1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 static const u8 hclgevf_hash_key[] = {
25 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
26 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
27 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
28 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
29 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
30 };
31 
32 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
33 
34 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
35 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
36 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
37 					 HCLGEVF_CMDQ_TX_TAIL_REG,
38 					 HCLGEVF_CMDQ_TX_HEAD_REG,
39 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
40 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
41 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
42 					 HCLGEVF_CMDQ_RX_TAIL_REG,
43 					 HCLGEVF_CMDQ_RX_HEAD_REG,
44 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
45 					 HCLGEVF_CMDQ_INTR_STS_REG,
46 					 HCLGEVF_CMDQ_INTR_EN_REG,
47 					 HCLGEVF_CMDQ_INTR_GEN_REG};
48 
49 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
50 					   HCLGEVF_RST_ING,
51 					   HCLGEVF_GRO_EN_REG};
52 
53 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
54 					 HCLGEVF_RING_RX_ADDR_H_REG,
55 					 HCLGEVF_RING_RX_BD_NUM_REG,
56 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
57 					 HCLGEVF_RING_RX_MERGE_EN_REG,
58 					 HCLGEVF_RING_RX_TAIL_REG,
59 					 HCLGEVF_RING_RX_HEAD_REG,
60 					 HCLGEVF_RING_RX_FBD_NUM_REG,
61 					 HCLGEVF_RING_RX_OFFSET_REG,
62 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
63 					 HCLGEVF_RING_RX_STASH_REG,
64 					 HCLGEVF_RING_RX_BD_ERR_REG,
65 					 HCLGEVF_RING_TX_ADDR_L_REG,
66 					 HCLGEVF_RING_TX_ADDR_H_REG,
67 					 HCLGEVF_RING_TX_BD_NUM_REG,
68 					 HCLGEVF_RING_TX_PRIORITY_REG,
69 					 HCLGEVF_RING_TX_TC_REG,
70 					 HCLGEVF_RING_TX_MERGE_EN_REG,
71 					 HCLGEVF_RING_TX_TAIL_REG,
72 					 HCLGEVF_RING_TX_HEAD_REG,
73 					 HCLGEVF_RING_TX_FBD_NUM_REG,
74 					 HCLGEVF_RING_TX_OFFSET_REG,
75 					 HCLGEVF_RING_TX_EBD_NUM_REG,
76 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
77 					 HCLGEVF_RING_TX_BD_ERR_REG,
78 					 HCLGEVF_RING_EN_REG};
79 
80 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
81 					     HCLGEVF_TQP_INTR_GL0_REG,
82 					     HCLGEVF_TQP_INTR_GL1_REG,
83 					     HCLGEVF_TQP_INTR_GL2_REG,
84 					     HCLGEVF_TQP_INTR_RL_REG};
85 
86 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
87 	struct hnae3_handle *handle)
88 {
89 	if (!handle->client)
90 		return container_of(handle, struct hclgevf_dev, nic);
91 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
92 		return container_of(handle, struct hclgevf_dev, roce);
93 	else
94 		return container_of(handle, struct hclgevf_dev, nic);
95 }
96 
97 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
98 {
99 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
100 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
101 	struct hclgevf_desc desc;
102 	struct hclgevf_tqp *tqp;
103 	int status;
104 	int i;
105 
106 	for (i = 0; i < kinfo->num_tqps; i++) {
107 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
108 		hclgevf_cmd_setup_basic_desc(&desc,
109 					     HCLGEVF_OPC_QUERY_RX_STATUS,
110 					     true);
111 
112 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
113 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
114 		if (status) {
115 			dev_err(&hdev->pdev->dev,
116 				"Query tqp stat fail, status = %d,queue = %d\n",
117 				status,	i);
118 			return status;
119 		}
120 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
121 			le32_to_cpu(desc.data[1]);
122 
123 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
124 					     true);
125 
126 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
127 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
128 		if (status) {
129 			dev_err(&hdev->pdev->dev,
130 				"Query tqp stat fail, status = %d,queue = %d\n",
131 				status, i);
132 			return status;
133 		}
134 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
135 			le32_to_cpu(desc.data[1]);
136 	}
137 
138 	return 0;
139 }
140 
141 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
142 {
143 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
144 	struct hclgevf_tqp *tqp;
145 	u64 *buff = data;
146 	int i;
147 
148 	for (i = 0; i < kinfo->num_tqps; i++) {
149 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
150 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
151 	}
152 	for (i = 0; i < kinfo->num_tqps; i++) {
153 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
154 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
155 	}
156 
157 	return buff;
158 }
159 
160 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
161 {
162 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
163 
164 	return kinfo->num_tqps * 2;
165 }
166 
167 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
168 {
169 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170 	u8 *buff = data;
171 	int i = 0;
172 
173 	for (i = 0; i < kinfo->num_tqps; i++) {
174 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
175 						       struct hclgevf_tqp, q);
176 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
177 			 tqp->index);
178 		buff += ETH_GSTRING_LEN;
179 	}
180 
181 	for (i = 0; i < kinfo->num_tqps; i++) {
182 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
183 						       struct hclgevf_tqp, q);
184 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
185 			 tqp->index);
186 		buff += ETH_GSTRING_LEN;
187 	}
188 
189 	return buff;
190 }
191 
192 static void hclgevf_update_stats(struct hnae3_handle *handle,
193 				 struct net_device_stats *net_stats)
194 {
195 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
196 	int status;
197 
198 	status = hclgevf_tqps_update_stats(handle);
199 	if (status)
200 		dev_err(&hdev->pdev->dev,
201 			"VF update of TQPS stats fail, status = %d.\n",
202 			status);
203 }
204 
205 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
206 {
207 	if (strset == ETH_SS_TEST)
208 		return -EOPNOTSUPP;
209 	else if (strset == ETH_SS_STATS)
210 		return hclgevf_tqps_get_sset_count(handle, strset);
211 
212 	return 0;
213 }
214 
215 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
216 				u8 *data)
217 {
218 	u8 *p = (char *)data;
219 
220 	if (strset == ETH_SS_STATS)
221 		p = hclgevf_tqps_get_strings(handle, p);
222 }
223 
224 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
225 {
226 	hclgevf_tqps_get_stats(handle, data);
227 }
228 
229 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
230 {
231 	u8 resp_msg;
232 	int status;
233 
234 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
235 				      true, &resp_msg, sizeof(u8));
236 	if (status) {
237 		dev_err(&hdev->pdev->dev,
238 			"VF request to get TC info from PF failed %d",
239 			status);
240 		return status;
241 	}
242 
243 	hdev->hw_tc_map = resp_msg;
244 
245 	return 0;
246 }
247 
248 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
249 {
250 #define HCLGEVF_TQPS_RSS_INFO_LEN	8
251 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
252 	int status;
253 
254 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
255 				      true, resp_msg,
256 				      HCLGEVF_TQPS_RSS_INFO_LEN);
257 	if (status) {
258 		dev_err(&hdev->pdev->dev,
259 			"VF request to get tqp info from PF failed %d",
260 			status);
261 		return status;
262 	}
263 
264 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
265 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
266 	memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16));
267 	memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16));
268 
269 	return 0;
270 }
271 
272 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
273 {
274 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
275 	u8 msg_data[2], resp_data[2];
276 	u16 qid_in_pf = 0;
277 	int ret;
278 
279 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
280 
281 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
282 				   2, true, resp_data, 2);
283 	if (!ret)
284 		qid_in_pf = *(u16 *)resp_data;
285 
286 	return qid_in_pf;
287 }
288 
289 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
290 {
291 	struct hclgevf_tqp *tqp;
292 	int i;
293 
294 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
295 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
296 	if (!hdev->htqp)
297 		return -ENOMEM;
298 
299 	tqp = hdev->htqp;
300 
301 	for (i = 0; i < hdev->num_tqps; i++) {
302 		tqp->dev = &hdev->pdev->dev;
303 		tqp->index = i;
304 
305 		tqp->q.ae_algo = &ae_algovf;
306 		tqp->q.buf_size = hdev->rx_buf_len;
307 		tqp->q.desc_num = hdev->num_desc;
308 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
309 			i * HCLGEVF_TQP_REG_SIZE;
310 
311 		tqp++;
312 	}
313 
314 	return 0;
315 }
316 
317 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
318 {
319 	struct hnae3_handle *nic = &hdev->nic;
320 	struct hnae3_knic_private_info *kinfo;
321 	u16 new_tqps = hdev->num_tqps;
322 	int i;
323 
324 	kinfo = &nic->kinfo;
325 	kinfo->num_tc = 0;
326 	kinfo->num_desc = hdev->num_desc;
327 	kinfo->rx_buf_len = hdev->rx_buf_len;
328 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
329 		if (hdev->hw_tc_map & BIT(i))
330 			kinfo->num_tc++;
331 
332 	kinfo->rss_size
333 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
334 	new_tqps = kinfo->rss_size * kinfo->num_tc;
335 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
336 
337 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
338 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
339 	if (!kinfo->tqp)
340 		return -ENOMEM;
341 
342 	for (i = 0; i < kinfo->num_tqps; i++) {
343 		hdev->htqp[i].q.handle = &hdev->nic;
344 		hdev->htqp[i].q.tqp_index = i;
345 		kinfo->tqp[i] = &hdev->htqp[i].q;
346 	}
347 
348 	return 0;
349 }
350 
351 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
352 {
353 	int status;
354 	u8 resp_msg;
355 
356 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
357 				      0, false, &resp_msg, sizeof(u8));
358 	if (status)
359 		dev_err(&hdev->pdev->dev,
360 			"VF failed to fetch link status(%d) from PF", status);
361 }
362 
363 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
364 {
365 	struct hnae3_handle *rhandle = &hdev->roce;
366 	struct hnae3_handle *handle = &hdev->nic;
367 	struct hnae3_client *rclient;
368 	struct hnae3_client *client;
369 
370 	client = handle->client;
371 	rclient = hdev->roce_client;
372 
373 	link_state =
374 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
375 
376 	if (link_state != hdev->hw.mac.link) {
377 		client->ops->link_status_change(handle, !!link_state);
378 		if (rclient && rclient->ops->link_status_change)
379 			rclient->ops->link_status_change(rhandle, !!link_state);
380 		hdev->hw.mac.link = link_state;
381 	}
382 }
383 
384 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
385 {
386 	struct hnae3_handle *nic = &hdev->nic;
387 	int ret;
388 
389 	nic->ae_algo = &ae_algovf;
390 	nic->pdev = hdev->pdev;
391 	nic->numa_node_mask = hdev->numa_node_mask;
392 	nic->flags |= HNAE3_SUPPORT_VF;
393 
394 	if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
395 		dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
396 			hdev->ae_dev->dev_type);
397 		return -EINVAL;
398 	}
399 
400 	ret = hclgevf_knic_setup(hdev);
401 	if (ret)
402 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
403 			ret);
404 	return ret;
405 }
406 
407 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
408 {
409 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
410 		dev_warn(&hdev->pdev->dev,
411 			 "vector(vector_id %d) has been freed.\n", vector_id);
412 		return;
413 	}
414 
415 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
416 	hdev->num_msi_left += 1;
417 	hdev->num_msi_used -= 1;
418 }
419 
420 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
421 			      struct hnae3_vector_info *vector_info)
422 {
423 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
424 	struct hnae3_vector_info *vector = vector_info;
425 	int alloc = 0;
426 	int i, j;
427 
428 	vector_num = min(hdev->num_msi_left, vector_num);
429 
430 	for (j = 0; j < vector_num; j++) {
431 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
432 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
433 				vector->vector = pci_irq_vector(hdev->pdev, i);
434 				vector->io_addr = hdev->hw.io_base +
435 					HCLGEVF_VECTOR_REG_BASE +
436 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
437 				hdev->vector_status[i] = 0;
438 				hdev->vector_irq[i] = vector->vector;
439 
440 				vector++;
441 				alloc++;
442 
443 				break;
444 			}
445 		}
446 	}
447 	hdev->num_msi_left -= alloc;
448 	hdev->num_msi_used += alloc;
449 
450 	return alloc;
451 }
452 
453 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
454 {
455 	int i;
456 
457 	for (i = 0; i < hdev->num_msi; i++)
458 		if (vector == hdev->vector_irq[i])
459 			return i;
460 
461 	return -EINVAL;
462 }
463 
464 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
465 				    const u8 hfunc, const u8 *key)
466 {
467 	struct hclgevf_rss_config_cmd *req;
468 	struct hclgevf_desc desc;
469 	int key_offset;
470 	int key_size;
471 	int ret;
472 
473 	req = (struct hclgevf_rss_config_cmd *)desc.data;
474 
475 	for (key_offset = 0; key_offset < 3; key_offset++) {
476 		hclgevf_cmd_setup_basic_desc(&desc,
477 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
478 					     false);
479 
480 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
481 		req->hash_config |=
482 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
483 
484 		if (key_offset == 2)
485 			key_size =
486 			HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
487 		else
488 			key_size = HCLGEVF_RSS_HASH_KEY_NUM;
489 
490 		memcpy(req->hash_key,
491 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
492 
493 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
494 		if (ret) {
495 			dev_err(&hdev->pdev->dev,
496 				"Configure RSS config fail, status = %d\n",
497 				ret);
498 			return ret;
499 		}
500 	}
501 
502 	return 0;
503 }
504 
505 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
506 {
507 	return HCLGEVF_RSS_KEY_SIZE;
508 }
509 
510 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
511 {
512 	return HCLGEVF_RSS_IND_TBL_SIZE;
513 }
514 
515 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
516 {
517 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
518 	struct hclgevf_rss_indirection_table_cmd *req;
519 	struct hclgevf_desc desc;
520 	int status;
521 	int i, j;
522 
523 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
524 
525 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
526 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
527 					     false);
528 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
529 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
530 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
531 			req->rss_result[j] =
532 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
533 
534 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
535 		if (status) {
536 			dev_err(&hdev->pdev->dev,
537 				"VF failed(=%d) to set RSS indirection table\n",
538 				status);
539 			return status;
540 		}
541 	}
542 
543 	return 0;
544 }
545 
546 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
547 {
548 	struct hclgevf_rss_tc_mode_cmd *req;
549 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
550 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
551 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
552 	struct hclgevf_desc desc;
553 	u16 roundup_size;
554 	int status;
555 	int i;
556 
557 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
558 
559 	roundup_size = roundup_pow_of_two(rss_size);
560 	roundup_size = ilog2(roundup_size);
561 
562 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
563 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
564 		tc_size[i] = roundup_size;
565 		tc_offset[i] = rss_size * i;
566 	}
567 
568 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
569 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
570 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
571 			      (tc_valid[i] & 0x1));
572 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
573 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
574 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
575 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
576 	}
577 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
578 	if (status)
579 		dev_err(&hdev->pdev->dev,
580 			"VF failed(=%d) to set rss tc mode\n", status);
581 
582 	return status;
583 }
584 
585 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
586 			   u8 *hfunc)
587 {
588 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
589 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
590 	int i;
591 
592 	if (handle->pdev->revision >= 0x21) {
593 		/* Get hash algorithm */
594 		if (hfunc) {
595 			switch (rss_cfg->hash_algo) {
596 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
597 				*hfunc = ETH_RSS_HASH_TOP;
598 				break;
599 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
600 				*hfunc = ETH_RSS_HASH_XOR;
601 				break;
602 			default:
603 				*hfunc = ETH_RSS_HASH_UNKNOWN;
604 				break;
605 			}
606 		}
607 
608 		/* Get the RSS Key required by the user */
609 		if (key)
610 			memcpy(key, rss_cfg->rss_hash_key,
611 			       HCLGEVF_RSS_KEY_SIZE);
612 	}
613 
614 	if (indir)
615 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
616 			indir[i] = rss_cfg->rss_indirection_tbl[i];
617 
618 	return 0;
619 }
620 
621 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
622 			   const  u8 *key, const  u8 hfunc)
623 {
624 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
625 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
626 	int ret, i;
627 
628 	if (handle->pdev->revision >= 0x21) {
629 		/* Set the RSS Hash Key if specififed by the user */
630 		if (key) {
631 			switch (hfunc) {
632 			case ETH_RSS_HASH_TOP:
633 				rss_cfg->hash_algo =
634 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
635 				break;
636 			case ETH_RSS_HASH_XOR:
637 				rss_cfg->hash_algo =
638 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
639 				break;
640 			case ETH_RSS_HASH_NO_CHANGE:
641 				break;
642 			default:
643 				return -EINVAL;
644 			}
645 
646 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
647 						       key);
648 			if (ret)
649 				return ret;
650 
651 			/* Update the shadow RSS key with user specified qids */
652 			memcpy(rss_cfg->rss_hash_key, key,
653 			       HCLGEVF_RSS_KEY_SIZE);
654 		}
655 	}
656 
657 	/* update the shadow RSS table with user specified qids */
658 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
659 		rss_cfg->rss_indirection_tbl[i] = indir[i];
660 
661 	/* update the hardware */
662 	return hclgevf_set_rss_indir_table(hdev);
663 }
664 
665 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
666 {
667 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
668 
669 	if (nfc->data & RXH_L4_B_2_3)
670 		hash_sets |= HCLGEVF_D_PORT_BIT;
671 	else
672 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
673 
674 	if (nfc->data & RXH_IP_SRC)
675 		hash_sets |= HCLGEVF_S_IP_BIT;
676 	else
677 		hash_sets &= ~HCLGEVF_S_IP_BIT;
678 
679 	if (nfc->data & RXH_IP_DST)
680 		hash_sets |= HCLGEVF_D_IP_BIT;
681 	else
682 		hash_sets &= ~HCLGEVF_D_IP_BIT;
683 
684 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
685 		hash_sets |= HCLGEVF_V_TAG_BIT;
686 
687 	return hash_sets;
688 }
689 
690 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
691 				 struct ethtool_rxnfc *nfc)
692 {
693 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
694 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
695 	struct hclgevf_rss_input_tuple_cmd *req;
696 	struct hclgevf_desc desc;
697 	u8 tuple_sets;
698 	int ret;
699 
700 	if (handle->pdev->revision == 0x20)
701 		return -EOPNOTSUPP;
702 
703 	if (nfc->data &
704 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
705 		return -EINVAL;
706 
707 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
708 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
709 
710 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
711 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
712 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
713 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
714 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
715 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
716 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
717 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
718 
719 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
720 	switch (nfc->flow_type) {
721 	case TCP_V4_FLOW:
722 		req->ipv4_tcp_en = tuple_sets;
723 		break;
724 	case TCP_V6_FLOW:
725 		req->ipv6_tcp_en = tuple_sets;
726 		break;
727 	case UDP_V4_FLOW:
728 		req->ipv4_udp_en = tuple_sets;
729 		break;
730 	case UDP_V6_FLOW:
731 		req->ipv6_udp_en = tuple_sets;
732 		break;
733 	case SCTP_V4_FLOW:
734 		req->ipv4_sctp_en = tuple_sets;
735 		break;
736 	case SCTP_V6_FLOW:
737 		if ((nfc->data & RXH_L4_B_0_1) ||
738 		    (nfc->data & RXH_L4_B_2_3))
739 			return -EINVAL;
740 
741 		req->ipv6_sctp_en = tuple_sets;
742 		break;
743 	case IPV4_FLOW:
744 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
745 		break;
746 	case IPV6_FLOW:
747 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
748 		break;
749 	default:
750 		return -EINVAL;
751 	}
752 
753 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
754 	if (ret) {
755 		dev_err(&hdev->pdev->dev,
756 			"Set rss tuple fail, status = %d\n", ret);
757 		return ret;
758 	}
759 
760 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
761 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
762 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
763 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
764 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
765 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
766 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
767 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
768 	return 0;
769 }
770 
771 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
772 				 struct ethtool_rxnfc *nfc)
773 {
774 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
775 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
776 	u8 tuple_sets;
777 
778 	if (handle->pdev->revision == 0x20)
779 		return -EOPNOTSUPP;
780 
781 	nfc->data = 0;
782 
783 	switch (nfc->flow_type) {
784 	case TCP_V4_FLOW:
785 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
786 		break;
787 	case UDP_V4_FLOW:
788 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
789 		break;
790 	case TCP_V6_FLOW:
791 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
792 		break;
793 	case UDP_V6_FLOW:
794 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
795 		break;
796 	case SCTP_V4_FLOW:
797 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
798 		break;
799 	case SCTP_V6_FLOW:
800 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
801 		break;
802 	case IPV4_FLOW:
803 	case IPV6_FLOW:
804 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
805 		break;
806 	default:
807 		return -EINVAL;
808 	}
809 
810 	if (!tuple_sets)
811 		return 0;
812 
813 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
814 		nfc->data |= RXH_L4_B_2_3;
815 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
816 		nfc->data |= RXH_L4_B_0_1;
817 	if (tuple_sets & HCLGEVF_D_IP_BIT)
818 		nfc->data |= RXH_IP_DST;
819 	if (tuple_sets & HCLGEVF_S_IP_BIT)
820 		nfc->data |= RXH_IP_SRC;
821 
822 	return 0;
823 }
824 
825 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
826 				       struct hclgevf_rss_cfg *rss_cfg)
827 {
828 	struct hclgevf_rss_input_tuple_cmd *req;
829 	struct hclgevf_desc desc;
830 	int ret;
831 
832 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
833 
834 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
835 
836 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
837 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
838 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
839 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
840 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
841 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
842 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
843 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
844 
845 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
846 	if (ret)
847 		dev_err(&hdev->pdev->dev,
848 			"Configure rss input fail, status = %d\n", ret);
849 	return ret;
850 }
851 
852 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
853 {
854 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
855 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
856 
857 	return rss_cfg->rss_size;
858 }
859 
860 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
861 				       int vector_id,
862 				       struct hnae3_ring_chain_node *ring_chain)
863 {
864 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
865 	struct hnae3_ring_chain_node *node;
866 	struct hclge_mbx_vf_to_pf_cmd *req;
867 	struct hclgevf_desc desc;
868 	int i = 0;
869 	int status;
870 	u8 type;
871 
872 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
873 
874 	for (node = ring_chain; node; node = node->next) {
875 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
876 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
877 
878 		if (i == 0) {
879 			hclgevf_cmd_setup_basic_desc(&desc,
880 						     HCLGEVF_OPC_MBX_VF_TO_PF,
881 						     false);
882 			type = en ?
883 				HCLGE_MBX_MAP_RING_TO_VECTOR :
884 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
885 			req->msg[0] = type;
886 			req->msg[1] = vector_id;
887 		}
888 
889 		req->msg[idx_offset] =
890 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
891 		req->msg[idx_offset + 1] = node->tqp_index;
892 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
893 							   HNAE3_RING_GL_IDX_M,
894 							   HNAE3_RING_GL_IDX_S);
895 
896 		i++;
897 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
898 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
899 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
900 		    !node->next) {
901 			req->msg[2] = i;
902 
903 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
904 			if (status) {
905 				dev_err(&hdev->pdev->dev,
906 					"Map TQP fail, status is %d.\n",
907 					status);
908 				return status;
909 			}
910 			i = 0;
911 			hclgevf_cmd_setup_basic_desc(&desc,
912 						     HCLGEVF_OPC_MBX_VF_TO_PF,
913 						     false);
914 			req->msg[0] = type;
915 			req->msg[1] = vector_id;
916 		}
917 	}
918 
919 	return 0;
920 }
921 
922 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
923 				      struct hnae3_ring_chain_node *ring_chain)
924 {
925 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
926 	int vector_id;
927 
928 	vector_id = hclgevf_get_vector_index(hdev, vector);
929 	if (vector_id < 0) {
930 		dev_err(&handle->pdev->dev,
931 			"Get vector index fail. ret =%d\n", vector_id);
932 		return vector_id;
933 	}
934 
935 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
936 }
937 
938 static int hclgevf_unmap_ring_from_vector(
939 				struct hnae3_handle *handle,
940 				int vector,
941 				struct hnae3_ring_chain_node *ring_chain)
942 {
943 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
944 	int ret, vector_id;
945 
946 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
947 		return 0;
948 
949 	vector_id = hclgevf_get_vector_index(hdev, vector);
950 	if (vector_id < 0) {
951 		dev_err(&handle->pdev->dev,
952 			"Get vector index fail. ret =%d\n", vector_id);
953 		return vector_id;
954 	}
955 
956 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
957 	if (ret)
958 		dev_err(&handle->pdev->dev,
959 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
960 			vector_id,
961 			ret);
962 
963 	return ret;
964 }
965 
966 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
967 {
968 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
969 	int vector_id;
970 
971 	vector_id = hclgevf_get_vector_index(hdev, vector);
972 	if (vector_id < 0) {
973 		dev_err(&handle->pdev->dev,
974 			"hclgevf_put_vector get vector index fail. ret =%d\n",
975 			vector_id);
976 		return vector_id;
977 	}
978 
979 	hclgevf_free_vector(hdev, vector_id);
980 
981 	return 0;
982 }
983 
984 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
985 					bool en_bc_pmc)
986 {
987 	struct hclge_mbx_vf_to_pf_cmd *req;
988 	struct hclgevf_desc desc;
989 	int ret;
990 
991 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
992 
993 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
994 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
995 	req->msg[1] = en_bc_pmc ? 1 : 0;
996 
997 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
998 	if (ret)
999 		dev_err(&hdev->pdev->dev,
1000 			"Set promisc mode fail, status is %d.\n", ret);
1001 
1002 	return ret;
1003 }
1004 
1005 static int hclgevf_set_promisc_mode(struct hclgevf_dev *hdev, bool en_bc_pmc)
1006 {
1007 	return hclgevf_cmd_set_promisc_mode(hdev, en_bc_pmc);
1008 }
1009 
1010 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
1011 			      int stream_id, bool enable)
1012 {
1013 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1014 	struct hclgevf_desc desc;
1015 	int status;
1016 
1017 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1018 
1019 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1020 				     false);
1021 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1022 	req->stream_id = cpu_to_le16(stream_id);
1023 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
1024 
1025 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1026 	if (status)
1027 		dev_err(&hdev->pdev->dev,
1028 			"TQP enable fail, status =%d.\n", status);
1029 
1030 	return status;
1031 }
1032 
1033 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1034 {
1035 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1036 	struct hclgevf_tqp *tqp;
1037 	int i;
1038 
1039 	for (i = 0; i < kinfo->num_tqps; i++) {
1040 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1041 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1042 	}
1043 }
1044 
1045 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1046 {
1047 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1048 
1049 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
1050 }
1051 
1052 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1053 				bool is_first)
1054 {
1055 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1056 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1057 	u8 *new_mac_addr = (u8 *)p;
1058 	u8 msg_data[ETH_ALEN * 2];
1059 	u16 subcode;
1060 	int status;
1061 
1062 	ether_addr_copy(msg_data, new_mac_addr);
1063 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1064 
1065 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1066 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1067 
1068 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1069 				      subcode, msg_data, ETH_ALEN * 2,
1070 				      true, NULL, 0);
1071 	if (!status)
1072 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1073 
1074 	return status;
1075 }
1076 
1077 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1078 			       const unsigned char *addr)
1079 {
1080 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1081 
1082 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1083 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1084 				    addr, ETH_ALEN, false, NULL, 0);
1085 }
1086 
1087 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1088 			      const unsigned char *addr)
1089 {
1090 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1091 
1092 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1093 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1094 				    addr, ETH_ALEN, false, NULL, 0);
1095 }
1096 
1097 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1098 			       const unsigned char *addr)
1099 {
1100 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1101 
1102 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1103 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1104 				    addr, ETH_ALEN, false, NULL, 0);
1105 }
1106 
1107 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1108 			      const unsigned char *addr)
1109 {
1110 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1111 
1112 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1113 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1114 				    addr, ETH_ALEN, false, NULL, 0);
1115 }
1116 
1117 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1118 				   __be16 proto, u16 vlan_id,
1119 				   bool is_kill)
1120 {
1121 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1122 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1123 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1124 
1125 	if (vlan_id > 4095)
1126 		return -EINVAL;
1127 
1128 	if (proto != htons(ETH_P_8021Q))
1129 		return -EPROTONOSUPPORT;
1130 
1131 	msg_data[0] = is_kill;
1132 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1133 	memcpy(&msg_data[3], &proto, sizeof(proto));
1134 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1135 				    HCLGE_MBX_VLAN_FILTER, msg_data,
1136 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1137 }
1138 
1139 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1140 {
1141 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1142 	u8 msg_data;
1143 
1144 	msg_data = enable ? 1 : 0;
1145 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1146 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1147 				    1, false, NULL, 0);
1148 }
1149 
1150 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1151 {
1152 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1153 	u8 msg_data[2];
1154 	int ret;
1155 
1156 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
1157 
1158 	/* disable vf queue before send queue reset msg to PF */
1159 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1160 	if (ret)
1161 		return ret;
1162 
1163 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1164 				    2, true, NULL, 0);
1165 }
1166 
1167 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1168 {
1169 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1170 
1171 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1172 				    sizeof(new_mtu), true, NULL, 0);
1173 }
1174 
1175 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1176 				 enum hnae3_reset_notify_type type)
1177 {
1178 	struct hnae3_client *client = hdev->nic_client;
1179 	struct hnae3_handle *handle = &hdev->nic;
1180 	int ret;
1181 
1182 	if (!client->ops->reset_notify)
1183 		return -EOPNOTSUPP;
1184 
1185 	ret = client->ops->reset_notify(handle, type);
1186 	if (ret)
1187 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1188 			type, ret);
1189 
1190 	return ret;
1191 }
1192 
1193 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1194 {
1195 	struct hclgevf_dev *hdev = ae_dev->priv;
1196 
1197 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1198 }
1199 
1200 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1201 				    unsigned long delay_us,
1202 				    unsigned long wait_cnt)
1203 {
1204 	unsigned long cnt = 0;
1205 
1206 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1207 	       cnt++ < wait_cnt)
1208 		usleep_range(delay_us, delay_us * 2);
1209 
1210 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1211 		dev_err(&hdev->pdev->dev,
1212 			"flr wait timeout\n");
1213 		return -ETIMEDOUT;
1214 	}
1215 
1216 	return 0;
1217 }
1218 
1219 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1220 {
1221 #define HCLGEVF_RESET_WAIT_US	20000
1222 #define HCLGEVF_RESET_WAIT_CNT	2000
1223 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1224 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1225 
1226 	u32 val;
1227 	int ret;
1228 
1229 	/* wait to check the hardware reset completion status */
1230 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1231 	dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1232 
1233 	if (hdev->reset_type == HNAE3_FLR_RESET)
1234 		return hclgevf_flr_poll_timeout(hdev,
1235 						HCLGEVF_RESET_WAIT_US,
1236 						HCLGEVF_RESET_WAIT_CNT);
1237 
1238 	ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1239 				 !(val & HCLGEVF_RST_ING_BITS),
1240 				 HCLGEVF_RESET_WAIT_US,
1241 				 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1242 
1243 	/* hardware completion status should be available by this time */
1244 	if (ret) {
1245 		dev_err(&hdev->pdev->dev,
1246 			"could'nt get reset done status from h/w, timeout!\n");
1247 		return ret;
1248 	}
1249 
1250 	/* we will wait a bit more to let reset of the stack to complete. This
1251 	 * might happen in case reset assertion was made by PF. Yes, this also
1252 	 * means we might end up waiting bit more even for VF reset.
1253 	 */
1254 	msleep(5000);
1255 
1256 	return 0;
1257 }
1258 
1259 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1260 {
1261 	int ret;
1262 
1263 	/* uninitialize the nic client */
1264 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1265 	if (ret)
1266 		return ret;
1267 
1268 	/* re-initialize the hclge device */
1269 	ret = hclgevf_reset_hdev(hdev);
1270 	if (ret) {
1271 		dev_err(&hdev->pdev->dev,
1272 			"hclge device re-init failed, VF is disabled!\n");
1273 		return ret;
1274 	}
1275 
1276 	/* bring up the nic client again */
1277 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1278 	if (ret)
1279 		return ret;
1280 
1281 	return hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1282 }
1283 
1284 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1285 {
1286 	int ret = 0;
1287 
1288 	switch (hdev->reset_type) {
1289 	case HNAE3_VF_FUNC_RESET:
1290 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1291 					   0, true, NULL, sizeof(u8));
1292 		break;
1293 	case HNAE3_FLR_RESET:
1294 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1295 		break;
1296 	default:
1297 		break;
1298 	}
1299 
1300 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1301 
1302 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1303 		 hdev->reset_type, ret);
1304 
1305 	return ret;
1306 }
1307 
1308 static int hclgevf_reset(struct hclgevf_dev *hdev)
1309 {
1310 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1311 	int ret;
1312 
1313 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1314 	 * know if device is undergoing reset
1315 	 */
1316 	ae_dev->reset_type = hdev->reset_type;
1317 	hdev->reset_count++;
1318 	rtnl_lock();
1319 
1320 	/* bring down the nic to stop any ongoing TX/RX */
1321 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1322 	if (ret)
1323 		goto err_reset_lock;
1324 
1325 	rtnl_unlock();
1326 
1327 	ret = hclgevf_reset_prepare_wait(hdev);
1328 	if (ret)
1329 		goto err_reset;
1330 
1331 	/* check if VF could successfully fetch the hardware reset completion
1332 	 * status from the hardware
1333 	 */
1334 	ret = hclgevf_reset_wait(hdev);
1335 	if (ret) {
1336 		/* can't do much in this situation, will disable VF */
1337 		dev_err(&hdev->pdev->dev,
1338 			"VF failed(=%d) to fetch H/W reset completion status\n",
1339 			ret);
1340 		goto err_reset;
1341 	}
1342 
1343 	rtnl_lock();
1344 
1345 	/* now, re-initialize the nic client and ae device*/
1346 	ret = hclgevf_reset_stack(hdev);
1347 	if (ret) {
1348 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1349 		goto err_reset_lock;
1350 	}
1351 
1352 	/* bring up the nic to enable TX/RX again */
1353 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1354 	if (ret)
1355 		goto err_reset_lock;
1356 
1357 	rtnl_unlock();
1358 
1359 	hdev->last_reset_time = jiffies;
1360 	ae_dev->reset_type = HNAE3_NONE_RESET;
1361 
1362 	return ret;
1363 err_reset_lock:
1364 	rtnl_unlock();
1365 err_reset:
1366 	/* When VF reset failed, only the higher level reset asserted by PF
1367 	 * can restore it, so re-initialize the command queue to receive
1368 	 * this higher reset event.
1369 	 */
1370 	hclgevf_cmd_init(hdev);
1371 	dev_err(&hdev->pdev->dev, "failed to reset VF\n");
1372 
1373 	return ret;
1374 }
1375 
1376 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1377 						     unsigned long *addr)
1378 {
1379 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1380 
1381 	/* return the highest priority reset level amongst all */
1382 	if (test_bit(HNAE3_VF_RESET, addr)) {
1383 		rst_level = HNAE3_VF_RESET;
1384 		clear_bit(HNAE3_VF_RESET, addr);
1385 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1386 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1387 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1388 		rst_level = HNAE3_VF_FULL_RESET;
1389 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1390 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1391 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1392 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1393 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1394 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1395 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1396 		rst_level = HNAE3_VF_FUNC_RESET;
1397 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1398 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1399 		rst_level = HNAE3_FLR_RESET;
1400 		clear_bit(HNAE3_FLR_RESET, addr);
1401 	}
1402 
1403 	return rst_level;
1404 }
1405 
1406 static void hclgevf_reset_event(struct pci_dev *pdev,
1407 				struct hnae3_handle *handle)
1408 {
1409 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1410 	struct hclgevf_dev *hdev = ae_dev->priv;
1411 
1412 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1413 
1414 	if (hdev->default_reset_request)
1415 		hdev->reset_level =
1416 			hclgevf_get_reset_level(hdev,
1417 						&hdev->default_reset_request);
1418 	else
1419 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1420 
1421 	/* reset of this VF requested */
1422 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1423 	hclgevf_reset_task_schedule(hdev);
1424 
1425 	hdev->last_reset_time = jiffies;
1426 }
1427 
1428 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1429 					  enum hnae3_reset_type rst_type)
1430 {
1431 	struct hclgevf_dev *hdev = ae_dev->priv;
1432 
1433 	set_bit(rst_type, &hdev->default_reset_request);
1434 }
1435 
1436 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1437 {
1438 #define HCLGEVF_FLR_WAIT_MS	100
1439 #define HCLGEVF_FLR_WAIT_CNT	50
1440 	struct hclgevf_dev *hdev = ae_dev->priv;
1441 	int cnt = 0;
1442 
1443 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1444 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1445 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1446 	hclgevf_reset_event(hdev->pdev, NULL);
1447 
1448 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1449 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1450 		msleep(HCLGEVF_FLR_WAIT_MS);
1451 
1452 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1453 		dev_err(&hdev->pdev->dev,
1454 			"flr wait down timeout: %d\n", cnt);
1455 }
1456 
1457 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1458 {
1459 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1460 
1461 	return hdev->fw_version;
1462 }
1463 
1464 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1465 {
1466 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1467 
1468 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1469 					    HCLGEVF_MISC_VECTOR_NUM);
1470 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1471 	/* vector status always valid for Vector 0 */
1472 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1473 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1474 
1475 	hdev->num_msi_left -= 1;
1476 	hdev->num_msi_used += 1;
1477 }
1478 
1479 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1480 {
1481 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1482 	    !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
1483 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1484 		schedule_work(&hdev->rst_service_task);
1485 	}
1486 }
1487 
1488 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1489 {
1490 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1491 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1492 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1493 		schedule_work(&hdev->mbx_service_task);
1494 	}
1495 }
1496 
1497 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1498 {
1499 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1500 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1501 		schedule_work(&hdev->service_task);
1502 }
1503 
1504 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1505 {
1506 	/* if we have any pending mailbox event then schedule the mbx task */
1507 	if (hdev->mbx_event_pending)
1508 		hclgevf_mbx_task_schedule(hdev);
1509 
1510 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1511 		hclgevf_reset_task_schedule(hdev);
1512 }
1513 
1514 static void hclgevf_service_timer(struct timer_list *t)
1515 {
1516 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1517 
1518 	mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1519 
1520 	hclgevf_task_schedule(hdev);
1521 }
1522 
1523 static void hclgevf_reset_service_task(struct work_struct *work)
1524 {
1525 	struct hclgevf_dev *hdev =
1526 		container_of(work, struct hclgevf_dev, rst_service_task);
1527 	int ret;
1528 
1529 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1530 		return;
1531 
1532 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1533 
1534 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1535 			       &hdev->reset_state)) {
1536 		/* PF has initmated that it is about to reset the hardware.
1537 		 * We now have to poll & check if harware has actually completed
1538 		 * the reset sequence. On hardware reset completion, VF needs to
1539 		 * reset the client and ae device.
1540 		 */
1541 		hdev->reset_attempts = 0;
1542 
1543 		hdev->last_reset_time = jiffies;
1544 		while ((hdev->reset_type =
1545 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1546 		       != HNAE3_NONE_RESET) {
1547 			ret = hclgevf_reset(hdev);
1548 			if (ret)
1549 				dev_err(&hdev->pdev->dev,
1550 					"VF stack reset failed %d.\n", ret);
1551 		}
1552 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1553 				      &hdev->reset_state)) {
1554 		/* we could be here when either of below happens:
1555 		 * 1. reset was initiated due to watchdog timeout due to
1556 		 *    a. IMP was earlier reset and our TX got choked down and
1557 		 *       which resulted in watchdog reacting and inducing VF
1558 		 *       reset. This also means our cmdq would be unreliable.
1559 		 *    b. problem in TX due to other lower layer(example link
1560 		 *       layer not functioning properly etc.)
1561 		 * 2. VF reset might have been initiated due to some config
1562 		 *    change.
1563 		 *
1564 		 * NOTE: Theres no clear way to detect above cases than to react
1565 		 * to the response of PF for this reset request. PF will ack the
1566 		 * 1b and 2. cases but we will not get any intimation about 1a
1567 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1568 		 * communication between PF and VF would be broken.
1569 		 */
1570 
1571 		/* if we are never geting into pending state it means either:
1572 		 * 1. PF is not receiving our request which could be due to IMP
1573 		 *    reset
1574 		 * 2. PF is screwed
1575 		 * We cannot do much for 2. but to check first we can try reset
1576 		 * our PCIe + stack and see if it alleviates the problem.
1577 		 */
1578 		if (hdev->reset_attempts > 3) {
1579 			/* prepare for full reset of stack + pcie interface */
1580 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1581 
1582 			/* "defer" schedule the reset task again */
1583 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1584 		} else {
1585 			hdev->reset_attempts++;
1586 
1587 			set_bit(hdev->reset_level, &hdev->reset_pending);
1588 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1589 		}
1590 		hclgevf_reset_task_schedule(hdev);
1591 	}
1592 
1593 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1594 }
1595 
1596 static void hclgevf_mailbox_service_task(struct work_struct *work)
1597 {
1598 	struct hclgevf_dev *hdev;
1599 
1600 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1601 
1602 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1603 		return;
1604 
1605 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1606 
1607 	hclgevf_mbx_async_handler(hdev);
1608 
1609 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1610 }
1611 
1612 static void hclgevf_keep_alive_timer(struct timer_list *t)
1613 {
1614 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1615 
1616 	schedule_work(&hdev->keep_alive_task);
1617 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
1618 }
1619 
1620 static void hclgevf_keep_alive_task(struct work_struct *work)
1621 {
1622 	struct hclgevf_dev *hdev;
1623 	u8 respmsg;
1624 	int ret;
1625 
1626 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1627 
1628 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1629 		return;
1630 
1631 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1632 				   0, false, &respmsg, sizeof(u8));
1633 	if (ret)
1634 		dev_err(&hdev->pdev->dev,
1635 			"VF sends keep alive cmd failed(=%d)\n", ret);
1636 }
1637 
1638 static void hclgevf_service_task(struct work_struct *work)
1639 {
1640 	struct hclgevf_dev *hdev;
1641 
1642 	hdev = container_of(work, struct hclgevf_dev, service_task);
1643 
1644 	/* request the link status from the PF. PF would be able to tell VF
1645 	 * about such updates in future so we might remove this later
1646 	 */
1647 	hclgevf_request_link_info(hdev);
1648 
1649 	hclgevf_deferred_task_schedule(hdev);
1650 
1651 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1652 }
1653 
1654 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1655 {
1656 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1657 }
1658 
1659 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1660 						      u32 *clearval)
1661 {
1662 	u32 cmdq_src_reg, rst_ing_reg;
1663 
1664 	/* fetch the events from their corresponding regs */
1665 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1666 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1667 
1668 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1669 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1670 		dev_info(&hdev->pdev->dev,
1671 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1672 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1673 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1674 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1675 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1676 		*clearval = cmdq_src_reg;
1677 		return HCLGEVF_VECTOR0_EVENT_RST;
1678 	}
1679 
1680 	/* check for vector0 mailbox(=CMDQ RX) event source */
1681 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1682 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1683 		*clearval = cmdq_src_reg;
1684 		return HCLGEVF_VECTOR0_EVENT_MBX;
1685 	}
1686 
1687 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1688 
1689 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1690 }
1691 
1692 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1693 {
1694 	writel(en ? 1 : 0, vector->addr);
1695 }
1696 
1697 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1698 {
1699 	enum hclgevf_evt_cause event_cause;
1700 	struct hclgevf_dev *hdev = data;
1701 	u32 clearval;
1702 
1703 	hclgevf_enable_vector(&hdev->misc_vector, false);
1704 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1705 
1706 	switch (event_cause) {
1707 	case HCLGEVF_VECTOR0_EVENT_RST:
1708 		hclgevf_reset_task_schedule(hdev);
1709 		break;
1710 	case HCLGEVF_VECTOR0_EVENT_MBX:
1711 		hclgevf_mbx_handler(hdev);
1712 		break;
1713 	default:
1714 		break;
1715 	}
1716 
1717 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1718 		hclgevf_clear_event_cause(hdev, clearval);
1719 		hclgevf_enable_vector(&hdev->misc_vector, true);
1720 	}
1721 
1722 	return IRQ_HANDLED;
1723 }
1724 
1725 static int hclgevf_configure(struct hclgevf_dev *hdev)
1726 {
1727 	int ret;
1728 
1729 	hdev->hw.mac.media_type = HNAE3_MEDIA_TYPE_NONE;
1730 
1731 	/* get queue configuration from PF */
1732 	ret = hclgevf_get_queue_info(hdev);
1733 	if (ret)
1734 		return ret;
1735 	/* get tc configuration from PF */
1736 	return hclgevf_get_tc_info(hdev);
1737 }
1738 
1739 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1740 {
1741 	struct pci_dev *pdev = ae_dev->pdev;
1742 	struct hclgevf_dev *hdev;
1743 
1744 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1745 	if (!hdev)
1746 		return -ENOMEM;
1747 
1748 	hdev->pdev = pdev;
1749 	hdev->ae_dev = ae_dev;
1750 	ae_dev->priv = hdev;
1751 
1752 	return 0;
1753 }
1754 
1755 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1756 {
1757 	struct hnae3_handle *roce = &hdev->roce;
1758 	struct hnae3_handle *nic = &hdev->nic;
1759 
1760 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1761 
1762 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1763 	    hdev->num_msi_left == 0)
1764 		return -EINVAL;
1765 
1766 	roce->rinfo.base_vector = hdev->roce_base_vector;
1767 
1768 	roce->rinfo.netdev = nic->kinfo.netdev;
1769 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1770 
1771 	roce->pdev = nic->pdev;
1772 	roce->ae_algo = nic->ae_algo;
1773 	roce->numa_node_mask = nic->numa_node_mask;
1774 
1775 	return 0;
1776 }
1777 
1778 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
1779 {
1780 	struct hclgevf_cfg_gro_status_cmd *req;
1781 	struct hclgevf_desc desc;
1782 	int ret;
1783 
1784 	if (!hnae3_dev_gro_supported(hdev))
1785 		return 0;
1786 
1787 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
1788 				     false);
1789 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
1790 
1791 	req->gro_en = cpu_to_le16(en ? 1 : 0);
1792 
1793 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1794 	if (ret)
1795 		dev_err(&hdev->pdev->dev,
1796 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
1797 
1798 	return ret;
1799 }
1800 
1801 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1802 {
1803 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1804 	int i, ret;
1805 
1806 	rss_cfg->rss_size = hdev->rss_size_max;
1807 
1808 	if (hdev->pdev->revision >= 0x21) {
1809 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
1810 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
1811 		       HCLGEVF_RSS_KEY_SIZE);
1812 
1813 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
1814 					       rss_cfg->rss_hash_key);
1815 		if (ret)
1816 			return ret;
1817 
1818 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
1819 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1820 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
1821 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1822 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
1823 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1824 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
1825 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1826 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
1827 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1828 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
1829 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1830 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
1831 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1832 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
1833 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1834 
1835 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
1836 		if (ret)
1837 			return ret;
1838 
1839 	}
1840 
1841 	/* Initialize RSS indirect table for each vport */
1842 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1843 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1844 
1845 	ret = hclgevf_set_rss_indir_table(hdev);
1846 	if (ret)
1847 		return ret;
1848 
1849 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1850 }
1851 
1852 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
1853 {
1854 	/* other vlan config(like, VLAN TX/RX offload) would also be added
1855 	 * here later
1856 	 */
1857 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
1858 				       false);
1859 }
1860 
1861 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
1862 {
1863 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1864 
1865 	if (enable) {
1866 		mod_timer(&hdev->service_timer, jiffies + HZ);
1867 	} else {
1868 		del_timer_sync(&hdev->service_timer);
1869 		cancel_work_sync(&hdev->service_task);
1870 		clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1871 	}
1872 }
1873 
1874 static int hclgevf_ae_start(struct hnae3_handle *handle)
1875 {
1876 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1877 
1878 	/* reset tqp stats */
1879 	hclgevf_reset_tqp_stats(handle);
1880 
1881 	hclgevf_request_link_info(hdev);
1882 
1883 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1884 
1885 	return 0;
1886 }
1887 
1888 static void hclgevf_ae_stop(struct hnae3_handle *handle)
1889 {
1890 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1891 	int i;
1892 
1893 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1894 
1895 	for (i = 0; i < handle->kinfo.num_tqps; i++)
1896 		hclgevf_reset_tqp(handle, i);
1897 
1898 	/* reset tqp stats */
1899 	hclgevf_reset_tqp_stats(handle);
1900 	hclgevf_update_link_status(hdev, 0);
1901 }
1902 
1903 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
1904 {
1905 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1906 	u8 msg_data;
1907 
1908 	msg_data = alive ? 1 : 0;
1909 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
1910 				    0, &msg_data, 1, false, NULL, 0);
1911 }
1912 
1913 static int hclgevf_client_start(struct hnae3_handle *handle)
1914 {
1915 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1916 
1917 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
1918 	return hclgevf_set_alive(handle, true);
1919 }
1920 
1921 static void hclgevf_client_stop(struct hnae3_handle *handle)
1922 {
1923 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1924 	int ret;
1925 
1926 	ret = hclgevf_set_alive(handle, false);
1927 	if (ret)
1928 		dev_warn(&hdev->pdev->dev,
1929 			 "%s failed %d\n", __func__, ret);
1930 
1931 	del_timer_sync(&hdev->keep_alive_timer);
1932 	cancel_work_sync(&hdev->keep_alive_task);
1933 }
1934 
1935 static void hclgevf_state_init(struct hclgevf_dev *hdev)
1936 {
1937 	/* setup tasks for the MBX */
1938 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
1939 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1940 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1941 
1942 	/* setup tasks for service timer */
1943 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
1944 
1945 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
1946 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1947 
1948 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
1949 
1950 	mutex_init(&hdev->mbx_resp.mbx_mutex);
1951 
1952 	/* bring the device down */
1953 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1954 }
1955 
1956 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
1957 {
1958 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1959 
1960 	if (hdev->service_timer.function)
1961 		del_timer_sync(&hdev->service_timer);
1962 	if (hdev->service_task.func)
1963 		cancel_work_sync(&hdev->service_task);
1964 	if (hdev->mbx_service_task.func)
1965 		cancel_work_sync(&hdev->mbx_service_task);
1966 	if (hdev->rst_service_task.func)
1967 		cancel_work_sync(&hdev->rst_service_task);
1968 
1969 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
1970 }
1971 
1972 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
1973 {
1974 	struct pci_dev *pdev = hdev->pdev;
1975 	int vectors;
1976 	int i;
1977 
1978 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
1979 		vectors = pci_alloc_irq_vectors(pdev,
1980 						hdev->roce_base_msix_offset + 1,
1981 						hdev->num_msi,
1982 						PCI_IRQ_MSIX);
1983 	else
1984 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
1985 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
1986 
1987 	if (vectors < 0) {
1988 		dev_err(&pdev->dev,
1989 			"failed(%d) to allocate MSI/MSI-X vectors\n",
1990 			vectors);
1991 		return vectors;
1992 	}
1993 	if (vectors < hdev->num_msi)
1994 		dev_warn(&hdev->pdev->dev,
1995 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
1996 			 hdev->num_msi, vectors);
1997 
1998 	hdev->num_msi = vectors;
1999 	hdev->num_msi_left = vectors;
2000 	hdev->base_msi_vector = pdev->irq;
2001 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2002 
2003 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2004 					   sizeof(u16), GFP_KERNEL);
2005 	if (!hdev->vector_status) {
2006 		pci_free_irq_vectors(pdev);
2007 		return -ENOMEM;
2008 	}
2009 
2010 	for (i = 0; i < hdev->num_msi; i++)
2011 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2012 
2013 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2014 					sizeof(int), GFP_KERNEL);
2015 	if (!hdev->vector_irq) {
2016 		devm_kfree(&pdev->dev, hdev->vector_status);
2017 		pci_free_irq_vectors(pdev);
2018 		return -ENOMEM;
2019 	}
2020 
2021 	return 0;
2022 }
2023 
2024 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2025 {
2026 	struct pci_dev *pdev = hdev->pdev;
2027 
2028 	devm_kfree(&pdev->dev, hdev->vector_status);
2029 	devm_kfree(&pdev->dev, hdev->vector_irq);
2030 	pci_free_irq_vectors(pdev);
2031 }
2032 
2033 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2034 {
2035 	int ret = 0;
2036 
2037 	hclgevf_get_misc_vector(hdev);
2038 
2039 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2040 			  0, "hclgevf_cmd", hdev);
2041 	if (ret) {
2042 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2043 			hdev->misc_vector.vector_irq);
2044 		return ret;
2045 	}
2046 
2047 	hclgevf_clear_event_cause(hdev, 0);
2048 
2049 	/* enable misc. vector(vector 0) */
2050 	hclgevf_enable_vector(&hdev->misc_vector, true);
2051 
2052 	return ret;
2053 }
2054 
2055 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2056 {
2057 	/* disable misc vector(vector 0) */
2058 	hclgevf_enable_vector(&hdev->misc_vector, false);
2059 	synchronize_irq(hdev->misc_vector.vector_irq);
2060 	free_irq(hdev->misc_vector.vector_irq, hdev);
2061 	hclgevf_free_vector(hdev, 0);
2062 }
2063 
2064 static int hclgevf_init_client_instance(struct hnae3_client *client,
2065 					struct hnae3_ae_dev *ae_dev)
2066 {
2067 	struct hclgevf_dev *hdev = ae_dev->priv;
2068 	int ret;
2069 
2070 	switch (client->type) {
2071 	case HNAE3_CLIENT_KNIC:
2072 		hdev->nic_client = client;
2073 		hdev->nic.client = client;
2074 
2075 		ret = client->ops->init_instance(&hdev->nic);
2076 		if (ret)
2077 			goto clear_nic;
2078 
2079 		hnae3_set_client_init_flag(client, ae_dev, 1);
2080 
2081 		if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
2082 			struct hnae3_client *rc = hdev->roce_client;
2083 
2084 			ret = hclgevf_init_roce_base_info(hdev);
2085 			if (ret)
2086 				goto clear_roce;
2087 			ret = rc->ops->init_instance(&hdev->roce);
2088 			if (ret)
2089 				goto clear_roce;
2090 
2091 			hnae3_set_client_init_flag(hdev->roce_client, ae_dev,
2092 						   1);
2093 		}
2094 		break;
2095 	case HNAE3_CLIENT_UNIC:
2096 		hdev->nic_client = client;
2097 		hdev->nic.client = client;
2098 
2099 		ret = client->ops->init_instance(&hdev->nic);
2100 		if (ret)
2101 			goto clear_nic;
2102 
2103 		hnae3_set_client_init_flag(client, ae_dev, 1);
2104 		break;
2105 	case HNAE3_CLIENT_ROCE:
2106 		if (hnae3_dev_roce_supported(hdev)) {
2107 			hdev->roce_client = client;
2108 			hdev->roce.client = client;
2109 		}
2110 
2111 		if (hdev->roce_client && hdev->nic_client) {
2112 			ret = hclgevf_init_roce_base_info(hdev);
2113 			if (ret)
2114 				goto clear_roce;
2115 
2116 			ret = client->ops->init_instance(&hdev->roce);
2117 			if (ret)
2118 				goto clear_roce;
2119 		}
2120 
2121 		hnae3_set_client_init_flag(client, ae_dev, 1);
2122 		break;
2123 	default:
2124 		return -EINVAL;
2125 	}
2126 
2127 	return 0;
2128 
2129 clear_nic:
2130 	hdev->nic_client = NULL;
2131 	hdev->nic.client = NULL;
2132 	return ret;
2133 clear_roce:
2134 	hdev->roce_client = NULL;
2135 	hdev->roce.client = NULL;
2136 	return ret;
2137 }
2138 
2139 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2140 					   struct hnae3_ae_dev *ae_dev)
2141 {
2142 	struct hclgevf_dev *hdev = ae_dev->priv;
2143 
2144 	/* un-init roce, if it exists */
2145 	if (hdev->roce_client) {
2146 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2147 		hdev->roce_client = NULL;
2148 		hdev->roce.client = NULL;
2149 	}
2150 
2151 	/* un-init nic/unic, if this was not called by roce client */
2152 	if (client->ops->uninit_instance && hdev->nic_client &&
2153 	    client->type != HNAE3_CLIENT_ROCE) {
2154 		client->ops->uninit_instance(&hdev->nic, 0);
2155 		hdev->nic_client = NULL;
2156 		hdev->nic.client = NULL;
2157 	}
2158 }
2159 
2160 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2161 {
2162 	struct pci_dev *pdev = hdev->pdev;
2163 	struct hclgevf_hw *hw;
2164 	int ret;
2165 
2166 	ret = pci_enable_device(pdev);
2167 	if (ret) {
2168 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2169 		return ret;
2170 	}
2171 
2172 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2173 	if (ret) {
2174 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2175 		goto err_disable_device;
2176 	}
2177 
2178 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2179 	if (ret) {
2180 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2181 		goto err_disable_device;
2182 	}
2183 
2184 	pci_set_master(pdev);
2185 	hw = &hdev->hw;
2186 	hw->hdev = hdev;
2187 	hw->io_base = pci_iomap(pdev, 2, 0);
2188 	if (!hw->io_base) {
2189 		dev_err(&pdev->dev, "can't map configuration register space\n");
2190 		ret = -ENOMEM;
2191 		goto err_clr_master;
2192 	}
2193 
2194 	return 0;
2195 
2196 err_clr_master:
2197 	pci_clear_master(pdev);
2198 	pci_release_regions(pdev);
2199 err_disable_device:
2200 	pci_disable_device(pdev);
2201 
2202 	return ret;
2203 }
2204 
2205 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2206 {
2207 	struct pci_dev *pdev = hdev->pdev;
2208 
2209 	pci_iounmap(pdev, hdev->hw.io_base);
2210 	pci_clear_master(pdev);
2211 	pci_release_regions(pdev);
2212 	pci_disable_device(pdev);
2213 }
2214 
2215 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2216 {
2217 	struct hclgevf_query_res_cmd *req;
2218 	struct hclgevf_desc desc;
2219 	int ret;
2220 
2221 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2222 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2223 	if (ret) {
2224 		dev_err(&hdev->pdev->dev,
2225 			"query vf resource failed, ret = %d.\n", ret);
2226 		return ret;
2227 	}
2228 
2229 	req = (struct hclgevf_query_res_cmd *)desc.data;
2230 
2231 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2232 		hdev->roce_base_msix_offset =
2233 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2234 				HCLGEVF_MSIX_OFT_ROCEE_M,
2235 				HCLGEVF_MSIX_OFT_ROCEE_S);
2236 		hdev->num_roce_msix =
2237 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2238 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2239 
2240 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2241 		 * are queued before Roce vectors. The offset is fixed to 64.
2242 		 */
2243 		hdev->num_msi = hdev->num_roce_msix +
2244 				hdev->roce_base_msix_offset;
2245 	} else {
2246 		hdev->num_msi =
2247 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2248 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2249 	}
2250 
2251 	return 0;
2252 }
2253 
2254 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2255 {
2256 	struct pci_dev *pdev = hdev->pdev;
2257 	int ret = 0;
2258 
2259 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2260 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2261 		hclgevf_misc_irq_uninit(hdev);
2262 		hclgevf_uninit_msi(hdev);
2263 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2264 	}
2265 
2266 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2267 		pci_set_master(pdev);
2268 		ret = hclgevf_init_msi(hdev);
2269 		if (ret) {
2270 			dev_err(&pdev->dev,
2271 				"failed(%d) to init MSI/MSI-X\n", ret);
2272 			return ret;
2273 		}
2274 
2275 		ret = hclgevf_misc_irq_init(hdev);
2276 		if (ret) {
2277 			hclgevf_uninit_msi(hdev);
2278 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2279 				ret);
2280 			return ret;
2281 		}
2282 
2283 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2284 	}
2285 
2286 	return ret;
2287 }
2288 
2289 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2290 {
2291 	struct pci_dev *pdev = hdev->pdev;
2292 	int ret;
2293 
2294 	ret = hclgevf_pci_reset(hdev);
2295 	if (ret) {
2296 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2297 		return ret;
2298 	}
2299 
2300 	ret = hclgevf_cmd_init(hdev);
2301 	if (ret) {
2302 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2303 		return ret;
2304 	}
2305 
2306 	ret = hclgevf_rss_init_hw(hdev);
2307 	if (ret) {
2308 		dev_err(&hdev->pdev->dev,
2309 			"failed(%d) to initialize RSS\n", ret);
2310 		return ret;
2311 	}
2312 
2313 	ret = hclgevf_config_gro(hdev, true);
2314 	if (ret)
2315 		return ret;
2316 
2317 	ret = hclgevf_init_vlan_config(hdev);
2318 	if (ret) {
2319 		dev_err(&hdev->pdev->dev,
2320 			"failed(%d) to initialize VLAN config\n", ret);
2321 		return ret;
2322 	}
2323 
2324 	dev_info(&hdev->pdev->dev, "Reset done\n");
2325 
2326 	return 0;
2327 }
2328 
2329 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2330 {
2331 	struct pci_dev *pdev = hdev->pdev;
2332 	int ret;
2333 
2334 	ret = hclgevf_pci_init(hdev);
2335 	if (ret) {
2336 		dev_err(&pdev->dev, "PCI initialization failed\n");
2337 		return ret;
2338 	}
2339 
2340 	ret = hclgevf_cmd_queue_init(hdev);
2341 	if (ret) {
2342 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2343 		goto err_cmd_queue_init;
2344 	}
2345 
2346 	ret = hclgevf_cmd_init(hdev);
2347 	if (ret)
2348 		goto err_cmd_init;
2349 
2350 	/* Get vf resource */
2351 	ret = hclgevf_query_vf_resource(hdev);
2352 	if (ret) {
2353 		dev_err(&hdev->pdev->dev,
2354 			"Query vf status error, ret = %d.\n", ret);
2355 		goto err_cmd_init;
2356 	}
2357 
2358 	ret = hclgevf_init_msi(hdev);
2359 	if (ret) {
2360 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2361 		goto err_cmd_init;
2362 	}
2363 
2364 	hclgevf_state_init(hdev);
2365 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2366 
2367 	ret = hclgevf_misc_irq_init(hdev);
2368 	if (ret) {
2369 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2370 			ret);
2371 		goto err_misc_irq_init;
2372 	}
2373 
2374 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2375 
2376 	ret = hclgevf_configure(hdev);
2377 	if (ret) {
2378 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2379 		goto err_config;
2380 	}
2381 
2382 	ret = hclgevf_alloc_tqps(hdev);
2383 	if (ret) {
2384 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2385 		goto err_config;
2386 	}
2387 
2388 	ret = hclgevf_set_handle_info(hdev);
2389 	if (ret) {
2390 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2391 		goto err_config;
2392 	}
2393 
2394 	ret = hclgevf_config_gro(hdev, true);
2395 	if (ret)
2396 		goto err_config;
2397 
2398 	/* vf is not allowed to enable unicast/multicast promisc mode.
2399 	 * For revision 0x20, default to disable broadcast promisc mode,
2400 	 * firmware makes sure broadcast packets can be accepted.
2401 	 * For revision 0x21, default to enable broadcast promisc mode.
2402 	 */
2403 	ret = hclgevf_set_promisc_mode(hdev, true);
2404 	if (ret)
2405 		goto err_config;
2406 
2407 	/* Initialize RSS for this VF */
2408 	ret = hclgevf_rss_init_hw(hdev);
2409 	if (ret) {
2410 		dev_err(&hdev->pdev->dev,
2411 			"failed(%d) to initialize RSS\n", ret);
2412 		goto err_config;
2413 	}
2414 
2415 	ret = hclgevf_init_vlan_config(hdev);
2416 	if (ret) {
2417 		dev_err(&hdev->pdev->dev,
2418 			"failed(%d) to initialize VLAN config\n", ret);
2419 		goto err_config;
2420 	}
2421 
2422 	hdev->last_reset_time = jiffies;
2423 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2424 
2425 	return 0;
2426 
2427 err_config:
2428 	hclgevf_misc_irq_uninit(hdev);
2429 err_misc_irq_init:
2430 	hclgevf_state_uninit(hdev);
2431 	hclgevf_uninit_msi(hdev);
2432 err_cmd_init:
2433 	hclgevf_cmd_uninit(hdev);
2434 err_cmd_queue_init:
2435 	hclgevf_pci_uninit(hdev);
2436 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2437 	return ret;
2438 }
2439 
2440 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2441 {
2442 	hclgevf_state_uninit(hdev);
2443 
2444 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2445 		hclgevf_misc_irq_uninit(hdev);
2446 		hclgevf_uninit_msi(hdev);
2447 	}
2448 
2449 	hclgevf_pci_uninit(hdev);
2450 	hclgevf_cmd_uninit(hdev);
2451 }
2452 
2453 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2454 {
2455 	struct pci_dev *pdev = ae_dev->pdev;
2456 	struct hclgevf_dev *hdev;
2457 	int ret;
2458 
2459 	ret = hclgevf_alloc_hdev(ae_dev);
2460 	if (ret) {
2461 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2462 		return ret;
2463 	}
2464 
2465 	ret = hclgevf_init_hdev(ae_dev->priv);
2466 	if (ret) {
2467 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2468 		return ret;
2469 	}
2470 
2471 	hdev = ae_dev->priv;
2472 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2473 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2474 
2475 	return 0;
2476 }
2477 
2478 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2479 {
2480 	struct hclgevf_dev *hdev = ae_dev->priv;
2481 
2482 	hclgevf_uninit_hdev(hdev);
2483 	ae_dev->priv = NULL;
2484 }
2485 
2486 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2487 {
2488 	struct hnae3_handle *nic = &hdev->nic;
2489 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2490 
2491 	return min_t(u32, hdev->rss_size_max,
2492 		     hdev->num_tqps / kinfo->num_tc);
2493 }
2494 
2495 /**
2496  * hclgevf_get_channels - Get the current channels enabled and max supported.
2497  * @handle: hardware information for network interface
2498  * @ch: ethtool channels structure
2499  *
2500  * We don't support separate tx and rx queues as channels. The other count
2501  * represents how many queues are being used for control. max_combined counts
2502  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2503  * q_vectors since we support a lot more queue pairs than q_vectors.
2504  **/
2505 static void hclgevf_get_channels(struct hnae3_handle *handle,
2506 				 struct ethtool_channels *ch)
2507 {
2508 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2509 
2510 	ch->max_combined = hclgevf_get_max_channels(hdev);
2511 	ch->other_count = 0;
2512 	ch->max_other = 0;
2513 	ch->combined_count = handle->kinfo.rss_size;
2514 }
2515 
2516 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2517 					  u16 *alloc_tqps, u16 *max_rss_size)
2518 {
2519 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2520 
2521 	*alloc_tqps = hdev->num_tqps;
2522 	*max_rss_size = hdev->rss_size_max;
2523 }
2524 
2525 static int hclgevf_get_status(struct hnae3_handle *handle)
2526 {
2527 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2528 
2529 	return hdev->hw.mac.link;
2530 }
2531 
2532 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2533 					    u8 *auto_neg, u32 *speed,
2534 					    u8 *duplex)
2535 {
2536 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2537 
2538 	if (speed)
2539 		*speed = hdev->hw.mac.speed;
2540 	if (duplex)
2541 		*duplex = hdev->hw.mac.duplex;
2542 	if (auto_neg)
2543 		*auto_neg = AUTONEG_DISABLE;
2544 }
2545 
2546 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2547 				 u8 duplex)
2548 {
2549 	hdev->hw.mac.speed = speed;
2550 	hdev->hw.mac.duplex = duplex;
2551 }
2552 
2553 static int hclgevf_gro_en(struct hnae3_handle *handle, int enable)
2554 {
2555 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2556 
2557 	return hclgevf_config_gro(hdev, enable);
2558 }
2559 
2560 static void hclgevf_get_media_type(struct hnae3_handle *handle,
2561 				  u8 *media_type)
2562 {
2563 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2564 	if (media_type)
2565 		*media_type = hdev->hw.mac.media_type;
2566 }
2567 
2568 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2569 {
2570 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2571 
2572 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2573 }
2574 
2575 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2576 {
2577 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2578 
2579 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2580 }
2581 
2582 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2583 {
2584 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2585 
2586 	return hdev->reset_count;
2587 }
2588 
2589 #define MAX_SEPARATE_NUM	4
2590 #define SEPARATOR_VALUE		0xFFFFFFFF
2591 #define REG_NUM_PER_LINE	4
2592 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
2593 
2594 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2595 {
2596 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2597 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2598 
2599 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2600 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2601 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2602 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2603 
2604 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2605 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2606 }
2607 
2608 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
2609 			     void *data)
2610 {
2611 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2612 	int i, j, reg_um, separator_num;
2613 	u32 *reg = data;
2614 
2615 	*version = hdev->fw_version;
2616 
2617 	/* fetching per-VF registers values from VF PCIe register space */
2618 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
2619 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2620 	for (i = 0; i < reg_um; i++)
2621 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
2622 	for (i = 0; i < separator_num; i++)
2623 		*reg++ = SEPARATOR_VALUE;
2624 
2625 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
2626 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2627 	for (i = 0; i < reg_um; i++)
2628 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
2629 	for (i = 0; i < separator_num; i++)
2630 		*reg++ = SEPARATOR_VALUE;
2631 
2632 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
2633 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2634 	for (j = 0; j < hdev->num_tqps; j++) {
2635 		for (i = 0; i < reg_um; i++)
2636 			*reg++ = hclgevf_read_dev(&hdev->hw,
2637 						  ring_reg_addr_list[i] +
2638 						  0x200 * j);
2639 		for (i = 0; i < separator_num; i++)
2640 			*reg++ = SEPARATOR_VALUE;
2641 	}
2642 
2643 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
2644 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2645 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
2646 		for (i = 0; i < reg_um; i++)
2647 			*reg++ = hclgevf_read_dev(&hdev->hw,
2648 						  tqp_intr_reg_addr_list[i] +
2649 						  4 * j);
2650 		for (i = 0; i < separator_num; i++)
2651 			*reg++ = SEPARATOR_VALUE;
2652 	}
2653 }
2654 
2655 static const struct hnae3_ae_ops hclgevf_ops = {
2656 	.init_ae_dev = hclgevf_init_ae_dev,
2657 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2658 	.flr_prepare = hclgevf_flr_prepare,
2659 	.flr_done = hclgevf_flr_done,
2660 	.init_client_instance = hclgevf_init_client_instance,
2661 	.uninit_client_instance = hclgevf_uninit_client_instance,
2662 	.start = hclgevf_ae_start,
2663 	.stop = hclgevf_ae_stop,
2664 	.client_start = hclgevf_client_start,
2665 	.client_stop = hclgevf_client_stop,
2666 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
2667 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2668 	.get_vector = hclgevf_get_vector,
2669 	.put_vector = hclgevf_put_vector,
2670 	.reset_queue = hclgevf_reset_tqp,
2671 	.get_mac_addr = hclgevf_get_mac_addr,
2672 	.set_mac_addr = hclgevf_set_mac_addr,
2673 	.add_uc_addr = hclgevf_add_uc_addr,
2674 	.rm_uc_addr = hclgevf_rm_uc_addr,
2675 	.add_mc_addr = hclgevf_add_mc_addr,
2676 	.rm_mc_addr = hclgevf_rm_mc_addr,
2677 	.get_stats = hclgevf_get_stats,
2678 	.update_stats = hclgevf_update_stats,
2679 	.get_strings = hclgevf_get_strings,
2680 	.get_sset_count = hclgevf_get_sset_count,
2681 	.get_rss_key_size = hclgevf_get_rss_key_size,
2682 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2683 	.get_rss = hclgevf_get_rss,
2684 	.set_rss = hclgevf_set_rss,
2685 	.get_rss_tuple = hclgevf_get_rss_tuple,
2686 	.set_rss_tuple = hclgevf_set_rss_tuple,
2687 	.get_tc_size = hclgevf_get_tc_size,
2688 	.get_fw_version = hclgevf_get_fw_version,
2689 	.set_vlan_filter = hclgevf_set_vlan_filter,
2690 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2691 	.reset_event = hclgevf_reset_event,
2692 	.set_default_reset_request = hclgevf_set_def_reset_request,
2693 	.get_channels = hclgevf_get_channels,
2694 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2695 	.get_regs_len = hclgevf_get_regs_len,
2696 	.get_regs = hclgevf_get_regs,
2697 	.get_status = hclgevf_get_status,
2698 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2699 	.get_media_type = hclgevf_get_media_type,
2700 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
2701 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
2702 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
2703 	.set_gro_en = hclgevf_gro_en,
2704 	.set_mtu = hclgevf_set_mtu,
2705 	.get_global_queue_id = hclgevf_get_qid_global,
2706 	.set_timer_task = hclgevf_set_timer_task,
2707 };
2708 
2709 static struct hnae3_ae_algo ae_algovf = {
2710 	.ops = &hclgevf_ops,
2711 	.pdev_id_table = ae_algovf_pci_tbl,
2712 };
2713 
2714 static int hclgevf_init(void)
2715 {
2716 	pr_info("%s is initializing\n", HCLGEVF_NAME);
2717 
2718 	hnae3_register_ae_algo(&ae_algovf);
2719 
2720 	return 0;
2721 }
2722 
2723 static void hclgevf_exit(void)
2724 {
2725 	hnae3_unregister_ae_algo(&ae_algovf);
2726 }
2727 module_init(hclgevf_init);
2728 module_exit(hclgevf_exit);
2729 
2730 MODULE_LICENSE("GPL");
2731 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
2732 MODULE_DESCRIPTION("HCLGEVF Driver");
2733 MODULE_VERSION(HCLGEVF_MOD_VERSION);
2734