->init_instance(&hdev->roce);
2396 	if (ret)
2397 		return ret;
2398 
2399 	hnae3_set_client_init_flag(client, ae_dev, 1);
2400 
2401 	return 0;
2402 }
2403 
2404 static int hclgevf_init_client_instance(struct hnae3_client *client,
2405 					struct hnae3_ae_dev *ae_dev)
2406 {
2407 	struct hclgevf_dev *hdev = ae_dev->priv;
2408 	int ret;
2409 
2410 	switch (client->type) {
2411 	case HNAE3_CLIENT_KNIC:
2412 		hdev->nic_client = client;
2413 		hdev->nic.client = client;
2414 
2415 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2416 		if (ret)
2417 			goto clear_nic;
2418 
2419 		ret = hclgevf_init_roce_client_instance(ae_dev,
2420 							hdev->roce_client);
2421 		if (ret)
2422 			goto clear_roce;
2423 
2424 		break;
2425 	case HNAE3_CLIENT_ROCE:
2426 		if (hnae3_dev_roce_supported(hdev)) {
2427 			hdev->roce_client = client;
2428 			hdev->roce.client = client;
2429 		}
2430 
2431 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2432 		if (ret)
2433 			goto clear_roce;
2434 
2435 		break;
2436 	default:
2437 		return -EINVAL;
2438 	}
2439 
2440 	return 0;
2441 
2442 clear_nic:
2443 	hdev->nic_client = NULL;
2444 	hdev->nic.client = NULL;
2445 	return ret;
2446 clear_roce:
2447 	hdev->roce_client = NULL;
2448 	hdev->roce.client = NULL;
2449 	return ret;
2450 }
2451 
2452 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2453 					   struct hnae3_ae_dev *ae_dev)
2454 {
2455 	struct hclgevf_dev *hdev = ae_dev->priv;
2456 
2457 	/* un-init roce, if it exists */
2458 	if (hdev->roce_client) {
2459 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2460 		hdev->roce_client = NULL;
2461 		hdev->roce.client = NULL;
2462 	}
2463 
2464 	/* un-init nic/unic, if this was not called by roce client */
2465 	if (client->ops->uninit_instance && hdev->nic_client &&
2466 	    client->type != HNAE3_CLIENT_ROCE) {
2467 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2468 
2469 		client->ops->uninit_instance(&hdev->nic, 0);
2470 		hdev->nic_client = NULL;
2471 		hdev->nic.client = NULL;
2472 	}
2473 }
2474 
2475 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2476 {
2477 	struct pci_dev *pdev = hdev->pdev;
2478 	struct hclgevf_hw *hw;
2479 	int ret;
2480 
2481 	ret = pci_enable_device(pdev);
2482 	if (ret) {
2483 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2484 		return ret;
2485 	}
2486 
2487 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2488 	if (ret) {
2489 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2490 		goto err_disable_device;
2491 	}
2492 
2493 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2494 	if (ret) {
2495 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2496 		goto err_disable_device;
2497 	}
2498 
2499 	pci_set_master(pdev);
2500 	hw = &hdev->hw;
2501 	hw->hdev = hdev;
2502 	hw->io_base = pci_iomap(pdev, 2, 0);
2503 	if (!hw->io_base) {
2504 		dev_err(&pdev->dev, "can't map configuration register space\n");
2505 		ret = -ENOMEM;
2506 		goto err_clr_master;
2507 	}
2508 
2509 	return 0;
2510 
2511 err_clr_master:
2512 	pci_clear_master(pdev);
2513 	pci_release_regions(pdev);
2514 err_disable_device:
2515 	pci_disable_device(pdev);
2516 
2517 	return ret;
2518 }
2519 
2520 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2521 {
2522 	struct pci_dev *pdev = hdev->pdev;
2523 
2524 	pci_iounmap(pdev, hdev->hw.io_base);
2525 	pci_clear_master(pdev);
2526 	pci_release_regions(pdev);
2527 	pci_disable_device(pdev);
2528 }
2529 
2530 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2531 {
2532 	struct hclgevf_query_res_cmd *req;
2533 	struct hclgevf_desc desc;
2534 	int ret;
2535 
2536 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2537 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2538 	if (ret) {
2539 		dev_err(&hdev->pdev->dev,
2540 			"query vf resource failed, ret = %d.\n", ret);
2541 		return ret;
2542 	}
2543 
2544 	req = (struct hclgevf_query_res_cmd *)desc.data;
2545 
2546 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2547 		hdev->roce_base_msix_offset =
2548 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2549 				HCLGEVF_MSIX_OFT_ROCEE_M,
2550 				HCLGEVF_MSIX_OFT_ROCEE_S);
2551 		hdev->num_roce_msix =
2552 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2553 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2554 
2555 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2556 		 * are queued before Roce vectors. The offset is fixed to 64.
2557 		 */
2558 		hdev->num_msi = hdev->num_roce_msix +
2559 				hdev->roce_base_msix_offset;
2560 	} else {
2561 		hdev->num_msi =
2562 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2563 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2564 	}
2565 
2566 	return 0;
2567 }
2568 
2569 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2570 {
2571 	struct pci_dev *pdev = hdev->pdev;
2572 	int ret = 0;
2573 
2574 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2575 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2576 		hclgevf_misc_irq_uninit(hdev);
2577 		hclgevf_uninit_msi(hdev);
2578 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2579 	}
2580 
2581 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2582 		pci_set_master(pdev);
2583 		ret = hclgevf_init_msi(hdev);
2584 		if (ret) {
2585 			dev_err(&pdev->dev,
2586 				"failed(%d) to init MSI/MSI-X\n", ret);
2587 			return ret;
2588 		}
2589 
2590 		ret = hclgevf_misc_irq_init(hdev);
2591 		if (ret) {
2592 			hclgevf_uninit_msi(hdev);
2593 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2594 				ret);
2595 			return ret;
2596 		}
2597 
2598 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2599 	}
2600 
2601 	return ret;
2602 }
2603 
2604 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2605 {
2606 	struct pci_dev *pdev = hdev->pdev;
2607 	int ret;
2608 
2609 	ret = hclgevf_pci_reset(hdev);
2610 	if (ret) {
2611 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2612 		return ret;
2613 	}
2614 
2615 	ret = hclgevf_cmd_init(hdev);
2616 	if (ret) {
2617 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2618 		return ret;
2619 	}
2620 
2621 	ret = hclgevf_rss_init_hw(hdev);
2622 	if (ret) {
2623 		dev_err(&hdev->pdev->dev,
2624 			"failed(%d) to initialize RSS\n", ret);
2625 		return ret;
2626 	}
2627 
2628 	ret = hclgevf_config_gro(hdev, true);
2629 	if (ret)
2630 		return ret;
2631 
2632 	ret = hclgevf_init_vlan_config(hdev);
2633 	if (ret) {
2634 		dev_err(&hdev->pdev->dev,
2635 			"failed(%d) to initialize VLAN config\n", ret);
2636 		return ret;
2637 	}
2638 
2639 	dev_info(&hdev->pdev->dev, "Reset done\n");
2640 
2641 	return 0;
2642 }
2643 
2644 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2645 {
2646 	struct pci_dev *pdev = hdev->pdev;
2647 	int ret;
2648 
2649 	ret = hclgevf_pci_init(hdev);
2650 	if (ret) {
2651 		dev_err(&pdev->dev, "PCI initialization failed\n");
2652 		return ret;
2653 	}
2654 
2655 	ret = hclgevf_cmd_queue_init(hdev);
2656 	if (ret) {
2657 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2658 		goto err_cmd_queue_init;
2659 	}
2660 
2661 	ret = hclgevf_cmd_init(hdev);
2662 	if (ret)
2663 		goto err_cmd_init;
2664 
2665 	/* Get vf resource */
2666 	ret = hclgevf_query_vf_resource(hdev);
2667 	if (ret) {
2668 		dev_err(&hdev->pdev->dev,
2669 			"Query vf status error, ret = %d.\n", ret);
2670 		goto err_cmd_init;
2671 	}
2672 
2673 	ret = hclgevf_init_msi(hdev);
2674 	if (ret) {
2675 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2676 		goto err_cmd_init;
2677 	}
2678 
2679 	hclgevf_state_init(hdev);
2680 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2681 
2682 	ret = hclgevf_misc_irq_init(hdev);
2683 	if (ret) {
2684 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2685 			ret);
2686 		goto err_misc_irq_init;
2687 	}
2688 
2689 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2690 
2691 	ret = hclgevf_configure(hdev);
2692 	if (ret) {
2693 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2694 		goto err_config;
2695 	}
2696 
2697 	ret = hclgevf_alloc_tqps(hdev);
2698 	if (ret) {
2699 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2700 		goto err_config;
2701 	}
2702 
2703 	ret = hclgevf_set_handle_info(hdev);
2704 	if (ret) {
2705 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2706 		goto err_config;
2707 	}
2708 
2709 	ret = hclgevf_config_gro(hdev, true);
2710 	if (ret)
2711 		goto err_config;
2712 
2713 	/* Initialize RSS for this VF */
2714 	ret = hclgevf_rss_init_hw(hdev);
2715 	if (ret) {
2716 		dev_err(&hdev->pdev->dev,
2717 			"failed(%d) to initialize RSS\n", ret);
2718 		goto err_config;
2719 	}
2720 
2721 	ret = hclgevf_init_vlan_config(hdev);
2722 	if (ret) {
2723 		dev_err(&hdev->pdev->dev,
2724 			"failed(%d) to initialize VLAN config\n", ret);
2725 		goto err_config;
2726 	}
2727 
2728 	hdev->last_reset_time = jiffies;
2729 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
2730 		 HCLGEVF_DRIVER_NAME);
2731 
2732 	return 0;
2733 
2734 err_config:
2735 	hclgevf_misc_irq_uninit(hdev);
2736 err_misc_irq_init:
2737 	hclgevf_state_uninit(hdev);
2738 	hclgevf_uninit_msi(hdev);
2739 err_cmd_init:
2740 	hclgevf_cmd_uninit(hdev);
2741 err_cmd_queue_init:
2742 	hclgevf_pci_uninit(hdev);
2743 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2744 	return ret;
2745 }
2746 
2747 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2748 {
2749 	hclgevf_state_uninit(hdev);
2750 
2751 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2752 		hclgevf_misc_irq_uninit(hdev);
2753 		hclgevf_uninit_msi(hdev);
2754 	}
2755 
2756 	hclgevf_pci_uninit(hdev);
2757 	hclgevf_cmd_uninit(hdev);
2758 }
2759 
2760 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2761 {
2762 	struct pci_dev *pdev = ae_dev->pdev;
2763 	struct hclgevf_dev *hdev;
2764 	int ret;
2765 
2766 	ret = hclgevf_alloc_hdev(ae_dev);
2767 	if (ret) {
2768 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2769 		return ret;
2770 	}
2771 
2772 	ret = hclgevf_init_hdev(ae_dev->priv);
2773 	if (ret) {
2774 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2775 		return ret;
2776 	}
2777 
2778 	hdev = ae_dev->priv;
2779 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2780 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2781 
2782 	return 0;
2783 }
2784 
2785 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2786 {
2787 	struct hclgevf_dev *hdev = ae_dev->priv;
2788 
2789 	hclgevf_uninit_hdev(hdev);
2790 	ae_dev->priv = NULL;
2791 }
2792 
2793 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2794 {
2795 	struct hnae3_handle *nic = &hdev->nic;
2796 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2797 
2798 	return min_t(u32, hdev->rss_size_max,
2799 		     hdev->num_tqps / kinfo->num_tc);
2800 }
2801 
2802 /**
2803  * hclgevf_get_channels - Get the current channels enabled and max supported.
2804  * @handle: hardware information for network interface
2805  * @ch: ethtool channels structure
2806  *
2807  * We don't support separate tx and rx queues as channels. The other count
2808  * represents how many queues are being used for control. max_combined counts
2809  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2810  * q_vectors since we support a lot more queue pairs than q_vectors.
2811  **/
2812 static void hclgevf_get_channels(struct hnae3_handle *handle,
2813 				 struct ethtool_channels *ch)
2814 {
2815 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2816 
2817 	ch->max_combined = hclgevf_get_max_channels(hdev);
2818 	ch->other_count = 0;
2819 	ch->max_other = 0;
2820 	ch->combined_count = handle->kinfo.rss_size;
2821 }
2822 
2823 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2824 					  u16 *alloc_tqps, u16 *max_rss_size)
2825 {
2826 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2827 
2828 	*alloc_tqps = hdev->num_tqps;
2829 	*max_rss_size = hdev->rss_size_max;
2830 }
2831 
2832 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
2833 				    u32 new_tqps_num)
2834 {
2835 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
2836 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2837 	u16 max_rss_size;
2838 
2839 	kinfo->req_rss_size = new_tqps_num;
2840 
2841 	max_rss_size = min_t(u16, hdev->rss_size_max,
2842 			     hdev->num_tqps / kinfo->num_tc);
2843 
2844 	/* Use the user's configuration when it is not larger than
2845 	 * max_rss_size, otherwise, use the maximum specification value.
2846 	 */
2847 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
2848 	    kinfo->req_rss_size <= max_rss_size)
2849 		kinfo->rss_size = kinfo->req_rss_size;
2850 	else if (kinfo->rss_size > max_rss_size ||
2851 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
2852 		kinfo->rss_size = max_rss_size;
2853 
2854 	kinfo->num_tqps = kinfo->num_tc * kinfo->rss_size;
2855 }
2856 
2857 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
2858 				bool rxfh_configured)
2859 {
2860 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2861 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
2862 	u16 cur_rss_size = kinfo->rss_size;
2863 	u16 cur_tqps = kinfo->num_tqps;
2864 	u32 *rss_indir;
2865 	unsigned int i;
2866 	int ret;
2867 
2868 	hclgevf_update_rss_size(handle, new_tqps_num);
2869 
2870 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
2871 	if (ret)
2872 		return ret;
2873 
2874 	/* RSS indirection table has been configuared by user */
2875 	if (rxfh_configured)
2876 		goto out;
2877 
2878 	/* Reinitializes the rss indirect table according to the new RSS size */
2879 	rss_indir = kcalloc(HCLGEVF_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL);
2880 	if (!rss_indir)
2881 		return -ENOMEM;
2882 
2883 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2884 		rss_indir[i] = i % kinfo->rss_size;
2885 
2886 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
2887 	if (ret)
2888 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
2889 			ret);
2890 
2891 	kfree(rss_indir);
2892 
2893 out:
2894 	if (!ret)
2895 		dev_info(&hdev->pdev->dev,
2896 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
2897 			 cur_rss_size, kinfo->rss_size,
2898 			 cur_tqps, kinfo->rss_size * kinfo->num_tc);
2899 
2900 	return ret;
2901 }
2902 
2903 static int hclgevf_get_status(struct hnae3_handle *handle)
2904 {
2905 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2906 
2907 	return hdev->hw.mac.link;
2908 }
2909 
2910 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2911 					    u8 *auto_neg, u32 *speed,
2912 					    u8 *duplex)
2913 {
2914 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2915 
2916 	if (speed)
2917 		*speed = hdev->hw.mac.speed;
2918 	if (duplex)
2919 		*duplex = hdev->hw.mac.duplex;
2920 	if (auto_neg)
2921 		*auto_neg = AUTONEG_DISABLE;
2922 }
2923 
2924 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2925 				 u8 duplex)
2926 {
2927 	hdev->hw.mac.speed = speed;
2928 	hdev->hw.mac.duplex = duplex;
2929 }
2930 
2931 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
2932 {
2933 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2934 
2935 	return hclgevf_config_gro(hdev, enable);
2936 }
2937 
2938 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
2939 				   u8 *module_type)
2940 {
2941 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2942 
2943 	if (media_type)
2944 		*media_type = hdev->hw.mac.media_type;
2945 
2946 	if (module_type)
2947 		*module_type = hdev->hw.mac.module_type;
2948 }
2949 
2950 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2951 {
2952 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2953 
2954 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2955 }
2956 
2957 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2958 {
2959 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2960 
2961 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2962 }
2963 
2964 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2965 {
2966 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2967 
2968 	return hdev->rst_stats.hw_rst_done_cnt;
2969 }
2970 
2971 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
2972 				  unsigned long *supported,
2973 				  unsigned long *advertising)
2974 {
2975 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2976 
2977 	*supported = hdev->hw.mac.supported;
2978 	*advertising = hdev->hw.mac.advertising;
2979 }
2980 
2981 #define MAX_SEPARATE_NUM	4
2982 #define SEPARATOR_VALUE		0xFFFFFFFF
2983 #define REG_NUM_PER_LINE	4
2984 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
2985 
2986 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2987 {
2988 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2989 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2990 
2991 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2992 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2993 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2994 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2995 
2996 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2997 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2998 }
2999 
3000 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3001 			     void *data)
3002 {
3003 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3004 	int i, j, reg_um, separator_num;
3005 	u32 *reg = data;
3006 
3007 	*version = hdev->fw_version;
3008 
3009 	/* fetching per-VF registers values from VF PCIe register space */
3010 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3011 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3012 	for (i = 0; i < reg_um; i++)
3013 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3014 	for (i = 0; i < separator_num; i++)
3015 		*reg++ = SEPARATOR_VALUE;
3016 
3017 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3018 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3019 	for (i = 0; i < reg_um; i++)
3020 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3021 	for (i = 0; i < separator_num; i++)
3022 		*reg++ = SEPARATOR_VALUE;
3023 
3024 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3025 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3026 	for (j = 0; j < hdev->num_tqps; j++) {
3027 		for (i = 0; i < reg_um; i++)
3028 			*reg++ = hclgevf_read_dev(&hdev->hw,
3029 						  ring_reg_addr_list[i] +
3030 						  0x200 * j);
3031 		for (i = 0; i < separator_num; i++)
3032 			*reg++ = SEPARATOR_VALUE;
3033 	}
3034 
3035 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3036 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3037 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3038 		for (i = 0; i < reg_um; i++)
3039 			*reg++ = hclgevf_read_dev(&hdev->hw,
3040 						  tqp_intr_reg_addr_list[i] +
3041 						  4 * j);
3042 		for (i = 0; i < separator_num; i++)
3043 			*reg++ = SEPARATOR_VALUE;
3044 	}
3045 }
3046 
3047 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3048 					u8 *port_base_vlan_info, u8 data_size)
3049 {
3050 	struct hnae3_handle *nic = &hdev->nic;
3051 
3052 	rtnl_lock();
3053 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3054 	rtnl_unlock();
3055 
3056 	/* send msg to PF and wait update port based vlan info */
3057 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
3058 			     HCLGE_MBX_PORT_BASE_VLAN_CFG,
3059 			     port_base_vlan_info, data_size,
3060 			     false, NULL, 0);
3061 
3062 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3063 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
3064 	else
3065 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3066 
3067 	rtnl_lock();
3068 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3069 	rtnl_unlock();
3070 }
3071 
3072 static const struct hnae3_ae_ops hclgevf_ops = {
3073 	.init_ae_dev = hclgevf_init_ae_dev,
3074 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3075 	.flr_prepare = hclgevf_flr_prepare,
3076 	.flr_done = hclgevf_flr_done,
3077 	.init_client_instance = hclgevf_init_client_instance,
3078 	.uninit_client_instance = hclgevf_uninit_client_instance,
3079 	.start = hclgevf_ae_start,
3080 	.stop = hclgevf_ae_stop,
3081 	.client_start = hclgevf_client_start,
3082 	.client_stop = hclgevf_client_stop,
3083 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3084 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3085 	.get_vector = hclgevf_get_vector,
3086 	.put_vector = hclgevf_put_vector,
3087 	.reset_queue = hclgevf_reset_tqp,
3088 	.get_mac_addr = hclgevf_get_mac_addr,
3089 	.set_mac_addr = hclgevf_set_mac_addr,
3090 	.add_uc_addr = hclgevf_add_uc_addr,
3091 	.rm_uc_addr = hclgevf_rm_uc_addr,
3092 	.add_mc_addr = hclgevf_add_mc_addr,
3093 	.rm_mc_addr = hclgevf_rm_mc_addr,
3094 	.get_stats = hclgevf_get_stats,
3095 	.update_stats = hclgevf_update_stats,
3096 	.get_strings = hclgevf_get_strings,
3097 	.get_sset_count = hclgevf_get_sset_count,
3098 	.get_rss_key_size = hclgevf_get_rss_key_size,
3099 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
3100 	.get_rss = hclgevf_get_rss,
3101 	.set_rss = hclgevf_set_rss,
3102 	.get_rss_tuple = hclgevf_get_rss_tuple,
3103 	.set_rss_tuple = hclgevf_set_rss_tuple,
3104 	.get_tc_size = hclgevf_get_tc_size,
3105 	.get_fw_version = hclgevf_get_fw_version,
3106 	.set_vlan_filter = hclgevf_set_vlan_filter,
3107 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3108 	.reset_event = hclgevf_reset_event,
3109 	.set_default_reset_request = hclgevf_set_def_reset_request,
3110 	.set_channels = hclgevf_set_channels,
3111 	.get_channels = hclgevf_get_channels,
3112 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3113 	.get_regs_len = hclgevf_get_regs_len,
3114 	.get_regs = hclgevf_get_regs,
3115 	.get_status = hclgevf_get_status,
3116 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3117 	.get_media_type = hclgevf_get_media_type,
3118 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3119 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3120 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3121 	.set_gro_en = hclgevf_gro_en,
3122 	.set_mtu = hclgevf_set_mtu,
3123 	.get_global_queue_id = hclgevf_get_qid_global,
3124 	.set_timer_task = hclgevf_set_timer_task,
3125 	.get_link_mode = hclgevf_get_link_mode,
3126 	.set_promisc_mode = hclgevf_set_promisc_mode,
3127 };
3128 
3129 static struct hnae3_ae_algo ae_algovf = {
3130 	.ops = &hclgevf_ops,
3131 	.pdev_id_table = ae_algovf_pci_tbl,
3132 };
3133 
3134 static int hclgevf_init(void)
3135 {
3136 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3137 
3138 	hnae3_register_ae_algo(&ae_algovf);
3139 
3140 	return 0;
3141 }
3142 
3143 static void hclgevf_exit(void)
3144 {
3145 	hnae3_unregister_ae_algo(&ae_algovf);
3146 }
3147 module_init(hclgevf_init);
3148 module_exit(hclgevf_exit);
3149 
3150 MODULE_LICENSE("GPL");
3151 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3152 MODULE_DESCRIPTION("HCLGEVF Driver");
3153 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3154