1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 static const u8 hclgevf_hash_key[] = {
25 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
26 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
27 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
28 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
29 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
30 };
31 
32 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
33 
34 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
35 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
36 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
37 					 HCLGEVF_CMDQ_TX_TAIL_REG,
38 					 HCLGEVF_CMDQ_TX_HEAD_REG,
39 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
40 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
41 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
42 					 HCLGEVF_CMDQ_RX_TAIL_REG,
43 					 HCLGEVF_CMDQ_RX_HEAD_REG,
44 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
45 					 HCLGEVF_CMDQ_INTR_STS_REG,
46 					 HCLGEVF_CMDQ_INTR_EN_REG,
47 					 HCLGEVF_CMDQ_INTR_GEN_REG};
48 
49 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
50 					   HCLGEVF_RST_ING,
51 					   HCLGEVF_GRO_EN_REG};
52 
53 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
54 					 HCLGEVF_RING_RX_ADDR_H_REG,
55 					 HCLGEVF_RING_RX_BD_NUM_REG,
56 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
57 					 HCLGEVF_RING_RX_MERGE_EN_REG,
58 					 HCLGEVF_RING_RX_TAIL_REG,
59 					 HCLGEVF_RING_RX_HEAD_REG,
60 					 HCLGEVF_RING_RX_FBD_NUM_REG,
61 					 HCLGEVF_RING_RX_OFFSET_REG,
62 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
63 					 HCLGEVF_RING_RX_STASH_REG,
64 					 HCLGEVF_RING_RX_BD_ERR_REG,
65 					 HCLGEVF_RING_TX_ADDR_L_REG,
66 					 HCLGEVF_RING_TX_ADDR_H_REG,
67 					 HCLGEVF_RING_TX_BD_NUM_REG,
68 					 HCLGEVF_RING_TX_PRIORITY_REG,
69 					 HCLGEVF_RING_TX_TC_REG,
70 					 HCLGEVF_RING_TX_MERGE_EN_REG,
71 					 HCLGEVF_RING_TX_TAIL_REG,
72 					 HCLGEVF_RING_TX_HEAD_REG,
73 					 HCLGEVF_RING_TX_FBD_NUM_REG,
74 					 HCLGEVF_RING_TX_OFFSET_REG,
75 					 HCLGEVF_RING_TX_EBD_NUM_REG,
76 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
77 					 HCLGEVF_RING_TX_BD_ERR_REG,
78 					 HCLGEVF_RING_EN_REG};
79 
80 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
81 					     HCLGEVF_TQP_INTR_GL0_REG,
82 					     HCLGEVF_TQP_INTR_GL1_REG,
83 					     HCLGEVF_TQP_INTR_GL2_REG,
84 					     HCLGEVF_TQP_INTR_RL_REG};
85 
86 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
87 	struct hnae3_handle *handle)
88 {
89 	if (!handle->client)
90 		return container_of(handle, struct hclgevf_dev, nic);
91 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
92 		return container_of(handle, struct hclgevf_dev, roce);
93 	else
94 		return container_of(handle, struct hclgevf_dev, nic);
95 }
96 
97 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
98 {
99 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
100 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
101 	struct hclgevf_desc desc;
102 	struct hclgevf_tqp *tqp;
103 	int status;
104 	int i;
105 
106 	for (i = 0; i < kinfo->num_tqps; i++) {
107 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
108 		hclgevf_cmd_setup_basic_desc(&desc,
109 					     HCLGEVF_OPC_QUERY_RX_STATUS,
110 					     true);
111 
112 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
113 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
114 		if (status) {
115 			dev_err(&hdev->pdev->dev,
116 				"Query tqp stat fail, status = %d,queue = %d\n",
117 				status,	i);
118 			return status;
119 		}
120 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
121 			le32_to_cpu(desc.data[1]);
122 
123 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
124 					     true);
125 
126 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
127 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
128 		if (status) {
129 			dev_err(&hdev->pdev->dev,
130 				"Query tqp stat fail, status = %d,queue = %d\n",
131 				status, i);
132 			return status;
133 		}
134 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
135 			le32_to_cpu(desc.data[1]);
136 	}
137 
138 	return 0;
139 }
140 
141 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
142 {
143 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
144 	struct hclgevf_tqp *tqp;
145 	u64 *buff = data;
146 	int i;
147 
148 	for (i = 0; i < kinfo->num_tqps; i++) {
149 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
150 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
151 	}
152 	for (i = 0; i < kinfo->num_tqps; i++) {
153 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
154 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
155 	}
156 
157 	return buff;
158 }
159 
160 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
161 {
162 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
163 
164 	return kinfo->num_tqps * 2;
165 }
166 
167 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
168 {
169 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170 	u8 *buff = data;
171 	int i = 0;
172 
173 	for (i = 0; i < kinfo->num_tqps; i++) {
174 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
175 						       struct hclgevf_tqp, q);
176 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
177 			 tqp->index);
178 		buff += ETH_GSTRING_LEN;
179 	}
180 
181 	for (i = 0; i < kinfo->num_tqps; i++) {
182 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
183 						       struct hclgevf_tqp, q);
184 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
185 			 tqp->index);
186 		buff += ETH_GSTRING_LEN;
187 	}
188 
189 	return buff;
190 }
191 
192 static void hclgevf_update_stats(struct hnae3_handle *handle,
193 				 struct net_device_stats *net_stats)
194 {
195 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
196 	int status;
197 
198 	status = hclgevf_tqps_update_stats(handle);
199 	if (status)
200 		dev_err(&hdev->pdev->dev,
201 			"VF update of TQPS stats fail, status = %d.\n",
202 			status);
203 }
204 
205 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
206 {
207 	if (strset == ETH_SS_TEST)
208 		return -EOPNOTSUPP;
209 	else if (strset == ETH_SS_STATS)
210 		return hclgevf_tqps_get_sset_count(handle, strset);
211 
212 	return 0;
213 }
214 
215 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
216 				u8 *data)
217 {
218 	u8 *p = (char *)data;
219 
220 	if (strset == ETH_SS_STATS)
221 		p = hclgevf_tqps_get_strings(handle, p);
222 }
223 
224 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
225 {
226 	hclgevf_tqps_get_stats(handle, data);
227 }
228 
229 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
230 {
231 	u8 resp_msg;
232 	int status;
233 
234 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
235 				      true, &resp_msg, sizeof(u8));
236 	if (status) {
237 		dev_err(&hdev->pdev->dev,
238 			"VF request to get TC info from PF failed %d",
239 			status);
240 		return status;
241 	}
242 
243 	hdev->hw_tc_map = resp_msg;
244 
245 	return 0;
246 }
247 
248 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
249 {
250 	struct hnae3_handle *nic = &hdev->nic;
251 	u8 resp_msg;
252 	int ret;
253 
254 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
255 				   HCLGE_MBX_GET_PORT_BASE_VLAN_STATE,
256 				   NULL, 0, true, &resp_msg, sizeof(u8));
257 	if (ret) {
258 		dev_err(&hdev->pdev->dev,
259 			"VF request to get port based vlan state failed %d",
260 			ret);
261 		return ret;
262 	}
263 
264 	nic->port_base_vlan_state = resp_msg;
265 
266 	return 0;
267 }
268 
269 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
270 {
271 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
272 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
273 	int status;
274 
275 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
276 				      true, resp_msg,
277 				      HCLGEVF_TQPS_RSS_INFO_LEN);
278 	if (status) {
279 		dev_err(&hdev->pdev->dev,
280 			"VF request to get tqp info from PF failed %d",
281 			status);
282 		return status;
283 	}
284 
285 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
286 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
287 	memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));
288 
289 	return 0;
290 }
291 
292 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
293 {
294 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
295 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
296 	int ret;
297 
298 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
299 				   true, resp_msg,
300 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
301 	if (ret) {
302 		dev_err(&hdev->pdev->dev,
303 			"VF request to get tqp depth info from PF failed %d",
304 			ret);
305 		return ret;
306 	}
307 
308 	memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
309 	memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));
310 
311 	return 0;
312 }
313 
314 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
315 {
316 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
317 	u8 msg_data[2], resp_data[2];
318 	u16 qid_in_pf = 0;
319 	int ret;
320 
321 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
322 
323 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
324 				   2, true, resp_data, 2);
325 	if (!ret)
326 		qid_in_pf = *(u16 *)resp_data;
327 
328 	return qid_in_pf;
329 }
330 
331 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
332 {
333 	u8 resp_msg;
334 	int ret;
335 
336 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MEDIA_TYPE, 0, NULL, 0,
337 				   true, &resp_msg, sizeof(resp_msg));
338 	if (ret) {
339 		dev_err(&hdev->pdev->dev,
340 			"VF request to get the pf port media type failed %d",
341 			ret);
342 		return ret;
343 	}
344 
345 	hdev->hw.mac.media_type = resp_msg;
346 
347 	return 0;
348 }
349 
350 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
351 {
352 	struct hclgevf_tqp *tqp;
353 	int i;
354 
355 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
356 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
357 	if (!hdev->htqp)
358 		return -ENOMEM;
359 
360 	tqp = hdev->htqp;
361 
362 	for (i = 0; i < hdev->num_tqps; i++) {
363 		tqp->dev = &hdev->pdev->dev;
364 		tqp->index = i;
365 
366 		tqp->q.ae_algo = &ae_algovf;
367 		tqp->q.buf_size = hdev->rx_buf_len;
368 		tqp->q.tx_desc_num = hdev->num_tx_desc;
369 		tqp->q.rx_desc_num = hdev->num_rx_desc;
370 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
371 			i * HCLGEVF_TQP_REG_SIZE;
372 
373 		tqp++;
374 	}
375 
376 	return 0;
377 }
378 
379 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
380 {
381 	struct hnae3_handle *nic = &hdev->nic;
382 	struct hnae3_knic_private_info *kinfo;
383 	u16 new_tqps = hdev->num_tqps;
384 	int i;
385 
386 	kinfo = &nic->kinfo;
387 	kinfo->num_tc = 0;
388 	kinfo->num_tx_desc = hdev->num_tx_desc;
389 	kinfo->num_rx_desc = hdev->num_rx_desc;
390 	kinfo->rx_buf_len = hdev->rx_buf_len;
391 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
392 		if (hdev->hw_tc_map & BIT(i))
393 			kinfo->num_tc++;
394 
395 	kinfo->rss_size
396 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
397 	new_tqps = kinfo->rss_size * kinfo->num_tc;
398 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
399 
400 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
401 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
402 	if (!kinfo->tqp)
403 		return -ENOMEM;
404 
405 	for (i = 0; i < kinfo->num_tqps; i++) {
406 		hdev->htqp[i].q.handle = &hdev->nic;
407 		hdev->htqp[i].q.tqp_index = i;
408 		kinfo->tqp[i] = &hdev->htqp[i].q;
409 	}
410 
411 	return 0;
412 }
413 
414 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
415 {
416 	int status;
417 	u8 resp_msg;
418 
419 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
420 				      0, false, &resp_msg, sizeof(u8));
421 	if (status)
422 		dev_err(&hdev->pdev->dev,
423 			"VF failed to fetch link status(%d) from PF", status);
424 }
425 
426 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
427 {
428 	struct hnae3_handle *rhandle = &hdev->roce;
429 	struct hnae3_handle *handle = &hdev->nic;
430 	struct hnae3_client *rclient;
431 	struct hnae3_client *client;
432 
433 	client = handle->client;
434 	rclient = hdev->roce_client;
435 
436 	link_state =
437 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
438 
439 	if (link_state != hdev->hw.mac.link) {
440 		client->ops->link_status_change(handle, !!link_state);
441 		if (rclient && rclient->ops->link_status_change)
442 			rclient->ops->link_status_change(rhandle, !!link_state);
443 		hdev->hw.mac.link = link_state;
444 	}
445 }
446 
447 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
448 {
449 #define HCLGEVF_ADVERTISING 0
450 #define HCLGEVF_SUPPORTED   1
451 	u8 send_msg;
452 	u8 resp_msg;
453 
454 	send_msg = HCLGEVF_ADVERTISING;
455 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0, &send_msg,
456 			     sizeof(u8), false, &resp_msg, sizeof(u8));
457 	send_msg = HCLGEVF_SUPPORTED;
458 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0, &send_msg,
459 			     sizeof(u8), false, &resp_msg, sizeof(u8));
460 }
461 
462 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
463 {
464 	struct hnae3_handle *nic = &hdev->nic;
465 	int ret;
466 
467 	nic->ae_algo = &ae_algovf;
468 	nic->pdev = hdev->pdev;
469 	nic->numa_node_mask = hdev->numa_node_mask;
470 	nic->flags |= HNAE3_SUPPORT_VF;
471 
472 	if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
473 		dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
474 			hdev->ae_dev->dev_type);
475 		return -EINVAL;
476 	}
477 
478 	ret = hclgevf_knic_setup(hdev);
479 	if (ret)
480 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
481 			ret);
482 	return ret;
483 }
484 
485 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
486 {
487 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
488 		dev_warn(&hdev->pdev->dev,
489 			 "vector(vector_id %d) has been freed.\n", vector_id);
490 		return;
491 	}
492 
493 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
494 	hdev->num_msi_left += 1;
495 	hdev->num_msi_used -= 1;
496 }
497 
498 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
499 			      struct hnae3_vector_info *vector_info)
500 {
501 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
502 	struct hnae3_vector_info *vector = vector_info;
503 	int alloc = 0;
504 	int i, j;
505 
506 	vector_num = min(hdev->num_msi_left, vector_num);
507 
508 	for (j = 0; j < vector_num; j++) {
509 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
510 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
511 				vector->vector = pci_irq_vector(hdev->pdev, i);
512 				vector->io_addr = hdev->hw.io_base +
513 					HCLGEVF_VECTOR_REG_BASE +
514 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
515 				hdev->vector_status[i] = 0;
516 				hdev->vector_irq[i] = vector->vector;
517 
518 				vector++;
519 				alloc++;
520 
521 				break;
522 			}
523 		}
524 	}
525 	hdev->num_msi_left -= alloc;
526 	hdev->num_msi_used += alloc;
527 
528 	return alloc;
529 }
530 
531 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
532 {
533 	int i;
534 
535 	for (i = 0; i < hdev->num_msi; i++)
536 		if (vector == hdev->vector_irq[i])
537 			return i;
538 
539 	return -EINVAL;
540 }
541 
542 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
543 				    const u8 hfunc, const u8 *key)
544 {
545 	struct hclgevf_rss_config_cmd *req;
546 	struct hclgevf_desc desc;
547 	int key_offset;
548 	int key_size;
549 	int ret;
550 
551 	req = (struct hclgevf_rss_config_cmd *)desc.data;
552 
553 	for (key_offset = 0; key_offset < 3; key_offset++) {
554 		hclgevf_cmd_setup_basic_desc(&desc,
555 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
556 					     false);
557 
558 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
559 		req->hash_config |=
560 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
561 
562 		if (key_offset == 2)
563 			key_size =
564 			HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
565 		else
566 			key_size = HCLGEVF_RSS_HASH_KEY_NUM;
567 
568 		memcpy(req->hash_key,
569 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
570 
571 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
572 		if (ret) {
573 			dev_err(&hdev->pdev->dev,
574 				"Configure RSS config fail, status = %d\n",
575 				ret);
576 			return ret;
577 		}
578 	}
579 
580 	return 0;
581 }
582 
583 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
584 {
585 	return HCLGEVF_RSS_KEY_SIZE;
586 }
587 
588 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
589 {
590 	return HCLGEVF_RSS_IND_TBL_SIZE;
591 }
592 
593 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
594 {
595 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
596 	struct hclgevf_rss_indirection_table_cmd *req;
597 	struct hclgevf_desc desc;
598 	int status;
599 	int i, j;
600 
601 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
602 
603 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
604 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
605 					     false);
606 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
607 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
608 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
609 			req->rss_result[j] =
610 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
611 
612 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
613 		if (status) {
614 			dev_err(&hdev->pdev->dev,
615 				"VF failed(=%d) to set RSS indirection table\n",
616 				status);
617 			return status;
618 		}
619 	}
620 
621 	return 0;
622 }
623 
624 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
625 {
626 	struct hclgevf_rss_tc_mode_cmd *req;
627 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
628 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
629 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
630 	struct hclgevf_desc desc;
631 	u16 roundup_size;
632 	int status;
633 	int i;
634 
635 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
636 
637 	roundup_size = roundup_pow_of_two(rss_size);
638 	roundup_size = ilog2(roundup_size);
639 
640 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
641 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
642 		tc_size[i] = roundup_size;
643 		tc_offset[i] = rss_size * i;
644 	}
645 
646 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
647 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
648 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
649 			      (tc_valid[i] & 0x1));
650 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
651 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
652 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
653 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
654 	}
655 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
656 	if (status)
657 		dev_err(&hdev->pdev->dev,
658 			"VF failed(=%d) to set rss tc mode\n", status);
659 
660 	return status;
661 }
662 
663 /* for revision 0x20, vf shared the same rss config with pf */
664 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
665 {
666 #define HCLGEVF_RSS_MBX_RESP_LEN	8
667 
668 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
669 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
670 	u16 msg_num, hash_key_index;
671 	u8 index;
672 	int ret;
673 
674 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
675 			HCLGEVF_RSS_MBX_RESP_LEN;
676 	for (index = 0; index < msg_num; index++) {
677 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_RSS_KEY, 0,
678 					   &index, sizeof(index),
679 					   true, resp_msg,
680 					   HCLGEVF_RSS_MBX_RESP_LEN);
681 		if (ret) {
682 			dev_err(&hdev->pdev->dev,
683 				"VF get rss hash key from PF failed, ret=%d",
684 				ret);
685 			return ret;
686 		}
687 
688 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
689 		if (index == msg_num - 1)
690 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
691 			       &resp_msg[0],
692 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
693 		else
694 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
695 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
696 	}
697 
698 	return 0;
699 }
700 
701 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
702 			   u8 *hfunc)
703 {
704 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
705 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
706 	int i, ret;
707 
708 	if (handle->pdev->revision >= 0x21) {
709 		/* Get hash algorithm */
710 		if (hfunc) {
711 			switch (rss_cfg->hash_algo) {
712 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
713 				*hfunc = ETH_RSS_HASH_TOP;
714 				break;
715 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
716 				*hfunc = ETH_RSS_HASH_XOR;
717 				break;
718 			default:
719 				*hfunc = ETH_RSS_HASH_UNKNOWN;
720 				break;
721 			}
722 		}
723 
724 		/* Get the RSS Key required by the user */
725 		if (key)
726 			memcpy(key, rss_cfg->rss_hash_key,
727 			       HCLGEVF_RSS_KEY_SIZE);
728 	} else {
729 		if (hfunc)
730 			*hfunc = ETH_RSS_HASH_TOP;
731 		if (key) {
732 			ret = hclgevf_get_rss_hash_key(hdev);
733 			if (ret)
734 				return ret;
735 			memcpy(key, rss_cfg->rss_hash_key,
736 			       HCLGEVF_RSS_KEY_SIZE);
737 		}
738 	}
739 
740 	if (indir)
741 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
742 			indir[i] = rss_cfg->rss_indirection_tbl[i];
743 
744 	return 0;
745 }
746 
747 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
748 			   const  u8 *key, const  u8 hfunc)
749 {
750 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
751 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
752 	int ret, i;
753 
754 	if (handle->pdev->revision >= 0x21) {
755 		/* Set the RSS Hash Key if specififed by the user */
756 		if (key) {
757 			switch (hfunc) {
758 			case ETH_RSS_HASH_TOP:
759 				rss_cfg->hash_algo =
760 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
761 				break;
762 			case ETH_RSS_HASH_XOR:
763 				rss_cfg->hash_algo =
764 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
765 				break;
766 			case ETH_RSS_HASH_NO_CHANGE:
767 				break;
768 			default:
769 				return -EINVAL;
770 			}
771 
772 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
773 						       key);
774 			if (ret)
775 				return ret;
776 
777 			/* Update the shadow RSS key with user specified qids */
778 			memcpy(rss_cfg->rss_hash_key, key,
779 			       HCLGEVF_RSS_KEY_SIZE);
780 		}
781 	}
782 
783 	/* update the shadow RSS table with user specified qids */
784 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
785 		rss_cfg->rss_indirection_tbl[i] = indir[i];
786 
787 	/* update the hardware */
788 	return hclgevf_set_rss_indir_table(hdev);
789 }
790 
791 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
792 {
793 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
794 
795 	if (nfc->data & RXH_L4_B_2_3)
796 		hash_sets |= HCLGEVF_D_PORT_BIT;
797 	else
798 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
799 
800 	if (nfc->data & RXH_IP_SRC)
801 		hash_sets |= HCLGEVF_S_IP_BIT;
802 	else
803 		hash_sets &= ~HCLGEVF_S_IP_BIT;
804 
805 	if (nfc->data & RXH_IP_DST)
806 		hash_sets |= HCLGEVF_D_IP_BIT;
807 	else
808 		hash_sets &= ~HCLGEVF_D_IP_BIT;
809 
810 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
811 		hash_sets |= HCLGEVF_V_TAG_BIT;
812 
813 	return hash_sets;
814 }
815 
816 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
817 				 struct ethtool_rxnfc *nfc)
818 {
819 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
820 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
821 	struct hclgevf_rss_input_tuple_cmd *req;
822 	struct hclgevf_desc desc;
823 	u8 tuple_sets;
824 	int ret;
825 
826 	if (handle->pdev->revision == 0x20)
827 		return -EOPNOTSUPP;
828 
829 	if (nfc->data &
830 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
831 		return -EINVAL;
832 
833 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
834 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
835 
836 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
837 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
838 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
839 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
840 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
841 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
842 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
843 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
844 
845 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
846 	switch (nfc->flow_type) {
847 	case TCP_V4_FLOW:
848 		req->ipv4_tcp_en = tuple_sets;
849 		break;
850 	case TCP_V6_FLOW:
851 		req->ipv6_tcp_en = tuple_sets;
852 		break;
853 	case UDP_V4_FLOW:
854 		req->ipv4_udp_en = tuple_sets;
855 		break;
856 	case UDP_V6_FLOW:
857 		req->ipv6_udp_en = tuple_sets;
858 		break;
859 	case SCTP_V4_FLOW:
860 		req->ipv4_sctp_en = tuple_sets;
861 		break;
862 	case SCTP_V6_FLOW:
863 		if ((nfc->data & RXH_L4_B_0_1) ||
864 		    (nfc->data & RXH_L4_B_2_3))
865 			return -EINVAL;
866 
867 		req->ipv6_sctp_en = tuple_sets;
868 		break;
869 	case IPV4_FLOW:
870 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
871 		break;
872 	case IPV6_FLOW:
873 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
874 		break;
875 	default:
876 		return -EINVAL;
877 	}
878 
879 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
880 	if (ret) {
881 		dev_err(&hdev->pdev->dev,
882 			"Set rss tuple fail, status = %d\n", ret);
883 		return ret;
884 	}
885 
886 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
887 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
888 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
889 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
890 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
891 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
892 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
893 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
894 	return 0;
895 }
896 
897 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
898 				 struct ethtool_rxnfc *nfc)
899 {
900 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
901 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
902 	u8 tuple_sets;
903 
904 	if (handle->pdev->revision == 0x20)
905 		return -EOPNOTSUPP;
906 
907 	nfc->data = 0;
908 
909 	switch (nfc->flow_type) {
910 	case TCP_V4_FLOW:
911 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
912 		break;
913 	case UDP_V4_FLOW:
914 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
915 		break;
916 	case TCP_V6_FLOW:
917 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
918 		break;
919 	case UDP_V6_FLOW:
920 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
921 		break;
922 	case SCTP_V4_FLOW:
923 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
924 		break;
925 	case SCTP_V6_FLOW:
926 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
927 		break;
928 	case IPV4_FLOW:
929 	case IPV6_FLOW:
930 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
931 		break;
932 	default:
933 		return -EINVAL;
934 	}
935 
936 	if (!tuple_sets)
937 		return 0;
938 
939 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
940 		nfc->data |= RXH_L4_B_2_3;
941 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
942 		nfc->data |= RXH_L4_B_0_1;
943 	if (tuple_sets & HCLGEVF_D_IP_BIT)
944 		nfc->data |= RXH_IP_DST;
945 	if (tuple_sets & HCLGEVF_S_IP_BIT)
946 		nfc->data |= RXH_IP_SRC;
947 
948 	return 0;
949 }
950 
951 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
952 				       struct hclgevf_rss_cfg *rss_cfg)
953 {
954 	struct hclgevf_rss_input_tuple_cmd *req;
955 	struct hclgevf_desc desc;
956 	int ret;
957 
958 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
959 
960 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
961 
962 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
963 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
964 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
965 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
966 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
967 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
968 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
969 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
970 
971 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
972 	if (ret)
973 		dev_err(&hdev->pdev->dev,
974 			"Configure rss input fail, status = %d\n", ret);
975 	return ret;
976 }
977 
978 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
979 {
980 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
981 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
982 
983 	return rss_cfg->rss_size;
984 }
985 
986 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
987 				       int vector_id,
988 				       struct hnae3_ring_chain_node *ring_chain)
989 {
990 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
991 	struct hnae3_ring_chain_node *node;
992 	struct hclge_mbx_vf_to_pf_cmd *req;
993 	struct hclgevf_desc desc;
994 	int i = 0;
995 	int status;
996 	u8 type;
997 
998 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
999 
1000 	for (node = ring_chain; node; node = node->next) {
1001 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
1002 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
1003 
1004 		if (i == 0) {
1005 			hclgevf_cmd_setup_basic_desc(&desc,
1006 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1007 						     false);
1008 			type = en ?
1009 				HCLGE_MBX_MAP_RING_TO_VECTOR :
1010 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1011 			req->msg[0] = type;
1012 			req->msg[1] = vector_id;
1013 		}
1014 
1015 		req->msg[idx_offset] =
1016 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1017 		req->msg[idx_offset + 1] = node->tqp_index;
1018 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
1019 							   HNAE3_RING_GL_IDX_M,
1020 							   HNAE3_RING_GL_IDX_S);
1021 
1022 		i++;
1023 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
1024 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
1025 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
1026 		    !node->next) {
1027 			req->msg[2] = i;
1028 
1029 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1030 			if (status) {
1031 				dev_err(&hdev->pdev->dev,
1032 					"Map TQP fail, status is %d.\n",
1033 					status);
1034 				return status;
1035 			}
1036 			i = 0;
1037 			hclgevf_cmd_setup_basic_desc(&desc,
1038 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1039 						     false);
1040 			req->msg[0] = type;
1041 			req->msg[1] = vector_id;
1042 		}
1043 	}
1044 
1045 	return 0;
1046 }
1047 
1048 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1049 				      struct hnae3_ring_chain_node *ring_chain)
1050 {
1051 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1052 	int vector_id;
1053 
1054 	vector_id = hclgevf_get_vector_index(hdev, vector);
1055 	if (vector_id < 0) {
1056 		dev_err(&handle->pdev->dev,
1057 			"Get vector index fail. ret =%d\n", vector_id);
1058 		return vector_id;
1059 	}
1060 
1061 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1062 }
1063 
1064 static int hclgevf_unmap_ring_from_vector(
1065 				struct hnae3_handle *handle,
1066 				int vector,
1067 				struct hnae3_ring_chain_node *ring_chain)
1068 {
1069 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1070 	int ret, vector_id;
1071 
1072 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1073 		return 0;
1074 
1075 	vector_id = hclgevf_get_vector_index(hdev, vector);
1076 	if (vector_id < 0) {
1077 		dev_err(&handle->pdev->dev,
1078 			"Get vector index fail. ret =%d\n", vector_id);
1079 		return vector_id;
1080 	}
1081 
1082 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1083 	if (ret)
1084 		dev_err(&handle->pdev->dev,
1085 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1086 			vector_id,
1087 			ret);
1088 
1089 	return ret;
1090 }
1091 
1092 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1093 {
1094 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1095 	int vector_id;
1096 
1097 	vector_id = hclgevf_get_vector_index(hdev, vector);
1098 	if (vector_id < 0) {
1099 		dev_err(&handle->pdev->dev,
1100 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1101 			vector_id);
1102 		return vector_id;
1103 	}
1104 
1105 	hclgevf_free_vector(hdev, vector_id);
1106 
1107 	return 0;
1108 }
1109 
1110 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1111 					bool en_bc_pmc)
1112 {
1113 	struct hclge_mbx_vf_to_pf_cmd *req;
1114 	struct hclgevf_desc desc;
1115 	int ret;
1116 
1117 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1118 
1119 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
1120 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1121 	req->msg[1] = en_bc_pmc ? 1 : 0;
1122 
1123 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1124 	if (ret)
1125 		dev_err(&hdev->pdev->dev,
1126 			"Set promisc mode fail, status is %d.\n", ret);
1127 
1128 	return ret;
1129 }
1130 
1131 static int hclgevf_set_promisc_mode(struct hclgevf_dev *hdev, bool en_bc_pmc)
1132 {
1133 	return hclgevf_cmd_set_promisc_mode(hdev, en_bc_pmc);
1134 }
1135 
1136 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
1137 			      int stream_id, bool enable)
1138 {
1139 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1140 	struct hclgevf_desc desc;
1141 	int status;
1142 
1143 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1144 
1145 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1146 				     false);
1147 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1148 	req->stream_id = cpu_to_le16(stream_id);
1149 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
1150 
1151 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1152 	if (status)
1153 		dev_err(&hdev->pdev->dev,
1154 			"TQP enable fail, status =%d.\n", status);
1155 
1156 	return status;
1157 }
1158 
1159 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1160 {
1161 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1162 	struct hclgevf_tqp *tqp;
1163 	int i;
1164 
1165 	for (i = 0; i < kinfo->num_tqps; i++) {
1166 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1167 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1168 	}
1169 }
1170 
1171 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1172 {
1173 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1174 
1175 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
1176 }
1177 
1178 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1179 				bool is_first)
1180 {
1181 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1182 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1183 	u8 *new_mac_addr = (u8 *)p;
1184 	u8 msg_data[ETH_ALEN * 2];
1185 	u16 subcode;
1186 	int status;
1187 
1188 	ether_addr_copy(msg_data, new_mac_addr);
1189 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1190 
1191 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1192 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1193 
1194 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1195 				      subcode, msg_data, ETH_ALEN * 2,
1196 				      true, NULL, 0);
1197 	if (!status)
1198 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1199 
1200 	return status;
1201 }
1202 
1203 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1204 			       const unsigned char *addr)
1205 {
1206 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1207 
1208 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1209 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1210 				    addr, ETH_ALEN, false, NULL, 0);
1211 }
1212 
1213 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1214 			      const unsigned char *addr)
1215 {
1216 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1217 
1218 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1219 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1220 				    addr, ETH_ALEN, false, NULL, 0);
1221 }
1222 
1223 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1224 			       const unsigned char *addr)
1225 {
1226 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1227 
1228 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1229 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1230 				    addr, ETH_ALEN, false, NULL, 0);
1231 }
1232 
1233 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1234 			      const unsigned char *addr)
1235 {
1236 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1237 
1238 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1239 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1240 				    addr, ETH_ALEN, false, NULL, 0);
1241 }
1242 
1243 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1244 				   __be16 proto, u16 vlan_id,
1245 				   bool is_kill)
1246 {
1247 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1248 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1249 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1250 
1251 	if (vlan_id > 4095)
1252 		return -EINVAL;
1253 
1254 	if (proto != htons(ETH_P_8021Q))
1255 		return -EPROTONOSUPPORT;
1256 
1257 	msg_data[0] = is_kill;
1258 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1259 	memcpy(&msg_data[3], &proto, sizeof(proto));
1260 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1261 				    HCLGE_MBX_VLAN_FILTER, msg_data,
1262 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1263 }
1264 
1265 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1266 {
1267 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1268 	u8 msg_data;
1269 
1270 	msg_data = enable ? 1 : 0;
1271 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1272 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1273 				    1, false, NULL, 0);
1274 }
1275 
1276 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1277 {
1278 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1279 	u8 msg_data[2];
1280 	int ret;
1281 
1282 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
1283 
1284 	/* disable vf queue before send queue reset msg to PF */
1285 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1286 	if (ret)
1287 		return ret;
1288 
1289 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1290 				    2, true, NULL, 0);
1291 }
1292 
1293 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1294 {
1295 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1296 
1297 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1298 				    sizeof(new_mtu), true, NULL, 0);
1299 }
1300 
1301 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1302 				 enum hnae3_reset_notify_type type)
1303 {
1304 	struct hnae3_client *client = hdev->nic_client;
1305 	struct hnae3_handle *handle = &hdev->nic;
1306 	int ret;
1307 
1308 	if (!client->ops->reset_notify)
1309 		return -EOPNOTSUPP;
1310 
1311 	ret = client->ops->reset_notify(handle, type);
1312 	if (ret)
1313 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1314 			type, ret);
1315 
1316 	return ret;
1317 }
1318 
1319 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1320 {
1321 	struct hclgevf_dev *hdev = ae_dev->priv;
1322 
1323 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1324 }
1325 
1326 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1327 				    unsigned long delay_us,
1328 				    unsigned long wait_cnt)
1329 {
1330 	unsigned long cnt = 0;
1331 
1332 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1333 	       cnt++ < wait_cnt)
1334 		usleep_range(delay_us, delay_us * 2);
1335 
1336 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1337 		dev_err(&hdev->pdev->dev,
1338 			"flr wait timeout\n");
1339 		return -ETIMEDOUT;
1340 	}
1341 
1342 	return 0;
1343 }
1344 
1345 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1346 {
1347 #define HCLGEVF_RESET_WAIT_US	20000
1348 #define HCLGEVF_RESET_WAIT_CNT	2000
1349 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1350 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1351 
1352 	u32 val;
1353 	int ret;
1354 
1355 	/* wait to check the hardware reset completion status */
1356 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1357 	dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1358 
1359 	if (hdev->reset_type == HNAE3_FLR_RESET)
1360 		return hclgevf_flr_poll_timeout(hdev,
1361 						HCLGEVF_RESET_WAIT_US,
1362 						HCLGEVF_RESET_WAIT_CNT);
1363 
1364 	ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1365 				 !(val & HCLGEVF_RST_ING_BITS),
1366 				 HCLGEVF_RESET_WAIT_US,
1367 				 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1368 
1369 	/* hardware completion status should be available by this time */
1370 	if (ret) {
1371 		dev_err(&hdev->pdev->dev,
1372 			"could'nt get reset done status from h/w, timeout!\n");
1373 		return ret;
1374 	}
1375 
1376 	/* we will wait a bit more to let reset of the stack to complete. This
1377 	 * might happen in case reset assertion was made by PF. Yes, this also
1378 	 * means we might end up waiting bit more even for VF reset.
1379 	 */
1380 	msleep(5000);
1381 
1382 	return 0;
1383 }
1384 
1385 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1386 {
1387 	int ret;
1388 
1389 	/* uninitialize the nic client */
1390 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1391 	if (ret)
1392 		return ret;
1393 
1394 	/* re-initialize the hclge device */
1395 	ret = hclgevf_reset_hdev(hdev);
1396 	if (ret) {
1397 		dev_err(&hdev->pdev->dev,
1398 			"hclge device re-init failed, VF is disabled!\n");
1399 		return ret;
1400 	}
1401 
1402 	/* bring up the nic client again */
1403 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1404 	if (ret)
1405 		return ret;
1406 
1407 	return hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1408 }
1409 
1410 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1411 {
1412 	int ret = 0;
1413 
1414 	switch (hdev->reset_type) {
1415 	case HNAE3_VF_FUNC_RESET:
1416 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1417 					   0, true, NULL, sizeof(u8));
1418 		hdev->rst_stats.vf_func_rst_cnt++;
1419 		break;
1420 	case HNAE3_FLR_RESET:
1421 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1422 		hdev->rst_stats.flr_rst_cnt++;
1423 		break;
1424 	default:
1425 		break;
1426 	}
1427 
1428 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1429 
1430 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1431 		 hdev->reset_type, ret);
1432 
1433 	return ret;
1434 }
1435 
1436 static int hclgevf_reset(struct hclgevf_dev *hdev)
1437 {
1438 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1439 	int ret;
1440 
1441 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1442 	 * know if device is undergoing reset
1443 	 */
1444 	ae_dev->reset_type = hdev->reset_type;
1445 	hdev->rst_stats.rst_cnt++;
1446 	rtnl_lock();
1447 
1448 	/* bring down the nic to stop any ongoing TX/RX */
1449 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1450 	if (ret)
1451 		goto err_reset_lock;
1452 
1453 	rtnl_unlock();
1454 
1455 	ret = hclgevf_reset_prepare_wait(hdev);
1456 	if (ret)
1457 		goto err_reset;
1458 
1459 	/* check if VF could successfully fetch the hardware reset completion
1460 	 * status from the hardware
1461 	 */
1462 	ret = hclgevf_reset_wait(hdev);
1463 	if (ret) {
1464 		/* can't do much in this situation, will disable VF */
1465 		dev_err(&hdev->pdev->dev,
1466 			"VF failed(=%d) to fetch H/W reset completion status\n",
1467 			ret);
1468 		goto err_reset;
1469 	}
1470 
1471 	hdev->rst_stats.hw_rst_done_cnt++;
1472 
1473 	rtnl_lock();
1474 
1475 	/* now, re-initialize the nic client and ae device*/
1476 	ret = hclgevf_reset_stack(hdev);
1477 	if (ret) {
1478 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1479 		goto err_reset_lock;
1480 	}
1481 
1482 	/* bring up the nic to enable TX/RX again */
1483 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1484 	if (ret)
1485 		goto err_reset_lock;
1486 
1487 	rtnl_unlock();
1488 
1489 	hdev->last_reset_time = jiffies;
1490 	ae_dev->reset_type = HNAE3_NONE_RESET;
1491 	hdev->rst_stats.rst_done_cnt++;
1492 
1493 	return ret;
1494 err_reset_lock:
1495 	rtnl_unlock();
1496 err_reset:
1497 	/* When VF reset failed, only the higher level reset asserted by PF
1498 	 * can restore it, so re-initialize the command queue to receive
1499 	 * this higher reset event.
1500 	 */
1501 	hclgevf_cmd_init(hdev);
1502 	dev_err(&hdev->pdev->dev, "failed to reset VF\n");
1503 	if (hclgevf_is_reset_pending(hdev))
1504 		hclgevf_reset_task_schedule(hdev);
1505 
1506 	return ret;
1507 }
1508 
1509 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1510 						     unsigned long *addr)
1511 {
1512 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1513 
1514 	/* return the highest priority reset level amongst all */
1515 	if (test_bit(HNAE3_VF_RESET, addr)) {
1516 		rst_level = HNAE3_VF_RESET;
1517 		clear_bit(HNAE3_VF_RESET, addr);
1518 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1519 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1520 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1521 		rst_level = HNAE3_VF_FULL_RESET;
1522 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1523 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1524 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1525 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1526 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1527 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1528 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1529 		rst_level = HNAE3_VF_FUNC_RESET;
1530 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1531 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1532 		rst_level = HNAE3_FLR_RESET;
1533 		clear_bit(HNAE3_FLR_RESET, addr);
1534 	}
1535 
1536 	return rst_level;
1537 }
1538 
1539 static void hclgevf_reset_event(struct pci_dev *pdev,
1540 				struct hnae3_handle *handle)
1541 {
1542 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1543 	struct hclgevf_dev *hdev = ae_dev->priv;
1544 
1545 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1546 
1547 	if (hdev->default_reset_request)
1548 		hdev->reset_level =
1549 			hclgevf_get_reset_level(hdev,
1550 						&hdev->default_reset_request);
1551 	else
1552 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1553 
1554 	/* reset of this VF requested */
1555 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1556 	hclgevf_reset_task_schedule(hdev);
1557 
1558 	hdev->last_reset_time = jiffies;
1559 }
1560 
1561 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1562 					  enum hnae3_reset_type rst_type)
1563 {
1564 	struct hclgevf_dev *hdev = ae_dev->priv;
1565 
1566 	set_bit(rst_type, &hdev->default_reset_request);
1567 }
1568 
1569 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1570 {
1571 #define HCLGEVF_FLR_WAIT_MS	100
1572 #define HCLGEVF_FLR_WAIT_CNT	50
1573 	struct hclgevf_dev *hdev = ae_dev->priv;
1574 	int cnt = 0;
1575 
1576 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1577 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1578 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1579 	hclgevf_reset_event(hdev->pdev, NULL);
1580 
1581 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1582 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1583 		msleep(HCLGEVF_FLR_WAIT_MS);
1584 
1585 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1586 		dev_err(&hdev->pdev->dev,
1587 			"flr wait down timeout: %d\n", cnt);
1588 }
1589 
1590 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1591 {
1592 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1593 
1594 	return hdev->fw_version;
1595 }
1596 
1597 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1598 {
1599 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1600 
1601 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1602 					    HCLGEVF_MISC_VECTOR_NUM);
1603 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1604 	/* vector status always valid for Vector 0 */
1605 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1606 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1607 
1608 	hdev->num_msi_left -= 1;
1609 	hdev->num_msi_used += 1;
1610 }
1611 
1612 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1613 {
1614 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state)) {
1615 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1616 		schedule_work(&hdev->rst_service_task);
1617 	}
1618 }
1619 
1620 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1621 {
1622 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1623 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1624 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1625 		schedule_work(&hdev->mbx_service_task);
1626 	}
1627 }
1628 
1629 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1630 {
1631 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1632 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1633 		schedule_work(&hdev->service_task);
1634 }
1635 
1636 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1637 {
1638 	/* if we have any pending mailbox event then schedule the mbx task */
1639 	if (hdev->mbx_event_pending)
1640 		hclgevf_mbx_task_schedule(hdev);
1641 
1642 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1643 		hclgevf_reset_task_schedule(hdev);
1644 }
1645 
1646 static void hclgevf_service_timer(struct timer_list *t)
1647 {
1648 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1649 
1650 	mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1651 
1652 	hclgevf_task_schedule(hdev);
1653 }
1654 
1655 static void hclgevf_reset_service_task(struct work_struct *work)
1656 {
1657 	struct hclgevf_dev *hdev =
1658 		container_of(work, struct hclgevf_dev, rst_service_task);
1659 	int ret;
1660 
1661 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1662 		return;
1663 
1664 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1665 
1666 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1667 			       &hdev->reset_state)) {
1668 		/* PF has initmated that it is about to reset the hardware.
1669 		 * We now have to poll & check if harware has actually completed
1670 		 * the reset sequence. On hardware reset completion, VF needs to
1671 		 * reset the client and ae device.
1672 		 */
1673 		hdev->reset_attempts = 0;
1674 
1675 		hdev->last_reset_time = jiffies;
1676 		while ((hdev->reset_type =
1677 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1678 		       != HNAE3_NONE_RESET) {
1679 			ret = hclgevf_reset(hdev);
1680 			if (ret)
1681 				dev_err(&hdev->pdev->dev,
1682 					"VF stack reset failed %d.\n", ret);
1683 		}
1684 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1685 				      &hdev->reset_state)) {
1686 		/* we could be here when either of below happens:
1687 		 * 1. reset was initiated due to watchdog timeout due to
1688 		 *    a. IMP was earlier reset and our TX got choked down and
1689 		 *       which resulted in watchdog reacting and inducing VF
1690 		 *       reset. This also means our cmdq would be unreliable.
1691 		 *    b. problem in TX due to other lower layer(example link
1692 		 *       layer not functioning properly etc.)
1693 		 * 2. VF reset might have been initiated due to some config
1694 		 *    change.
1695 		 *
1696 		 * NOTE: Theres no clear way to detect above cases than to react
1697 		 * to the response of PF for this reset request. PF will ack the
1698 		 * 1b and 2. cases but we will not get any intimation about 1a
1699 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1700 		 * communication between PF and VF would be broken.
1701 		 */
1702 
1703 		/* if we are never geting into pending state it means either:
1704 		 * 1. PF is not receiving our request which could be due to IMP
1705 		 *    reset
1706 		 * 2. PF is screwed
1707 		 * We cannot do much for 2. but to check first we can try reset
1708 		 * our PCIe + stack and see if it alleviates the problem.
1709 		 */
1710 		if (hdev->reset_attempts > 3) {
1711 			/* prepare for full reset of stack + pcie interface */
1712 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1713 
1714 			/* "defer" schedule the reset task again */
1715 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1716 		} else {
1717 			hdev->reset_attempts++;
1718 
1719 			set_bit(hdev->reset_level, &hdev->reset_pending);
1720 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1721 		}
1722 		hclgevf_reset_task_schedule(hdev);
1723 	}
1724 
1725 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1726 }
1727 
1728 static void hclgevf_mailbox_service_task(struct work_struct *work)
1729 {
1730 	struct hclgevf_dev *hdev;
1731 
1732 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1733 
1734 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1735 		return;
1736 
1737 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1738 
1739 	hclgevf_mbx_async_handler(hdev);
1740 
1741 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1742 }
1743 
1744 static void hclgevf_keep_alive_timer(struct timer_list *t)
1745 {
1746 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1747 
1748 	schedule_work(&hdev->keep_alive_task);
1749 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
1750 }
1751 
1752 static void hclgevf_keep_alive_task(struct work_struct *work)
1753 {
1754 	struct hclgevf_dev *hdev;
1755 	u8 respmsg;
1756 	int ret;
1757 
1758 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1759 
1760 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1761 		return;
1762 
1763 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1764 				   0, false, &respmsg, sizeof(u8));
1765 	if (ret)
1766 		dev_err(&hdev->pdev->dev,
1767 			"VF sends keep alive cmd failed(=%d)\n", ret);
1768 }
1769 
1770 static void hclgevf_service_task(struct work_struct *work)
1771 {
1772 	struct hclgevf_dev *hdev;
1773 
1774 	hdev = container_of(work, struct hclgevf_dev, service_task);
1775 
1776 	/* request the link status from the PF. PF would be able to tell VF
1777 	 * about such updates in future so we might remove this later
1778 	 */
1779 	hclgevf_request_link_info(hdev);
1780 
1781 	hclgevf_update_link_mode(hdev);
1782 
1783 	hclgevf_deferred_task_schedule(hdev);
1784 
1785 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1786 }
1787 
1788 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1789 {
1790 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1791 }
1792 
1793 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1794 						      u32 *clearval)
1795 {
1796 	u32 cmdq_src_reg, rst_ing_reg;
1797 
1798 	/* fetch the events from their corresponding regs */
1799 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1800 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1801 
1802 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1803 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1804 		dev_info(&hdev->pdev->dev,
1805 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1806 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1807 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1808 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1809 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1810 		*clearval = cmdq_src_reg;
1811 		hdev->rst_stats.vf_rst_cnt++;
1812 		return HCLGEVF_VECTOR0_EVENT_RST;
1813 	}
1814 
1815 	/* check for vector0 mailbox(=CMDQ RX) event source */
1816 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1817 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1818 		*clearval = cmdq_src_reg;
1819 		return HCLGEVF_VECTOR0_EVENT_MBX;
1820 	}
1821 
1822 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1823 
1824 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1825 }
1826 
1827 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1828 {
1829 	writel(en ? 1 : 0, vector->addr);
1830 }
1831 
1832 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1833 {
1834 	enum hclgevf_evt_cause event_cause;
1835 	struct hclgevf_dev *hdev = data;
1836 	u32 clearval;
1837 
1838 	hclgevf_enable_vector(&hdev->misc_vector, false);
1839 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1840 
1841 	switch (event_cause) {
1842 	case HCLGEVF_VECTOR0_EVENT_RST:
1843 		hclgevf_reset_task_schedule(hdev);
1844 		break;
1845 	case HCLGEVF_VECTOR0_EVENT_MBX:
1846 		hclgevf_mbx_handler(hdev);
1847 		break;
1848 	default:
1849 		break;
1850 	}
1851 
1852 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1853 		hclgevf_clear_event_cause(hdev, clearval);
1854 		hclgevf_enable_vector(&hdev->misc_vector, true);
1855 	}
1856 
1857 	return IRQ_HANDLED;
1858 }
1859 
1860 static int hclgevf_configure(struct hclgevf_dev *hdev)
1861 {
1862 	int ret;
1863 
1864 	/* get current port based vlan state from PF */
1865 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
1866 	if (ret)
1867 		return ret;
1868 
1869 	/* get queue configuration from PF */
1870 	ret = hclgevf_get_queue_info(hdev);
1871 	if (ret)
1872 		return ret;
1873 
1874 	/* get queue depth info from PF */
1875 	ret = hclgevf_get_queue_depth(hdev);
1876 	if (ret)
1877 		return ret;
1878 
1879 	ret = hclgevf_get_pf_media_type(hdev);
1880 	if (ret)
1881 		return ret;
1882 
1883 	/* get tc configuration from PF */
1884 	return hclgevf_get_tc_info(hdev);
1885 }
1886 
1887 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1888 {
1889 	struct pci_dev *pdev = ae_dev->pdev;
1890 	struct hclgevf_dev *hdev;
1891 
1892 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1893 	if (!hdev)
1894 		return -ENOMEM;
1895 
1896 	hdev->pdev = pdev;
1897 	hdev->ae_dev = ae_dev;
1898 	ae_dev->priv = hdev;
1899 
1900 	return 0;
1901 }
1902 
1903 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1904 {
1905 	struct hnae3_handle *roce = &hdev->roce;
1906 	struct hnae3_handle *nic = &hdev->nic;
1907 
1908 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1909 
1910 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1911 	    hdev->num_msi_left == 0)
1912 		return -EINVAL;
1913 
1914 	roce->rinfo.base_vector = hdev->roce_base_vector;
1915 
1916 	roce->rinfo.netdev = nic->kinfo.netdev;
1917 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1918 
1919 	roce->pdev = nic->pdev;
1920 	roce->ae_algo = nic->ae_algo;
1921 	roce->numa_node_mask = nic->numa_node_mask;
1922 
1923 	return 0;
1924 }
1925 
1926 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
1927 {
1928 	struct hclgevf_cfg_gro_status_cmd *req;
1929 	struct hclgevf_desc desc;
1930 	int ret;
1931 
1932 	if (!hnae3_dev_gro_supported(hdev))
1933 		return 0;
1934 
1935 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
1936 				     false);
1937 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
1938 
1939 	req->gro_en = cpu_to_le16(en ? 1 : 0);
1940 
1941 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1942 	if (ret)
1943 		dev_err(&hdev->pdev->dev,
1944 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
1945 
1946 	return ret;
1947 }
1948 
1949 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1950 {
1951 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1952 	int i, ret;
1953 
1954 	rss_cfg->rss_size = hdev->rss_size_max;
1955 
1956 	if (hdev->pdev->revision >= 0x21) {
1957 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
1958 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
1959 		       HCLGEVF_RSS_KEY_SIZE);
1960 
1961 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
1962 					       rss_cfg->rss_hash_key);
1963 		if (ret)
1964 			return ret;
1965 
1966 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
1967 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1968 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
1969 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1970 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
1971 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1972 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
1973 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1974 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
1975 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1976 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
1977 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1978 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
1979 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1980 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
1981 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1982 
1983 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
1984 		if (ret)
1985 			return ret;
1986 
1987 	}
1988 
1989 	/* Initialize RSS indirect table for each vport */
1990 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1991 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1992 
1993 	ret = hclgevf_set_rss_indir_table(hdev);
1994 	if (ret)
1995 		return ret;
1996 
1997 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1998 }
1999 
2000 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2001 {
2002 	/* other vlan config(like, VLAN TX/RX offload) would also be added
2003 	 * here later
2004 	 */
2005 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2006 				       false);
2007 }
2008 
2009 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2010 {
2011 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2012 
2013 	if (enable) {
2014 		mod_timer(&hdev->service_timer, jiffies + HZ);
2015 	} else {
2016 		del_timer_sync(&hdev->service_timer);
2017 		cancel_work_sync(&hdev->service_task);
2018 		clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2019 	}
2020 }
2021 
2022 static int hclgevf_ae_start(struct hnae3_handle *handle)
2023 {
2024 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2025 
2026 	/* reset tqp stats */
2027 	hclgevf_reset_tqp_stats(handle);
2028 
2029 	hclgevf_request_link_info(hdev);
2030 
2031 	hclgevf_update_link_mode(hdev);
2032 
2033 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2034 
2035 	return 0;
2036 }
2037 
2038 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2039 {
2040 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2041 	int i;
2042 
2043 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2044 
2045 	for (i = 0; i < handle->kinfo.num_tqps; i++)
2046 		hclgevf_reset_tqp(handle, i);
2047 
2048 	/* reset tqp stats */
2049 	hclgevf_reset_tqp_stats(handle);
2050 	hclgevf_update_link_status(hdev, 0);
2051 }
2052 
2053 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2054 {
2055 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2056 	u8 msg_data;
2057 
2058 	msg_data = alive ? 1 : 0;
2059 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
2060 				    0, &msg_data, 1, false, NULL, 0);
2061 }
2062 
2063 static int hclgevf_client_start(struct hnae3_handle *handle)
2064 {
2065 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2066 	int ret;
2067 
2068 	ret = hclgevf_set_alive(handle, true);
2069 	if (ret)
2070 		return ret;
2071 
2072 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
2073 
2074 	return 0;
2075 }
2076 
2077 static void hclgevf_client_stop(struct hnae3_handle *handle)
2078 {
2079 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2080 	int ret;
2081 
2082 	ret = hclgevf_set_alive(handle, false);
2083 	if (ret)
2084 		dev_warn(&hdev->pdev->dev,
2085 			 "%s failed %d\n", __func__, ret);
2086 
2087 	del_timer_sync(&hdev->keep_alive_timer);
2088 	cancel_work_sync(&hdev->keep_alive_task);
2089 }
2090 
2091 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2092 {
2093 	/* setup tasks for the MBX */
2094 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
2095 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2096 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2097 
2098 	/* setup tasks for service timer */
2099 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
2100 
2101 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
2102 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2103 
2104 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
2105 
2106 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2107 
2108 	/* bring the device down */
2109 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2110 }
2111 
2112 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2113 {
2114 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2115 
2116 	if (hdev->keep_alive_timer.function)
2117 		del_timer_sync(&hdev->keep_alive_timer);
2118 	if (hdev->keep_alive_task.func)
2119 		cancel_work_sync(&hdev->keep_alive_task);
2120 	if (hdev->service_timer.function)
2121 		del_timer_sync(&hdev->service_timer);
2122 	if (hdev->service_task.func)
2123 		cancel_work_sync(&hdev->service_task);
2124 	if (hdev->mbx_service_task.func)
2125 		cancel_work_sync(&hdev->mbx_service_task);
2126 	if (hdev->rst_service_task.func)
2127 		cancel_work_sync(&hdev->rst_service_task);
2128 
2129 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2130 }
2131 
2132 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2133 {
2134 	struct pci_dev *pdev = hdev->pdev;
2135 	int vectors;
2136 	int i;
2137 
2138 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
2139 		vectors = pci_alloc_irq_vectors(pdev,
2140 						hdev->roce_base_msix_offset + 1,
2141 						hdev->num_msi,
2142 						PCI_IRQ_MSIX);
2143 	else
2144 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
2145 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2146 
2147 	if (vectors < 0) {
2148 		dev_err(&pdev->dev,
2149 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2150 			vectors);
2151 		return vectors;
2152 	}
2153 	if (vectors < hdev->num_msi)
2154 		dev_warn(&hdev->pdev->dev,
2155 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2156 			 hdev->num_msi, vectors);
2157 
2158 	hdev->num_msi = vectors;
2159 	hdev->num_msi_left = vectors;
2160 	hdev->base_msi_vector = pdev->irq;
2161 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2162 
2163 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2164 					   sizeof(u16), GFP_KERNEL);
2165 	if (!hdev->vector_status) {
2166 		pci_free_irq_vectors(pdev);
2167 		return -ENOMEM;
2168 	}
2169 
2170 	for (i = 0; i < hdev->num_msi; i++)
2171 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2172 
2173 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2174 					sizeof(int), GFP_KERNEL);
2175 	if (!hdev->vector_irq) {
2176 		devm_kfree(&pdev->dev, hdev->vector_status);
2177 		pci_free_irq_vectors(pdev);
2178 		return -ENOMEM;
2179 	}
2180 
2181 	return 0;
2182 }
2183 
2184 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2185 {
2186 	struct pci_dev *pdev = hdev->pdev;
2187 
2188 	devm_kfree(&pdev->dev, hdev->vector_status);
2189 	devm_kfree(&pdev->dev, hdev->vector_irq);
2190 	pci_free_irq_vectors(pdev);
2191 }
2192 
2193 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2194 {
2195 	int ret = 0;
2196 
2197 	hclgevf_get_misc_vector(hdev);
2198 
2199 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2200 			  0, "hclgevf_cmd", hdev);
2201 	if (ret) {
2202 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2203 			hdev->misc_vector.vector_irq);
2204 		return ret;
2205 	}
2206 
2207 	hclgevf_clear_event_cause(hdev, 0);
2208 
2209 	/* enable misc. vector(vector 0) */
2210 	hclgevf_enable_vector(&hdev->misc_vector, true);
2211 
2212 	return ret;
2213 }
2214 
2215 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2216 {
2217 	/* disable misc vector(vector 0) */
2218 	hclgevf_enable_vector(&hdev->misc_vector, false);
2219 	synchronize_irq(hdev->misc_vector.vector_irq);
2220 	free_irq(hdev->misc_vector.vector_irq, hdev);
2221 	hclgevf_free_vector(hdev, 0);
2222 }
2223 
2224 static int hclgevf_init_client_instance(struct hnae3_client *client,
2225 					struct hnae3_ae_dev *ae_dev)
2226 {
2227 	struct hclgevf_dev *hdev = ae_dev->priv;
2228 	int ret;
2229 
2230 	switch (client->type) {
2231 	case HNAE3_CLIENT_KNIC:
2232 		hdev->nic_client = client;
2233 		hdev->nic.client = client;
2234 
2235 		ret = client->ops->init_instance(&hdev->nic);
2236 		if (ret)
2237 			goto clear_nic;
2238 
2239 		hnae3_set_client_init_flag(client, ae_dev, 1);
2240 
2241 		if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
2242 			struct hnae3_client *rc = hdev->roce_client;
2243 
2244 			ret = hclgevf_init_roce_base_info(hdev);
2245 			if (ret)
2246 				goto clear_roce;
2247 			ret = rc->ops->init_instance(&hdev->roce);
2248 			if (ret)
2249 				goto clear_roce;
2250 
2251 			hnae3_set_client_init_flag(hdev->roce_client, ae_dev,
2252 						   1);
2253 		}
2254 		break;
2255 	case HNAE3_CLIENT_UNIC:
2256 		hdev->nic_client = client;
2257 		hdev->nic.client = client;
2258 
2259 		ret = client->ops->init_instance(&hdev->nic);
2260 		if (ret)
2261 			goto clear_nic;
2262 
2263 		hnae3_set_client_init_flag(client, ae_dev, 1);
2264 		break;
2265 	case HNAE3_CLIENT_ROCE:
2266 		if (hnae3_dev_roce_supported(hdev)) {
2267 			hdev->roce_client = client;
2268 			hdev->roce.client = client;
2269 		}
2270 
2271 		if (hdev->roce_client && hdev->nic_client) {
2272 			ret = hclgevf_init_roce_base_info(hdev);
2273 			if (ret)
2274 				goto clear_roce;
2275 
2276 			ret = client->ops->init_instance(&hdev->roce);
2277 			if (ret)
2278 				goto clear_roce;
2279 		}
2280 
2281 		hnae3_set_client_init_flag(client, ae_dev, 1);
2282 		break;
2283 	default:
2284 		return -EINVAL;
2285 	}
2286 
2287 	return 0;
2288 
2289 clear_nic:
2290 	hdev->nic_client = NULL;
2291 	hdev->nic.client = NULL;
2292 	return ret;
2293 clear_roce:
2294 	hdev->roce_client = NULL;
2295 	hdev->roce.client = NULL;
2296 	return ret;
2297 }
2298 
2299 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2300 					   struct hnae3_ae_dev *ae_dev)
2301 {
2302 	struct hclgevf_dev *hdev = ae_dev->priv;
2303 
2304 	/* un-init roce, if it exists */
2305 	if (hdev->roce_client) {
2306 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2307 		hdev->roce_client = NULL;
2308 		hdev->roce.client = NULL;
2309 	}
2310 
2311 	/* un-init nic/unic, if this was not called by roce client */
2312 	if (client->ops->uninit_instance && hdev->nic_client &&
2313 	    client->type != HNAE3_CLIENT_ROCE) {
2314 		client->ops->uninit_instance(&hdev->nic, 0);
2315 		hdev->nic_client = NULL;
2316 		hdev->nic.client = NULL;
2317 	}
2318 }
2319 
2320 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2321 {
2322 	struct pci_dev *pdev = hdev->pdev;
2323 	struct hclgevf_hw *hw;
2324 	int ret;
2325 
2326 	ret = pci_enable_device(pdev);
2327 	if (ret) {
2328 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2329 		return ret;
2330 	}
2331 
2332 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2333 	if (ret) {
2334 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2335 		goto err_disable_device;
2336 	}
2337 
2338 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2339 	if (ret) {
2340 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2341 		goto err_disable_device;
2342 	}
2343 
2344 	pci_set_master(pdev);
2345 	hw = &hdev->hw;
2346 	hw->hdev = hdev;
2347 	hw->io_base = pci_iomap(pdev, 2, 0);
2348 	if (!hw->io_base) {
2349 		dev_err(&pdev->dev, "can't map configuration register space\n");
2350 		ret = -ENOMEM;
2351 		goto err_clr_master;
2352 	}
2353 
2354 	return 0;
2355 
2356 err_clr_master:
2357 	pci_clear_master(pdev);
2358 	pci_release_regions(pdev);
2359 err_disable_device:
2360 	pci_disable_device(pdev);
2361 
2362 	return ret;
2363 }
2364 
2365 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2366 {
2367 	struct pci_dev *pdev = hdev->pdev;
2368 
2369 	pci_iounmap(pdev, hdev->hw.io_base);
2370 	pci_clear_master(pdev);
2371 	pci_release_regions(pdev);
2372 	pci_disable_device(pdev);
2373 }
2374 
2375 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2376 {
2377 	struct hclgevf_query_res_cmd *req;
2378 	struct hclgevf_desc desc;
2379 	int ret;
2380 
2381 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2382 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2383 	if (ret) {
2384 		dev_err(&hdev->pdev->dev,
2385 			"query vf resource failed, ret = %d.\n", ret);
2386 		return ret;
2387 	}
2388 
2389 	req = (struct hclgevf_query_res_cmd *)desc.data;
2390 
2391 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2392 		hdev->roce_base_msix_offset =
2393 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2394 				HCLGEVF_MSIX_OFT_ROCEE_M,
2395 				HCLGEVF_MSIX_OFT_ROCEE_S);
2396 		hdev->num_roce_msix =
2397 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2398 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2399 
2400 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2401 		 * are queued before Roce vectors. The offset is fixed to 64.
2402 		 */
2403 		hdev->num_msi = hdev->num_roce_msix +
2404 				hdev->roce_base_msix_offset;
2405 	} else {
2406 		hdev->num_msi =
2407 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2408 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2409 	}
2410 
2411 	return 0;
2412 }
2413 
2414 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2415 {
2416 	struct pci_dev *pdev = hdev->pdev;
2417 	int ret = 0;
2418 
2419 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2420 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2421 		hclgevf_misc_irq_uninit(hdev);
2422 		hclgevf_uninit_msi(hdev);
2423 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2424 	}
2425 
2426 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2427 		pci_set_master(pdev);
2428 		ret = hclgevf_init_msi(hdev);
2429 		if (ret) {
2430 			dev_err(&pdev->dev,
2431 				"failed(%d) to init MSI/MSI-X\n", ret);
2432 			return ret;
2433 		}
2434 
2435 		ret = hclgevf_misc_irq_init(hdev);
2436 		if (ret) {
2437 			hclgevf_uninit_msi(hdev);
2438 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2439 				ret);
2440 			return ret;
2441 		}
2442 
2443 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2444 	}
2445 
2446 	return ret;
2447 }
2448 
2449 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2450 {
2451 	struct pci_dev *pdev = hdev->pdev;
2452 	int ret;
2453 
2454 	ret = hclgevf_pci_reset(hdev);
2455 	if (ret) {
2456 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2457 		return ret;
2458 	}
2459 
2460 	ret = hclgevf_cmd_init(hdev);
2461 	if (ret) {
2462 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2463 		return ret;
2464 	}
2465 
2466 	ret = hclgevf_rss_init_hw(hdev);
2467 	if (ret) {
2468 		dev_err(&hdev->pdev->dev,
2469 			"failed(%d) to initialize RSS\n", ret);
2470 		return ret;
2471 	}
2472 
2473 	ret = hclgevf_config_gro(hdev, true);
2474 	if (ret)
2475 		return ret;
2476 
2477 	ret = hclgevf_init_vlan_config(hdev);
2478 	if (ret) {
2479 		dev_err(&hdev->pdev->dev,
2480 			"failed(%d) to initialize VLAN config\n", ret);
2481 		return ret;
2482 	}
2483 
2484 	dev_info(&hdev->pdev->dev, "Reset done\n");
2485 
2486 	return 0;
2487 }
2488 
2489 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2490 {
2491 	struct pci_dev *pdev = hdev->pdev;
2492 	int ret;
2493 
2494 	ret = hclgevf_pci_init(hdev);
2495 	if (ret) {
2496 		dev_err(&pdev->dev, "PCI initialization failed\n");
2497 		return ret;
2498 	}
2499 
2500 	ret = hclgevf_cmd_queue_init(hdev);
2501 	if (ret) {
2502 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2503 		goto err_cmd_queue_init;
2504 	}
2505 
2506 	ret = hclgevf_cmd_init(hdev);
2507 	if (ret)
2508 		goto err_cmd_init;
2509 
2510 	/* Get vf resource */
2511 	ret = hclgevf_query_vf_resource(hdev);
2512 	if (ret) {
2513 		dev_err(&hdev->pdev->dev,
2514 			"Query vf status error, ret = %d.\n", ret);
2515 		goto err_cmd_init;
2516 	}
2517 
2518 	ret = hclgevf_init_msi(hdev);
2519 	if (ret) {
2520 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2521 		goto err_cmd_init;
2522 	}
2523 
2524 	hclgevf_state_init(hdev);
2525 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2526 
2527 	ret = hclgevf_misc_irq_init(hdev);
2528 	if (ret) {
2529 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2530 			ret);
2531 		goto err_misc_irq_init;
2532 	}
2533 
2534 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2535 
2536 	ret = hclgevf_configure(hdev);
2537 	if (ret) {
2538 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2539 		goto err_config;
2540 	}
2541 
2542 	ret = hclgevf_alloc_tqps(hdev);
2543 	if (ret) {
2544 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2545 		goto err_config;
2546 	}
2547 
2548 	ret = hclgevf_set_handle_info(hdev);
2549 	if (ret) {
2550 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2551 		goto err_config;
2552 	}
2553 
2554 	ret = hclgevf_config_gro(hdev, true);
2555 	if (ret)
2556 		goto err_config;
2557 
2558 	/* vf is not allowed to enable unicast/multicast promisc mode.
2559 	 * For revision 0x20, default to disable broadcast promisc mode,
2560 	 * firmware makes sure broadcast packets can be accepted.
2561 	 * For revision 0x21, default to enable broadcast promisc mode.
2562 	 */
2563 	ret = hclgevf_set_promisc_mode(hdev, true);
2564 	if (ret)
2565 		goto err_config;
2566 
2567 	/* Initialize RSS for this VF */
2568 	ret = hclgevf_rss_init_hw(hdev);
2569 	if (ret) {
2570 		dev_err(&hdev->pdev->dev,
2571 			"failed(%d) to initialize RSS\n", ret);
2572 		goto err_config;
2573 	}
2574 
2575 	ret = hclgevf_init_vlan_config(hdev);
2576 	if (ret) {
2577 		dev_err(&hdev->pdev->dev,
2578 			"failed(%d) to initialize VLAN config\n", ret);
2579 		goto err_config;
2580 	}
2581 
2582 	hdev->last_reset_time = jiffies;
2583 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2584 
2585 	return 0;
2586 
2587 err_config:
2588 	hclgevf_misc_irq_uninit(hdev);
2589 err_misc_irq_init:
2590 	hclgevf_state_uninit(hdev);
2591 	hclgevf_uninit_msi(hdev);
2592 err_cmd_init:
2593 	hclgevf_cmd_uninit(hdev);
2594 err_cmd_queue_init:
2595 	hclgevf_pci_uninit(hdev);
2596 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2597 	return ret;
2598 }
2599 
2600 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2601 {
2602 	hclgevf_state_uninit(hdev);
2603 
2604 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2605 		hclgevf_misc_irq_uninit(hdev);
2606 		hclgevf_uninit_msi(hdev);
2607 	}
2608 
2609 	hclgevf_pci_uninit(hdev);
2610 	hclgevf_cmd_uninit(hdev);
2611 }
2612 
2613 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2614 {
2615 	struct pci_dev *pdev = ae_dev->pdev;
2616 	struct hclgevf_dev *hdev;
2617 	int ret;
2618 
2619 	ret = hclgevf_alloc_hdev(ae_dev);
2620 	if (ret) {
2621 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2622 		return ret;
2623 	}
2624 
2625 	ret = hclgevf_init_hdev(ae_dev->priv);
2626 	if (ret) {
2627 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2628 		return ret;
2629 	}
2630 
2631 	hdev = ae_dev->priv;
2632 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2633 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2634 
2635 	return 0;
2636 }
2637 
2638 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2639 {
2640 	struct hclgevf_dev *hdev = ae_dev->priv;
2641 
2642 	hclgevf_uninit_hdev(hdev);
2643 	ae_dev->priv = NULL;
2644 }
2645 
2646 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2647 {
2648 	struct hnae3_handle *nic = &hdev->nic;
2649 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2650 
2651 	return min_t(u32, hdev->rss_size_max,
2652 		     hdev->num_tqps / kinfo->num_tc);
2653 }
2654 
2655 /**
2656  * hclgevf_get_channels - Get the current channels enabled and max supported.
2657  * @handle: hardware information for network interface
2658  * @ch: ethtool channels structure
2659  *
2660  * We don't support separate tx and rx queues as channels. The other count
2661  * represents how many queues are being used for control. max_combined counts
2662  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2663  * q_vectors since we support a lot more queue pairs than q_vectors.
2664  **/
2665 static void hclgevf_get_channels(struct hnae3_handle *handle,
2666 				 struct ethtool_channels *ch)
2667 {
2668 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2669 
2670 	ch->max_combined = hclgevf_get_max_channels(hdev);
2671 	ch->other_count = 0;
2672 	ch->max_other = 0;
2673 	ch->combined_count = handle->kinfo.rss_size;
2674 }
2675 
2676 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2677 					  u16 *alloc_tqps, u16 *max_rss_size)
2678 {
2679 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2680 
2681 	*alloc_tqps = hdev->num_tqps;
2682 	*max_rss_size = hdev->rss_size_max;
2683 }
2684 
2685 static int hclgevf_get_status(struct hnae3_handle *handle)
2686 {
2687 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2688 
2689 	return hdev->hw.mac.link;
2690 }
2691 
2692 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2693 					    u8 *auto_neg, u32 *speed,
2694 					    u8 *duplex)
2695 {
2696 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2697 
2698 	if (speed)
2699 		*speed = hdev->hw.mac.speed;
2700 	if (duplex)
2701 		*duplex = hdev->hw.mac.duplex;
2702 	if (auto_neg)
2703 		*auto_neg = AUTONEG_DISABLE;
2704 }
2705 
2706 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2707 				 u8 duplex)
2708 {
2709 	hdev->hw.mac.speed = speed;
2710 	hdev->hw.mac.duplex = duplex;
2711 }
2712 
2713 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
2714 {
2715 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2716 
2717 	return hclgevf_config_gro(hdev, enable);
2718 }
2719 
2720 static void hclgevf_get_media_type(struct hnae3_handle *handle,
2721 				  u8 *media_type)
2722 {
2723 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2724 	if (media_type)
2725 		*media_type = hdev->hw.mac.media_type;
2726 }
2727 
2728 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2729 {
2730 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2731 
2732 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2733 }
2734 
2735 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2736 {
2737 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2738 
2739 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2740 }
2741 
2742 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2743 {
2744 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2745 
2746 	return hdev->rst_stats.hw_rst_done_cnt;
2747 }
2748 
2749 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
2750 				  unsigned long *supported,
2751 				  unsigned long *advertising)
2752 {
2753 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2754 
2755 	*supported = hdev->hw.mac.supported;
2756 	*advertising = hdev->hw.mac.advertising;
2757 }
2758 
2759 #define MAX_SEPARATE_NUM	4
2760 #define SEPARATOR_VALUE		0xFFFFFFFF
2761 #define REG_NUM_PER_LINE	4
2762 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
2763 
2764 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2765 {
2766 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2767 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2768 
2769 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2770 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2771 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2772 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2773 
2774 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2775 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2776 }
2777 
2778 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
2779 			     void *data)
2780 {
2781 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2782 	int i, j, reg_um, separator_num;
2783 	u32 *reg = data;
2784 
2785 	*version = hdev->fw_version;
2786 
2787 	/* fetching per-VF registers values from VF PCIe register space */
2788 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
2789 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2790 	for (i = 0; i < reg_um; i++)
2791 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
2792 	for (i = 0; i < separator_num; i++)
2793 		*reg++ = SEPARATOR_VALUE;
2794 
2795 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
2796 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2797 	for (i = 0; i < reg_um; i++)
2798 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
2799 	for (i = 0; i < separator_num; i++)
2800 		*reg++ = SEPARATOR_VALUE;
2801 
2802 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
2803 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2804 	for (j = 0; j < hdev->num_tqps; j++) {
2805 		for (i = 0; i < reg_um; i++)
2806 			*reg++ = hclgevf_read_dev(&hdev->hw,
2807 						  ring_reg_addr_list[i] +
2808 						  0x200 * j);
2809 		for (i = 0; i < separator_num; i++)
2810 			*reg++ = SEPARATOR_VALUE;
2811 	}
2812 
2813 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
2814 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2815 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
2816 		for (i = 0; i < reg_um; i++)
2817 			*reg++ = hclgevf_read_dev(&hdev->hw,
2818 						  tqp_intr_reg_addr_list[i] +
2819 						  4 * j);
2820 		for (i = 0; i < separator_num; i++)
2821 			*reg++ = SEPARATOR_VALUE;
2822 	}
2823 }
2824 
2825 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
2826 					u8 *port_base_vlan_info, u8 data_size)
2827 {
2828 	struct hnae3_handle *nic = &hdev->nic;
2829 
2830 	rtnl_lock();
2831 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
2832 	rtnl_unlock();
2833 
2834 	/* send msg to PF and wait update port based vlan info */
2835 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
2836 			     HCLGE_MBX_PORT_BASE_VLAN_CFG,
2837 			     port_base_vlan_info, data_size,
2838 			     false, NULL, 0);
2839 
2840 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
2841 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
2842 	else
2843 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
2844 
2845 	rtnl_lock();
2846 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
2847 	rtnl_unlock();
2848 }
2849 
2850 static const struct hnae3_ae_ops hclgevf_ops = {
2851 	.init_ae_dev = hclgevf_init_ae_dev,
2852 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2853 	.flr_prepare = hclgevf_flr_prepare,
2854 	.flr_done = hclgevf_flr_done,
2855 	.init_client_instance = hclgevf_init_client_instance,
2856 	.uninit_client_instance = hclgevf_uninit_client_instance,
2857 	.start = hclgevf_ae_start,
2858 	.stop = hclgevf_ae_stop,
2859 	.client_start = hclgevf_client_start,
2860 	.client_stop = hclgevf_client_stop,
2861 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
2862 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2863 	.get_vector = hclgevf_get_vector,
2864 	.put_vector = hclgevf_put_vector,
2865 	.reset_queue = hclgevf_reset_tqp,
2866 	.get_mac_addr = hclgevf_get_mac_addr,
2867 	.set_mac_addr = hclgevf_set_mac_addr,
2868 	.add_uc_addr = hclgevf_add_uc_addr,
2869 	.rm_uc_addr = hclgevf_rm_uc_addr,
2870 	.add_mc_addr = hclgevf_add_mc_addr,
2871 	.rm_mc_addr = hclgevf_rm_mc_addr,
2872 	.get_stats = hclgevf_get_stats,
2873 	.update_stats = hclgevf_update_stats,
2874 	.get_strings = hclgevf_get_strings,
2875 	.get_sset_count = hclgevf_get_sset_count,
2876 	.get_rss_key_size = hclgevf_get_rss_key_size,
2877 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2878 	.get_rss = hclgevf_get_rss,
2879 	.set_rss = hclgevf_set_rss,
2880 	.get_rss_tuple = hclgevf_get_rss_tuple,
2881 	.set_rss_tuple = hclgevf_set_rss_tuple,
2882 	.get_tc_size = hclgevf_get_tc_size,
2883 	.get_fw_version = hclgevf_get_fw_version,
2884 	.set_vlan_filter = hclgevf_set_vlan_filter,
2885 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2886 	.reset_event = hclgevf_reset_event,
2887 	.set_default_reset_request = hclgevf_set_def_reset_request,
2888 	.get_channels = hclgevf_get_channels,
2889 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2890 	.get_regs_len = hclgevf_get_regs_len,
2891 	.get_regs = hclgevf_get_regs,
2892 	.get_status = hclgevf_get_status,
2893 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2894 	.get_media_type = hclgevf_get_media_type,
2895 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
2896 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
2897 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
2898 	.set_gro_en = hclgevf_gro_en,
2899 	.set_mtu = hclgevf_set_mtu,
2900 	.get_global_queue_id = hclgevf_get_qid_global,
2901 	.set_timer_task = hclgevf_set_timer_task,
2902 	.get_link_mode = hclgevf_get_link_mode,
2903 };
2904 
2905 static struct hnae3_ae_algo ae_algovf = {
2906 	.ops = &hclgevf_ops,
2907 	.pdev_id_table = ae_algovf_pci_tbl,
2908 };
2909 
2910 static int hclgevf_init(void)
2911 {
2912 	pr_info("%s is initializing\n", HCLGEVF_NAME);
2913 
2914 	hnae3_register_ae_algo(&ae_algovf);
2915 
2916 	return 0;
2917 }
2918 
2919 static void hclgevf_exit(void)
2920 {
2921 	hnae3_unregister_ae_algo(&ae_algovf);
2922 }
2923 module_init(hclgevf_init);
2924 module_exit(hclgevf_exit);
2925 
2926 MODULE_LICENSE("GPL");
2927 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
2928 MODULE_DESCRIPTION("HCLGEVF Driver");
2929 MODULE_VERSION(HCLGEVF_MOD_VERSION);
2930