1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
15 
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static struct hnae3_ae_algo ae_algovf;
18 
19 static struct workqueue_struct *hclgevf_wq;
20 
21 static const struct pci_device_id ae_algovf_pci_tbl[] = {
22 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
23 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
24 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
25 	/* required last entry */
26 	{0, }
27 };
28 
29 static const u8 hclgevf_hash_key[] = {
30 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
31 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
32 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
33 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
34 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
35 };
36 
37 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
38 
39 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
40 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
41 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
42 					 HCLGEVF_CMDQ_TX_TAIL_REG,
43 					 HCLGEVF_CMDQ_TX_HEAD_REG,
44 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
45 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
46 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
47 					 HCLGEVF_CMDQ_RX_TAIL_REG,
48 					 HCLGEVF_CMDQ_RX_HEAD_REG,
49 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
50 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG,
51 					 HCLGEVF_CMDQ_INTR_EN_REG,
52 					 HCLGEVF_CMDQ_INTR_GEN_REG};
53 
54 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
55 					   HCLGEVF_RST_ING,
56 					   HCLGEVF_GRO_EN_REG};
57 
58 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
59 					 HCLGEVF_RING_RX_ADDR_H_REG,
60 					 HCLGEVF_RING_RX_BD_NUM_REG,
61 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
62 					 HCLGEVF_RING_RX_MERGE_EN_REG,
63 					 HCLGEVF_RING_RX_TAIL_REG,
64 					 HCLGEVF_RING_RX_HEAD_REG,
65 					 HCLGEVF_RING_RX_FBD_NUM_REG,
66 					 HCLGEVF_RING_RX_OFFSET_REG,
67 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
68 					 HCLGEVF_RING_RX_STASH_REG,
69 					 HCLGEVF_RING_RX_BD_ERR_REG,
70 					 HCLGEVF_RING_TX_ADDR_L_REG,
71 					 HCLGEVF_RING_TX_ADDR_H_REG,
72 					 HCLGEVF_RING_TX_BD_NUM_REG,
73 					 HCLGEVF_RING_TX_PRIORITY_REG,
74 					 HCLGEVF_RING_TX_TC_REG,
75 					 HCLGEVF_RING_TX_MERGE_EN_REG,
76 					 HCLGEVF_RING_TX_TAIL_REG,
77 					 HCLGEVF_RING_TX_HEAD_REG,
78 					 HCLGEVF_RING_TX_FBD_NUM_REG,
79 					 HCLGEVF_RING_TX_OFFSET_REG,
80 					 HCLGEVF_RING_TX_EBD_NUM_REG,
81 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
82 					 HCLGEVF_RING_TX_BD_ERR_REG,
83 					 HCLGEVF_RING_EN_REG};
84 
85 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
86 					     HCLGEVF_TQP_INTR_GL0_REG,
87 					     HCLGEVF_TQP_INTR_GL1_REG,
88 					     HCLGEVF_TQP_INTR_GL2_REG,
89 					     HCLGEVF_TQP_INTR_RL_REG};
90 
91 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
92 {
93 	if (!handle->client)
94 		return container_of(handle, struct hclgevf_dev, nic);
95 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
96 		return container_of(handle, struct hclgevf_dev, roce);
97 	else
98 		return container_of(handle, struct hclgevf_dev, nic);
99 }
100 
101 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
102 {
103 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
104 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
105 	struct hclgevf_desc desc;
106 	struct hclgevf_tqp *tqp;
107 	int status;
108 	int i;
109 
110 	for (i = 0; i < kinfo->num_tqps; i++) {
111 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
112 		hclgevf_cmd_setup_basic_desc(&desc,
113 					     HCLGEVF_OPC_QUERY_RX_STATUS,
114 					     true);
115 
116 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
117 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
118 		if (status) {
119 			dev_err(&hdev->pdev->dev,
120 				"Query tqp stat fail, status = %d,queue = %d\n",
121 				status,	i);
122 			return status;
123 		}
124 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
125 			le32_to_cpu(desc.data[1]);
126 
127 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
128 					     true);
129 
130 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
131 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
132 		if (status) {
133 			dev_err(&hdev->pdev->dev,
134 				"Query tqp stat fail, status = %d,queue = %d\n",
135 				status, i);
136 			return status;
137 		}
138 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
139 			le32_to_cpu(desc.data[1]);
140 	}
141 
142 	return 0;
143 }
144 
145 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
146 {
147 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
148 	struct hclgevf_tqp *tqp;
149 	u64 *buff = data;
150 	int i;
151 
152 	for (i = 0; i < kinfo->num_tqps; i++) {
153 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
154 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
155 	}
156 	for (i = 0; i < kinfo->num_tqps; i++) {
157 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
158 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
159 	}
160 
161 	return buff;
162 }
163 
164 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
165 {
166 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
167 
168 	return kinfo->num_tqps * 2;
169 }
170 
171 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
172 {
173 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
174 	u8 *buff = data;
175 	int i;
176 
177 	for (i = 0; i < kinfo->num_tqps; i++) {
178 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
179 						       struct hclgevf_tqp, q);
180 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
181 			 tqp->index);
182 		buff += ETH_GSTRING_LEN;
183 	}
184 
185 	for (i = 0; i < kinfo->num_tqps; i++) {
186 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
187 						       struct hclgevf_tqp, q);
188 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
189 			 tqp->index);
190 		buff += ETH_GSTRING_LEN;
191 	}
192 
193 	return buff;
194 }
195 
196 static void hclgevf_update_stats(struct hnae3_handle *handle,
197 				 struct net_device_stats *net_stats)
198 {
199 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
200 	int status;
201 
202 	status = hclgevf_tqps_update_stats(handle);
203 	if (status)
204 		dev_err(&hdev->pdev->dev,
205 			"VF update of TQPS stats fail, status = %d.\n",
206 			status);
207 }
208 
209 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
210 {
211 	if (strset == ETH_SS_TEST)
212 		return -EOPNOTSUPP;
213 	else if (strset == ETH_SS_STATS)
214 		return hclgevf_tqps_get_sset_count(handle, strset);
215 
216 	return 0;
217 }
218 
219 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
220 				u8 *data)
221 {
222 	u8 *p = (char *)data;
223 
224 	if (strset == ETH_SS_STATS)
225 		p = hclgevf_tqps_get_strings(handle, p);
226 }
227 
228 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
229 {
230 	hclgevf_tqps_get_stats(handle, data);
231 }
232 
233 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
234 				   u8 subcode)
235 {
236 	if (msg) {
237 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
238 		msg->code = code;
239 		msg->subcode = subcode;
240 	}
241 }
242 
243 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
244 {
245 	struct hclge_vf_to_pf_msg send_msg;
246 	u8 resp_msg;
247 	int status;
248 
249 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
250 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
251 				      sizeof(resp_msg));
252 	if (status) {
253 		dev_err(&hdev->pdev->dev,
254 			"VF request to get TC info from PF failed %d",
255 			status);
256 		return status;
257 	}
258 
259 	hdev->hw_tc_map = resp_msg;
260 
261 	return 0;
262 }
263 
264 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
265 {
266 	struct hnae3_handle *nic = &hdev->nic;
267 	struct hclge_vf_to_pf_msg send_msg;
268 	u8 resp_msg;
269 	int ret;
270 
271 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
272 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
273 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
274 				   sizeof(u8));
275 	if (ret) {
276 		dev_err(&hdev->pdev->dev,
277 			"VF request to get port based vlan state failed %d",
278 			ret);
279 		return ret;
280 	}
281 
282 	nic->port_base_vlan_state = resp_msg;
283 
284 	return 0;
285 }
286 
287 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
288 {
289 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
290 #define HCLGEVF_TQPS_ALLOC_OFFSET	0
291 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
292 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4
293 
294 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
295 	struct hclge_vf_to_pf_msg send_msg;
296 	int status;
297 
298 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
299 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
300 				      HCLGEVF_TQPS_RSS_INFO_LEN);
301 	if (status) {
302 		dev_err(&hdev->pdev->dev,
303 			"VF request to get tqp info from PF failed %d",
304 			status);
305 		return status;
306 	}
307 
308 	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
309 	       sizeof(u16));
310 	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
311 	       sizeof(u16));
312 	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
313 	       sizeof(u16));
314 
315 	return 0;
316 }
317 
318 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
319 {
320 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
321 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
322 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2
323 
324 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
325 	struct hclge_vf_to_pf_msg send_msg;
326 	int ret;
327 
328 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
329 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
330 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
331 	if (ret) {
332 		dev_err(&hdev->pdev->dev,
333 			"VF request to get tqp depth info from PF failed %d",
334 			ret);
335 		return ret;
336 	}
337 
338 	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
339 	       sizeof(u16));
340 	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
341 	       sizeof(u16));
342 
343 	return 0;
344 }
345 
346 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
347 {
348 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
349 	struct hclge_vf_to_pf_msg send_msg;
350 	u16 qid_in_pf = 0;
351 	u8 resp_data[2];
352 	int ret;
353 
354 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
355 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
356 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
357 				   sizeof(resp_data));
358 	if (!ret)
359 		qid_in_pf = *(u16 *)resp_data;
360 
361 	return qid_in_pf;
362 }
363 
364 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
365 {
366 	struct hclge_vf_to_pf_msg send_msg;
367 	u8 resp_msg[2];
368 	int ret;
369 
370 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
371 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
372 				   sizeof(resp_msg));
373 	if (ret) {
374 		dev_err(&hdev->pdev->dev,
375 			"VF request to get the pf port media type failed %d",
376 			ret);
377 		return ret;
378 	}
379 
380 	hdev->hw.mac.media_type = resp_msg[0];
381 	hdev->hw.mac.module_type = resp_msg[1];
382 
383 	return 0;
384 }
385 
386 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
387 {
388 	struct hclgevf_tqp *tqp;
389 	int i;
390 
391 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
392 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
393 	if (!hdev->htqp)
394 		return -ENOMEM;
395 
396 	tqp = hdev->htqp;
397 
398 	for (i = 0; i < hdev->num_tqps; i++) {
399 		tqp->dev = &hdev->pdev->dev;
400 		tqp->index = i;
401 
402 		tqp->q.ae_algo = &ae_algovf;
403 		tqp->q.buf_size = hdev->rx_buf_len;
404 		tqp->q.tx_desc_num = hdev->num_tx_desc;
405 		tqp->q.rx_desc_num = hdev->num_rx_desc;
406 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
407 			i * HCLGEVF_TQP_REG_SIZE;
408 
409 		tqp++;
410 	}
411 
412 	return 0;
413 }
414 
415 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
416 {
417 	struct hnae3_handle *nic = &hdev->nic;
418 	struct hnae3_knic_private_info *kinfo;
419 	u16 new_tqps = hdev->num_tqps;
420 	unsigned int i;
421 
422 	kinfo = &nic->kinfo;
423 	kinfo->num_tc = 0;
424 	kinfo->num_tx_desc = hdev->num_tx_desc;
425 	kinfo->num_rx_desc = hdev->num_rx_desc;
426 	kinfo->rx_buf_len = hdev->rx_buf_len;
427 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
428 		if (hdev->hw_tc_map & BIT(i))
429 			kinfo->num_tc++;
430 
431 	kinfo->rss_size
432 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
433 	new_tqps = kinfo->rss_size * kinfo->num_tc;
434 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
435 
436 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
437 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
438 	if (!kinfo->tqp)
439 		return -ENOMEM;
440 
441 	for (i = 0; i < kinfo->num_tqps; i++) {
442 		hdev->htqp[i].q.handle = &hdev->nic;
443 		hdev->htqp[i].q.tqp_index = i;
444 		kinfo->tqp[i] = &hdev->htqp[i].q;
445 	}
446 
447 	/* after init the max rss_size and tqps, adjust the default tqp numbers
448 	 * and rss size with the actual vector numbers
449 	 */
450 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
451 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / kinfo->num_tc,
452 				kinfo->rss_size);
453 
454 	return 0;
455 }
456 
457 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
458 {
459 	struct hclge_vf_to_pf_msg send_msg;
460 	int status;
461 
462 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
463 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
464 	if (status)
465 		dev_err(&hdev->pdev->dev,
466 			"VF failed to fetch link status(%d) from PF", status);
467 }
468 
469 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
470 {
471 	struct hnae3_handle *rhandle = &hdev->roce;
472 	struct hnae3_handle *handle = &hdev->nic;
473 	struct hnae3_client *rclient;
474 	struct hnae3_client *client;
475 
476 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
477 		return;
478 
479 	client = handle->client;
480 	rclient = hdev->roce_client;
481 
482 	link_state =
483 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
484 
485 	if (link_state != hdev->hw.mac.link) {
486 		client->ops->link_status_change(handle, !!link_state);
487 		if (rclient && rclient->ops->link_status_change)
488 			rclient->ops->link_status_change(rhandle, !!link_state);
489 		hdev->hw.mac.link = link_state;
490 	}
491 
492 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
493 }
494 
495 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
496 {
497 #define HCLGEVF_ADVERTISING	0
498 #define HCLGEVF_SUPPORTED	1
499 
500 	struct hclge_vf_to_pf_msg send_msg;
501 
502 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
503 	send_msg.data[0] = HCLGEVF_ADVERTISING;
504 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
505 	send_msg.data[0] = HCLGEVF_SUPPORTED;
506 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
507 }
508 
509 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
510 {
511 	struct hnae3_handle *nic = &hdev->nic;
512 	int ret;
513 
514 	nic->ae_algo = &ae_algovf;
515 	nic->pdev = hdev->pdev;
516 	nic->numa_node_mask = hdev->numa_node_mask;
517 	nic->flags |= HNAE3_SUPPORT_VF;
518 
519 	ret = hclgevf_knic_setup(hdev);
520 	if (ret)
521 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
522 			ret);
523 	return ret;
524 }
525 
526 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
527 {
528 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
529 		dev_warn(&hdev->pdev->dev,
530 			 "vector(vector_id %d) has been freed.\n", vector_id);
531 		return;
532 	}
533 
534 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
535 	hdev->num_msi_left += 1;
536 	hdev->num_msi_used -= 1;
537 }
538 
539 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
540 			      struct hnae3_vector_info *vector_info)
541 {
542 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
543 	struct hnae3_vector_info *vector = vector_info;
544 	int alloc = 0;
545 	int i, j;
546 
547 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
548 	vector_num = min(hdev->num_msi_left, vector_num);
549 
550 	for (j = 0; j < vector_num; j++) {
551 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
552 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
553 				vector->vector = pci_irq_vector(hdev->pdev, i);
554 				vector->io_addr = hdev->hw.io_base +
555 					HCLGEVF_VECTOR_REG_BASE +
556 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
557 				hdev->vector_status[i] = 0;
558 				hdev->vector_irq[i] = vector->vector;
559 
560 				vector++;
561 				alloc++;
562 
563 				break;
564 			}
565 		}
566 	}
567 	hdev->num_msi_left -= alloc;
568 	hdev->num_msi_used += alloc;
569 
570 	return alloc;
571 }
572 
573 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
574 {
575 	int i;
576 
577 	for (i = 0; i < hdev->num_msi; i++)
578 		if (vector == hdev->vector_irq[i])
579 			return i;
580 
581 	return -EINVAL;
582 }
583 
584 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
585 				    const u8 hfunc, const u8 *key)
586 {
587 	struct hclgevf_rss_config_cmd *req;
588 	unsigned int key_offset = 0;
589 	struct hclgevf_desc desc;
590 	int key_counts;
591 	int key_size;
592 	int ret;
593 
594 	key_counts = HCLGEVF_RSS_KEY_SIZE;
595 	req = (struct hclgevf_rss_config_cmd *)desc.data;
596 
597 	while (key_counts) {
598 		hclgevf_cmd_setup_basic_desc(&desc,
599 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
600 					     false);
601 
602 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
603 		req->hash_config |=
604 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
605 
606 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
607 		memcpy(req->hash_key,
608 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
609 
610 		key_counts -= key_size;
611 		key_offset++;
612 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
613 		if (ret) {
614 			dev_err(&hdev->pdev->dev,
615 				"Configure RSS config fail, status = %d\n",
616 				ret);
617 			return ret;
618 		}
619 	}
620 
621 	return 0;
622 }
623 
624 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
625 {
626 	return HCLGEVF_RSS_KEY_SIZE;
627 }
628 
629 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
630 {
631 	return HCLGEVF_RSS_IND_TBL_SIZE;
632 }
633 
634 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
635 {
636 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
637 	struct hclgevf_rss_indirection_table_cmd *req;
638 	struct hclgevf_desc desc;
639 	int status;
640 	int i, j;
641 
642 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
643 
644 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
645 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
646 					     false);
647 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
648 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
649 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
650 			req->rss_result[j] =
651 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
652 
653 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
654 		if (status) {
655 			dev_err(&hdev->pdev->dev,
656 				"VF failed(=%d) to set RSS indirection table\n",
657 				status);
658 			return status;
659 		}
660 	}
661 
662 	return 0;
663 }
664 
665 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
666 {
667 	struct hclgevf_rss_tc_mode_cmd *req;
668 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
669 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
670 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
671 	struct hclgevf_desc desc;
672 	u16 roundup_size;
673 	unsigned int i;
674 	int status;
675 
676 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
677 
678 	roundup_size = roundup_pow_of_two(rss_size);
679 	roundup_size = ilog2(roundup_size);
680 
681 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
682 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
683 		tc_size[i] = roundup_size;
684 		tc_offset[i] = rss_size * i;
685 	}
686 
687 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
688 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
689 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
690 			      (tc_valid[i] & 0x1));
691 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
692 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
693 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
694 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
695 	}
696 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
697 	if (status)
698 		dev_err(&hdev->pdev->dev,
699 			"VF failed(=%d) to set rss tc mode\n", status);
700 
701 	return status;
702 }
703 
704 /* for revision 0x20, vf shared the same rss config with pf */
705 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
706 {
707 #define HCLGEVF_RSS_MBX_RESP_LEN	8
708 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
709 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
710 	struct hclge_vf_to_pf_msg send_msg;
711 	u16 msg_num, hash_key_index;
712 	u8 index;
713 	int ret;
714 
715 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
716 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
717 			HCLGEVF_RSS_MBX_RESP_LEN;
718 	for (index = 0; index < msg_num; index++) {
719 		send_msg.data[0] = index;
720 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
721 					   HCLGEVF_RSS_MBX_RESP_LEN);
722 		if (ret) {
723 			dev_err(&hdev->pdev->dev,
724 				"VF get rss hash key from PF failed, ret=%d",
725 				ret);
726 			return ret;
727 		}
728 
729 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
730 		if (index == msg_num - 1)
731 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
732 			       &resp_msg[0],
733 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
734 		else
735 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
736 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
737 	}
738 
739 	return 0;
740 }
741 
742 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
743 			   u8 *hfunc)
744 {
745 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
746 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
747 	int i, ret;
748 
749 	if (handle->pdev->revision >= 0x21) {
750 		/* Get hash algorithm */
751 		if (hfunc) {
752 			switch (rss_cfg->hash_algo) {
753 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
754 				*hfunc = ETH_RSS_HASH_TOP;
755 				break;
756 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
757 				*hfunc = ETH_RSS_HASH_XOR;
758 				break;
759 			default:
760 				*hfunc = ETH_RSS_HASH_UNKNOWN;
761 				break;
762 			}
763 		}
764 
765 		/* Get the RSS Key required by the user */
766 		if (key)
767 			memcpy(key, rss_cfg->rss_hash_key,
768 			       HCLGEVF_RSS_KEY_SIZE);
769 	} else {
770 		if (hfunc)
771 			*hfunc = ETH_RSS_HASH_TOP;
772 		if (key) {
773 			ret = hclgevf_get_rss_hash_key(hdev);
774 			if (ret)
775 				return ret;
776 			memcpy(key, rss_cfg->rss_hash_key,
777 			       HCLGEVF_RSS_KEY_SIZE);
778 		}
779 	}
780 
781 	if (indir)
782 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
783 			indir[i] = rss_cfg->rss_indirection_tbl[i];
784 
785 	return 0;
786 }
787 
788 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
789 			   const u8 *key, const u8 hfunc)
790 {
791 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
792 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
793 	int ret, i;
794 
795 	if (handle->pdev->revision >= 0x21) {
796 		/* Set the RSS Hash Key if specififed by the user */
797 		if (key) {
798 			switch (hfunc) {
799 			case ETH_RSS_HASH_TOP:
800 				rss_cfg->hash_algo =
801 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
802 				break;
803 			case ETH_RSS_HASH_XOR:
804 				rss_cfg->hash_algo =
805 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
806 				break;
807 			case ETH_RSS_HASH_NO_CHANGE:
808 				break;
809 			default:
810 				return -EINVAL;
811 			}
812 
813 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
814 						       key);
815 			if (ret)
816 				return ret;
817 
818 			/* Update the shadow RSS key with user specified qids */
819 			memcpy(rss_cfg->rss_hash_key, key,
820 			       HCLGEVF_RSS_KEY_SIZE);
821 		}
822 	}
823 
824 	/* update the shadow RSS table with user specified qids */
825 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
826 		rss_cfg->rss_indirection_tbl[i] = indir[i];
827 
828 	/* update the hardware */
829 	return hclgevf_set_rss_indir_table(hdev);
830 }
831 
832 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
833 {
834 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
835 
836 	if (nfc->data & RXH_L4_B_2_3)
837 		hash_sets |= HCLGEVF_D_PORT_BIT;
838 	else
839 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
840 
841 	if (nfc->data & RXH_IP_SRC)
842 		hash_sets |= HCLGEVF_S_IP_BIT;
843 	else
844 		hash_sets &= ~HCLGEVF_S_IP_BIT;
845 
846 	if (nfc->data & RXH_IP_DST)
847 		hash_sets |= HCLGEVF_D_IP_BIT;
848 	else
849 		hash_sets &= ~HCLGEVF_D_IP_BIT;
850 
851 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
852 		hash_sets |= HCLGEVF_V_TAG_BIT;
853 
854 	return hash_sets;
855 }
856 
857 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
858 				 struct ethtool_rxnfc *nfc)
859 {
860 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
861 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
862 	struct hclgevf_rss_input_tuple_cmd *req;
863 	struct hclgevf_desc desc;
864 	u8 tuple_sets;
865 	int ret;
866 
867 	if (handle->pdev->revision == 0x20)
868 		return -EOPNOTSUPP;
869 
870 	if (nfc->data &
871 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
872 		return -EINVAL;
873 
874 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
875 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
876 
877 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
878 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
879 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
880 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
881 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
882 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
883 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
884 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
885 
886 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
887 	switch (nfc->flow_type) {
888 	case TCP_V4_FLOW:
889 		req->ipv4_tcp_en = tuple_sets;
890 		break;
891 	case TCP_V6_FLOW:
892 		req->ipv6_tcp_en = tuple_sets;
893 		break;
894 	case UDP_V4_FLOW:
895 		req->ipv4_udp_en = tuple_sets;
896 		break;
897 	case UDP_V6_FLOW:
898 		req->ipv6_udp_en = tuple_sets;
899 		break;
900 	case SCTP_V4_FLOW:
901 		req->ipv4_sctp_en = tuple_sets;
902 		break;
903 	case SCTP_V6_FLOW:
904 		if ((nfc->data & RXH_L4_B_0_1) ||
905 		    (nfc->data & RXH_L4_B_2_3))
906 			return -EINVAL;
907 
908 		req->ipv6_sctp_en = tuple_sets;
909 		break;
910 	case IPV4_FLOW:
911 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
912 		break;
913 	case IPV6_FLOW:
914 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
915 		break;
916 	default:
917 		return -EINVAL;
918 	}
919 
920 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
921 	if (ret) {
922 		dev_err(&hdev->pdev->dev,
923 			"Set rss tuple fail, status = %d\n", ret);
924 		return ret;
925 	}
926 
927 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
928 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
929 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
930 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
931 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
932 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
933 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
934 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
935 	return 0;
936 }
937 
938 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
939 				 struct ethtool_rxnfc *nfc)
940 {
941 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
942 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
943 	u8 tuple_sets;
944 
945 	if (handle->pdev->revision == 0x20)
946 		return -EOPNOTSUPP;
947 
948 	nfc->data = 0;
949 
950 	switch (nfc->flow_type) {
951 	case TCP_V4_FLOW:
952 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
953 		break;
954 	case UDP_V4_FLOW:
955 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
956 		break;
957 	case TCP_V6_FLOW:
958 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
959 		break;
960 	case UDP_V6_FLOW:
961 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
962 		break;
963 	case SCTP_V4_FLOW:
964 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
965 		break;
966 	case SCTP_V6_FLOW:
967 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
968 		break;
969 	case IPV4_FLOW:
970 	case IPV6_FLOW:
971 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
972 		break;
973 	default:
974 		return -EINVAL;
975 	}
976 
977 	if (!tuple_sets)
978 		return 0;
979 
980 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
981 		nfc->data |= RXH_L4_B_2_3;
982 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
983 		nfc->data |= RXH_L4_B_0_1;
984 	if (tuple_sets & HCLGEVF_D_IP_BIT)
985 		nfc->data |= RXH_IP_DST;
986 	if (tuple_sets & HCLGEVF_S_IP_BIT)
987 		nfc->data |= RXH_IP_SRC;
988 
989 	return 0;
990 }
991 
992 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
993 				       struct hclgevf_rss_cfg *rss_cfg)
994 {
995 	struct hclgevf_rss_input_tuple_cmd *req;
996 	struct hclgevf_desc desc;
997 	int ret;
998 
999 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1000 
1001 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1002 
1003 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1004 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1005 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1006 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1007 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1008 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1009 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1010 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1011 
1012 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1013 	if (ret)
1014 		dev_err(&hdev->pdev->dev,
1015 			"Configure rss input fail, status = %d\n", ret);
1016 	return ret;
1017 }
1018 
1019 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1020 {
1021 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1022 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1023 
1024 	return rss_cfg->rss_size;
1025 }
1026 
1027 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1028 				       int vector_id,
1029 				       struct hnae3_ring_chain_node *ring_chain)
1030 {
1031 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1032 	struct hclge_vf_to_pf_msg send_msg;
1033 	struct hnae3_ring_chain_node *node;
1034 	int status;
1035 	int i = 0;
1036 
1037 	memset(&send_msg, 0, sizeof(send_msg));
1038 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1039 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1040 	send_msg.vector_id = vector_id;
1041 
1042 	for (node = ring_chain; node; node = node->next) {
1043 		send_msg.param[i].ring_type =
1044 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1045 
1046 		send_msg.param[i].tqp_index = node->tqp_index;
1047 		send_msg.param[i].int_gl_index =
1048 					hnae3_get_field(node->int_gl_idx,
1049 							HNAE3_RING_GL_IDX_M,
1050 							HNAE3_RING_GL_IDX_S);
1051 
1052 		i++;
1053 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1054 			send_msg.ring_num = i;
1055 
1056 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1057 						      NULL, 0);
1058 			if (status) {
1059 				dev_err(&hdev->pdev->dev,
1060 					"Map TQP fail, status is %d.\n",
1061 					status);
1062 				return status;
1063 			}
1064 			i = 0;
1065 		}
1066 	}
1067 
1068 	return 0;
1069 }
1070 
1071 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1072 				      struct hnae3_ring_chain_node *ring_chain)
1073 {
1074 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1075 	int vector_id;
1076 
1077 	vector_id = hclgevf_get_vector_index(hdev, vector);
1078 	if (vector_id < 0) {
1079 		dev_err(&handle->pdev->dev,
1080 			"Get vector index fail. ret =%d\n", vector_id);
1081 		return vector_id;
1082 	}
1083 
1084 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1085 }
1086 
1087 static int hclgevf_unmap_ring_from_vector(
1088 				struct hnae3_handle *handle,
1089 				int vector,
1090 				struct hnae3_ring_chain_node *ring_chain)
1091 {
1092 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1093 	int ret, vector_id;
1094 
1095 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1096 		return 0;
1097 
1098 	vector_id = hclgevf_get_vector_index(hdev, vector);
1099 	if (vector_id < 0) {
1100 		dev_err(&handle->pdev->dev,
1101 			"Get vector index fail. ret =%d\n", vector_id);
1102 		return vector_id;
1103 	}
1104 
1105 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1106 	if (ret)
1107 		dev_err(&handle->pdev->dev,
1108 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1109 			vector_id,
1110 			ret);
1111 
1112 	return ret;
1113 }
1114 
1115 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1116 {
1117 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1118 	int vector_id;
1119 
1120 	vector_id = hclgevf_get_vector_index(hdev, vector);
1121 	if (vector_id < 0) {
1122 		dev_err(&handle->pdev->dev,
1123 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1124 			vector_id);
1125 		return vector_id;
1126 	}
1127 
1128 	hclgevf_free_vector(hdev, vector_id);
1129 
1130 	return 0;
1131 }
1132 
1133 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1134 					bool en_uc_pmc, bool en_mc_pmc,
1135 					bool en_bc_pmc)
1136 {
1137 	struct hclge_vf_to_pf_msg send_msg;
1138 	int ret;
1139 
1140 	memset(&send_msg, 0, sizeof(send_msg));
1141 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1142 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
1143 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
1144 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
1145 
1146 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1147 	if (ret)
1148 		dev_err(&hdev->pdev->dev,
1149 			"Set promisc mode fail, status is %d.\n", ret);
1150 
1151 	return ret;
1152 }
1153 
1154 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1155 				    bool en_mc_pmc)
1156 {
1157 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1158 	struct pci_dev *pdev = hdev->pdev;
1159 	bool en_bc_pmc;
1160 
1161 	en_bc_pmc = pdev->revision != 0x20;
1162 
1163 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1164 					    en_bc_pmc);
1165 }
1166 
1167 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1168 {
1169 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1170 
1171 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1172 }
1173 
1174 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1175 {
1176 	struct hnae3_handle *handle = &hdev->nic;
1177 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1178 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1179 	int ret;
1180 
1181 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1182 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1183 		if (!ret)
1184 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1185 	}
1186 }
1187 
1188 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1189 			      int stream_id, bool enable)
1190 {
1191 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1192 	struct hclgevf_desc desc;
1193 	int status;
1194 
1195 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1196 
1197 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1198 				     false);
1199 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1200 	req->stream_id = cpu_to_le16(stream_id);
1201 	if (enable)
1202 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1203 
1204 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1205 	if (status)
1206 		dev_err(&hdev->pdev->dev,
1207 			"TQP enable fail, status =%d.\n", status);
1208 
1209 	return status;
1210 }
1211 
1212 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1213 {
1214 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1215 	struct hclgevf_tqp *tqp;
1216 	int i;
1217 
1218 	for (i = 0; i < kinfo->num_tqps; i++) {
1219 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1220 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1221 	}
1222 }
1223 
1224 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1225 {
1226 	struct hclge_vf_to_pf_msg send_msg;
1227 	u8 host_mac[ETH_ALEN];
1228 	int status;
1229 
1230 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1231 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1232 				      ETH_ALEN);
1233 	if (status) {
1234 		dev_err(&hdev->pdev->dev,
1235 			"fail to get VF MAC from host %d", status);
1236 		return status;
1237 	}
1238 
1239 	ether_addr_copy(p, host_mac);
1240 
1241 	return 0;
1242 }
1243 
1244 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1245 {
1246 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1247 	u8 host_mac_addr[ETH_ALEN];
1248 
1249 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1250 		return;
1251 
1252 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1253 	if (hdev->has_pf_mac)
1254 		ether_addr_copy(p, host_mac_addr);
1255 	else
1256 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1257 }
1258 
1259 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1260 				bool is_first)
1261 {
1262 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1263 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1264 	struct hclge_vf_to_pf_msg send_msg;
1265 	u8 *new_mac_addr = (u8 *)p;
1266 	int status;
1267 
1268 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1269 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1270 	ether_addr_copy(send_msg.data, new_mac_addr);
1271 	if (is_first && !hdev->has_pf_mac)
1272 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
1273 	else
1274 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1275 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1276 	if (!status)
1277 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1278 
1279 	return status;
1280 }
1281 
1282 static struct hclgevf_mac_addr_node *
1283 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1284 {
1285 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1286 
1287 	list_for_each_entry_safe(mac_node, tmp, list, node)
1288 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1289 			return mac_node;
1290 
1291 	return NULL;
1292 }
1293 
1294 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1295 				    enum HCLGEVF_MAC_NODE_STATE state)
1296 {
1297 	switch (state) {
1298 	/* from set_rx_mode or tmp_add_list */
1299 	case HCLGEVF_MAC_TO_ADD:
1300 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1301 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1302 		break;
1303 	/* only from set_rx_mode */
1304 	case HCLGEVF_MAC_TO_DEL:
1305 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1306 			list_del(&mac_node->node);
1307 			kfree(mac_node);
1308 		} else {
1309 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1310 		}
1311 		break;
1312 	/* only from tmp_add_list, the mac_node->state won't be
1313 	 * HCLGEVF_MAC_ACTIVE
1314 	 */
1315 	case HCLGEVF_MAC_ACTIVE:
1316 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1317 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1318 		break;
1319 	}
1320 }
1321 
1322 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1323 				   enum HCLGEVF_MAC_NODE_STATE state,
1324 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1325 				   const unsigned char *addr)
1326 {
1327 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1328 	struct hclgevf_mac_addr_node *mac_node;
1329 	struct list_head *list;
1330 
1331 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1332 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1333 
1334 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1335 
1336 	/* if the mac addr is already in the mac list, no need to add a new
1337 	 * one into it, just check the mac addr state, convert it to a new
1338 	 * new state, or just remove it, or do nothing.
1339 	 */
1340 	mac_node = hclgevf_find_mac_node(list, addr);
1341 	if (mac_node) {
1342 		hclgevf_update_mac_node(mac_node, state);
1343 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1344 		return 0;
1345 	}
1346 	/* if this address is never added, unnecessary to delete */
1347 	if (state == HCLGEVF_MAC_TO_DEL) {
1348 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1349 		return -ENOENT;
1350 	}
1351 
1352 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1353 	if (!mac_node) {
1354 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1355 		return -ENOMEM;
1356 	}
1357 
1358 	mac_node->state = state;
1359 	ether_addr_copy(mac_node->mac_addr, addr);
1360 	list_add_tail(&mac_node->node, list);
1361 
1362 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1363 	return 0;
1364 }
1365 
1366 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1367 			       const unsigned char *addr)
1368 {
1369 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1370 				       HCLGEVF_MAC_ADDR_UC, addr);
1371 }
1372 
1373 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1374 			      const unsigned char *addr)
1375 {
1376 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1377 				       HCLGEVF_MAC_ADDR_UC, addr);
1378 }
1379 
1380 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1381 			       const unsigned char *addr)
1382 {
1383 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1384 				       HCLGEVF_MAC_ADDR_MC, addr);
1385 }
1386 
1387 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1388 			      const unsigned char *addr)
1389 {
1390 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1391 				       HCLGEVF_MAC_ADDR_MC, addr);
1392 }
1393 
1394 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1395 				    struct hclgevf_mac_addr_node *mac_node,
1396 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1397 {
1398 	struct hclge_vf_to_pf_msg send_msg;
1399 	u8 code, subcode;
1400 
1401 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1402 		code = HCLGE_MBX_SET_UNICAST;
1403 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1404 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1405 		else
1406 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1407 	} else {
1408 		code = HCLGE_MBX_SET_MULTICAST;
1409 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1410 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1411 		else
1412 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1413 	}
1414 
1415 	hclgevf_build_send_msg(&send_msg, code, subcode);
1416 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1417 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1418 }
1419 
1420 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1421 				    struct list_head *list,
1422 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1423 {
1424 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1425 	int ret;
1426 
1427 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1428 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1429 		if  (ret) {
1430 			dev_err(&hdev->pdev->dev,
1431 				"failed to configure mac %pM, state = %d, ret = %d\n",
1432 				mac_node->mac_addr, mac_node->state, ret);
1433 			return;
1434 		}
1435 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1436 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1437 		} else {
1438 			list_del(&mac_node->node);
1439 			kfree(mac_node);
1440 		}
1441 	}
1442 }
1443 
1444 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1445 				       struct list_head *mac_list)
1446 {
1447 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1448 
1449 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1450 		/* if the mac address from tmp_add_list is not in the
1451 		 * uc/mc_mac_list, it means have received a TO_DEL request
1452 		 * during the time window of sending mac config request to PF
1453 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1454 		 * then it will be removed at next time. If is TO_ADD, it means
1455 		 * send TO_ADD request failed, so just remove the mac node.
1456 		 */
1457 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1458 		if (new_node) {
1459 			hclgevf_update_mac_node(new_node, mac_node->state);
1460 			list_del(&mac_node->node);
1461 			kfree(mac_node);
1462 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1463 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1464 			list_del(&mac_node->node);
1465 			list_add_tail(&mac_node->node, mac_list);
1466 		} else {
1467 			list_del(&mac_node->node);
1468 			kfree(mac_node);
1469 		}
1470 	}
1471 }
1472 
1473 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1474 				       struct list_head *mac_list)
1475 {
1476 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1477 
1478 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1479 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1480 		if (new_node) {
1481 			/* If the mac addr is exist in the mac list, it means
1482 			 * received a new request TO_ADD during the time window
1483 			 * of sending mac addr configurrequest to PF, so just
1484 			 * change the mac state to ACTIVE.
1485 			 */
1486 			new_node->state = HCLGEVF_MAC_ACTIVE;
1487 			list_del(&mac_node->node);
1488 			kfree(mac_node);
1489 		} else {
1490 			list_del(&mac_node->node);
1491 			list_add_tail(&mac_node->node, mac_list);
1492 		}
1493 	}
1494 }
1495 
1496 static void hclgevf_clear_list(struct list_head *list)
1497 {
1498 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1499 
1500 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1501 		list_del(&mac_node->node);
1502 		kfree(mac_node);
1503 	}
1504 }
1505 
1506 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1507 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1508 {
1509 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1510 	struct list_head tmp_add_list, tmp_del_list;
1511 	struct list_head *list;
1512 
1513 	INIT_LIST_HEAD(&tmp_add_list);
1514 	INIT_LIST_HEAD(&tmp_del_list);
1515 
1516 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1517 	 * we can add/delete these mac addr outside the spin lock
1518 	 */
1519 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1520 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1521 
1522 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1523 
1524 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1525 		switch (mac_node->state) {
1526 		case HCLGEVF_MAC_TO_DEL:
1527 			list_del(&mac_node->node);
1528 			list_add_tail(&mac_node->node, &tmp_del_list);
1529 			break;
1530 		case HCLGEVF_MAC_TO_ADD:
1531 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1532 			if (!new_node)
1533 				goto stop_traverse;
1534 
1535 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1536 			new_node->state = mac_node->state;
1537 			list_add_tail(&new_node->node, &tmp_add_list);
1538 			break;
1539 		default:
1540 			break;
1541 		}
1542 	}
1543 
1544 stop_traverse:
1545 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1546 
1547 	/* delete first, in order to get max mac table space for adding */
1548 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1549 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1550 
1551 	/* if some mac addresses were added/deleted fail, move back to the
1552 	 * mac_list, and retry at next time.
1553 	 */
1554 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1555 
1556 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1557 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1558 
1559 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1560 }
1561 
1562 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1563 {
1564 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1565 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1566 }
1567 
1568 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1569 {
1570 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1571 
1572 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1573 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1574 
1575 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1576 }
1577 
1578 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1579 				   __be16 proto, u16 vlan_id,
1580 				   bool is_kill)
1581 {
1582 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
1583 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
1584 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3
1585 
1586 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1587 	struct hclge_vf_to_pf_msg send_msg;
1588 	int ret;
1589 
1590 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1591 		return -EINVAL;
1592 
1593 	if (proto != htons(ETH_P_8021Q))
1594 		return -EPROTONOSUPPORT;
1595 
1596 	/* When device is resetting or reset failed, firmware is unable to
1597 	 * handle mailbox. Just record the vlan id, and remove it after
1598 	 * reset finished.
1599 	 */
1600 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1601 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1602 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1603 		return -EBUSY;
1604 	}
1605 
1606 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1607 			       HCLGE_MBX_VLAN_FILTER);
1608 	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1609 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1610 	       sizeof(vlan_id));
1611 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1612 	       sizeof(proto));
1613 	/* when remove hw vlan filter failed, record the vlan id,
1614 	 * and try to remove it from hw later, to be consistence
1615 	 * with stack.
1616 	 */
1617 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1618 	if (is_kill && ret)
1619 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1620 
1621 	return ret;
1622 }
1623 
1624 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1625 {
1626 #define HCLGEVF_MAX_SYNC_COUNT	60
1627 	struct hnae3_handle *handle = &hdev->nic;
1628 	int ret, sync_cnt = 0;
1629 	u16 vlan_id;
1630 
1631 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1632 	while (vlan_id != VLAN_N_VID) {
1633 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1634 					      vlan_id, true);
1635 		if (ret)
1636 			return;
1637 
1638 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1639 		sync_cnt++;
1640 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1641 			return;
1642 
1643 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1644 	}
1645 }
1646 
1647 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1648 {
1649 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1650 	struct hclge_vf_to_pf_msg send_msg;
1651 
1652 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1653 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1654 	send_msg.data[0] = enable ? 1 : 0;
1655 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1656 }
1657 
1658 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1659 {
1660 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1661 	struct hclge_vf_to_pf_msg send_msg;
1662 	int ret;
1663 
1664 	/* disable vf queue before send queue reset msg to PF */
1665 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1666 	if (ret)
1667 		return ret;
1668 
1669 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1670 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
1671 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1672 }
1673 
1674 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1675 {
1676 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1677 	struct hclge_vf_to_pf_msg send_msg;
1678 
1679 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1680 	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1681 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1682 }
1683 
1684 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1685 				 enum hnae3_reset_notify_type type)
1686 {
1687 	struct hnae3_client *client = hdev->nic_client;
1688 	struct hnae3_handle *handle = &hdev->nic;
1689 	int ret;
1690 
1691 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1692 	    !client)
1693 		return 0;
1694 
1695 	if (!client->ops->reset_notify)
1696 		return -EOPNOTSUPP;
1697 
1698 	ret = client->ops->reset_notify(handle, type);
1699 	if (ret)
1700 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1701 			type, ret);
1702 
1703 	return ret;
1704 }
1705 
1706 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1707 {
1708 #define HCLGEVF_RESET_WAIT_US	20000
1709 #define HCLGEVF_RESET_WAIT_CNT	2000
1710 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1711 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1712 
1713 	u32 val;
1714 	int ret;
1715 
1716 	if (hdev->reset_type == HNAE3_VF_RESET)
1717 		ret = readl_poll_timeout(hdev->hw.io_base +
1718 					 HCLGEVF_VF_RST_ING, val,
1719 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1720 					 HCLGEVF_RESET_WAIT_US,
1721 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1722 	else
1723 		ret = readl_poll_timeout(hdev->hw.io_base +
1724 					 HCLGEVF_RST_ING, val,
1725 					 !(val & HCLGEVF_RST_ING_BITS),
1726 					 HCLGEVF_RESET_WAIT_US,
1727 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1728 
1729 	/* hardware completion status should be available by this time */
1730 	if (ret) {
1731 		dev_err(&hdev->pdev->dev,
1732 			"couldn't get reset done status from h/w, timeout!\n");
1733 		return ret;
1734 	}
1735 
1736 	/* we will wait a bit more to let reset of the stack to complete. This
1737 	 * might happen in case reset assertion was made by PF. Yes, this also
1738 	 * means we might end up waiting bit more even for VF reset.
1739 	 */
1740 	msleep(5000);
1741 
1742 	return 0;
1743 }
1744 
1745 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1746 {
1747 	u32 reg_val;
1748 
1749 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1750 	if (enable)
1751 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1752 	else
1753 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1754 
1755 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1756 			  reg_val);
1757 }
1758 
1759 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1760 {
1761 	int ret;
1762 
1763 	/* uninitialize the nic client */
1764 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1765 	if (ret)
1766 		return ret;
1767 
1768 	/* re-initialize the hclge device */
1769 	ret = hclgevf_reset_hdev(hdev);
1770 	if (ret) {
1771 		dev_err(&hdev->pdev->dev,
1772 			"hclge device re-init failed, VF is disabled!\n");
1773 		return ret;
1774 	}
1775 
1776 	/* bring up the nic client again */
1777 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1778 	if (ret)
1779 		return ret;
1780 
1781 	/* clear handshake status with IMP */
1782 	hclgevf_reset_handshake(hdev, false);
1783 
1784 	/* bring up the nic to enable TX/RX again */
1785 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1786 }
1787 
1788 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1789 {
1790 #define HCLGEVF_RESET_SYNC_TIME 100
1791 
1792 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1793 		struct hclge_vf_to_pf_msg send_msg;
1794 		int ret;
1795 
1796 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1797 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1798 		if (ret) {
1799 			dev_err(&hdev->pdev->dev,
1800 				"failed to assert VF reset, ret = %d\n", ret);
1801 			return ret;
1802 		}
1803 		hdev->rst_stats.vf_func_rst_cnt++;
1804 	}
1805 
1806 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1807 	/* inform hardware that preparatory work is done */
1808 	msleep(HCLGEVF_RESET_SYNC_TIME);
1809 	hclgevf_reset_handshake(hdev, true);
1810 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1811 		 hdev->reset_type);
1812 
1813 	return 0;
1814 }
1815 
1816 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1817 {
1818 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1819 		 hdev->rst_stats.vf_func_rst_cnt);
1820 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1821 		 hdev->rst_stats.flr_rst_cnt);
1822 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1823 		 hdev->rst_stats.vf_rst_cnt);
1824 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1825 		 hdev->rst_stats.rst_done_cnt);
1826 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1827 		 hdev->rst_stats.hw_rst_done_cnt);
1828 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1829 		 hdev->rst_stats.rst_cnt);
1830 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1831 		 hdev->rst_stats.rst_fail_cnt);
1832 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1833 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1834 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1835 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1836 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1837 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1838 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1839 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1840 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1841 }
1842 
1843 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1844 {
1845 	/* recover handshake status with IMP when reset fail */
1846 	hclgevf_reset_handshake(hdev, true);
1847 	hdev->rst_stats.rst_fail_cnt++;
1848 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1849 		hdev->rst_stats.rst_fail_cnt);
1850 
1851 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1852 		set_bit(hdev->reset_type, &hdev->reset_pending);
1853 
1854 	if (hclgevf_is_reset_pending(hdev)) {
1855 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1856 		hclgevf_reset_task_schedule(hdev);
1857 	} else {
1858 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1859 		hclgevf_dump_rst_info(hdev);
1860 	}
1861 }
1862 
1863 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1864 {
1865 	int ret;
1866 
1867 	hdev->rst_stats.rst_cnt++;
1868 
1869 	rtnl_lock();
1870 	/* bring down the nic to stop any ongoing TX/RX */
1871 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1872 	rtnl_unlock();
1873 	if (ret)
1874 		return ret;
1875 
1876 	return hclgevf_reset_prepare_wait(hdev);
1877 }
1878 
1879 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1880 {
1881 	int ret;
1882 
1883 	hdev->rst_stats.hw_rst_done_cnt++;
1884 
1885 	rtnl_lock();
1886 	/* now, re-initialize the nic client and ae device */
1887 	ret = hclgevf_reset_stack(hdev);
1888 	rtnl_unlock();
1889 	if (ret) {
1890 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1891 		return ret;
1892 	}
1893 
1894 	hdev->last_reset_time = jiffies;
1895 	hdev->rst_stats.rst_done_cnt++;
1896 	hdev->rst_stats.rst_fail_cnt = 0;
1897 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1898 
1899 	return 0;
1900 }
1901 
1902 static void hclgevf_reset(struct hclgevf_dev *hdev)
1903 {
1904 	if (hclgevf_reset_prepare(hdev))
1905 		goto err_reset;
1906 
1907 	/* check if VF could successfully fetch the hardware reset completion
1908 	 * status from the hardware
1909 	 */
1910 	if (hclgevf_reset_wait(hdev)) {
1911 		/* can't do much in this situation, will disable VF */
1912 		dev_err(&hdev->pdev->dev,
1913 			"failed to fetch H/W reset completion status\n");
1914 		goto err_reset;
1915 	}
1916 
1917 	if (hclgevf_reset_rebuild(hdev))
1918 		goto err_reset;
1919 
1920 	return;
1921 
1922 err_reset:
1923 	hclgevf_reset_err_handle(hdev);
1924 }
1925 
1926 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1927 						     unsigned long *addr)
1928 {
1929 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1930 
1931 	/* return the highest priority reset level amongst all */
1932 	if (test_bit(HNAE3_VF_RESET, addr)) {
1933 		rst_level = HNAE3_VF_RESET;
1934 		clear_bit(HNAE3_VF_RESET, addr);
1935 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1936 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1937 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1938 		rst_level = HNAE3_VF_FULL_RESET;
1939 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1940 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1941 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1942 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1943 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1944 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1945 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1946 		rst_level = HNAE3_VF_FUNC_RESET;
1947 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1948 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1949 		rst_level = HNAE3_FLR_RESET;
1950 		clear_bit(HNAE3_FLR_RESET, addr);
1951 	}
1952 
1953 	return rst_level;
1954 }
1955 
1956 static void hclgevf_reset_event(struct pci_dev *pdev,
1957 				struct hnae3_handle *handle)
1958 {
1959 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1960 	struct hclgevf_dev *hdev = ae_dev->priv;
1961 
1962 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1963 
1964 	if (hdev->default_reset_request)
1965 		hdev->reset_level =
1966 			hclgevf_get_reset_level(hdev,
1967 						&hdev->default_reset_request);
1968 	else
1969 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1970 
1971 	/* reset of this VF requested */
1972 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1973 	hclgevf_reset_task_schedule(hdev);
1974 
1975 	hdev->last_reset_time = jiffies;
1976 }
1977 
1978 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1979 					  enum hnae3_reset_type rst_type)
1980 {
1981 	struct hclgevf_dev *hdev = ae_dev->priv;
1982 
1983 	set_bit(rst_type, &hdev->default_reset_request);
1984 }
1985 
1986 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1987 {
1988 	writel(en ? 1 : 0, vector->addr);
1989 }
1990 
1991 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1992 {
1993 #define HCLGEVF_FLR_RETRY_WAIT_MS	500
1994 #define HCLGEVF_FLR_RETRY_CNT		5
1995 
1996 	struct hclgevf_dev *hdev = ae_dev->priv;
1997 	int retry_cnt = 0;
1998 	int ret;
1999 
2000 retry:
2001 	down(&hdev->reset_sem);
2002 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2003 	hdev->reset_type = HNAE3_FLR_RESET;
2004 	ret = hclgevf_reset_prepare(hdev);
2005 	if (ret) {
2006 		dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n",
2007 			ret);
2008 		if (hdev->reset_pending ||
2009 		    retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) {
2010 			dev_err(&hdev->pdev->dev,
2011 				"reset_pending:0x%lx, retry_cnt:%d\n",
2012 				hdev->reset_pending, retry_cnt);
2013 			clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2014 			up(&hdev->reset_sem);
2015 			msleep(HCLGEVF_FLR_RETRY_WAIT_MS);
2016 			goto retry;
2017 		}
2018 	}
2019 
2020 	/* disable misc vector before FLR done */
2021 	hclgevf_enable_vector(&hdev->misc_vector, false);
2022 	hdev->rst_stats.flr_rst_cnt++;
2023 }
2024 
2025 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
2026 {
2027 	struct hclgevf_dev *hdev = ae_dev->priv;
2028 	int ret;
2029 
2030 	hclgevf_enable_vector(&hdev->misc_vector, true);
2031 
2032 	ret = hclgevf_reset_rebuild(hdev);
2033 	if (ret)
2034 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2035 			 ret);
2036 
2037 	hdev->reset_type = HNAE3_NONE_RESET;
2038 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2039 	up(&hdev->reset_sem);
2040 }
2041 
2042 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2043 {
2044 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2045 
2046 	return hdev->fw_version;
2047 }
2048 
2049 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2050 {
2051 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2052 
2053 	vector->vector_irq = pci_irq_vector(hdev->pdev,
2054 					    HCLGEVF_MISC_VECTOR_NUM);
2055 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2056 	/* vector status always valid for Vector 0 */
2057 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2058 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2059 
2060 	hdev->num_msi_left -= 1;
2061 	hdev->num_msi_used += 1;
2062 }
2063 
2064 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2065 {
2066 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2067 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2068 			      &hdev->state))
2069 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2070 }
2071 
2072 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2073 {
2074 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2075 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2076 			      &hdev->state))
2077 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2078 }
2079 
2080 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2081 				  unsigned long delay)
2082 {
2083 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2084 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2085 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2086 }
2087 
2088 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2089 {
2090 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
2091 
2092 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2093 		return;
2094 
2095 	down(&hdev->reset_sem);
2096 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2097 
2098 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2099 			       &hdev->reset_state)) {
2100 		/* PF has initmated that it is about to reset the hardware.
2101 		 * We now have to poll & check if hardware has actually
2102 		 * completed the reset sequence. On hardware reset completion,
2103 		 * VF needs to reset the client and ae device.
2104 		 */
2105 		hdev->reset_attempts = 0;
2106 
2107 		hdev->last_reset_time = jiffies;
2108 		while ((hdev->reset_type =
2109 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2110 		       != HNAE3_NONE_RESET)
2111 			hclgevf_reset(hdev);
2112 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2113 				      &hdev->reset_state)) {
2114 		/* we could be here when either of below happens:
2115 		 * 1. reset was initiated due to watchdog timeout caused by
2116 		 *    a. IMP was earlier reset and our TX got choked down and
2117 		 *       which resulted in watchdog reacting and inducing VF
2118 		 *       reset. This also means our cmdq would be unreliable.
2119 		 *    b. problem in TX due to other lower layer(example link
2120 		 *       layer not functioning properly etc.)
2121 		 * 2. VF reset might have been initiated due to some config
2122 		 *    change.
2123 		 *
2124 		 * NOTE: Theres no clear way to detect above cases than to react
2125 		 * to the response of PF for this reset request. PF will ack the
2126 		 * 1b and 2. cases but we will not get any intimation about 1a
2127 		 * from PF as cmdq would be in unreliable state i.e. mailbox
2128 		 * communication between PF and VF would be broken.
2129 		 *
2130 		 * if we are never geting into pending state it means either:
2131 		 * 1. PF is not receiving our request which could be due to IMP
2132 		 *    reset
2133 		 * 2. PF is screwed
2134 		 * We cannot do much for 2. but to check first we can try reset
2135 		 * our PCIe + stack and see if it alleviates the problem.
2136 		 */
2137 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2138 			/* prepare for full reset of stack + pcie interface */
2139 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2140 
2141 			/* "defer" schedule the reset task again */
2142 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2143 		} else {
2144 			hdev->reset_attempts++;
2145 
2146 			set_bit(hdev->reset_level, &hdev->reset_pending);
2147 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2148 		}
2149 		hclgevf_reset_task_schedule(hdev);
2150 	}
2151 
2152 	hdev->reset_type = HNAE3_NONE_RESET;
2153 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2154 	up(&hdev->reset_sem);
2155 }
2156 
2157 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2158 {
2159 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2160 		return;
2161 
2162 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2163 		return;
2164 
2165 	hclgevf_mbx_async_handler(hdev);
2166 
2167 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2168 }
2169 
2170 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2171 {
2172 	struct hclge_vf_to_pf_msg send_msg;
2173 	int ret;
2174 
2175 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2176 		return;
2177 
2178 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2179 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2180 	if (ret)
2181 		dev_err(&hdev->pdev->dev,
2182 			"VF sends keep alive cmd failed(=%d)\n", ret);
2183 }
2184 
2185 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2186 {
2187 	unsigned long delta = round_jiffies_relative(HZ);
2188 	struct hnae3_handle *handle = &hdev->nic;
2189 
2190 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2191 		return;
2192 
2193 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2194 		delta = jiffies - hdev->last_serv_processed;
2195 
2196 		if (delta < round_jiffies_relative(HZ)) {
2197 			delta = round_jiffies_relative(HZ) - delta;
2198 			goto out;
2199 		}
2200 	}
2201 
2202 	hdev->serv_processed_cnt++;
2203 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2204 		hclgevf_keep_alive(hdev);
2205 
2206 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2207 		hdev->last_serv_processed = jiffies;
2208 		goto out;
2209 	}
2210 
2211 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2212 		hclgevf_tqps_update_stats(handle);
2213 
2214 	/* request the link status from the PF. PF would be able to tell VF
2215 	 * about such updates in future so we might remove this later
2216 	 */
2217 	hclgevf_request_link_info(hdev);
2218 
2219 	hclgevf_update_link_mode(hdev);
2220 
2221 	hclgevf_sync_vlan_filter(hdev);
2222 
2223 	hclgevf_sync_mac_table(hdev);
2224 
2225 	hclgevf_sync_promisc_mode(hdev);
2226 
2227 	hdev->last_serv_processed = jiffies;
2228 
2229 out:
2230 	hclgevf_task_schedule(hdev, delta);
2231 }
2232 
2233 static void hclgevf_service_task(struct work_struct *work)
2234 {
2235 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2236 						service_task.work);
2237 
2238 	hclgevf_reset_service_task(hdev);
2239 	hclgevf_mailbox_service_task(hdev);
2240 	hclgevf_periodic_service_task(hdev);
2241 
2242 	/* Handle reset and mbx again in case periodical task delays the
2243 	 * handling by calling hclgevf_task_schedule() in
2244 	 * hclgevf_periodic_service_task()
2245 	 */
2246 	hclgevf_reset_service_task(hdev);
2247 	hclgevf_mailbox_service_task(hdev);
2248 }
2249 
2250 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2251 {
2252 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2253 }
2254 
2255 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2256 						      u32 *clearval)
2257 {
2258 	u32 val, cmdq_stat_reg, rst_ing_reg;
2259 
2260 	/* fetch the events from their corresponding regs */
2261 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2262 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2263 
2264 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2265 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2266 		dev_info(&hdev->pdev->dev,
2267 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2268 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2269 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2270 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2271 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2272 		hdev->rst_stats.vf_rst_cnt++;
2273 		/* set up VF hardware reset status, its PF will clear
2274 		 * this status when PF has initialized done.
2275 		 */
2276 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2277 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2278 				  val | HCLGEVF_VF_RST_ING_BIT);
2279 		return HCLGEVF_VECTOR0_EVENT_RST;
2280 	}
2281 
2282 	/* check for vector0 mailbox(=CMDQ RX) event source */
2283 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2284 		/* for revision 0x21, clearing interrupt is writing bit 0
2285 		 * to the clear register, writing bit 1 means to keep the
2286 		 * old value.
2287 		 * for revision 0x20, the clear register is a read & write
2288 		 * register, so we should just write 0 to the bit we are
2289 		 * handling, and keep other bits as cmdq_stat_reg.
2290 		 */
2291 		if (hdev->pdev->revision >= 0x21)
2292 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2293 		else
2294 			*clearval = cmdq_stat_reg &
2295 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2296 
2297 		return HCLGEVF_VECTOR0_EVENT_MBX;
2298 	}
2299 
2300 	/* print other vector0 event source */
2301 	dev_info(&hdev->pdev->dev,
2302 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2303 		 cmdq_stat_reg);
2304 
2305 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2306 }
2307 
2308 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2309 {
2310 	enum hclgevf_evt_cause event_cause;
2311 	struct hclgevf_dev *hdev = data;
2312 	u32 clearval;
2313 
2314 	hclgevf_enable_vector(&hdev->misc_vector, false);
2315 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2316 
2317 	switch (event_cause) {
2318 	case HCLGEVF_VECTOR0_EVENT_RST:
2319 		hclgevf_reset_task_schedule(hdev);
2320 		break;
2321 	case HCLGEVF_VECTOR0_EVENT_MBX:
2322 		hclgevf_mbx_handler(hdev);
2323 		break;
2324 	default:
2325 		break;
2326 	}
2327 
2328 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2329 		hclgevf_clear_event_cause(hdev, clearval);
2330 		hclgevf_enable_vector(&hdev->misc_vector, true);
2331 	}
2332 
2333 	return IRQ_HANDLED;
2334 }
2335 
2336 static int hclgevf_configure(struct hclgevf_dev *hdev)
2337 {
2338 	int ret;
2339 
2340 	/* get current port based vlan state from PF */
2341 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2342 	if (ret)
2343 		return ret;
2344 
2345 	/* get queue configuration from PF */
2346 	ret = hclgevf_get_queue_info(hdev);
2347 	if (ret)
2348 		return ret;
2349 
2350 	/* get queue depth info from PF */
2351 	ret = hclgevf_get_queue_depth(hdev);
2352 	if (ret)
2353 		return ret;
2354 
2355 	ret = hclgevf_get_pf_media_type(hdev);
2356 	if (ret)
2357 		return ret;
2358 
2359 	/* get tc configuration from PF */
2360 	return hclgevf_get_tc_info(hdev);
2361 }
2362 
2363 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2364 {
2365 	struct pci_dev *pdev = ae_dev->pdev;
2366 	struct hclgevf_dev *hdev;
2367 
2368 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2369 	if (!hdev)
2370 		return -ENOMEM;
2371 
2372 	hdev->pdev = pdev;
2373 	hdev->ae_dev = ae_dev;
2374 	ae_dev->priv = hdev;
2375 
2376 	return 0;
2377 }
2378 
2379 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2380 {
2381 	struct hnae3_handle *roce = &hdev->roce;
2382 	struct hnae3_handle *nic = &hdev->nic;
2383 
2384 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2385 
2386 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2387 	    hdev->num_msi_left == 0)
2388 		return -EINVAL;
2389 
2390 	roce->rinfo.base_vector = hdev->roce_base_vector;
2391 
2392 	roce->rinfo.netdev = nic->kinfo.netdev;
2393 	roce->rinfo.roce_io_base = hdev->hw.io_base;
2394 
2395 	roce->pdev = nic->pdev;
2396 	roce->ae_algo = nic->ae_algo;
2397 	roce->numa_node_mask = nic->numa_node_mask;
2398 
2399 	return 0;
2400 }
2401 
2402 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2403 {
2404 	struct hclgevf_cfg_gro_status_cmd *req;
2405 	struct hclgevf_desc desc;
2406 	int ret;
2407 
2408 	if (!hnae3_dev_gro_supported(hdev))
2409 		return 0;
2410 
2411 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2412 				     false);
2413 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2414 
2415 	req->gro_en = en ? 1 : 0;
2416 
2417 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2418 	if (ret)
2419 		dev_err(&hdev->pdev->dev,
2420 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2421 
2422 	return ret;
2423 }
2424 
2425 static void hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2426 {
2427 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2428 	struct hclgevf_rss_tuple_cfg *tuple_sets;
2429 	u32 i;
2430 
2431 	rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2432 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2433 	tuple_sets = &rss_cfg->rss_tuple_sets;
2434 	if (hdev->pdev->revision >= 0x21) {
2435 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2436 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2437 		       HCLGEVF_RSS_KEY_SIZE);
2438 
2439 		tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2440 		tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2441 		tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2442 		tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2443 		tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2444 		tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2445 		tuple_sets->ipv6_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2446 		tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2447 	}
2448 
2449 	/* Initialize RSS indirect table */
2450 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2451 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2452 }
2453 
2454 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2455 {
2456 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2457 	int ret;
2458 
2459 	if (hdev->pdev->revision >= 0x21) {
2460 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2461 					       rss_cfg->rss_hash_key);
2462 		if (ret)
2463 			return ret;
2464 
2465 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2466 		if (ret)
2467 			return ret;
2468 	}
2469 
2470 	ret = hclgevf_set_rss_indir_table(hdev);
2471 	if (ret)
2472 		return ret;
2473 
2474 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2475 }
2476 
2477 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2478 {
2479 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2480 				       false);
2481 }
2482 
2483 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2484 {
2485 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2486 
2487 	unsigned long last = hdev->serv_processed_cnt;
2488 	int i = 0;
2489 
2490 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2491 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2492 	       last == hdev->serv_processed_cnt)
2493 		usleep_range(1, 1);
2494 }
2495 
2496 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2497 {
2498 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2499 
2500 	if (enable) {
2501 		hclgevf_task_schedule(hdev, 0);
2502 	} else {
2503 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2504 
2505 		/* flush memory to make sure DOWN is seen by service task */
2506 		smp_mb__before_atomic();
2507 		hclgevf_flush_link_update(hdev);
2508 	}
2509 }
2510 
2511 static int hclgevf_ae_start(struct hnae3_handle *handle)
2512 {
2513 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2514 
2515 	hclgevf_reset_tqp_stats(handle);
2516 
2517 	hclgevf_request_link_info(hdev);
2518 
2519 	hclgevf_update_link_mode(hdev);
2520 
2521 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2522 
2523 	return 0;
2524 }
2525 
2526 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2527 {
2528 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2529 	int i;
2530 
2531 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2532 
2533 	if (hdev->reset_type != HNAE3_VF_RESET)
2534 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2535 			if (hclgevf_reset_tqp(handle, i))
2536 				break;
2537 
2538 	hclgevf_reset_tqp_stats(handle);
2539 	hclgevf_update_link_status(hdev, 0);
2540 }
2541 
2542 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2543 {
2544 #define HCLGEVF_STATE_ALIVE	1
2545 #define HCLGEVF_STATE_NOT_ALIVE	0
2546 
2547 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2548 	struct hclge_vf_to_pf_msg send_msg;
2549 
2550 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2551 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2552 				HCLGEVF_STATE_NOT_ALIVE;
2553 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2554 }
2555 
2556 static int hclgevf_client_start(struct hnae3_handle *handle)
2557 {
2558 	return hclgevf_set_alive(handle, true);
2559 }
2560 
2561 static void hclgevf_client_stop(struct hnae3_handle *handle)
2562 {
2563 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2564 	int ret;
2565 
2566 	ret = hclgevf_set_alive(handle, false);
2567 	if (ret)
2568 		dev_warn(&hdev->pdev->dev,
2569 			 "%s failed %d\n", __func__, ret);
2570 }
2571 
2572 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2573 {
2574 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2575 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2576 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2577 
2578 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2579 
2580 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2581 	sema_init(&hdev->reset_sem, 1);
2582 
2583 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2584 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2585 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2586 
2587 	/* bring the device down */
2588 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2589 }
2590 
2591 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2592 {
2593 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2594 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2595 
2596 	if (hdev->service_task.work.func)
2597 		cancel_delayed_work_sync(&hdev->service_task);
2598 
2599 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2600 }
2601 
2602 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2603 {
2604 	struct pci_dev *pdev = hdev->pdev;
2605 	int vectors;
2606 	int i;
2607 
2608 	if (hnae3_dev_roce_supported(hdev))
2609 		vectors = pci_alloc_irq_vectors(pdev,
2610 						hdev->roce_base_msix_offset + 1,
2611 						hdev->num_msi,
2612 						PCI_IRQ_MSIX);
2613 	else
2614 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2615 						hdev->num_msi,
2616 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2617 
2618 	if (vectors < 0) {
2619 		dev_err(&pdev->dev,
2620 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2621 			vectors);
2622 		return vectors;
2623 	}
2624 	if (vectors < hdev->num_msi)
2625 		dev_warn(&hdev->pdev->dev,
2626 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2627 			 hdev->num_msi, vectors);
2628 
2629 	hdev->num_msi = vectors;
2630 	hdev->num_msi_left = vectors;
2631 
2632 	hdev->base_msi_vector = pdev->irq;
2633 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2634 
2635 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2636 					   sizeof(u16), GFP_KERNEL);
2637 	if (!hdev->vector_status) {
2638 		pci_free_irq_vectors(pdev);
2639 		return -ENOMEM;
2640 	}
2641 
2642 	for (i = 0; i < hdev->num_msi; i++)
2643 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2644 
2645 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2646 					sizeof(int), GFP_KERNEL);
2647 	if (!hdev->vector_irq) {
2648 		devm_kfree(&pdev->dev, hdev->vector_status);
2649 		pci_free_irq_vectors(pdev);
2650 		return -ENOMEM;
2651 	}
2652 
2653 	return 0;
2654 }
2655 
2656 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2657 {
2658 	struct pci_dev *pdev = hdev->pdev;
2659 
2660 	devm_kfree(&pdev->dev, hdev->vector_status);
2661 	devm_kfree(&pdev->dev, hdev->vector_irq);
2662 	pci_free_irq_vectors(pdev);
2663 }
2664 
2665 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2666 {
2667 	int ret;
2668 
2669 	hclgevf_get_misc_vector(hdev);
2670 
2671 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2672 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2673 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2674 			  0, hdev->misc_vector.name, hdev);
2675 	if (ret) {
2676 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2677 			hdev->misc_vector.vector_irq);
2678 		return ret;
2679 	}
2680 
2681 	hclgevf_clear_event_cause(hdev, 0);
2682 
2683 	/* enable misc. vector(vector 0) */
2684 	hclgevf_enable_vector(&hdev->misc_vector, true);
2685 
2686 	return ret;
2687 }
2688 
2689 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2690 {
2691 	/* disable misc vector(vector 0) */
2692 	hclgevf_enable_vector(&hdev->misc_vector, false);
2693 	synchronize_irq(hdev->misc_vector.vector_irq);
2694 	free_irq(hdev->misc_vector.vector_irq, hdev);
2695 	hclgevf_free_vector(hdev, 0);
2696 }
2697 
2698 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2699 {
2700 	struct device *dev = &hdev->pdev->dev;
2701 
2702 	dev_info(dev, "VF info begin:\n");
2703 
2704 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2705 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2706 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2707 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2708 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2709 	dev_info(dev, "PF media type of this VF: %u\n",
2710 		 hdev->hw.mac.media_type);
2711 
2712 	dev_info(dev, "VF info end.\n");
2713 }
2714 
2715 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2716 					    struct hnae3_client *client)
2717 {
2718 	struct hclgevf_dev *hdev = ae_dev->priv;
2719 	int rst_cnt = hdev->rst_stats.rst_cnt;
2720 	int ret;
2721 
2722 	ret = client->ops->init_instance(&hdev->nic);
2723 	if (ret)
2724 		return ret;
2725 
2726 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2727 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2728 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2729 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2730 
2731 		client->ops->uninit_instance(&hdev->nic, 0);
2732 		return -EBUSY;
2733 	}
2734 
2735 	hnae3_set_client_init_flag(client, ae_dev, 1);
2736 
2737 	if (netif_msg_drv(&hdev->nic))
2738 		hclgevf_info_show(hdev);
2739 
2740 	return 0;
2741 }
2742 
2743 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2744 					     struct hnae3_client *client)
2745 {
2746 	struct hclgevf_dev *hdev = ae_dev->priv;
2747 	int ret;
2748 
2749 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2750 	    !hdev->nic_client)
2751 		return 0;
2752 
2753 	ret = hclgevf_init_roce_base_info(hdev);
2754 	if (ret)
2755 		return ret;
2756 
2757 	ret = client->ops->init_instance(&hdev->roce);
2758 	if (ret)
2759 		return ret;
2760 
2761 	hnae3_set_client_init_flag(client, ae_dev, 1);
2762 
2763 	return 0;
2764 }
2765 
2766 static int hclgevf_init_client_instance(struct hnae3_client *client,
2767 					struct hnae3_ae_dev *ae_dev)
2768 {
2769 	struct hclgevf_dev *hdev = ae_dev->priv;
2770 	int ret;
2771 
2772 	switch (client->type) {
2773 	case HNAE3_CLIENT_KNIC:
2774 		hdev->nic_client = client;
2775 		hdev->nic.client = client;
2776 
2777 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2778 		if (ret)
2779 			goto clear_nic;
2780 
2781 		ret = hclgevf_init_roce_client_instance(ae_dev,
2782 							hdev->roce_client);
2783 		if (ret)
2784 			goto clear_roce;
2785 
2786 		break;
2787 	case HNAE3_CLIENT_ROCE:
2788 		if (hnae3_dev_roce_supported(hdev)) {
2789 			hdev->roce_client = client;
2790 			hdev->roce.client = client;
2791 		}
2792 
2793 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2794 		if (ret)
2795 			goto clear_roce;
2796 
2797 		break;
2798 	default:
2799 		return -EINVAL;
2800 	}
2801 
2802 	return 0;
2803 
2804 clear_nic:
2805 	hdev->nic_client = NULL;
2806 	hdev->nic.client = NULL;
2807 	return ret;
2808 clear_roce:
2809 	hdev->roce_client = NULL;
2810 	hdev->roce.client = NULL;
2811 	return ret;
2812 }
2813 
2814 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2815 					   struct hnae3_ae_dev *ae_dev)
2816 {
2817 	struct hclgevf_dev *hdev = ae_dev->priv;
2818 
2819 	/* un-init roce, if it exists */
2820 	if (hdev->roce_client) {
2821 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2822 		hdev->roce_client = NULL;
2823 		hdev->roce.client = NULL;
2824 	}
2825 
2826 	/* un-init nic/unic, if this was not called by roce client */
2827 	if (client->ops->uninit_instance && hdev->nic_client &&
2828 	    client->type != HNAE3_CLIENT_ROCE) {
2829 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2830 
2831 		client->ops->uninit_instance(&hdev->nic, 0);
2832 		hdev->nic_client = NULL;
2833 		hdev->nic.client = NULL;
2834 	}
2835 }
2836 
2837 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2838 {
2839 	struct pci_dev *pdev = hdev->pdev;
2840 	struct hclgevf_hw *hw;
2841 	int ret;
2842 
2843 	ret = pci_enable_device(pdev);
2844 	if (ret) {
2845 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2846 		return ret;
2847 	}
2848 
2849 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2850 	if (ret) {
2851 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2852 		goto err_disable_device;
2853 	}
2854 
2855 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2856 	if (ret) {
2857 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2858 		goto err_disable_device;
2859 	}
2860 
2861 	pci_set_master(pdev);
2862 	hw = &hdev->hw;
2863 	hw->hdev = hdev;
2864 	hw->io_base = pci_iomap(pdev, 2, 0);
2865 	if (!hw->io_base) {
2866 		dev_err(&pdev->dev, "can't map configuration register space\n");
2867 		ret = -ENOMEM;
2868 		goto err_clr_master;
2869 	}
2870 
2871 	return 0;
2872 
2873 err_clr_master:
2874 	pci_clear_master(pdev);
2875 	pci_release_regions(pdev);
2876 err_disable_device:
2877 	pci_disable_device(pdev);
2878 
2879 	return ret;
2880 }
2881 
2882 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2883 {
2884 	struct pci_dev *pdev = hdev->pdev;
2885 
2886 	pci_iounmap(pdev, hdev->hw.io_base);
2887 	pci_clear_master(pdev);
2888 	pci_release_regions(pdev);
2889 	pci_disable_device(pdev);
2890 }
2891 
2892 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2893 {
2894 	struct hclgevf_query_res_cmd *req;
2895 	struct hclgevf_desc desc;
2896 	int ret;
2897 
2898 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2899 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2900 	if (ret) {
2901 		dev_err(&hdev->pdev->dev,
2902 			"query vf resource failed, ret = %d.\n", ret);
2903 		return ret;
2904 	}
2905 
2906 	req = (struct hclgevf_query_res_cmd *)desc.data;
2907 
2908 	if (hnae3_dev_roce_supported(hdev)) {
2909 		hdev->roce_base_msix_offset =
2910 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2911 				HCLGEVF_MSIX_OFT_ROCEE_M,
2912 				HCLGEVF_MSIX_OFT_ROCEE_S);
2913 		hdev->num_roce_msix =
2914 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2915 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2916 
2917 		/* nic's msix numbers is always equals to the roce's. */
2918 		hdev->num_nic_msix = hdev->num_roce_msix;
2919 
2920 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2921 		 * are queued before Roce vectors. The offset is fixed to 64.
2922 		 */
2923 		hdev->num_msi = hdev->num_roce_msix +
2924 				hdev->roce_base_msix_offset;
2925 	} else {
2926 		hdev->num_msi =
2927 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2928 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2929 
2930 		hdev->num_nic_msix = hdev->num_msi;
2931 	}
2932 
2933 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2934 		dev_err(&hdev->pdev->dev,
2935 			"Just %u msi resources, not enough for vf(min:2).\n",
2936 			hdev->num_nic_msix);
2937 		return -EINVAL;
2938 	}
2939 
2940 	return 0;
2941 }
2942 
2943 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2944 {
2945 	struct pci_dev *pdev = hdev->pdev;
2946 	int ret = 0;
2947 
2948 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2949 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2950 		hclgevf_misc_irq_uninit(hdev);
2951 		hclgevf_uninit_msi(hdev);
2952 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2953 	}
2954 
2955 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2956 		pci_set_master(pdev);
2957 		ret = hclgevf_init_msi(hdev);
2958 		if (ret) {
2959 			dev_err(&pdev->dev,
2960 				"failed(%d) to init MSI/MSI-X\n", ret);
2961 			return ret;
2962 		}
2963 
2964 		ret = hclgevf_misc_irq_init(hdev);
2965 		if (ret) {
2966 			hclgevf_uninit_msi(hdev);
2967 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2968 				ret);
2969 			return ret;
2970 		}
2971 
2972 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2973 	}
2974 
2975 	return ret;
2976 }
2977 
2978 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
2979 {
2980 	struct hclge_vf_to_pf_msg send_msg;
2981 
2982 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
2983 			       HCLGE_MBX_VPORT_LIST_CLEAR);
2984 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2985 }
2986 
2987 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2988 {
2989 	struct pci_dev *pdev = hdev->pdev;
2990 	int ret;
2991 
2992 	ret = hclgevf_pci_reset(hdev);
2993 	if (ret) {
2994 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2995 		return ret;
2996 	}
2997 
2998 	ret = hclgevf_cmd_init(hdev);
2999 	if (ret) {
3000 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
3001 		return ret;
3002 	}
3003 
3004 	ret = hclgevf_rss_init_hw(hdev);
3005 	if (ret) {
3006 		dev_err(&hdev->pdev->dev,
3007 			"failed(%d) to initialize RSS\n", ret);
3008 		return ret;
3009 	}
3010 
3011 	ret = hclgevf_config_gro(hdev, true);
3012 	if (ret)
3013 		return ret;
3014 
3015 	ret = hclgevf_init_vlan_config(hdev);
3016 	if (ret) {
3017 		dev_err(&hdev->pdev->dev,
3018 			"failed(%d) to initialize VLAN config\n", ret);
3019 		return ret;
3020 	}
3021 
3022 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3023 
3024 	dev_info(&hdev->pdev->dev, "Reset done\n");
3025 
3026 	return 0;
3027 }
3028 
3029 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3030 {
3031 	struct pci_dev *pdev = hdev->pdev;
3032 	int ret;
3033 
3034 	ret = hclgevf_pci_init(hdev);
3035 	if (ret)
3036 		return ret;
3037 
3038 	ret = hclgevf_cmd_queue_init(hdev);
3039 	if (ret)
3040 		goto err_cmd_queue_init;
3041 
3042 	ret = hclgevf_cmd_init(hdev);
3043 	if (ret)
3044 		goto err_cmd_init;
3045 
3046 	/* Get vf resource */
3047 	ret = hclgevf_query_vf_resource(hdev);
3048 	if (ret)
3049 		goto err_cmd_init;
3050 
3051 	ret = hclgevf_init_msi(hdev);
3052 	if (ret) {
3053 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3054 		goto err_cmd_init;
3055 	}
3056 
3057 	hclgevf_state_init(hdev);
3058 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3059 	hdev->reset_type = HNAE3_NONE_RESET;
3060 
3061 	ret = hclgevf_misc_irq_init(hdev);
3062 	if (ret)
3063 		goto err_misc_irq_init;
3064 
3065 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3066 
3067 	ret = hclgevf_configure(hdev);
3068 	if (ret) {
3069 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3070 		goto err_config;
3071 	}
3072 
3073 	ret = hclgevf_alloc_tqps(hdev);
3074 	if (ret) {
3075 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3076 		goto err_config;
3077 	}
3078 
3079 	ret = hclgevf_set_handle_info(hdev);
3080 	if (ret)
3081 		goto err_config;
3082 
3083 	ret = hclgevf_config_gro(hdev, true);
3084 	if (ret)
3085 		goto err_config;
3086 
3087 	/* Initialize RSS for this VF */
3088 	hclgevf_rss_init_cfg(hdev);
3089 	ret = hclgevf_rss_init_hw(hdev);
3090 	if (ret) {
3091 		dev_err(&hdev->pdev->dev,
3092 			"failed(%d) to initialize RSS\n", ret);
3093 		goto err_config;
3094 	}
3095 
3096 	/* ensure vf tbl list as empty before init*/
3097 	ret = hclgevf_clear_vport_list(hdev);
3098 	if (ret) {
3099 		dev_err(&pdev->dev,
3100 			"failed to clear tbl list configuration, ret = %d.\n",
3101 			ret);
3102 		goto err_config;
3103 	}
3104 
3105 	ret = hclgevf_init_vlan_config(hdev);
3106 	if (ret) {
3107 		dev_err(&hdev->pdev->dev,
3108 			"failed(%d) to initialize VLAN config\n", ret);
3109 		goto err_config;
3110 	}
3111 
3112 	hdev->last_reset_time = jiffies;
3113 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3114 		 HCLGEVF_DRIVER_NAME);
3115 
3116 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3117 
3118 	return 0;
3119 
3120 err_config:
3121 	hclgevf_misc_irq_uninit(hdev);
3122 err_misc_irq_init:
3123 	hclgevf_state_uninit(hdev);
3124 	hclgevf_uninit_msi(hdev);
3125 err_cmd_init:
3126 	hclgevf_cmd_uninit(hdev);
3127 err_cmd_queue_init:
3128 	hclgevf_pci_uninit(hdev);
3129 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3130 	return ret;
3131 }
3132 
3133 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3134 {
3135 	struct hclge_vf_to_pf_msg send_msg;
3136 
3137 	hclgevf_state_uninit(hdev);
3138 
3139 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3140 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3141 
3142 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3143 		hclgevf_misc_irq_uninit(hdev);
3144 		hclgevf_uninit_msi(hdev);
3145 	}
3146 
3147 	hclgevf_pci_uninit(hdev);
3148 	hclgevf_cmd_uninit(hdev);
3149 	hclgevf_uninit_mac_list(hdev);
3150 }
3151 
3152 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3153 {
3154 	struct pci_dev *pdev = ae_dev->pdev;
3155 	int ret;
3156 
3157 	ret = hclgevf_alloc_hdev(ae_dev);
3158 	if (ret) {
3159 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3160 		return ret;
3161 	}
3162 
3163 	ret = hclgevf_init_hdev(ae_dev->priv);
3164 	if (ret) {
3165 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3166 		return ret;
3167 	}
3168 
3169 	return 0;
3170 }
3171 
3172 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3173 {
3174 	struct hclgevf_dev *hdev = ae_dev->priv;
3175 
3176 	hclgevf_uninit_hdev(hdev);
3177 	ae_dev->priv = NULL;
3178 }
3179 
3180 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3181 {
3182 	struct hnae3_handle *nic = &hdev->nic;
3183 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3184 
3185 	return min_t(u32, hdev->rss_size_max,
3186 		     hdev->num_tqps / kinfo->num_tc);
3187 }
3188 
3189 /**
3190  * hclgevf_get_channels - Get the current channels enabled and max supported.
3191  * @handle: hardware information for network interface
3192  * @ch: ethtool channels structure
3193  *
3194  * We don't support separate tx and rx queues as channels. The other count
3195  * represents how many queues are being used for control. max_combined counts
3196  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3197  * q_vectors since we support a lot more queue pairs than q_vectors.
3198  **/
3199 static void hclgevf_get_channels(struct hnae3_handle *handle,
3200 				 struct ethtool_channels *ch)
3201 {
3202 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3203 
3204 	ch->max_combined = hclgevf_get_max_channels(hdev);
3205 	ch->other_count = 0;
3206 	ch->max_other = 0;
3207 	ch->combined_count = handle->kinfo.rss_size;
3208 }
3209 
3210 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3211 					  u16 *alloc_tqps, u16 *max_rss_size)
3212 {
3213 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3214 
3215 	*alloc_tqps = hdev->num_tqps;
3216 	*max_rss_size = hdev->rss_size_max;
3217 }
3218 
3219 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3220 				    u32 new_tqps_num)
3221 {
3222 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3223 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3224 	u16 max_rss_size;
3225 
3226 	kinfo->req_rss_size = new_tqps_num;
3227 
3228 	max_rss_size = min_t(u16, hdev->rss_size_max,
3229 			     hdev->num_tqps / kinfo->num_tc);
3230 
3231 	/* Use the user's configuration when it is not larger than
3232 	 * max_rss_size, otherwise, use the maximum specification value.
3233 	 */
3234 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3235 	    kinfo->req_rss_size <= max_rss_size)
3236 		kinfo->rss_size = kinfo->req_rss_size;
3237 	else if (kinfo->rss_size > max_rss_size ||
3238 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3239 		kinfo->rss_size = max_rss_size;
3240 
3241 	kinfo->num_tqps = kinfo->num_tc * kinfo->rss_size;
3242 }
3243 
3244 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3245 				bool rxfh_configured)
3246 {
3247 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3248 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3249 	u16 cur_rss_size = kinfo->rss_size;
3250 	u16 cur_tqps = kinfo->num_tqps;
3251 	u32 *rss_indir;
3252 	unsigned int i;
3253 	int ret;
3254 
3255 	hclgevf_update_rss_size(handle, new_tqps_num);
3256 
3257 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3258 	if (ret)
3259 		return ret;
3260 
3261 	/* RSS indirection table has been configuared by user */
3262 	if (rxfh_configured)
3263 		goto out;
3264 
3265 	/* Reinitializes the rss indirect table according to the new RSS size */
3266 	rss_indir = kcalloc(HCLGEVF_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL);
3267 	if (!rss_indir)
3268 		return -ENOMEM;
3269 
3270 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
3271 		rss_indir[i] = i % kinfo->rss_size;
3272 
3273 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3274 
3275 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3276 	if (ret)
3277 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3278 			ret);
3279 
3280 	kfree(rss_indir);
3281 
3282 out:
3283 	if (!ret)
3284 		dev_info(&hdev->pdev->dev,
3285 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3286 			 cur_rss_size, kinfo->rss_size,
3287 			 cur_tqps, kinfo->rss_size * kinfo->num_tc);
3288 
3289 	return ret;
3290 }
3291 
3292 static int hclgevf_get_status(struct hnae3_handle *handle)
3293 {
3294 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3295 
3296 	return hdev->hw.mac.link;
3297 }
3298 
3299 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3300 					    u8 *auto_neg, u32 *speed,
3301 					    u8 *duplex)
3302 {
3303 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3304 
3305 	if (speed)
3306 		*speed = hdev->hw.mac.speed;
3307 	if (duplex)
3308 		*duplex = hdev->hw.mac.duplex;
3309 	if (auto_neg)
3310 		*auto_neg = AUTONEG_DISABLE;
3311 }
3312 
3313 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3314 				 u8 duplex)
3315 {
3316 	hdev->hw.mac.speed = speed;
3317 	hdev->hw.mac.duplex = duplex;
3318 }
3319 
3320 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3321 {
3322 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3323 
3324 	return hclgevf_config_gro(hdev, enable);
3325 }
3326 
3327 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3328 				   u8 *module_type)
3329 {
3330 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3331 
3332 	if (media_type)
3333 		*media_type = hdev->hw.mac.media_type;
3334 
3335 	if (module_type)
3336 		*module_type = hdev->hw.mac.module_type;
3337 }
3338 
3339 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3340 {
3341 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3342 
3343 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3344 }
3345 
3346 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3347 {
3348 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3349 
3350 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3351 }
3352 
3353 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3354 {
3355 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3356 
3357 	return hdev->rst_stats.hw_rst_done_cnt;
3358 }
3359 
3360 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3361 				  unsigned long *supported,
3362 				  unsigned long *advertising)
3363 {
3364 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3365 
3366 	*supported = hdev->hw.mac.supported;
3367 	*advertising = hdev->hw.mac.advertising;
3368 }
3369 
3370 #define MAX_SEPARATE_NUM	4
3371 #define SEPARATOR_VALUE		0xFFFFFFFF
3372 #define REG_NUM_PER_LINE	4
3373 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3374 
3375 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3376 {
3377 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3378 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3379 
3380 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3381 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3382 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3383 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3384 
3385 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3386 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3387 }
3388 
3389 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3390 			     void *data)
3391 {
3392 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3393 	int i, j, reg_um, separator_num;
3394 	u32 *reg = data;
3395 
3396 	*version = hdev->fw_version;
3397 
3398 	/* fetching per-VF registers values from VF PCIe register space */
3399 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3400 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3401 	for (i = 0; i < reg_um; i++)
3402 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3403 	for (i = 0; i < separator_num; i++)
3404 		*reg++ = SEPARATOR_VALUE;
3405 
3406 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3407 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3408 	for (i = 0; i < reg_um; i++)
3409 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3410 	for (i = 0; i < separator_num; i++)
3411 		*reg++ = SEPARATOR_VALUE;
3412 
3413 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3414 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3415 	for (j = 0; j < hdev->num_tqps; j++) {
3416 		for (i = 0; i < reg_um; i++)
3417 			*reg++ = hclgevf_read_dev(&hdev->hw,
3418 						  ring_reg_addr_list[i] +
3419 						  0x200 * j);
3420 		for (i = 0; i < separator_num; i++)
3421 			*reg++ = SEPARATOR_VALUE;
3422 	}
3423 
3424 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3425 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3426 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3427 		for (i = 0; i < reg_um; i++)
3428 			*reg++ = hclgevf_read_dev(&hdev->hw,
3429 						  tqp_intr_reg_addr_list[i] +
3430 						  4 * j);
3431 		for (i = 0; i < separator_num; i++)
3432 			*reg++ = SEPARATOR_VALUE;
3433 	}
3434 }
3435 
3436 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3437 					u8 *port_base_vlan_info, u8 data_size)
3438 {
3439 	struct hnae3_handle *nic = &hdev->nic;
3440 	struct hclge_vf_to_pf_msg send_msg;
3441 	int ret;
3442 
3443 	rtnl_lock();
3444 
3445 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3446 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3447 		dev_warn(&hdev->pdev->dev,
3448 			 "is resetting when updating port based vlan info\n");
3449 		rtnl_unlock();
3450 		return;
3451 	}
3452 
3453 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3454 	if (ret) {
3455 		rtnl_unlock();
3456 		return;
3457 	}
3458 
3459 	/* send msg to PF and wait update port based vlan info */
3460 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3461 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3462 	memcpy(send_msg.data, port_base_vlan_info, data_size);
3463 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3464 	if (!ret) {
3465 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3466 			nic->port_base_vlan_state = state;
3467 		else
3468 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3469 	}
3470 
3471 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3472 	rtnl_unlock();
3473 }
3474 
3475 static const struct hnae3_ae_ops hclgevf_ops = {
3476 	.init_ae_dev = hclgevf_init_ae_dev,
3477 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3478 	.flr_prepare = hclgevf_flr_prepare,
3479 	.flr_done = hclgevf_flr_done,
3480 	.init_client_instance = hclgevf_init_client_instance,
3481 	.uninit_client_instance = hclgevf_uninit_client_instance,
3482 	.start = hclgevf_ae_start,
3483 	.stop = hclgevf_ae_stop,
3484 	.client_start = hclgevf_client_start,
3485 	.client_stop = hclgevf_client_stop,
3486 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3487 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3488 	.get_vector = hclgevf_get_vector,
3489 	.put_vector = hclgevf_put_vector,
3490 	.reset_queue = hclgevf_reset_tqp,
3491 	.get_mac_addr = hclgevf_get_mac_addr,
3492 	.set_mac_addr = hclgevf_set_mac_addr,
3493 	.add_uc_addr = hclgevf_add_uc_addr,
3494 	.rm_uc_addr = hclgevf_rm_uc_addr,
3495 	.add_mc_addr = hclgevf_add_mc_addr,
3496 	.rm_mc_addr = hclgevf_rm_mc_addr,
3497 	.get_stats = hclgevf_get_stats,
3498 	.update_stats = hclgevf_update_stats,
3499 	.get_strings = hclgevf_get_strings,
3500 	.get_sset_count = hclgevf_get_sset_count,
3501 	.get_rss_key_size = hclgevf_get_rss_key_size,
3502 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
3503 	.get_rss = hclgevf_get_rss,
3504 	.set_rss = hclgevf_set_rss,
3505 	.get_rss_tuple = hclgevf_get_rss_tuple,
3506 	.set_rss_tuple = hclgevf_set_rss_tuple,
3507 	.get_tc_size = hclgevf_get_tc_size,
3508 	.get_fw_version = hclgevf_get_fw_version,
3509 	.set_vlan_filter = hclgevf_set_vlan_filter,
3510 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3511 	.reset_event = hclgevf_reset_event,
3512 	.set_default_reset_request = hclgevf_set_def_reset_request,
3513 	.set_channels = hclgevf_set_channels,
3514 	.get_channels = hclgevf_get_channels,
3515 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3516 	.get_regs_len = hclgevf_get_regs_len,
3517 	.get_regs = hclgevf_get_regs,
3518 	.get_status = hclgevf_get_status,
3519 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3520 	.get_media_type = hclgevf_get_media_type,
3521 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3522 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3523 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3524 	.set_gro_en = hclgevf_gro_en,
3525 	.set_mtu = hclgevf_set_mtu,
3526 	.get_global_queue_id = hclgevf_get_qid_global,
3527 	.set_timer_task = hclgevf_set_timer_task,
3528 	.get_link_mode = hclgevf_get_link_mode,
3529 	.set_promisc_mode = hclgevf_set_promisc_mode,
3530 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3531 };
3532 
3533 static struct hnae3_ae_algo ae_algovf = {
3534 	.ops = &hclgevf_ops,
3535 	.pdev_id_table = ae_algovf_pci_tbl,
3536 };
3537 
3538 static int hclgevf_init(void)
3539 {
3540 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3541 
3542 	hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3543 	if (!hclgevf_wq) {
3544 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3545 		return -ENOMEM;
3546 	}
3547 
3548 	hnae3_register_ae_algo(&ae_algovf);
3549 
3550 	return 0;
3551 }
3552 
3553 static void hclgevf_exit(void)
3554 {
3555 	hnae3_unregister_ae_algo(&ae_algovf);
3556 	destroy_workqueue(hclgevf_wq);
3557 }
3558 module_init(hclgevf_init);
3559 module_exit(hclgevf_exit);
3560 
3561 MODULE_LICENSE("GPL");
3562 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3563 MODULE_DESCRIPTION("HCLGEVF Driver");
3564 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3565