1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
15 
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
18 				  unsigned long delay);
19 
20 static struct hnae3_ae_algo ae_algovf;
21 
22 static struct workqueue_struct *hclgevf_wq;
23 
24 static const struct pci_device_id ae_algovf_pci_tbl[] = {
25 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
26 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
27 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
28 	/* required last entry */
29 	{0, }
30 };
31 
32 static const u8 hclgevf_hash_key[] = {
33 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
34 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
35 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
36 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
37 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
38 };
39 
40 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
41 
42 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
43 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
44 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
45 					 HCLGEVF_CMDQ_TX_TAIL_REG,
46 					 HCLGEVF_CMDQ_TX_HEAD_REG,
47 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
48 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
49 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
50 					 HCLGEVF_CMDQ_RX_TAIL_REG,
51 					 HCLGEVF_CMDQ_RX_HEAD_REG,
52 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
53 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG,
54 					 HCLGEVF_CMDQ_INTR_EN_REG,
55 					 HCLGEVF_CMDQ_INTR_GEN_REG};
56 
57 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
58 					   HCLGEVF_RST_ING,
59 					   HCLGEVF_GRO_EN_REG};
60 
61 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
62 					 HCLGEVF_RING_RX_ADDR_H_REG,
63 					 HCLGEVF_RING_RX_BD_NUM_REG,
64 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
65 					 HCLGEVF_RING_RX_MERGE_EN_REG,
66 					 HCLGEVF_RING_RX_TAIL_REG,
67 					 HCLGEVF_RING_RX_HEAD_REG,
68 					 HCLGEVF_RING_RX_FBD_NUM_REG,
69 					 HCLGEVF_RING_RX_OFFSET_REG,
70 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
71 					 HCLGEVF_RING_RX_STASH_REG,
72 					 HCLGEVF_RING_RX_BD_ERR_REG,
73 					 HCLGEVF_RING_TX_ADDR_L_REG,
74 					 HCLGEVF_RING_TX_ADDR_H_REG,
75 					 HCLGEVF_RING_TX_BD_NUM_REG,
76 					 HCLGEVF_RING_TX_PRIORITY_REG,
77 					 HCLGEVF_RING_TX_TC_REG,
78 					 HCLGEVF_RING_TX_MERGE_EN_REG,
79 					 HCLGEVF_RING_TX_TAIL_REG,
80 					 HCLGEVF_RING_TX_HEAD_REG,
81 					 HCLGEVF_RING_TX_FBD_NUM_REG,
82 					 HCLGEVF_RING_TX_OFFSET_REG,
83 					 HCLGEVF_RING_TX_EBD_NUM_REG,
84 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
85 					 HCLGEVF_RING_TX_BD_ERR_REG,
86 					 HCLGEVF_RING_EN_REG};
87 
88 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
89 					     HCLGEVF_TQP_INTR_GL0_REG,
90 					     HCLGEVF_TQP_INTR_GL1_REG,
91 					     HCLGEVF_TQP_INTR_GL2_REG,
92 					     HCLGEVF_TQP_INTR_RL_REG};
93 
94 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
95 {
96 	if (!handle->client)
97 		return container_of(handle, struct hclgevf_dev, nic);
98 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
99 		return container_of(handle, struct hclgevf_dev, roce);
100 	else
101 		return container_of(handle, struct hclgevf_dev, nic);
102 }
103 
104 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
105 {
106 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
107 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
108 	struct hclgevf_desc desc;
109 	struct hclgevf_tqp *tqp;
110 	int status;
111 	int i;
112 
113 	for (i = 0; i < kinfo->num_tqps; i++) {
114 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
115 		hclgevf_cmd_setup_basic_desc(&desc,
116 					     HCLGEVF_OPC_QUERY_RX_STATUS,
117 					     true);
118 
119 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
120 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
121 		if (status) {
122 			dev_err(&hdev->pdev->dev,
123 				"Query tqp stat fail, status = %d,queue = %d\n",
124 				status,	i);
125 			return status;
126 		}
127 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
128 			le32_to_cpu(desc.data[1]);
129 
130 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
131 					     true);
132 
133 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
134 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
135 		if (status) {
136 			dev_err(&hdev->pdev->dev,
137 				"Query tqp stat fail, status = %d,queue = %d\n",
138 				status, i);
139 			return status;
140 		}
141 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
142 			le32_to_cpu(desc.data[1]);
143 	}
144 
145 	return 0;
146 }
147 
148 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
149 {
150 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
151 	struct hclgevf_tqp *tqp;
152 	u64 *buff = data;
153 	int i;
154 
155 	for (i = 0; i < kinfo->num_tqps; i++) {
156 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
158 	}
159 	for (i = 0; i < kinfo->num_tqps; i++) {
160 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
161 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
162 	}
163 
164 	return buff;
165 }
166 
167 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
168 {
169 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170 
171 	return kinfo->num_tqps * 2;
172 }
173 
174 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
175 {
176 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
177 	u8 *buff = data;
178 	int i;
179 
180 	for (i = 0; i < kinfo->num_tqps; i++) {
181 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
182 						       struct hclgevf_tqp, q);
183 		snprintf(buff, ETH_GSTRING_LEN, "txq%u_pktnum_rcd",
184 			 tqp->index);
185 		buff += ETH_GSTRING_LEN;
186 	}
187 
188 	for (i = 0; i < kinfo->num_tqps; i++) {
189 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
190 						       struct hclgevf_tqp, q);
191 		snprintf(buff, ETH_GSTRING_LEN, "rxq%u_pktnum_rcd",
192 			 tqp->index);
193 		buff += ETH_GSTRING_LEN;
194 	}
195 
196 	return buff;
197 }
198 
199 static void hclgevf_update_stats(struct hnae3_handle *handle,
200 				 struct net_device_stats *net_stats)
201 {
202 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
203 	int status;
204 
205 	status = hclgevf_tqps_update_stats(handle);
206 	if (status)
207 		dev_err(&hdev->pdev->dev,
208 			"VF update of TQPS stats fail, status = %d.\n",
209 			status);
210 }
211 
212 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
213 {
214 	if (strset == ETH_SS_TEST)
215 		return -EOPNOTSUPP;
216 	else if (strset == ETH_SS_STATS)
217 		return hclgevf_tqps_get_sset_count(handle, strset);
218 
219 	return 0;
220 }
221 
222 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
223 				u8 *data)
224 {
225 	u8 *p = (char *)data;
226 
227 	if (strset == ETH_SS_STATS)
228 		p = hclgevf_tqps_get_strings(handle, p);
229 }
230 
231 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
232 {
233 	hclgevf_tqps_get_stats(handle, data);
234 }
235 
236 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
237 				   u8 subcode)
238 {
239 	if (msg) {
240 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
241 		msg->code = code;
242 		msg->subcode = subcode;
243 	}
244 }
245 
246 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
247 {
248 	struct hclge_vf_to_pf_msg send_msg;
249 	u8 resp_msg;
250 	int status;
251 
252 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
253 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
254 				      sizeof(resp_msg));
255 	if (status) {
256 		dev_err(&hdev->pdev->dev,
257 			"VF request to get TC info from PF failed %d",
258 			status);
259 		return status;
260 	}
261 
262 	hdev->hw_tc_map = resp_msg;
263 
264 	return 0;
265 }
266 
267 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
268 {
269 	struct hnae3_handle *nic = &hdev->nic;
270 	struct hclge_vf_to_pf_msg send_msg;
271 	u8 resp_msg;
272 	int ret;
273 
274 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
275 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
276 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
277 				   sizeof(u8));
278 	if (ret) {
279 		dev_err(&hdev->pdev->dev,
280 			"VF request to get port based vlan state failed %d",
281 			ret);
282 		return ret;
283 	}
284 
285 	nic->port_base_vlan_state = resp_msg;
286 
287 	return 0;
288 }
289 
290 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
291 {
292 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
293 #define HCLGEVF_TQPS_ALLOC_OFFSET	0
294 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
295 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4
296 
297 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
298 	struct hclge_vf_to_pf_msg send_msg;
299 	int status;
300 
301 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
302 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
303 				      HCLGEVF_TQPS_RSS_INFO_LEN);
304 	if (status) {
305 		dev_err(&hdev->pdev->dev,
306 			"VF request to get tqp info from PF failed %d",
307 			status);
308 		return status;
309 	}
310 
311 	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
312 	       sizeof(u16));
313 	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
314 	       sizeof(u16));
315 	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
316 	       sizeof(u16));
317 
318 	return 0;
319 }
320 
321 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
322 {
323 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
324 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
325 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2
326 
327 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
328 	struct hclge_vf_to_pf_msg send_msg;
329 	int ret;
330 
331 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
332 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
333 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
334 	if (ret) {
335 		dev_err(&hdev->pdev->dev,
336 			"VF request to get tqp depth info from PF failed %d",
337 			ret);
338 		return ret;
339 	}
340 
341 	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
342 	       sizeof(u16));
343 	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
344 	       sizeof(u16));
345 
346 	return 0;
347 }
348 
349 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
350 {
351 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
352 	struct hclge_vf_to_pf_msg send_msg;
353 	u16 qid_in_pf = 0;
354 	u8 resp_data[2];
355 	int ret;
356 
357 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
358 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
359 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
360 				   sizeof(resp_data));
361 	if (!ret)
362 		qid_in_pf = *(u16 *)resp_data;
363 
364 	return qid_in_pf;
365 }
366 
367 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
368 {
369 	struct hclge_vf_to_pf_msg send_msg;
370 	u8 resp_msg[2];
371 	int ret;
372 
373 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
374 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
375 				   sizeof(resp_msg));
376 	if (ret) {
377 		dev_err(&hdev->pdev->dev,
378 			"VF request to get the pf port media type failed %d",
379 			ret);
380 		return ret;
381 	}
382 
383 	hdev->hw.mac.media_type = resp_msg[0];
384 	hdev->hw.mac.module_type = resp_msg[1];
385 
386 	return 0;
387 }
388 
389 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
390 {
391 	struct hclgevf_tqp *tqp;
392 	int i;
393 
394 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
395 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
396 	if (!hdev->htqp)
397 		return -ENOMEM;
398 
399 	tqp = hdev->htqp;
400 
401 	for (i = 0; i < hdev->num_tqps; i++) {
402 		tqp->dev = &hdev->pdev->dev;
403 		tqp->index = i;
404 
405 		tqp->q.ae_algo = &ae_algovf;
406 		tqp->q.buf_size = hdev->rx_buf_len;
407 		tqp->q.tx_desc_num = hdev->num_tx_desc;
408 		tqp->q.rx_desc_num = hdev->num_rx_desc;
409 
410 		/* need an extended offset to configure queues >=
411 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
412 		 */
413 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
414 			tqp->q.io_base = hdev->hw.io_base +
415 					 HCLGEVF_TQP_REG_OFFSET +
416 					 i * HCLGEVF_TQP_REG_SIZE;
417 		else
418 			tqp->q.io_base = hdev->hw.io_base +
419 					 HCLGEVF_TQP_REG_OFFSET +
420 					 HCLGEVF_TQP_EXT_REG_OFFSET +
421 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
422 					 HCLGEVF_TQP_REG_SIZE;
423 
424 		tqp++;
425 	}
426 
427 	return 0;
428 }
429 
430 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
431 {
432 	struct hnae3_handle *nic = &hdev->nic;
433 	struct hnae3_knic_private_info *kinfo;
434 	u16 new_tqps = hdev->num_tqps;
435 	unsigned int i;
436 	u8 num_tc = 0;
437 
438 	kinfo = &nic->kinfo;
439 	kinfo->num_tx_desc = hdev->num_tx_desc;
440 	kinfo->num_rx_desc = hdev->num_rx_desc;
441 	kinfo->rx_buf_len = hdev->rx_buf_len;
442 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
443 		if (hdev->hw_tc_map & BIT(i))
444 			num_tc++;
445 
446 	num_tc = num_tc ? num_tc : 1;
447 	kinfo->tc_info.num_tc = num_tc;
448 	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
449 	new_tqps = kinfo->rss_size * num_tc;
450 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
451 
452 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
453 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
454 	if (!kinfo->tqp)
455 		return -ENOMEM;
456 
457 	for (i = 0; i < kinfo->num_tqps; i++) {
458 		hdev->htqp[i].q.handle = &hdev->nic;
459 		hdev->htqp[i].q.tqp_index = i;
460 		kinfo->tqp[i] = &hdev->htqp[i].q;
461 	}
462 
463 	/* after init the max rss_size and tqps, adjust the default tqp numbers
464 	 * and rss size with the actual vector numbers
465 	 */
466 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
467 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
468 				kinfo->rss_size);
469 
470 	return 0;
471 }
472 
473 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
474 {
475 	struct hclge_vf_to_pf_msg send_msg;
476 	int status;
477 
478 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
479 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
480 	if (status)
481 		dev_err(&hdev->pdev->dev,
482 			"VF failed to fetch link status(%d) from PF", status);
483 }
484 
485 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
486 {
487 	struct hnae3_handle *rhandle = &hdev->roce;
488 	struct hnae3_handle *handle = &hdev->nic;
489 	struct hnae3_client *rclient;
490 	struct hnae3_client *client;
491 
492 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
493 		return;
494 
495 	client = handle->client;
496 	rclient = hdev->roce_client;
497 
498 	link_state =
499 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
500 	if (link_state != hdev->hw.mac.link) {
501 		client->ops->link_status_change(handle, !!link_state);
502 		if (rclient && rclient->ops->link_status_change)
503 			rclient->ops->link_status_change(rhandle, !!link_state);
504 		hdev->hw.mac.link = link_state;
505 	}
506 
507 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
508 }
509 
510 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
511 {
512 #define HCLGEVF_ADVERTISING	0
513 #define HCLGEVF_SUPPORTED	1
514 
515 	struct hclge_vf_to_pf_msg send_msg;
516 
517 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
518 	send_msg.data[0] = HCLGEVF_ADVERTISING;
519 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
520 	send_msg.data[0] = HCLGEVF_SUPPORTED;
521 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
522 }
523 
524 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
525 {
526 	struct hnae3_handle *nic = &hdev->nic;
527 	int ret;
528 
529 	nic->ae_algo = &ae_algovf;
530 	nic->pdev = hdev->pdev;
531 	nic->numa_node_mask = hdev->numa_node_mask;
532 	nic->flags |= HNAE3_SUPPORT_VF;
533 
534 	ret = hclgevf_knic_setup(hdev);
535 	if (ret)
536 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
537 			ret);
538 	return ret;
539 }
540 
541 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
542 {
543 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
544 		dev_warn(&hdev->pdev->dev,
545 			 "vector(vector_id %d) has been freed.\n", vector_id);
546 		return;
547 	}
548 
549 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
550 	hdev->num_msi_left += 1;
551 	hdev->num_msi_used -= 1;
552 }
553 
554 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
555 			      struct hnae3_vector_info *vector_info)
556 {
557 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
558 	struct hnae3_vector_info *vector = vector_info;
559 	int alloc = 0;
560 	int i, j;
561 
562 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
563 	vector_num = min(hdev->num_msi_left, vector_num);
564 
565 	for (j = 0; j < vector_num; j++) {
566 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
567 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
568 				vector->vector = pci_irq_vector(hdev->pdev, i);
569 				vector->io_addr = hdev->hw.io_base +
570 					HCLGEVF_VECTOR_REG_BASE +
571 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
572 				hdev->vector_status[i] = 0;
573 				hdev->vector_irq[i] = vector->vector;
574 
575 				vector++;
576 				alloc++;
577 
578 				break;
579 			}
580 		}
581 	}
582 	hdev->num_msi_left -= alloc;
583 	hdev->num_msi_used += alloc;
584 
585 	return alloc;
586 }
587 
588 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
589 {
590 	int i;
591 
592 	for (i = 0; i < hdev->num_msi; i++)
593 		if (vector == hdev->vector_irq[i])
594 			return i;
595 
596 	return -EINVAL;
597 }
598 
599 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
600 				    const u8 hfunc, const u8 *key)
601 {
602 	struct hclgevf_rss_config_cmd *req;
603 	unsigned int key_offset = 0;
604 	struct hclgevf_desc desc;
605 	int key_counts;
606 	int key_size;
607 	int ret;
608 
609 	key_counts = HCLGEVF_RSS_KEY_SIZE;
610 	req = (struct hclgevf_rss_config_cmd *)desc.data;
611 
612 	while (key_counts) {
613 		hclgevf_cmd_setup_basic_desc(&desc,
614 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
615 					     false);
616 
617 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
618 		req->hash_config |=
619 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
620 
621 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
622 		memcpy(req->hash_key,
623 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
624 
625 		key_counts -= key_size;
626 		key_offset++;
627 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
628 		if (ret) {
629 			dev_err(&hdev->pdev->dev,
630 				"Configure RSS config fail, status = %d\n",
631 				ret);
632 			return ret;
633 		}
634 	}
635 
636 	return 0;
637 }
638 
639 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
640 {
641 	return HCLGEVF_RSS_KEY_SIZE;
642 }
643 
644 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
645 {
646 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
647 	struct hclgevf_rss_indirection_table_cmd *req;
648 	struct hclgevf_desc desc;
649 	int rss_cfg_tbl_num;
650 	int status;
651 	int i, j;
652 
653 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
654 	rss_cfg_tbl_num = hdev->ae_dev->dev_specs.rss_ind_tbl_size /
655 			  HCLGEVF_RSS_CFG_TBL_SIZE;
656 
657 	for (i = 0; i < rss_cfg_tbl_num; i++) {
658 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
659 					     false);
660 		req->start_table_index =
661 			cpu_to_le16(i * HCLGEVF_RSS_CFG_TBL_SIZE);
662 		req->rss_set_bitmap = cpu_to_le16(HCLGEVF_RSS_SET_BITMAP_MSK);
663 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
664 			req->rss_result[j] =
665 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
666 
667 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
668 		if (status) {
669 			dev_err(&hdev->pdev->dev,
670 				"VF failed(=%d) to set RSS indirection table\n",
671 				status);
672 			return status;
673 		}
674 	}
675 
676 	return 0;
677 }
678 
679 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
680 {
681 	struct hclgevf_rss_tc_mode_cmd *req;
682 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
683 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
684 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
685 	struct hclgevf_desc desc;
686 	u16 roundup_size;
687 	unsigned int i;
688 	int status;
689 
690 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
691 
692 	roundup_size = roundup_pow_of_two(rss_size);
693 	roundup_size = ilog2(roundup_size);
694 
695 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
696 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
697 		tc_size[i] = roundup_size;
698 		tc_offset[i] = rss_size * i;
699 	}
700 
701 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
702 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
703 		u16 mode = 0;
704 
705 		hnae3_set_bit(mode, HCLGEVF_RSS_TC_VALID_B,
706 			      (tc_valid[i] & 0x1));
707 		hnae3_set_field(mode, HCLGEVF_RSS_TC_SIZE_M,
708 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
709 		hnae3_set_field(mode, HCLGEVF_RSS_TC_OFFSET_M,
710 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
711 
712 		req->rss_tc_mode[i] = cpu_to_le16(mode);
713 	}
714 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
715 	if (status)
716 		dev_err(&hdev->pdev->dev,
717 			"VF failed(=%d) to set rss tc mode\n", status);
718 
719 	return status;
720 }
721 
722 /* for revision 0x20, vf shared the same rss config with pf */
723 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
724 {
725 #define HCLGEVF_RSS_MBX_RESP_LEN	8
726 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
727 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
728 	struct hclge_vf_to_pf_msg send_msg;
729 	u16 msg_num, hash_key_index;
730 	u8 index;
731 	int ret;
732 
733 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
734 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
735 			HCLGEVF_RSS_MBX_RESP_LEN;
736 	for (index = 0; index < msg_num; index++) {
737 		send_msg.data[0] = index;
738 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
739 					   HCLGEVF_RSS_MBX_RESP_LEN);
740 		if (ret) {
741 			dev_err(&hdev->pdev->dev,
742 				"VF get rss hash key from PF failed, ret=%d",
743 				ret);
744 			return ret;
745 		}
746 
747 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
748 		if (index == msg_num - 1)
749 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
750 			       &resp_msg[0],
751 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
752 		else
753 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
754 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
755 	}
756 
757 	return 0;
758 }
759 
760 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
761 			   u8 *hfunc)
762 {
763 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
764 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
765 	int i, ret;
766 
767 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
768 		/* Get hash algorithm */
769 		if (hfunc) {
770 			switch (rss_cfg->hash_algo) {
771 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
772 				*hfunc = ETH_RSS_HASH_TOP;
773 				break;
774 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
775 				*hfunc = ETH_RSS_HASH_XOR;
776 				break;
777 			default:
778 				*hfunc = ETH_RSS_HASH_UNKNOWN;
779 				break;
780 			}
781 		}
782 
783 		/* Get the RSS Key required by the user */
784 		if (key)
785 			memcpy(key, rss_cfg->rss_hash_key,
786 			       HCLGEVF_RSS_KEY_SIZE);
787 	} else {
788 		if (hfunc)
789 			*hfunc = ETH_RSS_HASH_TOP;
790 		if (key) {
791 			ret = hclgevf_get_rss_hash_key(hdev);
792 			if (ret)
793 				return ret;
794 			memcpy(key, rss_cfg->rss_hash_key,
795 			       HCLGEVF_RSS_KEY_SIZE);
796 		}
797 	}
798 
799 	if (indir)
800 		for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
801 			indir[i] = rss_cfg->rss_indirection_tbl[i];
802 
803 	return 0;
804 }
805 
806 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
807 			   const u8 *key, const u8 hfunc)
808 {
809 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
810 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
811 	int ret, i;
812 
813 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
814 		/* Set the RSS Hash Key if specififed by the user */
815 		if (key) {
816 			switch (hfunc) {
817 			case ETH_RSS_HASH_TOP:
818 				rss_cfg->hash_algo =
819 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
820 				break;
821 			case ETH_RSS_HASH_XOR:
822 				rss_cfg->hash_algo =
823 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
824 				break;
825 			case ETH_RSS_HASH_NO_CHANGE:
826 				break;
827 			default:
828 				return -EINVAL;
829 			}
830 
831 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
832 						       key);
833 			if (ret)
834 				return ret;
835 
836 			/* Update the shadow RSS key with user specified qids */
837 			memcpy(rss_cfg->rss_hash_key, key,
838 			       HCLGEVF_RSS_KEY_SIZE);
839 		}
840 	}
841 
842 	/* update the shadow RSS table with user specified qids */
843 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
844 		rss_cfg->rss_indirection_tbl[i] = indir[i];
845 
846 	/* update the hardware */
847 	return hclgevf_set_rss_indir_table(hdev);
848 }
849 
850 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
851 {
852 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
853 
854 	if (nfc->data & RXH_L4_B_2_3)
855 		hash_sets |= HCLGEVF_D_PORT_BIT;
856 	else
857 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
858 
859 	if (nfc->data & RXH_IP_SRC)
860 		hash_sets |= HCLGEVF_S_IP_BIT;
861 	else
862 		hash_sets &= ~HCLGEVF_S_IP_BIT;
863 
864 	if (nfc->data & RXH_IP_DST)
865 		hash_sets |= HCLGEVF_D_IP_BIT;
866 	else
867 		hash_sets &= ~HCLGEVF_D_IP_BIT;
868 
869 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
870 		hash_sets |= HCLGEVF_V_TAG_BIT;
871 
872 	return hash_sets;
873 }
874 
875 static int hclgevf_init_rss_tuple_cmd(struct hnae3_handle *handle,
876 				      struct ethtool_rxnfc *nfc,
877 				      struct hclgevf_rss_input_tuple_cmd *req)
878 {
879 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
880 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
881 	u8 tuple_sets;
882 
883 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
884 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
885 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
886 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
887 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
888 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
889 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
890 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
891 
892 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
893 	switch (nfc->flow_type) {
894 	case TCP_V4_FLOW:
895 		req->ipv4_tcp_en = tuple_sets;
896 		break;
897 	case TCP_V6_FLOW:
898 		req->ipv6_tcp_en = tuple_sets;
899 		break;
900 	case UDP_V4_FLOW:
901 		req->ipv4_udp_en = tuple_sets;
902 		break;
903 	case UDP_V6_FLOW:
904 		req->ipv6_udp_en = tuple_sets;
905 		break;
906 	case SCTP_V4_FLOW:
907 		req->ipv4_sctp_en = tuple_sets;
908 		break;
909 	case SCTP_V6_FLOW:
910 		if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
911 		    (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
912 			return -EINVAL;
913 
914 		req->ipv6_sctp_en = tuple_sets;
915 		break;
916 	case IPV4_FLOW:
917 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
918 		break;
919 	case IPV6_FLOW:
920 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
921 		break;
922 	default:
923 		return -EINVAL;
924 	}
925 
926 	return 0;
927 }
928 
929 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
930 				 struct ethtool_rxnfc *nfc)
931 {
932 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
933 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
934 	struct hclgevf_rss_input_tuple_cmd *req;
935 	struct hclgevf_desc desc;
936 	int ret;
937 
938 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
939 		return -EOPNOTSUPP;
940 
941 	if (nfc->data &
942 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
943 		return -EINVAL;
944 
945 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
946 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
947 
948 	ret = hclgevf_init_rss_tuple_cmd(handle, nfc, req);
949 	if (ret) {
950 		dev_err(&hdev->pdev->dev,
951 			"failed to init rss tuple cmd, ret = %d\n", ret);
952 		return ret;
953 	}
954 
955 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
956 	if (ret) {
957 		dev_err(&hdev->pdev->dev,
958 			"Set rss tuple fail, status = %d\n", ret);
959 		return ret;
960 	}
961 
962 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
963 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
964 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
965 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
966 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
967 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
968 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
969 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
970 	return 0;
971 }
972 
973 static int hclgevf_get_rss_tuple_by_flow_type(struct hclgevf_dev *hdev,
974 					      int flow_type, u8 *tuple_sets)
975 {
976 	switch (flow_type) {
977 	case TCP_V4_FLOW:
978 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_tcp_en;
979 		break;
980 	case UDP_V4_FLOW:
981 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_udp_en;
982 		break;
983 	case TCP_V6_FLOW:
984 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_tcp_en;
985 		break;
986 	case UDP_V6_FLOW:
987 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_udp_en;
988 		break;
989 	case SCTP_V4_FLOW:
990 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_sctp_en;
991 		break;
992 	case SCTP_V6_FLOW:
993 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_sctp_en;
994 		break;
995 	case IPV4_FLOW:
996 	case IPV6_FLOW:
997 		*tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
998 		break;
999 	default:
1000 		return -EINVAL;
1001 	}
1002 
1003 	return 0;
1004 }
1005 
1006 static u64 hclgevf_convert_rss_tuple(u8 tuple_sets)
1007 {
1008 	u64 tuple_data = 0;
1009 
1010 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
1011 		tuple_data |= RXH_L4_B_2_3;
1012 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
1013 		tuple_data |= RXH_L4_B_0_1;
1014 	if (tuple_sets & HCLGEVF_D_IP_BIT)
1015 		tuple_data |= RXH_IP_DST;
1016 	if (tuple_sets & HCLGEVF_S_IP_BIT)
1017 		tuple_data |= RXH_IP_SRC;
1018 
1019 	return tuple_data;
1020 }
1021 
1022 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
1023 				 struct ethtool_rxnfc *nfc)
1024 {
1025 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1026 	u8 tuple_sets;
1027 	int ret;
1028 
1029 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
1030 		return -EOPNOTSUPP;
1031 
1032 	nfc->data = 0;
1033 
1034 	ret = hclgevf_get_rss_tuple_by_flow_type(hdev, nfc->flow_type,
1035 						 &tuple_sets);
1036 	if (ret || !tuple_sets)
1037 		return ret;
1038 
1039 	nfc->data = hclgevf_convert_rss_tuple(tuple_sets);
1040 
1041 	return 0;
1042 }
1043 
1044 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
1045 				       struct hclgevf_rss_cfg *rss_cfg)
1046 {
1047 	struct hclgevf_rss_input_tuple_cmd *req;
1048 	struct hclgevf_desc desc;
1049 	int ret;
1050 
1051 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1052 
1053 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1054 
1055 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1056 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1057 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1058 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1059 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1060 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1061 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1062 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1063 
1064 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1065 	if (ret)
1066 		dev_err(&hdev->pdev->dev,
1067 			"Configure rss input fail, status = %d\n", ret);
1068 	return ret;
1069 }
1070 
1071 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1072 {
1073 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1074 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1075 
1076 	return rss_cfg->rss_size;
1077 }
1078 
1079 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1080 				       int vector_id,
1081 				       struct hnae3_ring_chain_node *ring_chain)
1082 {
1083 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1084 	struct hclge_vf_to_pf_msg send_msg;
1085 	struct hnae3_ring_chain_node *node;
1086 	int status;
1087 	int i = 0;
1088 
1089 	memset(&send_msg, 0, sizeof(send_msg));
1090 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1091 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1092 	send_msg.vector_id = vector_id;
1093 
1094 	for (node = ring_chain; node; node = node->next) {
1095 		send_msg.param[i].ring_type =
1096 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1097 
1098 		send_msg.param[i].tqp_index = node->tqp_index;
1099 		send_msg.param[i].int_gl_index =
1100 					hnae3_get_field(node->int_gl_idx,
1101 							HNAE3_RING_GL_IDX_M,
1102 							HNAE3_RING_GL_IDX_S);
1103 
1104 		i++;
1105 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1106 			send_msg.ring_num = i;
1107 
1108 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1109 						      NULL, 0);
1110 			if (status) {
1111 				dev_err(&hdev->pdev->dev,
1112 					"Map TQP fail, status is %d.\n",
1113 					status);
1114 				return status;
1115 			}
1116 			i = 0;
1117 		}
1118 	}
1119 
1120 	return 0;
1121 }
1122 
1123 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1124 				      struct hnae3_ring_chain_node *ring_chain)
1125 {
1126 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1127 	int vector_id;
1128 
1129 	vector_id = hclgevf_get_vector_index(hdev, vector);
1130 	if (vector_id < 0) {
1131 		dev_err(&handle->pdev->dev,
1132 			"Get vector index fail. ret =%d\n", vector_id);
1133 		return vector_id;
1134 	}
1135 
1136 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1137 }
1138 
1139 static int hclgevf_unmap_ring_from_vector(
1140 				struct hnae3_handle *handle,
1141 				int vector,
1142 				struct hnae3_ring_chain_node *ring_chain)
1143 {
1144 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1145 	int ret, vector_id;
1146 
1147 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1148 		return 0;
1149 
1150 	vector_id = hclgevf_get_vector_index(hdev, vector);
1151 	if (vector_id < 0) {
1152 		dev_err(&handle->pdev->dev,
1153 			"Get vector index fail. ret =%d\n", vector_id);
1154 		return vector_id;
1155 	}
1156 
1157 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1158 	if (ret)
1159 		dev_err(&handle->pdev->dev,
1160 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1161 			vector_id,
1162 			ret);
1163 
1164 	return ret;
1165 }
1166 
1167 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1168 {
1169 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1170 	int vector_id;
1171 
1172 	vector_id = hclgevf_get_vector_index(hdev, vector);
1173 	if (vector_id < 0) {
1174 		dev_err(&handle->pdev->dev,
1175 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1176 			vector_id);
1177 		return vector_id;
1178 	}
1179 
1180 	hclgevf_free_vector(hdev, vector_id);
1181 
1182 	return 0;
1183 }
1184 
1185 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1186 					bool en_uc_pmc, bool en_mc_pmc,
1187 					bool en_bc_pmc)
1188 {
1189 	struct hnae3_handle *handle = &hdev->nic;
1190 	struct hclge_vf_to_pf_msg send_msg;
1191 	int ret;
1192 
1193 	memset(&send_msg, 0, sizeof(send_msg));
1194 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1195 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
1196 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
1197 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
1198 	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
1199 					     &handle->priv_flags) ? 1 : 0;
1200 
1201 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1202 	if (ret)
1203 		dev_err(&hdev->pdev->dev,
1204 			"Set promisc mode fail, status is %d.\n", ret);
1205 
1206 	return ret;
1207 }
1208 
1209 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1210 				    bool en_mc_pmc)
1211 {
1212 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1213 	bool en_bc_pmc;
1214 
1215 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1216 
1217 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1218 					    en_bc_pmc);
1219 }
1220 
1221 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1222 {
1223 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1224 
1225 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1226 	hclgevf_task_schedule(hdev, 0);
1227 }
1228 
1229 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1230 {
1231 	struct hnae3_handle *handle = &hdev->nic;
1232 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1233 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1234 	int ret;
1235 
1236 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1237 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1238 		if (!ret)
1239 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1240 	}
1241 }
1242 
1243 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1244 			      int stream_id, bool enable)
1245 {
1246 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1247 	struct hclgevf_desc desc;
1248 	int status;
1249 
1250 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1251 
1252 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1253 				     false);
1254 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1255 	req->stream_id = cpu_to_le16(stream_id);
1256 	if (enable)
1257 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1258 
1259 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1260 	if (status)
1261 		dev_err(&hdev->pdev->dev,
1262 			"TQP enable fail, status =%d.\n", status);
1263 
1264 	return status;
1265 }
1266 
1267 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1268 {
1269 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1270 	struct hclgevf_tqp *tqp;
1271 	int i;
1272 
1273 	for (i = 0; i < kinfo->num_tqps; i++) {
1274 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1275 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1276 	}
1277 }
1278 
1279 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1280 {
1281 	struct hclge_vf_to_pf_msg send_msg;
1282 	u8 host_mac[ETH_ALEN];
1283 	int status;
1284 
1285 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1286 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1287 				      ETH_ALEN);
1288 	if (status) {
1289 		dev_err(&hdev->pdev->dev,
1290 			"fail to get VF MAC from host %d", status);
1291 		return status;
1292 	}
1293 
1294 	ether_addr_copy(p, host_mac);
1295 
1296 	return 0;
1297 }
1298 
1299 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1300 {
1301 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1302 	u8 host_mac_addr[ETH_ALEN];
1303 
1304 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1305 		return;
1306 
1307 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1308 	if (hdev->has_pf_mac)
1309 		ether_addr_copy(p, host_mac_addr);
1310 	else
1311 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1312 }
1313 
1314 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1315 				bool is_first)
1316 {
1317 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1318 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1319 	struct hclge_vf_to_pf_msg send_msg;
1320 	u8 *new_mac_addr = (u8 *)p;
1321 	int status;
1322 
1323 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1324 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1325 	ether_addr_copy(send_msg.data, new_mac_addr);
1326 	if (is_first && !hdev->has_pf_mac)
1327 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
1328 	else
1329 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1330 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1331 	if (!status)
1332 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1333 
1334 	return status;
1335 }
1336 
1337 static struct hclgevf_mac_addr_node *
1338 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1339 {
1340 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1341 
1342 	list_for_each_entry_safe(mac_node, tmp, list, node)
1343 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1344 			return mac_node;
1345 
1346 	return NULL;
1347 }
1348 
1349 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1350 				    enum HCLGEVF_MAC_NODE_STATE state)
1351 {
1352 	switch (state) {
1353 	/* from set_rx_mode or tmp_add_list */
1354 	case HCLGEVF_MAC_TO_ADD:
1355 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1356 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1357 		break;
1358 	/* only from set_rx_mode */
1359 	case HCLGEVF_MAC_TO_DEL:
1360 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1361 			list_del(&mac_node->node);
1362 			kfree(mac_node);
1363 		} else {
1364 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1365 		}
1366 		break;
1367 	/* only from tmp_add_list, the mac_node->state won't be
1368 	 * HCLGEVF_MAC_ACTIVE
1369 	 */
1370 	case HCLGEVF_MAC_ACTIVE:
1371 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1372 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1373 		break;
1374 	}
1375 }
1376 
1377 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1378 				   enum HCLGEVF_MAC_NODE_STATE state,
1379 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1380 				   const unsigned char *addr)
1381 {
1382 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1383 	struct hclgevf_mac_addr_node *mac_node;
1384 	struct list_head *list;
1385 
1386 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1387 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1388 
1389 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1390 
1391 	/* if the mac addr is already in the mac list, no need to add a new
1392 	 * one into it, just check the mac addr state, convert it to a new
1393 	 * new state, or just remove it, or do nothing.
1394 	 */
1395 	mac_node = hclgevf_find_mac_node(list, addr);
1396 	if (mac_node) {
1397 		hclgevf_update_mac_node(mac_node, state);
1398 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1399 		return 0;
1400 	}
1401 	/* if this address is never added, unnecessary to delete */
1402 	if (state == HCLGEVF_MAC_TO_DEL) {
1403 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1404 		return -ENOENT;
1405 	}
1406 
1407 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1408 	if (!mac_node) {
1409 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1410 		return -ENOMEM;
1411 	}
1412 
1413 	mac_node->state = state;
1414 	ether_addr_copy(mac_node->mac_addr, addr);
1415 	list_add_tail(&mac_node->node, list);
1416 
1417 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1418 	return 0;
1419 }
1420 
1421 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1422 			       const unsigned char *addr)
1423 {
1424 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1425 				       HCLGEVF_MAC_ADDR_UC, addr);
1426 }
1427 
1428 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1429 			      const unsigned char *addr)
1430 {
1431 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1432 				       HCLGEVF_MAC_ADDR_UC, addr);
1433 }
1434 
1435 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1436 			       const unsigned char *addr)
1437 {
1438 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1439 				       HCLGEVF_MAC_ADDR_MC, addr);
1440 }
1441 
1442 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1443 			      const unsigned char *addr)
1444 {
1445 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1446 				       HCLGEVF_MAC_ADDR_MC, addr);
1447 }
1448 
1449 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1450 				    struct hclgevf_mac_addr_node *mac_node,
1451 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1452 {
1453 	struct hclge_vf_to_pf_msg send_msg;
1454 	u8 code, subcode;
1455 
1456 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1457 		code = HCLGE_MBX_SET_UNICAST;
1458 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1459 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1460 		else
1461 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1462 	} else {
1463 		code = HCLGE_MBX_SET_MULTICAST;
1464 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1465 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1466 		else
1467 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1468 	}
1469 
1470 	hclgevf_build_send_msg(&send_msg, code, subcode);
1471 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1472 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1473 }
1474 
1475 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1476 				    struct list_head *list,
1477 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1478 {
1479 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1480 	int ret;
1481 
1482 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1483 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1484 		if  (ret) {
1485 			dev_err(&hdev->pdev->dev,
1486 				"failed to configure mac %pM, state = %d, ret = %d\n",
1487 				mac_node->mac_addr, mac_node->state, ret);
1488 			return;
1489 		}
1490 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1491 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1492 		} else {
1493 			list_del(&mac_node->node);
1494 			kfree(mac_node);
1495 		}
1496 	}
1497 }
1498 
1499 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1500 				       struct list_head *mac_list)
1501 {
1502 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1503 
1504 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1505 		/* if the mac address from tmp_add_list is not in the
1506 		 * uc/mc_mac_list, it means have received a TO_DEL request
1507 		 * during the time window of sending mac config request to PF
1508 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1509 		 * then it will be removed at next time. If is TO_ADD, it means
1510 		 * send TO_ADD request failed, so just remove the mac node.
1511 		 */
1512 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1513 		if (new_node) {
1514 			hclgevf_update_mac_node(new_node, mac_node->state);
1515 			list_del(&mac_node->node);
1516 			kfree(mac_node);
1517 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1518 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1519 			list_del(&mac_node->node);
1520 			list_add_tail(&mac_node->node, mac_list);
1521 		} else {
1522 			list_del(&mac_node->node);
1523 			kfree(mac_node);
1524 		}
1525 	}
1526 }
1527 
1528 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1529 				       struct list_head *mac_list)
1530 {
1531 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1532 
1533 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1534 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1535 		if (new_node) {
1536 			/* If the mac addr is exist in the mac list, it means
1537 			 * received a new request TO_ADD during the time window
1538 			 * of sending mac addr configurrequest to PF, so just
1539 			 * change the mac state to ACTIVE.
1540 			 */
1541 			new_node->state = HCLGEVF_MAC_ACTIVE;
1542 			list_del(&mac_node->node);
1543 			kfree(mac_node);
1544 		} else {
1545 			list_del(&mac_node->node);
1546 			list_add_tail(&mac_node->node, mac_list);
1547 		}
1548 	}
1549 }
1550 
1551 static void hclgevf_clear_list(struct list_head *list)
1552 {
1553 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1554 
1555 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1556 		list_del(&mac_node->node);
1557 		kfree(mac_node);
1558 	}
1559 }
1560 
1561 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1562 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1563 {
1564 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1565 	struct list_head tmp_add_list, tmp_del_list;
1566 	struct list_head *list;
1567 
1568 	INIT_LIST_HEAD(&tmp_add_list);
1569 	INIT_LIST_HEAD(&tmp_del_list);
1570 
1571 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1572 	 * we can add/delete these mac addr outside the spin lock
1573 	 */
1574 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1575 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1576 
1577 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1578 
1579 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1580 		switch (mac_node->state) {
1581 		case HCLGEVF_MAC_TO_DEL:
1582 			list_del(&mac_node->node);
1583 			list_add_tail(&mac_node->node, &tmp_del_list);
1584 			break;
1585 		case HCLGEVF_MAC_TO_ADD:
1586 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1587 			if (!new_node)
1588 				goto stop_traverse;
1589 
1590 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1591 			new_node->state = mac_node->state;
1592 			list_add_tail(&new_node->node, &tmp_add_list);
1593 			break;
1594 		default:
1595 			break;
1596 		}
1597 	}
1598 
1599 stop_traverse:
1600 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1601 
1602 	/* delete first, in order to get max mac table space for adding */
1603 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1604 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1605 
1606 	/* if some mac addresses were added/deleted fail, move back to the
1607 	 * mac_list, and retry at next time.
1608 	 */
1609 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1610 
1611 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1612 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1613 
1614 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1615 }
1616 
1617 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1618 {
1619 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1620 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1621 }
1622 
1623 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1624 {
1625 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1626 
1627 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1628 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1629 
1630 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1631 }
1632 
1633 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1634 				   __be16 proto, u16 vlan_id,
1635 				   bool is_kill)
1636 {
1637 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
1638 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
1639 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3
1640 
1641 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1642 	struct hclge_vf_to_pf_msg send_msg;
1643 	int ret;
1644 
1645 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1646 		return -EINVAL;
1647 
1648 	if (proto != htons(ETH_P_8021Q))
1649 		return -EPROTONOSUPPORT;
1650 
1651 	/* When device is resetting or reset failed, firmware is unable to
1652 	 * handle mailbox. Just record the vlan id, and remove it after
1653 	 * reset finished.
1654 	 */
1655 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1656 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1657 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1658 		return -EBUSY;
1659 	}
1660 
1661 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1662 			       HCLGE_MBX_VLAN_FILTER);
1663 	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1664 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1665 	       sizeof(vlan_id));
1666 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1667 	       sizeof(proto));
1668 	/* when remove hw vlan filter failed, record the vlan id,
1669 	 * and try to remove it from hw later, to be consistence
1670 	 * with stack.
1671 	 */
1672 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1673 	if (is_kill && ret)
1674 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1675 
1676 	return ret;
1677 }
1678 
1679 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1680 {
1681 #define HCLGEVF_MAX_SYNC_COUNT	60
1682 	struct hnae3_handle *handle = &hdev->nic;
1683 	int ret, sync_cnt = 0;
1684 	u16 vlan_id;
1685 
1686 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1687 	while (vlan_id != VLAN_N_VID) {
1688 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1689 					      vlan_id, true);
1690 		if (ret)
1691 			return;
1692 
1693 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1694 		sync_cnt++;
1695 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1696 			return;
1697 
1698 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1699 	}
1700 }
1701 
1702 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1703 {
1704 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1705 	struct hclge_vf_to_pf_msg send_msg;
1706 
1707 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1708 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1709 	send_msg.data[0] = enable ? 1 : 0;
1710 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1711 }
1712 
1713 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1714 {
1715 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1716 	struct hclge_vf_to_pf_msg send_msg;
1717 	int ret;
1718 
1719 	/* disable vf queue before send queue reset msg to PF */
1720 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1721 	if (ret)
1722 		return ret;
1723 
1724 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1725 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
1726 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1727 }
1728 
1729 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1730 {
1731 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1732 	struct hclge_vf_to_pf_msg send_msg;
1733 
1734 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1735 	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1736 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1737 }
1738 
1739 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1740 				 enum hnae3_reset_notify_type type)
1741 {
1742 	struct hnae3_client *client = hdev->nic_client;
1743 	struct hnae3_handle *handle = &hdev->nic;
1744 	int ret;
1745 
1746 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1747 	    !client)
1748 		return 0;
1749 
1750 	if (!client->ops->reset_notify)
1751 		return -EOPNOTSUPP;
1752 
1753 	ret = client->ops->reset_notify(handle, type);
1754 	if (ret)
1755 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1756 			type, ret);
1757 
1758 	return ret;
1759 }
1760 
1761 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1762 				      enum hnae3_reset_notify_type type)
1763 {
1764 	struct hnae3_client *client = hdev->roce_client;
1765 	struct hnae3_handle *handle = &hdev->roce;
1766 	int ret;
1767 
1768 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1769 		return 0;
1770 
1771 	if (!client->ops->reset_notify)
1772 		return -EOPNOTSUPP;
1773 
1774 	ret = client->ops->reset_notify(handle, type);
1775 	if (ret)
1776 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1777 			type, ret);
1778 	return ret;
1779 }
1780 
1781 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1782 {
1783 #define HCLGEVF_RESET_WAIT_US	20000
1784 #define HCLGEVF_RESET_WAIT_CNT	2000
1785 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1786 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1787 
1788 	u32 val;
1789 	int ret;
1790 
1791 	if (hdev->reset_type == HNAE3_VF_RESET)
1792 		ret = readl_poll_timeout(hdev->hw.io_base +
1793 					 HCLGEVF_VF_RST_ING, val,
1794 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1795 					 HCLGEVF_RESET_WAIT_US,
1796 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1797 	else
1798 		ret = readl_poll_timeout(hdev->hw.io_base +
1799 					 HCLGEVF_RST_ING, val,
1800 					 !(val & HCLGEVF_RST_ING_BITS),
1801 					 HCLGEVF_RESET_WAIT_US,
1802 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1803 
1804 	/* hardware completion status should be available by this time */
1805 	if (ret) {
1806 		dev_err(&hdev->pdev->dev,
1807 			"couldn't get reset done status from h/w, timeout!\n");
1808 		return ret;
1809 	}
1810 
1811 	/* we will wait a bit more to let reset of the stack to complete. This
1812 	 * might happen in case reset assertion was made by PF. Yes, this also
1813 	 * means we might end up waiting bit more even for VF reset.
1814 	 */
1815 	msleep(5000);
1816 
1817 	return 0;
1818 }
1819 
1820 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1821 {
1822 	u32 reg_val;
1823 
1824 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1825 	if (enable)
1826 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1827 	else
1828 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1829 
1830 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1831 			  reg_val);
1832 }
1833 
1834 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1835 {
1836 	int ret;
1837 
1838 	/* uninitialize the nic client */
1839 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1840 	if (ret)
1841 		return ret;
1842 
1843 	/* re-initialize the hclge device */
1844 	ret = hclgevf_reset_hdev(hdev);
1845 	if (ret) {
1846 		dev_err(&hdev->pdev->dev,
1847 			"hclge device re-init failed, VF is disabled!\n");
1848 		return ret;
1849 	}
1850 
1851 	/* bring up the nic client again */
1852 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1853 	if (ret)
1854 		return ret;
1855 
1856 	/* clear handshake status with IMP */
1857 	hclgevf_reset_handshake(hdev, false);
1858 
1859 	/* bring up the nic to enable TX/RX again */
1860 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1861 }
1862 
1863 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1864 {
1865 #define HCLGEVF_RESET_SYNC_TIME 100
1866 
1867 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1868 		struct hclge_vf_to_pf_msg send_msg;
1869 		int ret;
1870 
1871 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1872 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1873 		if (ret) {
1874 			dev_err(&hdev->pdev->dev,
1875 				"failed to assert VF reset, ret = %d\n", ret);
1876 			return ret;
1877 		}
1878 		hdev->rst_stats.vf_func_rst_cnt++;
1879 	}
1880 
1881 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1882 	/* inform hardware that preparatory work is done */
1883 	msleep(HCLGEVF_RESET_SYNC_TIME);
1884 	hclgevf_reset_handshake(hdev, true);
1885 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1886 		 hdev->reset_type);
1887 
1888 	return 0;
1889 }
1890 
1891 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1892 {
1893 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1894 		 hdev->rst_stats.vf_func_rst_cnt);
1895 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1896 		 hdev->rst_stats.flr_rst_cnt);
1897 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1898 		 hdev->rst_stats.vf_rst_cnt);
1899 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1900 		 hdev->rst_stats.rst_done_cnt);
1901 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1902 		 hdev->rst_stats.hw_rst_done_cnt);
1903 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1904 		 hdev->rst_stats.rst_cnt);
1905 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1906 		 hdev->rst_stats.rst_fail_cnt);
1907 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1908 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1909 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1910 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1911 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1912 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1913 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1914 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1915 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1916 }
1917 
1918 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1919 {
1920 	/* recover handshake status with IMP when reset fail */
1921 	hclgevf_reset_handshake(hdev, true);
1922 	hdev->rst_stats.rst_fail_cnt++;
1923 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1924 		hdev->rst_stats.rst_fail_cnt);
1925 
1926 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1927 		set_bit(hdev->reset_type, &hdev->reset_pending);
1928 
1929 	if (hclgevf_is_reset_pending(hdev)) {
1930 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1931 		hclgevf_reset_task_schedule(hdev);
1932 	} else {
1933 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1934 		hclgevf_dump_rst_info(hdev);
1935 	}
1936 }
1937 
1938 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1939 {
1940 	int ret;
1941 
1942 	hdev->rst_stats.rst_cnt++;
1943 
1944 	/* perform reset of the stack & ae device for a client */
1945 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1946 	if (ret)
1947 		return ret;
1948 
1949 	rtnl_lock();
1950 	/* bring down the nic to stop any ongoing TX/RX */
1951 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1952 	rtnl_unlock();
1953 	if (ret)
1954 		return ret;
1955 
1956 	return hclgevf_reset_prepare_wait(hdev);
1957 }
1958 
1959 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1960 {
1961 	int ret;
1962 
1963 	hdev->rst_stats.hw_rst_done_cnt++;
1964 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1965 	if (ret)
1966 		return ret;
1967 
1968 	rtnl_lock();
1969 	/* now, re-initialize the nic client and ae device */
1970 	ret = hclgevf_reset_stack(hdev);
1971 	rtnl_unlock();
1972 	if (ret) {
1973 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1974 		return ret;
1975 	}
1976 
1977 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1978 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1979 	 * times
1980 	 */
1981 	if (ret &&
1982 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1983 		return ret;
1984 
1985 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1986 	if (ret)
1987 		return ret;
1988 
1989 	hdev->last_reset_time = jiffies;
1990 	hdev->rst_stats.rst_done_cnt++;
1991 	hdev->rst_stats.rst_fail_cnt = 0;
1992 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1993 
1994 	return 0;
1995 }
1996 
1997 static void hclgevf_reset(struct hclgevf_dev *hdev)
1998 {
1999 	if (hclgevf_reset_prepare(hdev))
2000 		goto err_reset;
2001 
2002 	/* check if VF could successfully fetch the hardware reset completion
2003 	 * status from the hardware
2004 	 */
2005 	if (hclgevf_reset_wait(hdev)) {
2006 		/* can't do much in this situation, will disable VF */
2007 		dev_err(&hdev->pdev->dev,
2008 			"failed to fetch H/W reset completion status\n");
2009 		goto err_reset;
2010 	}
2011 
2012 	if (hclgevf_reset_rebuild(hdev))
2013 		goto err_reset;
2014 
2015 	return;
2016 
2017 err_reset:
2018 	hclgevf_reset_err_handle(hdev);
2019 }
2020 
2021 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
2022 						     unsigned long *addr)
2023 {
2024 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
2025 
2026 	/* return the highest priority reset level amongst all */
2027 	if (test_bit(HNAE3_VF_RESET, addr)) {
2028 		rst_level = HNAE3_VF_RESET;
2029 		clear_bit(HNAE3_VF_RESET, addr);
2030 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2031 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2032 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
2033 		rst_level = HNAE3_VF_FULL_RESET;
2034 		clear_bit(HNAE3_VF_FULL_RESET, addr);
2035 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2036 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
2037 		rst_level = HNAE3_VF_PF_FUNC_RESET;
2038 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2039 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2040 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
2041 		rst_level = HNAE3_VF_FUNC_RESET;
2042 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2043 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
2044 		rst_level = HNAE3_FLR_RESET;
2045 		clear_bit(HNAE3_FLR_RESET, addr);
2046 	}
2047 
2048 	return rst_level;
2049 }
2050 
2051 static void hclgevf_reset_event(struct pci_dev *pdev,
2052 				struct hnae3_handle *handle)
2053 {
2054 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2055 	struct hclgevf_dev *hdev = ae_dev->priv;
2056 
2057 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
2058 
2059 	if (hdev->default_reset_request)
2060 		hdev->reset_level =
2061 			hclgevf_get_reset_level(hdev,
2062 						&hdev->default_reset_request);
2063 	else
2064 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
2065 
2066 	/* reset of this VF requested */
2067 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
2068 	hclgevf_reset_task_schedule(hdev);
2069 
2070 	hdev->last_reset_time = jiffies;
2071 }
2072 
2073 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
2074 					  enum hnae3_reset_type rst_type)
2075 {
2076 	struct hclgevf_dev *hdev = ae_dev->priv;
2077 
2078 	set_bit(rst_type, &hdev->default_reset_request);
2079 }
2080 
2081 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2082 {
2083 	writel(en ? 1 : 0, vector->addr);
2084 }
2085 
2086 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
2087 {
2088 #define HCLGEVF_FLR_RETRY_WAIT_MS	500
2089 #define HCLGEVF_FLR_RETRY_CNT		5
2090 
2091 	struct hclgevf_dev *hdev = ae_dev->priv;
2092 	int retry_cnt = 0;
2093 	int ret;
2094 
2095 retry:
2096 	down(&hdev->reset_sem);
2097 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2098 	hdev->reset_type = HNAE3_FLR_RESET;
2099 	ret = hclgevf_reset_prepare(hdev);
2100 	if (ret) {
2101 		dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n",
2102 			ret);
2103 		if (hdev->reset_pending ||
2104 		    retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) {
2105 			dev_err(&hdev->pdev->dev,
2106 				"reset_pending:0x%lx, retry_cnt:%d\n",
2107 				hdev->reset_pending, retry_cnt);
2108 			clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2109 			up(&hdev->reset_sem);
2110 			msleep(HCLGEVF_FLR_RETRY_WAIT_MS);
2111 			goto retry;
2112 		}
2113 	}
2114 
2115 	/* disable misc vector before FLR done */
2116 	hclgevf_enable_vector(&hdev->misc_vector, false);
2117 	hdev->rst_stats.flr_rst_cnt++;
2118 }
2119 
2120 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
2121 {
2122 	struct hclgevf_dev *hdev = ae_dev->priv;
2123 	int ret;
2124 
2125 	hclgevf_enable_vector(&hdev->misc_vector, true);
2126 
2127 	ret = hclgevf_reset_rebuild(hdev);
2128 	if (ret)
2129 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2130 			 ret);
2131 
2132 	hdev->reset_type = HNAE3_NONE_RESET;
2133 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2134 	up(&hdev->reset_sem);
2135 }
2136 
2137 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2138 {
2139 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2140 
2141 	return hdev->fw_version;
2142 }
2143 
2144 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2145 {
2146 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2147 
2148 	vector->vector_irq = pci_irq_vector(hdev->pdev,
2149 					    HCLGEVF_MISC_VECTOR_NUM);
2150 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2151 	/* vector status always valid for Vector 0 */
2152 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2153 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2154 
2155 	hdev->num_msi_left -= 1;
2156 	hdev->num_msi_used += 1;
2157 }
2158 
2159 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2160 {
2161 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2162 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2163 			      &hdev->state))
2164 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2165 }
2166 
2167 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2168 {
2169 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2170 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2171 			      &hdev->state))
2172 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2173 }
2174 
2175 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2176 				  unsigned long delay)
2177 {
2178 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2179 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2180 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2181 }
2182 
2183 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2184 {
2185 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
2186 
2187 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2188 		return;
2189 
2190 	down(&hdev->reset_sem);
2191 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2192 
2193 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2194 			       &hdev->reset_state)) {
2195 		/* PF has initmated that it is about to reset the hardware.
2196 		 * We now have to poll & check if hardware has actually
2197 		 * completed the reset sequence. On hardware reset completion,
2198 		 * VF needs to reset the client and ae device.
2199 		 */
2200 		hdev->reset_attempts = 0;
2201 
2202 		hdev->last_reset_time = jiffies;
2203 		while ((hdev->reset_type =
2204 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2205 		       != HNAE3_NONE_RESET)
2206 			hclgevf_reset(hdev);
2207 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2208 				      &hdev->reset_state)) {
2209 		/* we could be here when either of below happens:
2210 		 * 1. reset was initiated due to watchdog timeout caused by
2211 		 *    a. IMP was earlier reset and our TX got choked down and
2212 		 *       which resulted in watchdog reacting and inducing VF
2213 		 *       reset. This also means our cmdq would be unreliable.
2214 		 *    b. problem in TX due to other lower layer(example link
2215 		 *       layer not functioning properly etc.)
2216 		 * 2. VF reset might have been initiated due to some config
2217 		 *    change.
2218 		 *
2219 		 * NOTE: Theres no clear way to detect above cases than to react
2220 		 * to the response of PF for this reset request. PF will ack the
2221 		 * 1b and 2. cases but we will not get any intimation about 1a
2222 		 * from PF as cmdq would be in unreliable state i.e. mailbox
2223 		 * communication between PF and VF would be broken.
2224 		 *
2225 		 * if we are never geting into pending state it means either:
2226 		 * 1. PF is not receiving our request which could be due to IMP
2227 		 *    reset
2228 		 * 2. PF is screwed
2229 		 * We cannot do much for 2. but to check first we can try reset
2230 		 * our PCIe + stack and see if it alleviates the problem.
2231 		 */
2232 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2233 			/* prepare for full reset of stack + pcie interface */
2234 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2235 
2236 			/* "defer" schedule the reset task again */
2237 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2238 		} else {
2239 			hdev->reset_attempts++;
2240 
2241 			set_bit(hdev->reset_level, &hdev->reset_pending);
2242 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2243 		}
2244 		hclgevf_reset_task_schedule(hdev);
2245 	}
2246 
2247 	hdev->reset_type = HNAE3_NONE_RESET;
2248 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2249 	up(&hdev->reset_sem);
2250 }
2251 
2252 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2253 {
2254 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2255 		return;
2256 
2257 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2258 		return;
2259 
2260 	hclgevf_mbx_async_handler(hdev);
2261 
2262 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2263 }
2264 
2265 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2266 {
2267 	struct hclge_vf_to_pf_msg send_msg;
2268 	int ret;
2269 
2270 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2271 		return;
2272 
2273 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2274 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2275 	if (ret)
2276 		dev_err(&hdev->pdev->dev,
2277 			"VF sends keep alive cmd failed(=%d)\n", ret);
2278 }
2279 
2280 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2281 {
2282 	unsigned long delta = round_jiffies_relative(HZ);
2283 	struct hnae3_handle *handle = &hdev->nic;
2284 
2285 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2286 		return;
2287 
2288 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2289 		delta = jiffies - hdev->last_serv_processed;
2290 
2291 		if (delta < round_jiffies_relative(HZ)) {
2292 			delta = round_jiffies_relative(HZ) - delta;
2293 			goto out;
2294 		}
2295 	}
2296 
2297 	hdev->serv_processed_cnt++;
2298 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2299 		hclgevf_keep_alive(hdev);
2300 
2301 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2302 		hdev->last_serv_processed = jiffies;
2303 		goto out;
2304 	}
2305 
2306 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2307 		hclgevf_tqps_update_stats(handle);
2308 
2309 	/* request the link status from the PF. PF would be able to tell VF
2310 	 * about such updates in future so we might remove this later
2311 	 */
2312 	hclgevf_request_link_info(hdev);
2313 
2314 	hclgevf_update_link_mode(hdev);
2315 
2316 	hclgevf_sync_vlan_filter(hdev);
2317 
2318 	hclgevf_sync_mac_table(hdev);
2319 
2320 	hclgevf_sync_promisc_mode(hdev);
2321 
2322 	hdev->last_serv_processed = jiffies;
2323 
2324 out:
2325 	hclgevf_task_schedule(hdev, delta);
2326 }
2327 
2328 static void hclgevf_service_task(struct work_struct *work)
2329 {
2330 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2331 						service_task.work);
2332 
2333 	hclgevf_reset_service_task(hdev);
2334 	hclgevf_mailbox_service_task(hdev);
2335 	hclgevf_periodic_service_task(hdev);
2336 
2337 	/* Handle reset and mbx again in case periodical task delays the
2338 	 * handling by calling hclgevf_task_schedule() in
2339 	 * hclgevf_periodic_service_task()
2340 	 */
2341 	hclgevf_reset_service_task(hdev);
2342 	hclgevf_mailbox_service_task(hdev);
2343 }
2344 
2345 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2346 {
2347 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2348 }
2349 
2350 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2351 						      u32 *clearval)
2352 {
2353 	u32 val, cmdq_stat_reg, rst_ing_reg;
2354 
2355 	/* fetch the events from their corresponding regs */
2356 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2357 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2358 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2359 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2360 		dev_info(&hdev->pdev->dev,
2361 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2362 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2363 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2364 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2365 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2366 		hdev->rst_stats.vf_rst_cnt++;
2367 		/* set up VF hardware reset status, its PF will clear
2368 		 * this status when PF has initialized done.
2369 		 */
2370 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2371 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2372 				  val | HCLGEVF_VF_RST_ING_BIT);
2373 		return HCLGEVF_VECTOR0_EVENT_RST;
2374 	}
2375 
2376 	/* check for vector0 mailbox(=CMDQ RX) event source */
2377 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2378 		/* for revision 0x21, clearing interrupt is writing bit 0
2379 		 * to the clear register, writing bit 1 means to keep the
2380 		 * old value.
2381 		 * for revision 0x20, the clear register is a read & write
2382 		 * register, so we should just write 0 to the bit we are
2383 		 * handling, and keep other bits as cmdq_stat_reg.
2384 		 */
2385 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2386 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2387 		else
2388 			*clearval = cmdq_stat_reg &
2389 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2390 
2391 		return HCLGEVF_VECTOR0_EVENT_MBX;
2392 	}
2393 
2394 	/* print other vector0 event source */
2395 	dev_info(&hdev->pdev->dev,
2396 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2397 		 cmdq_stat_reg);
2398 
2399 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2400 }
2401 
2402 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2403 {
2404 	enum hclgevf_evt_cause event_cause;
2405 	struct hclgevf_dev *hdev = data;
2406 	u32 clearval;
2407 
2408 	hclgevf_enable_vector(&hdev->misc_vector, false);
2409 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2410 
2411 	switch (event_cause) {
2412 	case HCLGEVF_VECTOR0_EVENT_RST:
2413 		hclgevf_reset_task_schedule(hdev);
2414 		break;
2415 	case HCLGEVF_VECTOR0_EVENT_MBX:
2416 		hclgevf_mbx_handler(hdev);
2417 		break;
2418 	default:
2419 		break;
2420 	}
2421 
2422 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2423 		hclgevf_clear_event_cause(hdev, clearval);
2424 		hclgevf_enable_vector(&hdev->misc_vector, true);
2425 	}
2426 
2427 	return IRQ_HANDLED;
2428 }
2429 
2430 static int hclgevf_configure(struct hclgevf_dev *hdev)
2431 {
2432 	int ret;
2433 
2434 	/* get current port based vlan state from PF */
2435 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2436 	if (ret)
2437 		return ret;
2438 
2439 	/* get queue configuration from PF */
2440 	ret = hclgevf_get_queue_info(hdev);
2441 	if (ret)
2442 		return ret;
2443 
2444 	/* get queue depth info from PF */
2445 	ret = hclgevf_get_queue_depth(hdev);
2446 	if (ret)
2447 		return ret;
2448 
2449 	ret = hclgevf_get_pf_media_type(hdev);
2450 	if (ret)
2451 		return ret;
2452 
2453 	/* get tc configuration from PF */
2454 	return hclgevf_get_tc_info(hdev);
2455 }
2456 
2457 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2458 {
2459 	struct pci_dev *pdev = ae_dev->pdev;
2460 	struct hclgevf_dev *hdev;
2461 
2462 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2463 	if (!hdev)
2464 		return -ENOMEM;
2465 
2466 	hdev->pdev = pdev;
2467 	hdev->ae_dev = ae_dev;
2468 	ae_dev->priv = hdev;
2469 
2470 	return 0;
2471 }
2472 
2473 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2474 {
2475 	struct hnae3_handle *roce = &hdev->roce;
2476 	struct hnae3_handle *nic = &hdev->nic;
2477 
2478 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2479 
2480 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2481 	    hdev->num_msi_left == 0)
2482 		return -EINVAL;
2483 
2484 	roce->rinfo.base_vector = hdev->roce_base_vector;
2485 
2486 	roce->rinfo.netdev = nic->kinfo.netdev;
2487 	roce->rinfo.roce_io_base = hdev->hw.io_base;
2488 	roce->rinfo.roce_mem_base = hdev->hw.mem_base;
2489 
2490 	roce->pdev = nic->pdev;
2491 	roce->ae_algo = nic->ae_algo;
2492 	roce->numa_node_mask = nic->numa_node_mask;
2493 
2494 	return 0;
2495 }
2496 
2497 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2498 {
2499 	struct hclgevf_cfg_gro_status_cmd *req;
2500 	struct hclgevf_desc desc;
2501 	int ret;
2502 
2503 	if (!hnae3_dev_gro_supported(hdev))
2504 		return 0;
2505 
2506 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2507 				     false);
2508 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2509 
2510 	req->gro_en = en ? 1 : 0;
2511 
2512 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2513 	if (ret)
2514 		dev_err(&hdev->pdev->dev,
2515 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2516 
2517 	return ret;
2518 }
2519 
2520 static int hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2521 {
2522 	u16 rss_ind_tbl_size = hdev->ae_dev->dev_specs.rss_ind_tbl_size;
2523 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2524 	struct hclgevf_rss_tuple_cfg *tuple_sets;
2525 	u32 i;
2526 
2527 	rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2528 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2529 	tuple_sets = &rss_cfg->rss_tuple_sets;
2530 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2531 		u8 *rss_ind_tbl;
2532 
2533 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2534 
2535 		rss_ind_tbl = devm_kcalloc(&hdev->pdev->dev, rss_ind_tbl_size,
2536 					   sizeof(*rss_ind_tbl), GFP_KERNEL);
2537 		if (!rss_ind_tbl)
2538 			return -ENOMEM;
2539 
2540 		rss_cfg->rss_indirection_tbl = rss_ind_tbl;
2541 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2542 		       HCLGEVF_RSS_KEY_SIZE);
2543 
2544 		tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2545 		tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2546 		tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2547 		tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2548 		tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2549 		tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2550 		tuple_sets->ipv6_sctp_en =
2551 			hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
2552 					HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
2553 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2554 		tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2555 	}
2556 
2557 	/* Initialize RSS indirect table */
2558 	for (i = 0; i < rss_ind_tbl_size; i++)
2559 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2560 
2561 	return 0;
2562 }
2563 
2564 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2565 {
2566 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2567 	int ret;
2568 
2569 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2570 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2571 					       rss_cfg->rss_hash_key);
2572 		if (ret)
2573 			return ret;
2574 
2575 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2576 		if (ret)
2577 			return ret;
2578 	}
2579 
2580 	ret = hclgevf_set_rss_indir_table(hdev);
2581 	if (ret)
2582 		return ret;
2583 
2584 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2585 }
2586 
2587 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2588 {
2589 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2590 				       false);
2591 }
2592 
2593 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2594 {
2595 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2596 
2597 	unsigned long last = hdev->serv_processed_cnt;
2598 	int i = 0;
2599 
2600 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2601 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2602 	       last == hdev->serv_processed_cnt)
2603 		usleep_range(1, 1);
2604 }
2605 
2606 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2607 {
2608 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2609 
2610 	if (enable) {
2611 		hclgevf_task_schedule(hdev, 0);
2612 	} else {
2613 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2614 
2615 		/* flush memory to make sure DOWN is seen by service task */
2616 		smp_mb__before_atomic();
2617 		hclgevf_flush_link_update(hdev);
2618 	}
2619 }
2620 
2621 static int hclgevf_ae_start(struct hnae3_handle *handle)
2622 {
2623 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2624 
2625 	hclgevf_reset_tqp_stats(handle);
2626 
2627 	hclgevf_request_link_info(hdev);
2628 
2629 	hclgevf_update_link_mode(hdev);
2630 
2631 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2632 
2633 	return 0;
2634 }
2635 
2636 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2637 {
2638 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2639 	int i;
2640 
2641 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2642 
2643 	if (hdev->reset_type != HNAE3_VF_RESET)
2644 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2645 			if (hclgevf_reset_tqp(handle, i))
2646 				break;
2647 
2648 	hclgevf_reset_tqp_stats(handle);
2649 	hclgevf_update_link_status(hdev, 0);
2650 }
2651 
2652 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2653 {
2654 #define HCLGEVF_STATE_ALIVE	1
2655 #define HCLGEVF_STATE_NOT_ALIVE	0
2656 
2657 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2658 	struct hclge_vf_to_pf_msg send_msg;
2659 
2660 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2661 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2662 				HCLGEVF_STATE_NOT_ALIVE;
2663 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2664 }
2665 
2666 static int hclgevf_client_start(struct hnae3_handle *handle)
2667 {
2668 	return hclgevf_set_alive(handle, true);
2669 }
2670 
2671 static void hclgevf_client_stop(struct hnae3_handle *handle)
2672 {
2673 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2674 	int ret;
2675 
2676 	ret = hclgevf_set_alive(handle, false);
2677 	if (ret)
2678 		dev_warn(&hdev->pdev->dev,
2679 			 "%s failed %d\n", __func__, ret);
2680 }
2681 
2682 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2683 {
2684 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2685 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2686 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2687 
2688 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2689 
2690 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2691 	sema_init(&hdev->reset_sem, 1);
2692 
2693 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2694 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2695 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2696 
2697 	/* bring the device down */
2698 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2699 }
2700 
2701 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2702 {
2703 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2704 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2705 
2706 	if (hdev->service_task.work.func)
2707 		cancel_delayed_work_sync(&hdev->service_task);
2708 
2709 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2710 }
2711 
2712 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2713 {
2714 	struct pci_dev *pdev = hdev->pdev;
2715 	int vectors;
2716 	int i;
2717 
2718 	if (hnae3_dev_roce_supported(hdev))
2719 		vectors = pci_alloc_irq_vectors(pdev,
2720 						hdev->roce_base_msix_offset + 1,
2721 						hdev->num_msi,
2722 						PCI_IRQ_MSIX);
2723 	else
2724 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2725 						hdev->num_msi,
2726 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2727 
2728 	if (vectors < 0) {
2729 		dev_err(&pdev->dev,
2730 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2731 			vectors);
2732 		return vectors;
2733 	}
2734 	if (vectors < hdev->num_msi)
2735 		dev_warn(&hdev->pdev->dev,
2736 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2737 			 hdev->num_msi, vectors);
2738 
2739 	hdev->num_msi = vectors;
2740 	hdev->num_msi_left = vectors;
2741 
2742 	hdev->base_msi_vector = pdev->irq;
2743 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2744 
2745 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2746 					   sizeof(u16), GFP_KERNEL);
2747 	if (!hdev->vector_status) {
2748 		pci_free_irq_vectors(pdev);
2749 		return -ENOMEM;
2750 	}
2751 
2752 	for (i = 0; i < hdev->num_msi; i++)
2753 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2754 
2755 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2756 					sizeof(int), GFP_KERNEL);
2757 	if (!hdev->vector_irq) {
2758 		devm_kfree(&pdev->dev, hdev->vector_status);
2759 		pci_free_irq_vectors(pdev);
2760 		return -ENOMEM;
2761 	}
2762 
2763 	return 0;
2764 }
2765 
2766 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2767 {
2768 	struct pci_dev *pdev = hdev->pdev;
2769 
2770 	devm_kfree(&pdev->dev, hdev->vector_status);
2771 	devm_kfree(&pdev->dev, hdev->vector_irq);
2772 	pci_free_irq_vectors(pdev);
2773 }
2774 
2775 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2776 {
2777 	int ret;
2778 
2779 	hclgevf_get_misc_vector(hdev);
2780 
2781 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2782 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2783 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2784 			  0, hdev->misc_vector.name, hdev);
2785 	if (ret) {
2786 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2787 			hdev->misc_vector.vector_irq);
2788 		return ret;
2789 	}
2790 
2791 	hclgevf_clear_event_cause(hdev, 0);
2792 
2793 	/* enable misc. vector(vector 0) */
2794 	hclgevf_enable_vector(&hdev->misc_vector, true);
2795 
2796 	return ret;
2797 }
2798 
2799 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2800 {
2801 	/* disable misc vector(vector 0) */
2802 	hclgevf_enable_vector(&hdev->misc_vector, false);
2803 	synchronize_irq(hdev->misc_vector.vector_irq);
2804 	free_irq(hdev->misc_vector.vector_irq, hdev);
2805 	hclgevf_free_vector(hdev, 0);
2806 }
2807 
2808 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2809 {
2810 	struct device *dev = &hdev->pdev->dev;
2811 
2812 	dev_info(dev, "VF info begin:\n");
2813 
2814 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2815 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2816 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2817 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2818 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2819 	dev_info(dev, "PF media type of this VF: %u\n",
2820 		 hdev->hw.mac.media_type);
2821 
2822 	dev_info(dev, "VF info end.\n");
2823 }
2824 
2825 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2826 					    struct hnae3_client *client)
2827 {
2828 	struct hclgevf_dev *hdev = ae_dev->priv;
2829 	int rst_cnt = hdev->rst_stats.rst_cnt;
2830 	int ret;
2831 
2832 	ret = client->ops->init_instance(&hdev->nic);
2833 	if (ret)
2834 		return ret;
2835 
2836 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2837 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2838 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2839 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2840 
2841 		client->ops->uninit_instance(&hdev->nic, 0);
2842 		return -EBUSY;
2843 	}
2844 
2845 	hnae3_set_client_init_flag(client, ae_dev, 1);
2846 
2847 	if (netif_msg_drv(&hdev->nic))
2848 		hclgevf_info_show(hdev);
2849 
2850 	return 0;
2851 }
2852 
2853 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2854 					     struct hnae3_client *client)
2855 {
2856 	struct hclgevf_dev *hdev = ae_dev->priv;
2857 	int ret;
2858 
2859 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2860 	    !hdev->nic_client)
2861 		return 0;
2862 
2863 	ret = hclgevf_init_roce_base_info(hdev);
2864 	if (ret)
2865 		return ret;
2866 
2867 	ret = client->ops->init_instance(&hdev->roce);
2868 	if (ret)
2869 		return ret;
2870 
2871 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2872 	hnae3_set_client_init_flag(client, ae_dev, 1);
2873 
2874 	return 0;
2875 }
2876 
2877 static int hclgevf_init_client_instance(struct hnae3_client *client,
2878 					struct hnae3_ae_dev *ae_dev)
2879 {
2880 	struct hclgevf_dev *hdev = ae_dev->priv;
2881 	int ret;
2882 
2883 	switch (client->type) {
2884 	case HNAE3_CLIENT_KNIC:
2885 		hdev->nic_client = client;
2886 		hdev->nic.client = client;
2887 
2888 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2889 		if (ret)
2890 			goto clear_nic;
2891 
2892 		ret = hclgevf_init_roce_client_instance(ae_dev,
2893 							hdev->roce_client);
2894 		if (ret)
2895 			goto clear_roce;
2896 
2897 		break;
2898 	case HNAE3_CLIENT_ROCE:
2899 		if (hnae3_dev_roce_supported(hdev)) {
2900 			hdev->roce_client = client;
2901 			hdev->roce.client = client;
2902 		}
2903 
2904 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2905 		if (ret)
2906 			goto clear_roce;
2907 
2908 		break;
2909 	default:
2910 		return -EINVAL;
2911 	}
2912 
2913 	return 0;
2914 
2915 clear_nic:
2916 	hdev->nic_client = NULL;
2917 	hdev->nic.client = NULL;
2918 	return ret;
2919 clear_roce:
2920 	hdev->roce_client = NULL;
2921 	hdev->roce.client = NULL;
2922 	return ret;
2923 }
2924 
2925 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2926 					   struct hnae3_ae_dev *ae_dev)
2927 {
2928 	struct hclgevf_dev *hdev = ae_dev->priv;
2929 
2930 	/* un-init roce, if it exists */
2931 	if (hdev->roce_client) {
2932 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2933 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2934 		hdev->roce_client = NULL;
2935 		hdev->roce.client = NULL;
2936 	}
2937 
2938 	/* un-init nic/unic, if this was not called by roce client */
2939 	if (client->ops->uninit_instance && hdev->nic_client &&
2940 	    client->type != HNAE3_CLIENT_ROCE) {
2941 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2942 
2943 		client->ops->uninit_instance(&hdev->nic, 0);
2944 		hdev->nic_client = NULL;
2945 		hdev->nic.client = NULL;
2946 	}
2947 }
2948 
2949 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2950 {
2951 #define HCLGEVF_MEM_BAR		4
2952 
2953 	struct pci_dev *pdev = hdev->pdev;
2954 	struct hclgevf_hw *hw = &hdev->hw;
2955 
2956 	/* for device does not have device memory, return directly */
2957 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2958 		return 0;
2959 
2960 	hw->mem_base = devm_ioremap_wc(&pdev->dev,
2961 				       pci_resource_start(pdev,
2962 							  HCLGEVF_MEM_BAR),
2963 				       pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2964 	if (!hw->mem_base) {
2965 		dev_err(&pdev->dev, "failed to map device memory\n");
2966 		return -EFAULT;
2967 	}
2968 
2969 	return 0;
2970 }
2971 
2972 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2973 {
2974 	struct pci_dev *pdev = hdev->pdev;
2975 	struct hclgevf_hw *hw;
2976 	int ret;
2977 
2978 	ret = pci_enable_device(pdev);
2979 	if (ret) {
2980 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2981 		return ret;
2982 	}
2983 
2984 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2985 	if (ret) {
2986 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2987 		goto err_disable_device;
2988 	}
2989 
2990 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2991 	if (ret) {
2992 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2993 		goto err_disable_device;
2994 	}
2995 
2996 	pci_set_master(pdev);
2997 	hw = &hdev->hw;
2998 	hw->hdev = hdev;
2999 	hw->io_base = pci_iomap(pdev, 2, 0);
3000 	if (!hw->io_base) {
3001 		dev_err(&pdev->dev, "can't map configuration register space\n");
3002 		ret = -ENOMEM;
3003 		goto err_clr_master;
3004 	}
3005 
3006 	ret = hclgevf_dev_mem_map(hdev);
3007 	if (ret)
3008 		goto err_unmap_io_base;
3009 
3010 	return 0;
3011 
3012 err_unmap_io_base:
3013 	pci_iounmap(pdev, hdev->hw.io_base);
3014 err_clr_master:
3015 	pci_clear_master(pdev);
3016 	pci_release_regions(pdev);
3017 err_disable_device:
3018 	pci_disable_device(pdev);
3019 
3020 	return ret;
3021 }
3022 
3023 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
3024 {
3025 	struct pci_dev *pdev = hdev->pdev;
3026 
3027 	if (hdev->hw.mem_base)
3028 		devm_iounmap(&pdev->dev, hdev->hw.mem_base);
3029 
3030 	pci_iounmap(pdev, hdev->hw.io_base);
3031 	pci_clear_master(pdev);
3032 	pci_release_regions(pdev);
3033 	pci_disable_device(pdev);
3034 }
3035 
3036 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
3037 {
3038 	struct hclgevf_query_res_cmd *req;
3039 	struct hclgevf_desc desc;
3040 	int ret;
3041 
3042 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
3043 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
3044 	if (ret) {
3045 		dev_err(&hdev->pdev->dev,
3046 			"query vf resource failed, ret = %d.\n", ret);
3047 		return ret;
3048 	}
3049 
3050 	req = (struct hclgevf_query_res_cmd *)desc.data;
3051 
3052 	if (hnae3_dev_roce_supported(hdev)) {
3053 		hdev->roce_base_msix_offset =
3054 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3055 				HCLGEVF_MSIX_OFT_ROCEE_M,
3056 				HCLGEVF_MSIX_OFT_ROCEE_S);
3057 		hdev->num_roce_msix =
3058 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3059 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3060 
3061 		/* nic's msix numbers is always equals to the roce's. */
3062 		hdev->num_nic_msix = hdev->num_roce_msix;
3063 
3064 		/* VF should have NIC vectors and Roce vectors, NIC vectors
3065 		 * are queued before Roce vectors. The offset is fixed to 64.
3066 		 */
3067 		hdev->num_msi = hdev->num_roce_msix +
3068 				hdev->roce_base_msix_offset;
3069 	} else {
3070 		hdev->num_msi =
3071 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3072 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3073 
3074 		hdev->num_nic_msix = hdev->num_msi;
3075 	}
3076 
3077 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
3078 		dev_err(&hdev->pdev->dev,
3079 			"Just %u msi resources, not enough for vf(min:2).\n",
3080 			hdev->num_nic_msix);
3081 		return -EINVAL;
3082 	}
3083 
3084 	return 0;
3085 }
3086 
3087 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
3088 {
3089 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
3090 
3091 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3092 
3093 	ae_dev->dev_specs.max_non_tso_bd_num =
3094 					HCLGEVF_MAX_NON_TSO_BD_NUM;
3095 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3096 	ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3097 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3098 	ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3099 }
3100 
3101 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
3102 				    struct hclgevf_desc *desc)
3103 {
3104 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3105 	struct hclgevf_dev_specs_0_cmd *req0;
3106 	struct hclgevf_dev_specs_1_cmd *req1;
3107 
3108 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3109 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3110 
3111 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
3112 	ae_dev->dev_specs.rss_ind_tbl_size =
3113 					le16_to_cpu(req0->rss_ind_tbl_size);
3114 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3115 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3116 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3117 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
3118 }
3119 
3120 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
3121 {
3122 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
3123 
3124 	if (!dev_specs->max_non_tso_bd_num)
3125 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
3126 	if (!dev_specs->rss_ind_tbl_size)
3127 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3128 	if (!dev_specs->rss_key_size)
3129 		dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3130 	if (!dev_specs->max_int_gl)
3131 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3132 	if (!dev_specs->max_frm_size)
3133 		dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3134 }
3135 
3136 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
3137 {
3138 	struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
3139 	int ret;
3140 	int i;
3141 
3142 	/* set default specifications as devices lower than version V3 do not
3143 	 * support querying specifications from firmware.
3144 	 */
3145 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
3146 		hclgevf_set_default_dev_specs(hdev);
3147 		return 0;
3148 	}
3149 
3150 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3151 		hclgevf_cmd_setup_basic_desc(&desc[i],
3152 					     HCLGEVF_OPC_QUERY_DEV_SPECS, true);
3153 		desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
3154 	}
3155 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3156 				     true);
3157 
3158 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3159 	if (ret)
3160 		return ret;
3161 
3162 	hclgevf_parse_dev_specs(hdev, desc);
3163 	hclgevf_check_dev_specs(hdev);
3164 
3165 	return 0;
3166 }
3167 
3168 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3169 {
3170 	struct pci_dev *pdev = hdev->pdev;
3171 	int ret = 0;
3172 
3173 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
3174 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3175 		hclgevf_misc_irq_uninit(hdev);
3176 		hclgevf_uninit_msi(hdev);
3177 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3178 	}
3179 
3180 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3181 		pci_set_master(pdev);
3182 		ret = hclgevf_init_msi(hdev);
3183 		if (ret) {
3184 			dev_err(&pdev->dev,
3185 				"failed(%d) to init MSI/MSI-X\n", ret);
3186 			return ret;
3187 		}
3188 
3189 		ret = hclgevf_misc_irq_init(hdev);
3190 		if (ret) {
3191 			hclgevf_uninit_msi(hdev);
3192 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3193 				ret);
3194 			return ret;
3195 		}
3196 
3197 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3198 	}
3199 
3200 	return ret;
3201 }
3202 
3203 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3204 {
3205 	struct hclge_vf_to_pf_msg send_msg;
3206 
3207 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3208 			       HCLGE_MBX_VPORT_LIST_CLEAR);
3209 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3210 }
3211 
3212 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3213 {
3214 	struct pci_dev *pdev = hdev->pdev;
3215 	int ret;
3216 
3217 	ret = hclgevf_pci_reset(hdev);
3218 	if (ret) {
3219 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3220 		return ret;
3221 	}
3222 
3223 	ret = hclgevf_cmd_init(hdev);
3224 	if (ret) {
3225 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
3226 		return ret;
3227 	}
3228 
3229 	ret = hclgevf_rss_init_hw(hdev);
3230 	if (ret) {
3231 		dev_err(&hdev->pdev->dev,
3232 			"failed(%d) to initialize RSS\n", ret);
3233 		return ret;
3234 	}
3235 
3236 	ret = hclgevf_config_gro(hdev, true);
3237 	if (ret)
3238 		return ret;
3239 
3240 	ret = hclgevf_init_vlan_config(hdev);
3241 	if (ret) {
3242 		dev_err(&hdev->pdev->dev,
3243 			"failed(%d) to initialize VLAN config\n", ret);
3244 		return ret;
3245 	}
3246 
3247 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3248 
3249 	dev_info(&hdev->pdev->dev, "Reset done\n");
3250 
3251 	return 0;
3252 }
3253 
3254 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3255 {
3256 	struct pci_dev *pdev = hdev->pdev;
3257 	int ret;
3258 
3259 	ret = hclgevf_pci_init(hdev);
3260 	if (ret)
3261 		return ret;
3262 
3263 	ret = hclgevf_cmd_queue_init(hdev);
3264 	if (ret)
3265 		goto err_cmd_queue_init;
3266 
3267 	ret = hclgevf_cmd_init(hdev);
3268 	if (ret)
3269 		goto err_cmd_init;
3270 
3271 	/* Get vf resource */
3272 	ret = hclgevf_query_vf_resource(hdev);
3273 	if (ret)
3274 		goto err_cmd_init;
3275 
3276 	ret = hclgevf_query_dev_specs(hdev);
3277 	if (ret) {
3278 		dev_err(&pdev->dev,
3279 			"failed to query dev specifications, ret = %d\n", ret);
3280 		goto err_cmd_init;
3281 	}
3282 
3283 	ret = hclgevf_init_msi(hdev);
3284 	if (ret) {
3285 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3286 		goto err_cmd_init;
3287 	}
3288 
3289 	hclgevf_state_init(hdev);
3290 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3291 	hdev->reset_type = HNAE3_NONE_RESET;
3292 
3293 	ret = hclgevf_misc_irq_init(hdev);
3294 	if (ret)
3295 		goto err_misc_irq_init;
3296 
3297 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3298 
3299 	ret = hclgevf_configure(hdev);
3300 	if (ret) {
3301 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3302 		goto err_config;
3303 	}
3304 
3305 	ret = hclgevf_alloc_tqps(hdev);
3306 	if (ret) {
3307 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3308 		goto err_config;
3309 	}
3310 
3311 	ret = hclgevf_set_handle_info(hdev);
3312 	if (ret)
3313 		goto err_config;
3314 
3315 	ret = hclgevf_config_gro(hdev, true);
3316 	if (ret)
3317 		goto err_config;
3318 
3319 	/* Initialize RSS for this VF */
3320 	ret = hclgevf_rss_init_cfg(hdev);
3321 	if (ret) {
3322 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
3323 		goto err_config;
3324 	}
3325 
3326 	ret = hclgevf_rss_init_hw(hdev);
3327 	if (ret) {
3328 		dev_err(&hdev->pdev->dev,
3329 			"failed(%d) to initialize RSS\n", ret);
3330 		goto err_config;
3331 	}
3332 
3333 	/* ensure vf tbl list as empty before init*/
3334 	ret = hclgevf_clear_vport_list(hdev);
3335 	if (ret) {
3336 		dev_err(&pdev->dev,
3337 			"failed to clear tbl list configuration, ret = %d.\n",
3338 			ret);
3339 		goto err_config;
3340 	}
3341 
3342 	ret = hclgevf_init_vlan_config(hdev);
3343 	if (ret) {
3344 		dev_err(&hdev->pdev->dev,
3345 			"failed(%d) to initialize VLAN config\n", ret);
3346 		goto err_config;
3347 	}
3348 
3349 	hdev->last_reset_time = jiffies;
3350 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3351 		 HCLGEVF_DRIVER_NAME);
3352 
3353 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3354 
3355 	return 0;
3356 
3357 err_config:
3358 	hclgevf_misc_irq_uninit(hdev);
3359 err_misc_irq_init:
3360 	hclgevf_state_uninit(hdev);
3361 	hclgevf_uninit_msi(hdev);
3362 err_cmd_init:
3363 	hclgevf_cmd_uninit(hdev);
3364 err_cmd_queue_init:
3365 	hclgevf_pci_uninit(hdev);
3366 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3367 	return ret;
3368 }
3369 
3370 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3371 {
3372 	struct hclge_vf_to_pf_msg send_msg;
3373 
3374 	hclgevf_state_uninit(hdev);
3375 
3376 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3377 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3378 
3379 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3380 		hclgevf_misc_irq_uninit(hdev);
3381 		hclgevf_uninit_msi(hdev);
3382 	}
3383 
3384 	hclgevf_cmd_uninit(hdev);
3385 	hclgevf_pci_uninit(hdev);
3386 	hclgevf_uninit_mac_list(hdev);
3387 }
3388 
3389 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3390 {
3391 	struct pci_dev *pdev = ae_dev->pdev;
3392 	int ret;
3393 
3394 	ret = hclgevf_alloc_hdev(ae_dev);
3395 	if (ret) {
3396 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3397 		return ret;
3398 	}
3399 
3400 	ret = hclgevf_init_hdev(ae_dev->priv);
3401 	if (ret) {
3402 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3403 		return ret;
3404 	}
3405 
3406 	return 0;
3407 }
3408 
3409 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3410 {
3411 	struct hclgevf_dev *hdev = ae_dev->priv;
3412 
3413 	hclgevf_uninit_hdev(hdev);
3414 	ae_dev->priv = NULL;
3415 }
3416 
3417 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3418 {
3419 	struct hnae3_handle *nic = &hdev->nic;
3420 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3421 
3422 	return min_t(u32, hdev->rss_size_max,
3423 		     hdev->num_tqps / kinfo->tc_info.num_tc);
3424 }
3425 
3426 /**
3427  * hclgevf_get_channels - Get the current channels enabled and max supported.
3428  * @handle: hardware information for network interface
3429  * @ch: ethtool channels structure
3430  *
3431  * We don't support separate tx and rx queues as channels. The other count
3432  * represents how many queues are being used for control. max_combined counts
3433  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3434  * q_vectors since we support a lot more queue pairs than q_vectors.
3435  **/
3436 static void hclgevf_get_channels(struct hnae3_handle *handle,
3437 				 struct ethtool_channels *ch)
3438 {
3439 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3440 
3441 	ch->max_combined = hclgevf_get_max_channels(hdev);
3442 	ch->other_count = 0;
3443 	ch->max_other = 0;
3444 	ch->combined_count = handle->kinfo.rss_size;
3445 }
3446 
3447 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3448 					  u16 *alloc_tqps, u16 *max_rss_size)
3449 {
3450 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3451 
3452 	*alloc_tqps = hdev->num_tqps;
3453 	*max_rss_size = hdev->rss_size_max;
3454 }
3455 
3456 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3457 				    u32 new_tqps_num)
3458 {
3459 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3460 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3461 	u16 max_rss_size;
3462 
3463 	kinfo->req_rss_size = new_tqps_num;
3464 
3465 	max_rss_size = min_t(u16, hdev->rss_size_max,
3466 			     hdev->num_tqps / kinfo->tc_info.num_tc);
3467 
3468 	/* Use the user's configuration when it is not larger than
3469 	 * max_rss_size, otherwise, use the maximum specification value.
3470 	 */
3471 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3472 	    kinfo->req_rss_size <= max_rss_size)
3473 		kinfo->rss_size = kinfo->req_rss_size;
3474 	else if (kinfo->rss_size > max_rss_size ||
3475 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3476 		kinfo->rss_size = max_rss_size;
3477 
3478 	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3479 }
3480 
3481 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3482 				bool rxfh_configured)
3483 {
3484 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3485 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3486 	u16 cur_rss_size = kinfo->rss_size;
3487 	u16 cur_tqps = kinfo->num_tqps;
3488 	u32 *rss_indir;
3489 	unsigned int i;
3490 	int ret;
3491 
3492 	hclgevf_update_rss_size(handle, new_tqps_num);
3493 
3494 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3495 	if (ret)
3496 		return ret;
3497 
3498 	/* RSS indirection table has been configuared by user */
3499 	if (rxfh_configured)
3500 		goto out;
3501 
3502 	/* Reinitializes the rss indirect table according to the new RSS size */
3503 	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3504 			    sizeof(u32), GFP_KERNEL);
3505 	if (!rss_indir)
3506 		return -ENOMEM;
3507 
3508 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3509 		rss_indir[i] = i % kinfo->rss_size;
3510 
3511 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3512 
3513 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3514 	if (ret)
3515 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3516 			ret);
3517 
3518 	kfree(rss_indir);
3519 
3520 out:
3521 	if (!ret)
3522 		dev_info(&hdev->pdev->dev,
3523 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3524 			 cur_rss_size, kinfo->rss_size,
3525 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3526 
3527 	return ret;
3528 }
3529 
3530 static int hclgevf_get_status(struct hnae3_handle *handle)
3531 {
3532 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3533 
3534 	return hdev->hw.mac.link;
3535 }
3536 
3537 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3538 					    u8 *auto_neg, u32 *speed,
3539 					    u8 *duplex)
3540 {
3541 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3542 
3543 	if (speed)
3544 		*speed = hdev->hw.mac.speed;
3545 	if (duplex)
3546 		*duplex = hdev->hw.mac.duplex;
3547 	if (auto_neg)
3548 		*auto_neg = AUTONEG_DISABLE;
3549 }
3550 
3551 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3552 				 u8 duplex)
3553 {
3554 	hdev->hw.mac.speed = speed;
3555 	hdev->hw.mac.duplex = duplex;
3556 }
3557 
3558 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3559 {
3560 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3561 
3562 	return hclgevf_config_gro(hdev, enable);
3563 }
3564 
3565 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3566 				   u8 *module_type)
3567 {
3568 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3569 
3570 	if (media_type)
3571 		*media_type = hdev->hw.mac.media_type;
3572 
3573 	if (module_type)
3574 		*module_type = hdev->hw.mac.module_type;
3575 }
3576 
3577 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3578 {
3579 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3580 
3581 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3582 }
3583 
3584 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3585 {
3586 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3587 
3588 	return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
3589 }
3590 
3591 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3592 {
3593 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3594 
3595 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3596 }
3597 
3598 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3599 {
3600 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3601 
3602 	return hdev->rst_stats.hw_rst_done_cnt;
3603 }
3604 
3605 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3606 				  unsigned long *supported,
3607 				  unsigned long *advertising)
3608 {
3609 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3610 
3611 	*supported = hdev->hw.mac.supported;
3612 	*advertising = hdev->hw.mac.advertising;
3613 }
3614 
3615 #define MAX_SEPARATE_NUM	4
3616 #define SEPARATOR_VALUE		0xFFFFFFFF
3617 #define REG_NUM_PER_LINE	4
3618 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3619 
3620 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3621 {
3622 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3623 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3624 
3625 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3626 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3627 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3628 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3629 
3630 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3631 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3632 }
3633 
3634 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3635 			     void *data)
3636 {
3637 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3638 	int i, j, reg_um, separator_num;
3639 	u32 *reg = data;
3640 
3641 	*version = hdev->fw_version;
3642 
3643 	/* fetching per-VF registers values from VF PCIe register space */
3644 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3645 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3646 	for (i = 0; i < reg_um; i++)
3647 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3648 	for (i = 0; i < separator_num; i++)
3649 		*reg++ = SEPARATOR_VALUE;
3650 
3651 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3652 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3653 	for (i = 0; i < reg_um; i++)
3654 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3655 	for (i = 0; i < separator_num; i++)
3656 		*reg++ = SEPARATOR_VALUE;
3657 
3658 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3659 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3660 	for (j = 0; j < hdev->num_tqps; j++) {
3661 		for (i = 0; i < reg_um; i++)
3662 			*reg++ = hclgevf_read_dev(&hdev->hw,
3663 						  ring_reg_addr_list[i] +
3664 						  0x200 * j);
3665 		for (i = 0; i < separator_num; i++)
3666 			*reg++ = SEPARATOR_VALUE;
3667 	}
3668 
3669 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3670 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3671 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3672 		for (i = 0; i < reg_um; i++)
3673 			*reg++ = hclgevf_read_dev(&hdev->hw,
3674 						  tqp_intr_reg_addr_list[i] +
3675 						  4 * j);
3676 		for (i = 0; i < separator_num; i++)
3677 			*reg++ = SEPARATOR_VALUE;
3678 	}
3679 }
3680 
3681 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3682 					u8 *port_base_vlan_info, u8 data_size)
3683 {
3684 	struct hnae3_handle *nic = &hdev->nic;
3685 	struct hclge_vf_to_pf_msg send_msg;
3686 	int ret;
3687 
3688 	rtnl_lock();
3689 
3690 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3691 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3692 		dev_warn(&hdev->pdev->dev,
3693 			 "is resetting when updating port based vlan info\n");
3694 		rtnl_unlock();
3695 		return;
3696 	}
3697 
3698 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3699 	if (ret) {
3700 		rtnl_unlock();
3701 		return;
3702 	}
3703 
3704 	/* send msg to PF and wait update port based vlan info */
3705 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3706 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3707 	memcpy(send_msg.data, port_base_vlan_info, data_size);
3708 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3709 	if (!ret) {
3710 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3711 			nic->port_base_vlan_state = state;
3712 		else
3713 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3714 	}
3715 
3716 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3717 	rtnl_unlock();
3718 }
3719 
3720 static const struct hnae3_ae_ops hclgevf_ops = {
3721 	.init_ae_dev = hclgevf_init_ae_dev,
3722 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3723 	.flr_prepare = hclgevf_flr_prepare,
3724 	.flr_done = hclgevf_flr_done,
3725 	.init_client_instance = hclgevf_init_client_instance,
3726 	.uninit_client_instance = hclgevf_uninit_client_instance,
3727 	.start = hclgevf_ae_start,
3728 	.stop = hclgevf_ae_stop,
3729 	.client_start = hclgevf_client_start,
3730 	.client_stop = hclgevf_client_stop,
3731 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3732 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3733 	.get_vector = hclgevf_get_vector,
3734 	.put_vector = hclgevf_put_vector,
3735 	.reset_queue = hclgevf_reset_tqp,
3736 	.get_mac_addr = hclgevf_get_mac_addr,
3737 	.set_mac_addr = hclgevf_set_mac_addr,
3738 	.add_uc_addr = hclgevf_add_uc_addr,
3739 	.rm_uc_addr = hclgevf_rm_uc_addr,
3740 	.add_mc_addr = hclgevf_add_mc_addr,
3741 	.rm_mc_addr = hclgevf_rm_mc_addr,
3742 	.get_stats = hclgevf_get_stats,
3743 	.update_stats = hclgevf_update_stats,
3744 	.get_strings = hclgevf_get_strings,
3745 	.get_sset_count = hclgevf_get_sset_count,
3746 	.get_rss_key_size = hclgevf_get_rss_key_size,
3747 	.get_rss = hclgevf_get_rss,
3748 	.set_rss = hclgevf_set_rss,
3749 	.get_rss_tuple = hclgevf_get_rss_tuple,
3750 	.set_rss_tuple = hclgevf_set_rss_tuple,
3751 	.get_tc_size = hclgevf_get_tc_size,
3752 	.get_fw_version = hclgevf_get_fw_version,
3753 	.set_vlan_filter = hclgevf_set_vlan_filter,
3754 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3755 	.reset_event = hclgevf_reset_event,
3756 	.set_default_reset_request = hclgevf_set_def_reset_request,
3757 	.set_channels = hclgevf_set_channels,
3758 	.get_channels = hclgevf_get_channels,
3759 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3760 	.get_regs_len = hclgevf_get_regs_len,
3761 	.get_regs = hclgevf_get_regs,
3762 	.get_status = hclgevf_get_status,
3763 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3764 	.get_media_type = hclgevf_get_media_type,
3765 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3766 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3767 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3768 	.set_gro_en = hclgevf_gro_en,
3769 	.set_mtu = hclgevf_set_mtu,
3770 	.get_global_queue_id = hclgevf_get_qid_global,
3771 	.set_timer_task = hclgevf_set_timer_task,
3772 	.get_link_mode = hclgevf_get_link_mode,
3773 	.set_promisc_mode = hclgevf_set_promisc_mode,
3774 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3775 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3776 };
3777 
3778 static struct hnae3_ae_algo ae_algovf = {
3779 	.ops = &hclgevf_ops,
3780 	.pdev_id_table = ae_algovf_pci_tbl,
3781 };
3782 
3783 static int hclgevf_init(void)
3784 {
3785 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3786 
3787 	hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3788 	if (!hclgevf_wq) {
3789 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3790 		return -ENOMEM;
3791 	}
3792 
3793 	hnae3_register_ae_algo(&ae_algovf);
3794 
3795 	return 0;
3796 }
3797 
3798 static void hclgevf_exit(void)
3799 {
3800 	hnae3_unregister_ae_algo(&ae_algovf);
3801 	destroy_workqueue(hclgevf_wq);
3802 }
3803 module_init(hclgevf_init);
3804 module_exit(hclgevf_exit);
3805 
3806 MODULE_LICENSE("GPL");
3807 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3808 MODULE_DESCRIPTION("HCLGEVF Driver");
3809 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3810