1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
15 
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static struct hnae3_ae_algo ae_algovf;
18 
19 static struct workqueue_struct *hclgevf_wq;
20 
21 static const struct pci_device_id ae_algovf_pci_tbl[] = {
22 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
23 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
24 	/* required last entry */
25 	{0, }
26 };
27 
28 static const u8 hclgevf_hash_key[] = {
29 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
30 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
31 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
32 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
33 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
34 };
35 
36 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
37 
38 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
39 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
40 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
41 					 HCLGEVF_CMDQ_TX_TAIL_REG,
42 					 HCLGEVF_CMDQ_TX_HEAD_REG,
43 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
44 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
45 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
46 					 HCLGEVF_CMDQ_RX_TAIL_REG,
47 					 HCLGEVF_CMDQ_RX_HEAD_REG,
48 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
49 					 HCLGEVF_CMDQ_INTR_STS_REG,
50 					 HCLGEVF_CMDQ_INTR_EN_REG,
51 					 HCLGEVF_CMDQ_INTR_GEN_REG};
52 
53 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
54 					   HCLGEVF_RST_ING,
55 					   HCLGEVF_GRO_EN_REG};
56 
57 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
58 					 HCLGEVF_RING_RX_ADDR_H_REG,
59 					 HCLGEVF_RING_RX_BD_NUM_REG,
60 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
61 					 HCLGEVF_RING_RX_MERGE_EN_REG,
62 					 HCLGEVF_RING_RX_TAIL_REG,
63 					 HCLGEVF_RING_RX_HEAD_REG,
64 					 HCLGEVF_RING_RX_FBD_NUM_REG,
65 					 HCLGEVF_RING_RX_OFFSET_REG,
66 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
67 					 HCLGEVF_RING_RX_STASH_REG,
68 					 HCLGEVF_RING_RX_BD_ERR_REG,
69 					 HCLGEVF_RING_TX_ADDR_L_REG,
70 					 HCLGEVF_RING_TX_ADDR_H_REG,
71 					 HCLGEVF_RING_TX_BD_NUM_REG,
72 					 HCLGEVF_RING_TX_PRIORITY_REG,
73 					 HCLGEVF_RING_TX_TC_REG,
74 					 HCLGEVF_RING_TX_MERGE_EN_REG,
75 					 HCLGEVF_RING_TX_TAIL_REG,
76 					 HCLGEVF_RING_TX_HEAD_REG,
77 					 HCLGEVF_RING_TX_FBD_NUM_REG,
78 					 HCLGEVF_RING_TX_OFFSET_REG,
79 					 HCLGEVF_RING_TX_EBD_NUM_REG,
80 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
81 					 HCLGEVF_RING_TX_BD_ERR_REG,
82 					 HCLGEVF_RING_EN_REG};
83 
84 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
85 					     HCLGEVF_TQP_INTR_GL0_REG,
86 					     HCLGEVF_TQP_INTR_GL1_REG,
87 					     HCLGEVF_TQP_INTR_GL2_REG,
88 					     HCLGEVF_TQP_INTR_RL_REG};
89 
90 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
91 {
92 	if (!handle->client)
93 		return container_of(handle, struct hclgevf_dev, nic);
94 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
95 		return container_of(handle, struct hclgevf_dev, roce);
96 	else
97 		return container_of(handle, struct hclgevf_dev, nic);
98 }
99 
100 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
101 {
102 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
103 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
104 	struct hclgevf_desc desc;
105 	struct hclgevf_tqp *tqp;
106 	int status;
107 	int i;
108 
109 	for (i = 0; i < kinfo->num_tqps; i++) {
110 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
111 		hclgevf_cmd_setup_basic_desc(&desc,
112 					     HCLGEVF_OPC_QUERY_RX_STATUS,
113 					     true);
114 
115 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
116 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
117 		if (status) {
118 			dev_err(&hdev->pdev->dev,
119 				"Query tqp stat fail, status = %d,queue = %d\n",
120 				status,	i);
121 			return status;
122 		}
123 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
124 			le32_to_cpu(desc.data[1]);
125 
126 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
127 					     true);
128 
129 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
130 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
131 		if (status) {
132 			dev_err(&hdev->pdev->dev,
133 				"Query tqp stat fail, status = %d,queue = %d\n",
134 				status, i);
135 			return status;
136 		}
137 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
138 			le32_to_cpu(desc.data[1]);
139 	}
140 
141 	return 0;
142 }
143 
144 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
145 {
146 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
147 	struct hclgevf_tqp *tqp;
148 	u64 *buff = data;
149 	int i;
150 
151 	for (i = 0; i < kinfo->num_tqps; i++) {
152 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
153 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
154 	}
155 	for (i = 0; i < kinfo->num_tqps; i++) {
156 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
158 	}
159 
160 	return buff;
161 }
162 
163 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
164 {
165 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
166 
167 	return kinfo->num_tqps * 2;
168 }
169 
170 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
171 {
172 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
173 	u8 *buff = data;
174 	int i = 0;
175 
176 	for (i = 0; i < kinfo->num_tqps; i++) {
177 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
178 						       struct hclgevf_tqp, q);
179 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
180 			 tqp->index);
181 		buff += ETH_GSTRING_LEN;
182 	}
183 
184 	for (i = 0; i < kinfo->num_tqps; i++) {
185 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
186 						       struct hclgevf_tqp, q);
187 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
188 			 tqp->index);
189 		buff += ETH_GSTRING_LEN;
190 	}
191 
192 	return buff;
193 }
194 
195 static void hclgevf_update_stats(struct hnae3_handle *handle,
196 				 struct net_device_stats *net_stats)
197 {
198 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
199 	int status;
200 
201 	status = hclgevf_tqps_update_stats(handle);
202 	if (status)
203 		dev_err(&hdev->pdev->dev,
204 			"VF update of TQPS stats fail, status = %d.\n",
205 			status);
206 }
207 
208 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
209 {
210 	if (strset == ETH_SS_TEST)
211 		return -EOPNOTSUPP;
212 	else if (strset == ETH_SS_STATS)
213 		return hclgevf_tqps_get_sset_count(handle, strset);
214 
215 	return 0;
216 }
217 
218 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
219 				u8 *data)
220 {
221 	u8 *p = (char *)data;
222 
223 	if (strset == ETH_SS_STATS)
224 		p = hclgevf_tqps_get_strings(handle, p);
225 }
226 
227 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
228 {
229 	hclgevf_tqps_get_stats(handle, data);
230 }
231 
232 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
233 				   u8 subcode)
234 {
235 	if (msg) {
236 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
237 		msg->code = code;
238 		msg->subcode = subcode;
239 	}
240 }
241 
242 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
243 {
244 	struct hclge_vf_to_pf_msg send_msg;
245 	u8 resp_msg;
246 	int status;
247 
248 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
249 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
250 				      sizeof(resp_msg));
251 	if (status) {
252 		dev_err(&hdev->pdev->dev,
253 			"VF request to get TC info from PF failed %d",
254 			status);
255 		return status;
256 	}
257 
258 	hdev->hw_tc_map = resp_msg;
259 
260 	return 0;
261 }
262 
263 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
264 {
265 	struct hnae3_handle *nic = &hdev->nic;
266 	struct hclge_vf_to_pf_msg send_msg;
267 	u8 resp_msg;
268 	int ret;
269 
270 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
271 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
272 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
273 				   sizeof(u8));
274 	if (ret) {
275 		dev_err(&hdev->pdev->dev,
276 			"VF request to get port based vlan state failed %d",
277 			ret);
278 		return ret;
279 	}
280 
281 	nic->port_base_vlan_state = resp_msg;
282 
283 	return 0;
284 }
285 
286 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
287 {
288 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
289 #define HCLGEVF_TQPS_ALLOC_OFFSET	0
290 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
291 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4
292 
293 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
294 	struct hclge_vf_to_pf_msg send_msg;
295 	int status;
296 
297 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
298 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
299 				      HCLGEVF_TQPS_RSS_INFO_LEN);
300 	if (status) {
301 		dev_err(&hdev->pdev->dev,
302 			"VF request to get tqp info from PF failed %d",
303 			status);
304 		return status;
305 	}
306 
307 	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
308 	       sizeof(u16));
309 	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
310 	       sizeof(u16));
311 	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
312 	       sizeof(u16));
313 
314 	return 0;
315 }
316 
317 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
318 {
319 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
320 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
321 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2
322 
323 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
324 	struct hclge_vf_to_pf_msg send_msg;
325 	int ret;
326 
327 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
328 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
329 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
330 	if (ret) {
331 		dev_err(&hdev->pdev->dev,
332 			"VF request to get tqp depth info from PF failed %d",
333 			ret);
334 		return ret;
335 	}
336 
337 	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
338 	       sizeof(u16));
339 	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
340 	       sizeof(u16));
341 
342 	return 0;
343 }
344 
345 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
346 {
347 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
348 	struct hclge_vf_to_pf_msg send_msg;
349 	u16 qid_in_pf = 0;
350 	u8 resp_data[2];
351 	int ret;
352 
353 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
354 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
355 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
356 				   sizeof(resp_data));
357 	if (!ret)
358 		qid_in_pf = *(u16 *)resp_data;
359 
360 	return qid_in_pf;
361 }
362 
363 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
364 {
365 	struct hclge_vf_to_pf_msg send_msg;
366 	u8 resp_msg[2];
367 	int ret;
368 
369 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
370 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
371 				   sizeof(resp_msg));
372 	if (ret) {
373 		dev_err(&hdev->pdev->dev,
374 			"VF request to get the pf port media type failed %d",
375 			ret);
376 		return ret;
377 	}
378 
379 	hdev->hw.mac.media_type = resp_msg[0];
380 	hdev->hw.mac.module_type = resp_msg[1];
381 
382 	return 0;
383 }
384 
385 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
386 {
387 	struct hclgevf_tqp *tqp;
388 	int i;
389 
390 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
391 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
392 	if (!hdev->htqp)
393 		return -ENOMEM;
394 
395 	tqp = hdev->htqp;
396 
397 	for (i = 0; i < hdev->num_tqps; i++) {
398 		tqp->dev = &hdev->pdev->dev;
399 		tqp->index = i;
400 
401 		tqp->q.ae_algo = &ae_algovf;
402 		tqp->q.buf_size = hdev->rx_buf_len;
403 		tqp->q.tx_desc_num = hdev->num_tx_desc;
404 		tqp->q.rx_desc_num = hdev->num_rx_desc;
405 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
406 			i * HCLGEVF_TQP_REG_SIZE;
407 
408 		tqp++;
409 	}
410 
411 	return 0;
412 }
413 
414 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
415 {
416 	struct hnae3_handle *nic = &hdev->nic;
417 	struct hnae3_knic_private_info *kinfo;
418 	u16 new_tqps = hdev->num_tqps;
419 	unsigned int i;
420 
421 	kinfo = &nic->kinfo;
422 	kinfo->num_tc = 0;
423 	kinfo->num_tx_desc = hdev->num_tx_desc;
424 	kinfo->num_rx_desc = hdev->num_rx_desc;
425 	kinfo->rx_buf_len = hdev->rx_buf_len;
426 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
427 		if (hdev->hw_tc_map & BIT(i))
428 			kinfo->num_tc++;
429 
430 	kinfo->rss_size
431 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
432 	new_tqps = kinfo->rss_size * kinfo->num_tc;
433 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
434 
435 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
436 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
437 	if (!kinfo->tqp)
438 		return -ENOMEM;
439 
440 	for (i = 0; i < kinfo->num_tqps; i++) {
441 		hdev->htqp[i].q.handle = &hdev->nic;
442 		hdev->htqp[i].q.tqp_index = i;
443 		kinfo->tqp[i] = &hdev->htqp[i].q;
444 	}
445 
446 	/* after init the max rss_size and tqps, adjust the default tqp numbers
447 	 * and rss size with the actual vector numbers
448 	 */
449 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
450 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / kinfo->num_tc,
451 				kinfo->rss_size);
452 
453 	return 0;
454 }
455 
456 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
457 {
458 	struct hclge_vf_to_pf_msg send_msg;
459 	int status;
460 
461 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
462 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
463 	if (status)
464 		dev_err(&hdev->pdev->dev,
465 			"VF failed to fetch link status(%d) from PF", status);
466 }
467 
468 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
469 {
470 	struct hnae3_handle *rhandle = &hdev->roce;
471 	struct hnae3_handle *handle = &hdev->nic;
472 	struct hnae3_client *rclient;
473 	struct hnae3_client *client;
474 
475 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
476 		return;
477 
478 	client = handle->client;
479 	rclient = hdev->roce_client;
480 
481 	link_state =
482 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
483 
484 	if (link_state != hdev->hw.mac.link) {
485 		client->ops->link_status_change(handle, !!link_state);
486 		if (rclient && rclient->ops->link_status_change)
487 			rclient->ops->link_status_change(rhandle, !!link_state);
488 		hdev->hw.mac.link = link_state;
489 	}
490 
491 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
492 }
493 
494 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
495 {
496 #define HCLGEVF_ADVERTISING	0
497 #define HCLGEVF_SUPPORTED	1
498 
499 	struct hclge_vf_to_pf_msg send_msg;
500 
501 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
502 	send_msg.data[0] = HCLGEVF_ADVERTISING;
503 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
504 	send_msg.data[0] = HCLGEVF_SUPPORTED;
505 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
506 }
507 
508 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
509 {
510 	struct hnae3_handle *nic = &hdev->nic;
511 	int ret;
512 
513 	nic->ae_algo = &ae_algovf;
514 	nic->pdev = hdev->pdev;
515 	nic->numa_node_mask = hdev->numa_node_mask;
516 	nic->flags |= HNAE3_SUPPORT_VF;
517 
518 	ret = hclgevf_knic_setup(hdev);
519 	if (ret)
520 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
521 			ret);
522 	return ret;
523 }
524 
525 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
526 {
527 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
528 		dev_warn(&hdev->pdev->dev,
529 			 "vector(vector_id %d) has been freed.\n", vector_id);
530 		return;
531 	}
532 
533 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
534 	hdev->num_msi_left += 1;
535 	hdev->num_msi_used -= 1;
536 }
537 
538 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
539 			      struct hnae3_vector_info *vector_info)
540 {
541 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
542 	struct hnae3_vector_info *vector = vector_info;
543 	int alloc = 0;
544 	int i, j;
545 
546 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
547 	vector_num = min(hdev->num_msi_left, vector_num);
548 
549 	for (j = 0; j < vector_num; j++) {
550 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
551 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
552 				vector->vector = pci_irq_vector(hdev->pdev, i);
553 				vector->io_addr = hdev->hw.io_base +
554 					HCLGEVF_VECTOR_REG_BASE +
555 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
556 				hdev->vector_status[i] = 0;
557 				hdev->vector_irq[i] = vector->vector;
558 
559 				vector++;
560 				alloc++;
561 
562 				break;
563 			}
564 		}
565 	}
566 	hdev->num_msi_left -= alloc;
567 	hdev->num_msi_used += alloc;
568 
569 	return alloc;
570 }
571 
572 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
573 {
574 	int i;
575 
576 	for (i = 0; i < hdev->num_msi; i++)
577 		if (vector == hdev->vector_irq[i])
578 			return i;
579 
580 	return -EINVAL;
581 }
582 
583 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
584 				    const u8 hfunc, const u8 *key)
585 {
586 	struct hclgevf_rss_config_cmd *req;
587 	unsigned int key_offset = 0;
588 	struct hclgevf_desc desc;
589 	int key_counts;
590 	int key_size;
591 	int ret;
592 
593 	key_counts = HCLGEVF_RSS_KEY_SIZE;
594 	req = (struct hclgevf_rss_config_cmd *)desc.data;
595 
596 	while (key_counts) {
597 		hclgevf_cmd_setup_basic_desc(&desc,
598 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
599 					     false);
600 
601 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
602 		req->hash_config |=
603 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
604 
605 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
606 		memcpy(req->hash_key,
607 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
608 
609 		key_counts -= key_size;
610 		key_offset++;
611 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
612 		if (ret) {
613 			dev_err(&hdev->pdev->dev,
614 				"Configure RSS config fail, status = %d\n",
615 				ret);
616 			return ret;
617 		}
618 	}
619 
620 	return 0;
621 }
622 
623 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
624 {
625 	return HCLGEVF_RSS_KEY_SIZE;
626 }
627 
628 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
629 {
630 	return HCLGEVF_RSS_IND_TBL_SIZE;
631 }
632 
633 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
634 {
635 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
636 	struct hclgevf_rss_indirection_table_cmd *req;
637 	struct hclgevf_desc desc;
638 	int status;
639 	int i, j;
640 
641 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
642 
643 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
644 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
645 					     false);
646 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
647 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
648 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
649 			req->rss_result[j] =
650 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
651 
652 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
653 		if (status) {
654 			dev_err(&hdev->pdev->dev,
655 				"VF failed(=%d) to set RSS indirection table\n",
656 				status);
657 			return status;
658 		}
659 	}
660 
661 	return 0;
662 }
663 
664 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
665 {
666 	struct hclgevf_rss_tc_mode_cmd *req;
667 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
668 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
669 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
670 	struct hclgevf_desc desc;
671 	u16 roundup_size;
672 	int status;
673 	unsigned int i;
674 
675 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
676 
677 	roundup_size = roundup_pow_of_two(rss_size);
678 	roundup_size = ilog2(roundup_size);
679 
680 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
681 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
682 		tc_size[i] = roundup_size;
683 		tc_offset[i] = rss_size * i;
684 	}
685 
686 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
687 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
688 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
689 			      (tc_valid[i] & 0x1));
690 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
691 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
692 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
693 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
694 	}
695 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
696 	if (status)
697 		dev_err(&hdev->pdev->dev,
698 			"VF failed(=%d) to set rss tc mode\n", status);
699 
700 	return status;
701 }
702 
703 /* for revision 0x20, vf shared the same rss config with pf */
704 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
705 {
706 #define HCLGEVF_RSS_MBX_RESP_LEN	8
707 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
708 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
709 	struct hclge_vf_to_pf_msg send_msg;
710 	u16 msg_num, hash_key_index;
711 	u8 index;
712 	int ret;
713 
714 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
715 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
716 			HCLGEVF_RSS_MBX_RESP_LEN;
717 	for (index = 0; index < msg_num; index++) {
718 		send_msg.data[0] = index;
719 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
720 					   HCLGEVF_RSS_MBX_RESP_LEN);
721 		if (ret) {
722 			dev_err(&hdev->pdev->dev,
723 				"VF get rss hash key from PF failed, ret=%d",
724 				ret);
725 			return ret;
726 		}
727 
728 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
729 		if (index == msg_num - 1)
730 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
731 			       &resp_msg[0],
732 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
733 		else
734 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
735 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
736 	}
737 
738 	return 0;
739 }
740 
741 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
742 			   u8 *hfunc)
743 {
744 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
745 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
746 	int i, ret;
747 
748 	if (handle->pdev->revision >= 0x21) {
749 		/* Get hash algorithm */
750 		if (hfunc) {
751 			switch (rss_cfg->hash_algo) {
752 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
753 				*hfunc = ETH_RSS_HASH_TOP;
754 				break;
755 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
756 				*hfunc = ETH_RSS_HASH_XOR;
757 				break;
758 			default:
759 				*hfunc = ETH_RSS_HASH_UNKNOWN;
760 				break;
761 			}
762 		}
763 
764 		/* Get the RSS Key required by the user */
765 		if (key)
766 			memcpy(key, rss_cfg->rss_hash_key,
767 			       HCLGEVF_RSS_KEY_SIZE);
768 	} else {
769 		if (hfunc)
770 			*hfunc = ETH_RSS_HASH_TOP;
771 		if (key) {
772 			ret = hclgevf_get_rss_hash_key(hdev);
773 			if (ret)
774 				return ret;
775 			memcpy(key, rss_cfg->rss_hash_key,
776 			       HCLGEVF_RSS_KEY_SIZE);
777 		}
778 	}
779 
780 	if (indir)
781 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
782 			indir[i] = rss_cfg->rss_indirection_tbl[i];
783 
784 	return 0;
785 }
786 
787 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
788 			   const u8 *key, const u8 hfunc)
789 {
790 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
791 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
792 	int ret, i;
793 
794 	if (handle->pdev->revision >= 0x21) {
795 		/* Set the RSS Hash Key if specififed by the user */
796 		if (key) {
797 			switch (hfunc) {
798 			case ETH_RSS_HASH_TOP:
799 				rss_cfg->hash_algo =
800 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
801 				break;
802 			case ETH_RSS_HASH_XOR:
803 				rss_cfg->hash_algo =
804 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
805 				break;
806 			case ETH_RSS_HASH_NO_CHANGE:
807 				break;
808 			default:
809 				return -EINVAL;
810 			}
811 
812 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
813 						       key);
814 			if (ret)
815 				return ret;
816 
817 			/* Update the shadow RSS key with user specified qids */
818 			memcpy(rss_cfg->rss_hash_key, key,
819 			       HCLGEVF_RSS_KEY_SIZE);
820 		}
821 	}
822 
823 	/* update the shadow RSS table with user specified qids */
824 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
825 		rss_cfg->rss_indirection_tbl[i] = indir[i];
826 
827 	/* update the hardware */
828 	return hclgevf_set_rss_indir_table(hdev);
829 }
830 
831 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
832 {
833 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
834 
835 	if (nfc->data & RXH_L4_B_2_3)
836 		hash_sets |= HCLGEVF_D_PORT_BIT;
837 	else
838 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
839 
840 	if (nfc->data & RXH_IP_SRC)
841 		hash_sets |= HCLGEVF_S_IP_BIT;
842 	else
843 		hash_sets &= ~HCLGEVF_S_IP_BIT;
844 
845 	if (nfc->data & RXH_IP_DST)
846 		hash_sets |= HCLGEVF_D_IP_BIT;
847 	else
848 		hash_sets &= ~HCLGEVF_D_IP_BIT;
849 
850 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
851 		hash_sets |= HCLGEVF_V_TAG_BIT;
852 
853 	return hash_sets;
854 }
855 
856 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
857 				 struct ethtool_rxnfc *nfc)
858 {
859 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
860 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
861 	struct hclgevf_rss_input_tuple_cmd *req;
862 	struct hclgevf_desc desc;
863 	u8 tuple_sets;
864 	int ret;
865 
866 	if (handle->pdev->revision == 0x20)
867 		return -EOPNOTSUPP;
868 
869 	if (nfc->data &
870 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
871 		return -EINVAL;
872 
873 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
874 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
875 
876 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
877 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
878 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
879 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
880 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
881 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
882 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
883 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
884 
885 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
886 	switch (nfc->flow_type) {
887 	case TCP_V4_FLOW:
888 		req->ipv4_tcp_en = tuple_sets;
889 		break;
890 	case TCP_V6_FLOW:
891 		req->ipv6_tcp_en = tuple_sets;
892 		break;
893 	case UDP_V4_FLOW:
894 		req->ipv4_udp_en = tuple_sets;
895 		break;
896 	case UDP_V6_FLOW:
897 		req->ipv6_udp_en = tuple_sets;
898 		break;
899 	case SCTP_V4_FLOW:
900 		req->ipv4_sctp_en = tuple_sets;
901 		break;
902 	case SCTP_V6_FLOW:
903 		if ((nfc->data & RXH_L4_B_0_1) ||
904 		    (nfc->data & RXH_L4_B_2_3))
905 			return -EINVAL;
906 
907 		req->ipv6_sctp_en = tuple_sets;
908 		break;
909 	case IPV4_FLOW:
910 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
911 		break;
912 	case IPV6_FLOW:
913 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
914 		break;
915 	default:
916 		return -EINVAL;
917 	}
918 
919 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
920 	if (ret) {
921 		dev_err(&hdev->pdev->dev,
922 			"Set rss tuple fail, status = %d\n", ret);
923 		return ret;
924 	}
925 
926 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
927 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
928 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
929 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
930 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
931 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
932 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
933 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
934 	return 0;
935 }
936 
937 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
938 				 struct ethtool_rxnfc *nfc)
939 {
940 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
941 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
942 	u8 tuple_sets;
943 
944 	if (handle->pdev->revision == 0x20)
945 		return -EOPNOTSUPP;
946 
947 	nfc->data = 0;
948 
949 	switch (nfc->flow_type) {
950 	case TCP_V4_FLOW:
951 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
952 		break;
953 	case UDP_V4_FLOW:
954 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
955 		break;
956 	case TCP_V6_FLOW:
957 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
958 		break;
959 	case UDP_V6_FLOW:
960 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
961 		break;
962 	case SCTP_V4_FLOW:
963 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
964 		break;
965 	case SCTP_V6_FLOW:
966 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
967 		break;
968 	case IPV4_FLOW:
969 	case IPV6_FLOW:
970 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
971 		break;
972 	default:
973 		return -EINVAL;
974 	}
975 
976 	if (!tuple_sets)
977 		return 0;
978 
979 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
980 		nfc->data |= RXH_L4_B_2_3;
981 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
982 		nfc->data |= RXH_L4_B_0_1;
983 	if (tuple_sets & HCLGEVF_D_IP_BIT)
984 		nfc->data |= RXH_IP_DST;
985 	if (tuple_sets & HCLGEVF_S_IP_BIT)
986 		nfc->data |= RXH_IP_SRC;
987 
988 	return 0;
989 }
990 
991 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
992 				       struct hclgevf_rss_cfg *rss_cfg)
993 {
994 	struct hclgevf_rss_input_tuple_cmd *req;
995 	struct hclgevf_desc desc;
996 	int ret;
997 
998 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
999 
1000 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1001 
1002 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1003 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1004 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1005 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1006 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1007 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1008 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1009 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1010 
1011 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1012 	if (ret)
1013 		dev_err(&hdev->pdev->dev,
1014 			"Configure rss input fail, status = %d\n", ret);
1015 	return ret;
1016 }
1017 
1018 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1019 {
1020 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1021 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1022 
1023 	return rss_cfg->rss_size;
1024 }
1025 
1026 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1027 				       int vector_id,
1028 				       struct hnae3_ring_chain_node *ring_chain)
1029 {
1030 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1031 	struct hclge_vf_to_pf_msg send_msg;
1032 	struct hnae3_ring_chain_node *node;
1033 	int status;
1034 	int i = 0;
1035 
1036 	memset(&send_msg, 0, sizeof(send_msg));
1037 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1038 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1039 	send_msg.vector_id = vector_id;
1040 
1041 	for (node = ring_chain; node; node = node->next) {
1042 		send_msg.param[i].ring_type =
1043 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1044 
1045 		send_msg.param[i].tqp_index = node->tqp_index;
1046 		send_msg.param[i].int_gl_index =
1047 					hnae3_get_field(node->int_gl_idx,
1048 							HNAE3_RING_GL_IDX_M,
1049 							HNAE3_RING_GL_IDX_S);
1050 
1051 		i++;
1052 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1053 			send_msg.ring_num = i;
1054 
1055 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1056 						      NULL, 0);
1057 			if (status) {
1058 				dev_err(&hdev->pdev->dev,
1059 					"Map TQP fail, status is %d.\n",
1060 					status);
1061 				return status;
1062 			}
1063 			i = 0;
1064 		}
1065 	}
1066 
1067 	return 0;
1068 }
1069 
1070 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1071 				      struct hnae3_ring_chain_node *ring_chain)
1072 {
1073 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1074 	int vector_id;
1075 
1076 	vector_id = hclgevf_get_vector_index(hdev, vector);
1077 	if (vector_id < 0) {
1078 		dev_err(&handle->pdev->dev,
1079 			"Get vector index fail. ret =%d\n", vector_id);
1080 		return vector_id;
1081 	}
1082 
1083 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1084 }
1085 
1086 static int hclgevf_unmap_ring_from_vector(
1087 				struct hnae3_handle *handle,
1088 				int vector,
1089 				struct hnae3_ring_chain_node *ring_chain)
1090 {
1091 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1092 	int ret, vector_id;
1093 
1094 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1095 		return 0;
1096 
1097 	vector_id = hclgevf_get_vector_index(hdev, vector);
1098 	if (vector_id < 0) {
1099 		dev_err(&handle->pdev->dev,
1100 			"Get vector index fail. ret =%d\n", vector_id);
1101 		return vector_id;
1102 	}
1103 
1104 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1105 	if (ret)
1106 		dev_err(&handle->pdev->dev,
1107 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1108 			vector_id,
1109 			ret);
1110 
1111 	return ret;
1112 }
1113 
1114 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1115 {
1116 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1117 	int vector_id;
1118 
1119 	vector_id = hclgevf_get_vector_index(hdev, vector);
1120 	if (vector_id < 0) {
1121 		dev_err(&handle->pdev->dev,
1122 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1123 			vector_id);
1124 		return vector_id;
1125 	}
1126 
1127 	hclgevf_free_vector(hdev, vector_id);
1128 
1129 	return 0;
1130 }
1131 
1132 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1133 					bool en_uc_pmc, bool en_mc_pmc,
1134 					bool en_bc_pmc)
1135 {
1136 	struct hclge_vf_to_pf_msg send_msg;
1137 	int ret;
1138 
1139 	memset(&send_msg, 0, sizeof(send_msg));
1140 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1141 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
1142 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
1143 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
1144 
1145 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1146 
1147 	if (ret)
1148 		dev_err(&hdev->pdev->dev,
1149 			"Set promisc mode fail, status is %d.\n", ret);
1150 
1151 	return ret;
1152 }
1153 
1154 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1155 				    bool en_mc_pmc)
1156 {
1157 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1158 	struct pci_dev *pdev = hdev->pdev;
1159 	bool en_bc_pmc;
1160 
1161 	en_bc_pmc = pdev->revision != 0x20;
1162 
1163 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1164 					    en_bc_pmc);
1165 }
1166 
1167 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1168 {
1169 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1170 
1171 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1172 }
1173 
1174 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1175 {
1176 	struct hnae3_handle *handle = &hdev->nic;
1177 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1178 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1179 	int ret;
1180 
1181 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1182 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1183 		if (!ret)
1184 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1185 	}
1186 }
1187 
1188 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1189 			      int stream_id, bool enable)
1190 {
1191 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1192 	struct hclgevf_desc desc;
1193 	int status;
1194 
1195 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1196 
1197 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1198 				     false);
1199 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1200 	req->stream_id = cpu_to_le16(stream_id);
1201 	if (enable)
1202 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1203 
1204 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1205 	if (status)
1206 		dev_err(&hdev->pdev->dev,
1207 			"TQP enable fail, status =%d.\n", status);
1208 
1209 	return status;
1210 }
1211 
1212 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1213 {
1214 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1215 	struct hclgevf_tqp *tqp;
1216 	int i;
1217 
1218 	for (i = 0; i < kinfo->num_tqps; i++) {
1219 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1220 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1221 	}
1222 }
1223 
1224 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1225 {
1226 	struct hclge_vf_to_pf_msg send_msg;
1227 	u8 host_mac[ETH_ALEN];
1228 	int status;
1229 
1230 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1231 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1232 				      ETH_ALEN);
1233 	if (status) {
1234 		dev_err(&hdev->pdev->dev,
1235 			"fail to get VF MAC from host %d", status);
1236 		return status;
1237 	}
1238 
1239 	ether_addr_copy(p, host_mac);
1240 
1241 	return 0;
1242 }
1243 
1244 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1245 {
1246 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1247 	u8 host_mac_addr[ETH_ALEN];
1248 
1249 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1250 		return;
1251 
1252 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1253 	if (hdev->has_pf_mac)
1254 		ether_addr_copy(p, host_mac_addr);
1255 	else
1256 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1257 }
1258 
1259 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1260 				bool is_first)
1261 {
1262 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1263 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1264 	struct hclge_vf_to_pf_msg send_msg;
1265 	u8 *new_mac_addr = (u8 *)p;
1266 	int status;
1267 
1268 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1269 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1270 	ether_addr_copy(send_msg.data, new_mac_addr);
1271 	if (is_first && !hdev->has_pf_mac)
1272 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
1273 	else
1274 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1275 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1276 	if (!status)
1277 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1278 
1279 	return status;
1280 }
1281 
1282 static struct hclgevf_mac_addr_node *
1283 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1284 {
1285 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1286 
1287 	list_for_each_entry_safe(mac_node, tmp, list, node)
1288 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1289 			return mac_node;
1290 
1291 	return NULL;
1292 }
1293 
1294 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1295 				    enum HCLGEVF_MAC_NODE_STATE state)
1296 {
1297 	switch (state) {
1298 	/* from set_rx_mode or tmp_add_list */
1299 	case HCLGEVF_MAC_TO_ADD:
1300 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1301 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1302 		break;
1303 	/* only from set_rx_mode */
1304 	case HCLGEVF_MAC_TO_DEL:
1305 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1306 			list_del(&mac_node->node);
1307 			kfree(mac_node);
1308 		} else {
1309 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1310 		}
1311 		break;
1312 	/* only from tmp_add_list, the mac_node->state won't be
1313 	 * HCLGEVF_MAC_ACTIVE
1314 	 */
1315 	case HCLGEVF_MAC_ACTIVE:
1316 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1317 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1318 		break;
1319 	}
1320 }
1321 
1322 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1323 				   enum HCLGEVF_MAC_NODE_STATE state,
1324 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1325 				   const unsigned char *addr)
1326 {
1327 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1328 	struct hclgevf_mac_addr_node *mac_node;
1329 	struct list_head *list;
1330 
1331 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1332 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1333 
1334 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1335 
1336 	/* if the mac addr is already in the mac list, no need to add a new
1337 	 * one into it, just check the mac addr state, convert it to a new
1338 	 * new state, or just remove it, or do nothing.
1339 	 */
1340 	mac_node = hclgevf_find_mac_node(list, addr);
1341 	if (mac_node) {
1342 		hclgevf_update_mac_node(mac_node, state);
1343 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1344 		return 0;
1345 	}
1346 	/* if this address is never added, unnecessary to delete */
1347 	if (state == HCLGEVF_MAC_TO_DEL) {
1348 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1349 		return -ENOENT;
1350 	}
1351 
1352 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1353 	if (!mac_node) {
1354 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1355 		return -ENOMEM;
1356 	}
1357 
1358 	mac_node->state = state;
1359 	ether_addr_copy(mac_node->mac_addr, addr);
1360 	list_add_tail(&mac_node->node, list);
1361 
1362 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1363 	return 0;
1364 }
1365 
1366 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1367 			       const unsigned char *addr)
1368 {
1369 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1370 				       HCLGEVF_MAC_ADDR_UC, addr);
1371 }
1372 
1373 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1374 			      const unsigned char *addr)
1375 {
1376 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1377 				       HCLGEVF_MAC_ADDR_UC, addr);
1378 }
1379 
1380 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1381 			       const unsigned char *addr)
1382 {
1383 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1384 				       HCLGEVF_MAC_ADDR_MC, addr);
1385 }
1386 
1387 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1388 			      const unsigned char *addr)
1389 {
1390 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1391 				       HCLGEVF_MAC_ADDR_MC, addr);
1392 }
1393 
1394 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1395 				    struct hclgevf_mac_addr_node *mac_node,
1396 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1397 {
1398 	struct hclge_vf_to_pf_msg send_msg;
1399 	u8 code, subcode;
1400 
1401 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1402 		code = HCLGE_MBX_SET_UNICAST;
1403 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1404 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1405 		else
1406 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1407 	} else {
1408 		code = HCLGE_MBX_SET_MULTICAST;
1409 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1410 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1411 		else
1412 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1413 	}
1414 
1415 	hclgevf_build_send_msg(&send_msg, code, subcode);
1416 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1417 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1418 }
1419 
1420 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1421 				    struct list_head *list,
1422 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1423 {
1424 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1425 	int ret;
1426 
1427 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1428 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1429 		if  (ret) {
1430 			dev_err(&hdev->pdev->dev,
1431 				"failed to configure mac %pM, state = %d, ret = %d\n",
1432 				mac_node->mac_addr, mac_node->state, ret);
1433 			return;
1434 		}
1435 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1436 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1437 		} else {
1438 			list_del(&mac_node->node);
1439 			kfree(mac_node);
1440 		}
1441 	}
1442 }
1443 
1444 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1445 				       struct list_head *mac_list)
1446 {
1447 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1448 
1449 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1450 		/* if the mac address from tmp_add_list is not in the
1451 		 * uc/mc_mac_list, it means have received a TO_DEL request
1452 		 * during the time window of sending mac config request to PF
1453 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1454 		 * then it will be removed at next time. If is TO_ADD, it means
1455 		 * send TO_ADD request failed, so just remove the mac node.
1456 		 */
1457 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1458 		if (new_node) {
1459 			hclgevf_update_mac_node(new_node, mac_node->state);
1460 			list_del(&mac_node->node);
1461 			kfree(mac_node);
1462 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1463 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1464 			list_del(&mac_node->node);
1465 			list_add_tail(&mac_node->node, mac_list);
1466 		} else {
1467 			list_del(&mac_node->node);
1468 			kfree(mac_node);
1469 		}
1470 	}
1471 }
1472 
1473 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1474 				       struct list_head *mac_list)
1475 {
1476 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1477 
1478 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1479 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1480 		if (new_node) {
1481 			/* If the mac addr is exist in the mac list, it means
1482 			 * received a new request TO_ADD during the time window
1483 			 * of sending mac addr configurrequest to PF, so just
1484 			 * change the mac state to ACTIVE.
1485 			 */
1486 			new_node->state = HCLGEVF_MAC_ACTIVE;
1487 			list_del(&mac_node->node);
1488 			kfree(mac_node);
1489 		} else {
1490 			list_del(&mac_node->node);
1491 			list_add_tail(&mac_node->node, mac_list);
1492 		}
1493 	}
1494 }
1495 
1496 static void hclgevf_clear_list(struct list_head *list)
1497 {
1498 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1499 
1500 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1501 		list_del(&mac_node->node);
1502 		kfree(mac_node);
1503 	}
1504 }
1505 
1506 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1507 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1508 {
1509 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1510 	struct list_head tmp_add_list, tmp_del_list;
1511 	struct list_head *list;
1512 
1513 	INIT_LIST_HEAD(&tmp_add_list);
1514 	INIT_LIST_HEAD(&tmp_del_list);
1515 
1516 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1517 	 * we can add/delete these mac addr outside the spin lock
1518 	 */
1519 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1520 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1521 
1522 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1523 
1524 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1525 		switch (mac_node->state) {
1526 		case HCLGEVF_MAC_TO_DEL:
1527 			list_del(&mac_node->node);
1528 			list_add_tail(&mac_node->node, &tmp_del_list);
1529 			break;
1530 		case HCLGEVF_MAC_TO_ADD:
1531 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1532 			if (!new_node)
1533 				goto stop_traverse;
1534 
1535 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1536 			new_node->state = mac_node->state;
1537 			list_add_tail(&new_node->node, &tmp_add_list);
1538 			break;
1539 		default:
1540 			break;
1541 		}
1542 	}
1543 
1544 stop_traverse:
1545 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1546 
1547 	/* delete first, in order to get max mac table space for adding */
1548 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1549 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1550 
1551 	/* if some mac addresses were added/deleted fail, move back to the
1552 	 * mac_list, and retry at next time.
1553 	 */
1554 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1555 
1556 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1557 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1558 
1559 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1560 }
1561 
1562 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1563 {
1564 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1565 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1566 }
1567 
1568 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1569 {
1570 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1571 
1572 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1573 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1574 
1575 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1576 }
1577 
1578 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1579 				   __be16 proto, u16 vlan_id,
1580 				   bool is_kill)
1581 {
1582 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
1583 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
1584 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3
1585 
1586 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1587 	struct hclge_vf_to_pf_msg send_msg;
1588 	int ret;
1589 
1590 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1591 		return -EINVAL;
1592 
1593 	if (proto != htons(ETH_P_8021Q))
1594 		return -EPROTONOSUPPORT;
1595 
1596 	/* When device is resetting, firmware is unable to handle
1597 	 * mailbox. Just record the vlan id, and remove it after
1598 	 * reset finished.
1599 	 */
1600 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) && is_kill) {
1601 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1602 		return -EBUSY;
1603 	}
1604 
1605 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1606 			       HCLGE_MBX_VLAN_FILTER);
1607 	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1608 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1609 	       sizeof(vlan_id));
1610 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1611 	       sizeof(proto));
1612 	/* when remove hw vlan filter failed, record the vlan id,
1613 	 * and try to remove it from hw later, to be consistence
1614 	 * with stack.
1615 	 */
1616 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1617 	if (is_kill && ret)
1618 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1619 
1620 	return ret;
1621 }
1622 
1623 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1624 {
1625 #define HCLGEVF_MAX_SYNC_COUNT	60
1626 	struct hnae3_handle *handle = &hdev->nic;
1627 	int ret, sync_cnt = 0;
1628 	u16 vlan_id;
1629 
1630 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1631 	while (vlan_id != VLAN_N_VID) {
1632 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1633 					      vlan_id, true);
1634 		if (ret)
1635 			return;
1636 
1637 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1638 		sync_cnt++;
1639 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1640 			return;
1641 
1642 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1643 	}
1644 }
1645 
1646 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1647 {
1648 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1649 	struct hclge_vf_to_pf_msg send_msg;
1650 
1651 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1652 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1653 	send_msg.data[0] = enable ? 1 : 0;
1654 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1655 }
1656 
1657 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1658 {
1659 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1660 	struct hclge_vf_to_pf_msg send_msg;
1661 	int ret;
1662 
1663 	/* disable vf queue before send queue reset msg to PF */
1664 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1665 	if (ret)
1666 		return ret;
1667 
1668 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1669 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
1670 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1671 }
1672 
1673 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1674 {
1675 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1676 	struct hclge_vf_to_pf_msg send_msg;
1677 
1678 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1679 	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1680 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1681 }
1682 
1683 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1684 				 enum hnae3_reset_notify_type type)
1685 {
1686 	struct hnae3_client *client = hdev->nic_client;
1687 	struct hnae3_handle *handle = &hdev->nic;
1688 	int ret;
1689 
1690 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1691 	    !client)
1692 		return 0;
1693 
1694 	if (!client->ops->reset_notify)
1695 		return -EOPNOTSUPP;
1696 
1697 	ret = client->ops->reset_notify(handle, type);
1698 	if (ret)
1699 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1700 			type, ret);
1701 
1702 	return ret;
1703 }
1704 
1705 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1706 {
1707 #define HCLGEVF_RESET_WAIT_US	20000
1708 #define HCLGEVF_RESET_WAIT_CNT	2000
1709 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1710 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1711 
1712 	u32 val;
1713 	int ret;
1714 
1715 	if (hdev->reset_type == HNAE3_VF_RESET)
1716 		ret = readl_poll_timeout(hdev->hw.io_base +
1717 					 HCLGEVF_VF_RST_ING, val,
1718 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1719 					 HCLGEVF_RESET_WAIT_US,
1720 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1721 	else
1722 		ret = readl_poll_timeout(hdev->hw.io_base +
1723 					 HCLGEVF_RST_ING, val,
1724 					 !(val & HCLGEVF_RST_ING_BITS),
1725 					 HCLGEVF_RESET_WAIT_US,
1726 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1727 
1728 	/* hardware completion status should be available by this time */
1729 	if (ret) {
1730 		dev_err(&hdev->pdev->dev,
1731 			"could'nt get reset done status from h/w, timeout!\n");
1732 		return ret;
1733 	}
1734 
1735 	/* we will wait a bit more to let reset of the stack to complete. This
1736 	 * might happen in case reset assertion was made by PF. Yes, this also
1737 	 * means we might end up waiting bit more even for VF reset.
1738 	 */
1739 	msleep(5000);
1740 
1741 	return 0;
1742 }
1743 
1744 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1745 {
1746 	u32 reg_val;
1747 
1748 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1749 	if (enable)
1750 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1751 	else
1752 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1753 
1754 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1755 			  reg_val);
1756 }
1757 
1758 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1759 {
1760 	int ret;
1761 
1762 	/* uninitialize the nic client */
1763 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1764 	if (ret)
1765 		return ret;
1766 
1767 	/* re-initialize the hclge device */
1768 	ret = hclgevf_reset_hdev(hdev);
1769 	if (ret) {
1770 		dev_err(&hdev->pdev->dev,
1771 			"hclge device re-init failed, VF is disabled!\n");
1772 		return ret;
1773 	}
1774 
1775 	/* bring up the nic client again */
1776 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1777 	if (ret)
1778 		return ret;
1779 
1780 	ret = hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1781 	if (ret)
1782 		return ret;
1783 
1784 	/* clear handshake status with IMP */
1785 	hclgevf_reset_handshake(hdev, false);
1786 
1787 	/* bring up the nic to enable TX/RX again */
1788 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1789 }
1790 
1791 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1792 {
1793 #define HCLGEVF_RESET_SYNC_TIME 100
1794 
1795 	struct hclge_vf_to_pf_msg send_msg;
1796 	int ret = 0;
1797 
1798 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1799 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1800 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1801 		hdev->rst_stats.vf_func_rst_cnt++;
1802 	}
1803 
1804 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1805 	/* inform hardware that preparatory work is done */
1806 	msleep(HCLGEVF_RESET_SYNC_TIME);
1807 	hclgevf_reset_handshake(hdev, true);
1808 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1809 		 hdev->reset_type, ret);
1810 
1811 	return ret;
1812 }
1813 
1814 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1815 {
1816 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1817 		 hdev->rst_stats.vf_func_rst_cnt);
1818 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1819 		 hdev->rst_stats.flr_rst_cnt);
1820 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1821 		 hdev->rst_stats.vf_rst_cnt);
1822 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1823 		 hdev->rst_stats.rst_done_cnt);
1824 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1825 		 hdev->rst_stats.hw_rst_done_cnt);
1826 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1827 		 hdev->rst_stats.rst_cnt);
1828 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1829 		 hdev->rst_stats.rst_fail_cnt);
1830 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1831 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1832 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1833 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STAT_REG));
1834 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1835 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1836 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1837 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1838 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1839 }
1840 
1841 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1842 {
1843 	/* recover handshake status with IMP when reset fail */
1844 	hclgevf_reset_handshake(hdev, true);
1845 	hdev->rst_stats.rst_fail_cnt++;
1846 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1847 		hdev->rst_stats.rst_fail_cnt);
1848 
1849 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1850 		set_bit(hdev->reset_type, &hdev->reset_pending);
1851 
1852 	if (hclgevf_is_reset_pending(hdev)) {
1853 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1854 		hclgevf_reset_task_schedule(hdev);
1855 	} else {
1856 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1857 		hclgevf_dump_rst_info(hdev);
1858 	}
1859 }
1860 
1861 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1862 {
1863 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1864 	int ret;
1865 
1866 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1867 	 * know if device is undergoing reset
1868 	 */
1869 	ae_dev->reset_type = hdev->reset_type;
1870 	hdev->rst_stats.rst_cnt++;
1871 
1872 	rtnl_lock();
1873 	/* bring down the nic to stop any ongoing TX/RX */
1874 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1875 	rtnl_unlock();
1876 	if (ret)
1877 		return ret;
1878 
1879 	return hclgevf_reset_prepare_wait(hdev);
1880 }
1881 
1882 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1883 {
1884 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1885 	int ret;
1886 
1887 	hdev->rst_stats.hw_rst_done_cnt++;
1888 
1889 	rtnl_lock();
1890 	/* now, re-initialize the nic client and ae device */
1891 	ret = hclgevf_reset_stack(hdev);
1892 	rtnl_unlock();
1893 	if (ret) {
1894 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1895 		return ret;
1896 	}
1897 
1898 	hdev->last_reset_time = jiffies;
1899 	ae_dev->reset_type = HNAE3_NONE_RESET;
1900 	hdev->rst_stats.rst_done_cnt++;
1901 	hdev->rst_stats.rst_fail_cnt = 0;
1902 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1903 
1904 	return 0;
1905 }
1906 
1907 static void hclgevf_reset(struct hclgevf_dev *hdev)
1908 {
1909 	if (hclgevf_reset_prepare(hdev))
1910 		goto err_reset;
1911 
1912 	/* check if VF could successfully fetch the hardware reset completion
1913 	 * status from the hardware
1914 	 */
1915 	if (hclgevf_reset_wait(hdev)) {
1916 		/* can't do much in this situation, will disable VF */
1917 		dev_err(&hdev->pdev->dev,
1918 			"failed to fetch H/W reset completion status\n");
1919 		goto err_reset;
1920 	}
1921 
1922 	if (hclgevf_reset_rebuild(hdev))
1923 		goto err_reset;
1924 
1925 	return;
1926 
1927 err_reset:
1928 	hclgevf_reset_err_handle(hdev);
1929 }
1930 
1931 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1932 						     unsigned long *addr)
1933 {
1934 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1935 
1936 	/* return the highest priority reset level amongst all */
1937 	if (test_bit(HNAE3_VF_RESET, addr)) {
1938 		rst_level = HNAE3_VF_RESET;
1939 		clear_bit(HNAE3_VF_RESET, addr);
1940 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1941 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1942 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1943 		rst_level = HNAE3_VF_FULL_RESET;
1944 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1945 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1946 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1947 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1948 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1949 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1950 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1951 		rst_level = HNAE3_VF_FUNC_RESET;
1952 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1953 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1954 		rst_level = HNAE3_FLR_RESET;
1955 		clear_bit(HNAE3_FLR_RESET, addr);
1956 	}
1957 
1958 	return rst_level;
1959 }
1960 
1961 static void hclgevf_reset_event(struct pci_dev *pdev,
1962 				struct hnae3_handle *handle)
1963 {
1964 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1965 	struct hclgevf_dev *hdev = ae_dev->priv;
1966 
1967 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1968 
1969 	if (hdev->default_reset_request)
1970 		hdev->reset_level =
1971 			hclgevf_get_reset_level(hdev,
1972 						&hdev->default_reset_request);
1973 	else
1974 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1975 
1976 	/* reset of this VF requested */
1977 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1978 	hclgevf_reset_task_schedule(hdev);
1979 
1980 	hdev->last_reset_time = jiffies;
1981 }
1982 
1983 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1984 					  enum hnae3_reset_type rst_type)
1985 {
1986 	struct hclgevf_dev *hdev = ae_dev->priv;
1987 
1988 	set_bit(rst_type, &hdev->default_reset_request);
1989 }
1990 
1991 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1992 {
1993 	writel(en ? 1 : 0, vector->addr);
1994 }
1995 
1996 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1997 {
1998 #define HCLGEVF_FLR_RETRY_WAIT_MS	500
1999 #define HCLGEVF_FLR_RETRY_CNT		5
2000 
2001 	struct hclgevf_dev *hdev = ae_dev->priv;
2002 	int retry_cnt = 0;
2003 	int ret;
2004 
2005 retry:
2006 	down(&hdev->reset_sem);
2007 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2008 	hdev->reset_type = HNAE3_FLR_RESET;
2009 	ret = hclgevf_reset_prepare(hdev);
2010 	if (ret) {
2011 		dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n",
2012 			ret);
2013 		if (hdev->reset_pending ||
2014 		    retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) {
2015 			dev_err(&hdev->pdev->dev,
2016 				"reset_pending:0x%lx, retry_cnt:%d\n",
2017 				hdev->reset_pending, retry_cnt);
2018 			clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2019 			up(&hdev->reset_sem);
2020 			msleep(HCLGEVF_FLR_RETRY_WAIT_MS);
2021 			goto retry;
2022 		}
2023 	}
2024 
2025 	/* disable misc vector before FLR done */
2026 	hclgevf_enable_vector(&hdev->misc_vector, false);
2027 	hdev->rst_stats.flr_rst_cnt++;
2028 }
2029 
2030 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
2031 {
2032 	struct hclgevf_dev *hdev = ae_dev->priv;
2033 	int ret;
2034 
2035 	hclgevf_enable_vector(&hdev->misc_vector, true);
2036 
2037 	ret = hclgevf_reset_rebuild(hdev);
2038 	if (ret)
2039 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2040 			 ret);
2041 
2042 	hdev->reset_type = HNAE3_NONE_RESET;
2043 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2044 	up(&hdev->reset_sem);
2045 }
2046 
2047 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2048 {
2049 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2050 
2051 	return hdev->fw_version;
2052 }
2053 
2054 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2055 {
2056 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2057 
2058 	vector->vector_irq = pci_irq_vector(hdev->pdev,
2059 					    HCLGEVF_MISC_VECTOR_NUM);
2060 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2061 	/* vector status always valid for Vector 0 */
2062 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2063 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2064 
2065 	hdev->num_msi_left -= 1;
2066 	hdev->num_msi_used += 1;
2067 }
2068 
2069 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2070 {
2071 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2072 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2073 			      &hdev->state))
2074 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2075 }
2076 
2077 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2078 {
2079 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2080 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2081 			      &hdev->state))
2082 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2083 }
2084 
2085 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2086 				  unsigned long delay)
2087 {
2088 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2089 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2090 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2091 }
2092 
2093 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2094 {
2095 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
2096 
2097 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2098 		return;
2099 
2100 	down(&hdev->reset_sem);
2101 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2102 
2103 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2104 			       &hdev->reset_state)) {
2105 		/* PF has initmated that it is about to reset the hardware.
2106 		 * We now have to poll & check if hardware has actually
2107 		 * completed the reset sequence. On hardware reset completion,
2108 		 * VF needs to reset the client and ae device.
2109 		 */
2110 		hdev->reset_attempts = 0;
2111 
2112 		hdev->last_reset_time = jiffies;
2113 		while ((hdev->reset_type =
2114 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2115 		       != HNAE3_NONE_RESET)
2116 			hclgevf_reset(hdev);
2117 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2118 				      &hdev->reset_state)) {
2119 		/* we could be here when either of below happens:
2120 		 * 1. reset was initiated due to watchdog timeout caused by
2121 		 *    a. IMP was earlier reset and our TX got choked down and
2122 		 *       which resulted in watchdog reacting and inducing VF
2123 		 *       reset. This also means our cmdq would be unreliable.
2124 		 *    b. problem in TX due to other lower layer(example link
2125 		 *       layer not functioning properly etc.)
2126 		 * 2. VF reset might have been initiated due to some config
2127 		 *    change.
2128 		 *
2129 		 * NOTE: Theres no clear way to detect above cases than to react
2130 		 * to the response of PF for this reset request. PF will ack the
2131 		 * 1b and 2. cases but we will not get any intimation about 1a
2132 		 * from PF as cmdq would be in unreliable state i.e. mailbox
2133 		 * communication between PF and VF would be broken.
2134 		 *
2135 		 * if we are never geting into pending state it means either:
2136 		 * 1. PF is not receiving our request which could be due to IMP
2137 		 *    reset
2138 		 * 2. PF is screwed
2139 		 * We cannot do much for 2. but to check first we can try reset
2140 		 * our PCIe + stack and see if it alleviates the problem.
2141 		 */
2142 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2143 			/* prepare for full reset of stack + pcie interface */
2144 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2145 
2146 			/* "defer" schedule the reset task again */
2147 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2148 		} else {
2149 			hdev->reset_attempts++;
2150 
2151 			set_bit(hdev->reset_level, &hdev->reset_pending);
2152 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2153 		}
2154 		hclgevf_reset_task_schedule(hdev);
2155 	}
2156 
2157 	hdev->reset_type = HNAE3_NONE_RESET;
2158 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2159 	up(&hdev->reset_sem);
2160 }
2161 
2162 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2163 {
2164 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2165 		return;
2166 
2167 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2168 		return;
2169 
2170 	hclgevf_mbx_async_handler(hdev);
2171 
2172 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2173 }
2174 
2175 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2176 {
2177 	struct hclge_vf_to_pf_msg send_msg;
2178 	int ret;
2179 
2180 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2181 		return;
2182 
2183 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2184 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2185 	if (ret)
2186 		dev_err(&hdev->pdev->dev,
2187 			"VF sends keep alive cmd failed(=%d)\n", ret);
2188 }
2189 
2190 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2191 {
2192 	unsigned long delta = round_jiffies_relative(HZ);
2193 	struct hnae3_handle *handle = &hdev->nic;
2194 
2195 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2196 		delta = jiffies - hdev->last_serv_processed;
2197 
2198 		if (delta < round_jiffies_relative(HZ)) {
2199 			delta = round_jiffies_relative(HZ) - delta;
2200 			goto out;
2201 		}
2202 	}
2203 
2204 	hdev->serv_processed_cnt++;
2205 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2206 		hclgevf_keep_alive(hdev);
2207 
2208 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2209 		hdev->last_serv_processed = jiffies;
2210 		goto out;
2211 	}
2212 
2213 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2214 		hclgevf_tqps_update_stats(handle);
2215 
2216 	/* request the link status from the PF. PF would be able to tell VF
2217 	 * about such updates in future so we might remove this later
2218 	 */
2219 	hclgevf_request_link_info(hdev);
2220 
2221 	hclgevf_update_link_mode(hdev);
2222 
2223 	hclgevf_sync_vlan_filter(hdev);
2224 
2225 	hclgevf_sync_mac_table(hdev);
2226 
2227 	hclgevf_sync_promisc_mode(hdev);
2228 
2229 	hdev->last_serv_processed = jiffies;
2230 
2231 out:
2232 	hclgevf_task_schedule(hdev, delta);
2233 }
2234 
2235 static void hclgevf_service_task(struct work_struct *work)
2236 {
2237 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2238 						service_task.work);
2239 
2240 	hclgevf_reset_service_task(hdev);
2241 	hclgevf_mailbox_service_task(hdev);
2242 	hclgevf_periodic_service_task(hdev);
2243 
2244 	/* Handle reset and mbx again in case periodical task delays the
2245 	 * handling by calling hclgevf_task_schedule() in
2246 	 * hclgevf_periodic_service_task()
2247 	 */
2248 	hclgevf_reset_service_task(hdev);
2249 	hclgevf_mailbox_service_task(hdev);
2250 }
2251 
2252 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2253 {
2254 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2255 }
2256 
2257 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2258 						      u32 *clearval)
2259 {
2260 	u32 val, cmdq_stat_reg, rst_ing_reg;
2261 
2262 	/* fetch the events from their corresponding regs */
2263 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2264 					 HCLGEVF_VECTOR0_CMDQ_STAT_REG);
2265 
2266 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2267 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2268 		dev_info(&hdev->pdev->dev,
2269 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2270 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2271 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2272 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2273 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2274 		hdev->rst_stats.vf_rst_cnt++;
2275 		/* set up VF hardware reset status, its PF will clear
2276 		 * this status when PF has initialized done.
2277 		 */
2278 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2279 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2280 				  val | HCLGEVF_VF_RST_ING_BIT);
2281 		return HCLGEVF_VECTOR0_EVENT_RST;
2282 	}
2283 
2284 	/* check for vector0 mailbox(=CMDQ RX) event source */
2285 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2286 		/* for revision 0x21, clearing interrupt is writing bit 0
2287 		 * to the clear register, writing bit 1 means to keep the
2288 		 * old value.
2289 		 * for revision 0x20, the clear register is a read & write
2290 		 * register, so we should just write 0 to the bit we are
2291 		 * handling, and keep other bits as cmdq_stat_reg.
2292 		 */
2293 		if (hdev->pdev->revision >= 0x21)
2294 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2295 		else
2296 			*clearval = cmdq_stat_reg &
2297 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2298 
2299 		return HCLGEVF_VECTOR0_EVENT_MBX;
2300 	}
2301 
2302 	/* print other vector0 event source */
2303 	dev_info(&hdev->pdev->dev,
2304 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2305 		 cmdq_stat_reg);
2306 
2307 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2308 }
2309 
2310 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2311 {
2312 	enum hclgevf_evt_cause event_cause;
2313 	struct hclgevf_dev *hdev = data;
2314 	u32 clearval;
2315 
2316 	hclgevf_enable_vector(&hdev->misc_vector, false);
2317 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2318 
2319 	switch (event_cause) {
2320 	case HCLGEVF_VECTOR0_EVENT_RST:
2321 		hclgevf_reset_task_schedule(hdev);
2322 		break;
2323 	case HCLGEVF_VECTOR0_EVENT_MBX:
2324 		hclgevf_mbx_handler(hdev);
2325 		break;
2326 	default:
2327 		break;
2328 	}
2329 
2330 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2331 		hclgevf_clear_event_cause(hdev, clearval);
2332 		hclgevf_enable_vector(&hdev->misc_vector, true);
2333 	}
2334 
2335 	return IRQ_HANDLED;
2336 }
2337 
2338 static int hclgevf_configure(struct hclgevf_dev *hdev)
2339 {
2340 	int ret;
2341 
2342 	/* get current port based vlan state from PF */
2343 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2344 	if (ret)
2345 		return ret;
2346 
2347 	/* get queue configuration from PF */
2348 	ret = hclgevf_get_queue_info(hdev);
2349 	if (ret)
2350 		return ret;
2351 
2352 	/* get queue depth info from PF */
2353 	ret = hclgevf_get_queue_depth(hdev);
2354 	if (ret)
2355 		return ret;
2356 
2357 	ret = hclgevf_get_pf_media_type(hdev);
2358 	if (ret)
2359 		return ret;
2360 
2361 	/* get tc configuration from PF */
2362 	return hclgevf_get_tc_info(hdev);
2363 }
2364 
2365 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2366 {
2367 	struct pci_dev *pdev = ae_dev->pdev;
2368 	struct hclgevf_dev *hdev;
2369 
2370 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2371 	if (!hdev)
2372 		return -ENOMEM;
2373 
2374 	hdev->pdev = pdev;
2375 	hdev->ae_dev = ae_dev;
2376 	ae_dev->priv = hdev;
2377 
2378 	return 0;
2379 }
2380 
2381 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2382 {
2383 	struct hnae3_handle *roce = &hdev->roce;
2384 	struct hnae3_handle *nic = &hdev->nic;
2385 
2386 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2387 
2388 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2389 	    hdev->num_msi_left == 0)
2390 		return -EINVAL;
2391 
2392 	roce->rinfo.base_vector = hdev->roce_base_vector;
2393 
2394 	roce->rinfo.netdev = nic->kinfo.netdev;
2395 	roce->rinfo.roce_io_base = hdev->hw.io_base;
2396 
2397 	roce->pdev = nic->pdev;
2398 	roce->ae_algo = nic->ae_algo;
2399 	roce->numa_node_mask = nic->numa_node_mask;
2400 
2401 	return 0;
2402 }
2403 
2404 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2405 {
2406 	struct hclgevf_cfg_gro_status_cmd *req;
2407 	struct hclgevf_desc desc;
2408 	int ret;
2409 
2410 	if (!hnae3_dev_gro_supported(hdev))
2411 		return 0;
2412 
2413 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2414 				     false);
2415 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2416 
2417 	req->gro_en = cpu_to_le16(en ? 1 : 0);
2418 
2419 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2420 	if (ret)
2421 		dev_err(&hdev->pdev->dev,
2422 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2423 
2424 	return ret;
2425 }
2426 
2427 static void hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2428 {
2429 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2430 	struct hclgevf_rss_tuple_cfg *tuple_sets;
2431 	u32 i;
2432 
2433 	rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2434 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2435 	tuple_sets = &rss_cfg->rss_tuple_sets;
2436 	if (hdev->pdev->revision >= 0x21) {
2437 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2438 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2439 		       HCLGEVF_RSS_KEY_SIZE);
2440 
2441 		tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2442 		tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2443 		tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2444 		tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2445 		tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2446 		tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2447 		tuple_sets->ipv6_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2448 		tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2449 	}
2450 
2451 	/* Initialize RSS indirect table */
2452 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2453 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2454 }
2455 
2456 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2457 {
2458 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2459 	int ret;
2460 
2461 	if (hdev->pdev->revision >= 0x21) {
2462 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2463 					       rss_cfg->rss_hash_key);
2464 		if (ret)
2465 			return ret;
2466 
2467 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2468 		if (ret)
2469 			return ret;
2470 	}
2471 
2472 	ret = hclgevf_set_rss_indir_table(hdev);
2473 	if (ret)
2474 		return ret;
2475 
2476 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2477 }
2478 
2479 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2480 {
2481 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2482 				       false);
2483 }
2484 
2485 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2486 {
2487 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2488 
2489 	unsigned long last = hdev->serv_processed_cnt;
2490 	int i = 0;
2491 
2492 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2493 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2494 	       last == hdev->serv_processed_cnt)
2495 		usleep_range(1, 1);
2496 }
2497 
2498 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2499 {
2500 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2501 
2502 	if (enable) {
2503 		hclgevf_task_schedule(hdev, 0);
2504 	} else {
2505 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2506 
2507 		/* flush memory to make sure DOWN is seen by service task */
2508 		smp_mb__before_atomic();
2509 		hclgevf_flush_link_update(hdev);
2510 	}
2511 }
2512 
2513 static int hclgevf_ae_start(struct hnae3_handle *handle)
2514 {
2515 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2516 
2517 	hclgevf_reset_tqp_stats(handle);
2518 
2519 	hclgevf_request_link_info(hdev);
2520 
2521 	hclgevf_update_link_mode(hdev);
2522 
2523 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2524 
2525 	return 0;
2526 }
2527 
2528 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2529 {
2530 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2531 	int i;
2532 
2533 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2534 
2535 	if (hdev->reset_type != HNAE3_VF_RESET)
2536 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2537 			if (hclgevf_reset_tqp(handle, i))
2538 				break;
2539 
2540 	hclgevf_reset_tqp_stats(handle);
2541 	hclgevf_update_link_status(hdev, 0);
2542 }
2543 
2544 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2545 {
2546 #define HCLGEVF_STATE_ALIVE	1
2547 #define HCLGEVF_STATE_NOT_ALIVE	0
2548 
2549 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2550 	struct hclge_vf_to_pf_msg send_msg;
2551 
2552 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2553 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2554 				HCLGEVF_STATE_NOT_ALIVE;
2555 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2556 }
2557 
2558 static int hclgevf_client_start(struct hnae3_handle *handle)
2559 {
2560 	int ret;
2561 
2562 	ret = hclgevf_set_alive(handle, true);
2563 	if (ret)
2564 		return ret;
2565 
2566 	return 0;
2567 }
2568 
2569 static void hclgevf_client_stop(struct hnae3_handle *handle)
2570 {
2571 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2572 	int ret;
2573 
2574 	ret = hclgevf_set_alive(handle, false);
2575 	if (ret)
2576 		dev_warn(&hdev->pdev->dev,
2577 			 "%s failed %d\n", __func__, ret);
2578 }
2579 
2580 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2581 {
2582 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2583 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2584 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2585 
2586 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2587 
2588 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2589 	sema_init(&hdev->reset_sem, 1);
2590 
2591 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2592 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2593 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2594 
2595 	/* bring the device down */
2596 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2597 }
2598 
2599 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2600 {
2601 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2602 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2603 
2604 	if (hdev->service_task.work.func)
2605 		cancel_delayed_work_sync(&hdev->service_task);
2606 
2607 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2608 }
2609 
2610 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2611 {
2612 	struct pci_dev *pdev = hdev->pdev;
2613 	int vectors;
2614 	int i;
2615 
2616 	if (hnae3_dev_roce_supported(hdev))
2617 		vectors = pci_alloc_irq_vectors(pdev,
2618 						hdev->roce_base_msix_offset + 1,
2619 						hdev->num_msi,
2620 						PCI_IRQ_MSIX);
2621 	else
2622 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2623 						hdev->num_msi,
2624 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2625 
2626 	if (vectors < 0) {
2627 		dev_err(&pdev->dev,
2628 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2629 			vectors);
2630 		return vectors;
2631 	}
2632 	if (vectors < hdev->num_msi)
2633 		dev_warn(&hdev->pdev->dev,
2634 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2635 			 hdev->num_msi, vectors);
2636 
2637 	hdev->num_msi = vectors;
2638 	hdev->num_msi_left = vectors;
2639 
2640 	hdev->base_msi_vector = pdev->irq;
2641 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2642 
2643 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2644 					   sizeof(u16), GFP_KERNEL);
2645 	if (!hdev->vector_status) {
2646 		pci_free_irq_vectors(pdev);
2647 		return -ENOMEM;
2648 	}
2649 
2650 	for (i = 0; i < hdev->num_msi; i++)
2651 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2652 
2653 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2654 					sizeof(int), GFP_KERNEL);
2655 	if (!hdev->vector_irq) {
2656 		devm_kfree(&pdev->dev, hdev->vector_status);
2657 		pci_free_irq_vectors(pdev);
2658 		return -ENOMEM;
2659 	}
2660 
2661 	return 0;
2662 }
2663 
2664 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2665 {
2666 	struct pci_dev *pdev = hdev->pdev;
2667 
2668 	devm_kfree(&pdev->dev, hdev->vector_status);
2669 	devm_kfree(&pdev->dev, hdev->vector_irq);
2670 	pci_free_irq_vectors(pdev);
2671 }
2672 
2673 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2674 {
2675 	int ret;
2676 
2677 	hclgevf_get_misc_vector(hdev);
2678 
2679 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2680 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2681 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2682 			  0, hdev->misc_vector.name, hdev);
2683 	if (ret) {
2684 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2685 			hdev->misc_vector.vector_irq);
2686 		return ret;
2687 	}
2688 
2689 	hclgevf_clear_event_cause(hdev, 0);
2690 
2691 	/* enable misc. vector(vector 0) */
2692 	hclgevf_enable_vector(&hdev->misc_vector, true);
2693 
2694 	return ret;
2695 }
2696 
2697 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2698 {
2699 	/* disable misc vector(vector 0) */
2700 	hclgevf_enable_vector(&hdev->misc_vector, false);
2701 	synchronize_irq(hdev->misc_vector.vector_irq);
2702 	free_irq(hdev->misc_vector.vector_irq, hdev);
2703 	hclgevf_free_vector(hdev, 0);
2704 }
2705 
2706 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2707 {
2708 	struct device *dev = &hdev->pdev->dev;
2709 
2710 	dev_info(dev, "VF info begin:\n");
2711 
2712 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2713 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2714 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2715 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2716 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2717 	dev_info(dev, "PF media type of this VF: %u\n",
2718 		 hdev->hw.mac.media_type);
2719 
2720 	dev_info(dev, "VF info end.\n");
2721 }
2722 
2723 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2724 					    struct hnae3_client *client)
2725 {
2726 	struct hclgevf_dev *hdev = ae_dev->priv;
2727 	int ret;
2728 
2729 	ret = client->ops->init_instance(&hdev->nic);
2730 	if (ret)
2731 		return ret;
2732 
2733 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2734 	hnae3_set_client_init_flag(client, ae_dev, 1);
2735 
2736 	if (netif_msg_drv(&hdev->nic))
2737 		hclgevf_info_show(hdev);
2738 
2739 	return 0;
2740 }
2741 
2742 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2743 					     struct hnae3_client *client)
2744 {
2745 	struct hclgevf_dev *hdev = ae_dev->priv;
2746 	int ret;
2747 
2748 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2749 	    !hdev->nic_client)
2750 		return 0;
2751 
2752 	ret = hclgevf_init_roce_base_info(hdev);
2753 	if (ret)
2754 		return ret;
2755 
2756 	ret = client->ops->init_instance(&hdev->roce);
2757 	if (ret)
2758 		return ret;
2759 
2760 	hnae3_set_client_init_flag(client, ae_dev, 1);
2761 
2762 	return 0;
2763 }
2764 
2765 static int hclgevf_init_client_instance(struct hnae3_client *client,
2766 					struct hnae3_ae_dev *ae_dev)
2767 {
2768 	struct hclgevf_dev *hdev = ae_dev->priv;
2769 	int ret;
2770 
2771 	switch (client->type) {
2772 	case HNAE3_CLIENT_KNIC:
2773 		hdev->nic_client = client;
2774 		hdev->nic.client = client;
2775 
2776 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2777 		if (ret)
2778 			goto clear_nic;
2779 
2780 		ret = hclgevf_init_roce_client_instance(ae_dev,
2781 							hdev->roce_client);
2782 		if (ret)
2783 			goto clear_roce;
2784 
2785 		break;
2786 	case HNAE3_CLIENT_ROCE:
2787 		if (hnae3_dev_roce_supported(hdev)) {
2788 			hdev->roce_client = client;
2789 			hdev->roce.client = client;
2790 		}
2791 
2792 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2793 		if (ret)
2794 			goto clear_roce;
2795 
2796 		break;
2797 	default:
2798 		return -EINVAL;
2799 	}
2800 
2801 	return 0;
2802 
2803 clear_nic:
2804 	hdev->nic_client = NULL;
2805 	hdev->nic.client = NULL;
2806 	return ret;
2807 clear_roce:
2808 	hdev->roce_client = NULL;
2809 	hdev->roce.client = NULL;
2810 	return ret;
2811 }
2812 
2813 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2814 					   struct hnae3_ae_dev *ae_dev)
2815 {
2816 	struct hclgevf_dev *hdev = ae_dev->priv;
2817 
2818 	/* un-init roce, if it exists */
2819 	if (hdev->roce_client) {
2820 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2821 		hdev->roce_client = NULL;
2822 		hdev->roce.client = NULL;
2823 	}
2824 
2825 	/* un-init nic/unic, if this was not called by roce client */
2826 	if (client->ops->uninit_instance && hdev->nic_client &&
2827 	    client->type != HNAE3_CLIENT_ROCE) {
2828 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2829 
2830 		client->ops->uninit_instance(&hdev->nic, 0);
2831 		hdev->nic_client = NULL;
2832 		hdev->nic.client = NULL;
2833 	}
2834 }
2835 
2836 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2837 {
2838 	struct pci_dev *pdev = hdev->pdev;
2839 	struct hclgevf_hw *hw;
2840 	int ret;
2841 
2842 	ret = pci_enable_device(pdev);
2843 	if (ret) {
2844 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2845 		return ret;
2846 	}
2847 
2848 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2849 	if (ret) {
2850 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2851 		goto err_disable_device;
2852 	}
2853 
2854 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2855 	if (ret) {
2856 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2857 		goto err_disable_device;
2858 	}
2859 
2860 	pci_set_master(pdev);
2861 	hw = &hdev->hw;
2862 	hw->hdev = hdev;
2863 	hw->io_base = pci_iomap(pdev, 2, 0);
2864 	if (!hw->io_base) {
2865 		dev_err(&pdev->dev, "can't map configuration register space\n");
2866 		ret = -ENOMEM;
2867 		goto err_clr_master;
2868 	}
2869 
2870 	return 0;
2871 
2872 err_clr_master:
2873 	pci_clear_master(pdev);
2874 	pci_release_regions(pdev);
2875 err_disable_device:
2876 	pci_disable_device(pdev);
2877 
2878 	return ret;
2879 }
2880 
2881 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2882 {
2883 	struct pci_dev *pdev = hdev->pdev;
2884 
2885 	pci_iounmap(pdev, hdev->hw.io_base);
2886 	pci_clear_master(pdev);
2887 	pci_release_regions(pdev);
2888 	pci_disable_device(pdev);
2889 }
2890 
2891 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2892 {
2893 	struct hclgevf_query_res_cmd *req;
2894 	struct hclgevf_desc desc;
2895 	int ret;
2896 
2897 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2898 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2899 	if (ret) {
2900 		dev_err(&hdev->pdev->dev,
2901 			"query vf resource failed, ret = %d.\n", ret);
2902 		return ret;
2903 	}
2904 
2905 	req = (struct hclgevf_query_res_cmd *)desc.data;
2906 
2907 	if (hnae3_dev_roce_supported(hdev)) {
2908 		hdev->roce_base_msix_offset =
2909 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2910 				HCLGEVF_MSIX_OFT_ROCEE_M,
2911 				HCLGEVF_MSIX_OFT_ROCEE_S);
2912 		hdev->num_roce_msix =
2913 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2914 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2915 
2916 		/* nic's msix numbers is always equals to the roce's. */
2917 		hdev->num_nic_msix = hdev->num_roce_msix;
2918 
2919 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2920 		 * are queued before Roce vectors. The offset is fixed to 64.
2921 		 */
2922 		hdev->num_msi = hdev->num_roce_msix +
2923 				hdev->roce_base_msix_offset;
2924 	} else {
2925 		hdev->num_msi =
2926 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2927 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2928 
2929 		hdev->num_nic_msix = hdev->num_msi;
2930 	}
2931 
2932 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2933 		dev_err(&hdev->pdev->dev,
2934 			"Just %u msi resources, not enough for vf(min:2).\n",
2935 			hdev->num_nic_msix);
2936 		return -EINVAL;
2937 	}
2938 
2939 	return 0;
2940 }
2941 
2942 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2943 {
2944 	struct pci_dev *pdev = hdev->pdev;
2945 	int ret = 0;
2946 
2947 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2948 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2949 		hclgevf_misc_irq_uninit(hdev);
2950 		hclgevf_uninit_msi(hdev);
2951 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2952 	}
2953 
2954 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2955 		pci_set_master(pdev);
2956 		ret = hclgevf_init_msi(hdev);
2957 		if (ret) {
2958 			dev_err(&pdev->dev,
2959 				"failed(%d) to init MSI/MSI-X\n", ret);
2960 			return ret;
2961 		}
2962 
2963 		ret = hclgevf_misc_irq_init(hdev);
2964 		if (ret) {
2965 			hclgevf_uninit_msi(hdev);
2966 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2967 				ret);
2968 			return ret;
2969 		}
2970 
2971 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2972 	}
2973 
2974 	return ret;
2975 }
2976 
2977 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2978 {
2979 	struct pci_dev *pdev = hdev->pdev;
2980 	int ret;
2981 
2982 	ret = hclgevf_pci_reset(hdev);
2983 	if (ret) {
2984 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2985 		return ret;
2986 	}
2987 
2988 	ret = hclgevf_cmd_init(hdev);
2989 	if (ret) {
2990 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2991 		return ret;
2992 	}
2993 
2994 	ret = hclgevf_rss_init_hw(hdev);
2995 	if (ret) {
2996 		dev_err(&hdev->pdev->dev,
2997 			"failed(%d) to initialize RSS\n", ret);
2998 		return ret;
2999 	}
3000 
3001 	ret = hclgevf_config_gro(hdev, true);
3002 	if (ret)
3003 		return ret;
3004 
3005 	ret = hclgevf_init_vlan_config(hdev);
3006 	if (ret) {
3007 		dev_err(&hdev->pdev->dev,
3008 			"failed(%d) to initialize VLAN config\n", ret);
3009 		return ret;
3010 	}
3011 
3012 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3013 
3014 	dev_info(&hdev->pdev->dev, "Reset done\n");
3015 
3016 	return 0;
3017 }
3018 
3019 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3020 {
3021 	struct pci_dev *pdev = hdev->pdev;
3022 	int ret;
3023 
3024 	ret = hclgevf_pci_init(hdev);
3025 	if (ret)
3026 		return ret;
3027 
3028 	ret = hclgevf_cmd_queue_init(hdev);
3029 	if (ret)
3030 		goto err_cmd_queue_init;
3031 
3032 	ret = hclgevf_cmd_init(hdev);
3033 	if (ret)
3034 		goto err_cmd_init;
3035 
3036 	/* Get vf resource */
3037 	ret = hclgevf_query_vf_resource(hdev);
3038 	if (ret)
3039 		goto err_cmd_init;
3040 
3041 	ret = hclgevf_init_msi(hdev);
3042 	if (ret) {
3043 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3044 		goto err_cmd_init;
3045 	}
3046 
3047 	hclgevf_state_init(hdev);
3048 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3049 	hdev->reset_type = HNAE3_NONE_RESET;
3050 
3051 	ret = hclgevf_misc_irq_init(hdev);
3052 	if (ret)
3053 		goto err_misc_irq_init;
3054 
3055 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3056 
3057 	ret = hclgevf_configure(hdev);
3058 	if (ret) {
3059 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3060 		goto err_config;
3061 	}
3062 
3063 	ret = hclgevf_alloc_tqps(hdev);
3064 	if (ret) {
3065 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3066 		goto err_config;
3067 	}
3068 
3069 	ret = hclgevf_set_handle_info(hdev);
3070 	if (ret)
3071 		goto err_config;
3072 
3073 	ret = hclgevf_config_gro(hdev, true);
3074 	if (ret)
3075 		goto err_config;
3076 
3077 	/* Initialize RSS for this VF */
3078 	hclgevf_rss_init_cfg(hdev);
3079 	ret = hclgevf_rss_init_hw(hdev);
3080 	if (ret) {
3081 		dev_err(&hdev->pdev->dev,
3082 			"failed(%d) to initialize RSS\n", ret);
3083 		goto err_config;
3084 	}
3085 
3086 	ret = hclgevf_init_vlan_config(hdev);
3087 	if (ret) {
3088 		dev_err(&hdev->pdev->dev,
3089 			"failed(%d) to initialize VLAN config\n", ret);
3090 		goto err_config;
3091 	}
3092 
3093 	hdev->last_reset_time = jiffies;
3094 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3095 		 HCLGEVF_DRIVER_NAME);
3096 
3097 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3098 
3099 	return 0;
3100 
3101 err_config:
3102 	hclgevf_misc_irq_uninit(hdev);
3103 err_misc_irq_init:
3104 	hclgevf_state_uninit(hdev);
3105 	hclgevf_uninit_msi(hdev);
3106 err_cmd_init:
3107 	hclgevf_cmd_uninit(hdev);
3108 err_cmd_queue_init:
3109 	hclgevf_pci_uninit(hdev);
3110 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3111 	return ret;
3112 }
3113 
3114 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3115 {
3116 	struct hclge_vf_to_pf_msg send_msg;
3117 
3118 	hclgevf_state_uninit(hdev);
3119 
3120 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3121 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3122 
3123 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3124 		hclgevf_misc_irq_uninit(hdev);
3125 		hclgevf_uninit_msi(hdev);
3126 	}
3127 
3128 	hclgevf_pci_uninit(hdev);
3129 	hclgevf_cmd_uninit(hdev);
3130 	hclgevf_uninit_mac_list(hdev);
3131 }
3132 
3133 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3134 {
3135 	struct pci_dev *pdev = ae_dev->pdev;
3136 	int ret;
3137 
3138 	ret = hclgevf_alloc_hdev(ae_dev);
3139 	if (ret) {
3140 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3141 		return ret;
3142 	}
3143 
3144 	ret = hclgevf_init_hdev(ae_dev->priv);
3145 	if (ret) {
3146 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3147 		return ret;
3148 	}
3149 
3150 	return 0;
3151 }
3152 
3153 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3154 {
3155 	struct hclgevf_dev *hdev = ae_dev->priv;
3156 
3157 	hclgevf_uninit_hdev(hdev);
3158 	ae_dev->priv = NULL;
3159 }
3160 
3161 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3162 {
3163 	struct hnae3_handle *nic = &hdev->nic;
3164 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3165 
3166 	return min_t(u32, hdev->rss_size_max,
3167 		     hdev->num_tqps / kinfo->num_tc);
3168 }
3169 
3170 /**
3171  * hclgevf_get_channels - Get the current channels enabled and max supported.
3172  * @handle: hardware information for network interface
3173  * @ch: ethtool channels structure
3174  *
3175  * We don't support separate tx and rx queues as channels. The other count
3176  * represents how many queues are being used for control. max_combined counts
3177  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3178  * q_vectors since we support a lot more queue pairs than q_vectors.
3179  **/
3180 static void hclgevf_get_channels(struct hnae3_handle *handle,
3181 				 struct ethtool_channels *ch)
3182 {
3183 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3184 
3185 	ch->max_combined = hclgevf_get_max_channels(hdev);
3186 	ch->other_count = 0;
3187 	ch->max_other = 0;
3188 	ch->combined_count = handle->kinfo.rss_size;
3189 }
3190 
3191 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3192 					  u16 *alloc_tqps, u16 *max_rss_size)
3193 {
3194 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3195 
3196 	*alloc_tqps = hdev->num_tqps;
3197 	*max_rss_size = hdev->rss_size_max;
3198 }
3199 
3200 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3201 				    u32 new_tqps_num)
3202 {
3203 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3204 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3205 	u16 max_rss_size;
3206 
3207 	kinfo->req_rss_size = new_tqps_num;
3208 
3209 	max_rss_size = min_t(u16, hdev->rss_size_max,
3210 			     hdev->num_tqps / kinfo->num_tc);
3211 
3212 	/* Use the user's configuration when it is not larger than
3213 	 * max_rss_size, otherwise, use the maximum specification value.
3214 	 */
3215 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3216 	    kinfo->req_rss_size <= max_rss_size)
3217 		kinfo->rss_size = kinfo->req_rss_size;
3218 	else if (kinfo->rss_size > max_rss_size ||
3219 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3220 		kinfo->rss_size = max_rss_size;
3221 
3222 	kinfo->num_tqps = kinfo->num_tc * kinfo->rss_size;
3223 }
3224 
3225 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3226 				bool rxfh_configured)
3227 {
3228 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3229 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3230 	u16 cur_rss_size = kinfo->rss_size;
3231 	u16 cur_tqps = kinfo->num_tqps;
3232 	u32 *rss_indir;
3233 	unsigned int i;
3234 	int ret;
3235 
3236 	hclgevf_update_rss_size(handle, new_tqps_num);
3237 
3238 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3239 	if (ret)
3240 		return ret;
3241 
3242 	/* RSS indirection table has been configuared by user */
3243 	if (rxfh_configured)
3244 		goto out;
3245 
3246 	/* Reinitializes the rss indirect table according to the new RSS size */
3247 	rss_indir = kcalloc(HCLGEVF_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL);
3248 	if (!rss_indir)
3249 		return -ENOMEM;
3250 
3251 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
3252 		rss_indir[i] = i % kinfo->rss_size;
3253 
3254 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3255 
3256 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3257 	if (ret)
3258 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3259 			ret);
3260 
3261 	kfree(rss_indir);
3262 
3263 out:
3264 	if (!ret)
3265 		dev_info(&hdev->pdev->dev,
3266 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3267 			 cur_rss_size, kinfo->rss_size,
3268 			 cur_tqps, kinfo->rss_size * kinfo->num_tc);
3269 
3270 	return ret;
3271 }
3272 
3273 static int hclgevf_get_status(struct hnae3_handle *handle)
3274 {
3275 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3276 
3277 	return hdev->hw.mac.link;
3278 }
3279 
3280 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3281 					    u8 *auto_neg, u32 *speed,
3282 					    u8 *duplex)
3283 {
3284 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3285 
3286 	if (speed)
3287 		*speed = hdev->hw.mac.speed;
3288 	if (duplex)
3289 		*duplex = hdev->hw.mac.duplex;
3290 	if (auto_neg)
3291 		*auto_neg = AUTONEG_DISABLE;
3292 }
3293 
3294 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3295 				 u8 duplex)
3296 {
3297 	hdev->hw.mac.speed = speed;
3298 	hdev->hw.mac.duplex = duplex;
3299 }
3300 
3301 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3302 {
3303 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3304 
3305 	return hclgevf_config_gro(hdev, enable);
3306 }
3307 
3308 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3309 				   u8 *module_type)
3310 {
3311 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3312 
3313 	if (media_type)
3314 		*media_type = hdev->hw.mac.media_type;
3315 
3316 	if (module_type)
3317 		*module_type = hdev->hw.mac.module_type;
3318 }
3319 
3320 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3321 {
3322 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3323 
3324 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3325 }
3326 
3327 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3328 {
3329 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3330 
3331 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3332 }
3333 
3334 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3335 {
3336 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3337 
3338 	return hdev->rst_stats.hw_rst_done_cnt;
3339 }
3340 
3341 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3342 				  unsigned long *supported,
3343 				  unsigned long *advertising)
3344 {
3345 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3346 
3347 	*supported = hdev->hw.mac.supported;
3348 	*advertising = hdev->hw.mac.advertising;
3349 }
3350 
3351 #define MAX_SEPARATE_NUM	4
3352 #define SEPARATOR_VALUE		0xFFFFFFFF
3353 #define REG_NUM_PER_LINE	4
3354 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3355 
3356 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3357 {
3358 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3359 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3360 
3361 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3362 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3363 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3364 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3365 
3366 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3367 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3368 }
3369 
3370 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3371 			     void *data)
3372 {
3373 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3374 	int i, j, reg_um, separator_num;
3375 	u32 *reg = data;
3376 
3377 	*version = hdev->fw_version;
3378 
3379 	/* fetching per-VF registers values from VF PCIe register space */
3380 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3381 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3382 	for (i = 0; i < reg_um; i++)
3383 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3384 	for (i = 0; i < separator_num; i++)
3385 		*reg++ = SEPARATOR_VALUE;
3386 
3387 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3388 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3389 	for (i = 0; i < reg_um; i++)
3390 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3391 	for (i = 0; i < separator_num; i++)
3392 		*reg++ = SEPARATOR_VALUE;
3393 
3394 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3395 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3396 	for (j = 0; j < hdev->num_tqps; j++) {
3397 		for (i = 0; i < reg_um; i++)
3398 			*reg++ = hclgevf_read_dev(&hdev->hw,
3399 						  ring_reg_addr_list[i] +
3400 						  0x200 * j);
3401 		for (i = 0; i < separator_num; i++)
3402 			*reg++ = SEPARATOR_VALUE;
3403 	}
3404 
3405 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3406 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3407 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3408 		for (i = 0; i < reg_um; i++)
3409 			*reg++ = hclgevf_read_dev(&hdev->hw,
3410 						  tqp_intr_reg_addr_list[i] +
3411 						  4 * j);
3412 		for (i = 0; i < separator_num; i++)
3413 			*reg++ = SEPARATOR_VALUE;
3414 	}
3415 }
3416 
3417 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3418 					u8 *port_base_vlan_info, u8 data_size)
3419 {
3420 	struct hnae3_handle *nic = &hdev->nic;
3421 	struct hclge_vf_to_pf_msg send_msg;
3422 
3423 	rtnl_lock();
3424 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3425 	rtnl_unlock();
3426 
3427 	/* send msg to PF and wait update port based vlan info */
3428 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3429 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3430 	memcpy(send_msg.data, port_base_vlan_info, data_size);
3431 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3432 
3433 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3434 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
3435 	else
3436 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3437 
3438 	rtnl_lock();
3439 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3440 	rtnl_unlock();
3441 }
3442 
3443 static const struct hnae3_ae_ops hclgevf_ops = {
3444 	.init_ae_dev = hclgevf_init_ae_dev,
3445 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3446 	.flr_prepare = hclgevf_flr_prepare,
3447 	.flr_done = hclgevf_flr_done,
3448 	.init_client_instance = hclgevf_init_client_instance,
3449 	.uninit_client_instance = hclgevf_uninit_client_instance,
3450 	.start = hclgevf_ae_start,
3451 	.stop = hclgevf_ae_stop,
3452 	.client_start = hclgevf_client_start,
3453 	.client_stop = hclgevf_client_stop,
3454 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3455 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3456 	.get_vector = hclgevf_get_vector,
3457 	.put_vector = hclgevf_put_vector,
3458 	.reset_queue = hclgevf_reset_tqp,
3459 	.get_mac_addr = hclgevf_get_mac_addr,
3460 	.set_mac_addr = hclgevf_set_mac_addr,
3461 	.add_uc_addr = hclgevf_add_uc_addr,
3462 	.rm_uc_addr = hclgevf_rm_uc_addr,
3463 	.add_mc_addr = hclgevf_add_mc_addr,
3464 	.rm_mc_addr = hclgevf_rm_mc_addr,
3465 	.get_stats = hclgevf_get_stats,
3466 	.update_stats = hclgevf_update_stats,
3467 	.get_strings = hclgevf_get_strings,
3468 	.get_sset_count = hclgevf_get_sset_count,
3469 	.get_rss_key_size = hclgevf_get_rss_key_size,
3470 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
3471 	.get_rss = hclgevf_get_rss,
3472 	.set_rss = hclgevf_set_rss,
3473 	.get_rss_tuple = hclgevf_get_rss_tuple,
3474 	.set_rss_tuple = hclgevf_set_rss_tuple,
3475 	.get_tc_size = hclgevf_get_tc_size,
3476 	.get_fw_version = hclgevf_get_fw_version,
3477 	.set_vlan_filter = hclgevf_set_vlan_filter,
3478 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3479 	.reset_event = hclgevf_reset_event,
3480 	.set_default_reset_request = hclgevf_set_def_reset_request,
3481 	.set_channels = hclgevf_set_channels,
3482 	.get_channels = hclgevf_get_channels,
3483 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3484 	.get_regs_len = hclgevf_get_regs_len,
3485 	.get_regs = hclgevf_get_regs,
3486 	.get_status = hclgevf_get_status,
3487 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3488 	.get_media_type = hclgevf_get_media_type,
3489 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3490 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3491 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3492 	.set_gro_en = hclgevf_gro_en,
3493 	.set_mtu = hclgevf_set_mtu,
3494 	.get_global_queue_id = hclgevf_get_qid_global,
3495 	.set_timer_task = hclgevf_set_timer_task,
3496 	.get_link_mode = hclgevf_get_link_mode,
3497 	.set_promisc_mode = hclgevf_set_promisc_mode,
3498 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3499 };
3500 
3501 static struct hnae3_ae_algo ae_algovf = {
3502 	.ops = &hclgevf_ops,
3503 	.pdev_id_table = ae_algovf_pci_tbl,
3504 };
3505 
3506 static int hclgevf_init(void)
3507 {
3508 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3509 
3510 	hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3511 	if (!hclgevf_wq) {
3512 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3513 		return -ENOMEM;
3514 	}
3515 
3516 	hnae3_register_ae_algo(&ae_algovf);
3517 
3518 	return 0;
3519 }
3520 
3521 static void hclgevf_exit(void)
3522 {
3523 	hnae3_unregister_ae_algo(&ae_algovf);
3524 	destroy_workqueue(hclgevf_wq);
3525 }
3526 module_init(hclgevf_init);
3527 module_exit(hclgevf_exit);
3528 
3529 MODULE_LICENSE("GPL");
3530 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3531 MODULE_DESCRIPTION("HCLGEVF Driver");
3532 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3533