1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
15 
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static struct hnae3_ae_algo ae_algovf;
18 
19 static struct workqueue_struct *hclgevf_wq;
20 
21 static const struct pci_device_id ae_algovf_pci_tbl[] = {
22 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
23 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
24 	/* required last entry */
25 	{0, }
26 };
27 
28 static const u8 hclgevf_hash_key[] = {
29 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
30 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
31 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
32 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
33 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
34 };
35 
36 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
37 
38 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
39 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
40 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
41 					 HCLGEVF_CMDQ_TX_TAIL_REG,
42 					 HCLGEVF_CMDQ_TX_HEAD_REG,
43 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
44 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
45 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
46 					 HCLGEVF_CMDQ_RX_TAIL_REG,
47 					 HCLGEVF_CMDQ_RX_HEAD_REG,
48 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
49 					 HCLGEVF_CMDQ_INTR_STS_REG,
50 					 HCLGEVF_CMDQ_INTR_EN_REG,
51 					 HCLGEVF_CMDQ_INTR_GEN_REG};
52 
53 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
54 					   HCLGEVF_RST_ING,
55 					   HCLGEVF_GRO_EN_REG};
56 
57 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
58 					 HCLGEVF_RING_RX_ADDR_H_REG,
59 					 HCLGEVF_RING_RX_BD_NUM_REG,
60 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
61 					 HCLGEVF_RING_RX_MERGE_EN_REG,
62 					 HCLGEVF_RING_RX_TAIL_REG,
63 					 HCLGEVF_RING_RX_HEAD_REG,
64 					 HCLGEVF_RING_RX_FBD_NUM_REG,
65 					 HCLGEVF_RING_RX_OFFSET_REG,
66 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
67 					 HCLGEVF_RING_RX_STASH_REG,
68 					 HCLGEVF_RING_RX_BD_ERR_REG,
69 					 HCLGEVF_RING_TX_ADDR_L_REG,
70 					 HCLGEVF_RING_TX_ADDR_H_REG,
71 					 HCLGEVF_RING_TX_BD_NUM_REG,
72 					 HCLGEVF_RING_TX_PRIORITY_REG,
73 					 HCLGEVF_RING_TX_TC_REG,
74 					 HCLGEVF_RING_TX_MERGE_EN_REG,
75 					 HCLGEVF_RING_TX_TAIL_REG,
76 					 HCLGEVF_RING_TX_HEAD_REG,
77 					 HCLGEVF_RING_TX_FBD_NUM_REG,
78 					 HCLGEVF_RING_TX_OFFSET_REG,
79 					 HCLGEVF_RING_TX_EBD_NUM_REG,
80 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
81 					 HCLGEVF_RING_TX_BD_ERR_REG,
82 					 HCLGEVF_RING_EN_REG};
83 
84 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
85 					     HCLGEVF_TQP_INTR_GL0_REG,
86 					     HCLGEVF_TQP_INTR_GL1_REG,
87 					     HCLGEVF_TQP_INTR_GL2_REG,
88 					     HCLGEVF_TQP_INTR_RL_REG};
89 
90 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
91 {
92 	if (!handle->client)
93 		return container_of(handle, struct hclgevf_dev, nic);
94 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
95 		return container_of(handle, struct hclgevf_dev, roce);
96 	else
97 		return container_of(handle, struct hclgevf_dev, nic);
98 }
99 
100 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
101 {
102 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
103 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
104 	struct hclgevf_desc desc;
105 	struct hclgevf_tqp *tqp;
106 	int status;
107 	int i;
108 
109 	for (i = 0; i < kinfo->num_tqps; i++) {
110 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
111 		hclgevf_cmd_setup_basic_desc(&desc,
112 					     HCLGEVF_OPC_QUERY_RX_STATUS,
113 					     true);
114 
115 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
116 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
117 		if (status) {
118 			dev_err(&hdev->pdev->dev,
119 				"Query tqp stat fail, status = %d,queue = %d\n",
120 				status,	i);
121 			return status;
122 		}
123 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
124 			le32_to_cpu(desc.data[1]);
125 
126 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
127 					     true);
128 
129 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
130 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
131 		if (status) {
132 			dev_err(&hdev->pdev->dev,
133 				"Query tqp stat fail, status = %d,queue = %d\n",
134 				status, i);
135 			return status;
136 		}
137 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
138 			le32_to_cpu(desc.data[1]);
139 	}
140 
141 	return 0;
142 }
143 
144 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
145 {
146 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
147 	struct hclgevf_tqp *tqp;
148 	u64 *buff = data;
149 	int i;
150 
151 	for (i = 0; i < kinfo->num_tqps; i++) {
152 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
153 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
154 	}
155 	for (i = 0; i < kinfo->num_tqps; i++) {
156 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
158 	}
159 
160 	return buff;
161 }
162 
163 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
164 {
165 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
166 
167 	return kinfo->num_tqps * 2;
168 }
169 
170 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
171 {
172 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
173 	u8 *buff = data;
174 	int i = 0;
175 
176 	for (i = 0; i < kinfo->num_tqps; i++) {
177 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
178 						       struct hclgevf_tqp, q);
179 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
180 			 tqp->index);
181 		buff += ETH_GSTRING_LEN;
182 	}
183 
184 	for (i = 0; i < kinfo->num_tqps; i++) {
185 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
186 						       struct hclgevf_tqp, q);
187 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
188 			 tqp->index);
189 		buff += ETH_GSTRING_LEN;
190 	}
191 
192 	return buff;
193 }
194 
195 static void hclgevf_update_stats(struct hnae3_handle *handle,
196 				 struct net_device_stats *net_stats)
197 {
198 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
199 	int status;
200 
201 	status = hclgevf_tqps_update_stats(handle);
202 	if (status)
203 		dev_err(&hdev->pdev->dev,
204 			"VF update of TQPS stats fail, status = %d.\n",
205 			status);
206 }
207 
208 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
209 {
210 	if (strset == ETH_SS_TEST)
211 		return -EOPNOTSUPP;
212 	else if (strset == ETH_SS_STATS)
213 		return hclgevf_tqps_get_sset_count(handle, strset);
214 
215 	return 0;
216 }
217 
218 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
219 				u8 *data)
220 {
221 	u8 *p = (char *)data;
222 
223 	if (strset == ETH_SS_STATS)
224 		p = hclgevf_tqps_get_strings(handle, p);
225 }
226 
227 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
228 {
229 	hclgevf_tqps_get_stats(handle, data);
230 }
231 
232 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
233 {
234 	u8 resp_msg;
235 	int status;
236 
237 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
238 				      true, &resp_msg, sizeof(resp_msg));
239 	if (status) {
240 		dev_err(&hdev->pdev->dev,
241 			"VF request to get TC info from PF failed %d",
242 			status);
243 		return status;
244 	}
245 
246 	hdev->hw_tc_map = resp_msg;
247 
248 	return 0;
249 }
250 
251 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
252 {
253 	struct hnae3_handle *nic = &hdev->nic;
254 	u8 resp_msg;
255 	int ret;
256 
257 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
258 				   HCLGE_MBX_GET_PORT_BASE_VLAN_STATE,
259 				   NULL, 0, true, &resp_msg, sizeof(u8));
260 	if (ret) {
261 		dev_err(&hdev->pdev->dev,
262 			"VF request to get port based vlan state failed %d",
263 			ret);
264 		return ret;
265 	}
266 
267 	nic->port_base_vlan_state = resp_msg;
268 
269 	return 0;
270 }
271 
272 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
273 {
274 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
275 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
276 	int status;
277 
278 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
279 				      true, resp_msg,
280 				      HCLGEVF_TQPS_RSS_INFO_LEN);
281 	if (status) {
282 		dev_err(&hdev->pdev->dev,
283 			"VF request to get tqp info from PF failed %d",
284 			status);
285 		return status;
286 	}
287 
288 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
289 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
290 	memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));
291 
292 	return 0;
293 }
294 
295 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
296 {
297 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
298 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
299 	int ret;
300 
301 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
302 				   true, resp_msg,
303 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
304 	if (ret) {
305 		dev_err(&hdev->pdev->dev,
306 			"VF request to get tqp depth info from PF failed %d",
307 			ret);
308 		return ret;
309 	}
310 
311 	memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
312 	memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));
313 
314 	return 0;
315 }
316 
317 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
318 {
319 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
320 	u8 msg_data[2], resp_data[2];
321 	u16 qid_in_pf = 0;
322 	int ret;
323 
324 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
325 
326 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
327 				   sizeof(msg_data), true, resp_data,
328 				   sizeof(resp_data));
329 	if (!ret)
330 		qid_in_pf = *(u16 *)resp_data;
331 
332 	return qid_in_pf;
333 }
334 
335 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
336 {
337 	u8 resp_msg[2];
338 	int ret;
339 
340 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MEDIA_TYPE, 0, NULL, 0,
341 				   true, resp_msg, sizeof(resp_msg));
342 	if (ret) {
343 		dev_err(&hdev->pdev->dev,
344 			"VF request to get the pf port media type failed %d",
345 			ret);
346 		return ret;
347 	}
348 
349 	hdev->hw.mac.media_type = resp_msg[0];
350 	hdev->hw.mac.module_type = resp_msg[1];
351 
352 	return 0;
353 }
354 
355 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
356 {
357 	struct hclgevf_tqp *tqp;
358 	int i;
359 
360 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
361 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
362 	if (!hdev->htqp)
363 		return -ENOMEM;
364 
365 	tqp = hdev->htqp;
366 
367 	for (i = 0; i < hdev->num_tqps; i++) {
368 		tqp->dev = &hdev->pdev->dev;
369 		tqp->index = i;
370 
371 		tqp->q.ae_algo = &ae_algovf;
372 		tqp->q.buf_size = hdev->rx_buf_len;
373 		tqp->q.tx_desc_num = hdev->num_tx_desc;
374 		tqp->q.rx_desc_num = hdev->num_rx_desc;
375 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
376 			i * HCLGEVF_TQP_REG_SIZE;
377 
378 		tqp++;
379 	}
380 
381 	return 0;
382 }
383 
384 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
385 {
386 	struct hnae3_handle *nic = &hdev->nic;
387 	struct hnae3_knic_private_info *kinfo;
388 	u16 new_tqps = hdev->num_tqps;
389 	unsigned int i;
390 
391 	kinfo = &nic->kinfo;
392 	kinfo->num_tc = 0;
393 	kinfo->num_tx_desc = hdev->num_tx_desc;
394 	kinfo->num_rx_desc = hdev->num_rx_desc;
395 	kinfo->rx_buf_len = hdev->rx_buf_len;
396 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
397 		if (hdev->hw_tc_map & BIT(i))
398 			kinfo->num_tc++;
399 
400 	kinfo->rss_size
401 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
402 	new_tqps = kinfo->rss_size * kinfo->num_tc;
403 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
404 
405 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
406 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
407 	if (!kinfo->tqp)
408 		return -ENOMEM;
409 
410 	for (i = 0; i < kinfo->num_tqps; i++) {
411 		hdev->htqp[i].q.handle = &hdev->nic;
412 		hdev->htqp[i].q.tqp_index = i;
413 		kinfo->tqp[i] = &hdev->htqp[i].q;
414 	}
415 
416 	/* after init the max rss_size and tqps, adjust the default tqp numbers
417 	 * and rss size with the actual vector numbers
418 	 */
419 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
420 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / kinfo->num_tc,
421 				kinfo->rss_size);
422 
423 	return 0;
424 }
425 
426 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
427 {
428 	int status;
429 	u8 resp_msg;
430 
431 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
432 				      0, false, &resp_msg, sizeof(resp_msg));
433 	if (status)
434 		dev_err(&hdev->pdev->dev,
435 			"VF failed to fetch link status(%d) from PF", status);
436 }
437 
438 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
439 {
440 	struct hnae3_handle *rhandle = &hdev->roce;
441 	struct hnae3_handle *handle = &hdev->nic;
442 	struct hnae3_client *rclient;
443 	struct hnae3_client *client;
444 
445 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
446 		return;
447 
448 	client = handle->client;
449 	rclient = hdev->roce_client;
450 
451 	link_state =
452 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
453 
454 	if (link_state != hdev->hw.mac.link) {
455 		client->ops->link_status_change(handle, !!link_state);
456 		if (rclient && rclient->ops->link_status_change)
457 			rclient->ops->link_status_change(rhandle, !!link_state);
458 		hdev->hw.mac.link = link_state;
459 	}
460 
461 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
462 }
463 
464 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
465 {
466 #define HCLGEVF_ADVERTISING 0
467 #define HCLGEVF_SUPPORTED   1
468 	u8 send_msg;
469 	u8 resp_msg;
470 
471 	send_msg = HCLGEVF_ADVERTISING;
472 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
473 			     &send_msg, sizeof(send_msg), false,
474 			     &resp_msg, sizeof(resp_msg));
475 	send_msg = HCLGEVF_SUPPORTED;
476 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
477 			     &send_msg, sizeof(send_msg), false,
478 			     &resp_msg, sizeof(resp_msg));
479 }
480 
481 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
482 {
483 	struct hnae3_handle *nic = &hdev->nic;
484 	int ret;
485 
486 	nic->ae_algo = &ae_algovf;
487 	nic->pdev = hdev->pdev;
488 	nic->numa_node_mask = hdev->numa_node_mask;
489 	nic->flags |= HNAE3_SUPPORT_VF;
490 
491 	ret = hclgevf_knic_setup(hdev);
492 	if (ret)
493 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
494 			ret);
495 	return ret;
496 }
497 
498 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
499 {
500 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
501 		dev_warn(&hdev->pdev->dev,
502 			 "vector(vector_id %d) has been freed.\n", vector_id);
503 		return;
504 	}
505 
506 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
507 	hdev->num_msi_left += 1;
508 	hdev->num_msi_used -= 1;
509 }
510 
511 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
512 			      struct hnae3_vector_info *vector_info)
513 {
514 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
515 	struct hnae3_vector_info *vector = vector_info;
516 	int alloc = 0;
517 	int i, j;
518 
519 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
520 	vector_num = min(hdev->num_msi_left, vector_num);
521 
522 	for (j = 0; j < vector_num; j++) {
523 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
524 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
525 				vector->vector = pci_irq_vector(hdev->pdev, i);
526 				vector->io_addr = hdev->hw.io_base +
527 					HCLGEVF_VECTOR_REG_BASE +
528 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
529 				hdev->vector_status[i] = 0;
530 				hdev->vector_irq[i] = vector->vector;
531 
532 				vector++;
533 				alloc++;
534 
535 				break;
536 			}
537 		}
538 	}
539 	hdev->num_msi_left -= alloc;
540 	hdev->num_msi_used += alloc;
541 
542 	return alloc;
543 }
544 
545 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
546 {
547 	int i;
548 
549 	for (i = 0; i < hdev->num_msi; i++)
550 		if (vector == hdev->vector_irq[i])
551 			return i;
552 
553 	return -EINVAL;
554 }
555 
556 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
557 				    const u8 hfunc, const u8 *key)
558 {
559 	struct hclgevf_rss_config_cmd *req;
560 	unsigned int key_offset = 0;
561 	struct hclgevf_desc desc;
562 	int key_counts;
563 	int key_size;
564 	int ret;
565 
566 	key_counts = HCLGEVF_RSS_KEY_SIZE;
567 	req = (struct hclgevf_rss_config_cmd *)desc.data;
568 
569 	while (key_counts) {
570 		hclgevf_cmd_setup_basic_desc(&desc,
571 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
572 					     false);
573 
574 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
575 		req->hash_config |=
576 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
577 
578 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
579 		memcpy(req->hash_key,
580 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
581 
582 		key_counts -= key_size;
583 		key_offset++;
584 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
585 		if (ret) {
586 			dev_err(&hdev->pdev->dev,
587 				"Configure RSS config fail, status = %d\n",
588 				ret);
589 			return ret;
590 		}
591 	}
592 
593 	return 0;
594 }
595 
596 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
597 {
598 	return HCLGEVF_RSS_KEY_SIZE;
599 }
600 
601 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
602 {
603 	return HCLGEVF_RSS_IND_TBL_SIZE;
604 }
605 
606 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
607 {
608 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
609 	struct hclgevf_rss_indirection_table_cmd *req;
610 	struct hclgevf_desc desc;
611 	int status;
612 	int i, j;
613 
614 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
615 
616 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
617 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
618 					     false);
619 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
620 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
621 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
622 			req->rss_result[j] =
623 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
624 
625 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
626 		if (status) {
627 			dev_err(&hdev->pdev->dev,
628 				"VF failed(=%d) to set RSS indirection table\n",
629 				status);
630 			return status;
631 		}
632 	}
633 
634 	return 0;
635 }
636 
637 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
638 {
639 	struct hclgevf_rss_tc_mode_cmd *req;
640 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
641 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
642 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
643 	struct hclgevf_desc desc;
644 	u16 roundup_size;
645 	int status;
646 	unsigned int i;
647 
648 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
649 
650 	roundup_size = roundup_pow_of_two(rss_size);
651 	roundup_size = ilog2(roundup_size);
652 
653 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
654 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
655 		tc_size[i] = roundup_size;
656 		tc_offset[i] = rss_size * i;
657 	}
658 
659 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
660 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
661 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
662 			      (tc_valid[i] & 0x1));
663 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
664 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
665 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
666 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
667 	}
668 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
669 	if (status)
670 		dev_err(&hdev->pdev->dev,
671 			"VF failed(=%d) to set rss tc mode\n", status);
672 
673 	return status;
674 }
675 
676 /* for revision 0x20, vf shared the same rss config with pf */
677 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
678 {
679 #define HCLGEVF_RSS_MBX_RESP_LEN	8
680 
681 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
682 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
683 	u16 msg_num, hash_key_index;
684 	u8 index;
685 	int ret;
686 
687 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
688 			HCLGEVF_RSS_MBX_RESP_LEN;
689 	for (index = 0; index < msg_num; index++) {
690 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_RSS_KEY, 0,
691 					   &index, sizeof(index),
692 					   true, resp_msg,
693 					   HCLGEVF_RSS_MBX_RESP_LEN);
694 		if (ret) {
695 			dev_err(&hdev->pdev->dev,
696 				"VF get rss hash key from PF failed, ret=%d",
697 				ret);
698 			return ret;
699 		}
700 
701 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
702 		if (index == msg_num - 1)
703 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
704 			       &resp_msg[0],
705 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
706 		else
707 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
708 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
709 	}
710 
711 	return 0;
712 }
713 
714 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
715 			   u8 *hfunc)
716 {
717 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
718 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
719 	int i, ret;
720 
721 	if (handle->pdev->revision >= 0x21) {
722 		/* Get hash algorithm */
723 		if (hfunc) {
724 			switch (rss_cfg->hash_algo) {
725 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
726 				*hfunc = ETH_RSS_HASH_TOP;
727 				break;
728 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
729 				*hfunc = ETH_RSS_HASH_XOR;
730 				break;
731 			default:
732 				*hfunc = ETH_RSS_HASH_UNKNOWN;
733 				break;
734 			}
735 		}
736 
737 		/* Get the RSS Key required by the user */
738 		if (key)
739 			memcpy(key, rss_cfg->rss_hash_key,
740 			       HCLGEVF_RSS_KEY_SIZE);
741 	} else {
742 		if (hfunc)
743 			*hfunc = ETH_RSS_HASH_TOP;
744 		if (key) {
745 			ret = hclgevf_get_rss_hash_key(hdev);
746 			if (ret)
747 				return ret;
748 			memcpy(key, rss_cfg->rss_hash_key,
749 			       HCLGEVF_RSS_KEY_SIZE);
750 		}
751 	}
752 
753 	if (indir)
754 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
755 			indir[i] = rss_cfg->rss_indirection_tbl[i];
756 
757 	return 0;
758 }
759 
760 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
761 			   const u8 *key, const u8 hfunc)
762 {
763 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
764 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
765 	int ret, i;
766 
767 	if (handle->pdev->revision >= 0x21) {
768 		/* Set the RSS Hash Key if specififed by the user */
769 		if (key) {
770 			switch (hfunc) {
771 			case ETH_RSS_HASH_TOP:
772 				rss_cfg->hash_algo =
773 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
774 				break;
775 			case ETH_RSS_HASH_XOR:
776 				rss_cfg->hash_algo =
777 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
778 				break;
779 			case ETH_RSS_HASH_NO_CHANGE:
780 				break;
781 			default:
782 				return -EINVAL;
783 			}
784 
785 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
786 						       key);
787 			if (ret)
788 				return ret;
789 
790 			/* Update the shadow RSS key with user specified qids */
791 			memcpy(rss_cfg->rss_hash_key, key,
792 			       HCLGEVF_RSS_KEY_SIZE);
793 		}
794 	}
795 
796 	/* update the shadow RSS table with user specified qids */
797 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
798 		rss_cfg->rss_indirection_tbl[i] = indir[i];
799 
800 	/* update the hardware */
801 	return hclgevf_set_rss_indir_table(hdev);
802 }
803 
804 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
805 {
806 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
807 
808 	if (nfc->data & RXH_L4_B_2_3)
809 		hash_sets |= HCLGEVF_D_PORT_BIT;
810 	else
811 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
812 
813 	if (nfc->data & RXH_IP_SRC)
814 		hash_sets |= HCLGEVF_S_IP_BIT;
815 	else
816 		hash_sets &= ~HCLGEVF_S_IP_BIT;
817 
818 	if (nfc->data & RXH_IP_DST)
819 		hash_sets |= HCLGEVF_D_IP_BIT;
820 	else
821 		hash_sets &= ~HCLGEVF_D_IP_BIT;
822 
823 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
824 		hash_sets |= HCLGEVF_V_TAG_BIT;
825 
826 	return hash_sets;
827 }
828 
829 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
830 				 struct ethtool_rxnfc *nfc)
831 {
832 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
833 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
834 	struct hclgevf_rss_input_tuple_cmd *req;
835 	struct hclgevf_desc desc;
836 	u8 tuple_sets;
837 	int ret;
838 
839 	if (handle->pdev->revision == 0x20)
840 		return -EOPNOTSUPP;
841 
842 	if (nfc->data &
843 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
844 		return -EINVAL;
845 
846 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
847 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
848 
849 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
850 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
851 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
852 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
853 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
854 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
855 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
856 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
857 
858 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
859 	switch (nfc->flow_type) {
860 	case TCP_V4_FLOW:
861 		req->ipv4_tcp_en = tuple_sets;
862 		break;
863 	case TCP_V6_FLOW:
864 		req->ipv6_tcp_en = tuple_sets;
865 		break;
866 	case UDP_V4_FLOW:
867 		req->ipv4_udp_en = tuple_sets;
868 		break;
869 	case UDP_V6_FLOW:
870 		req->ipv6_udp_en = tuple_sets;
871 		break;
872 	case SCTP_V4_FLOW:
873 		req->ipv4_sctp_en = tuple_sets;
874 		break;
875 	case SCTP_V6_FLOW:
876 		if ((nfc->data & RXH_L4_B_0_1) ||
877 		    (nfc->data & RXH_L4_B_2_3))
878 			return -EINVAL;
879 
880 		req->ipv6_sctp_en = tuple_sets;
881 		break;
882 	case IPV4_FLOW:
883 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
884 		break;
885 	case IPV6_FLOW:
886 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
887 		break;
888 	default:
889 		return -EINVAL;
890 	}
891 
892 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
893 	if (ret) {
894 		dev_err(&hdev->pdev->dev,
895 			"Set rss tuple fail, status = %d\n", ret);
896 		return ret;
897 	}
898 
899 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
900 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
901 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
902 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
903 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
904 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
905 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
906 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
907 	return 0;
908 }
909 
910 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
911 				 struct ethtool_rxnfc *nfc)
912 {
913 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
914 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
915 	u8 tuple_sets;
916 
917 	if (handle->pdev->revision == 0x20)
918 		return -EOPNOTSUPP;
919 
920 	nfc->data = 0;
921 
922 	switch (nfc->flow_type) {
923 	case TCP_V4_FLOW:
924 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
925 		break;
926 	case UDP_V4_FLOW:
927 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
928 		break;
929 	case TCP_V6_FLOW:
930 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
931 		break;
932 	case UDP_V6_FLOW:
933 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
934 		break;
935 	case SCTP_V4_FLOW:
936 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
937 		break;
938 	case SCTP_V6_FLOW:
939 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
940 		break;
941 	case IPV4_FLOW:
942 	case IPV6_FLOW:
943 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
944 		break;
945 	default:
946 		return -EINVAL;
947 	}
948 
949 	if (!tuple_sets)
950 		return 0;
951 
952 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
953 		nfc->data |= RXH_L4_B_2_3;
954 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
955 		nfc->data |= RXH_L4_B_0_1;
956 	if (tuple_sets & HCLGEVF_D_IP_BIT)
957 		nfc->data |= RXH_IP_DST;
958 	if (tuple_sets & HCLGEVF_S_IP_BIT)
959 		nfc->data |= RXH_IP_SRC;
960 
961 	return 0;
962 }
963 
964 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
965 				       struct hclgevf_rss_cfg *rss_cfg)
966 {
967 	struct hclgevf_rss_input_tuple_cmd *req;
968 	struct hclgevf_desc desc;
969 	int ret;
970 
971 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
972 
973 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
974 
975 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
976 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
977 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
978 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
979 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
980 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
981 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
982 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
983 
984 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
985 	if (ret)
986 		dev_err(&hdev->pdev->dev,
987 			"Configure rss input fail, status = %d\n", ret);
988 	return ret;
989 }
990 
991 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
992 {
993 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
994 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
995 
996 	return rss_cfg->rss_size;
997 }
998 
999 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1000 				       int vector_id,
1001 				       struct hnae3_ring_chain_node *ring_chain)
1002 {
1003 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1004 	struct hnae3_ring_chain_node *node;
1005 	struct hclge_mbx_vf_to_pf_cmd *req;
1006 	struct hclgevf_desc desc;
1007 	int i = 0;
1008 	int status;
1009 	u8 type;
1010 
1011 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1012 	type = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1013 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1014 
1015 	for (node = ring_chain; node; node = node->next) {
1016 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
1017 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
1018 
1019 		if (i == 0) {
1020 			hclgevf_cmd_setup_basic_desc(&desc,
1021 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1022 						     false);
1023 			req->msg[0] = type;
1024 			req->msg[1] = vector_id;
1025 		}
1026 
1027 		req->msg[idx_offset] =
1028 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1029 		req->msg[idx_offset + 1] = node->tqp_index;
1030 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
1031 							   HNAE3_RING_GL_IDX_M,
1032 							   HNAE3_RING_GL_IDX_S);
1033 
1034 		i++;
1035 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
1036 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
1037 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
1038 		    !node->next) {
1039 			req->msg[2] = i;
1040 
1041 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1042 			if (status) {
1043 				dev_err(&hdev->pdev->dev,
1044 					"Map TQP fail, status is %d.\n",
1045 					status);
1046 				return status;
1047 			}
1048 			i = 0;
1049 			hclgevf_cmd_setup_basic_desc(&desc,
1050 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1051 						     false);
1052 			req->msg[0] = type;
1053 			req->msg[1] = vector_id;
1054 		}
1055 	}
1056 
1057 	return 0;
1058 }
1059 
1060 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1061 				      struct hnae3_ring_chain_node *ring_chain)
1062 {
1063 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1064 	int vector_id;
1065 
1066 	vector_id = hclgevf_get_vector_index(hdev, vector);
1067 	if (vector_id < 0) {
1068 		dev_err(&handle->pdev->dev,
1069 			"Get vector index fail. ret =%d\n", vector_id);
1070 		return vector_id;
1071 	}
1072 
1073 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1074 }
1075 
1076 static int hclgevf_unmap_ring_from_vector(
1077 				struct hnae3_handle *handle,
1078 				int vector,
1079 				struct hnae3_ring_chain_node *ring_chain)
1080 {
1081 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1082 	int ret, vector_id;
1083 
1084 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1085 		return 0;
1086 
1087 	vector_id = hclgevf_get_vector_index(hdev, vector);
1088 	if (vector_id < 0) {
1089 		dev_err(&handle->pdev->dev,
1090 			"Get vector index fail. ret =%d\n", vector_id);
1091 		return vector_id;
1092 	}
1093 
1094 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1095 	if (ret)
1096 		dev_err(&handle->pdev->dev,
1097 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1098 			vector_id,
1099 			ret);
1100 
1101 	return ret;
1102 }
1103 
1104 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1105 {
1106 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1107 	int vector_id;
1108 
1109 	vector_id = hclgevf_get_vector_index(hdev, vector);
1110 	if (vector_id < 0) {
1111 		dev_err(&handle->pdev->dev,
1112 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1113 			vector_id);
1114 		return vector_id;
1115 	}
1116 
1117 	hclgevf_free_vector(hdev, vector_id);
1118 
1119 	return 0;
1120 }
1121 
1122 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1123 					bool en_uc_pmc, bool en_mc_pmc,
1124 					bool en_bc_pmc)
1125 {
1126 	struct hclge_mbx_vf_to_pf_cmd *req;
1127 	struct hclgevf_desc desc;
1128 	int ret;
1129 
1130 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1131 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
1132 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1133 	req->msg[1] = en_bc_pmc ? 1 : 0;
1134 	req->msg[2] = en_uc_pmc ? 1 : 0;
1135 	req->msg[3] = en_mc_pmc ? 1 : 0;
1136 
1137 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1138 	if (ret)
1139 		dev_err(&hdev->pdev->dev,
1140 			"Set promisc mode fail, status is %d.\n", ret);
1141 
1142 	return ret;
1143 }
1144 
1145 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1146 				    bool en_mc_pmc)
1147 {
1148 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1149 	struct pci_dev *pdev = hdev->pdev;
1150 	bool en_bc_pmc;
1151 
1152 	en_bc_pmc = pdev->revision != 0x20;
1153 
1154 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1155 					    en_bc_pmc);
1156 }
1157 
1158 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1159 			      int stream_id, bool enable)
1160 {
1161 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1162 	struct hclgevf_desc desc;
1163 	int status;
1164 
1165 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1166 
1167 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1168 				     false);
1169 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1170 	req->stream_id = cpu_to_le16(stream_id);
1171 	if (enable)
1172 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1173 
1174 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1175 	if (status)
1176 		dev_err(&hdev->pdev->dev,
1177 			"TQP enable fail, status =%d.\n", status);
1178 
1179 	return status;
1180 }
1181 
1182 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1183 {
1184 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1185 	struct hclgevf_tqp *tqp;
1186 	int i;
1187 
1188 	for (i = 0; i < kinfo->num_tqps; i++) {
1189 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1190 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1191 	}
1192 }
1193 
1194 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1195 {
1196 	u8 host_mac[ETH_ALEN];
1197 	int status;
1198 
1199 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MAC_ADDR, 0, NULL, 0,
1200 				      true, host_mac, ETH_ALEN);
1201 	if (status) {
1202 		dev_err(&hdev->pdev->dev,
1203 			"fail to get VF MAC from host %d", status);
1204 		return status;
1205 	}
1206 
1207 	ether_addr_copy(p, host_mac);
1208 
1209 	return 0;
1210 }
1211 
1212 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1213 {
1214 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1215 	u8 host_mac_addr[ETH_ALEN];
1216 
1217 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1218 		return;
1219 
1220 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1221 	if (hdev->has_pf_mac)
1222 		ether_addr_copy(p, host_mac_addr);
1223 	else
1224 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1225 }
1226 
1227 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1228 				bool is_first)
1229 {
1230 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1231 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1232 	u8 *new_mac_addr = (u8 *)p;
1233 	u8 msg_data[ETH_ALEN * 2];
1234 	u16 subcode;
1235 	int status;
1236 
1237 	ether_addr_copy(msg_data, new_mac_addr);
1238 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1239 
1240 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1241 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1242 
1243 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1244 				      subcode, msg_data, sizeof(msg_data),
1245 				      true, NULL, 0);
1246 	if (!status)
1247 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1248 
1249 	return status;
1250 }
1251 
1252 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1253 			       const unsigned char *addr)
1254 {
1255 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1256 
1257 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1258 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1259 				    addr, ETH_ALEN, false, NULL, 0);
1260 }
1261 
1262 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1263 			      const unsigned char *addr)
1264 {
1265 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1266 
1267 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1268 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1269 				    addr, ETH_ALEN, false, NULL, 0);
1270 }
1271 
1272 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1273 			       const unsigned char *addr)
1274 {
1275 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1276 
1277 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1278 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1279 				    addr, ETH_ALEN, false, NULL, 0);
1280 }
1281 
1282 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1283 			      const unsigned char *addr)
1284 {
1285 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1286 
1287 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1288 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1289 				    addr, ETH_ALEN, false, NULL, 0);
1290 }
1291 
1292 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1293 				   __be16 proto, u16 vlan_id,
1294 				   bool is_kill)
1295 {
1296 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1297 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1298 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1299 	int ret;
1300 
1301 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1302 		return -EINVAL;
1303 
1304 	if (proto != htons(ETH_P_8021Q))
1305 		return -EPROTONOSUPPORT;
1306 
1307 	/* When device is resetting, firmware is unable to handle
1308 	 * mailbox. Just record the vlan id, and remove it after
1309 	 * reset finished.
1310 	 */
1311 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) && is_kill) {
1312 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1313 		return -EBUSY;
1314 	}
1315 
1316 	msg_data[0] = is_kill;
1317 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1318 	memcpy(&msg_data[3], &proto, sizeof(proto));
1319 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1320 				   HCLGE_MBX_VLAN_FILTER, msg_data,
1321 				   HCLGEVF_VLAN_MBX_MSG_LEN, true, NULL, 0);
1322 
1323 	/* when remove hw vlan filter failed, record the vlan id,
1324 	 * and try to remove it from hw later, to be consistence
1325 	 * with stack.
1326 	 */
1327 	if (is_kill && ret)
1328 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1329 
1330 	return ret;
1331 }
1332 
1333 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1334 {
1335 #define HCLGEVF_MAX_SYNC_COUNT	60
1336 	struct hnae3_handle *handle = &hdev->nic;
1337 	int ret, sync_cnt = 0;
1338 	u16 vlan_id;
1339 
1340 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1341 	while (vlan_id != VLAN_N_VID) {
1342 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1343 					      vlan_id, true);
1344 		if (ret)
1345 			return;
1346 
1347 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1348 		sync_cnt++;
1349 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1350 			return;
1351 
1352 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1353 	}
1354 }
1355 
1356 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1357 {
1358 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1359 	u8 msg_data;
1360 
1361 	msg_data = enable ? 1 : 0;
1362 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1363 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1364 				    1, false, NULL, 0);
1365 }
1366 
1367 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1368 {
1369 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1370 	u8 msg_data[2];
1371 	int ret;
1372 
1373 	memcpy(msg_data, &queue_id, sizeof(queue_id));
1374 
1375 	/* disable vf queue before send queue reset msg to PF */
1376 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1377 	if (ret)
1378 		return ret;
1379 
1380 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1381 				    sizeof(msg_data), true, NULL, 0);
1382 }
1383 
1384 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1385 {
1386 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1387 
1388 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1389 				    sizeof(new_mtu), true, NULL, 0);
1390 }
1391 
1392 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1393 				 enum hnae3_reset_notify_type type)
1394 {
1395 	struct hnae3_client *client = hdev->nic_client;
1396 	struct hnae3_handle *handle = &hdev->nic;
1397 	int ret;
1398 
1399 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1400 	    !client)
1401 		return 0;
1402 
1403 	if (!client->ops->reset_notify)
1404 		return -EOPNOTSUPP;
1405 
1406 	ret = client->ops->reset_notify(handle, type);
1407 	if (ret)
1408 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1409 			type, ret);
1410 
1411 	return ret;
1412 }
1413 
1414 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1415 {
1416 	struct hclgevf_dev *hdev = ae_dev->priv;
1417 
1418 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1419 }
1420 
1421 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1422 				    unsigned long delay_us,
1423 				    unsigned long wait_cnt)
1424 {
1425 	unsigned long cnt = 0;
1426 
1427 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1428 	       cnt++ < wait_cnt)
1429 		usleep_range(delay_us, delay_us * 2);
1430 
1431 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1432 		dev_err(&hdev->pdev->dev,
1433 			"flr wait timeout\n");
1434 		return -ETIMEDOUT;
1435 	}
1436 
1437 	return 0;
1438 }
1439 
1440 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1441 {
1442 #define HCLGEVF_RESET_WAIT_US	20000
1443 #define HCLGEVF_RESET_WAIT_CNT	2000
1444 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1445 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1446 
1447 	u32 val;
1448 	int ret;
1449 
1450 	if (hdev->reset_type == HNAE3_FLR_RESET)
1451 		return hclgevf_flr_poll_timeout(hdev,
1452 						HCLGEVF_RESET_WAIT_US,
1453 						HCLGEVF_RESET_WAIT_CNT);
1454 	else if (hdev->reset_type == HNAE3_VF_RESET)
1455 		ret = readl_poll_timeout(hdev->hw.io_base +
1456 					 HCLGEVF_VF_RST_ING, val,
1457 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1458 					 HCLGEVF_RESET_WAIT_US,
1459 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1460 	else
1461 		ret = readl_poll_timeout(hdev->hw.io_base +
1462 					 HCLGEVF_RST_ING, val,
1463 					 !(val & HCLGEVF_RST_ING_BITS),
1464 					 HCLGEVF_RESET_WAIT_US,
1465 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1466 
1467 	/* hardware completion status should be available by this time */
1468 	if (ret) {
1469 		dev_err(&hdev->pdev->dev,
1470 			"could'nt get reset done status from h/w, timeout!\n");
1471 		return ret;
1472 	}
1473 
1474 	/* we will wait a bit more to let reset of the stack to complete. This
1475 	 * might happen in case reset assertion was made by PF. Yes, this also
1476 	 * means we might end up waiting bit more even for VF reset.
1477 	 */
1478 	msleep(5000);
1479 
1480 	return 0;
1481 }
1482 
1483 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1484 {
1485 	u32 reg_val;
1486 
1487 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1488 	if (enable)
1489 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1490 	else
1491 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1492 
1493 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1494 			  reg_val);
1495 }
1496 
1497 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1498 {
1499 	int ret;
1500 
1501 	/* uninitialize the nic client */
1502 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1503 	if (ret)
1504 		return ret;
1505 
1506 	/* re-initialize the hclge device */
1507 	ret = hclgevf_reset_hdev(hdev);
1508 	if (ret) {
1509 		dev_err(&hdev->pdev->dev,
1510 			"hclge device re-init failed, VF is disabled!\n");
1511 		return ret;
1512 	}
1513 
1514 	/* bring up the nic client again */
1515 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1516 	if (ret)
1517 		return ret;
1518 
1519 	ret = hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1520 	if (ret)
1521 		return ret;
1522 
1523 	/* clear handshake status with IMP */
1524 	hclgevf_reset_handshake(hdev, false);
1525 
1526 	return 0;
1527 }
1528 
1529 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1530 {
1531 #define HCLGEVF_RESET_SYNC_TIME 100
1532 
1533 	int ret = 0;
1534 
1535 	switch (hdev->reset_type) {
1536 	case HNAE3_VF_FUNC_RESET:
1537 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1538 					   0, true, NULL, sizeof(u8));
1539 		hdev->rst_stats.vf_func_rst_cnt++;
1540 		break;
1541 	case HNAE3_FLR_RESET:
1542 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1543 		hdev->rst_stats.flr_rst_cnt++;
1544 		break;
1545 	default:
1546 		break;
1547 	}
1548 
1549 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1550 	/* inform hardware that preparatory work is done */
1551 	msleep(HCLGEVF_RESET_SYNC_TIME);
1552 	hclgevf_reset_handshake(hdev, true);
1553 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1554 		 hdev->reset_type, ret);
1555 
1556 	return ret;
1557 }
1558 
1559 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1560 {
1561 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1562 		 hdev->rst_stats.vf_func_rst_cnt);
1563 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1564 		 hdev->rst_stats.flr_rst_cnt);
1565 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1566 		 hdev->rst_stats.vf_rst_cnt);
1567 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1568 		 hdev->rst_stats.rst_done_cnt);
1569 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1570 		 hdev->rst_stats.hw_rst_done_cnt);
1571 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1572 		 hdev->rst_stats.rst_cnt);
1573 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1574 		 hdev->rst_stats.rst_fail_cnt);
1575 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1576 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1577 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1578 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STAT_REG));
1579 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1580 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1581 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1582 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1583 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1584 }
1585 
1586 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1587 {
1588 	/* recover handshake status with IMP when reset fail */
1589 	hclgevf_reset_handshake(hdev, true);
1590 	hdev->rst_stats.rst_fail_cnt++;
1591 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1592 		hdev->rst_stats.rst_fail_cnt);
1593 
1594 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1595 		set_bit(hdev->reset_type, &hdev->reset_pending);
1596 
1597 	if (hclgevf_is_reset_pending(hdev)) {
1598 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1599 		hclgevf_reset_task_schedule(hdev);
1600 	} else {
1601 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1602 		hclgevf_dump_rst_info(hdev);
1603 	}
1604 }
1605 
1606 static int hclgevf_reset(struct hclgevf_dev *hdev)
1607 {
1608 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1609 	int ret;
1610 
1611 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1612 	 * know if device is undergoing reset
1613 	 */
1614 	ae_dev->reset_type = hdev->reset_type;
1615 	hdev->rst_stats.rst_cnt++;
1616 	rtnl_lock();
1617 
1618 	/* bring down the nic to stop any ongoing TX/RX */
1619 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1620 	if (ret)
1621 		goto err_reset_lock;
1622 
1623 	rtnl_unlock();
1624 
1625 	ret = hclgevf_reset_prepare_wait(hdev);
1626 	if (ret)
1627 		goto err_reset;
1628 
1629 	/* check if VF could successfully fetch the hardware reset completion
1630 	 * status from the hardware
1631 	 */
1632 	ret = hclgevf_reset_wait(hdev);
1633 	if (ret) {
1634 		/* can't do much in this situation, will disable VF */
1635 		dev_err(&hdev->pdev->dev,
1636 			"VF failed(=%d) to fetch H/W reset completion status\n",
1637 			ret);
1638 		goto err_reset;
1639 	}
1640 
1641 	hdev->rst_stats.hw_rst_done_cnt++;
1642 
1643 	rtnl_lock();
1644 
1645 	/* now, re-initialize the nic client and ae device */
1646 	ret = hclgevf_reset_stack(hdev);
1647 	if (ret) {
1648 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1649 		goto err_reset_lock;
1650 	}
1651 
1652 	/* bring up the nic to enable TX/RX again */
1653 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1654 	if (ret)
1655 		goto err_reset_lock;
1656 
1657 	rtnl_unlock();
1658 
1659 	hdev->last_reset_time = jiffies;
1660 	ae_dev->reset_type = HNAE3_NONE_RESET;
1661 	hdev->rst_stats.rst_done_cnt++;
1662 	hdev->rst_stats.rst_fail_cnt = 0;
1663 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1664 
1665 	return ret;
1666 err_reset_lock:
1667 	rtnl_unlock();
1668 err_reset:
1669 	hclgevf_reset_err_handle(hdev);
1670 
1671 	return ret;
1672 }
1673 
1674 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1675 						     unsigned long *addr)
1676 {
1677 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1678 
1679 	/* return the highest priority reset level amongst all */
1680 	if (test_bit(HNAE3_VF_RESET, addr)) {
1681 		rst_level = HNAE3_VF_RESET;
1682 		clear_bit(HNAE3_VF_RESET, addr);
1683 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1684 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1685 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1686 		rst_level = HNAE3_VF_FULL_RESET;
1687 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1688 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1689 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1690 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1691 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1692 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1693 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1694 		rst_level = HNAE3_VF_FUNC_RESET;
1695 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1696 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1697 		rst_level = HNAE3_FLR_RESET;
1698 		clear_bit(HNAE3_FLR_RESET, addr);
1699 	}
1700 
1701 	return rst_level;
1702 }
1703 
1704 static void hclgevf_reset_event(struct pci_dev *pdev,
1705 				struct hnae3_handle *handle)
1706 {
1707 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1708 	struct hclgevf_dev *hdev = ae_dev->priv;
1709 
1710 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1711 
1712 	if (hdev->default_reset_request)
1713 		hdev->reset_level =
1714 			hclgevf_get_reset_level(hdev,
1715 						&hdev->default_reset_request);
1716 	else
1717 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1718 
1719 	/* reset of this VF requested */
1720 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1721 	hclgevf_reset_task_schedule(hdev);
1722 
1723 	hdev->last_reset_time = jiffies;
1724 }
1725 
1726 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1727 					  enum hnae3_reset_type rst_type)
1728 {
1729 	struct hclgevf_dev *hdev = ae_dev->priv;
1730 
1731 	set_bit(rst_type, &hdev->default_reset_request);
1732 }
1733 
1734 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1735 {
1736 #define HCLGEVF_FLR_WAIT_MS	100
1737 #define HCLGEVF_FLR_WAIT_CNT	50
1738 	struct hclgevf_dev *hdev = ae_dev->priv;
1739 	int cnt = 0;
1740 
1741 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1742 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1743 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1744 	hclgevf_reset_event(hdev->pdev, NULL);
1745 
1746 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1747 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1748 		msleep(HCLGEVF_FLR_WAIT_MS);
1749 
1750 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1751 		dev_err(&hdev->pdev->dev,
1752 			"flr wait down timeout: %d\n", cnt);
1753 }
1754 
1755 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1756 {
1757 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1758 
1759 	return hdev->fw_version;
1760 }
1761 
1762 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1763 {
1764 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1765 
1766 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1767 					    HCLGEVF_MISC_VECTOR_NUM);
1768 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1769 	/* vector status always valid for Vector 0 */
1770 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1771 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1772 
1773 	hdev->num_msi_left -= 1;
1774 	hdev->num_msi_used += 1;
1775 }
1776 
1777 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1778 {
1779 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1780 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1781 			      &hdev->state))
1782 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1783 }
1784 
1785 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1786 {
1787 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1788 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
1789 			      &hdev->state))
1790 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1791 }
1792 
1793 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
1794 				  unsigned long delay)
1795 {
1796 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1797 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1798 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
1799 }
1800 
1801 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1802 {
1803 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
1804 
1805 	int ret;
1806 
1807 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1808 		return;
1809 
1810 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1811 		return;
1812 
1813 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1814 			       &hdev->reset_state)) {
1815 		/* PF has initmated that it is about to reset the hardware.
1816 		 * We now have to poll & check if hardware has actually
1817 		 * completed the reset sequence. On hardware reset completion,
1818 		 * VF needs to reset the client and ae device.
1819 		 */
1820 		hdev->reset_attempts = 0;
1821 
1822 		hdev->last_reset_time = jiffies;
1823 		while ((hdev->reset_type =
1824 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1825 		       != HNAE3_NONE_RESET) {
1826 			ret = hclgevf_reset(hdev);
1827 			if (ret)
1828 				dev_err(&hdev->pdev->dev,
1829 					"VF stack reset failed %d.\n", ret);
1830 		}
1831 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1832 				      &hdev->reset_state)) {
1833 		/* we could be here when either of below happens:
1834 		 * 1. reset was initiated due to watchdog timeout caused by
1835 		 *    a. IMP was earlier reset and our TX got choked down and
1836 		 *       which resulted in watchdog reacting and inducing VF
1837 		 *       reset. This also means our cmdq would be unreliable.
1838 		 *    b. problem in TX due to other lower layer(example link
1839 		 *       layer not functioning properly etc.)
1840 		 * 2. VF reset might have been initiated due to some config
1841 		 *    change.
1842 		 *
1843 		 * NOTE: Theres no clear way to detect above cases than to react
1844 		 * to the response of PF for this reset request. PF will ack the
1845 		 * 1b and 2. cases but we will not get any intimation about 1a
1846 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1847 		 * communication between PF and VF would be broken.
1848 		 *
1849 		 * if we are never geting into pending state it means either:
1850 		 * 1. PF is not receiving our request which could be due to IMP
1851 		 *    reset
1852 		 * 2. PF is screwed
1853 		 * We cannot do much for 2. but to check first we can try reset
1854 		 * our PCIe + stack and see if it alleviates the problem.
1855 		 */
1856 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1857 			/* prepare for full reset of stack + pcie interface */
1858 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1859 
1860 			/* "defer" schedule the reset task again */
1861 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1862 		} else {
1863 			hdev->reset_attempts++;
1864 
1865 			set_bit(hdev->reset_level, &hdev->reset_pending);
1866 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1867 		}
1868 		hclgevf_reset_task_schedule(hdev);
1869 	}
1870 
1871 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1872 }
1873 
1874 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1875 {
1876 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
1877 		return;
1878 
1879 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1880 		return;
1881 
1882 	hclgevf_mbx_async_handler(hdev);
1883 
1884 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1885 }
1886 
1887 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1888 {
1889 	u8 respmsg;
1890 	int ret;
1891 
1892 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
1893 		return;
1894 
1895 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1896 				   0, false, &respmsg, sizeof(respmsg));
1897 	if (ret)
1898 		dev_err(&hdev->pdev->dev,
1899 			"VF sends keep alive cmd failed(=%d)\n", ret);
1900 }
1901 
1902 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
1903 {
1904 	unsigned long delta = round_jiffies_relative(HZ);
1905 	struct hnae3_handle *handle = &hdev->nic;
1906 
1907 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
1908 		delta = jiffies - hdev->last_serv_processed;
1909 
1910 		if (delta < round_jiffies_relative(HZ)) {
1911 			delta = round_jiffies_relative(HZ) - delta;
1912 			goto out;
1913 		}
1914 	}
1915 
1916 	hdev->serv_processed_cnt++;
1917 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
1918 		hclgevf_keep_alive(hdev);
1919 
1920 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
1921 		hdev->last_serv_processed = jiffies;
1922 		goto out;
1923 	}
1924 
1925 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
1926 		hclgevf_tqps_update_stats(handle);
1927 
1928 	/* request the link status from the PF. PF would be able to tell VF
1929 	 * about such updates in future so we might remove this later
1930 	 */
1931 	hclgevf_request_link_info(hdev);
1932 
1933 	hclgevf_update_link_mode(hdev);
1934 
1935 	hclgevf_sync_vlan_filter(hdev);
1936 
1937 	hdev->last_serv_processed = jiffies;
1938 
1939 out:
1940 	hclgevf_task_schedule(hdev, delta);
1941 }
1942 
1943 static void hclgevf_service_task(struct work_struct *work)
1944 {
1945 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
1946 						service_task.work);
1947 
1948 	hclgevf_reset_service_task(hdev);
1949 	hclgevf_mailbox_service_task(hdev);
1950 	hclgevf_periodic_service_task(hdev);
1951 
1952 	/* Handle reset and mbx again in case periodical task delays the
1953 	 * handling by calling hclgevf_task_schedule() in
1954 	 * hclgevf_periodic_service_task()
1955 	 */
1956 	hclgevf_reset_service_task(hdev);
1957 	hclgevf_mailbox_service_task(hdev);
1958 }
1959 
1960 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1961 {
1962 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1963 }
1964 
1965 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1966 						      u32 *clearval)
1967 {
1968 	u32 val, cmdq_stat_reg, rst_ing_reg;
1969 
1970 	/* fetch the events from their corresponding regs */
1971 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
1972 					 HCLGEVF_VECTOR0_CMDQ_STAT_REG);
1973 
1974 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1975 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1976 		dev_info(&hdev->pdev->dev,
1977 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1978 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1979 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1980 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1981 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
1982 		hdev->rst_stats.vf_rst_cnt++;
1983 		/* set up VF hardware reset status, its PF will clear
1984 		 * this status when PF has initialized done.
1985 		 */
1986 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
1987 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
1988 				  val | HCLGEVF_VF_RST_ING_BIT);
1989 		return HCLGEVF_VECTOR0_EVENT_RST;
1990 	}
1991 
1992 	/* check for vector0 mailbox(=CMDQ RX) event source */
1993 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1994 		/* for revision 0x21, clearing interrupt is writing bit 0
1995 		 * to the clear register, writing bit 1 means to keep the
1996 		 * old value.
1997 		 * for revision 0x20, the clear register is a read & write
1998 		 * register, so we should just write 0 to the bit we are
1999 		 * handling, and keep other bits as cmdq_stat_reg.
2000 		 */
2001 		if (hdev->pdev->revision >= 0x21)
2002 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2003 		else
2004 			*clearval = cmdq_stat_reg &
2005 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2006 
2007 		return HCLGEVF_VECTOR0_EVENT_MBX;
2008 	}
2009 
2010 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
2011 
2012 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2013 }
2014 
2015 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2016 {
2017 	writel(en ? 1 : 0, vector->addr);
2018 }
2019 
2020 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2021 {
2022 	enum hclgevf_evt_cause event_cause;
2023 	struct hclgevf_dev *hdev = data;
2024 	u32 clearval;
2025 
2026 	hclgevf_enable_vector(&hdev->misc_vector, false);
2027 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2028 
2029 	switch (event_cause) {
2030 	case HCLGEVF_VECTOR0_EVENT_RST:
2031 		hclgevf_reset_task_schedule(hdev);
2032 		break;
2033 	case HCLGEVF_VECTOR0_EVENT_MBX:
2034 		hclgevf_mbx_handler(hdev);
2035 		break;
2036 	default:
2037 		break;
2038 	}
2039 
2040 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2041 		hclgevf_clear_event_cause(hdev, clearval);
2042 		hclgevf_enable_vector(&hdev->misc_vector, true);
2043 	}
2044 
2045 	return IRQ_HANDLED;
2046 }
2047 
2048 static int hclgevf_configure(struct hclgevf_dev *hdev)
2049 {
2050 	int ret;
2051 
2052 	/* get current port based vlan state from PF */
2053 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2054 	if (ret)
2055 		return ret;
2056 
2057 	/* get queue configuration from PF */
2058 	ret = hclgevf_get_queue_info(hdev);
2059 	if (ret)
2060 		return ret;
2061 
2062 	/* get queue depth info from PF */
2063 	ret = hclgevf_get_queue_depth(hdev);
2064 	if (ret)
2065 		return ret;
2066 
2067 	ret = hclgevf_get_pf_media_type(hdev);
2068 	if (ret)
2069 		return ret;
2070 
2071 	/* get tc configuration from PF */
2072 	return hclgevf_get_tc_info(hdev);
2073 }
2074 
2075 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2076 {
2077 	struct pci_dev *pdev = ae_dev->pdev;
2078 	struct hclgevf_dev *hdev;
2079 
2080 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2081 	if (!hdev)
2082 		return -ENOMEM;
2083 
2084 	hdev->pdev = pdev;
2085 	hdev->ae_dev = ae_dev;
2086 	ae_dev->priv = hdev;
2087 
2088 	return 0;
2089 }
2090 
2091 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2092 {
2093 	struct hnae3_handle *roce = &hdev->roce;
2094 	struct hnae3_handle *nic = &hdev->nic;
2095 
2096 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2097 
2098 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2099 	    hdev->num_msi_left == 0)
2100 		return -EINVAL;
2101 
2102 	roce->rinfo.base_vector = hdev->roce_base_vector;
2103 
2104 	roce->rinfo.netdev = nic->kinfo.netdev;
2105 	roce->rinfo.roce_io_base = hdev->hw.io_base;
2106 
2107 	roce->pdev = nic->pdev;
2108 	roce->ae_algo = nic->ae_algo;
2109 	roce->numa_node_mask = nic->numa_node_mask;
2110 
2111 	return 0;
2112 }
2113 
2114 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2115 {
2116 	struct hclgevf_cfg_gro_status_cmd *req;
2117 	struct hclgevf_desc desc;
2118 	int ret;
2119 
2120 	if (!hnae3_dev_gro_supported(hdev))
2121 		return 0;
2122 
2123 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2124 				     false);
2125 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2126 
2127 	req->gro_en = cpu_to_le16(en ? 1 : 0);
2128 
2129 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2130 	if (ret)
2131 		dev_err(&hdev->pdev->dev,
2132 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2133 
2134 	return ret;
2135 }
2136 
2137 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2138 {
2139 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2140 	int ret;
2141 	u32 i;
2142 
2143 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2144 
2145 	if (hdev->pdev->revision >= 0x21) {
2146 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2147 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2148 		       HCLGEVF_RSS_KEY_SIZE);
2149 
2150 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2151 					       rss_cfg->rss_hash_key);
2152 		if (ret)
2153 			return ret;
2154 
2155 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
2156 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2157 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
2158 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2159 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
2160 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2161 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
2162 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2163 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
2164 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2165 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
2166 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2167 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
2168 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2169 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
2170 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2171 
2172 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2173 		if (ret)
2174 			return ret;
2175 	}
2176 
2177 	/* Initialize RSS indirect table */
2178 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2179 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2180 
2181 	ret = hclgevf_set_rss_indir_table(hdev);
2182 	if (ret)
2183 		return ret;
2184 
2185 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2186 }
2187 
2188 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2189 {
2190 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2191 				       false);
2192 }
2193 
2194 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2195 {
2196 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2197 
2198 	unsigned long last = hdev->serv_processed_cnt;
2199 	int i = 0;
2200 
2201 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2202 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2203 	       last == hdev->serv_processed_cnt)
2204 		usleep_range(1, 1);
2205 }
2206 
2207 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2208 {
2209 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2210 
2211 	if (enable) {
2212 		hclgevf_task_schedule(hdev, 0);
2213 	} else {
2214 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2215 
2216 		/* flush memory to make sure DOWN is seen by service task */
2217 		smp_mb__before_atomic();
2218 		hclgevf_flush_link_update(hdev);
2219 	}
2220 }
2221 
2222 static int hclgevf_ae_start(struct hnae3_handle *handle)
2223 {
2224 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2225 
2226 	hclgevf_reset_tqp_stats(handle);
2227 
2228 	hclgevf_request_link_info(hdev);
2229 
2230 	hclgevf_update_link_mode(hdev);
2231 
2232 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2233 
2234 	return 0;
2235 }
2236 
2237 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2238 {
2239 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2240 	int i;
2241 
2242 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2243 
2244 	if (hdev->reset_type != HNAE3_VF_RESET)
2245 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2246 			if (hclgevf_reset_tqp(handle, i))
2247 				break;
2248 
2249 	hclgevf_reset_tqp_stats(handle);
2250 	hclgevf_update_link_status(hdev, 0);
2251 }
2252 
2253 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2254 {
2255 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2256 	u8 msg_data;
2257 
2258 	msg_data = alive ? 1 : 0;
2259 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
2260 				    0, &msg_data, 1, false, NULL, 0);
2261 }
2262 
2263 static int hclgevf_client_start(struct hnae3_handle *handle)
2264 {
2265 	int ret;
2266 
2267 	ret = hclgevf_set_alive(handle, true);
2268 	if (ret)
2269 		return ret;
2270 
2271 	return 0;
2272 }
2273 
2274 static void hclgevf_client_stop(struct hnae3_handle *handle)
2275 {
2276 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2277 	int ret;
2278 
2279 	ret = hclgevf_set_alive(handle, false);
2280 	if (ret)
2281 		dev_warn(&hdev->pdev->dev,
2282 			 "%s failed %d\n", __func__, ret);
2283 }
2284 
2285 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2286 {
2287 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2288 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2289 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2290 
2291 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2292 
2293 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2294 
2295 	/* bring the device down */
2296 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2297 }
2298 
2299 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2300 {
2301 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2302 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2303 
2304 	if (hdev->service_task.work.func)
2305 		cancel_delayed_work_sync(&hdev->service_task);
2306 
2307 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2308 }
2309 
2310 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2311 {
2312 	struct pci_dev *pdev = hdev->pdev;
2313 	int vectors;
2314 	int i;
2315 
2316 	if (hnae3_dev_roce_supported(hdev))
2317 		vectors = pci_alloc_irq_vectors(pdev,
2318 						hdev->roce_base_msix_offset + 1,
2319 						hdev->num_msi,
2320 						PCI_IRQ_MSIX);
2321 	else
2322 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2323 						hdev->num_msi,
2324 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2325 
2326 	if (vectors < 0) {
2327 		dev_err(&pdev->dev,
2328 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2329 			vectors);
2330 		return vectors;
2331 	}
2332 	if (vectors < hdev->num_msi)
2333 		dev_warn(&hdev->pdev->dev,
2334 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2335 			 hdev->num_msi, vectors);
2336 
2337 	hdev->num_msi = vectors;
2338 	hdev->num_msi_left = vectors;
2339 
2340 	hdev->base_msi_vector = pdev->irq;
2341 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2342 
2343 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2344 					   sizeof(u16), GFP_KERNEL);
2345 	if (!hdev->vector_status) {
2346 		pci_free_irq_vectors(pdev);
2347 		return -ENOMEM;
2348 	}
2349 
2350 	for (i = 0; i < hdev->num_msi; i++)
2351 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2352 
2353 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2354 					sizeof(int), GFP_KERNEL);
2355 	if (!hdev->vector_irq) {
2356 		devm_kfree(&pdev->dev, hdev->vector_status);
2357 		pci_free_irq_vectors(pdev);
2358 		return -ENOMEM;
2359 	}
2360 
2361 	return 0;
2362 }
2363 
2364 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2365 {
2366 	struct pci_dev *pdev = hdev->pdev;
2367 
2368 	devm_kfree(&pdev->dev, hdev->vector_status);
2369 	devm_kfree(&pdev->dev, hdev->vector_irq);
2370 	pci_free_irq_vectors(pdev);
2371 }
2372 
2373 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2374 {
2375 	int ret;
2376 
2377 	hclgevf_get_misc_vector(hdev);
2378 
2379 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2380 			  0, "hclgevf_cmd", hdev);
2381 	if (ret) {
2382 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2383 			hdev->misc_vector.vector_irq);
2384 		return ret;
2385 	}
2386 
2387 	hclgevf_clear_event_cause(hdev, 0);
2388 
2389 	/* enable misc. vector(vector 0) */
2390 	hclgevf_enable_vector(&hdev->misc_vector, true);
2391 
2392 	return ret;
2393 }
2394 
2395 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2396 {
2397 	/* disable misc vector(vector 0) */
2398 	hclgevf_enable_vector(&hdev->misc_vector, false);
2399 	synchronize_irq(hdev->misc_vector.vector_irq);
2400 	free_irq(hdev->misc_vector.vector_irq, hdev);
2401 	hclgevf_free_vector(hdev, 0);
2402 }
2403 
2404 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2405 {
2406 	struct device *dev = &hdev->pdev->dev;
2407 
2408 	dev_info(dev, "VF info begin:\n");
2409 
2410 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2411 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2412 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2413 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2414 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2415 	dev_info(dev, "PF media type of this VF: %u\n",
2416 		 hdev->hw.mac.media_type);
2417 
2418 	dev_info(dev, "VF info end.\n");
2419 }
2420 
2421 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2422 					    struct hnae3_client *client)
2423 {
2424 	struct hclgevf_dev *hdev = ae_dev->priv;
2425 	int ret;
2426 
2427 	ret = client->ops->init_instance(&hdev->nic);
2428 	if (ret)
2429 		return ret;
2430 
2431 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2432 	hnae3_set_client_init_flag(client, ae_dev, 1);
2433 
2434 	if (netif_msg_drv(&hdev->nic))
2435 		hclgevf_info_show(hdev);
2436 
2437 	return 0;
2438 }
2439 
2440 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2441 					     struct hnae3_client *client)
2442 {
2443 	struct hclgevf_dev *hdev = ae_dev->priv;
2444 	int ret;
2445 
2446 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2447 	    !hdev->nic_client)
2448 		return 0;
2449 
2450 	ret = hclgevf_init_roce_base_info(hdev);
2451 	if (ret)
2452 		return ret;
2453 
2454 	ret = client->ops->init_instance(&hdev->roce);
2455 	if (ret)
2456 		return ret;
2457 
2458 	hnae3_set_client_init_flag(client, ae_dev, 1);
2459 
2460 	return 0;
2461 }
2462 
2463 static int hclgevf_init_client_instance(struct hnae3_client *client,
2464 					struct hnae3_ae_dev *ae_dev)
2465 {
2466 	struct hclgevf_dev *hdev = ae_dev->priv;
2467 	int ret;
2468 
2469 	switch (client->type) {
2470 	case HNAE3_CLIENT_KNIC:
2471 		hdev->nic_client = client;
2472 		hdev->nic.client = client;
2473 
2474 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2475 		if (ret)
2476 			goto clear_nic;
2477 
2478 		ret = hclgevf_init_roce_client_instance(ae_dev,
2479 							hdev->roce_client);
2480 		if (ret)
2481 			goto clear_roce;
2482 
2483 		break;
2484 	case HNAE3_CLIENT_ROCE:
2485 		if (hnae3_dev_roce_supported(hdev)) {
2486 			hdev->roce_client = client;
2487 			hdev->roce.client = client;
2488 		}
2489 
2490 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2491 		if (ret)
2492 			goto clear_roce;
2493 
2494 		break;
2495 	default:
2496 		return -EINVAL;
2497 	}
2498 
2499 	return 0;
2500 
2501 clear_nic:
2502 	hdev->nic_client = NULL;
2503 	hdev->nic.client = NULL;
2504 	return ret;
2505 clear_roce:
2506 	hdev->roce_client = NULL;
2507 	hdev->roce.client = NULL;
2508 	return ret;
2509 }
2510 
2511 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2512 					   struct hnae3_ae_dev *ae_dev)
2513 {
2514 	struct hclgevf_dev *hdev = ae_dev->priv;
2515 
2516 	/* un-init roce, if it exists */
2517 	if (hdev->roce_client) {
2518 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2519 		hdev->roce_client = NULL;
2520 		hdev->roce.client = NULL;
2521 	}
2522 
2523 	/* un-init nic/unic, if this was not called by roce client */
2524 	if (client->ops->uninit_instance && hdev->nic_client &&
2525 	    client->type != HNAE3_CLIENT_ROCE) {
2526 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2527 
2528 		client->ops->uninit_instance(&hdev->nic, 0);
2529 		hdev->nic_client = NULL;
2530 		hdev->nic.client = NULL;
2531 	}
2532 }
2533 
2534 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2535 {
2536 	struct pci_dev *pdev = hdev->pdev;
2537 	struct hclgevf_hw *hw;
2538 	int ret;
2539 
2540 	ret = pci_enable_device(pdev);
2541 	if (ret) {
2542 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2543 		return ret;
2544 	}
2545 
2546 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2547 	if (ret) {
2548 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2549 		goto err_disable_device;
2550 	}
2551 
2552 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2553 	if (ret) {
2554 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2555 		goto err_disable_device;
2556 	}
2557 
2558 	pci_set_master(pdev);
2559 	hw = &hdev->hw;
2560 	hw->hdev = hdev;
2561 	hw->io_base = pci_iomap(pdev, 2, 0);
2562 	if (!hw->io_base) {
2563 		dev_err(&pdev->dev, "can't map configuration register space\n");
2564 		ret = -ENOMEM;
2565 		goto err_clr_master;
2566 	}
2567 
2568 	return 0;
2569 
2570 err_clr_master:
2571 	pci_clear_master(pdev);
2572 	pci_release_regions(pdev);
2573 err_disable_device:
2574 	pci_disable_device(pdev);
2575 
2576 	return ret;
2577 }
2578 
2579 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2580 {
2581 	struct pci_dev *pdev = hdev->pdev;
2582 
2583 	pci_iounmap(pdev, hdev->hw.io_base);
2584 	pci_clear_master(pdev);
2585 	pci_release_regions(pdev);
2586 	pci_disable_device(pdev);
2587 }
2588 
2589 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2590 {
2591 	struct hclgevf_query_res_cmd *req;
2592 	struct hclgevf_desc desc;
2593 	int ret;
2594 
2595 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2596 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2597 	if (ret) {
2598 		dev_err(&hdev->pdev->dev,
2599 			"query vf resource failed, ret = %d.\n", ret);
2600 		return ret;
2601 	}
2602 
2603 	req = (struct hclgevf_query_res_cmd *)desc.data;
2604 
2605 	if (hnae3_dev_roce_supported(hdev)) {
2606 		hdev->roce_base_msix_offset =
2607 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2608 				HCLGEVF_MSIX_OFT_ROCEE_M,
2609 				HCLGEVF_MSIX_OFT_ROCEE_S);
2610 		hdev->num_roce_msix =
2611 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2612 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2613 
2614 		/* nic's msix numbers is always equals to the roce's. */
2615 		hdev->num_nic_msix = hdev->num_roce_msix;
2616 
2617 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2618 		 * are queued before Roce vectors. The offset is fixed to 64.
2619 		 */
2620 		hdev->num_msi = hdev->num_roce_msix +
2621 				hdev->roce_base_msix_offset;
2622 	} else {
2623 		hdev->num_msi =
2624 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2625 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2626 
2627 		hdev->num_nic_msix = hdev->num_msi;
2628 	}
2629 
2630 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2631 		dev_err(&hdev->pdev->dev,
2632 			"Just %u msi resources, not enough for vf(min:2).\n",
2633 			hdev->num_nic_msix);
2634 		return -EINVAL;
2635 	}
2636 
2637 	return 0;
2638 }
2639 
2640 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2641 {
2642 	struct pci_dev *pdev = hdev->pdev;
2643 	int ret = 0;
2644 
2645 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2646 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2647 		hclgevf_misc_irq_uninit(hdev);
2648 		hclgevf_uninit_msi(hdev);
2649 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2650 	}
2651 
2652 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2653 		pci_set_master(pdev);
2654 		ret = hclgevf_init_msi(hdev);
2655 		if (ret) {
2656 			dev_err(&pdev->dev,
2657 				"failed(%d) to init MSI/MSI-X\n", ret);
2658 			return ret;
2659 		}
2660 
2661 		ret = hclgevf_misc_irq_init(hdev);
2662 		if (ret) {
2663 			hclgevf_uninit_msi(hdev);
2664 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2665 				ret);
2666 			return ret;
2667 		}
2668 
2669 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2670 	}
2671 
2672 	return ret;
2673 }
2674 
2675 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2676 {
2677 	struct pci_dev *pdev = hdev->pdev;
2678 	int ret;
2679 
2680 	ret = hclgevf_pci_reset(hdev);
2681 	if (ret) {
2682 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2683 		return ret;
2684 	}
2685 
2686 	ret = hclgevf_cmd_init(hdev);
2687 	if (ret) {
2688 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2689 		return ret;
2690 	}
2691 
2692 	ret = hclgevf_rss_init_hw(hdev);
2693 	if (ret) {
2694 		dev_err(&hdev->pdev->dev,
2695 			"failed(%d) to initialize RSS\n", ret);
2696 		return ret;
2697 	}
2698 
2699 	ret = hclgevf_config_gro(hdev, true);
2700 	if (ret)
2701 		return ret;
2702 
2703 	ret = hclgevf_init_vlan_config(hdev);
2704 	if (ret) {
2705 		dev_err(&hdev->pdev->dev,
2706 			"failed(%d) to initialize VLAN config\n", ret);
2707 		return ret;
2708 	}
2709 
2710 	dev_info(&hdev->pdev->dev, "Reset done\n");
2711 
2712 	return 0;
2713 }
2714 
2715 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2716 {
2717 	struct pci_dev *pdev = hdev->pdev;
2718 	int ret;
2719 
2720 	ret = hclgevf_pci_init(hdev);
2721 	if (ret) {
2722 		dev_err(&pdev->dev, "PCI initialization failed\n");
2723 		return ret;
2724 	}
2725 
2726 	ret = hclgevf_cmd_queue_init(hdev);
2727 	if (ret) {
2728 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2729 		goto err_cmd_queue_init;
2730 	}
2731 
2732 	ret = hclgevf_cmd_init(hdev);
2733 	if (ret)
2734 		goto err_cmd_init;
2735 
2736 	/* Get vf resource */
2737 	ret = hclgevf_query_vf_resource(hdev);
2738 	if (ret) {
2739 		dev_err(&hdev->pdev->dev,
2740 			"Query vf status error, ret = %d.\n", ret);
2741 		goto err_cmd_init;
2742 	}
2743 
2744 	ret = hclgevf_init_msi(hdev);
2745 	if (ret) {
2746 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2747 		goto err_cmd_init;
2748 	}
2749 
2750 	hclgevf_state_init(hdev);
2751 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2752 
2753 	ret = hclgevf_misc_irq_init(hdev);
2754 	if (ret) {
2755 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2756 			ret);
2757 		goto err_misc_irq_init;
2758 	}
2759 
2760 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2761 
2762 	ret = hclgevf_configure(hdev);
2763 	if (ret) {
2764 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2765 		goto err_config;
2766 	}
2767 
2768 	ret = hclgevf_alloc_tqps(hdev);
2769 	if (ret) {
2770 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2771 		goto err_config;
2772 	}
2773 
2774 	ret = hclgevf_set_handle_info(hdev);
2775 	if (ret) {
2776 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2777 		goto err_config;
2778 	}
2779 
2780 	ret = hclgevf_config_gro(hdev, true);
2781 	if (ret)
2782 		goto err_config;
2783 
2784 	/* Initialize RSS for this VF */
2785 	ret = hclgevf_rss_init_hw(hdev);
2786 	if (ret) {
2787 		dev_err(&hdev->pdev->dev,
2788 			"failed(%d) to initialize RSS\n", ret);
2789 		goto err_config;
2790 	}
2791 
2792 	ret = hclgevf_init_vlan_config(hdev);
2793 	if (ret) {
2794 		dev_err(&hdev->pdev->dev,
2795 			"failed(%d) to initialize VLAN config\n", ret);
2796 		goto err_config;
2797 	}
2798 
2799 	hdev->last_reset_time = jiffies;
2800 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
2801 		 HCLGEVF_DRIVER_NAME);
2802 
2803 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
2804 
2805 	return 0;
2806 
2807 err_config:
2808 	hclgevf_misc_irq_uninit(hdev);
2809 err_misc_irq_init:
2810 	hclgevf_state_uninit(hdev);
2811 	hclgevf_uninit_msi(hdev);
2812 err_cmd_init:
2813 	hclgevf_cmd_uninit(hdev);
2814 err_cmd_queue_init:
2815 	hclgevf_pci_uninit(hdev);
2816 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2817 	return ret;
2818 }
2819 
2820 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2821 {
2822 	hclgevf_state_uninit(hdev);
2823 
2824 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2825 		hclgevf_misc_irq_uninit(hdev);
2826 		hclgevf_uninit_msi(hdev);
2827 	}
2828 
2829 	hclgevf_pci_uninit(hdev);
2830 	hclgevf_cmd_uninit(hdev);
2831 }
2832 
2833 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2834 {
2835 	struct pci_dev *pdev = ae_dev->pdev;
2836 	int ret;
2837 
2838 	ret = hclgevf_alloc_hdev(ae_dev);
2839 	if (ret) {
2840 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2841 		return ret;
2842 	}
2843 
2844 	ret = hclgevf_init_hdev(ae_dev->priv);
2845 	if (ret) {
2846 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2847 		return ret;
2848 	}
2849 
2850 	return 0;
2851 }
2852 
2853 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2854 {
2855 	struct hclgevf_dev *hdev = ae_dev->priv;
2856 
2857 	hclgevf_uninit_hdev(hdev);
2858 	ae_dev->priv = NULL;
2859 }
2860 
2861 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2862 {
2863 	struct hnae3_handle *nic = &hdev->nic;
2864 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2865 
2866 	return min_t(u32, hdev->rss_size_max,
2867 		     hdev->num_tqps / kinfo->num_tc);
2868 }
2869 
2870 /**
2871  * hclgevf_get_channels - Get the current channels enabled and max supported.
2872  * @handle: hardware information for network interface
2873  * @ch: ethtool channels structure
2874  *
2875  * We don't support separate tx and rx queues as channels. The other count
2876  * represents how many queues are being used for control. max_combined counts
2877  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2878  * q_vectors since we support a lot more queue pairs than q_vectors.
2879  **/
2880 static void hclgevf_get_channels(struct hnae3_handle *handle,
2881 				 struct ethtool_channels *ch)
2882 {
2883 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2884 
2885 	ch->max_combined = hclgevf_get_max_channels(hdev);
2886 	ch->other_count = 0;
2887 	ch->max_other = 0;
2888 	ch->combined_count = handle->kinfo.rss_size;
2889 }
2890 
2891 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2892 					  u16 *alloc_tqps, u16 *max_rss_size)
2893 {
2894 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2895 
2896 	*alloc_tqps = hdev->num_tqps;
2897 	*max_rss_size = hdev->rss_size_max;
2898 }
2899 
2900 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
2901 				    u32 new_tqps_num)
2902 {
2903 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
2904 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2905 	u16 max_rss_size;
2906 
2907 	kinfo->req_rss_size = new_tqps_num;
2908 
2909 	max_rss_size = min_t(u16, hdev->rss_size_max,
2910 			     hdev->num_tqps / kinfo->num_tc);
2911 
2912 	/* Use the user's configuration when it is not larger than
2913 	 * max_rss_size, otherwise, use the maximum specification value.
2914 	 */
2915 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
2916 	    kinfo->req_rss_size <= max_rss_size)
2917 		kinfo->rss_size = kinfo->req_rss_size;
2918 	else if (kinfo->rss_size > max_rss_size ||
2919 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
2920 		kinfo->rss_size = max_rss_size;
2921 
2922 	kinfo->num_tqps = kinfo->num_tc * kinfo->rss_size;
2923 }
2924 
2925 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
2926 				bool rxfh_configured)
2927 {
2928 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2929 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
2930 	u16 cur_rss_size = kinfo->rss_size;
2931 	u16 cur_tqps = kinfo->num_tqps;
2932 	u32 *rss_indir;
2933 	unsigned int i;
2934 	int ret;
2935 
2936 	hclgevf_update_rss_size(handle, new_tqps_num);
2937 
2938 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
2939 	if (ret)
2940 		return ret;
2941 
2942 	/* RSS indirection table has been configuared by user */
2943 	if (rxfh_configured)
2944 		goto out;
2945 
2946 	/* Reinitializes the rss indirect table according to the new RSS size */
2947 	rss_indir = kcalloc(HCLGEVF_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL);
2948 	if (!rss_indir)
2949 		return -ENOMEM;
2950 
2951 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2952 		rss_indir[i] = i % kinfo->rss_size;
2953 
2954 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
2955 	if (ret)
2956 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
2957 			ret);
2958 
2959 	kfree(rss_indir);
2960 
2961 out:
2962 	if (!ret)
2963 		dev_info(&hdev->pdev->dev,
2964 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
2965 			 cur_rss_size, kinfo->rss_size,
2966 			 cur_tqps, kinfo->rss_size * kinfo->num_tc);
2967 
2968 	return ret;
2969 }
2970 
2971 static int hclgevf_get_status(struct hnae3_handle *handle)
2972 {
2973 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2974 
2975 	return hdev->hw.mac.link;
2976 }
2977 
2978 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2979 					    u8 *auto_neg, u32 *speed,
2980 					    u8 *duplex)
2981 {
2982 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2983 
2984 	if (speed)
2985 		*speed = hdev->hw.mac.speed;
2986 	if (duplex)
2987 		*duplex = hdev->hw.mac.duplex;
2988 	if (auto_neg)
2989 		*auto_neg = AUTONEG_DISABLE;
2990 }
2991 
2992 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2993 				 u8 duplex)
2994 {
2995 	hdev->hw.mac.speed = speed;
2996 	hdev->hw.mac.duplex = duplex;
2997 }
2998 
2999 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3000 {
3001 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3002 
3003 	return hclgevf_config_gro(hdev, enable);
3004 }
3005 
3006 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3007 				   u8 *module_type)
3008 {
3009 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3010 
3011 	if (media_type)
3012 		*media_type = hdev->hw.mac.media_type;
3013 
3014 	if (module_type)
3015 		*module_type = hdev->hw.mac.module_type;
3016 }
3017 
3018 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3019 {
3020 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3021 
3022 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3023 }
3024 
3025 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3026 {
3027 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3028 
3029 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3030 }
3031 
3032 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3033 {
3034 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3035 
3036 	return hdev->rst_stats.hw_rst_done_cnt;
3037 }
3038 
3039 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3040 				  unsigned long *supported,
3041 				  unsigned long *advertising)
3042 {
3043 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3044 
3045 	*supported = hdev->hw.mac.supported;
3046 	*advertising = hdev->hw.mac.advertising;
3047 }
3048 
3049 #define MAX_SEPARATE_NUM	4
3050 #define SEPARATOR_VALUE		0xFFFFFFFF
3051 #define REG_NUM_PER_LINE	4
3052 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3053 
3054 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3055 {
3056 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3057 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3058 
3059 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3060 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3061 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3062 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3063 
3064 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3065 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3066 }
3067 
3068 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3069 			     void *data)
3070 {
3071 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3072 	int i, j, reg_um, separator_num;
3073 	u32 *reg = data;
3074 
3075 	*version = hdev->fw_version;
3076 
3077 	/* fetching per-VF registers values from VF PCIe register space */
3078 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3079 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3080 	for (i = 0; i < reg_um; i++)
3081 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3082 	for (i = 0; i < separator_num; i++)
3083 		*reg++ = SEPARATOR_VALUE;
3084 
3085 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3086 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3087 	for (i = 0; i < reg_um; i++)
3088 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3089 	for (i = 0; i < separator_num; i++)
3090 		*reg++ = SEPARATOR_VALUE;
3091 
3092 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3093 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3094 	for (j = 0; j < hdev->num_tqps; j++) {
3095 		for (i = 0; i < reg_um; i++)
3096 			*reg++ = hclgevf_read_dev(&hdev->hw,
3097 						  ring_reg_addr_list[i] +
3098 						  0x200 * j);
3099 		for (i = 0; i < separator_num; i++)
3100 			*reg++ = SEPARATOR_VALUE;
3101 	}
3102 
3103 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3104 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3105 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3106 		for (i = 0; i < reg_um; i++)
3107 			*reg++ = hclgevf_read_dev(&hdev->hw,
3108 						  tqp_intr_reg_addr_list[i] +
3109 						  4 * j);
3110 		for (i = 0; i < separator_num; i++)
3111 			*reg++ = SEPARATOR_VALUE;
3112 	}
3113 }
3114 
3115 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3116 					u8 *port_base_vlan_info, u8 data_size)
3117 {
3118 	struct hnae3_handle *nic = &hdev->nic;
3119 
3120 	rtnl_lock();
3121 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3122 	rtnl_unlock();
3123 
3124 	/* send msg to PF and wait update port based vlan info */
3125 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
3126 			     HCLGE_MBX_PORT_BASE_VLAN_CFG,
3127 			     port_base_vlan_info, data_size,
3128 			     false, NULL, 0);
3129 
3130 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3131 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
3132 	else
3133 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3134 
3135 	rtnl_lock();
3136 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3137 	rtnl_unlock();
3138 }
3139 
3140 static const struct hnae3_ae_ops hclgevf_ops = {
3141 	.init_ae_dev = hclgevf_init_ae_dev,
3142 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3143 	.flr_prepare = hclgevf_flr_prepare,
3144 	.flr_done = hclgevf_flr_done,
3145 	.init_client_instance = hclgevf_init_client_instance,
3146 	.uninit_client_instance = hclgevf_uninit_client_instance,
3147 	.start = hclgevf_ae_start,
3148 	.stop = hclgevf_ae_stop,
3149 	.client_start = hclgevf_client_start,
3150 	.client_stop = hclgevf_client_stop,
3151 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3152 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3153 	.get_vector = hclgevf_get_vector,
3154 	.put_vector = hclgevf_put_vector,
3155 	.reset_queue = hclgevf_reset_tqp,
3156 	.get_mac_addr = hclgevf_get_mac_addr,
3157 	.set_mac_addr = hclgevf_set_mac_addr,
3158 	.add_uc_addr = hclgevf_add_uc_addr,
3159 	.rm_uc_addr = hclgevf_rm_uc_addr,
3160 	.add_mc_addr = hclgevf_add_mc_addr,
3161 	.rm_mc_addr = hclgevf_rm_mc_addr,
3162 	.get_stats = hclgevf_get_stats,
3163 	.update_stats = hclgevf_update_stats,
3164 	.get_strings = hclgevf_get_strings,
3165 	.get_sset_count = hclgevf_get_sset_count,
3166 	.get_rss_key_size = hclgevf_get_rss_key_size,
3167 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
3168 	.get_rss = hclgevf_get_rss,
3169 	.set_rss = hclgevf_set_rss,
3170 	.get_rss_tuple = hclgevf_get_rss_tuple,
3171 	.set_rss_tuple = hclgevf_set_rss_tuple,
3172 	.get_tc_size = hclgevf_get_tc_size,
3173 	.get_fw_version = hclgevf_get_fw_version,
3174 	.set_vlan_filter = hclgevf_set_vlan_filter,
3175 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3176 	.reset_event = hclgevf_reset_event,
3177 	.set_default_reset_request = hclgevf_set_def_reset_request,
3178 	.set_channels = hclgevf_set_channels,
3179 	.get_channels = hclgevf_get_channels,
3180 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3181 	.get_regs_len = hclgevf_get_regs_len,
3182 	.get_regs = hclgevf_get_regs,
3183 	.get_status = hclgevf_get_status,
3184 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3185 	.get_media_type = hclgevf_get_media_type,
3186 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3187 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3188 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3189 	.set_gro_en = hclgevf_gro_en,
3190 	.set_mtu = hclgevf_set_mtu,
3191 	.get_global_queue_id = hclgevf_get_qid_global,
3192 	.set_timer_task = hclgevf_set_timer_task,
3193 	.get_link_mode = hclgevf_get_link_mode,
3194 	.set_promisc_mode = hclgevf_set_promisc_mode,
3195 };
3196 
3197 static struct hnae3_ae_algo ae_algovf = {
3198 	.ops = &hclgevf_ops,
3199 	.pdev_id_table = ae_algovf_pci_tbl,
3200 };
3201 
3202 static int hclgevf_init(void)
3203 {
3204 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3205 
3206 	hclgevf_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, HCLGEVF_NAME);
3207 	if (!hclgevf_wq) {
3208 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3209 		return -ENOMEM;
3210 	}
3211 
3212 	hnae3_register_ae_algo(&ae_algovf);
3213 
3214 	return 0;
3215 }
3216 
3217 static void hclgevf_exit(void)
3218 {
3219 	hnae3_unregister_ae_algo(&ae_algovf);
3220 	destroy_workqueue(hclgevf_wq);
3221 }
3222 module_init(hclgevf_init);
3223 module_exit(hclgevf_exit);
3224 
3225 MODULE_LICENSE("GPL");
3226 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3227 MODULE_DESCRIPTION("HCLGEVF Driver");
3228 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3229