1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 #include "hclgevf_devlink.h"
12 
13 #define HCLGEVF_NAME	"hclgevf"
14 
15 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
16 
17 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
18 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
19 				  unsigned long delay);
20 
21 static struct hnae3_ae_algo ae_algovf;
22 
23 static struct workqueue_struct *hclgevf_wq;
24 
25 static const struct pci_device_id ae_algovf_pci_tbl[] = {
26 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
27 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
28 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
29 	/* required last entry */
30 	{0, }
31 };
32 
33 static const u8 hclgevf_hash_key[] = {
34 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
35 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
36 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
37 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
38 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
39 };
40 
41 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
42 
43 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
44 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
45 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
46 					 HCLGEVF_CMDQ_TX_TAIL_REG,
47 					 HCLGEVF_CMDQ_TX_HEAD_REG,
48 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
49 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
50 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
51 					 HCLGEVF_CMDQ_RX_TAIL_REG,
52 					 HCLGEVF_CMDQ_RX_HEAD_REG,
53 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
54 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG,
55 					 HCLGEVF_CMDQ_INTR_EN_REG,
56 					 HCLGEVF_CMDQ_INTR_GEN_REG};
57 
58 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
59 					   HCLGEVF_RST_ING,
60 					   HCLGEVF_GRO_EN_REG};
61 
62 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
63 					 HCLGEVF_RING_RX_ADDR_H_REG,
64 					 HCLGEVF_RING_RX_BD_NUM_REG,
65 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
66 					 HCLGEVF_RING_RX_MERGE_EN_REG,
67 					 HCLGEVF_RING_RX_TAIL_REG,
68 					 HCLGEVF_RING_RX_HEAD_REG,
69 					 HCLGEVF_RING_RX_FBD_NUM_REG,
70 					 HCLGEVF_RING_RX_OFFSET_REG,
71 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
72 					 HCLGEVF_RING_RX_STASH_REG,
73 					 HCLGEVF_RING_RX_BD_ERR_REG,
74 					 HCLGEVF_RING_TX_ADDR_L_REG,
75 					 HCLGEVF_RING_TX_ADDR_H_REG,
76 					 HCLGEVF_RING_TX_BD_NUM_REG,
77 					 HCLGEVF_RING_TX_PRIORITY_REG,
78 					 HCLGEVF_RING_TX_TC_REG,
79 					 HCLGEVF_RING_TX_MERGE_EN_REG,
80 					 HCLGEVF_RING_TX_TAIL_REG,
81 					 HCLGEVF_RING_TX_HEAD_REG,
82 					 HCLGEVF_RING_TX_FBD_NUM_REG,
83 					 HCLGEVF_RING_TX_OFFSET_REG,
84 					 HCLGEVF_RING_TX_EBD_NUM_REG,
85 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
86 					 HCLGEVF_RING_TX_BD_ERR_REG,
87 					 HCLGEVF_RING_EN_REG};
88 
89 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
90 					     HCLGEVF_TQP_INTR_GL0_REG,
91 					     HCLGEVF_TQP_INTR_GL1_REG,
92 					     HCLGEVF_TQP_INTR_GL2_REG,
93 					     HCLGEVF_TQP_INTR_RL_REG};
94 
95 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
96 {
97 	if (!handle->client)
98 		return container_of(handle, struct hclgevf_dev, nic);
99 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
100 		return container_of(handle, struct hclgevf_dev, roce);
101 	else
102 		return container_of(handle, struct hclgevf_dev, nic);
103 }
104 
105 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
106 {
107 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
108 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
109 	struct hclgevf_desc desc;
110 	struct hclgevf_tqp *tqp;
111 	int status;
112 	int i;
113 
114 	for (i = 0; i < kinfo->num_tqps; i++) {
115 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
116 		hclgevf_cmd_setup_basic_desc(&desc,
117 					     HCLGEVF_OPC_QUERY_RX_STATUS,
118 					     true);
119 
120 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
121 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
122 		if (status) {
123 			dev_err(&hdev->pdev->dev,
124 				"Query tqp stat fail, status = %d,queue = %d\n",
125 				status,	i);
126 			return status;
127 		}
128 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
129 			le32_to_cpu(desc.data[1]);
130 
131 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
132 					     true);
133 
134 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
135 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
136 		if (status) {
137 			dev_err(&hdev->pdev->dev,
138 				"Query tqp stat fail, status = %d,queue = %d\n",
139 				status, i);
140 			return status;
141 		}
142 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
143 			le32_to_cpu(desc.data[1]);
144 	}
145 
146 	return 0;
147 }
148 
149 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
150 {
151 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
152 	struct hclgevf_tqp *tqp;
153 	u64 *buff = data;
154 	int i;
155 
156 	for (i = 0; i < kinfo->num_tqps; i++) {
157 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
158 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
159 	}
160 	for (i = 0; i < kinfo->num_tqps; i++) {
161 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
162 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
163 	}
164 
165 	return buff;
166 }
167 
168 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
169 {
170 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
171 
172 	return kinfo->num_tqps * 2;
173 }
174 
175 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
176 {
177 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
178 	u8 *buff = data;
179 	int i;
180 
181 	for (i = 0; i < kinfo->num_tqps; i++) {
182 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
183 						       struct hclgevf_tqp, q);
184 		snprintf(buff, ETH_GSTRING_LEN, "txq%u_pktnum_rcd",
185 			 tqp->index);
186 		buff += ETH_GSTRING_LEN;
187 	}
188 
189 	for (i = 0; i < kinfo->num_tqps; i++) {
190 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
191 						       struct hclgevf_tqp, q);
192 		snprintf(buff, ETH_GSTRING_LEN, "rxq%u_pktnum_rcd",
193 			 tqp->index);
194 		buff += ETH_GSTRING_LEN;
195 	}
196 
197 	return buff;
198 }
199 
200 static void hclgevf_update_stats(struct hnae3_handle *handle,
201 				 struct net_device_stats *net_stats)
202 {
203 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
204 	int status;
205 
206 	status = hclgevf_tqps_update_stats(handle);
207 	if (status)
208 		dev_err(&hdev->pdev->dev,
209 			"VF update of TQPS stats fail, status = %d.\n",
210 			status);
211 }
212 
213 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
214 {
215 	if (strset == ETH_SS_TEST)
216 		return -EOPNOTSUPP;
217 	else if (strset == ETH_SS_STATS)
218 		return hclgevf_tqps_get_sset_count(handle, strset);
219 
220 	return 0;
221 }
222 
223 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
224 				u8 *data)
225 {
226 	u8 *p = (char *)data;
227 
228 	if (strset == ETH_SS_STATS)
229 		p = hclgevf_tqps_get_strings(handle, p);
230 }
231 
232 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
233 {
234 	hclgevf_tqps_get_stats(handle, data);
235 }
236 
237 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
238 				   u8 subcode)
239 {
240 	if (msg) {
241 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
242 		msg->code = code;
243 		msg->subcode = subcode;
244 	}
245 }
246 
247 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
248 {
249 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
250 	u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
251 	struct hclge_basic_info *basic_info;
252 	struct hclge_vf_to_pf_msg send_msg;
253 	unsigned long caps;
254 	int status;
255 
256 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
257 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
258 				      sizeof(resp_msg));
259 	if (status) {
260 		dev_err(&hdev->pdev->dev,
261 			"failed to get basic info from pf, ret = %d", status);
262 		return status;
263 	}
264 
265 	basic_info = (struct hclge_basic_info *)resp_msg;
266 
267 	hdev->hw_tc_map = basic_info->hw_tc_map;
268 	hdev->mbx_api_version = basic_info->mbx_api_version;
269 	caps = basic_info->pf_caps;
270 	if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
271 		set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
272 
273 	return 0;
274 }
275 
276 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
277 {
278 	struct hnae3_handle *nic = &hdev->nic;
279 	struct hclge_vf_to_pf_msg send_msg;
280 	u8 resp_msg;
281 	int ret;
282 
283 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
284 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
285 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
286 				   sizeof(u8));
287 	if (ret) {
288 		dev_err(&hdev->pdev->dev,
289 			"VF request to get port based vlan state failed %d",
290 			ret);
291 		return ret;
292 	}
293 
294 	nic->port_base_vlan_state = resp_msg;
295 
296 	return 0;
297 }
298 
299 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
300 {
301 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
302 #define HCLGEVF_TQPS_ALLOC_OFFSET	0
303 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
304 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4
305 
306 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
307 	struct hclge_vf_to_pf_msg send_msg;
308 	int status;
309 
310 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
311 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
312 				      HCLGEVF_TQPS_RSS_INFO_LEN);
313 	if (status) {
314 		dev_err(&hdev->pdev->dev,
315 			"VF request to get tqp info from PF failed %d",
316 			status);
317 		return status;
318 	}
319 
320 	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
321 	       sizeof(u16));
322 	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
323 	       sizeof(u16));
324 	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
325 	       sizeof(u16));
326 
327 	return 0;
328 }
329 
330 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
331 {
332 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
333 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
334 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2
335 
336 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
337 	struct hclge_vf_to_pf_msg send_msg;
338 	int ret;
339 
340 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
341 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
342 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
343 	if (ret) {
344 		dev_err(&hdev->pdev->dev,
345 			"VF request to get tqp depth info from PF failed %d",
346 			ret);
347 		return ret;
348 	}
349 
350 	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
351 	       sizeof(u16));
352 	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
353 	       sizeof(u16));
354 
355 	return 0;
356 }
357 
358 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
359 {
360 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
361 	struct hclge_vf_to_pf_msg send_msg;
362 	u16 qid_in_pf = 0;
363 	u8 resp_data[2];
364 	int ret;
365 
366 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
367 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
368 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
369 				   sizeof(resp_data));
370 	if (!ret)
371 		qid_in_pf = *(u16 *)resp_data;
372 
373 	return qid_in_pf;
374 }
375 
376 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
377 {
378 	struct hclge_vf_to_pf_msg send_msg;
379 	u8 resp_msg[2];
380 	int ret;
381 
382 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
383 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
384 				   sizeof(resp_msg));
385 	if (ret) {
386 		dev_err(&hdev->pdev->dev,
387 			"VF request to get the pf port media type failed %d",
388 			ret);
389 		return ret;
390 	}
391 
392 	hdev->hw.mac.media_type = resp_msg[0];
393 	hdev->hw.mac.module_type = resp_msg[1];
394 
395 	return 0;
396 }
397 
398 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
399 {
400 	struct hclgevf_tqp *tqp;
401 	int i;
402 
403 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
404 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
405 	if (!hdev->htqp)
406 		return -ENOMEM;
407 
408 	tqp = hdev->htqp;
409 
410 	for (i = 0; i < hdev->num_tqps; i++) {
411 		tqp->dev = &hdev->pdev->dev;
412 		tqp->index = i;
413 
414 		tqp->q.ae_algo = &ae_algovf;
415 		tqp->q.buf_size = hdev->rx_buf_len;
416 		tqp->q.tx_desc_num = hdev->num_tx_desc;
417 		tqp->q.rx_desc_num = hdev->num_rx_desc;
418 
419 		/* need an extended offset to configure queues >=
420 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
421 		 */
422 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
423 			tqp->q.io_base = hdev->hw.io_base +
424 					 HCLGEVF_TQP_REG_OFFSET +
425 					 i * HCLGEVF_TQP_REG_SIZE;
426 		else
427 			tqp->q.io_base = hdev->hw.io_base +
428 					 HCLGEVF_TQP_REG_OFFSET +
429 					 HCLGEVF_TQP_EXT_REG_OFFSET +
430 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
431 					 HCLGEVF_TQP_REG_SIZE;
432 
433 		tqp++;
434 	}
435 
436 	return 0;
437 }
438 
439 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
440 {
441 	struct hnae3_handle *nic = &hdev->nic;
442 	struct hnae3_knic_private_info *kinfo;
443 	u16 new_tqps = hdev->num_tqps;
444 	unsigned int i;
445 	u8 num_tc = 0;
446 
447 	kinfo = &nic->kinfo;
448 	kinfo->num_tx_desc = hdev->num_tx_desc;
449 	kinfo->num_rx_desc = hdev->num_rx_desc;
450 	kinfo->rx_buf_len = hdev->rx_buf_len;
451 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
452 		if (hdev->hw_tc_map & BIT(i))
453 			num_tc++;
454 
455 	num_tc = num_tc ? num_tc : 1;
456 	kinfo->tc_info.num_tc = num_tc;
457 	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
458 	new_tqps = kinfo->rss_size * num_tc;
459 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
460 
461 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
462 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
463 	if (!kinfo->tqp)
464 		return -ENOMEM;
465 
466 	for (i = 0; i < kinfo->num_tqps; i++) {
467 		hdev->htqp[i].q.handle = &hdev->nic;
468 		hdev->htqp[i].q.tqp_index = i;
469 		kinfo->tqp[i] = &hdev->htqp[i].q;
470 	}
471 
472 	/* after init the max rss_size and tqps, adjust the default tqp numbers
473 	 * and rss size with the actual vector numbers
474 	 */
475 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
476 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
477 				kinfo->rss_size);
478 
479 	return 0;
480 }
481 
482 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
483 {
484 	struct hclge_vf_to_pf_msg send_msg;
485 	int status;
486 
487 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
488 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
489 	if (status)
490 		dev_err(&hdev->pdev->dev,
491 			"VF failed to fetch link status(%d) from PF", status);
492 }
493 
494 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
495 {
496 	struct hnae3_handle *rhandle = &hdev->roce;
497 	struct hnae3_handle *handle = &hdev->nic;
498 	struct hnae3_client *rclient;
499 	struct hnae3_client *client;
500 
501 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
502 		return;
503 
504 	client = handle->client;
505 	rclient = hdev->roce_client;
506 
507 	link_state =
508 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
509 	if (link_state != hdev->hw.mac.link) {
510 		client->ops->link_status_change(handle, !!link_state);
511 		if (rclient && rclient->ops->link_status_change)
512 			rclient->ops->link_status_change(rhandle, !!link_state);
513 		hdev->hw.mac.link = link_state;
514 	}
515 
516 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
517 }
518 
519 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
520 {
521 #define HCLGEVF_ADVERTISING	0
522 #define HCLGEVF_SUPPORTED	1
523 
524 	struct hclge_vf_to_pf_msg send_msg;
525 
526 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
527 	send_msg.data[0] = HCLGEVF_ADVERTISING;
528 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
529 	send_msg.data[0] = HCLGEVF_SUPPORTED;
530 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
531 }
532 
533 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
534 {
535 	struct hnae3_handle *nic = &hdev->nic;
536 	int ret;
537 
538 	nic->ae_algo = &ae_algovf;
539 	nic->pdev = hdev->pdev;
540 	nic->numa_node_mask = hdev->numa_node_mask;
541 	nic->flags |= HNAE3_SUPPORT_VF;
542 
543 	ret = hclgevf_knic_setup(hdev);
544 	if (ret)
545 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
546 			ret);
547 	return ret;
548 }
549 
550 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
551 {
552 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
553 		dev_warn(&hdev->pdev->dev,
554 			 "vector(vector_id %d) has been freed.\n", vector_id);
555 		return;
556 	}
557 
558 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
559 	hdev->num_msi_left += 1;
560 	hdev->num_msi_used -= 1;
561 }
562 
563 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
564 			      struct hnae3_vector_info *vector_info)
565 {
566 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
567 	struct hnae3_vector_info *vector = vector_info;
568 	int alloc = 0;
569 	int i, j;
570 
571 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
572 	vector_num = min(hdev->num_msi_left, vector_num);
573 
574 	for (j = 0; j < vector_num; j++) {
575 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
576 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
577 				vector->vector = pci_irq_vector(hdev->pdev, i);
578 				vector->io_addr = hdev->hw.io_base +
579 					HCLGEVF_VECTOR_REG_BASE +
580 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
581 				hdev->vector_status[i] = 0;
582 				hdev->vector_irq[i] = vector->vector;
583 
584 				vector++;
585 				alloc++;
586 
587 				break;
588 			}
589 		}
590 	}
591 	hdev->num_msi_left -= alloc;
592 	hdev->num_msi_used += alloc;
593 
594 	return alloc;
595 }
596 
597 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
598 {
599 	int i;
600 
601 	for (i = 0; i < hdev->num_msi; i++)
602 		if (vector == hdev->vector_irq[i])
603 			return i;
604 
605 	return -EINVAL;
606 }
607 
608 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
609 				    const u8 hfunc, const u8 *key)
610 {
611 	struct hclgevf_rss_config_cmd *req;
612 	unsigned int key_offset = 0;
613 	struct hclgevf_desc desc;
614 	int key_counts;
615 	int key_size;
616 	int ret;
617 
618 	key_counts = HCLGEVF_RSS_KEY_SIZE;
619 	req = (struct hclgevf_rss_config_cmd *)desc.data;
620 
621 	while (key_counts) {
622 		hclgevf_cmd_setup_basic_desc(&desc,
623 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
624 					     false);
625 
626 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
627 		req->hash_config |=
628 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
629 
630 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
631 		memcpy(req->hash_key,
632 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
633 
634 		key_counts -= key_size;
635 		key_offset++;
636 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
637 		if (ret) {
638 			dev_err(&hdev->pdev->dev,
639 				"Configure RSS config fail, status = %d\n",
640 				ret);
641 			return ret;
642 		}
643 	}
644 
645 	return 0;
646 }
647 
648 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
649 {
650 	return HCLGEVF_RSS_KEY_SIZE;
651 }
652 
653 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
654 {
655 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
656 	struct hclgevf_rss_indirection_table_cmd *req;
657 	struct hclgevf_desc desc;
658 	int rss_cfg_tbl_num;
659 	int status;
660 	int i, j;
661 
662 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
663 	rss_cfg_tbl_num = hdev->ae_dev->dev_specs.rss_ind_tbl_size /
664 			  HCLGEVF_RSS_CFG_TBL_SIZE;
665 
666 	for (i = 0; i < rss_cfg_tbl_num; i++) {
667 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
668 					     false);
669 		req->start_table_index =
670 			cpu_to_le16(i * HCLGEVF_RSS_CFG_TBL_SIZE);
671 		req->rss_set_bitmap = cpu_to_le16(HCLGEVF_RSS_SET_BITMAP_MSK);
672 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
673 			req->rss_result[j] =
674 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
675 
676 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
677 		if (status) {
678 			dev_err(&hdev->pdev->dev,
679 				"VF failed(=%d) to set RSS indirection table\n",
680 				status);
681 			return status;
682 		}
683 	}
684 
685 	return 0;
686 }
687 
688 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
689 {
690 	struct hclgevf_rss_tc_mode_cmd *req;
691 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
692 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
693 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
694 	struct hclgevf_desc desc;
695 	u16 roundup_size;
696 	unsigned int i;
697 	int status;
698 
699 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
700 
701 	roundup_size = roundup_pow_of_two(rss_size);
702 	roundup_size = ilog2(roundup_size);
703 
704 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
705 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
706 		tc_size[i] = roundup_size;
707 		tc_offset[i] = rss_size * i;
708 	}
709 
710 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
711 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
712 		u16 mode = 0;
713 
714 		hnae3_set_bit(mode, HCLGEVF_RSS_TC_VALID_B,
715 			      (tc_valid[i] & 0x1));
716 		hnae3_set_field(mode, HCLGEVF_RSS_TC_SIZE_M,
717 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
718 		hnae3_set_bit(mode, HCLGEVF_RSS_TC_SIZE_MSB_B,
719 			      tc_size[i] >> HCLGEVF_RSS_TC_SIZE_MSB_OFFSET &
720 			      0x1);
721 		hnae3_set_field(mode, HCLGEVF_RSS_TC_OFFSET_M,
722 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
723 
724 		req->rss_tc_mode[i] = cpu_to_le16(mode);
725 	}
726 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
727 	if (status)
728 		dev_err(&hdev->pdev->dev,
729 			"VF failed(=%d) to set rss tc mode\n", status);
730 
731 	return status;
732 }
733 
734 /* for revision 0x20, vf shared the same rss config with pf */
735 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
736 {
737 #define HCLGEVF_RSS_MBX_RESP_LEN	8
738 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
739 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
740 	struct hclge_vf_to_pf_msg send_msg;
741 	u16 msg_num, hash_key_index;
742 	u8 index;
743 	int ret;
744 
745 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
746 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
747 			HCLGEVF_RSS_MBX_RESP_LEN;
748 	for (index = 0; index < msg_num; index++) {
749 		send_msg.data[0] = index;
750 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
751 					   HCLGEVF_RSS_MBX_RESP_LEN);
752 		if (ret) {
753 			dev_err(&hdev->pdev->dev,
754 				"VF get rss hash key from PF failed, ret=%d",
755 				ret);
756 			return ret;
757 		}
758 
759 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
760 		if (index == msg_num - 1)
761 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
762 			       &resp_msg[0],
763 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
764 		else
765 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
766 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
767 	}
768 
769 	return 0;
770 }
771 
772 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
773 			   u8 *hfunc)
774 {
775 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
776 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
777 	int i, ret;
778 
779 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
780 		/* Get hash algorithm */
781 		if (hfunc) {
782 			switch (rss_cfg->hash_algo) {
783 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
784 				*hfunc = ETH_RSS_HASH_TOP;
785 				break;
786 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
787 				*hfunc = ETH_RSS_HASH_XOR;
788 				break;
789 			default:
790 				*hfunc = ETH_RSS_HASH_UNKNOWN;
791 				break;
792 			}
793 		}
794 
795 		/* Get the RSS Key required by the user */
796 		if (key)
797 			memcpy(key, rss_cfg->rss_hash_key,
798 			       HCLGEVF_RSS_KEY_SIZE);
799 	} else {
800 		if (hfunc)
801 			*hfunc = ETH_RSS_HASH_TOP;
802 		if (key) {
803 			ret = hclgevf_get_rss_hash_key(hdev);
804 			if (ret)
805 				return ret;
806 			memcpy(key, rss_cfg->rss_hash_key,
807 			       HCLGEVF_RSS_KEY_SIZE);
808 		}
809 	}
810 
811 	if (indir)
812 		for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
813 			indir[i] = rss_cfg->rss_indirection_tbl[i];
814 
815 	return 0;
816 }
817 
818 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
819 			   const u8 *key, const u8 hfunc)
820 {
821 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
822 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
823 	int ret, i;
824 
825 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
826 		/* Set the RSS Hash Key if specififed by the user */
827 		if (key) {
828 			switch (hfunc) {
829 			case ETH_RSS_HASH_TOP:
830 				rss_cfg->hash_algo =
831 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
832 				break;
833 			case ETH_RSS_HASH_XOR:
834 				rss_cfg->hash_algo =
835 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
836 				break;
837 			case ETH_RSS_HASH_NO_CHANGE:
838 				break;
839 			default:
840 				return -EINVAL;
841 			}
842 
843 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
844 						       key);
845 			if (ret)
846 				return ret;
847 
848 			/* Update the shadow RSS key with user specified qids */
849 			memcpy(rss_cfg->rss_hash_key, key,
850 			       HCLGEVF_RSS_KEY_SIZE);
851 		}
852 	}
853 
854 	/* update the shadow RSS table with user specified qids */
855 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
856 		rss_cfg->rss_indirection_tbl[i] = indir[i];
857 
858 	/* update the hardware */
859 	return hclgevf_set_rss_indir_table(hdev);
860 }
861 
862 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
863 {
864 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
865 
866 	if (nfc->data & RXH_L4_B_2_3)
867 		hash_sets |= HCLGEVF_D_PORT_BIT;
868 	else
869 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
870 
871 	if (nfc->data & RXH_IP_SRC)
872 		hash_sets |= HCLGEVF_S_IP_BIT;
873 	else
874 		hash_sets &= ~HCLGEVF_S_IP_BIT;
875 
876 	if (nfc->data & RXH_IP_DST)
877 		hash_sets |= HCLGEVF_D_IP_BIT;
878 	else
879 		hash_sets &= ~HCLGEVF_D_IP_BIT;
880 
881 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
882 		hash_sets |= HCLGEVF_V_TAG_BIT;
883 
884 	return hash_sets;
885 }
886 
887 static int hclgevf_init_rss_tuple_cmd(struct hnae3_handle *handle,
888 				      struct ethtool_rxnfc *nfc,
889 				      struct hclgevf_rss_input_tuple_cmd *req)
890 {
891 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
892 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
893 	u8 tuple_sets;
894 
895 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
896 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
897 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
898 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
899 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
900 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
901 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
902 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
903 
904 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
905 	switch (nfc->flow_type) {
906 	case TCP_V4_FLOW:
907 		req->ipv4_tcp_en = tuple_sets;
908 		break;
909 	case TCP_V6_FLOW:
910 		req->ipv6_tcp_en = tuple_sets;
911 		break;
912 	case UDP_V4_FLOW:
913 		req->ipv4_udp_en = tuple_sets;
914 		break;
915 	case UDP_V6_FLOW:
916 		req->ipv6_udp_en = tuple_sets;
917 		break;
918 	case SCTP_V4_FLOW:
919 		req->ipv4_sctp_en = tuple_sets;
920 		break;
921 	case SCTP_V6_FLOW:
922 		if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
923 		    (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
924 			return -EINVAL;
925 
926 		req->ipv6_sctp_en = tuple_sets;
927 		break;
928 	case IPV4_FLOW:
929 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
930 		break;
931 	case IPV6_FLOW:
932 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
933 		break;
934 	default:
935 		return -EINVAL;
936 	}
937 
938 	return 0;
939 }
940 
941 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
942 				 struct ethtool_rxnfc *nfc)
943 {
944 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
945 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
946 	struct hclgevf_rss_input_tuple_cmd *req;
947 	struct hclgevf_desc desc;
948 	int ret;
949 
950 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
951 		return -EOPNOTSUPP;
952 
953 	if (nfc->data &
954 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
955 		return -EINVAL;
956 
957 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
958 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
959 
960 	ret = hclgevf_init_rss_tuple_cmd(handle, nfc, req);
961 	if (ret) {
962 		dev_err(&hdev->pdev->dev,
963 			"failed to init rss tuple cmd, ret = %d\n", ret);
964 		return ret;
965 	}
966 
967 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
968 	if (ret) {
969 		dev_err(&hdev->pdev->dev,
970 			"Set rss tuple fail, status = %d\n", ret);
971 		return ret;
972 	}
973 
974 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
975 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
976 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
977 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
978 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
979 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
980 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
981 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
982 	return 0;
983 }
984 
985 static int hclgevf_get_rss_tuple_by_flow_type(struct hclgevf_dev *hdev,
986 					      int flow_type, u8 *tuple_sets)
987 {
988 	switch (flow_type) {
989 	case TCP_V4_FLOW:
990 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_tcp_en;
991 		break;
992 	case UDP_V4_FLOW:
993 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_udp_en;
994 		break;
995 	case TCP_V6_FLOW:
996 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_tcp_en;
997 		break;
998 	case UDP_V6_FLOW:
999 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_udp_en;
1000 		break;
1001 	case SCTP_V4_FLOW:
1002 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_sctp_en;
1003 		break;
1004 	case SCTP_V6_FLOW:
1005 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_sctp_en;
1006 		break;
1007 	case IPV4_FLOW:
1008 	case IPV6_FLOW:
1009 		*tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
1010 		break;
1011 	default:
1012 		return -EINVAL;
1013 	}
1014 
1015 	return 0;
1016 }
1017 
1018 static u64 hclgevf_convert_rss_tuple(u8 tuple_sets)
1019 {
1020 	u64 tuple_data = 0;
1021 
1022 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
1023 		tuple_data |= RXH_L4_B_2_3;
1024 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
1025 		tuple_data |= RXH_L4_B_0_1;
1026 	if (tuple_sets & HCLGEVF_D_IP_BIT)
1027 		tuple_data |= RXH_IP_DST;
1028 	if (tuple_sets & HCLGEVF_S_IP_BIT)
1029 		tuple_data |= RXH_IP_SRC;
1030 
1031 	return tuple_data;
1032 }
1033 
1034 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
1035 				 struct ethtool_rxnfc *nfc)
1036 {
1037 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1038 	u8 tuple_sets;
1039 	int ret;
1040 
1041 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
1042 		return -EOPNOTSUPP;
1043 
1044 	nfc->data = 0;
1045 
1046 	ret = hclgevf_get_rss_tuple_by_flow_type(hdev, nfc->flow_type,
1047 						 &tuple_sets);
1048 	if (ret || !tuple_sets)
1049 		return ret;
1050 
1051 	nfc->data = hclgevf_convert_rss_tuple(tuple_sets);
1052 
1053 	return 0;
1054 }
1055 
1056 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
1057 				       struct hclgevf_rss_cfg *rss_cfg)
1058 {
1059 	struct hclgevf_rss_input_tuple_cmd *req;
1060 	struct hclgevf_desc desc;
1061 	int ret;
1062 
1063 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1064 
1065 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1066 
1067 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1068 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1069 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1070 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1071 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1072 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1073 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1074 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1075 
1076 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1077 	if (ret)
1078 		dev_err(&hdev->pdev->dev,
1079 			"Configure rss input fail, status = %d\n", ret);
1080 	return ret;
1081 }
1082 
1083 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1084 {
1085 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1086 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1087 
1088 	return rss_cfg->rss_size;
1089 }
1090 
1091 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1092 				       int vector_id,
1093 				       struct hnae3_ring_chain_node *ring_chain)
1094 {
1095 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1096 	struct hclge_vf_to_pf_msg send_msg;
1097 	struct hnae3_ring_chain_node *node;
1098 	int status;
1099 	int i = 0;
1100 
1101 	memset(&send_msg, 0, sizeof(send_msg));
1102 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1103 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1104 	send_msg.vector_id = vector_id;
1105 
1106 	for (node = ring_chain; node; node = node->next) {
1107 		send_msg.param[i].ring_type =
1108 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1109 
1110 		send_msg.param[i].tqp_index = node->tqp_index;
1111 		send_msg.param[i].int_gl_index =
1112 					hnae3_get_field(node->int_gl_idx,
1113 							HNAE3_RING_GL_IDX_M,
1114 							HNAE3_RING_GL_IDX_S);
1115 
1116 		i++;
1117 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1118 			send_msg.ring_num = i;
1119 
1120 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1121 						      NULL, 0);
1122 			if (status) {
1123 				dev_err(&hdev->pdev->dev,
1124 					"Map TQP fail, status is %d.\n",
1125 					status);
1126 				return status;
1127 			}
1128 			i = 0;
1129 		}
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1136 				      struct hnae3_ring_chain_node *ring_chain)
1137 {
1138 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1139 	int vector_id;
1140 
1141 	vector_id = hclgevf_get_vector_index(hdev, vector);
1142 	if (vector_id < 0) {
1143 		dev_err(&handle->pdev->dev,
1144 			"Get vector index fail. ret =%d\n", vector_id);
1145 		return vector_id;
1146 	}
1147 
1148 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1149 }
1150 
1151 static int hclgevf_unmap_ring_from_vector(
1152 				struct hnae3_handle *handle,
1153 				int vector,
1154 				struct hnae3_ring_chain_node *ring_chain)
1155 {
1156 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1157 	int ret, vector_id;
1158 
1159 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1160 		return 0;
1161 
1162 	vector_id = hclgevf_get_vector_index(hdev, vector);
1163 	if (vector_id < 0) {
1164 		dev_err(&handle->pdev->dev,
1165 			"Get vector index fail. ret =%d\n", vector_id);
1166 		return vector_id;
1167 	}
1168 
1169 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1170 	if (ret)
1171 		dev_err(&handle->pdev->dev,
1172 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1173 			vector_id,
1174 			ret);
1175 
1176 	return ret;
1177 }
1178 
1179 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1180 {
1181 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1182 	int vector_id;
1183 
1184 	vector_id = hclgevf_get_vector_index(hdev, vector);
1185 	if (vector_id < 0) {
1186 		dev_err(&handle->pdev->dev,
1187 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1188 			vector_id);
1189 		return vector_id;
1190 	}
1191 
1192 	hclgevf_free_vector(hdev, vector_id);
1193 
1194 	return 0;
1195 }
1196 
1197 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1198 					bool en_uc_pmc, bool en_mc_pmc,
1199 					bool en_bc_pmc)
1200 {
1201 	struct hnae3_handle *handle = &hdev->nic;
1202 	struct hclge_vf_to_pf_msg send_msg;
1203 	int ret;
1204 
1205 	memset(&send_msg, 0, sizeof(send_msg));
1206 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1207 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
1208 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
1209 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
1210 	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
1211 					     &handle->priv_flags) ? 1 : 0;
1212 
1213 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1214 	if (ret)
1215 		dev_err(&hdev->pdev->dev,
1216 			"Set promisc mode fail, status is %d.\n", ret);
1217 
1218 	return ret;
1219 }
1220 
1221 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1222 				    bool en_mc_pmc)
1223 {
1224 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1225 	bool en_bc_pmc;
1226 
1227 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1228 
1229 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1230 					    en_bc_pmc);
1231 }
1232 
1233 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1234 {
1235 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1236 
1237 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1238 	hclgevf_task_schedule(hdev, 0);
1239 }
1240 
1241 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1242 {
1243 	struct hnae3_handle *handle = &hdev->nic;
1244 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1245 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1246 	int ret;
1247 
1248 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1249 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1250 		if (!ret)
1251 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1252 	}
1253 }
1254 
1255 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
1256 				       u16 stream_id, bool enable)
1257 {
1258 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1259 	struct hclgevf_desc desc;
1260 
1261 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1262 
1263 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1264 				     false);
1265 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1266 	req->stream_id = cpu_to_le16(stream_id);
1267 	if (enable)
1268 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1269 
1270 	return hclgevf_cmd_send(&hdev->hw, &desc, 1);
1271 }
1272 
1273 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
1274 {
1275 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1276 	int ret;
1277 	u16 i;
1278 
1279 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
1280 		ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
1281 		if (ret)
1282 			return ret;
1283 	}
1284 
1285 	return 0;
1286 }
1287 
1288 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1289 {
1290 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1291 	struct hclgevf_tqp *tqp;
1292 	int i;
1293 
1294 	for (i = 0; i < kinfo->num_tqps; i++) {
1295 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1296 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1297 	}
1298 }
1299 
1300 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1301 {
1302 	struct hclge_vf_to_pf_msg send_msg;
1303 	u8 host_mac[ETH_ALEN];
1304 	int status;
1305 
1306 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1307 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1308 				      ETH_ALEN);
1309 	if (status) {
1310 		dev_err(&hdev->pdev->dev,
1311 			"fail to get VF MAC from host %d", status);
1312 		return status;
1313 	}
1314 
1315 	ether_addr_copy(p, host_mac);
1316 
1317 	return 0;
1318 }
1319 
1320 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1321 {
1322 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1323 	u8 host_mac_addr[ETH_ALEN];
1324 
1325 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1326 		return;
1327 
1328 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1329 	if (hdev->has_pf_mac)
1330 		ether_addr_copy(p, host_mac_addr);
1331 	else
1332 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1333 }
1334 
1335 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1336 				bool is_first)
1337 {
1338 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1339 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1340 	struct hclge_vf_to_pf_msg send_msg;
1341 	u8 *new_mac_addr = (u8 *)p;
1342 	int status;
1343 
1344 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1345 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1346 	ether_addr_copy(send_msg.data, new_mac_addr);
1347 	if (is_first && !hdev->has_pf_mac)
1348 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
1349 	else
1350 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1351 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1352 	if (!status)
1353 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1354 
1355 	return status;
1356 }
1357 
1358 static struct hclgevf_mac_addr_node *
1359 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1360 {
1361 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1362 
1363 	list_for_each_entry_safe(mac_node, tmp, list, node)
1364 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1365 			return mac_node;
1366 
1367 	return NULL;
1368 }
1369 
1370 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1371 				    enum HCLGEVF_MAC_NODE_STATE state)
1372 {
1373 	switch (state) {
1374 	/* from set_rx_mode or tmp_add_list */
1375 	case HCLGEVF_MAC_TO_ADD:
1376 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1377 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1378 		break;
1379 	/* only from set_rx_mode */
1380 	case HCLGEVF_MAC_TO_DEL:
1381 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1382 			list_del(&mac_node->node);
1383 			kfree(mac_node);
1384 		} else {
1385 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1386 		}
1387 		break;
1388 	/* only from tmp_add_list, the mac_node->state won't be
1389 	 * HCLGEVF_MAC_ACTIVE
1390 	 */
1391 	case HCLGEVF_MAC_ACTIVE:
1392 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1393 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1394 		break;
1395 	}
1396 }
1397 
1398 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1399 				   enum HCLGEVF_MAC_NODE_STATE state,
1400 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1401 				   const unsigned char *addr)
1402 {
1403 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1404 	struct hclgevf_mac_addr_node *mac_node;
1405 	struct list_head *list;
1406 
1407 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1408 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1409 
1410 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1411 
1412 	/* if the mac addr is already in the mac list, no need to add a new
1413 	 * one into it, just check the mac addr state, convert it to a new
1414 	 * new state, or just remove it, or do nothing.
1415 	 */
1416 	mac_node = hclgevf_find_mac_node(list, addr);
1417 	if (mac_node) {
1418 		hclgevf_update_mac_node(mac_node, state);
1419 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1420 		return 0;
1421 	}
1422 	/* if this address is never added, unnecessary to delete */
1423 	if (state == HCLGEVF_MAC_TO_DEL) {
1424 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1425 		return -ENOENT;
1426 	}
1427 
1428 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1429 	if (!mac_node) {
1430 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1431 		return -ENOMEM;
1432 	}
1433 
1434 	mac_node->state = state;
1435 	ether_addr_copy(mac_node->mac_addr, addr);
1436 	list_add_tail(&mac_node->node, list);
1437 
1438 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1439 	return 0;
1440 }
1441 
1442 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1443 			       const unsigned char *addr)
1444 {
1445 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1446 				       HCLGEVF_MAC_ADDR_UC, addr);
1447 }
1448 
1449 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1450 			      const unsigned char *addr)
1451 {
1452 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1453 				       HCLGEVF_MAC_ADDR_UC, addr);
1454 }
1455 
1456 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1457 			       const unsigned char *addr)
1458 {
1459 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1460 				       HCLGEVF_MAC_ADDR_MC, addr);
1461 }
1462 
1463 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1464 			      const unsigned char *addr)
1465 {
1466 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1467 				       HCLGEVF_MAC_ADDR_MC, addr);
1468 }
1469 
1470 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1471 				    struct hclgevf_mac_addr_node *mac_node,
1472 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1473 {
1474 	struct hclge_vf_to_pf_msg send_msg;
1475 	u8 code, subcode;
1476 
1477 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1478 		code = HCLGE_MBX_SET_UNICAST;
1479 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1480 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1481 		else
1482 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1483 	} else {
1484 		code = HCLGE_MBX_SET_MULTICAST;
1485 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1486 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1487 		else
1488 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1489 	}
1490 
1491 	hclgevf_build_send_msg(&send_msg, code, subcode);
1492 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1493 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1494 }
1495 
1496 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1497 				    struct list_head *list,
1498 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1499 {
1500 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1501 	int ret;
1502 
1503 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1504 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1505 		if  (ret) {
1506 			dev_err(&hdev->pdev->dev,
1507 				"failed to configure mac %pM, state = %d, ret = %d\n",
1508 				mac_node->mac_addr, mac_node->state, ret);
1509 			return;
1510 		}
1511 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1512 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1513 		} else {
1514 			list_del(&mac_node->node);
1515 			kfree(mac_node);
1516 		}
1517 	}
1518 }
1519 
1520 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1521 				       struct list_head *mac_list)
1522 {
1523 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1524 
1525 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1526 		/* if the mac address from tmp_add_list is not in the
1527 		 * uc/mc_mac_list, it means have received a TO_DEL request
1528 		 * during the time window of sending mac config request to PF
1529 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1530 		 * then it will be removed at next time. If is TO_ADD, it means
1531 		 * send TO_ADD request failed, so just remove the mac node.
1532 		 */
1533 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1534 		if (new_node) {
1535 			hclgevf_update_mac_node(new_node, mac_node->state);
1536 			list_del(&mac_node->node);
1537 			kfree(mac_node);
1538 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1539 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1540 			list_move_tail(&mac_node->node, mac_list);
1541 		} else {
1542 			list_del(&mac_node->node);
1543 			kfree(mac_node);
1544 		}
1545 	}
1546 }
1547 
1548 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1549 				       struct list_head *mac_list)
1550 {
1551 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1552 
1553 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1554 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1555 		if (new_node) {
1556 			/* If the mac addr is exist in the mac list, it means
1557 			 * received a new request TO_ADD during the time window
1558 			 * of sending mac addr configurrequest to PF, so just
1559 			 * change the mac state to ACTIVE.
1560 			 */
1561 			new_node->state = HCLGEVF_MAC_ACTIVE;
1562 			list_del(&mac_node->node);
1563 			kfree(mac_node);
1564 		} else {
1565 			list_move_tail(&mac_node->node, mac_list);
1566 		}
1567 	}
1568 }
1569 
1570 static void hclgevf_clear_list(struct list_head *list)
1571 {
1572 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1573 
1574 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1575 		list_del(&mac_node->node);
1576 		kfree(mac_node);
1577 	}
1578 }
1579 
1580 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1581 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1582 {
1583 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1584 	struct list_head tmp_add_list, tmp_del_list;
1585 	struct list_head *list;
1586 
1587 	INIT_LIST_HEAD(&tmp_add_list);
1588 	INIT_LIST_HEAD(&tmp_del_list);
1589 
1590 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1591 	 * we can add/delete these mac addr outside the spin lock
1592 	 */
1593 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1594 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1595 
1596 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1597 
1598 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1599 		switch (mac_node->state) {
1600 		case HCLGEVF_MAC_TO_DEL:
1601 			list_move_tail(&mac_node->node, &tmp_del_list);
1602 			break;
1603 		case HCLGEVF_MAC_TO_ADD:
1604 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1605 			if (!new_node)
1606 				goto stop_traverse;
1607 
1608 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1609 			new_node->state = mac_node->state;
1610 			list_add_tail(&new_node->node, &tmp_add_list);
1611 			break;
1612 		default:
1613 			break;
1614 		}
1615 	}
1616 
1617 stop_traverse:
1618 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1619 
1620 	/* delete first, in order to get max mac table space for adding */
1621 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1622 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1623 
1624 	/* if some mac addresses were added/deleted fail, move back to the
1625 	 * mac_list, and retry at next time.
1626 	 */
1627 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1628 
1629 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1630 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1631 
1632 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1633 }
1634 
1635 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1636 {
1637 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1638 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1639 }
1640 
1641 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1642 {
1643 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1644 
1645 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1646 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1647 
1648 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1649 }
1650 
1651 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1652 {
1653 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1654 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1655 	struct hclge_vf_to_pf_msg send_msg;
1656 
1657 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1658 		return -EOPNOTSUPP;
1659 
1660 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1661 			       HCLGE_MBX_ENABLE_VLAN_FILTER);
1662 	send_msg.data[0] = enable ? 1 : 0;
1663 
1664 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1665 }
1666 
1667 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1668 				   __be16 proto, u16 vlan_id,
1669 				   bool is_kill)
1670 {
1671 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
1672 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
1673 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3
1674 
1675 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1676 	struct hclge_vf_to_pf_msg send_msg;
1677 	int ret;
1678 
1679 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1680 		return -EINVAL;
1681 
1682 	if (proto != htons(ETH_P_8021Q))
1683 		return -EPROTONOSUPPORT;
1684 
1685 	/* When device is resetting or reset failed, firmware is unable to
1686 	 * handle mailbox. Just record the vlan id, and remove it after
1687 	 * reset finished.
1688 	 */
1689 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1690 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1691 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1692 		return -EBUSY;
1693 	}
1694 
1695 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1696 			       HCLGE_MBX_VLAN_FILTER);
1697 	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1698 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1699 	       sizeof(vlan_id));
1700 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1701 	       sizeof(proto));
1702 	/* when remove hw vlan filter failed, record the vlan id,
1703 	 * and try to remove it from hw later, to be consistence
1704 	 * with stack.
1705 	 */
1706 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1707 	if (is_kill && ret)
1708 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1709 
1710 	return ret;
1711 }
1712 
1713 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1714 {
1715 #define HCLGEVF_MAX_SYNC_COUNT	60
1716 	struct hnae3_handle *handle = &hdev->nic;
1717 	int ret, sync_cnt = 0;
1718 	u16 vlan_id;
1719 
1720 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1721 	while (vlan_id != VLAN_N_VID) {
1722 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1723 					      vlan_id, true);
1724 		if (ret)
1725 			return;
1726 
1727 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1728 		sync_cnt++;
1729 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1730 			return;
1731 
1732 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1733 	}
1734 }
1735 
1736 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1737 {
1738 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1739 	struct hclge_vf_to_pf_msg send_msg;
1740 
1741 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1742 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1743 	send_msg.data[0] = enable ? 1 : 0;
1744 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1745 }
1746 
1747 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1748 {
1749 #define HCLGEVF_RESET_ALL_QUEUE_DONE	1U
1750 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1751 	struct hclge_vf_to_pf_msg send_msg;
1752 	u8 return_status = 0;
1753 	int ret;
1754 	u16 i;
1755 
1756 	/* disable vf queue before send queue reset msg to PF */
1757 	ret = hclgevf_tqp_enable(handle, false);
1758 	if (ret) {
1759 		dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1760 			ret);
1761 		return ret;
1762 	}
1763 
1764 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1765 
1766 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1767 				   sizeof(return_status));
1768 	if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1769 		return ret;
1770 
1771 	for (i = 1; i < handle->kinfo.num_tqps; i++) {
1772 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1773 		memcpy(send_msg.data, &i, sizeof(i));
1774 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1775 		if (ret)
1776 			return ret;
1777 	}
1778 
1779 	return 0;
1780 }
1781 
1782 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1783 {
1784 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1785 	struct hclge_vf_to_pf_msg send_msg;
1786 
1787 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1788 	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1789 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1790 }
1791 
1792 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1793 				 enum hnae3_reset_notify_type type)
1794 {
1795 	struct hnae3_client *client = hdev->nic_client;
1796 	struct hnae3_handle *handle = &hdev->nic;
1797 	int ret;
1798 
1799 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1800 	    !client)
1801 		return 0;
1802 
1803 	if (!client->ops->reset_notify)
1804 		return -EOPNOTSUPP;
1805 
1806 	ret = client->ops->reset_notify(handle, type);
1807 	if (ret)
1808 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1809 			type, ret);
1810 
1811 	return ret;
1812 }
1813 
1814 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1815 				      enum hnae3_reset_notify_type type)
1816 {
1817 	struct hnae3_client *client = hdev->roce_client;
1818 	struct hnae3_handle *handle = &hdev->roce;
1819 	int ret;
1820 
1821 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1822 		return 0;
1823 
1824 	if (!client->ops->reset_notify)
1825 		return -EOPNOTSUPP;
1826 
1827 	ret = client->ops->reset_notify(handle, type);
1828 	if (ret)
1829 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1830 			type, ret);
1831 	return ret;
1832 }
1833 
1834 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1835 {
1836 #define HCLGEVF_RESET_WAIT_US	20000
1837 #define HCLGEVF_RESET_WAIT_CNT	2000
1838 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1839 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1840 
1841 	u32 val;
1842 	int ret;
1843 
1844 	if (hdev->reset_type == HNAE3_VF_RESET)
1845 		ret = readl_poll_timeout(hdev->hw.io_base +
1846 					 HCLGEVF_VF_RST_ING, val,
1847 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1848 					 HCLGEVF_RESET_WAIT_US,
1849 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1850 	else
1851 		ret = readl_poll_timeout(hdev->hw.io_base +
1852 					 HCLGEVF_RST_ING, val,
1853 					 !(val & HCLGEVF_RST_ING_BITS),
1854 					 HCLGEVF_RESET_WAIT_US,
1855 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1856 
1857 	/* hardware completion status should be available by this time */
1858 	if (ret) {
1859 		dev_err(&hdev->pdev->dev,
1860 			"couldn't get reset done status from h/w, timeout!\n");
1861 		return ret;
1862 	}
1863 
1864 	/* we will wait a bit more to let reset of the stack to complete. This
1865 	 * might happen in case reset assertion was made by PF. Yes, this also
1866 	 * means we might end up waiting bit more even for VF reset.
1867 	 */
1868 	msleep(5000);
1869 
1870 	return 0;
1871 }
1872 
1873 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1874 {
1875 	u32 reg_val;
1876 
1877 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1878 	if (enable)
1879 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1880 	else
1881 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1882 
1883 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1884 			  reg_val);
1885 }
1886 
1887 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1888 {
1889 	int ret;
1890 
1891 	/* uninitialize the nic client */
1892 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1893 	if (ret)
1894 		return ret;
1895 
1896 	/* re-initialize the hclge device */
1897 	ret = hclgevf_reset_hdev(hdev);
1898 	if (ret) {
1899 		dev_err(&hdev->pdev->dev,
1900 			"hclge device re-init failed, VF is disabled!\n");
1901 		return ret;
1902 	}
1903 
1904 	/* bring up the nic client again */
1905 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1906 	if (ret)
1907 		return ret;
1908 
1909 	/* clear handshake status with IMP */
1910 	hclgevf_reset_handshake(hdev, false);
1911 
1912 	/* bring up the nic to enable TX/RX again */
1913 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1914 }
1915 
1916 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1917 {
1918 #define HCLGEVF_RESET_SYNC_TIME 100
1919 
1920 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1921 		struct hclge_vf_to_pf_msg send_msg;
1922 		int ret;
1923 
1924 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1925 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1926 		if (ret) {
1927 			dev_err(&hdev->pdev->dev,
1928 				"failed to assert VF reset, ret = %d\n", ret);
1929 			return ret;
1930 		}
1931 		hdev->rst_stats.vf_func_rst_cnt++;
1932 	}
1933 
1934 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1935 	/* inform hardware that preparatory work is done */
1936 	msleep(HCLGEVF_RESET_SYNC_TIME);
1937 	hclgevf_reset_handshake(hdev, true);
1938 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1939 		 hdev->reset_type);
1940 
1941 	return 0;
1942 }
1943 
1944 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1945 {
1946 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1947 		 hdev->rst_stats.vf_func_rst_cnt);
1948 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1949 		 hdev->rst_stats.flr_rst_cnt);
1950 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1951 		 hdev->rst_stats.vf_rst_cnt);
1952 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1953 		 hdev->rst_stats.rst_done_cnt);
1954 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1955 		 hdev->rst_stats.hw_rst_done_cnt);
1956 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1957 		 hdev->rst_stats.rst_cnt);
1958 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1959 		 hdev->rst_stats.rst_fail_cnt);
1960 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1961 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1962 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1963 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1964 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1965 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1966 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1967 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1968 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1969 }
1970 
1971 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1972 {
1973 	/* recover handshake status with IMP when reset fail */
1974 	hclgevf_reset_handshake(hdev, true);
1975 	hdev->rst_stats.rst_fail_cnt++;
1976 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1977 		hdev->rst_stats.rst_fail_cnt);
1978 
1979 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1980 		set_bit(hdev->reset_type, &hdev->reset_pending);
1981 
1982 	if (hclgevf_is_reset_pending(hdev)) {
1983 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1984 		hclgevf_reset_task_schedule(hdev);
1985 	} else {
1986 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1987 		hclgevf_dump_rst_info(hdev);
1988 	}
1989 }
1990 
1991 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1992 {
1993 	int ret;
1994 
1995 	hdev->rst_stats.rst_cnt++;
1996 
1997 	/* perform reset of the stack & ae device for a client */
1998 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1999 	if (ret)
2000 		return ret;
2001 
2002 	rtnl_lock();
2003 	/* bring down the nic to stop any ongoing TX/RX */
2004 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
2005 	rtnl_unlock();
2006 	if (ret)
2007 		return ret;
2008 
2009 	return hclgevf_reset_prepare_wait(hdev);
2010 }
2011 
2012 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
2013 {
2014 	int ret;
2015 
2016 	hdev->rst_stats.hw_rst_done_cnt++;
2017 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
2018 	if (ret)
2019 		return ret;
2020 
2021 	rtnl_lock();
2022 	/* now, re-initialize the nic client and ae device */
2023 	ret = hclgevf_reset_stack(hdev);
2024 	rtnl_unlock();
2025 	if (ret) {
2026 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
2027 		return ret;
2028 	}
2029 
2030 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
2031 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
2032 	 * times
2033 	 */
2034 	if (ret &&
2035 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
2036 		return ret;
2037 
2038 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
2039 	if (ret)
2040 		return ret;
2041 
2042 	hdev->last_reset_time = jiffies;
2043 	hdev->rst_stats.rst_done_cnt++;
2044 	hdev->rst_stats.rst_fail_cnt = 0;
2045 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2046 
2047 	return 0;
2048 }
2049 
2050 static void hclgevf_reset(struct hclgevf_dev *hdev)
2051 {
2052 	if (hclgevf_reset_prepare(hdev))
2053 		goto err_reset;
2054 
2055 	/* check if VF could successfully fetch the hardware reset completion
2056 	 * status from the hardware
2057 	 */
2058 	if (hclgevf_reset_wait(hdev)) {
2059 		/* can't do much in this situation, will disable VF */
2060 		dev_err(&hdev->pdev->dev,
2061 			"failed to fetch H/W reset completion status\n");
2062 		goto err_reset;
2063 	}
2064 
2065 	if (hclgevf_reset_rebuild(hdev))
2066 		goto err_reset;
2067 
2068 	return;
2069 
2070 err_reset:
2071 	hclgevf_reset_err_handle(hdev);
2072 }
2073 
2074 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
2075 						     unsigned long *addr)
2076 {
2077 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
2078 
2079 	/* return the highest priority reset level amongst all */
2080 	if (test_bit(HNAE3_VF_RESET, addr)) {
2081 		rst_level = HNAE3_VF_RESET;
2082 		clear_bit(HNAE3_VF_RESET, addr);
2083 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2084 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2085 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
2086 		rst_level = HNAE3_VF_FULL_RESET;
2087 		clear_bit(HNAE3_VF_FULL_RESET, addr);
2088 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2089 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
2090 		rst_level = HNAE3_VF_PF_FUNC_RESET;
2091 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2092 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2093 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
2094 		rst_level = HNAE3_VF_FUNC_RESET;
2095 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2096 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
2097 		rst_level = HNAE3_FLR_RESET;
2098 		clear_bit(HNAE3_FLR_RESET, addr);
2099 	}
2100 
2101 	return rst_level;
2102 }
2103 
2104 static void hclgevf_reset_event(struct pci_dev *pdev,
2105 				struct hnae3_handle *handle)
2106 {
2107 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2108 	struct hclgevf_dev *hdev = ae_dev->priv;
2109 
2110 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
2111 
2112 	if (hdev->default_reset_request)
2113 		hdev->reset_level =
2114 			hclgevf_get_reset_level(hdev,
2115 						&hdev->default_reset_request);
2116 	else
2117 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
2118 
2119 	/* reset of this VF requested */
2120 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
2121 	hclgevf_reset_task_schedule(hdev);
2122 
2123 	hdev->last_reset_time = jiffies;
2124 }
2125 
2126 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
2127 					  enum hnae3_reset_type rst_type)
2128 {
2129 	struct hclgevf_dev *hdev = ae_dev->priv;
2130 
2131 	set_bit(rst_type, &hdev->default_reset_request);
2132 }
2133 
2134 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2135 {
2136 	writel(en ? 1 : 0, vector->addr);
2137 }
2138 
2139 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
2140 					  enum hnae3_reset_type rst_type)
2141 {
2142 #define HCLGEVF_RESET_RETRY_WAIT_MS	500
2143 #define HCLGEVF_RESET_RETRY_CNT		5
2144 
2145 	struct hclgevf_dev *hdev = ae_dev->priv;
2146 	int retry_cnt = 0;
2147 	int ret;
2148 
2149 retry:
2150 	down(&hdev->reset_sem);
2151 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2152 	hdev->reset_type = rst_type;
2153 	ret = hclgevf_reset_prepare(hdev);
2154 	if (ret) {
2155 		dev_err(&hdev->pdev->dev, "fail to prepare to reset, ret=%d\n",
2156 			ret);
2157 		if (hdev->reset_pending ||
2158 		    retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
2159 			dev_err(&hdev->pdev->dev,
2160 				"reset_pending:0x%lx, retry_cnt:%d\n",
2161 				hdev->reset_pending, retry_cnt);
2162 			clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2163 			up(&hdev->reset_sem);
2164 			msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
2165 			goto retry;
2166 		}
2167 	}
2168 
2169 	/* disable misc vector before reset done */
2170 	hclgevf_enable_vector(&hdev->misc_vector, false);
2171 
2172 	if (hdev->reset_type == HNAE3_FLR_RESET)
2173 		hdev->rst_stats.flr_rst_cnt++;
2174 }
2175 
2176 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
2177 {
2178 	struct hclgevf_dev *hdev = ae_dev->priv;
2179 	int ret;
2180 
2181 	hclgevf_enable_vector(&hdev->misc_vector, true);
2182 
2183 	ret = hclgevf_reset_rebuild(hdev);
2184 	if (ret)
2185 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2186 			 ret);
2187 
2188 	hdev->reset_type = HNAE3_NONE_RESET;
2189 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2190 	up(&hdev->reset_sem);
2191 }
2192 
2193 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2194 {
2195 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2196 
2197 	return hdev->fw_version;
2198 }
2199 
2200 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2201 {
2202 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2203 
2204 	vector->vector_irq = pci_irq_vector(hdev->pdev,
2205 					    HCLGEVF_MISC_VECTOR_NUM);
2206 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2207 	/* vector status always valid for Vector 0 */
2208 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2209 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2210 
2211 	hdev->num_msi_left -= 1;
2212 	hdev->num_msi_used += 1;
2213 }
2214 
2215 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2216 {
2217 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2218 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2219 			      &hdev->state))
2220 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2221 }
2222 
2223 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2224 {
2225 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2226 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2227 			      &hdev->state))
2228 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2229 }
2230 
2231 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2232 				  unsigned long delay)
2233 {
2234 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2235 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2236 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2237 }
2238 
2239 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2240 {
2241 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
2242 
2243 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2244 		return;
2245 
2246 	down(&hdev->reset_sem);
2247 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2248 
2249 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2250 			       &hdev->reset_state)) {
2251 		/* PF has intimated that it is about to reset the hardware.
2252 		 * We now have to poll & check if hardware has actually
2253 		 * completed the reset sequence. On hardware reset completion,
2254 		 * VF needs to reset the client and ae device.
2255 		 */
2256 		hdev->reset_attempts = 0;
2257 
2258 		hdev->last_reset_time = jiffies;
2259 		while ((hdev->reset_type =
2260 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2261 		       != HNAE3_NONE_RESET)
2262 			hclgevf_reset(hdev);
2263 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2264 				      &hdev->reset_state)) {
2265 		/* we could be here when either of below happens:
2266 		 * 1. reset was initiated due to watchdog timeout caused by
2267 		 *    a. IMP was earlier reset and our TX got choked down and
2268 		 *       which resulted in watchdog reacting and inducing VF
2269 		 *       reset. This also means our cmdq would be unreliable.
2270 		 *    b. problem in TX due to other lower layer(example link
2271 		 *       layer not functioning properly etc.)
2272 		 * 2. VF reset might have been initiated due to some config
2273 		 *    change.
2274 		 *
2275 		 * NOTE: Theres no clear way to detect above cases than to react
2276 		 * to the response of PF for this reset request. PF will ack the
2277 		 * 1b and 2. cases but we will not get any intimation about 1a
2278 		 * from PF as cmdq would be in unreliable state i.e. mailbox
2279 		 * communication between PF and VF would be broken.
2280 		 *
2281 		 * if we are never geting into pending state it means either:
2282 		 * 1. PF is not receiving our request which could be due to IMP
2283 		 *    reset
2284 		 * 2. PF is screwed
2285 		 * We cannot do much for 2. but to check first we can try reset
2286 		 * our PCIe + stack and see if it alleviates the problem.
2287 		 */
2288 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2289 			/* prepare for full reset of stack + pcie interface */
2290 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2291 
2292 			/* "defer" schedule the reset task again */
2293 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2294 		} else {
2295 			hdev->reset_attempts++;
2296 
2297 			set_bit(hdev->reset_level, &hdev->reset_pending);
2298 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2299 		}
2300 		hclgevf_reset_task_schedule(hdev);
2301 	}
2302 
2303 	hdev->reset_type = HNAE3_NONE_RESET;
2304 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2305 	up(&hdev->reset_sem);
2306 }
2307 
2308 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2309 {
2310 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2311 		return;
2312 
2313 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2314 		return;
2315 
2316 	hclgevf_mbx_async_handler(hdev);
2317 
2318 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2319 }
2320 
2321 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2322 {
2323 	struct hclge_vf_to_pf_msg send_msg;
2324 	int ret;
2325 
2326 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2327 		return;
2328 
2329 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2330 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2331 	if (ret)
2332 		dev_err(&hdev->pdev->dev,
2333 			"VF sends keep alive cmd failed(=%d)\n", ret);
2334 }
2335 
2336 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2337 {
2338 	unsigned long delta = round_jiffies_relative(HZ);
2339 	struct hnae3_handle *handle = &hdev->nic;
2340 
2341 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2342 		return;
2343 
2344 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2345 		delta = jiffies - hdev->last_serv_processed;
2346 
2347 		if (delta < round_jiffies_relative(HZ)) {
2348 			delta = round_jiffies_relative(HZ) - delta;
2349 			goto out;
2350 		}
2351 	}
2352 
2353 	hdev->serv_processed_cnt++;
2354 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2355 		hclgevf_keep_alive(hdev);
2356 
2357 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2358 		hdev->last_serv_processed = jiffies;
2359 		goto out;
2360 	}
2361 
2362 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2363 		hclgevf_tqps_update_stats(handle);
2364 
2365 	/* VF does not need to request link status when this bit is set, because
2366 	 * PF will push its link status to VFs when link status changed.
2367 	 */
2368 	if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
2369 		hclgevf_request_link_info(hdev);
2370 
2371 	hclgevf_update_link_mode(hdev);
2372 
2373 	hclgevf_sync_vlan_filter(hdev);
2374 
2375 	hclgevf_sync_mac_table(hdev);
2376 
2377 	hclgevf_sync_promisc_mode(hdev);
2378 
2379 	hdev->last_serv_processed = jiffies;
2380 
2381 out:
2382 	hclgevf_task_schedule(hdev, delta);
2383 }
2384 
2385 static void hclgevf_service_task(struct work_struct *work)
2386 {
2387 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2388 						service_task.work);
2389 
2390 	hclgevf_reset_service_task(hdev);
2391 	hclgevf_mailbox_service_task(hdev);
2392 	hclgevf_periodic_service_task(hdev);
2393 
2394 	/* Handle reset and mbx again in case periodical task delays the
2395 	 * handling by calling hclgevf_task_schedule() in
2396 	 * hclgevf_periodic_service_task()
2397 	 */
2398 	hclgevf_reset_service_task(hdev);
2399 	hclgevf_mailbox_service_task(hdev);
2400 }
2401 
2402 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2403 {
2404 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2405 }
2406 
2407 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2408 						      u32 *clearval)
2409 {
2410 	u32 val, cmdq_stat_reg, rst_ing_reg;
2411 
2412 	/* fetch the events from their corresponding regs */
2413 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2414 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2415 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2416 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2417 		dev_info(&hdev->pdev->dev,
2418 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2419 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2420 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2421 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2422 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2423 		hdev->rst_stats.vf_rst_cnt++;
2424 		/* set up VF hardware reset status, its PF will clear
2425 		 * this status when PF has initialized done.
2426 		 */
2427 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2428 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2429 				  val | HCLGEVF_VF_RST_ING_BIT);
2430 		return HCLGEVF_VECTOR0_EVENT_RST;
2431 	}
2432 
2433 	/* check for vector0 mailbox(=CMDQ RX) event source */
2434 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2435 		/* for revision 0x21, clearing interrupt is writing bit 0
2436 		 * to the clear register, writing bit 1 means to keep the
2437 		 * old value.
2438 		 * for revision 0x20, the clear register is a read & write
2439 		 * register, so we should just write 0 to the bit we are
2440 		 * handling, and keep other bits as cmdq_stat_reg.
2441 		 */
2442 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2443 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2444 		else
2445 			*clearval = cmdq_stat_reg &
2446 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2447 
2448 		return HCLGEVF_VECTOR0_EVENT_MBX;
2449 	}
2450 
2451 	/* print other vector0 event source */
2452 	dev_info(&hdev->pdev->dev,
2453 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2454 		 cmdq_stat_reg);
2455 
2456 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2457 }
2458 
2459 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2460 {
2461 	enum hclgevf_evt_cause event_cause;
2462 	struct hclgevf_dev *hdev = data;
2463 	u32 clearval;
2464 
2465 	hclgevf_enable_vector(&hdev->misc_vector, false);
2466 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2467 
2468 	switch (event_cause) {
2469 	case HCLGEVF_VECTOR0_EVENT_RST:
2470 		hclgevf_reset_task_schedule(hdev);
2471 		break;
2472 	case HCLGEVF_VECTOR0_EVENT_MBX:
2473 		hclgevf_mbx_handler(hdev);
2474 		break;
2475 	default:
2476 		break;
2477 	}
2478 
2479 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2480 		hclgevf_clear_event_cause(hdev, clearval);
2481 		hclgevf_enable_vector(&hdev->misc_vector, true);
2482 	}
2483 
2484 	return IRQ_HANDLED;
2485 }
2486 
2487 static int hclgevf_configure(struct hclgevf_dev *hdev)
2488 {
2489 	int ret;
2490 
2491 	ret = hclgevf_get_basic_info(hdev);
2492 	if (ret)
2493 		return ret;
2494 
2495 	/* get current port based vlan state from PF */
2496 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2497 	if (ret)
2498 		return ret;
2499 
2500 	/* get queue configuration from PF */
2501 	ret = hclgevf_get_queue_info(hdev);
2502 	if (ret)
2503 		return ret;
2504 
2505 	/* get queue depth info from PF */
2506 	ret = hclgevf_get_queue_depth(hdev);
2507 	if (ret)
2508 		return ret;
2509 
2510 	return hclgevf_get_pf_media_type(hdev);
2511 }
2512 
2513 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2514 {
2515 	struct pci_dev *pdev = ae_dev->pdev;
2516 	struct hclgevf_dev *hdev;
2517 
2518 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2519 	if (!hdev)
2520 		return -ENOMEM;
2521 
2522 	hdev->pdev = pdev;
2523 	hdev->ae_dev = ae_dev;
2524 	ae_dev->priv = hdev;
2525 
2526 	return 0;
2527 }
2528 
2529 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2530 {
2531 	struct hnae3_handle *roce = &hdev->roce;
2532 	struct hnae3_handle *nic = &hdev->nic;
2533 
2534 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2535 
2536 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2537 	    hdev->num_msi_left == 0)
2538 		return -EINVAL;
2539 
2540 	roce->rinfo.base_vector = hdev->roce_base_vector;
2541 
2542 	roce->rinfo.netdev = nic->kinfo.netdev;
2543 	roce->rinfo.roce_io_base = hdev->hw.io_base;
2544 	roce->rinfo.roce_mem_base = hdev->hw.mem_base;
2545 
2546 	roce->pdev = nic->pdev;
2547 	roce->ae_algo = nic->ae_algo;
2548 	roce->numa_node_mask = nic->numa_node_mask;
2549 
2550 	return 0;
2551 }
2552 
2553 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2554 {
2555 	struct hclgevf_cfg_gro_status_cmd *req;
2556 	struct hclgevf_desc desc;
2557 	int ret;
2558 
2559 	if (!hnae3_dev_gro_supported(hdev))
2560 		return 0;
2561 
2562 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2563 				     false);
2564 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2565 
2566 	req->gro_en = en ? 1 : 0;
2567 
2568 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2569 	if (ret)
2570 		dev_err(&hdev->pdev->dev,
2571 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2572 
2573 	return ret;
2574 }
2575 
2576 static int hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2577 {
2578 	u16 rss_ind_tbl_size = hdev->ae_dev->dev_specs.rss_ind_tbl_size;
2579 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2580 	struct hclgevf_rss_tuple_cfg *tuple_sets;
2581 	u32 i;
2582 
2583 	rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2584 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2585 	tuple_sets = &rss_cfg->rss_tuple_sets;
2586 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2587 		u8 *rss_ind_tbl;
2588 
2589 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2590 
2591 		rss_ind_tbl = devm_kcalloc(&hdev->pdev->dev, rss_ind_tbl_size,
2592 					   sizeof(*rss_ind_tbl), GFP_KERNEL);
2593 		if (!rss_ind_tbl)
2594 			return -ENOMEM;
2595 
2596 		rss_cfg->rss_indirection_tbl = rss_ind_tbl;
2597 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2598 		       HCLGEVF_RSS_KEY_SIZE);
2599 
2600 		tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2601 		tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2602 		tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2603 		tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2604 		tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2605 		tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2606 		tuple_sets->ipv6_sctp_en =
2607 			hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
2608 					HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
2609 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2610 		tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2611 	}
2612 
2613 	/* Initialize RSS indirect table */
2614 	for (i = 0; i < rss_ind_tbl_size; i++)
2615 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2616 
2617 	return 0;
2618 }
2619 
2620 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2621 {
2622 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2623 	int ret;
2624 
2625 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2626 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2627 					       rss_cfg->rss_hash_key);
2628 		if (ret)
2629 			return ret;
2630 
2631 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2632 		if (ret)
2633 			return ret;
2634 	}
2635 
2636 	ret = hclgevf_set_rss_indir_table(hdev);
2637 	if (ret)
2638 		return ret;
2639 
2640 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2641 }
2642 
2643 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2644 {
2645 	struct hnae3_handle *nic = &hdev->nic;
2646 	int ret;
2647 
2648 	ret = hclgevf_en_hw_strip_rxvtag(nic, true);
2649 	if (ret) {
2650 		dev_err(&hdev->pdev->dev,
2651 			"failed to enable rx vlan offload, ret = %d\n", ret);
2652 		return ret;
2653 	}
2654 
2655 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2656 				       false);
2657 }
2658 
2659 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2660 {
2661 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2662 
2663 	unsigned long last = hdev->serv_processed_cnt;
2664 	int i = 0;
2665 
2666 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2667 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2668 	       last == hdev->serv_processed_cnt)
2669 		usleep_range(1, 1);
2670 }
2671 
2672 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2673 {
2674 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2675 
2676 	if (enable) {
2677 		hclgevf_task_schedule(hdev, 0);
2678 	} else {
2679 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2680 
2681 		/* flush memory to make sure DOWN is seen by service task */
2682 		smp_mb__before_atomic();
2683 		hclgevf_flush_link_update(hdev);
2684 	}
2685 }
2686 
2687 static int hclgevf_ae_start(struct hnae3_handle *handle)
2688 {
2689 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2690 
2691 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2692 	clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2693 
2694 	hclgevf_reset_tqp_stats(handle);
2695 
2696 	hclgevf_request_link_info(hdev);
2697 
2698 	hclgevf_update_link_mode(hdev);
2699 
2700 	return 0;
2701 }
2702 
2703 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2704 {
2705 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2706 
2707 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2708 
2709 	if (hdev->reset_type != HNAE3_VF_RESET)
2710 		hclgevf_reset_tqp(handle);
2711 
2712 	hclgevf_reset_tqp_stats(handle);
2713 	hclgevf_update_link_status(hdev, 0);
2714 }
2715 
2716 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2717 {
2718 #define HCLGEVF_STATE_ALIVE	1
2719 #define HCLGEVF_STATE_NOT_ALIVE	0
2720 
2721 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2722 	struct hclge_vf_to_pf_msg send_msg;
2723 
2724 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2725 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2726 				HCLGEVF_STATE_NOT_ALIVE;
2727 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2728 }
2729 
2730 static int hclgevf_client_start(struct hnae3_handle *handle)
2731 {
2732 	return hclgevf_set_alive(handle, true);
2733 }
2734 
2735 static void hclgevf_client_stop(struct hnae3_handle *handle)
2736 {
2737 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2738 	int ret;
2739 
2740 	ret = hclgevf_set_alive(handle, false);
2741 	if (ret)
2742 		dev_warn(&hdev->pdev->dev,
2743 			 "%s failed %d\n", __func__, ret);
2744 }
2745 
2746 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2747 {
2748 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2749 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2750 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2751 
2752 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2753 
2754 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2755 	sema_init(&hdev->reset_sem, 1);
2756 
2757 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2758 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2759 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2760 
2761 	/* bring the device down */
2762 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2763 }
2764 
2765 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2766 {
2767 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2768 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2769 
2770 	if (hdev->service_task.work.func)
2771 		cancel_delayed_work_sync(&hdev->service_task);
2772 
2773 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2774 }
2775 
2776 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2777 {
2778 	struct pci_dev *pdev = hdev->pdev;
2779 	int vectors;
2780 	int i;
2781 
2782 	if (hnae3_dev_roce_supported(hdev))
2783 		vectors = pci_alloc_irq_vectors(pdev,
2784 						hdev->roce_base_msix_offset + 1,
2785 						hdev->num_msi,
2786 						PCI_IRQ_MSIX);
2787 	else
2788 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2789 						hdev->num_msi,
2790 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2791 
2792 	if (vectors < 0) {
2793 		dev_err(&pdev->dev,
2794 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2795 			vectors);
2796 		return vectors;
2797 	}
2798 	if (vectors < hdev->num_msi)
2799 		dev_warn(&hdev->pdev->dev,
2800 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2801 			 hdev->num_msi, vectors);
2802 
2803 	hdev->num_msi = vectors;
2804 	hdev->num_msi_left = vectors;
2805 
2806 	hdev->base_msi_vector = pdev->irq;
2807 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2808 
2809 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2810 					   sizeof(u16), GFP_KERNEL);
2811 	if (!hdev->vector_status) {
2812 		pci_free_irq_vectors(pdev);
2813 		return -ENOMEM;
2814 	}
2815 
2816 	for (i = 0; i < hdev->num_msi; i++)
2817 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2818 
2819 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2820 					sizeof(int), GFP_KERNEL);
2821 	if (!hdev->vector_irq) {
2822 		devm_kfree(&pdev->dev, hdev->vector_status);
2823 		pci_free_irq_vectors(pdev);
2824 		return -ENOMEM;
2825 	}
2826 
2827 	return 0;
2828 }
2829 
2830 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2831 {
2832 	struct pci_dev *pdev = hdev->pdev;
2833 
2834 	devm_kfree(&pdev->dev, hdev->vector_status);
2835 	devm_kfree(&pdev->dev, hdev->vector_irq);
2836 	pci_free_irq_vectors(pdev);
2837 }
2838 
2839 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2840 {
2841 	int ret;
2842 
2843 	hclgevf_get_misc_vector(hdev);
2844 
2845 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2846 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2847 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2848 			  0, hdev->misc_vector.name, hdev);
2849 	if (ret) {
2850 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2851 			hdev->misc_vector.vector_irq);
2852 		return ret;
2853 	}
2854 
2855 	hclgevf_clear_event_cause(hdev, 0);
2856 
2857 	/* enable misc. vector(vector 0) */
2858 	hclgevf_enable_vector(&hdev->misc_vector, true);
2859 
2860 	return ret;
2861 }
2862 
2863 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2864 {
2865 	/* disable misc vector(vector 0) */
2866 	hclgevf_enable_vector(&hdev->misc_vector, false);
2867 	synchronize_irq(hdev->misc_vector.vector_irq);
2868 	free_irq(hdev->misc_vector.vector_irq, hdev);
2869 	hclgevf_free_vector(hdev, 0);
2870 }
2871 
2872 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2873 {
2874 	struct device *dev = &hdev->pdev->dev;
2875 
2876 	dev_info(dev, "VF info begin:\n");
2877 
2878 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2879 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2880 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2881 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2882 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2883 	dev_info(dev, "PF media type of this VF: %u\n",
2884 		 hdev->hw.mac.media_type);
2885 
2886 	dev_info(dev, "VF info end.\n");
2887 }
2888 
2889 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2890 					    struct hnae3_client *client)
2891 {
2892 	struct hclgevf_dev *hdev = ae_dev->priv;
2893 	int rst_cnt = hdev->rst_stats.rst_cnt;
2894 	int ret;
2895 
2896 	ret = client->ops->init_instance(&hdev->nic);
2897 	if (ret)
2898 		return ret;
2899 
2900 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2901 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2902 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2903 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2904 
2905 		client->ops->uninit_instance(&hdev->nic, 0);
2906 		return -EBUSY;
2907 	}
2908 
2909 	hnae3_set_client_init_flag(client, ae_dev, 1);
2910 
2911 	if (netif_msg_drv(&hdev->nic))
2912 		hclgevf_info_show(hdev);
2913 
2914 	return 0;
2915 }
2916 
2917 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2918 					     struct hnae3_client *client)
2919 {
2920 	struct hclgevf_dev *hdev = ae_dev->priv;
2921 	int ret;
2922 
2923 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2924 	    !hdev->nic_client)
2925 		return 0;
2926 
2927 	ret = hclgevf_init_roce_base_info(hdev);
2928 	if (ret)
2929 		return ret;
2930 
2931 	ret = client->ops->init_instance(&hdev->roce);
2932 	if (ret)
2933 		return ret;
2934 
2935 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2936 	hnae3_set_client_init_flag(client, ae_dev, 1);
2937 
2938 	return 0;
2939 }
2940 
2941 static int hclgevf_init_client_instance(struct hnae3_client *client,
2942 					struct hnae3_ae_dev *ae_dev)
2943 {
2944 	struct hclgevf_dev *hdev = ae_dev->priv;
2945 	int ret;
2946 
2947 	switch (client->type) {
2948 	case HNAE3_CLIENT_KNIC:
2949 		hdev->nic_client = client;
2950 		hdev->nic.client = client;
2951 
2952 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2953 		if (ret)
2954 			goto clear_nic;
2955 
2956 		ret = hclgevf_init_roce_client_instance(ae_dev,
2957 							hdev->roce_client);
2958 		if (ret)
2959 			goto clear_roce;
2960 
2961 		break;
2962 	case HNAE3_CLIENT_ROCE:
2963 		if (hnae3_dev_roce_supported(hdev)) {
2964 			hdev->roce_client = client;
2965 			hdev->roce.client = client;
2966 		}
2967 
2968 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2969 		if (ret)
2970 			goto clear_roce;
2971 
2972 		break;
2973 	default:
2974 		return -EINVAL;
2975 	}
2976 
2977 	return 0;
2978 
2979 clear_nic:
2980 	hdev->nic_client = NULL;
2981 	hdev->nic.client = NULL;
2982 	return ret;
2983 clear_roce:
2984 	hdev->roce_client = NULL;
2985 	hdev->roce.client = NULL;
2986 	return ret;
2987 }
2988 
2989 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2990 					   struct hnae3_ae_dev *ae_dev)
2991 {
2992 	struct hclgevf_dev *hdev = ae_dev->priv;
2993 
2994 	/* un-init roce, if it exists */
2995 	if (hdev->roce_client) {
2996 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2997 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2998 		hdev->roce_client = NULL;
2999 		hdev->roce.client = NULL;
3000 	}
3001 
3002 	/* un-init nic/unic, if this was not called by roce client */
3003 	if (client->ops->uninit_instance && hdev->nic_client &&
3004 	    client->type != HNAE3_CLIENT_ROCE) {
3005 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
3006 
3007 		client->ops->uninit_instance(&hdev->nic, 0);
3008 		hdev->nic_client = NULL;
3009 		hdev->nic.client = NULL;
3010 	}
3011 }
3012 
3013 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
3014 {
3015 #define HCLGEVF_MEM_BAR		4
3016 
3017 	struct pci_dev *pdev = hdev->pdev;
3018 	struct hclgevf_hw *hw = &hdev->hw;
3019 
3020 	/* for device does not have device memory, return directly */
3021 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
3022 		return 0;
3023 
3024 	hw->mem_base = devm_ioremap_wc(&pdev->dev,
3025 				       pci_resource_start(pdev,
3026 							  HCLGEVF_MEM_BAR),
3027 				       pci_resource_len(pdev, HCLGEVF_MEM_BAR));
3028 	if (!hw->mem_base) {
3029 		dev_err(&pdev->dev, "failed to map device memory\n");
3030 		return -EFAULT;
3031 	}
3032 
3033 	return 0;
3034 }
3035 
3036 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
3037 {
3038 	struct pci_dev *pdev = hdev->pdev;
3039 	struct hclgevf_hw *hw;
3040 	int ret;
3041 
3042 	ret = pci_enable_device(pdev);
3043 	if (ret) {
3044 		dev_err(&pdev->dev, "failed to enable PCI device\n");
3045 		return ret;
3046 	}
3047 
3048 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3049 	if (ret) {
3050 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
3051 		goto err_disable_device;
3052 	}
3053 
3054 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
3055 	if (ret) {
3056 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
3057 		goto err_disable_device;
3058 	}
3059 
3060 	pci_set_master(pdev);
3061 	hw = &hdev->hw;
3062 	hw->hdev = hdev;
3063 	hw->io_base = pci_iomap(pdev, 2, 0);
3064 	if (!hw->io_base) {
3065 		dev_err(&pdev->dev, "can't map configuration register space\n");
3066 		ret = -ENOMEM;
3067 		goto err_clr_master;
3068 	}
3069 
3070 	ret = hclgevf_dev_mem_map(hdev);
3071 	if (ret)
3072 		goto err_unmap_io_base;
3073 
3074 	return 0;
3075 
3076 err_unmap_io_base:
3077 	pci_iounmap(pdev, hdev->hw.io_base);
3078 err_clr_master:
3079 	pci_clear_master(pdev);
3080 	pci_release_regions(pdev);
3081 err_disable_device:
3082 	pci_disable_device(pdev);
3083 
3084 	return ret;
3085 }
3086 
3087 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
3088 {
3089 	struct pci_dev *pdev = hdev->pdev;
3090 
3091 	if (hdev->hw.mem_base)
3092 		devm_iounmap(&pdev->dev, hdev->hw.mem_base);
3093 
3094 	pci_iounmap(pdev, hdev->hw.io_base);
3095 	pci_clear_master(pdev);
3096 	pci_release_regions(pdev);
3097 	pci_disable_device(pdev);
3098 }
3099 
3100 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
3101 {
3102 	struct hclgevf_query_res_cmd *req;
3103 	struct hclgevf_desc desc;
3104 	int ret;
3105 
3106 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
3107 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
3108 	if (ret) {
3109 		dev_err(&hdev->pdev->dev,
3110 			"query vf resource failed, ret = %d.\n", ret);
3111 		return ret;
3112 	}
3113 
3114 	req = (struct hclgevf_query_res_cmd *)desc.data;
3115 
3116 	if (hnae3_dev_roce_supported(hdev)) {
3117 		hdev->roce_base_msix_offset =
3118 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3119 				HCLGEVF_MSIX_OFT_ROCEE_M,
3120 				HCLGEVF_MSIX_OFT_ROCEE_S);
3121 		hdev->num_roce_msix =
3122 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3123 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3124 
3125 		/* nic's msix numbers is always equals to the roce's. */
3126 		hdev->num_nic_msix = hdev->num_roce_msix;
3127 
3128 		/* VF should have NIC vectors and Roce vectors, NIC vectors
3129 		 * are queued before Roce vectors. The offset is fixed to 64.
3130 		 */
3131 		hdev->num_msi = hdev->num_roce_msix +
3132 				hdev->roce_base_msix_offset;
3133 	} else {
3134 		hdev->num_msi =
3135 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3136 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3137 
3138 		hdev->num_nic_msix = hdev->num_msi;
3139 	}
3140 
3141 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
3142 		dev_err(&hdev->pdev->dev,
3143 			"Just %u msi resources, not enough for vf(min:2).\n",
3144 			hdev->num_nic_msix);
3145 		return -EINVAL;
3146 	}
3147 
3148 	return 0;
3149 }
3150 
3151 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
3152 {
3153 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
3154 
3155 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3156 
3157 	ae_dev->dev_specs.max_non_tso_bd_num =
3158 					HCLGEVF_MAX_NON_TSO_BD_NUM;
3159 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3160 	ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3161 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3162 	ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3163 }
3164 
3165 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
3166 				    struct hclgevf_desc *desc)
3167 {
3168 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3169 	struct hclgevf_dev_specs_0_cmd *req0;
3170 	struct hclgevf_dev_specs_1_cmd *req1;
3171 
3172 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3173 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3174 
3175 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
3176 	ae_dev->dev_specs.rss_ind_tbl_size =
3177 					le16_to_cpu(req0->rss_ind_tbl_size);
3178 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3179 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3180 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3181 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
3182 }
3183 
3184 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
3185 {
3186 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
3187 
3188 	if (!dev_specs->max_non_tso_bd_num)
3189 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
3190 	if (!dev_specs->rss_ind_tbl_size)
3191 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3192 	if (!dev_specs->rss_key_size)
3193 		dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3194 	if (!dev_specs->max_int_gl)
3195 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3196 	if (!dev_specs->max_frm_size)
3197 		dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3198 }
3199 
3200 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
3201 {
3202 	struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
3203 	int ret;
3204 	int i;
3205 
3206 	/* set default specifications as devices lower than version V3 do not
3207 	 * support querying specifications from firmware.
3208 	 */
3209 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
3210 		hclgevf_set_default_dev_specs(hdev);
3211 		return 0;
3212 	}
3213 
3214 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3215 		hclgevf_cmd_setup_basic_desc(&desc[i],
3216 					     HCLGEVF_OPC_QUERY_DEV_SPECS, true);
3217 		desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
3218 	}
3219 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3220 				     true);
3221 
3222 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3223 	if (ret)
3224 		return ret;
3225 
3226 	hclgevf_parse_dev_specs(hdev, desc);
3227 	hclgevf_check_dev_specs(hdev);
3228 
3229 	return 0;
3230 }
3231 
3232 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3233 {
3234 	struct pci_dev *pdev = hdev->pdev;
3235 	int ret = 0;
3236 
3237 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
3238 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3239 		hclgevf_misc_irq_uninit(hdev);
3240 		hclgevf_uninit_msi(hdev);
3241 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3242 	}
3243 
3244 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3245 		pci_set_master(pdev);
3246 		ret = hclgevf_init_msi(hdev);
3247 		if (ret) {
3248 			dev_err(&pdev->dev,
3249 				"failed(%d) to init MSI/MSI-X\n", ret);
3250 			return ret;
3251 		}
3252 
3253 		ret = hclgevf_misc_irq_init(hdev);
3254 		if (ret) {
3255 			hclgevf_uninit_msi(hdev);
3256 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3257 				ret);
3258 			return ret;
3259 		}
3260 
3261 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3262 	}
3263 
3264 	return ret;
3265 }
3266 
3267 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3268 {
3269 	struct hclge_vf_to_pf_msg send_msg;
3270 
3271 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3272 			       HCLGE_MBX_VPORT_LIST_CLEAR);
3273 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3274 }
3275 
3276 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
3277 {
3278 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
3279 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
3280 }
3281 
3282 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
3283 {
3284 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
3285 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
3286 }
3287 
3288 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3289 {
3290 	struct pci_dev *pdev = hdev->pdev;
3291 	int ret;
3292 
3293 	ret = hclgevf_pci_reset(hdev);
3294 	if (ret) {
3295 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3296 		return ret;
3297 	}
3298 
3299 	ret = hclgevf_cmd_init(hdev);
3300 	if (ret) {
3301 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
3302 		return ret;
3303 	}
3304 
3305 	ret = hclgevf_rss_init_hw(hdev);
3306 	if (ret) {
3307 		dev_err(&hdev->pdev->dev,
3308 			"failed(%d) to initialize RSS\n", ret);
3309 		return ret;
3310 	}
3311 
3312 	ret = hclgevf_config_gro(hdev, true);
3313 	if (ret)
3314 		return ret;
3315 
3316 	ret = hclgevf_init_vlan_config(hdev);
3317 	if (ret) {
3318 		dev_err(&hdev->pdev->dev,
3319 			"failed(%d) to initialize VLAN config\n", ret);
3320 		return ret;
3321 	}
3322 
3323 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3324 
3325 	hclgevf_init_rxd_adv_layout(hdev);
3326 
3327 	dev_info(&hdev->pdev->dev, "Reset done\n");
3328 
3329 	return 0;
3330 }
3331 
3332 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3333 {
3334 	struct pci_dev *pdev = hdev->pdev;
3335 	int ret;
3336 
3337 	ret = hclgevf_pci_init(hdev);
3338 	if (ret)
3339 		return ret;
3340 
3341 	ret = hclgevf_devlink_init(hdev);
3342 	if (ret)
3343 		goto err_devlink_init;
3344 
3345 	ret = hclgevf_cmd_queue_init(hdev);
3346 	if (ret)
3347 		goto err_cmd_queue_init;
3348 
3349 	ret = hclgevf_cmd_init(hdev);
3350 	if (ret)
3351 		goto err_cmd_init;
3352 
3353 	/* Get vf resource */
3354 	ret = hclgevf_query_vf_resource(hdev);
3355 	if (ret)
3356 		goto err_cmd_init;
3357 
3358 	ret = hclgevf_query_dev_specs(hdev);
3359 	if (ret) {
3360 		dev_err(&pdev->dev,
3361 			"failed to query dev specifications, ret = %d\n", ret);
3362 		goto err_cmd_init;
3363 	}
3364 
3365 	ret = hclgevf_init_msi(hdev);
3366 	if (ret) {
3367 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3368 		goto err_cmd_init;
3369 	}
3370 
3371 	hclgevf_state_init(hdev);
3372 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3373 	hdev->reset_type = HNAE3_NONE_RESET;
3374 
3375 	ret = hclgevf_misc_irq_init(hdev);
3376 	if (ret)
3377 		goto err_misc_irq_init;
3378 
3379 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3380 
3381 	ret = hclgevf_configure(hdev);
3382 	if (ret) {
3383 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3384 		goto err_config;
3385 	}
3386 
3387 	ret = hclgevf_alloc_tqps(hdev);
3388 	if (ret) {
3389 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3390 		goto err_config;
3391 	}
3392 
3393 	ret = hclgevf_set_handle_info(hdev);
3394 	if (ret)
3395 		goto err_config;
3396 
3397 	ret = hclgevf_config_gro(hdev, true);
3398 	if (ret)
3399 		goto err_config;
3400 
3401 	/* Initialize RSS for this VF */
3402 	ret = hclgevf_rss_init_cfg(hdev);
3403 	if (ret) {
3404 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
3405 		goto err_config;
3406 	}
3407 
3408 	ret = hclgevf_rss_init_hw(hdev);
3409 	if (ret) {
3410 		dev_err(&hdev->pdev->dev,
3411 			"failed(%d) to initialize RSS\n", ret);
3412 		goto err_config;
3413 	}
3414 
3415 	/* ensure vf tbl list as empty before init*/
3416 	ret = hclgevf_clear_vport_list(hdev);
3417 	if (ret) {
3418 		dev_err(&pdev->dev,
3419 			"failed to clear tbl list configuration, ret = %d.\n",
3420 			ret);
3421 		goto err_config;
3422 	}
3423 
3424 	ret = hclgevf_init_vlan_config(hdev);
3425 	if (ret) {
3426 		dev_err(&hdev->pdev->dev,
3427 			"failed(%d) to initialize VLAN config\n", ret);
3428 		goto err_config;
3429 	}
3430 
3431 	hclgevf_init_rxd_adv_layout(hdev);
3432 
3433 	hdev->last_reset_time = jiffies;
3434 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3435 		 HCLGEVF_DRIVER_NAME);
3436 
3437 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3438 
3439 	return 0;
3440 
3441 err_config:
3442 	hclgevf_misc_irq_uninit(hdev);
3443 err_misc_irq_init:
3444 	hclgevf_state_uninit(hdev);
3445 	hclgevf_uninit_msi(hdev);
3446 err_cmd_init:
3447 	hclgevf_cmd_uninit(hdev);
3448 err_cmd_queue_init:
3449 	hclgevf_devlink_uninit(hdev);
3450 err_devlink_init:
3451 	hclgevf_pci_uninit(hdev);
3452 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3453 	return ret;
3454 }
3455 
3456 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3457 {
3458 	struct hclge_vf_to_pf_msg send_msg;
3459 
3460 	hclgevf_state_uninit(hdev);
3461 	hclgevf_uninit_rxd_adv_layout(hdev);
3462 
3463 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3464 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3465 
3466 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3467 		hclgevf_misc_irq_uninit(hdev);
3468 		hclgevf_uninit_msi(hdev);
3469 	}
3470 
3471 	hclgevf_cmd_uninit(hdev);
3472 	hclgevf_devlink_uninit(hdev);
3473 	hclgevf_pci_uninit(hdev);
3474 	hclgevf_uninit_mac_list(hdev);
3475 }
3476 
3477 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3478 {
3479 	struct pci_dev *pdev = ae_dev->pdev;
3480 	int ret;
3481 
3482 	ret = hclgevf_alloc_hdev(ae_dev);
3483 	if (ret) {
3484 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3485 		return ret;
3486 	}
3487 
3488 	ret = hclgevf_init_hdev(ae_dev->priv);
3489 	if (ret) {
3490 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3491 		return ret;
3492 	}
3493 
3494 	return 0;
3495 }
3496 
3497 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3498 {
3499 	struct hclgevf_dev *hdev = ae_dev->priv;
3500 
3501 	hclgevf_uninit_hdev(hdev);
3502 	ae_dev->priv = NULL;
3503 }
3504 
3505 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3506 {
3507 	struct hnae3_handle *nic = &hdev->nic;
3508 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3509 
3510 	return min_t(u32, hdev->rss_size_max,
3511 		     hdev->num_tqps / kinfo->tc_info.num_tc);
3512 }
3513 
3514 /**
3515  * hclgevf_get_channels - Get the current channels enabled and max supported.
3516  * @handle: hardware information for network interface
3517  * @ch: ethtool channels structure
3518  *
3519  * We don't support separate tx and rx queues as channels. The other count
3520  * represents how many queues are being used for control. max_combined counts
3521  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3522  * q_vectors since we support a lot more queue pairs than q_vectors.
3523  **/
3524 static void hclgevf_get_channels(struct hnae3_handle *handle,
3525 				 struct ethtool_channels *ch)
3526 {
3527 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3528 
3529 	ch->max_combined = hclgevf_get_max_channels(hdev);
3530 	ch->other_count = 0;
3531 	ch->max_other = 0;
3532 	ch->combined_count = handle->kinfo.rss_size;
3533 }
3534 
3535 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3536 					  u16 *alloc_tqps, u16 *max_rss_size)
3537 {
3538 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3539 
3540 	*alloc_tqps = hdev->num_tqps;
3541 	*max_rss_size = hdev->rss_size_max;
3542 }
3543 
3544 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3545 				    u32 new_tqps_num)
3546 {
3547 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3548 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3549 	u16 max_rss_size;
3550 
3551 	kinfo->req_rss_size = new_tqps_num;
3552 
3553 	max_rss_size = min_t(u16, hdev->rss_size_max,
3554 			     hdev->num_tqps / kinfo->tc_info.num_tc);
3555 
3556 	/* Use the user's configuration when it is not larger than
3557 	 * max_rss_size, otherwise, use the maximum specification value.
3558 	 */
3559 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3560 	    kinfo->req_rss_size <= max_rss_size)
3561 		kinfo->rss_size = kinfo->req_rss_size;
3562 	else if (kinfo->rss_size > max_rss_size ||
3563 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3564 		kinfo->rss_size = max_rss_size;
3565 
3566 	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3567 }
3568 
3569 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3570 				bool rxfh_configured)
3571 {
3572 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3573 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3574 	u16 cur_rss_size = kinfo->rss_size;
3575 	u16 cur_tqps = kinfo->num_tqps;
3576 	u32 *rss_indir;
3577 	unsigned int i;
3578 	int ret;
3579 
3580 	hclgevf_update_rss_size(handle, new_tqps_num);
3581 
3582 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3583 	if (ret)
3584 		return ret;
3585 
3586 	/* RSS indirection table has been configured by user */
3587 	if (rxfh_configured)
3588 		goto out;
3589 
3590 	/* Reinitializes the rss indirect table according to the new RSS size */
3591 	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3592 			    sizeof(u32), GFP_KERNEL);
3593 	if (!rss_indir)
3594 		return -ENOMEM;
3595 
3596 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3597 		rss_indir[i] = i % kinfo->rss_size;
3598 
3599 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3600 
3601 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3602 	if (ret)
3603 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3604 			ret);
3605 
3606 	kfree(rss_indir);
3607 
3608 out:
3609 	if (!ret)
3610 		dev_info(&hdev->pdev->dev,
3611 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3612 			 cur_rss_size, kinfo->rss_size,
3613 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3614 
3615 	return ret;
3616 }
3617 
3618 static int hclgevf_get_status(struct hnae3_handle *handle)
3619 {
3620 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3621 
3622 	return hdev->hw.mac.link;
3623 }
3624 
3625 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3626 					    u8 *auto_neg, u32 *speed,
3627 					    u8 *duplex)
3628 {
3629 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3630 
3631 	if (speed)
3632 		*speed = hdev->hw.mac.speed;
3633 	if (duplex)
3634 		*duplex = hdev->hw.mac.duplex;
3635 	if (auto_neg)
3636 		*auto_neg = AUTONEG_DISABLE;
3637 }
3638 
3639 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3640 				 u8 duplex)
3641 {
3642 	hdev->hw.mac.speed = speed;
3643 	hdev->hw.mac.duplex = duplex;
3644 }
3645 
3646 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3647 {
3648 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3649 
3650 	return hclgevf_config_gro(hdev, enable);
3651 }
3652 
3653 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3654 				   u8 *module_type)
3655 {
3656 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3657 
3658 	if (media_type)
3659 		*media_type = hdev->hw.mac.media_type;
3660 
3661 	if (module_type)
3662 		*module_type = hdev->hw.mac.module_type;
3663 }
3664 
3665 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3666 {
3667 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3668 
3669 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3670 }
3671 
3672 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3673 {
3674 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3675 
3676 	return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
3677 }
3678 
3679 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3680 {
3681 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3682 
3683 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3684 }
3685 
3686 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3687 {
3688 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3689 
3690 	return hdev->rst_stats.hw_rst_done_cnt;
3691 }
3692 
3693 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3694 				  unsigned long *supported,
3695 				  unsigned long *advertising)
3696 {
3697 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3698 
3699 	*supported = hdev->hw.mac.supported;
3700 	*advertising = hdev->hw.mac.advertising;
3701 }
3702 
3703 #define MAX_SEPARATE_NUM	4
3704 #define SEPARATOR_VALUE		0xFDFCFBFA
3705 #define REG_NUM_PER_LINE	4
3706 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3707 
3708 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3709 {
3710 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3711 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3712 
3713 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3714 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3715 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3716 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3717 
3718 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3719 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3720 }
3721 
3722 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3723 			     void *data)
3724 {
3725 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3726 	int i, j, reg_um, separator_num;
3727 	u32 *reg = data;
3728 
3729 	*version = hdev->fw_version;
3730 
3731 	/* fetching per-VF registers values from VF PCIe register space */
3732 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3733 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3734 	for (i = 0; i < reg_um; i++)
3735 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3736 	for (i = 0; i < separator_num; i++)
3737 		*reg++ = SEPARATOR_VALUE;
3738 
3739 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3740 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3741 	for (i = 0; i < reg_um; i++)
3742 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3743 	for (i = 0; i < separator_num; i++)
3744 		*reg++ = SEPARATOR_VALUE;
3745 
3746 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3747 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3748 	for (j = 0; j < hdev->num_tqps; j++) {
3749 		for (i = 0; i < reg_um; i++)
3750 			*reg++ = hclgevf_read_dev(&hdev->hw,
3751 						  ring_reg_addr_list[i] +
3752 						  0x200 * j);
3753 		for (i = 0; i < separator_num; i++)
3754 			*reg++ = SEPARATOR_VALUE;
3755 	}
3756 
3757 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3758 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3759 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3760 		for (i = 0; i < reg_um; i++)
3761 			*reg++ = hclgevf_read_dev(&hdev->hw,
3762 						  tqp_intr_reg_addr_list[i] +
3763 						  4 * j);
3764 		for (i = 0; i < separator_num; i++)
3765 			*reg++ = SEPARATOR_VALUE;
3766 	}
3767 }
3768 
3769 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3770 					u8 *port_base_vlan_info, u8 data_size)
3771 {
3772 	struct hnae3_handle *nic = &hdev->nic;
3773 	struct hclge_vf_to_pf_msg send_msg;
3774 	int ret;
3775 
3776 	rtnl_lock();
3777 
3778 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3779 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3780 		dev_warn(&hdev->pdev->dev,
3781 			 "is resetting when updating port based vlan info\n");
3782 		rtnl_unlock();
3783 		return;
3784 	}
3785 
3786 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3787 	if (ret) {
3788 		rtnl_unlock();
3789 		return;
3790 	}
3791 
3792 	/* send msg to PF and wait update port based vlan info */
3793 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3794 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3795 	memcpy(send_msg.data, port_base_vlan_info, data_size);
3796 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3797 	if (!ret) {
3798 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3799 			nic->port_base_vlan_state = state;
3800 		else
3801 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3802 	}
3803 
3804 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3805 	rtnl_unlock();
3806 }
3807 
3808 static const struct hnae3_ae_ops hclgevf_ops = {
3809 	.init_ae_dev = hclgevf_init_ae_dev,
3810 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3811 	.reset_prepare = hclgevf_reset_prepare_general,
3812 	.reset_done = hclgevf_reset_done,
3813 	.init_client_instance = hclgevf_init_client_instance,
3814 	.uninit_client_instance = hclgevf_uninit_client_instance,
3815 	.start = hclgevf_ae_start,
3816 	.stop = hclgevf_ae_stop,
3817 	.client_start = hclgevf_client_start,
3818 	.client_stop = hclgevf_client_stop,
3819 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3820 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3821 	.get_vector = hclgevf_get_vector,
3822 	.put_vector = hclgevf_put_vector,
3823 	.reset_queue = hclgevf_reset_tqp,
3824 	.get_mac_addr = hclgevf_get_mac_addr,
3825 	.set_mac_addr = hclgevf_set_mac_addr,
3826 	.add_uc_addr = hclgevf_add_uc_addr,
3827 	.rm_uc_addr = hclgevf_rm_uc_addr,
3828 	.add_mc_addr = hclgevf_add_mc_addr,
3829 	.rm_mc_addr = hclgevf_rm_mc_addr,
3830 	.get_stats = hclgevf_get_stats,
3831 	.update_stats = hclgevf_update_stats,
3832 	.get_strings = hclgevf_get_strings,
3833 	.get_sset_count = hclgevf_get_sset_count,
3834 	.get_rss_key_size = hclgevf_get_rss_key_size,
3835 	.get_rss = hclgevf_get_rss,
3836 	.set_rss = hclgevf_set_rss,
3837 	.get_rss_tuple = hclgevf_get_rss_tuple,
3838 	.set_rss_tuple = hclgevf_set_rss_tuple,
3839 	.get_tc_size = hclgevf_get_tc_size,
3840 	.get_fw_version = hclgevf_get_fw_version,
3841 	.set_vlan_filter = hclgevf_set_vlan_filter,
3842 	.enable_vlan_filter = hclgevf_enable_vlan_filter,
3843 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3844 	.reset_event = hclgevf_reset_event,
3845 	.set_default_reset_request = hclgevf_set_def_reset_request,
3846 	.set_channels = hclgevf_set_channels,
3847 	.get_channels = hclgevf_get_channels,
3848 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3849 	.get_regs_len = hclgevf_get_regs_len,
3850 	.get_regs = hclgevf_get_regs,
3851 	.get_status = hclgevf_get_status,
3852 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3853 	.get_media_type = hclgevf_get_media_type,
3854 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3855 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3856 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3857 	.set_gro_en = hclgevf_gro_en,
3858 	.set_mtu = hclgevf_set_mtu,
3859 	.get_global_queue_id = hclgevf_get_qid_global,
3860 	.set_timer_task = hclgevf_set_timer_task,
3861 	.get_link_mode = hclgevf_get_link_mode,
3862 	.set_promisc_mode = hclgevf_set_promisc_mode,
3863 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3864 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3865 };
3866 
3867 static struct hnae3_ae_algo ae_algovf = {
3868 	.ops = &hclgevf_ops,
3869 	.pdev_id_table = ae_algovf_pci_tbl,
3870 };
3871 
3872 static int hclgevf_init(void)
3873 {
3874 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3875 
3876 	hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3877 	if (!hclgevf_wq) {
3878 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3879 		return -ENOMEM;
3880 	}
3881 
3882 	hnae3_register_ae_algo(&ae_algovf);
3883 
3884 	return 0;
3885 }
3886 
3887 static void hclgevf_exit(void)
3888 {
3889 	hnae3_unregister_ae_algo(&ae_algovf);
3890 	destroy_workqueue(hclgevf_wq);
3891 }
3892 module_init(hclgevf_init);
3893 module_exit(hclgevf_exit);
3894 
3895 MODULE_LICENSE("GPL");
3896 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3897 MODULE_DESCRIPTION("HCLGEVF Driver");
3898 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3899