1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright (c) 2016-2017 Hisilicon Limited. 3 4 #include <linux/etherdevice.h> 5 #include <linux/iopoll.h> 6 #include <net/rtnetlink.h> 7 #include "hclgevf_cmd.h" 8 #include "hclgevf_main.h" 9 #include "hclge_mbx.h" 10 #include "hnae3.h" 11 #include "hclgevf_devlink.h" 12 13 #define HCLGEVF_NAME "hclgevf" 14 15 #define HCLGEVF_RESET_MAX_FAIL_CNT 5 16 17 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev); 18 static void hclgevf_task_schedule(struct hclgevf_dev *hdev, 19 unsigned long delay); 20 21 static struct hnae3_ae_algo ae_algovf; 22 23 static struct workqueue_struct *hclgevf_wq; 24 25 static const struct pci_device_id ae_algovf_pci_tbl[] = { 26 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0}, 27 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF), 28 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 29 /* required last entry */ 30 {0, } 31 }; 32 33 static const u8 hclgevf_hash_key[] = { 34 0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2, 35 0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0, 36 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4, 37 0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C, 38 0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA 39 }; 40 41 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl); 42 43 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_NIC_CSQ_BASEADDR_L_REG, 44 HCLGEVF_NIC_CSQ_BASEADDR_H_REG, 45 HCLGEVF_NIC_CSQ_DEPTH_REG, 46 HCLGEVF_NIC_CSQ_TAIL_REG, 47 HCLGEVF_NIC_CSQ_HEAD_REG, 48 HCLGEVF_NIC_CRQ_BASEADDR_L_REG, 49 HCLGEVF_NIC_CRQ_BASEADDR_H_REG, 50 HCLGEVF_NIC_CRQ_DEPTH_REG, 51 HCLGEVF_NIC_CRQ_TAIL_REG, 52 HCLGEVF_NIC_CRQ_HEAD_REG, 53 HCLGEVF_VECTOR0_CMDQ_SRC_REG, 54 HCLGEVF_VECTOR0_CMDQ_STATE_REG, 55 HCLGEVF_CMDQ_INTR_EN_REG, 56 HCLGEVF_CMDQ_INTR_GEN_REG}; 57 58 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE, 59 HCLGEVF_RST_ING, 60 HCLGEVF_GRO_EN_REG}; 61 62 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG, 63 HCLGEVF_RING_RX_ADDR_H_REG, 64 HCLGEVF_RING_RX_BD_NUM_REG, 65 HCLGEVF_RING_RX_BD_LENGTH_REG, 66 HCLGEVF_RING_RX_MERGE_EN_REG, 67 HCLGEVF_RING_RX_TAIL_REG, 68 HCLGEVF_RING_RX_HEAD_REG, 69 HCLGEVF_RING_RX_FBD_NUM_REG, 70 HCLGEVF_RING_RX_OFFSET_REG, 71 HCLGEVF_RING_RX_FBD_OFFSET_REG, 72 HCLGEVF_RING_RX_STASH_REG, 73 HCLGEVF_RING_RX_BD_ERR_REG, 74 HCLGEVF_RING_TX_ADDR_L_REG, 75 HCLGEVF_RING_TX_ADDR_H_REG, 76 HCLGEVF_RING_TX_BD_NUM_REG, 77 HCLGEVF_RING_TX_PRIORITY_REG, 78 HCLGEVF_RING_TX_TC_REG, 79 HCLGEVF_RING_TX_MERGE_EN_REG, 80 HCLGEVF_RING_TX_TAIL_REG, 81 HCLGEVF_RING_TX_HEAD_REG, 82 HCLGEVF_RING_TX_FBD_NUM_REG, 83 HCLGEVF_RING_TX_OFFSET_REG, 84 HCLGEVF_RING_TX_EBD_NUM_REG, 85 HCLGEVF_RING_TX_EBD_OFFSET_REG, 86 HCLGEVF_RING_TX_BD_ERR_REG, 87 HCLGEVF_RING_EN_REG}; 88 89 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG, 90 HCLGEVF_TQP_INTR_GL0_REG, 91 HCLGEVF_TQP_INTR_GL1_REG, 92 HCLGEVF_TQP_INTR_GL2_REG, 93 HCLGEVF_TQP_INTR_RL_REG}; 94 95 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle) 96 { 97 if (!handle->client) 98 return container_of(handle, struct hclgevf_dev, nic); 99 else if (handle->client->type == HNAE3_CLIENT_ROCE) 100 return container_of(handle, struct hclgevf_dev, roce); 101 else 102 return container_of(handle, struct hclgevf_dev, nic); 103 } 104 105 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle) 106 { 107 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 108 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 109 struct hclgevf_desc desc; 110 struct hclgevf_tqp *tqp; 111 int status; 112 int i; 113 114 for (i = 0; i < kinfo->num_tqps; i++) { 115 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); 116 hclgevf_cmd_setup_basic_desc(&desc, 117 HCLGEVF_OPC_QUERY_RX_STATUS, 118 true); 119 120 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff); 121 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 122 if (status) { 123 dev_err(&hdev->pdev->dev, 124 "Query tqp stat fail, status = %d,queue = %d\n", 125 status, i); 126 return status; 127 } 128 tqp->tqp_stats.rcb_rx_ring_pktnum_rcd += 129 le32_to_cpu(desc.data[1]); 130 131 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS, 132 true); 133 134 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff); 135 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 136 if (status) { 137 dev_err(&hdev->pdev->dev, 138 "Query tqp stat fail, status = %d,queue = %d\n", 139 status, i); 140 return status; 141 } 142 tqp->tqp_stats.rcb_tx_ring_pktnum_rcd += 143 le32_to_cpu(desc.data[1]); 144 } 145 146 return 0; 147 } 148 149 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data) 150 { 151 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 152 struct hclgevf_tqp *tqp; 153 u64 *buff = data; 154 int i; 155 156 for (i = 0; i < kinfo->num_tqps; i++) { 157 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); 158 *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd; 159 } 160 for (i = 0; i < kinfo->num_tqps; i++) { 161 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); 162 *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd; 163 } 164 165 return buff; 166 } 167 168 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset) 169 { 170 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 171 172 return kinfo->num_tqps * 2; 173 } 174 175 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data) 176 { 177 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 178 u8 *buff = data; 179 int i; 180 181 for (i = 0; i < kinfo->num_tqps; i++) { 182 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i], 183 struct hclgevf_tqp, q); 184 snprintf(buff, ETH_GSTRING_LEN, "txq%u_pktnum_rcd", 185 tqp->index); 186 buff += ETH_GSTRING_LEN; 187 } 188 189 for (i = 0; i < kinfo->num_tqps; i++) { 190 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i], 191 struct hclgevf_tqp, q); 192 snprintf(buff, ETH_GSTRING_LEN, "rxq%u_pktnum_rcd", 193 tqp->index); 194 buff += ETH_GSTRING_LEN; 195 } 196 197 return buff; 198 } 199 200 static void hclgevf_update_stats(struct hnae3_handle *handle, 201 struct net_device_stats *net_stats) 202 { 203 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 204 int status; 205 206 status = hclgevf_tqps_update_stats(handle); 207 if (status) 208 dev_err(&hdev->pdev->dev, 209 "VF update of TQPS stats fail, status = %d.\n", 210 status); 211 } 212 213 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset) 214 { 215 if (strset == ETH_SS_TEST) 216 return -EOPNOTSUPP; 217 else if (strset == ETH_SS_STATS) 218 return hclgevf_tqps_get_sset_count(handle, strset); 219 220 return 0; 221 } 222 223 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset, 224 u8 *data) 225 { 226 u8 *p = (char *)data; 227 228 if (strset == ETH_SS_STATS) 229 p = hclgevf_tqps_get_strings(handle, p); 230 } 231 232 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data) 233 { 234 hclgevf_tqps_get_stats(handle, data); 235 } 236 237 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code, 238 u8 subcode) 239 { 240 if (msg) { 241 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg)); 242 msg->code = code; 243 msg->subcode = subcode; 244 } 245 } 246 247 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev) 248 { 249 struct hnae3_ae_dev *ae_dev = hdev->ae_dev; 250 u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE]; 251 struct hclge_basic_info *basic_info; 252 struct hclge_vf_to_pf_msg send_msg; 253 unsigned long caps; 254 int status; 255 256 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0); 257 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 258 sizeof(resp_msg)); 259 if (status) { 260 dev_err(&hdev->pdev->dev, 261 "failed to get basic info from pf, ret = %d", status); 262 return status; 263 } 264 265 basic_info = (struct hclge_basic_info *)resp_msg; 266 267 hdev->hw_tc_map = basic_info->hw_tc_map; 268 hdev->mbx_api_version = basic_info->mbx_api_version; 269 caps = basic_info->pf_caps; 270 if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps)) 271 set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps); 272 273 return 0; 274 } 275 276 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev) 277 { 278 struct hnae3_handle *nic = &hdev->nic; 279 struct hclge_vf_to_pf_msg send_msg; 280 u8 resp_msg; 281 int ret; 282 283 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 284 HCLGE_MBX_GET_PORT_BASE_VLAN_STATE); 285 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg, 286 sizeof(u8)); 287 if (ret) { 288 dev_err(&hdev->pdev->dev, 289 "VF request to get port based vlan state failed %d", 290 ret); 291 return ret; 292 } 293 294 nic->port_base_vlan_state = resp_msg; 295 296 return 0; 297 } 298 299 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev) 300 { 301 #define HCLGEVF_TQPS_RSS_INFO_LEN 6 302 #define HCLGEVF_TQPS_ALLOC_OFFSET 0 303 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET 2 304 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET 4 305 306 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN]; 307 struct hclge_vf_to_pf_msg send_msg; 308 int status; 309 310 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0); 311 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 312 HCLGEVF_TQPS_RSS_INFO_LEN); 313 if (status) { 314 dev_err(&hdev->pdev->dev, 315 "VF request to get tqp info from PF failed %d", 316 status); 317 return status; 318 } 319 320 memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET], 321 sizeof(u16)); 322 memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET], 323 sizeof(u16)); 324 memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET], 325 sizeof(u16)); 326 327 return 0; 328 } 329 330 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev) 331 { 332 #define HCLGEVF_TQPS_DEPTH_INFO_LEN 4 333 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET 0 334 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET 2 335 336 u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN]; 337 struct hclge_vf_to_pf_msg send_msg; 338 int ret; 339 340 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0); 341 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 342 HCLGEVF_TQPS_DEPTH_INFO_LEN); 343 if (ret) { 344 dev_err(&hdev->pdev->dev, 345 "VF request to get tqp depth info from PF failed %d", 346 ret); 347 return ret; 348 } 349 350 memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET], 351 sizeof(u16)); 352 memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET], 353 sizeof(u16)); 354 355 return 0; 356 } 357 358 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id) 359 { 360 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 361 struct hclge_vf_to_pf_msg send_msg; 362 u16 qid_in_pf = 0; 363 u8 resp_data[2]; 364 int ret; 365 366 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0); 367 memcpy(send_msg.data, &queue_id, sizeof(queue_id)); 368 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data, 369 sizeof(resp_data)); 370 if (!ret) 371 qid_in_pf = *(u16 *)resp_data; 372 373 return qid_in_pf; 374 } 375 376 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev) 377 { 378 struct hclge_vf_to_pf_msg send_msg; 379 u8 resp_msg[2]; 380 int ret; 381 382 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0); 383 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 384 sizeof(resp_msg)); 385 if (ret) { 386 dev_err(&hdev->pdev->dev, 387 "VF request to get the pf port media type failed %d", 388 ret); 389 return ret; 390 } 391 392 hdev->hw.mac.media_type = resp_msg[0]; 393 hdev->hw.mac.module_type = resp_msg[1]; 394 395 return 0; 396 } 397 398 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev) 399 { 400 struct hclgevf_tqp *tqp; 401 int i; 402 403 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps, 404 sizeof(struct hclgevf_tqp), GFP_KERNEL); 405 if (!hdev->htqp) 406 return -ENOMEM; 407 408 tqp = hdev->htqp; 409 410 for (i = 0; i < hdev->num_tqps; i++) { 411 tqp->dev = &hdev->pdev->dev; 412 tqp->index = i; 413 414 tqp->q.ae_algo = &ae_algovf; 415 tqp->q.buf_size = hdev->rx_buf_len; 416 tqp->q.tx_desc_num = hdev->num_tx_desc; 417 tqp->q.rx_desc_num = hdev->num_rx_desc; 418 419 /* need an extended offset to configure queues >= 420 * HCLGEVF_TQP_MAX_SIZE_DEV_V2. 421 */ 422 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2) 423 tqp->q.io_base = hdev->hw.io_base + 424 HCLGEVF_TQP_REG_OFFSET + 425 i * HCLGEVF_TQP_REG_SIZE; 426 else 427 tqp->q.io_base = hdev->hw.io_base + 428 HCLGEVF_TQP_REG_OFFSET + 429 HCLGEVF_TQP_EXT_REG_OFFSET + 430 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) * 431 HCLGEVF_TQP_REG_SIZE; 432 433 tqp++; 434 } 435 436 return 0; 437 } 438 439 static int hclgevf_knic_setup(struct hclgevf_dev *hdev) 440 { 441 struct hnae3_handle *nic = &hdev->nic; 442 struct hnae3_knic_private_info *kinfo; 443 u16 new_tqps = hdev->num_tqps; 444 unsigned int i; 445 u8 num_tc = 0; 446 447 kinfo = &nic->kinfo; 448 kinfo->num_tx_desc = hdev->num_tx_desc; 449 kinfo->num_rx_desc = hdev->num_rx_desc; 450 kinfo->rx_buf_len = hdev->rx_buf_len; 451 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) 452 if (hdev->hw_tc_map & BIT(i)) 453 num_tc++; 454 455 num_tc = num_tc ? num_tc : 1; 456 kinfo->tc_info.num_tc = num_tc; 457 kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc); 458 new_tqps = kinfo->rss_size * num_tc; 459 kinfo->num_tqps = min(new_tqps, hdev->num_tqps); 460 461 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps, 462 sizeof(struct hnae3_queue *), GFP_KERNEL); 463 if (!kinfo->tqp) 464 return -ENOMEM; 465 466 for (i = 0; i < kinfo->num_tqps; i++) { 467 hdev->htqp[i].q.handle = &hdev->nic; 468 hdev->htqp[i].q.tqp_index = i; 469 kinfo->tqp[i] = &hdev->htqp[i].q; 470 } 471 472 /* after init the max rss_size and tqps, adjust the default tqp numbers 473 * and rss size with the actual vector numbers 474 */ 475 kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps); 476 kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc, 477 kinfo->rss_size); 478 479 return 0; 480 } 481 482 static void hclgevf_request_link_info(struct hclgevf_dev *hdev) 483 { 484 struct hclge_vf_to_pf_msg send_msg; 485 int status; 486 487 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0); 488 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 489 if (status) 490 dev_err(&hdev->pdev->dev, 491 "VF failed to fetch link status(%d) from PF", status); 492 } 493 494 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state) 495 { 496 struct hnae3_handle *rhandle = &hdev->roce; 497 struct hnae3_handle *handle = &hdev->nic; 498 struct hnae3_client *rclient; 499 struct hnae3_client *client; 500 501 if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state)) 502 return; 503 504 client = handle->client; 505 rclient = hdev->roce_client; 506 507 link_state = 508 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state; 509 if (link_state != hdev->hw.mac.link) { 510 hdev->hw.mac.link = link_state; 511 client->ops->link_status_change(handle, !!link_state); 512 if (rclient && rclient->ops->link_status_change) 513 rclient->ops->link_status_change(rhandle, !!link_state); 514 } 515 516 clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state); 517 } 518 519 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev) 520 { 521 #define HCLGEVF_ADVERTISING 0 522 #define HCLGEVF_SUPPORTED 1 523 524 struct hclge_vf_to_pf_msg send_msg; 525 526 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0); 527 send_msg.data[0] = HCLGEVF_ADVERTISING; 528 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 529 send_msg.data[0] = HCLGEVF_SUPPORTED; 530 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 531 } 532 533 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev) 534 { 535 struct hnae3_handle *nic = &hdev->nic; 536 int ret; 537 538 nic->ae_algo = &ae_algovf; 539 nic->pdev = hdev->pdev; 540 nic->numa_node_mask = hdev->numa_node_mask; 541 nic->flags |= HNAE3_SUPPORT_VF; 542 nic->kinfo.io_base = hdev->hw.io_base; 543 544 ret = hclgevf_knic_setup(hdev); 545 if (ret) 546 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n", 547 ret); 548 return ret; 549 } 550 551 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id) 552 { 553 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) { 554 dev_warn(&hdev->pdev->dev, 555 "vector(vector_id %d) has been freed.\n", vector_id); 556 return; 557 } 558 559 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT; 560 hdev->num_msi_left += 1; 561 hdev->num_msi_used -= 1; 562 } 563 564 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num, 565 struct hnae3_vector_info *vector_info) 566 { 567 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 568 struct hnae3_vector_info *vector = vector_info; 569 int alloc = 0; 570 int i, j; 571 572 vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num); 573 vector_num = min(hdev->num_msi_left, vector_num); 574 575 for (j = 0; j < vector_num; j++) { 576 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) { 577 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) { 578 vector->vector = pci_irq_vector(hdev->pdev, i); 579 vector->io_addr = hdev->hw.io_base + 580 HCLGEVF_VECTOR_REG_BASE + 581 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET; 582 hdev->vector_status[i] = 0; 583 hdev->vector_irq[i] = vector->vector; 584 585 vector++; 586 alloc++; 587 588 break; 589 } 590 } 591 } 592 hdev->num_msi_left -= alloc; 593 hdev->num_msi_used += alloc; 594 595 return alloc; 596 } 597 598 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector) 599 { 600 int i; 601 602 for (i = 0; i < hdev->num_msi; i++) 603 if (vector == hdev->vector_irq[i]) 604 return i; 605 606 return -EINVAL; 607 } 608 609 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev, 610 const u8 hfunc, const u8 *key) 611 { 612 struct hclgevf_rss_config_cmd *req; 613 unsigned int key_offset = 0; 614 struct hclgevf_desc desc; 615 int key_counts; 616 int key_size; 617 int ret; 618 619 key_counts = HCLGEVF_RSS_KEY_SIZE; 620 req = (struct hclgevf_rss_config_cmd *)desc.data; 621 622 while (key_counts) { 623 hclgevf_cmd_setup_basic_desc(&desc, 624 HCLGEVF_OPC_RSS_GENERIC_CONFIG, 625 false); 626 627 req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK); 628 req->hash_config |= 629 (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B); 630 631 key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts); 632 memcpy(req->hash_key, 633 key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size); 634 635 key_counts -= key_size; 636 key_offset++; 637 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 638 if (ret) { 639 dev_err(&hdev->pdev->dev, 640 "Configure RSS config fail, status = %d\n", 641 ret); 642 return ret; 643 } 644 } 645 646 return 0; 647 } 648 649 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle) 650 { 651 return HCLGEVF_RSS_KEY_SIZE; 652 } 653 654 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev) 655 { 656 const u8 *indir = hdev->rss_cfg.rss_indirection_tbl; 657 struct hclgevf_rss_indirection_table_cmd *req; 658 struct hclgevf_desc desc; 659 int rss_cfg_tbl_num; 660 int status; 661 int i, j; 662 663 req = (struct hclgevf_rss_indirection_table_cmd *)desc.data; 664 rss_cfg_tbl_num = hdev->ae_dev->dev_specs.rss_ind_tbl_size / 665 HCLGEVF_RSS_CFG_TBL_SIZE; 666 667 for (i = 0; i < rss_cfg_tbl_num; i++) { 668 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE, 669 false); 670 req->start_table_index = 671 cpu_to_le16(i * HCLGEVF_RSS_CFG_TBL_SIZE); 672 req->rss_set_bitmap = cpu_to_le16(HCLGEVF_RSS_SET_BITMAP_MSK); 673 for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++) 674 req->rss_result[j] = 675 indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j]; 676 677 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 678 if (status) { 679 dev_err(&hdev->pdev->dev, 680 "VF failed(=%d) to set RSS indirection table\n", 681 status); 682 return status; 683 } 684 } 685 686 return 0; 687 } 688 689 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev, u16 rss_size) 690 { 691 struct hclgevf_rss_tc_mode_cmd *req; 692 u16 tc_offset[HCLGEVF_MAX_TC_NUM]; 693 u16 tc_valid[HCLGEVF_MAX_TC_NUM]; 694 u16 tc_size[HCLGEVF_MAX_TC_NUM]; 695 struct hclgevf_desc desc; 696 u16 roundup_size; 697 unsigned int i; 698 int status; 699 700 req = (struct hclgevf_rss_tc_mode_cmd *)desc.data; 701 702 roundup_size = roundup_pow_of_two(rss_size); 703 roundup_size = ilog2(roundup_size); 704 705 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) { 706 tc_valid[i] = !!(hdev->hw_tc_map & BIT(i)); 707 tc_size[i] = roundup_size; 708 tc_offset[i] = rss_size * i; 709 } 710 711 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false); 712 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) { 713 u16 mode = 0; 714 715 hnae3_set_bit(mode, HCLGEVF_RSS_TC_VALID_B, 716 (tc_valid[i] & 0x1)); 717 hnae3_set_field(mode, HCLGEVF_RSS_TC_SIZE_M, 718 HCLGEVF_RSS_TC_SIZE_S, tc_size[i]); 719 hnae3_set_bit(mode, HCLGEVF_RSS_TC_SIZE_MSB_B, 720 tc_size[i] >> HCLGEVF_RSS_TC_SIZE_MSB_OFFSET & 721 0x1); 722 hnae3_set_field(mode, HCLGEVF_RSS_TC_OFFSET_M, 723 HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]); 724 725 req->rss_tc_mode[i] = cpu_to_le16(mode); 726 } 727 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 728 if (status) 729 dev_err(&hdev->pdev->dev, 730 "VF failed(=%d) to set rss tc mode\n", status); 731 732 return status; 733 } 734 735 /* for revision 0x20, vf shared the same rss config with pf */ 736 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev) 737 { 738 #define HCLGEVF_RSS_MBX_RESP_LEN 8 739 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 740 u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN]; 741 struct hclge_vf_to_pf_msg send_msg; 742 u16 msg_num, hash_key_index; 743 u8 index; 744 int ret; 745 746 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0); 747 msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) / 748 HCLGEVF_RSS_MBX_RESP_LEN; 749 for (index = 0; index < msg_num; index++) { 750 send_msg.data[0] = index; 751 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 752 HCLGEVF_RSS_MBX_RESP_LEN); 753 if (ret) { 754 dev_err(&hdev->pdev->dev, 755 "VF get rss hash key from PF failed, ret=%d", 756 ret); 757 return ret; 758 } 759 760 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index; 761 if (index == msg_num - 1) 762 memcpy(&rss_cfg->rss_hash_key[hash_key_index], 763 &resp_msg[0], 764 HCLGEVF_RSS_KEY_SIZE - hash_key_index); 765 else 766 memcpy(&rss_cfg->rss_hash_key[hash_key_index], 767 &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN); 768 } 769 770 return 0; 771 } 772 773 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key, 774 u8 *hfunc) 775 { 776 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 777 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 778 int i, ret; 779 780 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 781 /* Get hash algorithm */ 782 if (hfunc) { 783 switch (rss_cfg->hash_algo) { 784 case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ: 785 *hfunc = ETH_RSS_HASH_TOP; 786 break; 787 case HCLGEVF_RSS_HASH_ALGO_SIMPLE: 788 *hfunc = ETH_RSS_HASH_XOR; 789 break; 790 default: 791 *hfunc = ETH_RSS_HASH_UNKNOWN; 792 break; 793 } 794 } 795 796 /* Get the RSS Key required by the user */ 797 if (key) 798 memcpy(key, rss_cfg->rss_hash_key, 799 HCLGEVF_RSS_KEY_SIZE); 800 } else { 801 if (hfunc) 802 *hfunc = ETH_RSS_HASH_TOP; 803 if (key) { 804 ret = hclgevf_get_rss_hash_key(hdev); 805 if (ret) 806 return ret; 807 memcpy(key, rss_cfg->rss_hash_key, 808 HCLGEVF_RSS_KEY_SIZE); 809 } 810 } 811 812 if (indir) 813 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++) 814 indir[i] = rss_cfg->rss_indirection_tbl[i]; 815 816 return 0; 817 } 818 819 static int hclgevf_parse_rss_hfunc(struct hclgevf_dev *hdev, const u8 hfunc, 820 u8 *hash_algo) 821 { 822 switch (hfunc) { 823 case ETH_RSS_HASH_TOP: 824 *hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ; 825 return 0; 826 case ETH_RSS_HASH_XOR: 827 *hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE; 828 return 0; 829 case ETH_RSS_HASH_NO_CHANGE: 830 *hash_algo = hdev->rss_cfg.hash_algo; 831 return 0; 832 default: 833 return -EINVAL; 834 } 835 } 836 837 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir, 838 const u8 *key, const u8 hfunc) 839 { 840 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 841 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 842 u8 hash_algo; 843 int ret, i; 844 845 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 846 ret = hclgevf_parse_rss_hfunc(hdev, hfunc, &hash_algo); 847 if (ret) 848 return ret; 849 850 /* Set the RSS Hash Key if specififed by the user */ 851 if (key) { 852 ret = hclgevf_set_rss_algo_key(hdev, hash_algo, key); 853 if (ret) { 854 dev_err(&hdev->pdev->dev, 855 "invalid hfunc type %u\n", hfunc); 856 return ret; 857 } 858 859 /* Update the shadow RSS key with user specified qids */ 860 memcpy(rss_cfg->rss_hash_key, key, 861 HCLGEVF_RSS_KEY_SIZE); 862 } else { 863 ret = hclgevf_set_rss_algo_key(hdev, hash_algo, 864 rss_cfg->rss_hash_key); 865 if (ret) 866 return ret; 867 } 868 rss_cfg->hash_algo = hash_algo; 869 } 870 871 /* update the shadow RSS table with user specified qids */ 872 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++) 873 rss_cfg->rss_indirection_tbl[i] = indir[i]; 874 875 /* update the hardware */ 876 return hclgevf_set_rss_indir_table(hdev); 877 } 878 879 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc) 880 { 881 u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0; 882 883 if (nfc->data & RXH_L4_B_2_3) 884 hash_sets |= HCLGEVF_D_PORT_BIT; 885 else 886 hash_sets &= ~HCLGEVF_D_PORT_BIT; 887 888 if (nfc->data & RXH_IP_SRC) 889 hash_sets |= HCLGEVF_S_IP_BIT; 890 else 891 hash_sets &= ~HCLGEVF_S_IP_BIT; 892 893 if (nfc->data & RXH_IP_DST) 894 hash_sets |= HCLGEVF_D_IP_BIT; 895 else 896 hash_sets &= ~HCLGEVF_D_IP_BIT; 897 898 if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW) 899 hash_sets |= HCLGEVF_V_TAG_BIT; 900 901 return hash_sets; 902 } 903 904 static int hclgevf_init_rss_tuple_cmd(struct hnae3_handle *handle, 905 struct ethtool_rxnfc *nfc, 906 struct hclgevf_rss_input_tuple_cmd *req) 907 { 908 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 909 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 910 u8 tuple_sets; 911 912 req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en; 913 req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en; 914 req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en; 915 req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en; 916 req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en; 917 req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en; 918 req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en; 919 req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en; 920 921 tuple_sets = hclgevf_get_rss_hash_bits(nfc); 922 switch (nfc->flow_type) { 923 case TCP_V4_FLOW: 924 req->ipv4_tcp_en = tuple_sets; 925 break; 926 case TCP_V6_FLOW: 927 req->ipv6_tcp_en = tuple_sets; 928 break; 929 case UDP_V4_FLOW: 930 req->ipv4_udp_en = tuple_sets; 931 break; 932 case UDP_V6_FLOW: 933 req->ipv6_udp_en = tuple_sets; 934 break; 935 case SCTP_V4_FLOW: 936 req->ipv4_sctp_en = tuple_sets; 937 break; 938 case SCTP_V6_FLOW: 939 if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 && 940 (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3))) 941 return -EINVAL; 942 943 req->ipv6_sctp_en = tuple_sets; 944 break; 945 case IPV4_FLOW: 946 req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 947 break; 948 case IPV6_FLOW: 949 req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 950 break; 951 default: 952 return -EINVAL; 953 } 954 955 return 0; 956 } 957 958 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle, 959 struct ethtool_rxnfc *nfc) 960 { 961 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 962 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 963 struct hclgevf_rss_input_tuple_cmd *req; 964 struct hclgevf_desc desc; 965 int ret; 966 967 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 968 return -EOPNOTSUPP; 969 970 if (nfc->data & 971 ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3)) 972 return -EINVAL; 973 974 req = (struct hclgevf_rss_input_tuple_cmd *)desc.data; 975 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false); 976 977 ret = hclgevf_init_rss_tuple_cmd(handle, nfc, req); 978 if (ret) { 979 dev_err(&hdev->pdev->dev, 980 "failed to init rss tuple cmd, ret = %d\n", ret); 981 return ret; 982 } 983 984 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 985 if (ret) { 986 dev_err(&hdev->pdev->dev, 987 "Set rss tuple fail, status = %d\n", ret); 988 return ret; 989 } 990 991 rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en; 992 rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en; 993 rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en; 994 rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en; 995 rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en; 996 rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en; 997 rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en; 998 rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en; 999 return 0; 1000 } 1001 1002 static int hclgevf_get_rss_tuple_by_flow_type(struct hclgevf_dev *hdev, 1003 int flow_type, u8 *tuple_sets) 1004 { 1005 switch (flow_type) { 1006 case TCP_V4_FLOW: 1007 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_tcp_en; 1008 break; 1009 case UDP_V4_FLOW: 1010 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_udp_en; 1011 break; 1012 case TCP_V6_FLOW: 1013 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_tcp_en; 1014 break; 1015 case UDP_V6_FLOW: 1016 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_udp_en; 1017 break; 1018 case SCTP_V4_FLOW: 1019 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_sctp_en; 1020 break; 1021 case SCTP_V6_FLOW: 1022 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_sctp_en; 1023 break; 1024 case IPV4_FLOW: 1025 case IPV6_FLOW: 1026 *tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT; 1027 break; 1028 default: 1029 return -EINVAL; 1030 } 1031 1032 return 0; 1033 } 1034 1035 static u64 hclgevf_convert_rss_tuple(u8 tuple_sets) 1036 { 1037 u64 tuple_data = 0; 1038 1039 if (tuple_sets & HCLGEVF_D_PORT_BIT) 1040 tuple_data |= RXH_L4_B_2_3; 1041 if (tuple_sets & HCLGEVF_S_PORT_BIT) 1042 tuple_data |= RXH_L4_B_0_1; 1043 if (tuple_sets & HCLGEVF_D_IP_BIT) 1044 tuple_data |= RXH_IP_DST; 1045 if (tuple_sets & HCLGEVF_S_IP_BIT) 1046 tuple_data |= RXH_IP_SRC; 1047 1048 return tuple_data; 1049 } 1050 1051 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle, 1052 struct ethtool_rxnfc *nfc) 1053 { 1054 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1055 u8 tuple_sets; 1056 int ret; 1057 1058 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 1059 return -EOPNOTSUPP; 1060 1061 nfc->data = 0; 1062 1063 ret = hclgevf_get_rss_tuple_by_flow_type(hdev, nfc->flow_type, 1064 &tuple_sets); 1065 if (ret || !tuple_sets) 1066 return ret; 1067 1068 nfc->data = hclgevf_convert_rss_tuple(tuple_sets); 1069 1070 return 0; 1071 } 1072 1073 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev, 1074 struct hclgevf_rss_cfg *rss_cfg) 1075 { 1076 struct hclgevf_rss_input_tuple_cmd *req; 1077 struct hclgevf_desc desc; 1078 int ret; 1079 1080 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false); 1081 1082 req = (struct hclgevf_rss_input_tuple_cmd *)desc.data; 1083 1084 req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en; 1085 req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en; 1086 req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en; 1087 req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en; 1088 req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en; 1089 req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en; 1090 req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en; 1091 req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en; 1092 1093 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 1094 if (ret) 1095 dev_err(&hdev->pdev->dev, 1096 "Configure rss input fail, status = %d\n", ret); 1097 return ret; 1098 } 1099 1100 static int hclgevf_get_tc_size(struct hnae3_handle *handle) 1101 { 1102 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1103 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 1104 1105 return rss_cfg->rss_size; 1106 } 1107 1108 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en, 1109 int vector_id, 1110 struct hnae3_ring_chain_node *ring_chain) 1111 { 1112 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1113 struct hclge_vf_to_pf_msg send_msg; 1114 struct hnae3_ring_chain_node *node; 1115 int status; 1116 int i = 0; 1117 1118 memset(&send_msg, 0, sizeof(send_msg)); 1119 send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR : 1120 HCLGE_MBX_UNMAP_RING_TO_VECTOR; 1121 send_msg.vector_id = vector_id; 1122 1123 for (node = ring_chain; node; node = node->next) { 1124 send_msg.param[i].ring_type = 1125 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B); 1126 1127 send_msg.param[i].tqp_index = node->tqp_index; 1128 send_msg.param[i].int_gl_index = 1129 hnae3_get_field(node->int_gl_idx, 1130 HNAE3_RING_GL_IDX_M, 1131 HNAE3_RING_GL_IDX_S); 1132 1133 i++; 1134 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) { 1135 send_msg.ring_num = i; 1136 1137 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, 1138 NULL, 0); 1139 if (status) { 1140 dev_err(&hdev->pdev->dev, 1141 "Map TQP fail, status is %d.\n", 1142 status); 1143 return status; 1144 } 1145 i = 0; 1146 } 1147 } 1148 1149 return 0; 1150 } 1151 1152 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector, 1153 struct hnae3_ring_chain_node *ring_chain) 1154 { 1155 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1156 int vector_id; 1157 1158 vector_id = hclgevf_get_vector_index(hdev, vector); 1159 if (vector_id < 0) { 1160 dev_err(&handle->pdev->dev, 1161 "Get vector index fail. ret =%d\n", vector_id); 1162 return vector_id; 1163 } 1164 1165 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain); 1166 } 1167 1168 static int hclgevf_unmap_ring_from_vector( 1169 struct hnae3_handle *handle, 1170 int vector, 1171 struct hnae3_ring_chain_node *ring_chain) 1172 { 1173 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1174 int ret, vector_id; 1175 1176 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) 1177 return 0; 1178 1179 vector_id = hclgevf_get_vector_index(hdev, vector); 1180 if (vector_id < 0) { 1181 dev_err(&handle->pdev->dev, 1182 "Get vector index fail. ret =%d\n", vector_id); 1183 return vector_id; 1184 } 1185 1186 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain); 1187 if (ret) 1188 dev_err(&handle->pdev->dev, 1189 "Unmap ring from vector fail. vector=%d, ret =%d\n", 1190 vector_id, 1191 ret); 1192 1193 return ret; 1194 } 1195 1196 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector) 1197 { 1198 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1199 int vector_id; 1200 1201 vector_id = hclgevf_get_vector_index(hdev, vector); 1202 if (vector_id < 0) { 1203 dev_err(&handle->pdev->dev, 1204 "hclgevf_put_vector get vector index fail. ret =%d\n", 1205 vector_id); 1206 return vector_id; 1207 } 1208 1209 hclgevf_free_vector(hdev, vector_id); 1210 1211 return 0; 1212 } 1213 1214 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev, 1215 bool en_uc_pmc, bool en_mc_pmc, 1216 bool en_bc_pmc) 1217 { 1218 struct hnae3_handle *handle = &hdev->nic; 1219 struct hclge_vf_to_pf_msg send_msg; 1220 int ret; 1221 1222 memset(&send_msg, 0, sizeof(send_msg)); 1223 send_msg.code = HCLGE_MBX_SET_PROMISC_MODE; 1224 send_msg.en_bc = en_bc_pmc ? 1 : 0; 1225 send_msg.en_uc = en_uc_pmc ? 1 : 0; 1226 send_msg.en_mc = en_mc_pmc ? 1 : 0; 1227 send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC, 1228 &handle->priv_flags) ? 1 : 0; 1229 1230 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1231 if (ret) 1232 dev_err(&hdev->pdev->dev, 1233 "Set promisc mode fail, status is %d.\n", ret); 1234 1235 return ret; 1236 } 1237 1238 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc, 1239 bool en_mc_pmc) 1240 { 1241 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1242 bool en_bc_pmc; 1243 1244 en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2; 1245 1246 return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc, 1247 en_bc_pmc); 1248 } 1249 1250 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle) 1251 { 1252 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1253 1254 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 1255 hclgevf_task_schedule(hdev, 0); 1256 } 1257 1258 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev) 1259 { 1260 struct hnae3_handle *handle = &hdev->nic; 1261 bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE; 1262 bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE; 1263 int ret; 1264 1265 if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) { 1266 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc); 1267 if (!ret) 1268 clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 1269 } 1270 } 1271 1272 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id, 1273 u16 stream_id, bool enable) 1274 { 1275 struct hclgevf_cfg_com_tqp_queue_cmd *req; 1276 struct hclgevf_desc desc; 1277 1278 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data; 1279 1280 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE, 1281 false); 1282 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK); 1283 req->stream_id = cpu_to_le16(stream_id); 1284 if (enable) 1285 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B; 1286 1287 return hclgevf_cmd_send(&hdev->hw, &desc, 1); 1288 } 1289 1290 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable) 1291 { 1292 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1293 int ret; 1294 u16 i; 1295 1296 for (i = 0; i < handle->kinfo.num_tqps; i++) { 1297 ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable); 1298 if (ret) 1299 return ret; 1300 } 1301 1302 return 0; 1303 } 1304 1305 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle) 1306 { 1307 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 1308 struct hclgevf_tqp *tqp; 1309 int i; 1310 1311 for (i = 0; i < kinfo->num_tqps; i++) { 1312 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); 1313 memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats)); 1314 } 1315 } 1316 1317 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p) 1318 { 1319 struct hclge_vf_to_pf_msg send_msg; 1320 u8 host_mac[ETH_ALEN]; 1321 int status; 1322 1323 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0); 1324 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac, 1325 ETH_ALEN); 1326 if (status) { 1327 dev_err(&hdev->pdev->dev, 1328 "fail to get VF MAC from host %d", status); 1329 return status; 1330 } 1331 1332 ether_addr_copy(p, host_mac); 1333 1334 return 0; 1335 } 1336 1337 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p) 1338 { 1339 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1340 u8 host_mac_addr[ETH_ALEN]; 1341 1342 if (hclgevf_get_host_mac_addr(hdev, host_mac_addr)) 1343 return; 1344 1345 hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr); 1346 if (hdev->has_pf_mac) 1347 ether_addr_copy(p, host_mac_addr); 1348 else 1349 ether_addr_copy(p, hdev->hw.mac.mac_addr); 1350 } 1351 1352 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p, 1353 bool is_first) 1354 { 1355 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1356 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr; 1357 struct hclge_vf_to_pf_msg send_msg; 1358 u8 *new_mac_addr = (u8 *)p; 1359 int status; 1360 1361 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0); 1362 send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY; 1363 ether_addr_copy(send_msg.data, new_mac_addr); 1364 if (is_first && !hdev->has_pf_mac) 1365 eth_zero_addr(&send_msg.data[ETH_ALEN]); 1366 else 1367 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr); 1368 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1369 if (!status) 1370 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr); 1371 1372 return status; 1373 } 1374 1375 static struct hclgevf_mac_addr_node * 1376 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr) 1377 { 1378 struct hclgevf_mac_addr_node *mac_node, *tmp; 1379 1380 list_for_each_entry_safe(mac_node, tmp, list, node) 1381 if (ether_addr_equal(mac_addr, mac_node->mac_addr)) 1382 return mac_node; 1383 1384 return NULL; 1385 } 1386 1387 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node, 1388 enum HCLGEVF_MAC_NODE_STATE state) 1389 { 1390 switch (state) { 1391 /* from set_rx_mode or tmp_add_list */ 1392 case HCLGEVF_MAC_TO_ADD: 1393 if (mac_node->state == HCLGEVF_MAC_TO_DEL) 1394 mac_node->state = HCLGEVF_MAC_ACTIVE; 1395 break; 1396 /* only from set_rx_mode */ 1397 case HCLGEVF_MAC_TO_DEL: 1398 if (mac_node->state == HCLGEVF_MAC_TO_ADD) { 1399 list_del(&mac_node->node); 1400 kfree(mac_node); 1401 } else { 1402 mac_node->state = HCLGEVF_MAC_TO_DEL; 1403 } 1404 break; 1405 /* only from tmp_add_list, the mac_node->state won't be 1406 * HCLGEVF_MAC_ACTIVE 1407 */ 1408 case HCLGEVF_MAC_ACTIVE: 1409 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 1410 mac_node->state = HCLGEVF_MAC_ACTIVE; 1411 break; 1412 } 1413 } 1414 1415 static int hclgevf_update_mac_list(struct hnae3_handle *handle, 1416 enum HCLGEVF_MAC_NODE_STATE state, 1417 enum HCLGEVF_MAC_ADDR_TYPE mac_type, 1418 const unsigned char *addr) 1419 { 1420 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1421 struct hclgevf_mac_addr_node *mac_node; 1422 struct list_head *list; 1423 1424 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ? 1425 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list; 1426 1427 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1428 1429 /* if the mac addr is already in the mac list, no need to add a new 1430 * one into it, just check the mac addr state, convert it to a new 1431 * new state, or just remove it, or do nothing. 1432 */ 1433 mac_node = hclgevf_find_mac_node(list, addr); 1434 if (mac_node) { 1435 hclgevf_update_mac_node(mac_node, state); 1436 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1437 return 0; 1438 } 1439 /* if this address is never added, unnecessary to delete */ 1440 if (state == HCLGEVF_MAC_TO_DEL) { 1441 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1442 return -ENOENT; 1443 } 1444 1445 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC); 1446 if (!mac_node) { 1447 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1448 return -ENOMEM; 1449 } 1450 1451 mac_node->state = state; 1452 ether_addr_copy(mac_node->mac_addr, addr); 1453 list_add_tail(&mac_node->node, list); 1454 1455 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1456 return 0; 1457 } 1458 1459 static int hclgevf_add_uc_addr(struct hnae3_handle *handle, 1460 const unsigned char *addr) 1461 { 1462 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD, 1463 HCLGEVF_MAC_ADDR_UC, addr); 1464 } 1465 1466 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle, 1467 const unsigned char *addr) 1468 { 1469 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL, 1470 HCLGEVF_MAC_ADDR_UC, addr); 1471 } 1472 1473 static int hclgevf_add_mc_addr(struct hnae3_handle *handle, 1474 const unsigned char *addr) 1475 { 1476 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD, 1477 HCLGEVF_MAC_ADDR_MC, addr); 1478 } 1479 1480 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle, 1481 const unsigned char *addr) 1482 { 1483 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL, 1484 HCLGEVF_MAC_ADDR_MC, addr); 1485 } 1486 1487 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev, 1488 struct hclgevf_mac_addr_node *mac_node, 1489 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1490 { 1491 struct hclge_vf_to_pf_msg send_msg; 1492 u8 code, subcode; 1493 1494 if (mac_type == HCLGEVF_MAC_ADDR_UC) { 1495 code = HCLGE_MBX_SET_UNICAST; 1496 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 1497 subcode = HCLGE_MBX_MAC_VLAN_UC_ADD; 1498 else 1499 subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE; 1500 } else { 1501 code = HCLGE_MBX_SET_MULTICAST; 1502 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 1503 subcode = HCLGE_MBX_MAC_VLAN_MC_ADD; 1504 else 1505 subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE; 1506 } 1507 1508 hclgevf_build_send_msg(&send_msg, code, subcode); 1509 ether_addr_copy(send_msg.data, mac_node->mac_addr); 1510 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1511 } 1512 1513 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev, 1514 struct list_head *list, 1515 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1516 { 1517 struct hclgevf_mac_addr_node *mac_node, *tmp; 1518 int ret; 1519 1520 list_for_each_entry_safe(mac_node, tmp, list, node) { 1521 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type); 1522 if (ret) { 1523 dev_err(&hdev->pdev->dev, 1524 "failed to configure mac %pM, state = %d, ret = %d\n", 1525 mac_node->mac_addr, mac_node->state, ret); 1526 return; 1527 } 1528 if (mac_node->state == HCLGEVF_MAC_TO_ADD) { 1529 mac_node->state = HCLGEVF_MAC_ACTIVE; 1530 } else { 1531 list_del(&mac_node->node); 1532 kfree(mac_node); 1533 } 1534 } 1535 } 1536 1537 static void hclgevf_sync_from_add_list(struct list_head *add_list, 1538 struct list_head *mac_list) 1539 { 1540 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1541 1542 list_for_each_entry_safe(mac_node, tmp, add_list, node) { 1543 /* if the mac address from tmp_add_list is not in the 1544 * uc/mc_mac_list, it means have received a TO_DEL request 1545 * during the time window of sending mac config request to PF 1546 * If mac_node state is ACTIVE, then change its state to TO_DEL, 1547 * then it will be removed at next time. If is TO_ADD, it means 1548 * send TO_ADD request failed, so just remove the mac node. 1549 */ 1550 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr); 1551 if (new_node) { 1552 hclgevf_update_mac_node(new_node, mac_node->state); 1553 list_del(&mac_node->node); 1554 kfree(mac_node); 1555 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) { 1556 mac_node->state = HCLGEVF_MAC_TO_DEL; 1557 list_move_tail(&mac_node->node, mac_list); 1558 } else { 1559 list_del(&mac_node->node); 1560 kfree(mac_node); 1561 } 1562 } 1563 } 1564 1565 static void hclgevf_sync_from_del_list(struct list_head *del_list, 1566 struct list_head *mac_list) 1567 { 1568 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1569 1570 list_for_each_entry_safe(mac_node, tmp, del_list, node) { 1571 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr); 1572 if (new_node) { 1573 /* If the mac addr is exist in the mac list, it means 1574 * received a new request TO_ADD during the time window 1575 * of sending mac addr configurrequest to PF, so just 1576 * change the mac state to ACTIVE. 1577 */ 1578 new_node->state = HCLGEVF_MAC_ACTIVE; 1579 list_del(&mac_node->node); 1580 kfree(mac_node); 1581 } else { 1582 list_move_tail(&mac_node->node, mac_list); 1583 } 1584 } 1585 } 1586 1587 static void hclgevf_clear_list(struct list_head *list) 1588 { 1589 struct hclgevf_mac_addr_node *mac_node, *tmp; 1590 1591 list_for_each_entry_safe(mac_node, tmp, list, node) { 1592 list_del(&mac_node->node); 1593 kfree(mac_node); 1594 } 1595 } 1596 1597 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev, 1598 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1599 { 1600 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1601 struct list_head tmp_add_list, tmp_del_list; 1602 struct list_head *list; 1603 1604 INIT_LIST_HEAD(&tmp_add_list); 1605 INIT_LIST_HEAD(&tmp_del_list); 1606 1607 /* move the mac addr to the tmp_add_list and tmp_del_list, then 1608 * we can add/delete these mac addr outside the spin lock 1609 */ 1610 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ? 1611 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list; 1612 1613 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1614 1615 list_for_each_entry_safe(mac_node, tmp, list, node) { 1616 switch (mac_node->state) { 1617 case HCLGEVF_MAC_TO_DEL: 1618 list_move_tail(&mac_node->node, &tmp_del_list); 1619 break; 1620 case HCLGEVF_MAC_TO_ADD: 1621 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC); 1622 if (!new_node) 1623 goto stop_traverse; 1624 1625 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr); 1626 new_node->state = mac_node->state; 1627 list_add_tail(&new_node->node, &tmp_add_list); 1628 break; 1629 default: 1630 break; 1631 } 1632 } 1633 1634 stop_traverse: 1635 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1636 1637 /* delete first, in order to get max mac table space for adding */ 1638 hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type); 1639 hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type); 1640 1641 /* if some mac addresses were added/deleted fail, move back to the 1642 * mac_list, and retry at next time. 1643 */ 1644 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1645 1646 hclgevf_sync_from_del_list(&tmp_del_list, list); 1647 hclgevf_sync_from_add_list(&tmp_add_list, list); 1648 1649 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1650 } 1651 1652 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev) 1653 { 1654 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC); 1655 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC); 1656 } 1657 1658 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev) 1659 { 1660 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1661 1662 hclgevf_clear_list(&hdev->mac_table.uc_mac_list); 1663 hclgevf_clear_list(&hdev->mac_table.mc_mac_list); 1664 1665 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1666 } 1667 1668 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable) 1669 { 1670 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1671 struct hnae3_ae_dev *ae_dev = hdev->ae_dev; 1672 struct hclge_vf_to_pf_msg send_msg; 1673 1674 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps)) 1675 return -EOPNOTSUPP; 1676 1677 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1678 HCLGE_MBX_ENABLE_VLAN_FILTER); 1679 send_msg.data[0] = enable ? 1 : 0; 1680 1681 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1682 } 1683 1684 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle, 1685 __be16 proto, u16 vlan_id, 1686 bool is_kill) 1687 { 1688 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET 0 1689 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET 1 1690 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET 3 1691 1692 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1693 struct hclge_vf_to_pf_msg send_msg; 1694 int ret; 1695 1696 if (vlan_id > HCLGEVF_MAX_VLAN_ID) 1697 return -EINVAL; 1698 1699 if (proto != htons(ETH_P_8021Q)) 1700 return -EPROTONOSUPPORT; 1701 1702 /* When device is resetting or reset failed, firmware is unable to 1703 * handle mailbox. Just record the vlan id, and remove it after 1704 * reset finished. 1705 */ 1706 if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 1707 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) { 1708 set_bit(vlan_id, hdev->vlan_del_fail_bmap); 1709 return -EBUSY; 1710 } 1711 1712 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1713 HCLGE_MBX_VLAN_FILTER); 1714 send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill; 1715 memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id, 1716 sizeof(vlan_id)); 1717 memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto, 1718 sizeof(proto)); 1719 /* when remove hw vlan filter failed, record the vlan id, 1720 * and try to remove it from hw later, to be consistence 1721 * with stack. 1722 */ 1723 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1724 if (is_kill && ret) 1725 set_bit(vlan_id, hdev->vlan_del_fail_bmap); 1726 1727 return ret; 1728 } 1729 1730 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev) 1731 { 1732 #define HCLGEVF_MAX_SYNC_COUNT 60 1733 struct hnae3_handle *handle = &hdev->nic; 1734 int ret, sync_cnt = 0; 1735 u16 vlan_id; 1736 1737 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID); 1738 while (vlan_id != VLAN_N_VID) { 1739 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q), 1740 vlan_id, true); 1741 if (ret) 1742 return; 1743 1744 clear_bit(vlan_id, hdev->vlan_del_fail_bmap); 1745 sync_cnt++; 1746 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT) 1747 return; 1748 1749 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID); 1750 } 1751 } 1752 1753 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable) 1754 { 1755 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1756 struct hclge_vf_to_pf_msg send_msg; 1757 1758 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1759 HCLGE_MBX_VLAN_RX_OFF_CFG); 1760 send_msg.data[0] = enable ? 1 : 0; 1761 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1762 } 1763 1764 static int hclgevf_reset_tqp(struct hnae3_handle *handle) 1765 { 1766 #define HCLGEVF_RESET_ALL_QUEUE_DONE 1U 1767 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1768 struct hclge_vf_to_pf_msg send_msg; 1769 u8 return_status = 0; 1770 int ret; 1771 u16 i; 1772 1773 /* disable vf queue before send queue reset msg to PF */ 1774 ret = hclgevf_tqp_enable(handle, false); 1775 if (ret) { 1776 dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n", 1777 ret); 1778 return ret; 1779 } 1780 1781 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0); 1782 1783 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status, 1784 sizeof(return_status)); 1785 if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE) 1786 return ret; 1787 1788 for (i = 1; i < handle->kinfo.num_tqps; i++) { 1789 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0); 1790 memcpy(send_msg.data, &i, sizeof(i)); 1791 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1792 if (ret) 1793 return ret; 1794 } 1795 1796 return 0; 1797 } 1798 1799 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu) 1800 { 1801 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1802 struct hclge_vf_to_pf_msg send_msg; 1803 1804 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0); 1805 memcpy(send_msg.data, &new_mtu, sizeof(new_mtu)); 1806 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1807 } 1808 1809 static int hclgevf_notify_client(struct hclgevf_dev *hdev, 1810 enum hnae3_reset_notify_type type) 1811 { 1812 struct hnae3_client *client = hdev->nic_client; 1813 struct hnae3_handle *handle = &hdev->nic; 1814 int ret; 1815 1816 if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) || 1817 !client) 1818 return 0; 1819 1820 if (!client->ops->reset_notify) 1821 return -EOPNOTSUPP; 1822 1823 ret = client->ops->reset_notify(handle, type); 1824 if (ret) 1825 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n", 1826 type, ret); 1827 1828 return ret; 1829 } 1830 1831 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev, 1832 enum hnae3_reset_notify_type type) 1833 { 1834 struct hnae3_client *client = hdev->roce_client; 1835 struct hnae3_handle *handle = &hdev->roce; 1836 int ret; 1837 1838 if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client) 1839 return 0; 1840 1841 if (!client->ops->reset_notify) 1842 return -EOPNOTSUPP; 1843 1844 ret = client->ops->reset_notify(handle, type); 1845 if (ret) 1846 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)", 1847 type, ret); 1848 return ret; 1849 } 1850 1851 static int hclgevf_reset_wait(struct hclgevf_dev *hdev) 1852 { 1853 #define HCLGEVF_RESET_WAIT_US 20000 1854 #define HCLGEVF_RESET_WAIT_CNT 2000 1855 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \ 1856 (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT) 1857 1858 u32 val; 1859 int ret; 1860 1861 if (hdev->reset_type == HNAE3_VF_RESET) 1862 ret = readl_poll_timeout(hdev->hw.io_base + 1863 HCLGEVF_VF_RST_ING, val, 1864 !(val & HCLGEVF_VF_RST_ING_BIT), 1865 HCLGEVF_RESET_WAIT_US, 1866 HCLGEVF_RESET_WAIT_TIMEOUT_US); 1867 else 1868 ret = readl_poll_timeout(hdev->hw.io_base + 1869 HCLGEVF_RST_ING, val, 1870 !(val & HCLGEVF_RST_ING_BITS), 1871 HCLGEVF_RESET_WAIT_US, 1872 HCLGEVF_RESET_WAIT_TIMEOUT_US); 1873 1874 /* hardware completion status should be available by this time */ 1875 if (ret) { 1876 dev_err(&hdev->pdev->dev, 1877 "couldn't get reset done status from h/w, timeout!\n"); 1878 return ret; 1879 } 1880 1881 /* we will wait a bit more to let reset of the stack to complete. This 1882 * might happen in case reset assertion was made by PF. Yes, this also 1883 * means we might end up waiting bit more even for VF reset. 1884 */ 1885 msleep(5000); 1886 1887 return 0; 1888 } 1889 1890 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable) 1891 { 1892 u32 reg_val; 1893 1894 reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG); 1895 if (enable) 1896 reg_val |= HCLGEVF_NIC_SW_RST_RDY; 1897 else 1898 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY; 1899 1900 hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG, 1901 reg_val); 1902 } 1903 1904 static int hclgevf_reset_stack(struct hclgevf_dev *hdev) 1905 { 1906 int ret; 1907 1908 /* uninitialize the nic client */ 1909 ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT); 1910 if (ret) 1911 return ret; 1912 1913 /* re-initialize the hclge device */ 1914 ret = hclgevf_reset_hdev(hdev); 1915 if (ret) { 1916 dev_err(&hdev->pdev->dev, 1917 "hclge device re-init failed, VF is disabled!\n"); 1918 return ret; 1919 } 1920 1921 /* bring up the nic client again */ 1922 ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT); 1923 if (ret) 1924 return ret; 1925 1926 /* clear handshake status with IMP */ 1927 hclgevf_reset_handshake(hdev, false); 1928 1929 /* bring up the nic to enable TX/RX again */ 1930 return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); 1931 } 1932 1933 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev) 1934 { 1935 #define HCLGEVF_RESET_SYNC_TIME 100 1936 1937 if (hdev->reset_type == HNAE3_VF_FUNC_RESET) { 1938 struct hclge_vf_to_pf_msg send_msg; 1939 int ret; 1940 1941 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0); 1942 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1943 if (ret) { 1944 dev_err(&hdev->pdev->dev, 1945 "failed to assert VF reset, ret = %d\n", ret); 1946 return ret; 1947 } 1948 hdev->rst_stats.vf_func_rst_cnt++; 1949 } 1950 1951 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state); 1952 /* inform hardware that preparatory work is done */ 1953 msleep(HCLGEVF_RESET_SYNC_TIME); 1954 hclgevf_reset_handshake(hdev, true); 1955 dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n", 1956 hdev->reset_type); 1957 1958 return 0; 1959 } 1960 1961 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev) 1962 { 1963 dev_info(&hdev->pdev->dev, "VF function reset count: %u\n", 1964 hdev->rst_stats.vf_func_rst_cnt); 1965 dev_info(&hdev->pdev->dev, "FLR reset count: %u\n", 1966 hdev->rst_stats.flr_rst_cnt); 1967 dev_info(&hdev->pdev->dev, "VF reset count: %u\n", 1968 hdev->rst_stats.vf_rst_cnt); 1969 dev_info(&hdev->pdev->dev, "reset done count: %u\n", 1970 hdev->rst_stats.rst_done_cnt); 1971 dev_info(&hdev->pdev->dev, "HW reset done count: %u\n", 1972 hdev->rst_stats.hw_rst_done_cnt); 1973 dev_info(&hdev->pdev->dev, "reset count: %u\n", 1974 hdev->rst_stats.rst_cnt); 1975 dev_info(&hdev->pdev->dev, "reset fail count: %u\n", 1976 hdev->rst_stats.rst_fail_cnt); 1977 dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n", 1978 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE)); 1979 dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n", 1980 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG)); 1981 dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n", 1982 hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG)); 1983 dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n", 1984 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING)); 1985 dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state); 1986 } 1987 1988 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev) 1989 { 1990 /* recover handshake status with IMP when reset fail */ 1991 hclgevf_reset_handshake(hdev, true); 1992 hdev->rst_stats.rst_fail_cnt++; 1993 dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n", 1994 hdev->rst_stats.rst_fail_cnt); 1995 1996 if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT) 1997 set_bit(hdev->reset_type, &hdev->reset_pending); 1998 1999 if (hclgevf_is_reset_pending(hdev)) { 2000 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 2001 hclgevf_reset_task_schedule(hdev); 2002 } else { 2003 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 2004 hclgevf_dump_rst_info(hdev); 2005 } 2006 } 2007 2008 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev) 2009 { 2010 int ret; 2011 2012 hdev->rst_stats.rst_cnt++; 2013 2014 /* perform reset of the stack & ae device for a client */ 2015 ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT); 2016 if (ret) 2017 return ret; 2018 2019 rtnl_lock(); 2020 /* bring down the nic to stop any ongoing TX/RX */ 2021 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); 2022 rtnl_unlock(); 2023 if (ret) 2024 return ret; 2025 2026 return hclgevf_reset_prepare_wait(hdev); 2027 } 2028 2029 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev) 2030 { 2031 int ret; 2032 2033 hdev->rst_stats.hw_rst_done_cnt++; 2034 ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT); 2035 if (ret) 2036 return ret; 2037 2038 rtnl_lock(); 2039 /* now, re-initialize the nic client and ae device */ 2040 ret = hclgevf_reset_stack(hdev); 2041 rtnl_unlock(); 2042 if (ret) { 2043 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n"); 2044 return ret; 2045 } 2046 2047 ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT); 2048 /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1 2049 * times 2050 */ 2051 if (ret && 2052 hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1) 2053 return ret; 2054 2055 ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT); 2056 if (ret) 2057 return ret; 2058 2059 hdev->last_reset_time = jiffies; 2060 hdev->rst_stats.rst_done_cnt++; 2061 hdev->rst_stats.rst_fail_cnt = 0; 2062 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 2063 2064 return 0; 2065 } 2066 2067 static void hclgevf_reset(struct hclgevf_dev *hdev) 2068 { 2069 if (hclgevf_reset_prepare(hdev)) 2070 goto err_reset; 2071 2072 /* check if VF could successfully fetch the hardware reset completion 2073 * status from the hardware 2074 */ 2075 if (hclgevf_reset_wait(hdev)) { 2076 /* can't do much in this situation, will disable VF */ 2077 dev_err(&hdev->pdev->dev, 2078 "failed to fetch H/W reset completion status\n"); 2079 goto err_reset; 2080 } 2081 2082 if (hclgevf_reset_rebuild(hdev)) 2083 goto err_reset; 2084 2085 return; 2086 2087 err_reset: 2088 hclgevf_reset_err_handle(hdev); 2089 } 2090 2091 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev, 2092 unsigned long *addr) 2093 { 2094 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET; 2095 2096 /* return the highest priority reset level amongst all */ 2097 if (test_bit(HNAE3_VF_RESET, addr)) { 2098 rst_level = HNAE3_VF_RESET; 2099 clear_bit(HNAE3_VF_RESET, addr); 2100 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr); 2101 clear_bit(HNAE3_VF_FUNC_RESET, addr); 2102 } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) { 2103 rst_level = HNAE3_VF_FULL_RESET; 2104 clear_bit(HNAE3_VF_FULL_RESET, addr); 2105 clear_bit(HNAE3_VF_FUNC_RESET, addr); 2106 } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) { 2107 rst_level = HNAE3_VF_PF_FUNC_RESET; 2108 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr); 2109 clear_bit(HNAE3_VF_FUNC_RESET, addr); 2110 } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) { 2111 rst_level = HNAE3_VF_FUNC_RESET; 2112 clear_bit(HNAE3_VF_FUNC_RESET, addr); 2113 } else if (test_bit(HNAE3_FLR_RESET, addr)) { 2114 rst_level = HNAE3_FLR_RESET; 2115 clear_bit(HNAE3_FLR_RESET, addr); 2116 } 2117 2118 return rst_level; 2119 } 2120 2121 static void hclgevf_reset_event(struct pci_dev *pdev, 2122 struct hnae3_handle *handle) 2123 { 2124 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 2125 struct hclgevf_dev *hdev = ae_dev->priv; 2126 2127 dev_info(&hdev->pdev->dev, "received reset request from VF enet\n"); 2128 2129 if (hdev->default_reset_request) 2130 hdev->reset_level = 2131 hclgevf_get_reset_level(hdev, 2132 &hdev->default_reset_request); 2133 else 2134 hdev->reset_level = HNAE3_VF_FUNC_RESET; 2135 2136 /* reset of this VF requested */ 2137 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state); 2138 hclgevf_reset_task_schedule(hdev); 2139 2140 hdev->last_reset_time = jiffies; 2141 } 2142 2143 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev, 2144 enum hnae3_reset_type rst_type) 2145 { 2146 struct hclgevf_dev *hdev = ae_dev->priv; 2147 2148 set_bit(rst_type, &hdev->default_reset_request); 2149 } 2150 2151 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en) 2152 { 2153 writel(en ? 1 : 0, vector->addr); 2154 } 2155 2156 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev, 2157 enum hnae3_reset_type rst_type) 2158 { 2159 #define HCLGEVF_RESET_RETRY_WAIT_MS 500 2160 #define HCLGEVF_RESET_RETRY_CNT 5 2161 2162 struct hclgevf_dev *hdev = ae_dev->priv; 2163 int retry_cnt = 0; 2164 int ret; 2165 2166 retry: 2167 down(&hdev->reset_sem); 2168 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 2169 hdev->reset_type = rst_type; 2170 ret = hclgevf_reset_prepare(hdev); 2171 if (ret) { 2172 dev_err(&hdev->pdev->dev, "fail to prepare to reset, ret=%d\n", 2173 ret); 2174 if (hdev->reset_pending || 2175 retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) { 2176 dev_err(&hdev->pdev->dev, 2177 "reset_pending:0x%lx, retry_cnt:%d\n", 2178 hdev->reset_pending, retry_cnt); 2179 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 2180 up(&hdev->reset_sem); 2181 msleep(HCLGEVF_RESET_RETRY_WAIT_MS); 2182 goto retry; 2183 } 2184 } 2185 2186 /* disable misc vector before reset done */ 2187 hclgevf_enable_vector(&hdev->misc_vector, false); 2188 2189 if (hdev->reset_type == HNAE3_FLR_RESET) 2190 hdev->rst_stats.flr_rst_cnt++; 2191 } 2192 2193 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev) 2194 { 2195 struct hclgevf_dev *hdev = ae_dev->priv; 2196 int ret; 2197 2198 hclgevf_enable_vector(&hdev->misc_vector, true); 2199 2200 ret = hclgevf_reset_rebuild(hdev); 2201 if (ret) 2202 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n", 2203 ret); 2204 2205 hdev->reset_type = HNAE3_NONE_RESET; 2206 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 2207 up(&hdev->reset_sem); 2208 } 2209 2210 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle) 2211 { 2212 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2213 2214 return hdev->fw_version; 2215 } 2216 2217 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev) 2218 { 2219 struct hclgevf_misc_vector *vector = &hdev->misc_vector; 2220 2221 vector->vector_irq = pci_irq_vector(hdev->pdev, 2222 HCLGEVF_MISC_VECTOR_NUM); 2223 vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE; 2224 /* vector status always valid for Vector 0 */ 2225 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0; 2226 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq; 2227 2228 hdev->num_msi_left -= 1; 2229 hdev->num_msi_used += 1; 2230 } 2231 2232 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev) 2233 { 2234 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 2235 !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, 2236 &hdev->state)) 2237 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0); 2238 } 2239 2240 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev) 2241 { 2242 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 2243 !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, 2244 &hdev->state)) 2245 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0); 2246 } 2247 2248 static void hclgevf_task_schedule(struct hclgevf_dev *hdev, 2249 unsigned long delay) 2250 { 2251 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 2252 !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) 2253 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay); 2254 } 2255 2256 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev) 2257 { 2258 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT 3 2259 2260 if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state)) 2261 return; 2262 2263 down(&hdev->reset_sem); 2264 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 2265 2266 if (test_and_clear_bit(HCLGEVF_RESET_PENDING, 2267 &hdev->reset_state)) { 2268 /* PF has intimated that it is about to reset the hardware. 2269 * We now have to poll & check if hardware has actually 2270 * completed the reset sequence. On hardware reset completion, 2271 * VF needs to reset the client and ae device. 2272 */ 2273 hdev->reset_attempts = 0; 2274 2275 hdev->last_reset_time = jiffies; 2276 while ((hdev->reset_type = 2277 hclgevf_get_reset_level(hdev, &hdev->reset_pending)) 2278 != HNAE3_NONE_RESET) 2279 hclgevf_reset(hdev); 2280 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED, 2281 &hdev->reset_state)) { 2282 /* we could be here when either of below happens: 2283 * 1. reset was initiated due to watchdog timeout caused by 2284 * a. IMP was earlier reset and our TX got choked down and 2285 * which resulted in watchdog reacting and inducing VF 2286 * reset. This also means our cmdq would be unreliable. 2287 * b. problem in TX due to other lower layer(example link 2288 * layer not functioning properly etc.) 2289 * 2. VF reset might have been initiated due to some config 2290 * change. 2291 * 2292 * NOTE: Theres no clear way to detect above cases than to react 2293 * to the response of PF for this reset request. PF will ack the 2294 * 1b and 2. cases but we will not get any intimation about 1a 2295 * from PF as cmdq would be in unreliable state i.e. mailbox 2296 * communication between PF and VF would be broken. 2297 * 2298 * if we are never geting into pending state it means either: 2299 * 1. PF is not receiving our request which could be due to IMP 2300 * reset 2301 * 2. PF is screwed 2302 * We cannot do much for 2. but to check first we can try reset 2303 * our PCIe + stack and see if it alleviates the problem. 2304 */ 2305 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) { 2306 /* prepare for full reset of stack + pcie interface */ 2307 set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending); 2308 2309 /* "defer" schedule the reset task again */ 2310 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 2311 } else { 2312 hdev->reset_attempts++; 2313 2314 set_bit(hdev->reset_level, &hdev->reset_pending); 2315 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 2316 } 2317 hclgevf_reset_task_schedule(hdev); 2318 } 2319 2320 hdev->reset_type = HNAE3_NONE_RESET; 2321 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 2322 up(&hdev->reset_sem); 2323 } 2324 2325 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev) 2326 { 2327 if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state)) 2328 return; 2329 2330 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) 2331 return; 2332 2333 hclgevf_mbx_async_handler(hdev); 2334 2335 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); 2336 } 2337 2338 static void hclgevf_keep_alive(struct hclgevf_dev *hdev) 2339 { 2340 struct hclge_vf_to_pf_msg send_msg; 2341 int ret; 2342 2343 if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state)) 2344 return; 2345 2346 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0); 2347 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 2348 if (ret) 2349 dev_err(&hdev->pdev->dev, 2350 "VF sends keep alive cmd failed(=%d)\n", ret); 2351 } 2352 2353 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev) 2354 { 2355 unsigned long delta = round_jiffies_relative(HZ); 2356 struct hnae3_handle *handle = &hdev->nic; 2357 2358 if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) 2359 return; 2360 2361 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) { 2362 delta = jiffies - hdev->last_serv_processed; 2363 2364 if (delta < round_jiffies_relative(HZ)) { 2365 delta = round_jiffies_relative(HZ) - delta; 2366 goto out; 2367 } 2368 } 2369 2370 hdev->serv_processed_cnt++; 2371 if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL)) 2372 hclgevf_keep_alive(hdev); 2373 2374 if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) { 2375 hdev->last_serv_processed = jiffies; 2376 goto out; 2377 } 2378 2379 if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL)) 2380 hclgevf_tqps_update_stats(handle); 2381 2382 /* VF does not need to request link status when this bit is set, because 2383 * PF will push its link status to VFs when link status changed. 2384 */ 2385 if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state)) 2386 hclgevf_request_link_info(hdev); 2387 2388 hclgevf_update_link_mode(hdev); 2389 2390 hclgevf_sync_vlan_filter(hdev); 2391 2392 hclgevf_sync_mac_table(hdev); 2393 2394 hclgevf_sync_promisc_mode(hdev); 2395 2396 hdev->last_serv_processed = jiffies; 2397 2398 out: 2399 hclgevf_task_schedule(hdev, delta); 2400 } 2401 2402 static void hclgevf_service_task(struct work_struct *work) 2403 { 2404 struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev, 2405 service_task.work); 2406 2407 hclgevf_reset_service_task(hdev); 2408 hclgevf_mailbox_service_task(hdev); 2409 hclgevf_periodic_service_task(hdev); 2410 2411 /* Handle reset and mbx again in case periodical task delays the 2412 * handling by calling hclgevf_task_schedule() in 2413 * hclgevf_periodic_service_task() 2414 */ 2415 hclgevf_reset_service_task(hdev); 2416 hclgevf_mailbox_service_task(hdev); 2417 } 2418 2419 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr) 2420 { 2421 hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr); 2422 } 2423 2424 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev, 2425 u32 *clearval) 2426 { 2427 u32 val, cmdq_stat_reg, rst_ing_reg; 2428 2429 /* fetch the events from their corresponding regs */ 2430 cmdq_stat_reg = hclgevf_read_dev(&hdev->hw, 2431 HCLGEVF_VECTOR0_CMDQ_STATE_REG); 2432 if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) { 2433 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING); 2434 dev_info(&hdev->pdev->dev, 2435 "receive reset interrupt 0x%x!\n", rst_ing_reg); 2436 set_bit(HNAE3_VF_RESET, &hdev->reset_pending); 2437 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 2438 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state); 2439 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B); 2440 hdev->rst_stats.vf_rst_cnt++; 2441 /* set up VF hardware reset status, its PF will clear 2442 * this status when PF has initialized done. 2443 */ 2444 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING); 2445 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING, 2446 val | HCLGEVF_VF_RST_ING_BIT); 2447 return HCLGEVF_VECTOR0_EVENT_RST; 2448 } 2449 2450 /* check for vector0 mailbox(=CMDQ RX) event source */ 2451 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) { 2452 /* for revision 0x21, clearing interrupt is writing bit 0 2453 * to the clear register, writing bit 1 means to keep the 2454 * old value. 2455 * for revision 0x20, the clear register is a read & write 2456 * register, so we should just write 0 to the bit we are 2457 * handling, and keep other bits as cmdq_stat_reg. 2458 */ 2459 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) 2460 *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B); 2461 else 2462 *clearval = cmdq_stat_reg & 2463 ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B); 2464 2465 return HCLGEVF_VECTOR0_EVENT_MBX; 2466 } 2467 2468 /* print other vector0 event source */ 2469 dev_info(&hdev->pdev->dev, 2470 "vector 0 interrupt from unknown source, cmdq_src = %#x\n", 2471 cmdq_stat_reg); 2472 2473 return HCLGEVF_VECTOR0_EVENT_OTHER; 2474 } 2475 2476 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data) 2477 { 2478 enum hclgevf_evt_cause event_cause; 2479 struct hclgevf_dev *hdev = data; 2480 u32 clearval; 2481 2482 hclgevf_enable_vector(&hdev->misc_vector, false); 2483 event_cause = hclgevf_check_evt_cause(hdev, &clearval); 2484 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) 2485 hclgevf_clear_event_cause(hdev, clearval); 2486 2487 switch (event_cause) { 2488 case HCLGEVF_VECTOR0_EVENT_RST: 2489 hclgevf_reset_task_schedule(hdev); 2490 break; 2491 case HCLGEVF_VECTOR0_EVENT_MBX: 2492 hclgevf_mbx_handler(hdev); 2493 break; 2494 default: 2495 break; 2496 } 2497 2498 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) 2499 hclgevf_enable_vector(&hdev->misc_vector, true); 2500 2501 return IRQ_HANDLED; 2502 } 2503 2504 static int hclgevf_configure(struct hclgevf_dev *hdev) 2505 { 2506 int ret; 2507 2508 hdev->gro_en = true; 2509 2510 ret = hclgevf_get_basic_info(hdev); 2511 if (ret) 2512 return ret; 2513 2514 /* get current port based vlan state from PF */ 2515 ret = hclgevf_get_port_base_vlan_filter_state(hdev); 2516 if (ret) 2517 return ret; 2518 2519 /* get queue configuration from PF */ 2520 ret = hclgevf_get_queue_info(hdev); 2521 if (ret) 2522 return ret; 2523 2524 /* get queue depth info from PF */ 2525 ret = hclgevf_get_queue_depth(hdev); 2526 if (ret) 2527 return ret; 2528 2529 return hclgevf_get_pf_media_type(hdev); 2530 } 2531 2532 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev) 2533 { 2534 struct pci_dev *pdev = ae_dev->pdev; 2535 struct hclgevf_dev *hdev; 2536 2537 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL); 2538 if (!hdev) 2539 return -ENOMEM; 2540 2541 hdev->pdev = pdev; 2542 hdev->ae_dev = ae_dev; 2543 ae_dev->priv = hdev; 2544 2545 return 0; 2546 } 2547 2548 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev) 2549 { 2550 struct hnae3_handle *roce = &hdev->roce; 2551 struct hnae3_handle *nic = &hdev->nic; 2552 2553 roce->rinfo.num_vectors = hdev->num_roce_msix; 2554 2555 if (hdev->num_msi_left < roce->rinfo.num_vectors || 2556 hdev->num_msi_left == 0) 2557 return -EINVAL; 2558 2559 roce->rinfo.base_vector = hdev->roce_base_vector; 2560 2561 roce->rinfo.netdev = nic->kinfo.netdev; 2562 roce->rinfo.roce_io_base = hdev->hw.io_base; 2563 roce->rinfo.roce_mem_base = hdev->hw.mem_base; 2564 2565 roce->pdev = nic->pdev; 2566 roce->ae_algo = nic->ae_algo; 2567 roce->numa_node_mask = nic->numa_node_mask; 2568 2569 return 0; 2570 } 2571 2572 static int hclgevf_config_gro(struct hclgevf_dev *hdev) 2573 { 2574 struct hclgevf_cfg_gro_status_cmd *req; 2575 struct hclgevf_desc desc; 2576 int ret; 2577 2578 if (!hnae3_dev_gro_supported(hdev)) 2579 return 0; 2580 2581 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG, 2582 false); 2583 req = (struct hclgevf_cfg_gro_status_cmd *)desc.data; 2584 2585 req->gro_en = hdev->gro_en ? 1 : 0; 2586 2587 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 2588 if (ret) 2589 dev_err(&hdev->pdev->dev, 2590 "VF GRO hardware config cmd failed, ret = %d.\n", ret); 2591 2592 return ret; 2593 } 2594 2595 static int hclgevf_rss_init_cfg(struct hclgevf_dev *hdev) 2596 { 2597 u16 rss_ind_tbl_size = hdev->ae_dev->dev_specs.rss_ind_tbl_size; 2598 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 2599 struct hclgevf_rss_tuple_cfg *tuple_sets; 2600 u32 i; 2601 2602 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ; 2603 rss_cfg->rss_size = hdev->nic.kinfo.rss_size; 2604 tuple_sets = &rss_cfg->rss_tuple_sets; 2605 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 2606 u8 *rss_ind_tbl; 2607 2608 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE; 2609 2610 rss_ind_tbl = devm_kcalloc(&hdev->pdev->dev, rss_ind_tbl_size, 2611 sizeof(*rss_ind_tbl), GFP_KERNEL); 2612 if (!rss_ind_tbl) 2613 return -ENOMEM; 2614 2615 rss_cfg->rss_indirection_tbl = rss_ind_tbl; 2616 memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key, 2617 HCLGEVF_RSS_KEY_SIZE); 2618 2619 tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2620 tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2621 tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP; 2622 tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2623 tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2624 tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2625 tuple_sets->ipv6_sctp_en = 2626 hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ? 2627 HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT : 2628 HCLGEVF_RSS_INPUT_TUPLE_SCTP; 2629 tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2630 } 2631 2632 /* Initialize RSS indirect table */ 2633 for (i = 0; i < rss_ind_tbl_size; i++) 2634 rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size; 2635 2636 return 0; 2637 } 2638 2639 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev) 2640 { 2641 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 2642 int ret; 2643 2644 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 2645 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo, 2646 rss_cfg->rss_hash_key); 2647 if (ret) 2648 return ret; 2649 2650 ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg); 2651 if (ret) 2652 return ret; 2653 } 2654 2655 ret = hclgevf_set_rss_indir_table(hdev); 2656 if (ret) 2657 return ret; 2658 2659 return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size); 2660 } 2661 2662 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev) 2663 { 2664 struct hnae3_handle *nic = &hdev->nic; 2665 int ret; 2666 2667 ret = hclgevf_en_hw_strip_rxvtag(nic, true); 2668 if (ret) { 2669 dev_err(&hdev->pdev->dev, 2670 "failed to enable rx vlan offload, ret = %d\n", ret); 2671 return ret; 2672 } 2673 2674 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0, 2675 false); 2676 } 2677 2678 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev) 2679 { 2680 #define HCLGEVF_FLUSH_LINK_TIMEOUT 100000 2681 2682 unsigned long last = hdev->serv_processed_cnt; 2683 int i = 0; 2684 2685 while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) && 2686 i++ < HCLGEVF_FLUSH_LINK_TIMEOUT && 2687 last == hdev->serv_processed_cnt) 2688 usleep_range(1, 1); 2689 } 2690 2691 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable) 2692 { 2693 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2694 2695 if (enable) { 2696 hclgevf_task_schedule(hdev, 0); 2697 } else { 2698 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2699 2700 /* flush memory to make sure DOWN is seen by service task */ 2701 smp_mb__before_atomic(); 2702 hclgevf_flush_link_update(hdev); 2703 } 2704 } 2705 2706 static int hclgevf_ae_start(struct hnae3_handle *handle) 2707 { 2708 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2709 2710 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2711 clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state); 2712 2713 hclgevf_reset_tqp_stats(handle); 2714 2715 hclgevf_request_link_info(hdev); 2716 2717 hclgevf_update_link_mode(hdev); 2718 2719 return 0; 2720 } 2721 2722 static void hclgevf_ae_stop(struct hnae3_handle *handle) 2723 { 2724 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2725 2726 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2727 2728 if (hdev->reset_type != HNAE3_VF_RESET) 2729 hclgevf_reset_tqp(handle); 2730 2731 hclgevf_reset_tqp_stats(handle); 2732 hclgevf_update_link_status(hdev, 0); 2733 } 2734 2735 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive) 2736 { 2737 #define HCLGEVF_STATE_ALIVE 1 2738 #define HCLGEVF_STATE_NOT_ALIVE 0 2739 2740 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2741 struct hclge_vf_to_pf_msg send_msg; 2742 2743 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0); 2744 send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE : 2745 HCLGEVF_STATE_NOT_ALIVE; 2746 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 2747 } 2748 2749 static int hclgevf_client_start(struct hnae3_handle *handle) 2750 { 2751 return hclgevf_set_alive(handle, true); 2752 } 2753 2754 static void hclgevf_client_stop(struct hnae3_handle *handle) 2755 { 2756 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2757 int ret; 2758 2759 ret = hclgevf_set_alive(handle, false); 2760 if (ret) 2761 dev_warn(&hdev->pdev->dev, 2762 "%s failed %d\n", __func__, ret); 2763 } 2764 2765 static void hclgevf_state_init(struct hclgevf_dev *hdev) 2766 { 2767 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state); 2768 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); 2769 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 2770 2771 INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task); 2772 2773 mutex_init(&hdev->mbx_resp.mbx_mutex); 2774 sema_init(&hdev->reset_sem, 1); 2775 2776 spin_lock_init(&hdev->mac_table.mac_list_lock); 2777 INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list); 2778 INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list); 2779 2780 /* bring the device down */ 2781 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2782 } 2783 2784 static void hclgevf_state_uninit(struct hclgevf_dev *hdev) 2785 { 2786 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2787 set_bit(HCLGEVF_STATE_REMOVING, &hdev->state); 2788 2789 if (hdev->service_task.work.func) 2790 cancel_delayed_work_sync(&hdev->service_task); 2791 2792 mutex_destroy(&hdev->mbx_resp.mbx_mutex); 2793 } 2794 2795 static int hclgevf_init_msi(struct hclgevf_dev *hdev) 2796 { 2797 struct pci_dev *pdev = hdev->pdev; 2798 int vectors; 2799 int i; 2800 2801 if (hnae3_dev_roce_supported(hdev)) 2802 vectors = pci_alloc_irq_vectors(pdev, 2803 hdev->roce_base_msix_offset + 1, 2804 hdev->num_msi, 2805 PCI_IRQ_MSIX); 2806 else 2807 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM, 2808 hdev->num_msi, 2809 PCI_IRQ_MSI | PCI_IRQ_MSIX); 2810 2811 if (vectors < 0) { 2812 dev_err(&pdev->dev, 2813 "failed(%d) to allocate MSI/MSI-X vectors\n", 2814 vectors); 2815 return vectors; 2816 } 2817 if (vectors < hdev->num_msi) 2818 dev_warn(&hdev->pdev->dev, 2819 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n", 2820 hdev->num_msi, vectors); 2821 2822 hdev->num_msi = vectors; 2823 hdev->num_msi_left = vectors; 2824 2825 hdev->base_msi_vector = pdev->irq; 2826 hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset; 2827 2828 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi, 2829 sizeof(u16), GFP_KERNEL); 2830 if (!hdev->vector_status) { 2831 pci_free_irq_vectors(pdev); 2832 return -ENOMEM; 2833 } 2834 2835 for (i = 0; i < hdev->num_msi; i++) 2836 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT; 2837 2838 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi, 2839 sizeof(int), GFP_KERNEL); 2840 if (!hdev->vector_irq) { 2841 devm_kfree(&pdev->dev, hdev->vector_status); 2842 pci_free_irq_vectors(pdev); 2843 return -ENOMEM; 2844 } 2845 2846 return 0; 2847 } 2848 2849 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev) 2850 { 2851 struct pci_dev *pdev = hdev->pdev; 2852 2853 devm_kfree(&pdev->dev, hdev->vector_status); 2854 devm_kfree(&pdev->dev, hdev->vector_irq); 2855 pci_free_irq_vectors(pdev); 2856 } 2857 2858 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev) 2859 { 2860 int ret; 2861 2862 hclgevf_get_misc_vector(hdev); 2863 2864 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s", 2865 HCLGEVF_NAME, pci_name(hdev->pdev)); 2866 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle, 2867 0, hdev->misc_vector.name, hdev); 2868 if (ret) { 2869 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n", 2870 hdev->misc_vector.vector_irq); 2871 return ret; 2872 } 2873 2874 hclgevf_clear_event_cause(hdev, 0); 2875 2876 /* enable misc. vector(vector 0) */ 2877 hclgevf_enable_vector(&hdev->misc_vector, true); 2878 2879 return ret; 2880 } 2881 2882 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev) 2883 { 2884 /* disable misc vector(vector 0) */ 2885 hclgevf_enable_vector(&hdev->misc_vector, false); 2886 synchronize_irq(hdev->misc_vector.vector_irq); 2887 free_irq(hdev->misc_vector.vector_irq, hdev); 2888 hclgevf_free_vector(hdev, 0); 2889 } 2890 2891 static void hclgevf_info_show(struct hclgevf_dev *hdev) 2892 { 2893 struct device *dev = &hdev->pdev->dev; 2894 2895 dev_info(dev, "VF info begin:\n"); 2896 2897 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps); 2898 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc); 2899 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc); 2900 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport); 2901 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map); 2902 dev_info(dev, "PF media type of this VF: %u\n", 2903 hdev->hw.mac.media_type); 2904 2905 dev_info(dev, "VF info end.\n"); 2906 } 2907 2908 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev, 2909 struct hnae3_client *client) 2910 { 2911 struct hclgevf_dev *hdev = ae_dev->priv; 2912 int rst_cnt = hdev->rst_stats.rst_cnt; 2913 int ret; 2914 2915 ret = client->ops->init_instance(&hdev->nic); 2916 if (ret) 2917 return ret; 2918 2919 set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2920 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 2921 rst_cnt != hdev->rst_stats.rst_cnt) { 2922 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2923 2924 client->ops->uninit_instance(&hdev->nic, 0); 2925 return -EBUSY; 2926 } 2927 2928 hnae3_set_client_init_flag(client, ae_dev, 1); 2929 2930 if (netif_msg_drv(&hdev->nic)) 2931 hclgevf_info_show(hdev); 2932 2933 return 0; 2934 } 2935 2936 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev, 2937 struct hnae3_client *client) 2938 { 2939 struct hclgevf_dev *hdev = ae_dev->priv; 2940 int ret; 2941 2942 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client || 2943 !hdev->nic_client) 2944 return 0; 2945 2946 ret = hclgevf_init_roce_base_info(hdev); 2947 if (ret) 2948 return ret; 2949 2950 ret = client->ops->init_instance(&hdev->roce); 2951 if (ret) 2952 return ret; 2953 2954 set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state); 2955 hnae3_set_client_init_flag(client, ae_dev, 1); 2956 2957 return 0; 2958 } 2959 2960 static int hclgevf_init_client_instance(struct hnae3_client *client, 2961 struct hnae3_ae_dev *ae_dev) 2962 { 2963 struct hclgevf_dev *hdev = ae_dev->priv; 2964 int ret; 2965 2966 switch (client->type) { 2967 case HNAE3_CLIENT_KNIC: 2968 hdev->nic_client = client; 2969 hdev->nic.client = client; 2970 2971 ret = hclgevf_init_nic_client_instance(ae_dev, client); 2972 if (ret) 2973 goto clear_nic; 2974 2975 ret = hclgevf_init_roce_client_instance(ae_dev, 2976 hdev->roce_client); 2977 if (ret) 2978 goto clear_roce; 2979 2980 break; 2981 case HNAE3_CLIENT_ROCE: 2982 if (hnae3_dev_roce_supported(hdev)) { 2983 hdev->roce_client = client; 2984 hdev->roce.client = client; 2985 } 2986 2987 ret = hclgevf_init_roce_client_instance(ae_dev, client); 2988 if (ret) 2989 goto clear_roce; 2990 2991 break; 2992 default: 2993 return -EINVAL; 2994 } 2995 2996 return 0; 2997 2998 clear_nic: 2999 hdev->nic_client = NULL; 3000 hdev->nic.client = NULL; 3001 return ret; 3002 clear_roce: 3003 hdev->roce_client = NULL; 3004 hdev->roce.client = NULL; 3005 return ret; 3006 } 3007 3008 static void hclgevf_uninit_client_instance(struct hnae3_client *client, 3009 struct hnae3_ae_dev *ae_dev) 3010 { 3011 struct hclgevf_dev *hdev = ae_dev->priv; 3012 3013 /* un-init roce, if it exists */ 3014 if (hdev->roce_client) { 3015 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state); 3016 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0); 3017 hdev->roce_client = NULL; 3018 hdev->roce.client = NULL; 3019 } 3020 3021 /* un-init nic/unic, if this was not called by roce client */ 3022 if (client->ops->uninit_instance && hdev->nic_client && 3023 client->type != HNAE3_CLIENT_ROCE) { 3024 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 3025 3026 client->ops->uninit_instance(&hdev->nic, 0); 3027 hdev->nic_client = NULL; 3028 hdev->nic.client = NULL; 3029 } 3030 } 3031 3032 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev) 3033 { 3034 #define HCLGEVF_MEM_BAR 4 3035 3036 struct pci_dev *pdev = hdev->pdev; 3037 struct hclgevf_hw *hw = &hdev->hw; 3038 3039 /* for device does not have device memory, return directly */ 3040 if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR))) 3041 return 0; 3042 3043 hw->mem_base = devm_ioremap_wc(&pdev->dev, 3044 pci_resource_start(pdev, 3045 HCLGEVF_MEM_BAR), 3046 pci_resource_len(pdev, HCLGEVF_MEM_BAR)); 3047 if (!hw->mem_base) { 3048 dev_err(&pdev->dev, "failed to map device memory\n"); 3049 return -EFAULT; 3050 } 3051 3052 return 0; 3053 } 3054 3055 static int hclgevf_pci_init(struct hclgevf_dev *hdev) 3056 { 3057 struct pci_dev *pdev = hdev->pdev; 3058 struct hclgevf_hw *hw; 3059 int ret; 3060 3061 ret = pci_enable_device(pdev); 3062 if (ret) { 3063 dev_err(&pdev->dev, "failed to enable PCI device\n"); 3064 return ret; 3065 } 3066 3067 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3068 if (ret) { 3069 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting"); 3070 goto err_disable_device; 3071 } 3072 3073 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME); 3074 if (ret) { 3075 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret); 3076 goto err_disable_device; 3077 } 3078 3079 pci_set_master(pdev); 3080 hw = &hdev->hw; 3081 hw->hdev = hdev; 3082 hw->io_base = pci_iomap(pdev, 2, 0); 3083 if (!hw->io_base) { 3084 dev_err(&pdev->dev, "can't map configuration register space\n"); 3085 ret = -ENOMEM; 3086 goto err_clr_master; 3087 } 3088 3089 ret = hclgevf_dev_mem_map(hdev); 3090 if (ret) 3091 goto err_unmap_io_base; 3092 3093 return 0; 3094 3095 err_unmap_io_base: 3096 pci_iounmap(pdev, hdev->hw.io_base); 3097 err_clr_master: 3098 pci_clear_master(pdev); 3099 pci_release_regions(pdev); 3100 err_disable_device: 3101 pci_disable_device(pdev); 3102 3103 return ret; 3104 } 3105 3106 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev) 3107 { 3108 struct pci_dev *pdev = hdev->pdev; 3109 3110 if (hdev->hw.mem_base) 3111 devm_iounmap(&pdev->dev, hdev->hw.mem_base); 3112 3113 pci_iounmap(pdev, hdev->hw.io_base); 3114 pci_clear_master(pdev); 3115 pci_release_regions(pdev); 3116 pci_disable_device(pdev); 3117 } 3118 3119 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev) 3120 { 3121 struct hclgevf_query_res_cmd *req; 3122 struct hclgevf_desc desc; 3123 int ret; 3124 3125 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true); 3126 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 3127 if (ret) { 3128 dev_err(&hdev->pdev->dev, 3129 "query vf resource failed, ret = %d.\n", ret); 3130 return ret; 3131 } 3132 3133 req = (struct hclgevf_query_res_cmd *)desc.data; 3134 3135 if (hnae3_dev_roce_supported(hdev)) { 3136 hdev->roce_base_msix_offset = 3137 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee), 3138 HCLGEVF_MSIX_OFT_ROCEE_M, 3139 HCLGEVF_MSIX_OFT_ROCEE_S); 3140 hdev->num_roce_msix = 3141 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number), 3142 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); 3143 3144 /* nic's msix numbers is always equals to the roce's. */ 3145 hdev->num_nic_msix = hdev->num_roce_msix; 3146 3147 /* VF should have NIC vectors and Roce vectors, NIC vectors 3148 * are queued before Roce vectors. The offset is fixed to 64. 3149 */ 3150 hdev->num_msi = hdev->num_roce_msix + 3151 hdev->roce_base_msix_offset; 3152 } else { 3153 hdev->num_msi = 3154 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number), 3155 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); 3156 3157 hdev->num_nic_msix = hdev->num_msi; 3158 } 3159 3160 if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) { 3161 dev_err(&hdev->pdev->dev, 3162 "Just %u msi resources, not enough for vf(min:2).\n", 3163 hdev->num_nic_msix); 3164 return -EINVAL; 3165 } 3166 3167 return 0; 3168 } 3169 3170 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev) 3171 { 3172 #define HCLGEVF_MAX_NON_TSO_BD_NUM 8U 3173 3174 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 3175 3176 ae_dev->dev_specs.max_non_tso_bd_num = 3177 HCLGEVF_MAX_NON_TSO_BD_NUM; 3178 ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE; 3179 ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE; 3180 ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL; 3181 ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME; 3182 } 3183 3184 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev, 3185 struct hclgevf_desc *desc) 3186 { 3187 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 3188 struct hclgevf_dev_specs_0_cmd *req0; 3189 struct hclgevf_dev_specs_1_cmd *req1; 3190 3191 req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data; 3192 req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data; 3193 3194 ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num; 3195 ae_dev->dev_specs.rss_ind_tbl_size = 3196 le16_to_cpu(req0->rss_ind_tbl_size); 3197 ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max); 3198 ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size); 3199 ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl); 3200 ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size); 3201 } 3202 3203 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev) 3204 { 3205 struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs; 3206 3207 if (!dev_specs->max_non_tso_bd_num) 3208 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM; 3209 if (!dev_specs->rss_ind_tbl_size) 3210 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE; 3211 if (!dev_specs->rss_key_size) 3212 dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE; 3213 if (!dev_specs->max_int_gl) 3214 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL; 3215 if (!dev_specs->max_frm_size) 3216 dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME; 3217 } 3218 3219 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev) 3220 { 3221 struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM]; 3222 int ret; 3223 int i; 3224 3225 /* set default specifications as devices lower than version V3 do not 3226 * support querying specifications from firmware. 3227 */ 3228 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) { 3229 hclgevf_set_default_dev_specs(hdev); 3230 return 0; 3231 } 3232 3233 for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) { 3234 hclgevf_cmd_setup_basic_desc(&desc[i], 3235 HCLGEVF_OPC_QUERY_DEV_SPECS, true); 3236 desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT); 3237 } 3238 hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS, 3239 true); 3240 3241 ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM); 3242 if (ret) 3243 return ret; 3244 3245 hclgevf_parse_dev_specs(hdev, desc); 3246 hclgevf_check_dev_specs(hdev); 3247 3248 return 0; 3249 } 3250 3251 static int hclgevf_pci_reset(struct hclgevf_dev *hdev) 3252 { 3253 struct pci_dev *pdev = hdev->pdev; 3254 int ret = 0; 3255 3256 if (hdev->reset_type == HNAE3_VF_FULL_RESET && 3257 test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 3258 hclgevf_misc_irq_uninit(hdev); 3259 hclgevf_uninit_msi(hdev); 3260 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 3261 } 3262 3263 if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 3264 pci_set_master(pdev); 3265 ret = hclgevf_init_msi(hdev); 3266 if (ret) { 3267 dev_err(&pdev->dev, 3268 "failed(%d) to init MSI/MSI-X\n", ret); 3269 return ret; 3270 } 3271 3272 ret = hclgevf_misc_irq_init(hdev); 3273 if (ret) { 3274 hclgevf_uninit_msi(hdev); 3275 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n", 3276 ret); 3277 return ret; 3278 } 3279 3280 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 3281 } 3282 3283 return ret; 3284 } 3285 3286 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev) 3287 { 3288 struct hclge_vf_to_pf_msg send_msg; 3289 3290 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL, 3291 HCLGE_MBX_VPORT_LIST_CLEAR); 3292 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 3293 } 3294 3295 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev) 3296 { 3297 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev)) 3298 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1); 3299 } 3300 3301 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev) 3302 { 3303 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev)) 3304 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0); 3305 } 3306 3307 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev) 3308 { 3309 struct pci_dev *pdev = hdev->pdev; 3310 int ret; 3311 3312 ret = hclgevf_pci_reset(hdev); 3313 if (ret) { 3314 dev_err(&pdev->dev, "pci reset failed %d\n", ret); 3315 return ret; 3316 } 3317 3318 ret = hclgevf_cmd_init(hdev); 3319 if (ret) { 3320 dev_err(&pdev->dev, "cmd failed %d\n", ret); 3321 return ret; 3322 } 3323 3324 ret = hclgevf_rss_init_hw(hdev); 3325 if (ret) { 3326 dev_err(&hdev->pdev->dev, 3327 "failed(%d) to initialize RSS\n", ret); 3328 return ret; 3329 } 3330 3331 ret = hclgevf_config_gro(hdev); 3332 if (ret) 3333 return ret; 3334 3335 ret = hclgevf_init_vlan_config(hdev); 3336 if (ret) { 3337 dev_err(&hdev->pdev->dev, 3338 "failed(%d) to initialize VLAN config\n", ret); 3339 return ret; 3340 } 3341 3342 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 3343 3344 hclgevf_init_rxd_adv_layout(hdev); 3345 3346 dev_info(&hdev->pdev->dev, "Reset done\n"); 3347 3348 return 0; 3349 } 3350 3351 static int hclgevf_init_hdev(struct hclgevf_dev *hdev) 3352 { 3353 struct pci_dev *pdev = hdev->pdev; 3354 int ret; 3355 3356 ret = hclgevf_pci_init(hdev); 3357 if (ret) 3358 return ret; 3359 3360 ret = hclgevf_devlink_init(hdev); 3361 if (ret) 3362 goto err_devlink_init; 3363 3364 ret = hclgevf_cmd_queue_init(hdev); 3365 if (ret) 3366 goto err_cmd_queue_init; 3367 3368 ret = hclgevf_cmd_init(hdev); 3369 if (ret) 3370 goto err_cmd_init; 3371 3372 /* Get vf resource */ 3373 ret = hclgevf_query_vf_resource(hdev); 3374 if (ret) 3375 goto err_cmd_init; 3376 3377 ret = hclgevf_query_dev_specs(hdev); 3378 if (ret) { 3379 dev_err(&pdev->dev, 3380 "failed to query dev specifications, ret = %d\n", ret); 3381 goto err_cmd_init; 3382 } 3383 3384 ret = hclgevf_init_msi(hdev); 3385 if (ret) { 3386 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret); 3387 goto err_cmd_init; 3388 } 3389 3390 hclgevf_state_init(hdev); 3391 hdev->reset_level = HNAE3_VF_FUNC_RESET; 3392 hdev->reset_type = HNAE3_NONE_RESET; 3393 3394 ret = hclgevf_misc_irq_init(hdev); 3395 if (ret) 3396 goto err_misc_irq_init; 3397 3398 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 3399 3400 ret = hclgevf_configure(hdev); 3401 if (ret) { 3402 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret); 3403 goto err_config; 3404 } 3405 3406 ret = hclgevf_alloc_tqps(hdev); 3407 if (ret) { 3408 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret); 3409 goto err_config; 3410 } 3411 3412 ret = hclgevf_set_handle_info(hdev); 3413 if (ret) 3414 goto err_config; 3415 3416 ret = hclgevf_config_gro(hdev); 3417 if (ret) 3418 goto err_config; 3419 3420 /* Initialize RSS for this VF */ 3421 ret = hclgevf_rss_init_cfg(hdev); 3422 if (ret) { 3423 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret); 3424 goto err_config; 3425 } 3426 3427 ret = hclgevf_rss_init_hw(hdev); 3428 if (ret) { 3429 dev_err(&hdev->pdev->dev, 3430 "failed(%d) to initialize RSS\n", ret); 3431 goto err_config; 3432 } 3433 3434 /* ensure vf tbl list as empty before init*/ 3435 ret = hclgevf_clear_vport_list(hdev); 3436 if (ret) { 3437 dev_err(&pdev->dev, 3438 "failed to clear tbl list configuration, ret = %d.\n", 3439 ret); 3440 goto err_config; 3441 } 3442 3443 ret = hclgevf_init_vlan_config(hdev); 3444 if (ret) { 3445 dev_err(&hdev->pdev->dev, 3446 "failed(%d) to initialize VLAN config\n", ret); 3447 goto err_config; 3448 } 3449 3450 hclgevf_init_rxd_adv_layout(hdev); 3451 3452 hdev->last_reset_time = jiffies; 3453 dev_info(&hdev->pdev->dev, "finished initializing %s driver\n", 3454 HCLGEVF_DRIVER_NAME); 3455 3456 hclgevf_task_schedule(hdev, round_jiffies_relative(HZ)); 3457 3458 return 0; 3459 3460 err_config: 3461 hclgevf_misc_irq_uninit(hdev); 3462 err_misc_irq_init: 3463 hclgevf_state_uninit(hdev); 3464 hclgevf_uninit_msi(hdev); 3465 err_cmd_init: 3466 hclgevf_cmd_uninit(hdev); 3467 err_cmd_queue_init: 3468 hclgevf_devlink_uninit(hdev); 3469 err_devlink_init: 3470 hclgevf_pci_uninit(hdev); 3471 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 3472 return ret; 3473 } 3474 3475 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev) 3476 { 3477 struct hclge_vf_to_pf_msg send_msg; 3478 3479 hclgevf_state_uninit(hdev); 3480 hclgevf_uninit_rxd_adv_layout(hdev); 3481 3482 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0); 3483 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 3484 3485 if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 3486 hclgevf_misc_irq_uninit(hdev); 3487 hclgevf_uninit_msi(hdev); 3488 } 3489 3490 hclgevf_cmd_uninit(hdev); 3491 hclgevf_devlink_uninit(hdev); 3492 hclgevf_pci_uninit(hdev); 3493 hclgevf_uninit_mac_list(hdev); 3494 } 3495 3496 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev) 3497 { 3498 struct pci_dev *pdev = ae_dev->pdev; 3499 int ret; 3500 3501 ret = hclgevf_alloc_hdev(ae_dev); 3502 if (ret) { 3503 dev_err(&pdev->dev, "hclge device allocation failed\n"); 3504 return ret; 3505 } 3506 3507 ret = hclgevf_init_hdev(ae_dev->priv); 3508 if (ret) { 3509 dev_err(&pdev->dev, "hclge device initialization failed\n"); 3510 return ret; 3511 } 3512 3513 return 0; 3514 } 3515 3516 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev) 3517 { 3518 struct hclgevf_dev *hdev = ae_dev->priv; 3519 3520 hclgevf_uninit_hdev(hdev); 3521 ae_dev->priv = NULL; 3522 } 3523 3524 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev) 3525 { 3526 struct hnae3_handle *nic = &hdev->nic; 3527 struct hnae3_knic_private_info *kinfo = &nic->kinfo; 3528 3529 return min_t(u32, hdev->rss_size_max, 3530 hdev->num_tqps / kinfo->tc_info.num_tc); 3531 } 3532 3533 /** 3534 * hclgevf_get_channels - Get the current channels enabled and max supported. 3535 * @handle: hardware information for network interface 3536 * @ch: ethtool channels structure 3537 * 3538 * We don't support separate tx and rx queues as channels. The other count 3539 * represents how many queues are being used for control. max_combined counts 3540 * how many queue pairs we can support. They may not be mapped 1 to 1 with 3541 * q_vectors since we support a lot more queue pairs than q_vectors. 3542 **/ 3543 static void hclgevf_get_channels(struct hnae3_handle *handle, 3544 struct ethtool_channels *ch) 3545 { 3546 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3547 3548 ch->max_combined = hclgevf_get_max_channels(hdev); 3549 ch->other_count = 0; 3550 ch->max_other = 0; 3551 ch->combined_count = handle->kinfo.rss_size; 3552 } 3553 3554 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle, 3555 u16 *alloc_tqps, u16 *max_rss_size) 3556 { 3557 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3558 3559 *alloc_tqps = hdev->num_tqps; 3560 *max_rss_size = hdev->rss_size_max; 3561 } 3562 3563 static void hclgevf_update_rss_size(struct hnae3_handle *handle, 3564 u32 new_tqps_num) 3565 { 3566 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 3567 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3568 u16 max_rss_size; 3569 3570 kinfo->req_rss_size = new_tqps_num; 3571 3572 max_rss_size = min_t(u16, hdev->rss_size_max, 3573 hdev->num_tqps / kinfo->tc_info.num_tc); 3574 3575 /* Use the user's configuration when it is not larger than 3576 * max_rss_size, otherwise, use the maximum specification value. 3577 */ 3578 if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size && 3579 kinfo->req_rss_size <= max_rss_size) 3580 kinfo->rss_size = kinfo->req_rss_size; 3581 else if (kinfo->rss_size > max_rss_size || 3582 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size)) 3583 kinfo->rss_size = max_rss_size; 3584 3585 kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size; 3586 } 3587 3588 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num, 3589 bool rxfh_configured) 3590 { 3591 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3592 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 3593 u16 cur_rss_size = kinfo->rss_size; 3594 u16 cur_tqps = kinfo->num_tqps; 3595 u32 *rss_indir; 3596 unsigned int i; 3597 int ret; 3598 3599 hclgevf_update_rss_size(handle, new_tqps_num); 3600 3601 ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size); 3602 if (ret) 3603 return ret; 3604 3605 /* RSS indirection table has been configured by user */ 3606 if (rxfh_configured) 3607 goto out; 3608 3609 /* Reinitializes the rss indirect table according to the new RSS size */ 3610 rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size, 3611 sizeof(u32), GFP_KERNEL); 3612 if (!rss_indir) 3613 return -ENOMEM; 3614 3615 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++) 3616 rss_indir[i] = i % kinfo->rss_size; 3617 3618 hdev->rss_cfg.rss_size = kinfo->rss_size; 3619 3620 ret = hclgevf_set_rss(handle, rss_indir, NULL, 0); 3621 if (ret) 3622 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n", 3623 ret); 3624 3625 kfree(rss_indir); 3626 3627 out: 3628 if (!ret) 3629 dev_info(&hdev->pdev->dev, 3630 "Channels changed, rss_size from %u to %u, tqps from %u to %u", 3631 cur_rss_size, kinfo->rss_size, 3632 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc); 3633 3634 return ret; 3635 } 3636 3637 static int hclgevf_get_status(struct hnae3_handle *handle) 3638 { 3639 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3640 3641 return hdev->hw.mac.link; 3642 } 3643 3644 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle, 3645 u8 *auto_neg, u32 *speed, 3646 u8 *duplex) 3647 { 3648 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3649 3650 if (speed) 3651 *speed = hdev->hw.mac.speed; 3652 if (duplex) 3653 *duplex = hdev->hw.mac.duplex; 3654 if (auto_neg) 3655 *auto_neg = AUTONEG_DISABLE; 3656 } 3657 3658 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed, 3659 u8 duplex) 3660 { 3661 hdev->hw.mac.speed = speed; 3662 hdev->hw.mac.duplex = duplex; 3663 } 3664 3665 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable) 3666 { 3667 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3668 bool gro_en_old = hdev->gro_en; 3669 int ret; 3670 3671 hdev->gro_en = enable; 3672 ret = hclgevf_config_gro(hdev); 3673 if (ret) 3674 hdev->gro_en = gro_en_old; 3675 3676 return ret; 3677 } 3678 3679 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type, 3680 u8 *module_type) 3681 { 3682 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3683 3684 if (media_type) 3685 *media_type = hdev->hw.mac.media_type; 3686 3687 if (module_type) 3688 *module_type = hdev->hw.mac.module_type; 3689 } 3690 3691 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle) 3692 { 3693 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3694 3695 return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING); 3696 } 3697 3698 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle) 3699 { 3700 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3701 3702 return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state); 3703 } 3704 3705 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle) 3706 { 3707 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3708 3709 return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 3710 } 3711 3712 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle) 3713 { 3714 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3715 3716 return hdev->rst_stats.hw_rst_done_cnt; 3717 } 3718 3719 static void hclgevf_get_link_mode(struct hnae3_handle *handle, 3720 unsigned long *supported, 3721 unsigned long *advertising) 3722 { 3723 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3724 3725 *supported = hdev->hw.mac.supported; 3726 *advertising = hdev->hw.mac.advertising; 3727 } 3728 3729 #define MAX_SEPARATE_NUM 4 3730 #define SEPARATOR_VALUE 0xFDFCFBFA 3731 #define REG_NUM_PER_LINE 4 3732 #define REG_LEN_PER_LINE (REG_NUM_PER_LINE * sizeof(u32)) 3733 3734 static int hclgevf_get_regs_len(struct hnae3_handle *handle) 3735 { 3736 int cmdq_lines, common_lines, ring_lines, tqp_intr_lines; 3737 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3738 3739 cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1; 3740 common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1; 3741 ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1; 3742 tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1; 3743 3744 return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps + 3745 tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE; 3746 } 3747 3748 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version, 3749 void *data) 3750 { 3751 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3752 int i, j, reg_um, separator_num; 3753 u32 *reg = data; 3754 3755 *version = hdev->fw_version; 3756 3757 /* fetching per-VF registers values from VF PCIe register space */ 3758 reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32); 3759 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3760 for (i = 0; i < reg_um; i++) 3761 *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]); 3762 for (i = 0; i < separator_num; i++) 3763 *reg++ = SEPARATOR_VALUE; 3764 3765 reg_um = sizeof(common_reg_addr_list) / sizeof(u32); 3766 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3767 for (i = 0; i < reg_um; i++) 3768 *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]); 3769 for (i = 0; i < separator_num; i++) 3770 *reg++ = SEPARATOR_VALUE; 3771 3772 reg_um = sizeof(ring_reg_addr_list) / sizeof(u32); 3773 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3774 for (j = 0; j < hdev->num_tqps; j++) { 3775 for (i = 0; i < reg_um; i++) 3776 *reg++ = hclgevf_read_dev(&hdev->hw, 3777 ring_reg_addr_list[i] + 3778 0x200 * j); 3779 for (i = 0; i < separator_num; i++) 3780 *reg++ = SEPARATOR_VALUE; 3781 } 3782 3783 reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32); 3784 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3785 for (j = 0; j < hdev->num_msi_used - 1; j++) { 3786 for (i = 0; i < reg_um; i++) 3787 *reg++ = hclgevf_read_dev(&hdev->hw, 3788 tqp_intr_reg_addr_list[i] + 3789 4 * j); 3790 for (i = 0; i < separator_num; i++) 3791 *reg++ = SEPARATOR_VALUE; 3792 } 3793 } 3794 3795 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state, 3796 u8 *port_base_vlan_info, u8 data_size) 3797 { 3798 struct hnae3_handle *nic = &hdev->nic; 3799 struct hclge_vf_to_pf_msg send_msg; 3800 int ret; 3801 3802 rtnl_lock(); 3803 3804 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 3805 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) { 3806 dev_warn(&hdev->pdev->dev, 3807 "is resetting when updating port based vlan info\n"); 3808 rtnl_unlock(); 3809 return; 3810 } 3811 3812 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); 3813 if (ret) { 3814 rtnl_unlock(); 3815 return; 3816 } 3817 3818 /* send msg to PF and wait update port based vlan info */ 3819 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 3820 HCLGE_MBX_PORT_BASE_VLAN_CFG); 3821 memcpy(send_msg.data, port_base_vlan_info, data_size); 3822 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 3823 if (!ret) { 3824 if (state == HNAE3_PORT_BASE_VLAN_DISABLE) 3825 nic->port_base_vlan_state = state; 3826 else 3827 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE; 3828 } 3829 3830 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); 3831 rtnl_unlock(); 3832 } 3833 3834 static const struct hnae3_ae_ops hclgevf_ops = { 3835 .init_ae_dev = hclgevf_init_ae_dev, 3836 .uninit_ae_dev = hclgevf_uninit_ae_dev, 3837 .reset_prepare = hclgevf_reset_prepare_general, 3838 .reset_done = hclgevf_reset_done, 3839 .init_client_instance = hclgevf_init_client_instance, 3840 .uninit_client_instance = hclgevf_uninit_client_instance, 3841 .start = hclgevf_ae_start, 3842 .stop = hclgevf_ae_stop, 3843 .client_start = hclgevf_client_start, 3844 .client_stop = hclgevf_client_stop, 3845 .map_ring_to_vector = hclgevf_map_ring_to_vector, 3846 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector, 3847 .get_vector = hclgevf_get_vector, 3848 .put_vector = hclgevf_put_vector, 3849 .reset_queue = hclgevf_reset_tqp, 3850 .get_mac_addr = hclgevf_get_mac_addr, 3851 .set_mac_addr = hclgevf_set_mac_addr, 3852 .add_uc_addr = hclgevf_add_uc_addr, 3853 .rm_uc_addr = hclgevf_rm_uc_addr, 3854 .add_mc_addr = hclgevf_add_mc_addr, 3855 .rm_mc_addr = hclgevf_rm_mc_addr, 3856 .get_stats = hclgevf_get_stats, 3857 .update_stats = hclgevf_update_stats, 3858 .get_strings = hclgevf_get_strings, 3859 .get_sset_count = hclgevf_get_sset_count, 3860 .get_rss_key_size = hclgevf_get_rss_key_size, 3861 .get_rss = hclgevf_get_rss, 3862 .set_rss = hclgevf_set_rss, 3863 .get_rss_tuple = hclgevf_get_rss_tuple, 3864 .set_rss_tuple = hclgevf_set_rss_tuple, 3865 .get_tc_size = hclgevf_get_tc_size, 3866 .get_fw_version = hclgevf_get_fw_version, 3867 .set_vlan_filter = hclgevf_set_vlan_filter, 3868 .enable_vlan_filter = hclgevf_enable_vlan_filter, 3869 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag, 3870 .reset_event = hclgevf_reset_event, 3871 .set_default_reset_request = hclgevf_set_def_reset_request, 3872 .set_channels = hclgevf_set_channels, 3873 .get_channels = hclgevf_get_channels, 3874 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info, 3875 .get_regs_len = hclgevf_get_regs_len, 3876 .get_regs = hclgevf_get_regs, 3877 .get_status = hclgevf_get_status, 3878 .get_ksettings_an_result = hclgevf_get_ksettings_an_result, 3879 .get_media_type = hclgevf_get_media_type, 3880 .get_hw_reset_stat = hclgevf_get_hw_reset_stat, 3881 .ae_dev_resetting = hclgevf_ae_dev_resetting, 3882 .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt, 3883 .set_gro_en = hclgevf_gro_en, 3884 .set_mtu = hclgevf_set_mtu, 3885 .get_global_queue_id = hclgevf_get_qid_global, 3886 .set_timer_task = hclgevf_set_timer_task, 3887 .get_link_mode = hclgevf_get_link_mode, 3888 .set_promisc_mode = hclgevf_set_promisc_mode, 3889 .request_update_promisc_mode = hclgevf_request_update_promisc_mode, 3890 .get_cmdq_stat = hclgevf_get_cmdq_stat, 3891 }; 3892 3893 static struct hnae3_ae_algo ae_algovf = { 3894 .ops = &hclgevf_ops, 3895 .pdev_id_table = ae_algovf_pci_tbl, 3896 }; 3897 3898 static int hclgevf_init(void) 3899 { 3900 pr_info("%s is initializing\n", HCLGEVF_NAME); 3901 3902 hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME); 3903 if (!hclgevf_wq) { 3904 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME); 3905 return -ENOMEM; 3906 } 3907 3908 hnae3_register_ae_algo(&ae_algovf); 3909 3910 return 0; 3911 } 3912 3913 static void hclgevf_exit(void) 3914 { 3915 hnae3_unregister_ae_algo(&ae_algovf); 3916 destroy_workqueue(hclgevf_wq); 3917 } 3918 module_init(hclgevf_init); 3919 module_exit(hclgevf_exit); 3920 3921 MODULE_LICENSE("GPL"); 3922 MODULE_AUTHOR("Huawei Tech. Co., Ltd."); 3923 MODULE_DESCRIPTION("HCLGEVF Driver"); 3924 MODULE_VERSION(HCLGEVF_MOD_VERSION); 3925