1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 static const u8 hclgevf_hash_key[] = {
25 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
26 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
27 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
28 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
29 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
30 };
31 
32 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
33 
34 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
35 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
36 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
37 					 HCLGEVF_CMDQ_TX_TAIL_REG,
38 					 HCLGEVF_CMDQ_TX_HEAD_REG,
39 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
40 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
41 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
42 					 HCLGEVF_CMDQ_RX_TAIL_REG,
43 					 HCLGEVF_CMDQ_RX_HEAD_REG,
44 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
45 					 HCLGEVF_CMDQ_INTR_STS_REG,
46 					 HCLGEVF_CMDQ_INTR_EN_REG,
47 					 HCLGEVF_CMDQ_INTR_GEN_REG};
48 
49 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
50 					   HCLGEVF_RST_ING,
51 					   HCLGEVF_GRO_EN_REG};
52 
53 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
54 					 HCLGEVF_RING_RX_ADDR_H_REG,
55 					 HCLGEVF_RING_RX_BD_NUM_REG,
56 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
57 					 HCLGEVF_RING_RX_MERGE_EN_REG,
58 					 HCLGEVF_RING_RX_TAIL_REG,
59 					 HCLGEVF_RING_RX_HEAD_REG,
60 					 HCLGEVF_RING_RX_FBD_NUM_REG,
61 					 HCLGEVF_RING_RX_OFFSET_REG,
62 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
63 					 HCLGEVF_RING_RX_STASH_REG,
64 					 HCLGEVF_RING_RX_BD_ERR_REG,
65 					 HCLGEVF_RING_TX_ADDR_L_REG,
66 					 HCLGEVF_RING_TX_ADDR_H_REG,
67 					 HCLGEVF_RING_TX_BD_NUM_REG,
68 					 HCLGEVF_RING_TX_PRIORITY_REG,
69 					 HCLGEVF_RING_TX_TC_REG,
70 					 HCLGEVF_RING_TX_MERGE_EN_REG,
71 					 HCLGEVF_RING_TX_TAIL_REG,
72 					 HCLGEVF_RING_TX_HEAD_REG,
73 					 HCLGEVF_RING_TX_FBD_NUM_REG,
74 					 HCLGEVF_RING_TX_OFFSET_REG,
75 					 HCLGEVF_RING_TX_EBD_NUM_REG,
76 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
77 					 HCLGEVF_RING_TX_BD_ERR_REG,
78 					 HCLGEVF_RING_EN_REG};
79 
80 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
81 					     HCLGEVF_TQP_INTR_GL0_REG,
82 					     HCLGEVF_TQP_INTR_GL1_REG,
83 					     HCLGEVF_TQP_INTR_GL2_REG,
84 					     HCLGEVF_TQP_INTR_RL_REG};
85 
86 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
87 	struct hnae3_handle *handle)
88 {
89 	if (!handle->client)
90 		return container_of(handle, struct hclgevf_dev, nic);
91 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
92 		return container_of(handle, struct hclgevf_dev, roce);
93 	else
94 		return container_of(handle, struct hclgevf_dev, nic);
95 }
96 
97 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
98 {
99 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
100 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
101 	struct hclgevf_desc desc;
102 	struct hclgevf_tqp *tqp;
103 	int status;
104 	int i;
105 
106 	for (i = 0; i < kinfo->num_tqps; i++) {
107 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
108 		hclgevf_cmd_setup_basic_desc(&desc,
109 					     HCLGEVF_OPC_QUERY_RX_STATUS,
110 					     true);
111 
112 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
113 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
114 		if (status) {
115 			dev_err(&hdev->pdev->dev,
116 				"Query tqp stat fail, status = %d,queue = %d\n",
117 				status,	i);
118 			return status;
119 		}
120 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
121 			le32_to_cpu(desc.data[1]);
122 
123 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
124 					     true);
125 
126 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
127 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
128 		if (status) {
129 			dev_err(&hdev->pdev->dev,
130 				"Query tqp stat fail, status = %d,queue = %d\n",
131 				status, i);
132 			return status;
133 		}
134 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
135 			le32_to_cpu(desc.data[1]);
136 	}
137 
138 	return 0;
139 }
140 
141 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
142 {
143 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
144 	struct hclgevf_tqp *tqp;
145 	u64 *buff = data;
146 	int i;
147 
148 	for (i = 0; i < kinfo->num_tqps; i++) {
149 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
150 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
151 	}
152 	for (i = 0; i < kinfo->num_tqps; i++) {
153 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
154 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
155 	}
156 
157 	return buff;
158 }
159 
160 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
161 {
162 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
163 
164 	return kinfo->num_tqps * 2;
165 }
166 
167 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
168 {
169 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170 	u8 *buff = data;
171 	int i = 0;
172 
173 	for (i = 0; i < kinfo->num_tqps; i++) {
174 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
175 						       struct hclgevf_tqp, q);
176 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
177 			 tqp->index);
178 		buff += ETH_GSTRING_LEN;
179 	}
180 
181 	for (i = 0; i < kinfo->num_tqps; i++) {
182 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
183 						       struct hclgevf_tqp, q);
184 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
185 			 tqp->index);
186 		buff += ETH_GSTRING_LEN;
187 	}
188 
189 	return buff;
190 }
191 
192 static void hclgevf_update_stats(struct hnae3_handle *handle,
193 				 struct net_device_stats *net_stats)
194 {
195 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
196 	int status;
197 
198 	status = hclgevf_tqps_update_stats(handle);
199 	if (status)
200 		dev_err(&hdev->pdev->dev,
201 			"VF update of TQPS stats fail, status = %d.\n",
202 			status);
203 }
204 
205 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
206 {
207 	if (strset == ETH_SS_TEST)
208 		return -EOPNOTSUPP;
209 	else if (strset == ETH_SS_STATS)
210 		return hclgevf_tqps_get_sset_count(handle, strset);
211 
212 	return 0;
213 }
214 
215 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
216 				u8 *data)
217 {
218 	u8 *p = (char *)data;
219 
220 	if (strset == ETH_SS_STATS)
221 		p = hclgevf_tqps_get_strings(handle, p);
222 }
223 
224 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
225 {
226 	hclgevf_tqps_get_stats(handle, data);
227 }
228 
229 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
230 {
231 	u8 resp_msg;
232 	int status;
233 
234 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
235 				      true, &resp_msg, sizeof(u8));
236 	if (status) {
237 		dev_err(&hdev->pdev->dev,
238 			"VF request to get TC info from PF failed %d",
239 			status);
240 		return status;
241 	}
242 
243 	hdev->hw_tc_map = resp_msg;
244 
245 	return 0;
246 }
247 
248 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
249 {
250 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
251 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
252 	int status;
253 
254 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
255 				      true, resp_msg,
256 				      HCLGEVF_TQPS_RSS_INFO_LEN);
257 	if (status) {
258 		dev_err(&hdev->pdev->dev,
259 			"VF request to get tqp info from PF failed %d",
260 			status);
261 		return status;
262 	}
263 
264 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
265 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
266 	memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));
267 
268 	return 0;
269 }
270 
271 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
272 {
273 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
274 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
275 	int ret;
276 
277 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
278 				   true, resp_msg,
279 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
280 	if (ret) {
281 		dev_err(&hdev->pdev->dev,
282 			"VF request to get tqp depth info from PF failed %d",
283 			ret);
284 		return ret;
285 	}
286 
287 	memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
288 	memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));
289 
290 	return 0;
291 }
292 
293 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
294 {
295 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
296 	u8 msg_data[2], resp_data[2];
297 	u16 qid_in_pf = 0;
298 	int ret;
299 
300 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
301 
302 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
303 				   2, true, resp_data, 2);
304 	if (!ret)
305 		qid_in_pf = *(u16 *)resp_data;
306 
307 	return qid_in_pf;
308 }
309 
310 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
311 {
312 	struct hclgevf_tqp *tqp;
313 	int i;
314 
315 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
316 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
317 	if (!hdev->htqp)
318 		return -ENOMEM;
319 
320 	tqp = hdev->htqp;
321 
322 	for (i = 0; i < hdev->num_tqps; i++) {
323 		tqp->dev = &hdev->pdev->dev;
324 		tqp->index = i;
325 
326 		tqp->q.ae_algo = &ae_algovf;
327 		tqp->q.buf_size = hdev->rx_buf_len;
328 		tqp->q.tx_desc_num = hdev->num_tx_desc;
329 		tqp->q.rx_desc_num = hdev->num_rx_desc;
330 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
331 			i * HCLGEVF_TQP_REG_SIZE;
332 
333 		tqp++;
334 	}
335 
336 	return 0;
337 }
338 
339 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
340 {
341 	struct hnae3_handle *nic = &hdev->nic;
342 	struct hnae3_knic_private_info *kinfo;
343 	u16 new_tqps = hdev->num_tqps;
344 	int i;
345 
346 	kinfo = &nic->kinfo;
347 	kinfo->num_tc = 0;
348 	kinfo->num_tx_desc = hdev->num_tx_desc;
349 	kinfo->num_rx_desc = hdev->num_rx_desc;
350 	kinfo->rx_buf_len = hdev->rx_buf_len;
351 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
352 		if (hdev->hw_tc_map & BIT(i))
353 			kinfo->num_tc++;
354 
355 	kinfo->rss_size
356 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
357 	new_tqps = kinfo->rss_size * kinfo->num_tc;
358 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
359 
360 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
361 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
362 	if (!kinfo->tqp)
363 		return -ENOMEM;
364 
365 	for (i = 0; i < kinfo->num_tqps; i++) {
366 		hdev->htqp[i].q.handle = &hdev->nic;
367 		hdev->htqp[i].q.tqp_index = i;
368 		kinfo->tqp[i] = &hdev->htqp[i].q;
369 	}
370 
371 	return 0;
372 }
373 
374 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
375 {
376 	int status;
377 	u8 resp_msg;
378 
379 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
380 				      0, false, &resp_msg, sizeof(u8));
381 	if (status)
382 		dev_err(&hdev->pdev->dev,
383 			"VF failed to fetch link status(%d) from PF", status);
384 }
385 
386 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
387 {
388 	struct hnae3_handle *rhandle = &hdev->roce;
389 	struct hnae3_handle *handle = &hdev->nic;
390 	struct hnae3_client *rclient;
391 	struct hnae3_client *client;
392 
393 	client = handle->client;
394 	rclient = hdev->roce_client;
395 
396 	link_state =
397 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
398 
399 	if (link_state != hdev->hw.mac.link) {
400 		client->ops->link_status_change(handle, !!link_state);
401 		if (rclient && rclient->ops->link_status_change)
402 			rclient->ops->link_status_change(rhandle, !!link_state);
403 		hdev->hw.mac.link = link_state;
404 	}
405 }
406 
407 void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
408 {
409 #define HCLGEVF_ADVERTISING 0
410 #define HCLGEVF_SUPPORTED   1
411 	u8 send_msg;
412 	u8 resp_msg;
413 
414 	send_msg = HCLGEVF_ADVERTISING;
415 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0, &send_msg,
416 			     sizeof(u8), false, &resp_msg, sizeof(u8));
417 	send_msg = HCLGEVF_SUPPORTED;
418 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0, &send_msg,
419 			     sizeof(u8), false, &resp_msg, sizeof(u8));
420 }
421 
422 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
423 {
424 	struct hnae3_handle *nic = &hdev->nic;
425 	int ret;
426 
427 	nic->ae_algo = &ae_algovf;
428 	nic->pdev = hdev->pdev;
429 	nic->numa_node_mask = hdev->numa_node_mask;
430 	nic->flags |= HNAE3_SUPPORT_VF;
431 
432 	if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
433 		dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
434 			hdev->ae_dev->dev_type);
435 		return -EINVAL;
436 	}
437 
438 	ret = hclgevf_knic_setup(hdev);
439 	if (ret)
440 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
441 			ret);
442 	return ret;
443 }
444 
445 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
446 {
447 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
448 		dev_warn(&hdev->pdev->dev,
449 			 "vector(vector_id %d) has been freed.\n", vector_id);
450 		return;
451 	}
452 
453 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
454 	hdev->num_msi_left += 1;
455 	hdev->num_msi_used -= 1;
456 }
457 
458 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
459 			      struct hnae3_vector_info *vector_info)
460 {
461 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
462 	struct hnae3_vector_info *vector = vector_info;
463 	int alloc = 0;
464 	int i, j;
465 
466 	vector_num = min(hdev->num_msi_left, vector_num);
467 
468 	for (j = 0; j < vector_num; j++) {
469 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
470 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
471 				vector->vector = pci_irq_vector(hdev->pdev, i);
472 				vector->io_addr = hdev->hw.io_base +
473 					HCLGEVF_VECTOR_REG_BASE +
474 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
475 				hdev->vector_status[i] = 0;
476 				hdev->vector_irq[i] = vector->vector;
477 
478 				vector++;
479 				alloc++;
480 
481 				break;
482 			}
483 		}
484 	}
485 	hdev->num_msi_left -= alloc;
486 	hdev->num_msi_used += alloc;
487 
488 	return alloc;
489 }
490 
491 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
492 {
493 	int i;
494 
495 	for (i = 0; i < hdev->num_msi; i++)
496 		if (vector == hdev->vector_irq[i])
497 			return i;
498 
499 	return -EINVAL;
500 }
501 
502 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
503 				    const u8 hfunc, const u8 *key)
504 {
505 	struct hclgevf_rss_config_cmd *req;
506 	struct hclgevf_desc desc;
507 	int key_offset;
508 	int key_size;
509 	int ret;
510 
511 	req = (struct hclgevf_rss_config_cmd *)desc.data;
512 
513 	for (key_offset = 0; key_offset < 3; key_offset++) {
514 		hclgevf_cmd_setup_basic_desc(&desc,
515 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
516 					     false);
517 
518 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
519 		req->hash_config |=
520 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
521 
522 		if (key_offset == 2)
523 			key_size =
524 			HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
525 		else
526 			key_size = HCLGEVF_RSS_HASH_KEY_NUM;
527 
528 		memcpy(req->hash_key,
529 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
530 
531 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
532 		if (ret) {
533 			dev_err(&hdev->pdev->dev,
534 				"Configure RSS config fail, status = %d\n",
535 				ret);
536 			return ret;
537 		}
538 	}
539 
540 	return 0;
541 }
542 
543 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
544 {
545 	return HCLGEVF_RSS_KEY_SIZE;
546 }
547 
548 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
549 {
550 	return HCLGEVF_RSS_IND_TBL_SIZE;
551 }
552 
553 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
554 {
555 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
556 	struct hclgevf_rss_indirection_table_cmd *req;
557 	struct hclgevf_desc desc;
558 	int status;
559 	int i, j;
560 
561 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
562 
563 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
564 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
565 					     false);
566 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
567 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
568 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
569 			req->rss_result[j] =
570 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
571 
572 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
573 		if (status) {
574 			dev_err(&hdev->pdev->dev,
575 				"VF failed(=%d) to set RSS indirection table\n",
576 				status);
577 			return status;
578 		}
579 	}
580 
581 	return 0;
582 }
583 
584 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
585 {
586 	struct hclgevf_rss_tc_mode_cmd *req;
587 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
588 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
589 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
590 	struct hclgevf_desc desc;
591 	u16 roundup_size;
592 	int status;
593 	int i;
594 
595 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
596 
597 	roundup_size = roundup_pow_of_two(rss_size);
598 	roundup_size = ilog2(roundup_size);
599 
600 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
601 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
602 		tc_size[i] = roundup_size;
603 		tc_offset[i] = rss_size * i;
604 	}
605 
606 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
607 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
608 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
609 			      (tc_valid[i] & 0x1));
610 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
611 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
612 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
613 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
614 	}
615 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
616 	if (status)
617 		dev_err(&hdev->pdev->dev,
618 			"VF failed(=%d) to set rss tc mode\n", status);
619 
620 	return status;
621 }
622 
623 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
624 			   u8 *hfunc)
625 {
626 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
627 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
628 	int i;
629 
630 	if (handle->pdev->revision >= 0x21) {
631 		/* Get hash algorithm */
632 		if (hfunc) {
633 			switch (rss_cfg->hash_algo) {
634 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
635 				*hfunc = ETH_RSS_HASH_TOP;
636 				break;
637 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
638 				*hfunc = ETH_RSS_HASH_XOR;
639 				break;
640 			default:
641 				*hfunc = ETH_RSS_HASH_UNKNOWN;
642 				break;
643 			}
644 		}
645 
646 		/* Get the RSS Key required by the user */
647 		if (key)
648 			memcpy(key, rss_cfg->rss_hash_key,
649 			       HCLGEVF_RSS_KEY_SIZE);
650 	}
651 
652 	if (indir)
653 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
654 			indir[i] = rss_cfg->rss_indirection_tbl[i];
655 
656 	return 0;
657 }
658 
659 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
660 			   const  u8 *key, const  u8 hfunc)
661 {
662 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
663 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
664 	int ret, i;
665 
666 	if (handle->pdev->revision >= 0x21) {
667 		/* Set the RSS Hash Key if specififed by the user */
668 		if (key) {
669 			switch (hfunc) {
670 			case ETH_RSS_HASH_TOP:
671 				rss_cfg->hash_algo =
672 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
673 				break;
674 			case ETH_RSS_HASH_XOR:
675 				rss_cfg->hash_algo =
676 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
677 				break;
678 			case ETH_RSS_HASH_NO_CHANGE:
679 				break;
680 			default:
681 				return -EINVAL;
682 			}
683 
684 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
685 						       key);
686 			if (ret)
687 				return ret;
688 
689 			/* Update the shadow RSS key with user specified qids */
690 			memcpy(rss_cfg->rss_hash_key, key,
691 			       HCLGEVF_RSS_KEY_SIZE);
692 		}
693 	}
694 
695 	/* update the shadow RSS table with user specified qids */
696 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
697 		rss_cfg->rss_indirection_tbl[i] = indir[i];
698 
699 	/* update the hardware */
700 	return hclgevf_set_rss_indir_table(hdev);
701 }
702 
703 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
704 {
705 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
706 
707 	if (nfc->data & RXH_L4_B_2_3)
708 		hash_sets |= HCLGEVF_D_PORT_BIT;
709 	else
710 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
711 
712 	if (nfc->data & RXH_IP_SRC)
713 		hash_sets |= HCLGEVF_S_IP_BIT;
714 	else
715 		hash_sets &= ~HCLGEVF_S_IP_BIT;
716 
717 	if (nfc->data & RXH_IP_DST)
718 		hash_sets |= HCLGEVF_D_IP_BIT;
719 	else
720 		hash_sets &= ~HCLGEVF_D_IP_BIT;
721 
722 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
723 		hash_sets |= HCLGEVF_V_TAG_BIT;
724 
725 	return hash_sets;
726 }
727 
728 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
729 				 struct ethtool_rxnfc *nfc)
730 {
731 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
732 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
733 	struct hclgevf_rss_input_tuple_cmd *req;
734 	struct hclgevf_desc desc;
735 	u8 tuple_sets;
736 	int ret;
737 
738 	if (handle->pdev->revision == 0x20)
739 		return -EOPNOTSUPP;
740 
741 	if (nfc->data &
742 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
743 		return -EINVAL;
744 
745 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
746 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
747 
748 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
749 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
750 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
751 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
752 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
753 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
754 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
755 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
756 
757 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
758 	switch (nfc->flow_type) {
759 	case TCP_V4_FLOW:
760 		req->ipv4_tcp_en = tuple_sets;
761 		break;
762 	case TCP_V6_FLOW:
763 		req->ipv6_tcp_en = tuple_sets;
764 		break;
765 	case UDP_V4_FLOW:
766 		req->ipv4_udp_en = tuple_sets;
767 		break;
768 	case UDP_V6_FLOW:
769 		req->ipv6_udp_en = tuple_sets;
770 		break;
771 	case SCTP_V4_FLOW:
772 		req->ipv4_sctp_en = tuple_sets;
773 		break;
774 	case SCTP_V6_FLOW:
775 		if ((nfc->data & RXH_L4_B_0_1) ||
776 		    (nfc->data & RXH_L4_B_2_3))
777 			return -EINVAL;
778 
779 		req->ipv6_sctp_en = tuple_sets;
780 		break;
781 	case IPV4_FLOW:
782 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
783 		break;
784 	case IPV6_FLOW:
785 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
786 		break;
787 	default:
788 		return -EINVAL;
789 	}
790 
791 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
792 	if (ret) {
793 		dev_err(&hdev->pdev->dev,
794 			"Set rss tuple fail, status = %d\n", ret);
795 		return ret;
796 	}
797 
798 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
799 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
800 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
801 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
802 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
803 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
804 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
805 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
806 	return 0;
807 }
808 
809 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
810 				 struct ethtool_rxnfc *nfc)
811 {
812 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
813 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
814 	u8 tuple_sets;
815 
816 	if (handle->pdev->revision == 0x20)
817 		return -EOPNOTSUPP;
818 
819 	nfc->data = 0;
820 
821 	switch (nfc->flow_type) {
822 	case TCP_V4_FLOW:
823 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
824 		break;
825 	case UDP_V4_FLOW:
826 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
827 		break;
828 	case TCP_V6_FLOW:
829 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
830 		break;
831 	case UDP_V6_FLOW:
832 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
833 		break;
834 	case SCTP_V4_FLOW:
835 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
836 		break;
837 	case SCTP_V6_FLOW:
838 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
839 		break;
840 	case IPV4_FLOW:
841 	case IPV6_FLOW:
842 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
843 		break;
844 	default:
845 		return -EINVAL;
846 	}
847 
848 	if (!tuple_sets)
849 		return 0;
850 
851 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
852 		nfc->data |= RXH_L4_B_2_3;
853 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
854 		nfc->data |= RXH_L4_B_0_1;
855 	if (tuple_sets & HCLGEVF_D_IP_BIT)
856 		nfc->data |= RXH_IP_DST;
857 	if (tuple_sets & HCLGEVF_S_IP_BIT)
858 		nfc->data |= RXH_IP_SRC;
859 
860 	return 0;
861 }
862 
863 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
864 				       struct hclgevf_rss_cfg *rss_cfg)
865 {
866 	struct hclgevf_rss_input_tuple_cmd *req;
867 	struct hclgevf_desc desc;
868 	int ret;
869 
870 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
871 
872 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
873 
874 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
875 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
876 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
877 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
878 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
879 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
880 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
881 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
882 
883 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
884 	if (ret)
885 		dev_err(&hdev->pdev->dev,
886 			"Configure rss input fail, status = %d\n", ret);
887 	return ret;
888 }
889 
890 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
891 {
892 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
893 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
894 
895 	return rss_cfg->rss_size;
896 }
897 
898 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
899 				       int vector_id,
900 				       struct hnae3_ring_chain_node *ring_chain)
901 {
902 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
903 	struct hnae3_ring_chain_node *node;
904 	struct hclge_mbx_vf_to_pf_cmd *req;
905 	struct hclgevf_desc desc;
906 	int i = 0;
907 	int status;
908 	u8 type;
909 
910 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
911 
912 	for (node = ring_chain; node; node = node->next) {
913 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
914 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
915 
916 		if (i == 0) {
917 			hclgevf_cmd_setup_basic_desc(&desc,
918 						     HCLGEVF_OPC_MBX_VF_TO_PF,
919 						     false);
920 			type = en ?
921 				HCLGE_MBX_MAP_RING_TO_VECTOR :
922 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
923 			req->msg[0] = type;
924 			req->msg[1] = vector_id;
925 		}
926 
927 		req->msg[idx_offset] =
928 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
929 		req->msg[idx_offset + 1] = node->tqp_index;
930 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
931 							   HNAE3_RING_GL_IDX_M,
932 							   HNAE3_RING_GL_IDX_S);
933 
934 		i++;
935 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
936 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
937 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
938 		    !node->next) {
939 			req->msg[2] = i;
940 
941 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
942 			if (status) {
943 				dev_err(&hdev->pdev->dev,
944 					"Map TQP fail, status is %d.\n",
945 					status);
946 				return status;
947 			}
948 			i = 0;
949 			hclgevf_cmd_setup_basic_desc(&desc,
950 						     HCLGEVF_OPC_MBX_VF_TO_PF,
951 						     false);
952 			req->msg[0] = type;
953 			req->msg[1] = vector_id;
954 		}
955 	}
956 
957 	return 0;
958 }
959 
960 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
961 				      struct hnae3_ring_chain_node *ring_chain)
962 {
963 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
964 	int vector_id;
965 
966 	vector_id = hclgevf_get_vector_index(hdev, vector);
967 	if (vector_id < 0) {
968 		dev_err(&handle->pdev->dev,
969 			"Get vector index fail. ret =%d\n", vector_id);
970 		return vector_id;
971 	}
972 
973 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
974 }
975 
976 static int hclgevf_unmap_ring_from_vector(
977 				struct hnae3_handle *handle,
978 				int vector,
979 				struct hnae3_ring_chain_node *ring_chain)
980 {
981 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
982 	int ret, vector_id;
983 
984 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
985 		return 0;
986 
987 	vector_id = hclgevf_get_vector_index(hdev, vector);
988 	if (vector_id < 0) {
989 		dev_err(&handle->pdev->dev,
990 			"Get vector index fail. ret =%d\n", vector_id);
991 		return vector_id;
992 	}
993 
994 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
995 	if (ret)
996 		dev_err(&handle->pdev->dev,
997 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
998 			vector_id,
999 			ret);
1000 
1001 	return ret;
1002 }
1003 
1004 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1005 {
1006 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1007 	int vector_id;
1008 
1009 	vector_id = hclgevf_get_vector_index(hdev, vector);
1010 	if (vector_id < 0) {
1011 		dev_err(&handle->pdev->dev,
1012 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1013 			vector_id);
1014 		return vector_id;
1015 	}
1016 
1017 	hclgevf_free_vector(hdev, vector_id);
1018 
1019 	return 0;
1020 }
1021 
1022 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1023 					bool en_bc_pmc)
1024 {
1025 	struct hclge_mbx_vf_to_pf_cmd *req;
1026 	struct hclgevf_desc desc;
1027 	int ret;
1028 
1029 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1030 
1031 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
1032 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1033 	req->msg[1] = en_bc_pmc ? 1 : 0;
1034 
1035 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1036 	if (ret)
1037 		dev_err(&hdev->pdev->dev,
1038 			"Set promisc mode fail, status is %d.\n", ret);
1039 
1040 	return ret;
1041 }
1042 
1043 static int hclgevf_set_promisc_mode(struct hclgevf_dev *hdev, bool en_bc_pmc)
1044 {
1045 	return hclgevf_cmd_set_promisc_mode(hdev, en_bc_pmc);
1046 }
1047 
1048 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
1049 			      int stream_id, bool enable)
1050 {
1051 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1052 	struct hclgevf_desc desc;
1053 	int status;
1054 
1055 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1056 
1057 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1058 				     false);
1059 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1060 	req->stream_id = cpu_to_le16(stream_id);
1061 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
1062 
1063 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1064 	if (status)
1065 		dev_err(&hdev->pdev->dev,
1066 			"TQP enable fail, status =%d.\n", status);
1067 
1068 	return status;
1069 }
1070 
1071 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1072 {
1073 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1074 	struct hclgevf_tqp *tqp;
1075 	int i;
1076 
1077 	for (i = 0; i < kinfo->num_tqps; i++) {
1078 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1079 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1080 	}
1081 }
1082 
1083 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1084 {
1085 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1086 
1087 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
1088 }
1089 
1090 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1091 				bool is_first)
1092 {
1093 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1094 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1095 	u8 *new_mac_addr = (u8 *)p;
1096 	u8 msg_data[ETH_ALEN * 2];
1097 	u16 subcode;
1098 	int status;
1099 
1100 	ether_addr_copy(msg_data, new_mac_addr);
1101 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1102 
1103 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1104 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1105 
1106 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1107 				      subcode, msg_data, ETH_ALEN * 2,
1108 				      true, NULL, 0);
1109 	if (!status)
1110 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1111 
1112 	return status;
1113 }
1114 
1115 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1116 			       const unsigned char *addr)
1117 {
1118 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1119 
1120 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1121 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1122 				    addr, ETH_ALEN, false, NULL, 0);
1123 }
1124 
1125 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1126 			      const unsigned char *addr)
1127 {
1128 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1129 
1130 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1131 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1132 				    addr, ETH_ALEN, false, NULL, 0);
1133 }
1134 
1135 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1136 			       const unsigned char *addr)
1137 {
1138 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1139 
1140 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1141 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1142 				    addr, ETH_ALEN, false, NULL, 0);
1143 }
1144 
1145 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1146 			      const unsigned char *addr)
1147 {
1148 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1149 
1150 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1151 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1152 				    addr, ETH_ALEN, false, NULL, 0);
1153 }
1154 
1155 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1156 				   __be16 proto, u16 vlan_id,
1157 				   bool is_kill)
1158 {
1159 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1160 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1161 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1162 
1163 	if (vlan_id > 4095)
1164 		return -EINVAL;
1165 
1166 	if (proto != htons(ETH_P_8021Q))
1167 		return -EPROTONOSUPPORT;
1168 
1169 	msg_data[0] = is_kill;
1170 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1171 	memcpy(&msg_data[3], &proto, sizeof(proto));
1172 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1173 				    HCLGE_MBX_VLAN_FILTER, msg_data,
1174 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1175 }
1176 
1177 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1178 {
1179 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1180 	u8 msg_data;
1181 
1182 	msg_data = enable ? 1 : 0;
1183 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1184 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1185 				    1, false, NULL, 0);
1186 }
1187 
1188 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1189 {
1190 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1191 	u8 msg_data[2];
1192 	int ret;
1193 
1194 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
1195 
1196 	/* disable vf queue before send queue reset msg to PF */
1197 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1198 	if (ret)
1199 		return ret;
1200 
1201 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1202 				    2, true, NULL, 0);
1203 }
1204 
1205 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1206 {
1207 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1208 
1209 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1210 				    sizeof(new_mtu), true, NULL, 0);
1211 }
1212 
1213 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1214 				 enum hnae3_reset_notify_type type)
1215 {
1216 	struct hnae3_client *client = hdev->nic_client;
1217 	struct hnae3_handle *handle = &hdev->nic;
1218 	int ret;
1219 
1220 	if (!client->ops->reset_notify)
1221 		return -EOPNOTSUPP;
1222 
1223 	ret = client->ops->reset_notify(handle, type);
1224 	if (ret)
1225 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1226 			type, ret);
1227 
1228 	return ret;
1229 }
1230 
1231 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1232 {
1233 	struct hclgevf_dev *hdev = ae_dev->priv;
1234 
1235 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1236 }
1237 
1238 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1239 				    unsigned long delay_us,
1240 				    unsigned long wait_cnt)
1241 {
1242 	unsigned long cnt = 0;
1243 
1244 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1245 	       cnt++ < wait_cnt)
1246 		usleep_range(delay_us, delay_us * 2);
1247 
1248 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1249 		dev_err(&hdev->pdev->dev,
1250 			"flr wait timeout\n");
1251 		return -ETIMEDOUT;
1252 	}
1253 
1254 	return 0;
1255 }
1256 
1257 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1258 {
1259 #define HCLGEVF_RESET_WAIT_US	20000
1260 #define HCLGEVF_RESET_WAIT_CNT	2000
1261 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1262 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1263 
1264 	u32 val;
1265 	int ret;
1266 
1267 	/* wait to check the hardware reset completion status */
1268 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1269 	dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1270 
1271 	if (hdev->reset_type == HNAE3_FLR_RESET)
1272 		return hclgevf_flr_poll_timeout(hdev,
1273 						HCLGEVF_RESET_WAIT_US,
1274 						HCLGEVF_RESET_WAIT_CNT);
1275 
1276 	ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1277 				 !(val & HCLGEVF_RST_ING_BITS),
1278 				 HCLGEVF_RESET_WAIT_US,
1279 				 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1280 
1281 	/* hardware completion status should be available by this time */
1282 	if (ret) {
1283 		dev_err(&hdev->pdev->dev,
1284 			"could'nt get reset done status from h/w, timeout!\n");
1285 		return ret;
1286 	}
1287 
1288 	/* we will wait a bit more to let reset of the stack to complete. This
1289 	 * might happen in case reset assertion was made by PF. Yes, this also
1290 	 * means we might end up waiting bit more even for VF reset.
1291 	 */
1292 	msleep(5000);
1293 
1294 	return 0;
1295 }
1296 
1297 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1298 {
1299 	int ret;
1300 
1301 	/* uninitialize the nic client */
1302 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1303 	if (ret)
1304 		return ret;
1305 
1306 	/* re-initialize the hclge device */
1307 	ret = hclgevf_reset_hdev(hdev);
1308 	if (ret) {
1309 		dev_err(&hdev->pdev->dev,
1310 			"hclge device re-init failed, VF is disabled!\n");
1311 		return ret;
1312 	}
1313 
1314 	/* bring up the nic client again */
1315 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1316 	if (ret)
1317 		return ret;
1318 
1319 	return hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1320 }
1321 
1322 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1323 {
1324 	int ret = 0;
1325 
1326 	switch (hdev->reset_type) {
1327 	case HNAE3_VF_FUNC_RESET:
1328 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1329 					   0, true, NULL, sizeof(u8));
1330 		break;
1331 	case HNAE3_FLR_RESET:
1332 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1333 		break;
1334 	default:
1335 		break;
1336 	}
1337 
1338 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1339 
1340 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1341 		 hdev->reset_type, ret);
1342 
1343 	return ret;
1344 }
1345 
1346 static int hclgevf_reset(struct hclgevf_dev *hdev)
1347 {
1348 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1349 	int ret;
1350 
1351 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1352 	 * know if device is undergoing reset
1353 	 */
1354 	ae_dev->reset_type = hdev->reset_type;
1355 	hdev->reset_count++;
1356 	rtnl_lock();
1357 
1358 	/* bring down the nic to stop any ongoing TX/RX */
1359 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1360 	if (ret)
1361 		goto err_reset_lock;
1362 
1363 	rtnl_unlock();
1364 
1365 	ret = hclgevf_reset_prepare_wait(hdev);
1366 	if (ret)
1367 		goto err_reset;
1368 
1369 	/* check if VF could successfully fetch the hardware reset completion
1370 	 * status from the hardware
1371 	 */
1372 	ret = hclgevf_reset_wait(hdev);
1373 	if (ret) {
1374 		/* can't do much in this situation, will disable VF */
1375 		dev_err(&hdev->pdev->dev,
1376 			"VF failed(=%d) to fetch H/W reset completion status\n",
1377 			ret);
1378 		goto err_reset;
1379 	}
1380 
1381 	rtnl_lock();
1382 
1383 	/* now, re-initialize the nic client and ae device*/
1384 	ret = hclgevf_reset_stack(hdev);
1385 	if (ret) {
1386 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1387 		goto err_reset_lock;
1388 	}
1389 
1390 	/* bring up the nic to enable TX/RX again */
1391 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1392 	if (ret)
1393 		goto err_reset_lock;
1394 
1395 	rtnl_unlock();
1396 
1397 	hdev->last_reset_time = jiffies;
1398 	ae_dev->reset_type = HNAE3_NONE_RESET;
1399 
1400 	return ret;
1401 err_reset_lock:
1402 	rtnl_unlock();
1403 err_reset:
1404 	/* When VF reset failed, only the higher level reset asserted by PF
1405 	 * can restore it, so re-initialize the command queue to receive
1406 	 * this higher reset event.
1407 	 */
1408 	hclgevf_cmd_init(hdev);
1409 	dev_err(&hdev->pdev->dev, "failed to reset VF\n");
1410 
1411 	return ret;
1412 }
1413 
1414 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1415 						     unsigned long *addr)
1416 {
1417 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1418 
1419 	/* return the highest priority reset level amongst all */
1420 	if (test_bit(HNAE3_VF_RESET, addr)) {
1421 		rst_level = HNAE3_VF_RESET;
1422 		clear_bit(HNAE3_VF_RESET, addr);
1423 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1424 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1425 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1426 		rst_level = HNAE3_VF_FULL_RESET;
1427 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1428 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1429 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1430 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1431 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1432 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1433 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1434 		rst_level = HNAE3_VF_FUNC_RESET;
1435 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1436 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1437 		rst_level = HNAE3_FLR_RESET;
1438 		clear_bit(HNAE3_FLR_RESET, addr);
1439 	}
1440 
1441 	return rst_level;
1442 }
1443 
1444 static void hclgevf_reset_event(struct pci_dev *pdev,
1445 				struct hnae3_handle *handle)
1446 {
1447 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1448 	struct hclgevf_dev *hdev = ae_dev->priv;
1449 
1450 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1451 
1452 	if (hdev->default_reset_request)
1453 		hdev->reset_level =
1454 			hclgevf_get_reset_level(hdev,
1455 						&hdev->default_reset_request);
1456 	else
1457 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1458 
1459 	/* reset of this VF requested */
1460 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1461 	hclgevf_reset_task_schedule(hdev);
1462 
1463 	hdev->last_reset_time = jiffies;
1464 }
1465 
1466 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1467 					  enum hnae3_reset_type rst_type)
1468 {
1469 	struct hclgevf_dev *hdev = ae_dev->priv;
1470 
1471 	set_bit(rst_type, &hdev->default_reset_request);
1472 }
1473 
1474 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1475 {
1476 #define HCLGEVF_FLR_WAIT_MS	100
1477 #define HCLGEVF_FLR_WAIT_CNT	50
1478 	struct hclgevf_dev *hdev = ae_dev->priv;
1479 	int cnt = 0;
1480 
1481 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1482 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1483 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1484 	hclgevf_reset_event(hdev->pdev, NULL);
1485 
1486 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1487 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1488 		msleep(HCLGEVF_FLR_WAIT_MS);
1489 
1490 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1491 		dev_err(&hdev->pdev->dev,
1492 			"flr wait down timeout: %d\n", cnt);
1493 }
1494 
1495 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1496 {
1497 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1498 
1499 	return hdev->fw_version;
1500 }
1501 
1502 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1503 {
1504 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1505 
1506 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1507 					    HCLGEVF_MISC_VECTOR_NUM);
1508 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1509 	/* vector status always valid for Vector 0 */
1510 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1511 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1512 
1513 	hdev->num_msi_left -= 1;
1514 	hdev->num_msi_used += 1;
1515 }
1516 
1517 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1518 {
1519 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1520 	    !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
1521 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1522 		schedule_work(&hdev->rst_service_task);
1523 	}
1524 }
1525 
1526 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1527 {
1528 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1529 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1530 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1531 		schedule_work(&hdev->mbx_service_task);
1532 	}
1533 }
1534 
1535 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1536 {
1537 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1538 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1539 		schedule_work(&hdev->service_task);
1540 }
1541 
1542 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1543 {
1544 	/* if we have any pending mailbox event then schedule the mbx task */
1545 	if (hdev->mbx_event_pending)
1546 		hclgevf_mbx_task_schedule(hdev);
1547 
1548 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1549 		hclgevf_reset_task_schedule(hdev);
1550 }
1551 
1552 static void hclgevf_service_timer(struct timer_list *t)
1553 {
1554 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1555 
1556 	mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1557 
1558 	hclgevf_task_schedule(hdev);
1559 }
1560 
1561 static void hclgevf_reset_service_task(struct work_struct *work)
1562 {
1563 	struct hclgevf_dev *hdev =
1564 		container_of(work, struct hclgevf_dev, rst_service_task);
1565 	int ret;
1566 
1567 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1568 		return;
1569 
1570 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1571 
1572 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1573 			       &hdev->reset_state)) {
1574 		/* PF has initmated that it is about to reset the hardware.
1575 		 * We now have to poll & check if harware has actually completed
1576 		 * the reset sequence. On hardware reset completion, VF needs to
1577 		 * reset the client and ae device.
1578 		 */
1579 		hdev->reset_attempts = 0;
1580 
1581 		hdev->last_reset_time = jiffies;
1582 		while ((hdev->reset_type =
1583 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1584 		       != HNAE3_NONE_RESET) {
1585 			ret = hclgevf_reset(hdev);
1586 			if (ret)
1587 				dev_err(&hdev->pdev->dev,
1588 					"VF stack reset failed %d.\n", ret);
1589 		}
1590 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1591 				      &hdev->reset_state)) {
1592 		/* we could be here when either of below happens:
1593 		 * 1. reset was initiated due to watchdog timeout due to
1594 		 *    a. IMP was earlier reset and our TX got choked down and
1595 		 *       which resulted in watchdog reacting and inducing VF
1596 		 *       reset. This also means our cmdq would be unreliable.
1597 		 *    b. problem in TX due to other lower layer(example link
1598 		 *       layer not functioning properly etc.)
1599 		 * 2. VF reset might have been initiated due to some config
1600 		 *    change.
1601 		 *
1602 		 * NOTE: Theres no clear way to detect above cases than to react
1603 		 * to the response of PF for this reset request. PF will ack the
1604 		 * 1b and 2. cases but we will not get any intimation about 1a
1605 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1606 		 * communication between PF and VF would be broken.
1607 		 */
1608 
1609 		/* if we are never geting into pending state it means either:
1610 		 * 1. PF is not receiving our request which could be due to IMP
1611 		 *    reset
1612 		 * 2. PF is screwed
1613 		 * We cannot do much for 2. but to check first we can try reset
1614 		 * our PCIe + stack and see if it alleviates the problem.
1615 		 */
1616 		if (hdev->reset_attempts > 3) {
1617 			/* prepare for full reset of stack + pcie interface */
1618 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1619 
1620 			/* "defer" schedule the reset task again */
1621 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1622 		} else {
1623 			hdev->reset_attempts++;
1624 
1625 			set_bit(hdev->reset_level, &hdev->reset_pending);
1626 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1627 		}
1628 		hclgevf_reset_task_schedule(hdev);
1629 	}
1630 
1631 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1632 }
1633 
1634 static void hclgevf_mailbox_service_task(struct work_struct *work)
1635 {
1636 	struct hclgevf_dev *hdev;
1637 
1638 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1639 
1640 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1641 		return;
1642 
1643 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1644 
1645 	hclgevf_mbx_async_handler(hdev);
1646 
1647 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1648 }
1649 
1650 static void hclgevf_keep_alive_timer(struct timer_list *t)
1651 {
1652 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1653 
1654 	schedule_work(&hdev->keep_alive_task);
1655 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
1656 }
1657 
1658 static void hclgevf_keep_alive_task(struct work_struct *work)
1659 {
1660 	struct hclgevf_dev *hdev;
1661 	u8 respmsg;
1662 	int ret;
1663 
1664 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1665 
1666 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1667 		return;
1668 
1669 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1670 				   0, false, &respmsg, sizeof(u8));
1671 	if (ret)
1672 		dev_err(&hdev->pdev->dev,
1673 			"VF sends keep alive cmd failed(=%d)\n", ret);
1674 }
1675 
1676 static void hclgevf_service_task(struct work_struct *work)
1677 {
1678 	struct hclgevf_dev *hdev;
1679 
1680 	hdev = container_of(work, struct hclgevf_dev, service_task);
1681 
1682 	/* request the link status from the PF. PF would be able to tell VF
1683 	 * about such updates in future so we might remove this later
1684 	 */
1685 	hclgevf_request_link_info(hdev);
1686 
1687 	hclgevf_update_link_mode(hdev);
1688 
1689 	hclgevf_deferred_task_schedule(hdev);
1690 
1691 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1692 }
1693 
1694 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1695 {
1696 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1697 }
1698 
1699 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1700 						      u32 *clearval)
1701 {
1702 	u32 cmdq_src_reg, rst_ing_reg;
1703 
1704 	/* fetch the events from their corresponding regs */
1705 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1706 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1707 
1708 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1709 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1710 		dev_info(&hdev->pdev->dev,
1711 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1712 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1713 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1714 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1715 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1716 		*clearval = cmdq_src_reg;
1717 		return HCLGEVF_VECTOR0_EVENT_RST;
1718 	}
1719 
1720 	/* check for vector0 mailbox(=CMDQ RX) event source */
1721 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1722 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1723 		*clearval = cmdq_src_reg;
1724 		return HCLGEVF_VECTOR0_EVENT_MBX;
1725 	}
1726 
1727 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1728 
1729 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1730 }
1731 
1732 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1733 {
1734 	writel(en ? 1 : 0, vector->addr);
1735 }
1736 
1737 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1738 {
1739 	enum hclgevf_evt_cause event_cause;
1740 	struct hclgevf_dev *hdev = data;
1741 	u32 clearval;
1742 
1743 	hclgevf_enable_vector(&hdev->misc_vector, false);
1744 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1745 
1746 	switch (event_cause) {
1747 	case HCLGEVF_VECTOR0_EVENT_RST:
1748 		hclgevf_reset_task_schedule(hdev);
1749 		break;
1750 	case HCLGEVF_VECTOR0_EVENT_MBX:
1751 		hclgevf_mbx_handler(hdev);
1752 		break;
1753 	default:
1754 		break;
1755 	}
1756 
1757 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1758 		hclgevf_clear_event_cause(hdev, clearval);
1759 		hclgevf_enable_vector(&hdev->misc_vector, true);
1760 	}
1761 
1762 	return IRQ_HANDLED;
1763 }
1764 
1765 static int hclgevf_configure(struct hclgevf_dev *hdev)
1766 {
1767 	int ret;
1768 
1769 	/* get queue configuration from PF */
1770 	ret = hclgevf_get_queue_info(hdev);
1771 	if (ret)
1772 		return ret;
1773 
1774 	/* get queue depth info from PF */
1775 	ret = hclgevf_get_queue_depth(hdev);
1776 	if (ret)
1777 		return ret;
1778 
1779 	/* get tc configuration from PF */
1780 	return hclgevf_get_tc_info(hdev);
1781 }
1782 
1783 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1784 {
1785 	struct pci_dev *pdev = ae_dev->pdev;
1786 	struct hclgevf_dev *hdev;
1787 
1788 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1789 	if (!hdev)
1790 		return -ENOMEM;
1791 
1792 	hdev->pdev = pdev;
1793 	hdev->ae_dev = ae_dev;
1794 	ae_dev->priv = hdev;
1795 
1796 	return 0;
1797 }
1798 
1799 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1800 {
1801 	struct hnae3_handle *roce = &hdev->roce;
1802 	struct hnae3_handle *nic = &hdev->nic;
1803 
1804 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1805 
1806 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1807 	    hdev->num_msi_left == 0)
1808 		return -EINVAL;
1809 
1810 	roce->rinfo.base_vector = hdev->roce_base_vector;
1811 
1812 	roce->rinfo.netdev = nic->kinfo.netdev;
1813 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1814 
1815 	roce->pdev = nic->pdev;
1816 	roce->ae_algo = nic->ae_algo;
1817 	roce->numa_node_mask = nic->numa_node_mask;
1818 
1819 	return 0;
1820 }
1821 
1822 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
1823 {
1824 	struct hclgevf_cfg_gro_status_cmd *req;
1825 	struct hclgevf_desc desc;
1826 	int ret;
1827 
1828 	if (!hnae3_dev_gro_supported(hdev))
1829 		return 0;
1830 
1831 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
1832 				     false);
1833 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
1834 
1835 	req->gro_en = cpu_to_le16(en ? 1 : 0);
1836 
1837 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1838 	if (ret)
1839 		dev_err(&hdev->pdev->dev,
1840 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
1841 
1842 	return ret;
1843 }
1844 
1845 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1846 {
1847 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1848 	int i, ret;
1849 
1850 	rss_cfg->rss_size = hdev->rss_size_max;
1851 
1852 	if (hdev->pdev->revision >= 0x21) {
1853 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
1854 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
1855 		       HCLGEVF_RSS_KEY_SIZE);
1856 
1857 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
1858 					       rss_cfg->rss_hash_key);
1859 		if (ret)
1860 			return ret;
1861 
1862 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
1863 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1864 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
1865 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1866 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
1867 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1868 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
1869 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1870 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
1871 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1872 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
1873 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1874 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
1875 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1876 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
1877 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1878 
1879 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
1880 		if (ret)
1881 			return ret;
1882 
1883 	}
1884 
1885 	/* Initialize RSS indirect table for each vport */
1886 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1887 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1888 
1889 	ret = hclgevf_set_rss_indir_table(hdev);
1890 	if (ret)
1891 		return ret;
1892 
1893 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1894 }
1895 
1896 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
1897 {
1898 	/* other vlan config(like, VLAN TX/RX offload) would also be added
1899 	 * here later
1900 	 */
1901 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
1902 				       false);
1903 }
1904 
1905 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
1906 {
1907 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1908 
1909 	if (enable) {
1910 		mod_timer(&hdev->service_timer, jiffies + HZ);
1911 	} else {
1912 		del_timer_sync(&hdev->service_timer);
1913 		cancel_work_sync(&hdev->service_task);
1914 		clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1915 	}
1916 }
1917 
1918 static int hclgevf_ae_start(struct hnae3_handle *handle)
1919 {
1920 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1921 
1922 	/* reset tqp stats */
1923 	hclgevf_reset_tqp_stats(handle);
1924 
1925 	hclgevf_request_link_info(hdev);
1926 
1927 	hclgevf_update_link_mode(hdev);
1928 
1929 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1930 
1931 	return 0;
1932 }
1933 
1934 static void hclgevf_ae_stop(struct hnae3_handle *handle)
1935 {
1936 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1937 	int i;
1938 
1939 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1940 
1941 	for (i = 0; i < handle->kinfo.num_tqps; i++)
1942 		hclgevf_reset_tqp(handle, i);
1943 
1944 	/* reset tqp stats */
1945 	hclgevf_reset_tqp_stats(handle);
1946 	hclgevf_update_link_status(hdev, 0);
1947 }
1948 
1949 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
1950 {
1951 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1952 	u8 msg_data;
1953 
1954 	msg_data = alive ? 1 : 0;
1955 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
1956 				    0, &msg_data, 1, false, NULL, 0);
1957 }
1958 
1959 static int hclgevf_client_start(struct hnae3_handle *handle)
1960 {
1961 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1962 
1963 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
1964 	return hclgevf_set_alive(handle, true);
1965 }
1966 
1967 static void hclgevf_client_stop(struct hnae3_handle *handle)
1968 {
1969 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1970 	int ret;
1971 
1972 	ret = hclgevf_set_alive(handle, false);
1973 	if (ret)
1974 		dev_warn(&hdev->pdev->dev,
1975 			 "%s failed %d\n", __func__, ret);
1976 
1977 	del_timer_sync(&hdev->keep_alive_timer);
1978 	cancel_work_sync(&hdev->keep_alive_task);
1979 }
1980 
1981 static void hclgevf_state_init(struct hclgevf_dev *hdev)
1982 {
1983 	/* setup tasks for the MBX */
1984 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
1985 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1986 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1987 
1988 	/* setup tasks for service timer */
1989 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
1990 
1991 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
1992 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1993 
1994 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
1995 
1996 	mutex_init(&hdev->mbx_resp.mbx_mutex);
1997 
1998 	/* bring the device down */
1999 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2000 }
2001 
2002 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2003 {
2004 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2005 
2006 	if (hdev->service_timer.function)
2007 		del_timer_sync(&hdev->service_timer);
2008 	if (hdev->service_task.func)
2009 		cancel_work_sync(&hdev->service_task);
2010 	if (hdev->mbx_service_task.func)
2011 		cancel_work_sync(&hdev->mbx_service_task);
2012 	if (hdev->rst_service_task.func)
2013 		cancel_work_sync(&hdev->rst_service_task);
2014 
2015 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2016 }
2017 
2018 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2019 {
2020 	struct pci_dev *pdev = hdev->pdev;
2021 	int vectors;
2022 	int i;
2023 
2024 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
2025 		vectors = pci_alloc_irq_vectors(pdev,
2026 						hdev->roce_base_msix_offset + 1,
2027 						hdev->num_msi,
2028 						PCI_IRQ_MSIX);
2029 	else
2030 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
2031 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2032 
2033 	if (vectors < 0) {
2034 		dev_err(&pdev->dev,
2035 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2036 			vectors);
2037 		return vectors;
2038 	}
2039 	if (vectors < hdev->num_msi)
2040 		dev_warn(&hdev->pdev->dev,
2041 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2042 			 hdev->num_msi, vectors);
2043 
2044 	hdev->num_msi = vectors;
2045 	hdev->num_msi_left = vectors;
2046 	hdev->base_msi_vector = pdev->irq;
2047 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2048 
2049 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2050 					   sizeof(u16), GFP_KERNEL);
2051 	if (!hdev->vector_status) {
2052 		pci_free_irq_vectors(pdev);
2053 		return -ENOMEM;
2054 	}
2055 
2056 	for (i = 0; i < hdev->num_msi; i++)
2057 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2058 
2059 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2060 					sizeof(int), GFP_KERNEL);
2061 	if (!hdev->vector_irq) {
2062 		devm_kfree(&pdev->dev, hdev->vector_status);
2063 		pci_free_irq_vectors(pdev);
2064 		return -ENOMEM;
2065 	}
2066 
2067 	return 0;
2068 }
2069 
2070 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2071 {
2072 	struct pci_dev *pdev = hdev->pdev;
2073 
2074 	devm_kfree(&pdev->dev, hdev->vector_status);
2075 	devm_kfree(&pdev->dev, hdev->vector_irq);
2076 	pci_free_irq_vectors(pdev);
2077 }
2078 
2079 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2080 {
2081 	int ret = 0;
2082 
2083 	hclgevf_get_misc_vector(hdev);
2084 
2085 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2086 			  0, "hclgevf_cmd", hdev);
2087 	if (ret) {
2088 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2089 			hdev->misc_vector.vector_irq);
2090 		return ret;
2091 	}
2092 
2093 	hclgevf_clear_event_cause(hdev, 0);
2094 
2095 	/* enable misc. vector(vector 0) */
2096 	hclgevf_enable_vector(&hdev->misc_vector, true);
2097 
2098 	return ret;
2099 }
2100 
2101 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2102 {
2103 	/* disable misc vector(vector 0) */
2104 	hclgevf_enable_vector(&hdev->misc_vector, false);
2105 	synchronize_irq(hdev->misc_vector.vector_irq);
2106 	free_irq(hdev->misc_vector.vector_irq, hdev);
2107 	hclgevf_free_vector(hdev, 0);
2108 }
2109 
2110 static int hclgevf_init_client_instance(struct hnae3_client *client,
2111 					struct hnae3_ae_dev *ae_dev)
2112 {
2113 	struct hclgevf_dev *hdev = ae_dev->priv;
2114 	int ret;
2115 
2116 	switch (client->type) {
2117 	case HNAE3_CLIENT_KNIC:
2118 		hdev->nic_client = client;
2119 		hdev->nic.client = client;
2120 
2121 		ret = client->ops->init_instance(&hdev->nic);
2122 		if (ret)
2123 			goto clear_nic;
2124 
2125 		hnae3_set_client_init_flag(client, ae_dev, 1);
2126 
2127 		if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
2128 			struct hnae3_client *rc = hdev->roce_client;
2129 
2130 			ret = hclgevf_init_roce_base_info(hdev);
2131 			if (ret)
2132 				goto clear_roce;
2133 			ret = rc->ops->init_instance(&hdev->roce);
2134 			if (ret)
2135 				goto clear_roce;
2136 
2137 			hnae3_set_client_init_flag(hdev->roce_client, ae_dev,
2138 						   1);
2139 		}
2140 		break;
2141 	case HNAE3_CLIENT_UNIC:
2142 		hdev->nic_client = client;
2143 		hdev->nic.client = client;
2144 
2145 		ret = client->ops->init_instance(&hdev->nic);
2146 		if (ret)
2147 			goto clear_nic;
2148 
2149 		hnae3_set_client_init_flag(client, ae_dev, 1);
2150 		break;
2151 	case HNAE3_CLIENT_ROCE:
2152 		if (hnae3_dev_roce_supported(hdev)) {
2153 			hdev->roce_client = client;
2154 			hdev->roce.client = client;
2155 		}
2156 
2157 		if (hdev->roce_client && hdev->nic_client) {
2158 			ret = hclgevf_init_roce_base_info(hdev);
2159 			if (ret)
2160 				goto clear_roce;
2161 
2162 			ret = client->ops->init_instance(&hdev->roce);
2163 			if (ret)
2164 				goto clear_roce;
2165 		}
2166 
2167 		hnae3_set_client_init_flag(client, ae_dev, 1);
2168 		break;
2169 	default:
2170 		return -EINVAL;
2171 	}
2172 
2173 	return 0;
2174 
2175 clear_nic:
2176 	hdev->nic_client = NULL;
2177 	hdev->nic.client = NULL;
2178 	return ret;
2179 clear_roce:
2180 	hdev->roce_client = NULL;
2181 	hdev->roce.client = NULL;
2182 	return ret;
2183 }
2184 
2185 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2186 					   struct hnae3_ae_dev *ae_dev)
2187 {
2188 	struct hclgevf_dev *hdev = ae_dev->priv;
2189 
2190 	/* un-init roce, if it exists */
2191 	if (hdev->roce_client) {
2192 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2193 		hdev->roce_client = NULL;
2194 		hdev->roce.client = NULL;
2195 	}
2196 
2197 	/* un-init nic/unic, if this was not called by roce client */
2198 	if (client->ops->uninit_instance && hdev->nic_client &&
2199 	    client->type != HNAE3_CLIENT_ROCE) {
2200 		client->ops->uninit_instance(&hdev->nic, 0);
2201 		hdev->nic_client = NULL;
2202 		hdev->nic.client = NULL;
2203 	}
2204 }
2205 
2206 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2207 {
2208 	struct pci_dev *pdev = hdev->pdev;
2209 	struct hclgevf_hw *hw;
2210 	int ret;
2211 
2212 	ret = pci_enable_device(pdev);
2213 	if (ret) {
2214 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2215 		return ret;
2216 	}
2217 
2218 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2219 	if (ret) {
2220 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2221 		goto err_disable_device;
2222 	}
2223 
2224 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2225 	if (ret) {
2226 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2227 		goto err_disable_device;
2228 	}
2229 
2230 	pci_set_master(pdev);
2231 	hw = &hdev->hw;
2232 	hw->hdev = hdev;
2233 	hw->io_base = pci_iomap(pdev, 2, 0);
2234 	if (!hw->io_base) {
2235 		dev_err(&pdev->dev, "can't map configuration register space\n");
2236 		ret = -ENOMEM;
2237 		goto err_clr_master;
2238 	}
2239 
2240 	return 0;
2241 
2242 err_clr_master:
2243 	pci_clear_master(pdev);
2244 	pci_release_regions(pdev);
2245 err_disable_device:
2246 	pci_disable_device(pdev);
2247 
2248 	return ret;
2249 }
2250 
2251 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2252 {
2253 	struct pci_dev *pdev = hdev->pdev;
2254 
2255 	pci_iounmap(pdev, hdev->hw.io_base);
2256 	pci_clear_master(pdev);
2257 	pci_release_regions(pdev);
2258 	pci_disable_device(pdev);
2259 }
2260 
2261 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2262 {
2263 	struct hclgevf_query_res_cmd *req;
2264 	struct hclgevf_desc desc;
2265 	int ret;
2266 
2267 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2268 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2269 	if (ret) {
2270 		dev_err(&hdev->pdev->dev,
2271 			"query vf resource failed, ret = %d.\n", ret);
2272 		return ret;
2273 	}
2274 
2275 	req = (struct hclgevf_query_res_cmd *)desc.data;
2276 
2277 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2278 		hdev->roce_base_msix_offset =
2279 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2280 				HCLGEVF_MSIX_OFT_ROCEE_M,
2281 				HCLGEVF_MSIX_OFT_ROCEE_S);
2282 		hdev->num_roce_msix =
2283 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2284 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2285 
2286 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2287 		 * are queued before Roce vectors. The offset is fixed to 64.
2288 		 */
2289 		hdev->num_msi = hdev->num_roce_msix +
2290 				hdev->roce_base_msix_offset;
2291 	} else {
2292 		hdev->num_msi =
2293 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2294 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2295 	}
2296 
2297 	return 0;
2298 }
2299 
2300 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2301 {
2302 	struct pci_dev *pdev = hdev->pdev;
2303 	int ret = 0;
2304 
2305 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2306 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2307 		hclgevf_misc_irq_uninit(hdev);
2308 		hclgevf_uninit_msi(hdev);
2309 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2310 	}
2311 
2312 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2313 		pci_set_master(pdev);
2314 		ret = hclgevf_init_msi(hdev);
2315 		if (ret) {
2316 			dev_err(&pdev->dev,
2317 				"failed(%d) to init MSI/MSI-X\n", ret);
2318 			return ret;
2319 		}
2320 
2321 		ret = hclgevf_misc_irq_init(hdev);
2322 		if (ret) {
2323 			hclgevf_uninit_msi(hdev);
2324 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2325 				ret);
2326 			return ret;
2327 		}
2328 
2329 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2330 	}
2331 
2332 	return ret;
2333 }
2334 
2335 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2336 {
2337 	struct pci_dev *pdev = hdev->pdev;
2338 	int ret;
2339 
2340 	ret = hclgevf_pci_reset(hdev);
2341 	if (ret) {
2342 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2343 		return ret;
2344 	}
2345 
2346 	ret = hclgevf_cmd_init(hdev);
2347 	if (ret) {
2348 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2349 		return ret;
2350 	}
2351 
2352 	ret = hclgevf_rss_init_hw(hdev);
2353 	if (ret) {
2354 		dev_err(&hdev->pdev->dev,
2355 			"failed(%d) to initialize RSS\n", ret);
2356 		return ret;
2357 	}
2358 
2359 	ret = hclgevf_config_gro(hdev, true);
2360 	if (ret)
2361 		return ret;
2362 
2363 	ret = hclgevf_init_vlan_config(hdev);
2364 	if (ret) {
2365 		dev_err(&hdev->pdev->dev,
2366 			"failed(%d) to initialize VLAN config\n", ret);
2367 		return ret;
2368 	}
2369 
2370 	dev_info(&hdev->pdev->dev, "Reset done\n");
2371 
2372 	return 0;
2373 }
2374 
2375 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2376 {
2377 	struct pci_dev *pdev = hdev->pdev;
2378 	int ret;
2379 
2380 	ret = hclgevf_pci_init(hdev);
2381 	if (ret) {
2382 		dev_err(&pdev->dev, "PCI initialization failed\n");
2383 		return ret;
2384 	}
2385 
2386 	ret = hclgevf_cmd_queue_init(hdev);
2387 	if (ret) {
2388 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2389 		goto err_cmd_queue_init;
2390 	}
2391 
2392 	ret = hclgevf_cmd_init(hdev);
2393 	if (ret)
2394 		goto err_cmd_init;
2395 
2396 	/* Get vf resource */
2397 	ret = hclgevf_query_vf_resource(hdev);
2398 	if (ret) {
2399 		dev_err(&hdev->pdev->dev,
2400 			"Query vf status error, ret = %d.\n", ret);
2401 		goto err_cmd_init;
2402 	}
2403 
2404 	ret = hclgevf_init_msi(hdev);
2405 	if (ret) {
2406 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2407 		goto err_cmd_init;
2408 	}
2409 
2410 	hclgevf_state_init(hdev);
2411 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2412 
2413 	ret = hclgevf_misc_irq_init(hdev);
2414 	if (ret) {
2415 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2416 			ret);
2417 		goto err_misc_irq_init;
2418 	}
2419 
2420 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2421 
2422 	ret = hclgevf_configure(hdev);
2423 	if (ret) {
2424 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2425 		goto err_config;
2426 	}
2427 
2428 	ret = hclgevf_alloc_tqps(hdev);
2429 	if (ret) {
2430 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2431 		goto err_config;
2432 	}
2433 
2434 	ret = hclgevf_set_handle_info(hdev);
2435 	if (ret) {
2436 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2437 		goto err_config;
2438 	}
2439 
2440 	ret = hclgevf_config_gro(hdev, true);
2441 	if (ret)
2442 		goto err_config;
2443 
2444 	/* vf is not allowed to enable unicast/multicast promisc mode.
2445 	 * For revision 0x20, default to disable broadcast promisc mode,
2446 	 * firmware makes sure broadcast packets can be accepted.
2447 	 * For revision 0x21, default to enable broadcast promisc mode.
2448 	 */
2449 	ret = hclgevf_set_promisc_mode(hdev, true);
2450 	if (ret)
2451 		goto err_config;
2452 
2453 	/* Initialize RSS for this VF */
2454 	ret = hclgevf_rss_init_hw(hdev);
2455 	if (ret) {
2456 		dev_err(&hdev->pdev->dev,
2457 			"failed(%d) to initialize RSS\n", ret);
2458 		goto err_config;
2459 	}
2460 
2461 	ret = hclgevf_init_vlan_config(hdev);
2462 	if (ret) {
2463 		dev_err(&hdev->pdev->dev,
2464 			"failed(%d) to initialize VLAN config\n", ret);
2465 		goto err_config;
2466 	}
2467 
2468 	hdev->last_reset_time = jiffies;
2469 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2470 
2471 	return 0;
2472 
2473 err_config:
2474 	hclgevf_misc_irq_uninit(hdev);
2475 err_misc_irq_init:
2476 	hclgevf_state_uninit(hdev);
2477 	hclgevf_uninit_msi(hdev);
2478 err_cmd_init:
2479 	hclgevf_cmd_uninit(hdev);
2480 err_cmd_queue_init:
2481 	hclgevf_pci_uninit(hdev);
2482 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2483 	return ret;
2484 }
2485 
2486 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2487 {
2488 	hclgevf_state_uninit(hdev);
2489 
2490 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2491 		hclgevf_misc_irq_uninit(hdev);
2492 		hclgevf_uninit_msi(hdev);
2493 	}
2494 
2495 	hclgevf_pci_uninit(hdev);
2496 	hclgevf_cmd_uninit(hdev);
2497 }
2498 
2499 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2500 {
2501 	struct pci_dev *pdev = ae_dev->pdev;
2502 	struct hclgevf_dev *hdev;
2503 	int ret;
2504 
2505 	ret = hclgevf_alloc_hdev(ae_dev);
2506 	if (ret) {
2507 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2508 		return ret;
2509 	}
2510 
2511 	ret = hclgevf_init_hdev(ae_dev->priv);
2512 	if (ret) {
2513 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2514 		return ret;
2515 	}
2516 
2517 	hdev = ae_dev->priv;
2518 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2519 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2520 
2521 	return 0;
2522 }
2523 
2524 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2525 {
2526 	struct hclgevf_dev *hdev = ae_dev->priv;
2527 
2528 	hclgevf_uninit_hdev(hdev);
2529 	ae_dev->priv = NULL;
2530 }
2531 
2532 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2533 {
2534 	struct hnae3_handle *nic = &hdev->nic;
2535 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2536 
2537 	return min_t(u32, hdev->rss_size_max,
2538 		     hdev->num_tqps / kinfo->num_tc);
2539 }
2540 
2541 /**
2542  * hclgevf_get_channels - Get the current channels enabled and max supported.
2543  * @handle: hardware information for network interface
2544  * @ch: ethtool channels structure
2545  *
2546  * We don't support separate tx and rx queues as channels. The other count
2547  * represents how many queues are being used for control. max_combined counts
2548  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2549  * q_vectors since we support a lot more queue pairs than q_vectors.
2550  **/
2551 static void hclgevf_get_channels(struct hnae3_handle *handle,
2552 				 struct ethtool_channels *ch)
2553 {
2554 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2555 
2556 	ch->max_combined = hclgevf_get_max_channels(hdev);
2557 	ch->other_count = 0;
2558 	ch->max_other = 0;
2559 	ch->combined_count = handle->kinfo.rss_size;
2560 }
2561 
2562 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2563 					  u16 *alloc_tqps, u16 *max_rss_size)
2564 {
2565 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2566 
2567 	*alloc_tqps = hdev->num_tqps;
2568 	*max_rss_size = hdev->rss_size_max;
2569 }
2570 
2571 static int hclgevf_get_status(struct hnae3_handle *handle)
2572 {
2573 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2574 
2575 	return hdev->hw.mac.link;
2576 }
2577 
2578 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2579 					    u8 *auto_neg, u32 *speed,
2580 					    u8 *duplex)
2581 {
2582 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2583 
2584 	if (speed)
2585 		*speed = hdev->hw.mac.speed;
2586 	if (duplex)
2587 		*duplex = hdev->hw.mac.duplex;
2588 	if (auto_neg)
2589 		*auto_neg = AUTONEG_DISABLE;
2590 }
2591 
2592 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2593 				 u8 duplex)
2594 {
2595 	hdev->hw.mac.speed = speed;
2596 	hdev->hw.mac.duplex = duplex;
2597 }
2598 
2599 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
2600 {
2601 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2602 
2603 	return hclgevf_config_gro(hdev, enable);
2604 }
2605 
2606 static void hclgevf_get_media_type(struct hnae3_handle *handle,
2607 				  u8 *media_type)
2608 {
2609 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2610 	if (media_type)
2611 		*media_type = hdev->hw.mac.media_type;
2612 }
2613 
2614 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2615 {
2616 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2617 
2618 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2619 }
2620 
2621 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2622 {
2623 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2624 
2625 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2626 }
2627 
2628 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2629 {
2630 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2631 
2632 	return hdev->reset_count;
2633 }
2634 
2635 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
2636 				  unsigned long *supported,
2637 				  unsigned long *advertising)
2638 {
2639 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2640 
2641 	*supported = hdev->hw.mac.supported;
2642 	*advertising = hdev->hw.mac.advertising;
2643 }
2644 
2645 #define MAX_SEPARATE_NUM	4
2646 #define SEPARATOR_VALUE		0xFFFFFFFF
2647 #define REG_NUM_PER_LINE	4
2648 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
2649 
2650 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2651 {
2652 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2653 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2654 
2655 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2656 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2657 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2658 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2659 
2660 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2661 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2662 }
2663 
2664 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
2665 			     void *data)
2666 {
2667 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2668 	int i, j, reg_um, separator_num;
2669 	u32 *reg = data;
2670 
2671 	*version = hdev->fw_version;
2672 
2673 	/* fetching per-VF registers values from VF PCIe register space */
2674 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
2675 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2676 	for (i = 0; i < reg_um; i++)
2677 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
2678 	for (i = 0; i < separator_num; i++)
2679 		*reg++ = SEPARATOR_VALUE;
2680 
2681 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
2682 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2683 	for (i = 0; i < reg_um; i++)
2684 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
2685 	for (i = 0; i < separator_num; i++)
2686 		*reg++ = SEPARATOR_VALUE;
2687 
2688 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
2689 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2690 	for (j = 0; j < hdev->num_tqps; j++) {
2691 		for (i = 0; i < reg_um; i++)
2692 			*reg++ = hclgevf_read_dev(&hdev->hw,
2693 						  ring_reg_addr_list[i] +
2694 						  0x200 * j);
2695 		for (i = 0; i < separator_num; i++)
2696 			*reg++ = SEPARATOR_VALUE;
2697 	}
2698 
2699 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
2700 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2701 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
2702 		for (i = 0; i < reg_um; i++)
2703 			*reg++ = hclgevf_read_dev(&hdev->hw,
2704 						  tqp_intr_reg_addr_list[i] +
2705 						  4 * j);
2706 		for (i = 0; i < separator_num; i++)
2707 			*reg++ = SEPARATOR_VALUE;
2708 	}
2709 }
2710 
2711 static const struct hnae3_ae_ops hclgevf_ops = {
2712 	.init_ae_dev = hclgevf_init_ae_dev,
2713 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2714 	.flr_prepare = hclgevf_flr_prepare,
2715 	.flr_done = hclgevf_flr_done,
2716 	.init_client_instance = hclgevf_init_client_instance,
2717 	.uninit_client_instance = hclgevf_uninit_client_instance,
2718 	.start = hclgevf_ae_start,
2719 	.stop = hclgevf_ae_stop,
2720 	.client_start = hclgevf_client_start,
2721 	.client_stop = hclgevf_client_stop,
2722 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
2723 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2724 	.get_vector = hclgevf_get_vector,
2725 	.put_vector = hclgevf_put_vector,
2726 	.reset_queue = hclgevf_reset_tqp,
2727 	.get_mac_addr = hclgevf_get_mac_addr,
2728 	.set_mac_addr = hclgevf_set_mac_addr,
2729 	.add_uc_addr = hclgevf_add_uc_addr,
2730 	.rm_uc_addr = hclgevf_rm_uc_addr,
2731 	.add_mc_addr = hclgevf_add_mc_addr,
2732 	.rm_mc_addr = hclgevf_rm_mc_addr,
2733 	.get_stats = hclgevf_get_stats,
2734 	.update_stats = hclgevf_update_stats,
2735 	.get_strings = hclgevf_get_strings,
2736 	.get_sset_count = hclgevf_get_sset_count,
2737 	.get_rss_key_size = hclgevf_get_rss_key_size,
2738 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2739 	.get_rss = hclgevf_get_rss,
2740 	.set_rss = hclgevf_set_rss,
2741 	.get_rss_tuple = hclgevf_get_rss_tuple,
2742 	.set_rss_tuple = hclgevf_set_rss_tuple,
2743 	.get_tc_size = hclgevf_get_tc_size,
2744 	.get_fw_version = hclgevf_get_fw_version,
2745 	.set_vlan_filter = hclgevf_set_vlan_filter,
2746 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2747 	.reset_event = hclgevf_reset_event,
2748 	.set_default_reset_request = hclgevf_set_def_reset_request,
2749 	.get_channels = hclgevf_get_channels,
2750 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2751 	.get_regs_len = hclgevf_get_regs_len,
2752 	.get_regs = hclgevf_get_regs,
2753 	.get_status = hclgevf_get_status,
2754 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2755 	.get_media_type = hclgevf_get_media_type,
2756 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
2757 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
2758 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
2759 	.set_gro_en = hclgevf_gro_en,
2760 	.set_mtu = hclgevf_set_mtu,
2761 	.get_global_queue_id = hclgevf_get_qid_global,
2762 	.set_timer_task = hclgevf_set_timer_task,
2763 	.get_link_mode = hclgevf_get_link_mode,
2764 };
2765 
2766 static struct hnae3_ae_algo ae_algovf = {
2767 	.ops = &hclgevf_ops,
2768 	.pdev_id_table = ae_algovf_pci_tbl,
2769 };
2770 
2771 static int hclgevf_init(void)
2772 {
2773 	pr_info("%s is initializing\n", HCLGEVF_NAME);
2774 
2775 	hnae3_register_ae_algo(&ae_algovf);
2776 
2777 	return 0;
2778 }
2779 
2780 static void hclgevf_exit(void)
2781 {
2782 	hnae3_unregister_ae_algo(&ae_algovf);
2783 }
2784 module_init(hclgevf_init);
2785 module_exit(hclgevf_exit);
2786 
2787 MODULE_LICENSE("GPL");
2788 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
2789 MODULE_DESCRIPTION("HCLGEVF Driver");
2790 MODULE_VERSION(HCLGEVF_MOD_VERSION);
2791