xref: /openbmc/linux/drivers/net/ethernet/hisilicon/hns3/hns3vf/hclgevf_main.c (revision b4646da0573fae9dfa2b8f1f10936cb6eedd7230)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 #include "hclgevf_devlink.h"
12 #include "hclge_comm_rss.h"
13 
14 #define HCLGEVF_NAME	"hclgevf"
15 
16 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
17 
18 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
19 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
20 				  unsigned long delay);
21 
22 static struct hnae3_ae_algo ae_algovf;
23 
24 static struct workqueue_struct *hclgevf_wq;
25 
26 static const struct pci_device_id ae_algovf_pci_tbl[] = {
27 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
28 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
29 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
30 	/* required last entry */
31 	{0, }
32 };
33 
34 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
35 
36 static const u32 cmdq_reg_addr_list[] = {HCLGE_COMM_NIC_CSQ_BASEADDR_L_REG,
37 					 HCLGE_COMM_NIC_CSQ_BASEADDR_H_REG,
38 					 HCLGE_COMM_NIC_CSQ_DEPTH_REG,
39 					 HCLGE_COMM_NIC_CSQ_TAIL_REG,
40 					 HCLGE_COMM_NIC_CSQ_HEAD_REG,
41 					 HCLGE_COMM_NIC_CRQ_BASEADDR_L_REG,
42 					 HCLGE_COMM_NIC_CRQ_BASEADDR_H_REG,
43 					 HCLGE_COMM_NIC_CRQ_DEPTH_REG,
44 					 HCLGE_COMM_NIC_CRQ_TAIL_REG,
45 					 HCLGE_COMM_NIC_CRQ_HEAD_REG,
46 					 HCLGE_COMM_VECTOR0_CMDQ_SRC_REG,
47 					 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG,
48 					 HCLGE_COMM_CMDQ_INTR_EN_REG,
49 					 HCLGE_COMM_CMDQ_INTR_GEN_REG};
50 
51 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
52 					   HCLGEVF_RST_ING,
53 					   HCLGEVF_GRO_EN_REG};
54 
55 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
56 					 HCLGEVF_RING_RX_ADDR_H_REG,
57 					 HCLGEVF_RING_RX_BD_NUM_REG,
58 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
59 					 HCLGEVF_RING_RX_MERGE_EN_REG,
60 					 HCLGEVF_RING_RX_TAIL_REG,
61 					 HCLGEVF_RING_RX_HEAD_REG,
62 					 HCLGEVF_RING_RX_FBD_NUM_REG,
63 					 HCLGEVF_RING_RX_OFFSET_REG,
64 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
65 					 HCLGEVF_RING_RX_STASH_REG,
66 					 HCLGEVF_RING_RX_BD_ERR_REG,
67 					 HCLGEVF_RING_TX_ADDR_L_REG,
68 					 HCLGEVF_RING_TX_ADDR_H_REG,
69 					 HCLGEVF_RING_TX_BD_NUM_REG,
70 					 HCLGEVF_RING_TX_PRIORITY_REG,
71 					 HCLGEVF_RING_TX_TC_REG,
72 					 HCLGEVF_RING_TX_MERGE_EN_REG,
73 					 HCLGEVF_RING_TX_TAIL_REG,
74 					 HCLGEVF_RING_TX_HEAD_REG,
75 					 HCLGEVF_RING_TX_FBD_NUM_REG,
76 					 HCLGEVF_RING_TX_OFFSET_REG,
77 					 HCLGEVF_RING_TX_EBD_NUM_REG,
78 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
79 					 HCLGEVF_RING_TX_BD_ERR_REG,
80 					 HCLGEVF_RING_EN_REG};
81 
82 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
83 					     HCLGEVF_TQP_INTR_GL0_REG,
84 					     HCLGEVF_TQP_INTR_GL1_REG,
85 					     HCLGEVF_TQP_INTR_GL2_REG,
86 					     HCLGEVF_TQP_INTR_RL_REG};
87 
88 /* hclgevf_cmd_send - send command to command queue
89  * @hw: pointer to the hw struct
90  * @desc: prefilled descriptor for describing the command
91  * @num : the number of descriptors to be sent
92  *
93  * This is the main send command for command queue, it
94  * sends the queue, cleans the queue, etc
95  */
96 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num)
97 {
98 	return hclge_comm_cmd_send(&hw->hw, desc, num);
99 }
100 
101 void hclgevf_arq_init(struct hclgevf_dev *hdev)
102 {
103 	struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq;
104 
105 	spin_lock(&cmdq->crq.lock);
106 	/* initialize the pointers of async rx queue of mailbox */
107 	hdev->arq.hdev = hdev;
108 	hdev->arq.head = 0;
109 	hdev->arq.tail = 0;
110 	atomic_set(&hdev->arq.count, 0);
111 	spin_unlock(&cmdq->crq.lock);
112 }
113 
114 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
115 {
116 	if (!handle->client)
117 		return container_of(handle, struct hclgevf_dev, nic);
118 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
119 		return container_of(handle, struct hclgevf_dev, roce);
120 	else
121 		return container_of(handle, struct hclgevf_dev, nic);
122 }
123 
124 static void hclgevf_update_stats(struct hnae3_handle *handle,
125 				 struct net_device_stats *net_stats)
126 {
127 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
128 	int status;
129 
130 	status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
131 	if (status)
132 		dev_err(&hdev->pdev->dev,
133 			"VF update of TQPS stats fail, status = %d.\n",
134 			status);
135 }
136 
137 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
138 {
139 	if (strset == ETH_SS_TEST)
140 		return -EOPNOTSUPP;
141 	else if (strset == ETH_SS_STATS)
142 		return hclge_comm_tqps_get_sset_count(handle);
143 
144 	return 0;
145 }
146 
147 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
148 				u8 *data)
149 {
150 	u8 *p = (char *)data;
151 
152 	if (strset == ETH_SS_STATS)
153 		p = hclge_comm_tqps_get_strings(handle, p);
154 }
155 
156 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
157 {
158 	hclge_comm_tqps_get_stats(handle, data);
159 }
160 
161 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
162 				   u8 subcode)
163 {
164 	if (msg) {
165 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
166 		msg->code = code;
167 		msg->subcode = subcode;
168 	}
169 }
170 
171 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
172 {
173 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
174 	u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
175 	struct hclge_basic_info *basic_info;
176 	struct hclge_vf_to_pf_msg send_msg;
177 	unsigned long caps;
178 	int status;
179 
180 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
181 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
182 				      sizeof(resp_msg));
183 	if (status) {
184 		dev_err(&hdev->pdev->dev,
185 			"failed to get basic info from pf, ret = %d", status);
186 		return status;
187 	}
188 
189 	basic_info = (struct hclge_basic_info *)resp_msg;
190 
191 	hdev->hw_tc_map = basic_info->hw_tc_map;
192 	hdev->mbx_api_version = le16_to_cpu(basic_info->mbx_api_version);
193 	caps = le32_to_cpu(basic_info->pf_caps);
194 	if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
195 		set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
196 
197 	return 0;
198 }
199 
200 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
201 {
202 	struct hnae3_handle *nic = &hdev->nic;
203 	struct hclge_vf_to_pf_msg send_msg;
204 	u8 resp_msg;
205 	int ret;
206 
207 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
208 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
209 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
210 				   sizeof(u8));
211 	if (ret) {
212 		dev_err(&hdev->pdev->dev,
213 			"VF request to get port based vlan state failed %d",
214 			ret);
215 		return ret;
216 	}
217 
218 	nic->port_base_vlan_state = resp_msg;
219 
220 	return 0;
221 }
222 
223 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
224 {
225 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
226 
227 	struct hclge_mbx_vf_queue_info *queue_info;
228 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
229 	struct hclge_vf_to_pf_msg send_msg;
230 	int status;
231 
232 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
233 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
234 				      HCLGEVF_TQPS_RSS_INFO_LEN);
235 	if (status) {
236 		dev_err(&hdev->pdev->dev,
237 			"VF request to get tqp info from PF failed %d",
238 			status);
239 		return status;
240 	}
241 
242 	queue_info = (struct hclge_mbx_vf_queue_info *)resp_msg;
243 	hdev->num_tqps = le16_to_cpu(queue_info->num_tqps);
244 	hdev->rss_size_max = le16_to_cpu(queue_info->rss_size);
245 	hdev->rx_buf_len = le16_to_cpu(queue_info->rx_buf_len);
246 
247 	return 0;
248 }
249 
250 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
251 {
252 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
253 
254 	struct hclge_mbx_vf_queue_depth *queue_depth;
255 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
256 	struct hclge_vf_to_pf_msg send_msg;
257 	int ret;
258 
259 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
260 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
261 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
262 	if (ret) {
263 		dev_err(&hdev->pdev->dev,
264 			"VF request to get tqp depth info from PF failed %d",
265 			ret);
266 		return ret;
267 	}
268 
269 	queue_depth = (struct hclge_mbx_vf_queue_depth *)resp_msg;
270 	hdev->num_tx_desc = le16_to_cpu(queue_depth->num_tx_desc);
271 	hdev->num_rx_desc = le16_to_cpu(queue_depth->num_rx_desc);
272 
273 	return 0;
274 }
275 
276 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
277 {
278 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
279 	struct hclge_vf_to_pf_msg send_msg;
280 	u16 qid_in_pf = 0;
281 	u8 resp_data[2];
282 	int ret;
283 
284 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
285 	*(__le16 *)send_msg.data = cpu_to_le16(queue_id);
286 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
287 				   sizeof(resp_data));
288 	if (!ret)
289 		qid_in_pf = le16_to_cpu(*(__le16 *)resp_data);
290 
291 	return qid_in_pf;
292 }
293 
294 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
295 {
296 	struct hclge_vf_to_pf_msg send_msg;
297 	u8 resp_msg[2];
298 	int ret;
299 
300 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
301 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
302 				   sizeof(resp_msg));
303 	if (ret) {
304 		dev_err(&hdev->pdev->dev,
305 			"VF request to get the pf port media type failed %d",
306 			ret);
307 		return ret;
308 	}
309 
310 	hdev->hw.mac.media_type = resp_msg[0];
311 	hdev->hw.mac.module_type = resp_msg[1];
312 
313 	return 0;
314 }
315 
316 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
317 {
318 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
319 	struct hclge_comm_tqp *tqp;
320 	int i;
321 
322 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
323 				  sizeof(struct hclge_comm_tqp), GFP_KERNEL);
324 	if (!hdev->htqp)
325 		return -ENOMEM;
326 
327 	tqp = hdev->htqp;
328 
329 	for (i = 0; i < hdev->num_tqps; i++) {
330 		tqp->dev = &hdev->pdev->dev;
331 		tqp->index = i;
332 
333 		tqp->q.ae_algo = &ae_algovf;
334 		tqp->q.buf_size = hdev->rx_buf_len;
335 		tqp->q.tx_desc_num = hdev->num_tx_desc;
336 		tqp->q.rx_desc_num = hdev->num_rx_desc;
337 
338 		/* need an extended offset to configure queues >=
339 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
340 		 */
341 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
342 			tqp->q.io_base = hdev->hw.hw.io_base +
343 					 HCLGEVF_TQP_REG_OFFSET +
344 					 i * HCLGEVF_TQP_REG_SIZE;
345 		else
346 			tqp->q.io_base = hdev->hw.hw.io_base +
347 					 HCLGEVF_TQP_REG_OFFSET +
348 					 HCLGEVF_TQP_EXT_REG_OFFSET +
349 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
350 					 HCLGEVF_TQP_REG_SIZE;
351 
352 		/* when device supports tx push and has device memory,
353 		 * the queue can execute push mode or doorbell mode on
354 		 * device memory.
355 		 */
356 		if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
357 			tqp->q.mem_base = hdev->hw.hw.mem_base +
358 					  HCLGEVF_TQP_MEM_OFFSET(hdev, i);
359 
360 		tqp++;
361 	}
362 
363 	return 0;
364 }
365 
366 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
367 {
368 	struct hnae3_handle *nic = &hdev->nic;
369 	struct hnae3_knic_private_info *kinfo;
370 	u16 new_tqps = hdev->num_tqps;
371 	unsigned int i;
372 	u8 num_tc = 0;
373 
374 	kinfo = &nic->kinfo;
375 	kinfo->num_tx_desc = hdev->num_tx_desc;
376 	kinfo->num_rx_desc = hdev->num_rx_desc;
377 	kinfo->rx_buf_len = hdev->rx_buf_len;
378 	for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++)
379 		if (hdev->hw_tc_map & BIT(i))
380 			num_tc++;
381 
382 	num_tc = num_tc ? num_tc : 1;
383 	kinfo->tc_info.num_tc = num_tc;
384 	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
385 	new_tqps = kinfo->rss_size * num_tc;
386 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
387 
388 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
389 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
390 	if (!kinfo->tqp)
391 		return -ENOMEM;
392 
393 	for (i = 0; i < kinfo->num_tqps; i++) {
394 		hdev->htqp[i].q.handle = &hdev->nic;
395 		hdev->htqp[i].q.tqp_index = i;
396 		kinfo->tqp[i] = &hdev->htqp[i].q;
397 	}
398 
399 	/* after init the max rss_size and tqps, adjust the default tqp numbers
400 	 * and rss size with the actual vector numbers
401 	 */
402 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
403 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
404 				kinfo->rss_size);
405 
406 	return 0;
407 }
408 
409 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
410 {
411 	struct hclge_vf_to_pf_msg send_msg;
412 	int status;
413 
414 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
415 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
416 	if (status)
417 		dev_err(&hdev->pdev->dev,
418 			"VF failed to fetch link status(%d) from PF", status);
419 }
420 
421 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
422 {
423 	struct hnae3_handle *rhandle = &hdev->roce;
424 	struct hnae3_handle *handle = &hdev->nic;
425 	struct hnae3_client *rclient;
426 	struct hnae3_client *client;
427 
428 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
429 		return;
430 
431 	client = handle->client;
432 	rclient = hdev->roce_client;
433 
434 	link_state =
435 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
436 	if (link_state != hdev->hw.mac.link) {
437 		hdev->hw.mac.link = link_state;
438 		client->ops->link_status_change(handle, !!link_state);
439 		if (rclient && rclient->ops->link_status_change)
440 			rclient->ops->link_status_change(rhandle, !!link_state);
441 	}
442 
443 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
444 }
445 
446 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
447 {
448 #define HCLGEVF_ADVERTISING	0
449 #define HCLGEVF_SUPPORTED	1
450 
451 	struct hclge_vf_to_pf_msg send_msg;
452 
453 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
454 	send_msg.data[0] = HCLGEVF_ADVERTISING;
455 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
456 	send_msg.data[0] = HCLGEVF_SUPPORTED;
457 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
458 }
459 
460 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
461 {
462 	struct hnae3_handle *nic = &hdev->nic;
463 	int ret;
464 
465 	nic->ae_algo = &ae_algovf;
466 	nic->pdev = hdev->pdev;
467 	nic->numa_node_mask = hdev->numa_node_mask;
468 	nic->flags |= HNAE3_SUPPORT_VF;
469 	nic->kinfo.io_base = hdev->hw.hw.io_base;
470 
471 	ret = hclgevf_knic_setup(hdev);
472 	if (ret)
473 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
474 			ret);
475 	return ret;
476 }
477 
478 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
479 {
480 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
481 		dev_warn(&hdev->pdev->dev,
482 			 "vector(vector_id %d) has been freed.\n", vector_id);
483 		return;
484 	}
485 
486 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
487 	hdev->num_msi_left += 1;
488 	hdev->num_msi_used -= 1;
489 }
490 
491 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
492 			      struct hnae3_vector_info *vector_info)
493 {
494 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
495 	struct hnae3_vector_info *vector = vector_info;
496 	int alloc = 0;
497 	int i, j;
498 
499 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
500 	vector_num = min(hdev->num_msi_left, vector_num);
501 
502 	for (j = 0; j < vector_num; j++) {
503 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
504 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
505 				vector->vector = pci_irq_vector(hdev->pdev, i);
506 				vector->io_addr = hdev->hw.hw.io_base +
507 					HCLGEVF_VECTOR_REG_BASE +
508 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
509 				hdev->vector_status[i] = 0;
510 				hdev->vector_irq[i] = vector->vector;
511 
512 				vector++;
513 				alloc++;
514 
515 				break;
516 			}
517 		}
518 	}
519 	hdev->num_msi_left -= alloc;
520 	hdev->num_msi_used += alloc;
521 
522 	return alloc;
523 }
524 
525 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
526 {
527 	int i;
528 
529 	for (i = 0; i < hdev->num_msi; i++)
530 		if (vector == hdev->vector_irq[i])
531 			return i;
532 
533 	return -EINVAL;
534 }
535 
536 /* for revision 0x20, vf shared the same rss config with pf */
537 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
538 {
539 #define HCLGEVF_RSS_MBX_RESP_LEN	8
540 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
541 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
542 	struct hclge_vf_to_pf_msg send_msg;
543 	u16 msg_num, hash_key_index;
544 	u8 index;
545 	int ret;
546 
547 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
548 	msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
549 			HCLGEVF_RSS_MBX_RESP_LEN;
550 	for (index = 0; index < msg_num; index++) {
551 		send_msg.data[0] = index;
552 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
553 					   HCLGEVF_RSS_MBX_RESP_LEN);
554 		if (ret) {
555 			dev_err(&hdev->pdev->dev,
556 				"VF get rss hash key from PF failed, ret=%d",
557 				ret);
558 			return ret;
559 		}
560 
561 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
562 		if (index == msg_num - 1)
563 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
564 			       &resp_msg[0],
565 			       HCLGE_COMM_RSS_KEY_SIZE - hash_key_index);
566 		else
567 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
568 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
569 	}
570 
571 	return 0;
572 }
573 
574 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
575 			   u8 *hfunc)
576 {
577 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
578 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
579 	int ret;
580 
581 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
582 		hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
583 	} else {
584 		if (hfunc)
585 			*hfunc = ETH_RSS_HASH_TOP;
586 		if (key) {
587 			ret = hclgevf_get_rss_hash_key(hdev);
588 			if (ret)
589 				return ret;
590 			memcpy(key, rss_cfg->rss_hash_key,
591 			       HCLGE_COMM_RSS_KEY_SIZE);
592 		}
593 	}
594 
595 	hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
596 				     hdev->ae_dev->dev_specs.rss_ind_tbl_size);
597 
598 	return 0;
599 }
600 
601 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
602 			   const u8 *key, const u8 hfunc)
603 {
604 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
605 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
606 	int ret, i;
607 
608 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
609 		ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key,
610 						  hfunc);
611 		if (ret)
612 			return ret;
613 	}
614 
615 	/* update the shadow RSS table with user specified qids */
616 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
617 		rss_cfg->rss_indirection_tbl[i] = indir[i];
618 
619 	/* update the hardware */
620 	return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
621 					      rss_cfg->rss_indirection_tbl);
622 }
623 
624 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
625 				 struct ethtool_rxnfc *nfc)
626 {
627 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
628 	int ret;
629 
630 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
631 		return -EOPNOTSUPP;
632 
633 	ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
634 				       &hdev->rss_cfg, nfc);
635 	if (ret)
636 		dev_err(&hdev->pdev->dev,
637 		"failed to set rss tuple, ret = %d.\n", ret);
638 
639 	return ret;
640 }
641 
642 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
643 				 struct ethtool_rxnfc *nfc)
644 {
645 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
646 	u8 tuple_sets;
647 	int ret;
648 
649 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
650 		return -EOPNOTSUPP;
651 
652 	nfc->data = 0;
653 
654 	ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type,
655 				       &tuple_sets);
656 	if (ret || !tuple_sets)
657 		return ret;
658 
659 	nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
660 
661 	return 0;
662 }
663 
664 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
665 {
666 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
667 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
668 
669 	return rss_cfg->rss_size;
670 }
671 
672 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
673 				       int vector_id,
674 				       struct hnae3_ring_chain_node *ring_chain)
675 {
676 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
677 	struct hclge_vf_to_pf_msg send_msg;
678 	struct hnae3_ring_chain_node *node;
679 	int status;
680 	int i = 0;
681 
682 	memset(&send_msg, 0, sizeof(send_msg));
683 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
684 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
685 	send_msg.vector_id = vector_id;
686 
687 	for (node = ring_chain; node; node = node->next) {
688 		send_msg.param[i].ring_type =
689 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
690 
691 		send_msg.param[i].tqp_index = node->tqp_index;
692 		send_msg.param[i].int_gl_index =
693 					hnae3_get_field(node->int_gl_idx,
694 							HNAE3_RING_GL_IDX_M,
695 							HNAE3_RING_GL_IDX_S);
696 
697 		i++;
698 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
699 			send_msg.ring_num = i;
700 
701 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
702 						      NULL, 0);
703 			if (status) {
704 				dev_err(&hdev->pdev->dev,
705 					"Map TQP fail, status is %d.\n",
706 					status);
707 				return status;
708 			}
709 			i = 0;
710 		}
711 	}
712 
713 	return 0;
714 }
715 
716 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
717 				      struct hnae3_ring_chain_node *ring_chain)
718 {
719 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
720 	int vector_id;
721 
722 	vector_id = hclgevf_get_vector_index(hdev, vector);
723 	if (vector_id < 0) {
724 		dev_err(&handle->pdev->dev,
725 			"Get vector index fail. ret =%d\n", vector_id);
726 		return vector_id;
727 	}
728 
729 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
730 }
731 
732 static int hclgevf_unmap_ring_from_vector(
733 				struct hnae3_handle *handle,
734 				int vector,
735 				struct hnae3_ring_chain_node *ring_chain)
736 {
737 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
738 	int ret, vector_id;
739 
740 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
741 		return 0;
742 
743 	vector_id = hclgevf_get_vector_index(hdev, vector);
744 	if (vector_id < 0) {
745 		dev_err(&handle->pdev->dev,
746 			"Get vector index fail. ret =%d\n", vector_id);
747 		return vector_id;
748 	}
749 
750 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
751 	if (ret)
752 		dev_err(&handle->pdev->dev,
753 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
754 			vector_id,
755 			ret);
756 
757 	return ret;
758 }
759 
760 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
761 {
762 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
763 	int vector_id;
764 
765 	vector_id = hclgevf_get_vector_index(hdev, vector);
766 	if (vector_id < 0) {
767 		dev_err(&handle->pdev->dev,
768 			"hclgevf_put_vector get vector index fail. ret =%d\n",
769 			vector_id);
770 		return vector_id;
771 	}
772 
773 	hclgevf_free_vector(hdev, vector_id);
774 
775 	return 0;
776 }
777 
778 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
779 					bool en_uc_pmc, bool en_mc_pmc,
780 					bool en_bc_pmc)
781 {
782 	struct hnae3_handle *handle = &hdev->nic;
783 	struct hclge_vf_to_pf_msg send_msg;
784 	int ret;
785 
786 	memset(&send_msg, 0, sizeof(send_msg));
787 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
788 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
789 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
790 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
791 	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
792 					     &handle->priv_flags) ? 1 : 0;
793 
794 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
795 	if (ret)
796 		dev_err(&hdev->pdev->dev,
797 			"Set promisc mode fail, status is %d.\n", ret);
798 
799 	return ret;
800 }
801 
802 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
803 				    bool en_mc_pmc)
804 {
805 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
806 	bool en_bc_pmc;
807 
808 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
809 
810 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
811 					    en_bc_pmc);
812 }
813 
814 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
815 {
816 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
817 
818 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
819 	hclgevf_task_schedule(hdev, 0);
820 }
821 
822 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
823 {
824 	struct hnae3_handle *handle = &hdev->nic;
825 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
826 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
827 	int ret;
828 
829 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
830 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
831 		if (!ret)
832 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
833 	}
834 }
835 
836 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
837 				       u16 stream_id, bool enable)
838 {
839 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
840 	struct hclge_desc desc;
841 
842 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
843 
844 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false);
845 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
846 	req->stream_id = cpu_to_le16(stream_id);
847 	if (enable)
848 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
849 
850 	return hclgevf_cmd_send(&hdev->hw, &desc, 1);
851 }
852 
853 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
854 {
855 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
856 	int ret;
857 	u16 i;
858 
859 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
860 		ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
861 		if (ret)
862 			return ret;
863 	}
864 
865 	return 0;
866 }
867 
868 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
869 {
870 	struct hclge_vf_to_pf_msg send_msg;
871 	u8 host_mac[ETH_ALEN];
872 	int status;
873 
874 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
875 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
876 				      ETH_ALEN);
877 	if (status) {
878 		dev_err(&hdev->pdev->dev,
879 			"fail to get VF MAC from host %d", status);
880 		return status;
881 	}
882 
883 	ether_addr_copy(p, host_mac);
884 
885 	return 0;
886 }
887 
888 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
889 {
890 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
891 	u8 host_mac_addr[ETH_ALEN];
892 
893 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
894 		return;
895 
896 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
897 	if (hdev->has_pf_mac)
898 		ether_addr_copy(p, host_mac_addr);
899 	else
900 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
901 }
902 
903 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p,
904 				bool is_first)
905 {
906 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
907 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
908 	struct hclge_vf_to_pf_msg send_msg;
909 	u8 *new_mac_addr = (u8 *)p;
910 	int status;
911 
912 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
913 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
914 	ether_addr_copy(send_msg.data, new_mac_addr);
915 	if (is_first && !hdev->has_pf_mac)
916 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
917 	else
918 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
919 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
920 	if (!status)
921 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
922 
923 	return status;
924 }
925 
926 static struct hclgevf_mac_addr_node *
927 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
928 {
929 	struct hclgevf_mac_addr_node *mac_node, *tmp;
930 
931 	list_for_each_entry_safe(mac_node, tmp, list, node)
932 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
933 			return mac_node;
934 
935 	return NULL;
936 }
937 
938 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
939 				    enum HCLGEVF_MAC_NODE_STATE state)
940 {
941 	switch (state) {
942 	/* from set_rx_mode or tmp_add_list */
943 	case HCLGEVF_MAC_TO_ADD:
944 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
945 			mac_node->state = HCLGEVF_MAC_ACTIVE;
946 		break;
947 	/* only from set_rx_mode */
948 	case HCLGEVF_MAC_TO_DEL:
949 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
950 			list_del(&mac_node->node);
951 			kfree(mac_node);
952 		} else {
953 			mac_node->state = HCLGEVF_MAC_TO_DEL;
954 		}
955 		break;
956 	/* only from tmp_add_list, the mac_node->state won't be
957 	 * HCLGEVF_MAC_ACTIVE
958 	 */
959 	case HCLGEVF_MAC_ACTIVE:
960 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
961 			mac_node->state = HCLGEVF_MAC_ACTIVE;
962 		break;
963 	}
964 }
965 
966 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
967 				   enum HCLGEVF_MAC_NODE_STATE state,
968 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
969 				   const unsigned char *addr)
970 {
971 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
972 	struct hclgevf_mac_addr_node *mac_node;
973 	struct list_head *list;
974 
975 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
976 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
977 
978 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
979 
980 	/* if the mac addr is already in the mac list, no need to add a new
981 	 * one into it, just check the mac addr state, convert it to a new
982 	 * state, or just remove it, or do nothing.
983 	 */
984 	mac_node = hclgevf_find_mac_node(list, addr);
985 	if (mac_node) {
986 		hclgevf_update_mac_node(mac_node, state);
987 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
988 		return 0;
989 	}
990 	/* if this address is never added, unnecessary to delete */
991 	if (state == HCLGEVF_MAC_TO_DEL) {
992 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
993 		return -ENOENT;
994 	}
995 
996 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
997 	if (!mac_node) {
998 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
999 		return -ENOMEM;
1000 	}
1001 
1002 	mac_node->state = state;
1003 	ether_addr_copy(mac_node->mac_addr, addr);
1004 	list_add_tail(&mac_node->node, list);
1005 
1006 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1007 	return 0;
1008 }
1009 
1010 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1011 			       const unsigned char *addr)
1012 {
1013 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1014 				       HCLGEVF_MAC_ADDR_UC, addr);
1015 }
1016 
1017 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1018 			      const unsigned char *addr)
1019 {
1020 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1021 				       HCLGEVF_MAC_ADDR_UC, addr);
1022 }
1023 
1024 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1025 			       const unsigned char *addr)
1026 {
1027 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1028 				       HCLGEVF_MAC_ADDR_MC, addr);
1029 }
1030 
1031 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1032 			      const unsigned char *addr)
1033 {
1034 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1035 				       HCLGEVF_MAC_ADDR_MC, addr);
1036 }
1037 
1038 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1039 				    struct hclgevf_mac_addr_node *mac_node,
1040 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1041 {
1042 	struct hclge_vf_to_pf_msg send_msg;
1043 	u8 code, subcode;
1044 
1045 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1046 		code = HCLGE_MBX_SET_UNICAST;
1047 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1048 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1049 		else
1050 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1051 	} else {
1052 		code = HCLGE_MBX_SET_MULTICAST;
1053 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1054 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1055 		else
1056 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1057 	}
1058 
1059 	hclgevf_build_send_msg(&send_msg, code, subcode);
1060 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1061 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1062 }
1063 
1064 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1065 				    struct list_head *list,
1066 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1067 {
1068 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
1069 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1070 	int ret;
1071 
1072 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1073 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1074 		if  (ret) {
1075 			hnae3_format_mac_addr(format_mac_addr,
1076 					      mac_node->mac_addr);
1077 			dev_err(&hdev->pdev->dev,
1078 				"failed to configure mac %s, state = %d, ret = %d\n",
1079 				format_mac_addr, mac_node->state, ret);
1080 			return;
1081 		}
1082 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1083 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1084 		} else {
1085 			list_del(&mac_node->node);
1086 			kfree(mac_node);
1087 		}
1088 	}
1089 }
1090 
1091 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1092 				       struct list_head *mac_list)
1093 {
1094 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1095 
1096 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1097 		/* if the mac address from tmp_add_list is not in the
1098 		 * uc/mc_mac_list, it means have received a TO_DEL request
1099 		 * during the time window of sending mac config request to PF
1100 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1101 		 * then it will be removed at next time. If is TO_ADD, it means
1102 		 * send TO_ADD request failed, so just remove the mac node.
1103 		 */
1104 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1105 		if (new_node) {
1106 			hclgevf_update_mac_node(new_node, mac_node->state);
1107 			list_del(&mac_node->node);
1108 			kfree(mac_node);
1109 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1110 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1111 			list_move_tail(&mac_node->node, mac_list);
1112 		} else {
1113 			list_del(&mac_node->node);
1114 			kfree(mac_node);
1115 		}
1116 	}
1117 }
1118 
1119 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1120 				       struct list_head *mac_list)
1121 {
1122 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1123 
1124 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1125 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1126 		if (new_node) {
1127 			/* If the mac addr is exist in the mac list, it means
1128 			 * received a new request TO_ADD during the time window
1129 			 * of sending mac addr configurrequest to PF, so just
1130 			 * change the mac state to ACTIVE.
1131 			 */
1132 			new_node->state = HCLGEVF_MAC_ACTIVE;
1133 			list_del(&mac_node->node);
1134 			kfree(mac_node);
1135 		} else {
1136 			list_move_tail(&mac_node->node, mac_list);
1137 		}
1138 	}
1139 }
1140 
1141 static void hclgevf_clear_list(struct list_head *list)
1142 {
1143 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1144 
1145 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1146 		list_del(&mac_node->node);
1147 		kfree(mac_node);
1148 	}
1149 }
1150 
1151 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1152 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1153 {
1154 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1155 	struct list_head tmp_add_list, tmp_del_list;
1156 	struct list_head *list;
1157 
1158 	INIT_LIST_HEAD(&tmp_add_list);
1159 	INIT_LIST_HEAD(&tmp_del_list);
1160 
1161 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1162 	 * we can add/delete these mac addr outside the spin lock
1163 	 */
1164 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1165 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1166 
1167 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1168 
1169 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1170 		switch (mac_node->state) {
1171 		case HCLGEVF_MAC_TO_DEL:
1172 			list_move_tail(&mac_node->node, &tmp_del_list);
1173 			break;
1174 		case HCLGEVF_MAC_TO_ADD:
1175 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1176 			if (!new_node)
1177 				goto stop_traverse;
1178 
1179 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1180 			new_node->state = mac_node->state;
1181 			list_add_tail(&new_node->node, &tmp_add_list);
1182 			break;
1183 		default:
1184 			break;
1185 		}
1186 	}
1187 
1188 stop_traverse:
1189 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1190 
1191 	/* delete first, in order to get max mac table space for adding */
1192 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1193 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1194 
1195 	/* if some mac addresses were added/deleted fail, move back to the
1196 	 * mac_list, and retry at next time.
1197 	 */
1198 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1199 
1200 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1201 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1202 
1203 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1204 }
1205 
1206 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1207 {
1208 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1209 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1210 }
1211 
1212 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1213 {
1214 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1215 
1216 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1217 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1218 
1219 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1220 }
1221 
1222 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1223 {
1224 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1225 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1226 	struct hclge_vf_to_pf_msg send_msg;
1227 
1228 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1229 		return -EOPNOTSUPP;
1230 
1231 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1232 			       HCLGE_MBX_ENABLE_VLAN_FILTER);
1233 	send_msg.data[0] = enable ? 1 : 0;
1234 
1235 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1236 }
1237 
1238 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1239 				   __be16 proto, u16 vlan_id,
1240 				   bool is_kill)
1241 {
1242 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1243 	struct hclge_mbx_vlan_filter *vlan_filter;
1244 	struct hclge_vf_to_pf_msg send_msg;
1245 	int ret;
1246 
1247 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1248 		return -EINVAL;
1249 
1250 	if (proto != htons(ETH_P_8021Q))
1251 		return -EPROTONOSUPPORT;
1252 
1253 	/* When device is resetting or reset failed, firmware is unable to
1254 	 * handle mailbox. Just record the vlan id, and remove it after
1255 	 * reset finished.
1256 	 */
1257 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1258 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1259 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1260 		return -EBUSY;
1261 	}
1262 
1263 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1264 			       HCLGE_MBX_VLAN_FILTER);
1265 	vlan_filter = (struct hclge_mbx_vlan_filter *)send_msg.data;
1266 	vlan_filter->is_kill = is_kill;
1267 	vlan_filter->vlan_id = cpu_to_le16(vlan_id);
1268 	vlan_filter->proto = cpu_to_le16(be16_to_cpu(proto));
1269 
1270 	/* when remove hw vlan filter failed, record the vlan id,
1271 	 * and try to remove it from hw later, to be consistence
1272 	 * with stack.
1273 	 */
1274 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1275 	if (is_kill && ret)
1276 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1277 
1278 	return ret;
1279 }
1280 
1281 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1282 {
1283 #define HCLGEVF_MAX_SYNC_COUNT	60
1284 	struct hnae3_handle *handle = &hdev->nic;
1285 	int ret, sync_cnt = 0;
1286 	u16 vlan_id;
1287 
1288 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1289 	while (vlan_id != VLAN_N_VID) {
1290 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1291 					      vlan_id, true);
1292 		if (ret)
1293 			return;
1294 
1295 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1296 		sync_cnt++;
1297 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1298 			return;
1299 
1300 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1301 	}
1302 }
1303 
1304 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1305 {
1306 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1307 	struct hclge_vf_to_pf_msg send_msg;
1308 
1309 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1310 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1311 	send_msg.data[0] = enable ? 1 : 0;
1312 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1313 }
1314 
1315 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1316 {
1317 #define HCLGEVF_RESET_ALL_QUEUE_DONE	1U
1318 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1319 	struct hclge_vf_to_pf_msg send_msg;
1320 	u8 return_status = 0;
1321 	int ret;
1322 	u16 i;
1323 
1324 	/* disable vf queue before send queue reset msg to PF */
1325 	ret = hclgevf_tqp_enable(handle, false);
1326 	if (ret) {
1327 		dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1328 			ret);
1329 		return ret;
1330 	}
1331 
1332 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1333 
1334 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1335 				   sizeof(return_status));
1336 	if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1337 		return ret;
1338 
1339 	for (i = 1; i < handle->kinfo.num_tqps; i++) {
1340 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1341 		*(__le16 *)send_msg.data = cpu_to_le16(i);
1342 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1343 		if (ret)
1344 			return ret;
1345 	}
1346 
1347 	return 0;
1348 }
1349 
1350 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1351 {
1352 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1353 	struct hclge_mbx_mtu_info *mtu_info;
1354 	struct hclge_vf_to_pf_msg send_msg;
1355 
1356 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1357 	mtu_info = (struct hclge_mbx_mtu_info *)send_msg.data;
1358 	mtu_info->mtu = cpu_to_le32(new_mtu);
1359 
1360 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1361 }
1362 
1363 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1364 				 enum hnae3_reset_notify_type type)
1365 {
1366 	struct hnae3_client *client = hdev->nic_client;
1367 	struct hnae3_handle *handle = &hdev->nic;
1368 	int ret;
1369 
1370 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1371 	    !client)
1372 		return 0;
1373 
1374 	if (!client->ops->reset_notify)
1375 		return -EOPNOTSUPP;
1376 
1377 	ret = client->ops->reset_notify(handle, type);
1378 	if (ret)
1379 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1380 			type, ret);
1381 
1382 	return ret;
1383 }
1384 
1385 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1386 				      enum hnae3_reset_notify_type type)
1387 {
1388 	struct hnae3_client *client = hdev->roce_client;
1389 	struct hnae3_handle *handle = &hdev->roce;
1390 	int ret;
1391 
1392 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1393 		return 0;
1394 
1395 	if (!client->ops->reset_notify)
1396 		return -EOPNOTSUPP;
1397 
1398 	ret = client->ops->reset_notify(handle, type);
1399 	if (ret)
1400 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1401 			type, ret);
1402 	return ret;
1403 }
1404 
1405 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1406 {
1407 #define HCLGEVF_RESET_WAIT_US	20000
1408 #define HCLGEVF_RESET_WAIT_CNT	2000
1409 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1410 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1411 
1412 	u32 val;
1413 	int ret;
1414 
1415 	if (hdev->reset_type == HNAE3_VF_RESET)
1416 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1417 					 HCLGEVF_VF_RST_ING, val,
1418 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1419 					 HCLGEVF_RESET_WAIT_US,
1420 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1421 	else
1422 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1423 					 HCLGEVF_RST_ING, val,
1424 					 !(val & HCLGEVF_RST_ING_BITS),
1425 					 HCLGEVF_RESET_WAIT_US,
1426 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1427 
1428 	/* hardware completion status should be available by this time */
1429 	if (ret) {
1430 		dev_err(&hdev->pdev->dev,
1431 			"couldn't get reset done status from h/w, timeout!\n");
1432 		return ret;
1433 	}
1434 
1435 	/* we will wait a bit more to let reset of the stack to complete. This
1436 	 * might happen in case reset assertion was made by PF. Yes, this also
1437 	 * means we might end up waiting bit more even for VF reset.
1438 	 */
1439 	if (hdev->reset_type == HNAE3_VF_FULL_RESET)
1440 		msleep(5000);
1441 	else
1442 		msleep(500);
1443 
1444 	return 0;
1445 }
1446 
1447 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1448 {
1449 	u32 reg_val;
1450 
1451 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
1452 	if (enable)
1453 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1454 	else
1455 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1456 
1457 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG,
1458 			  reg_val);
1459 }
1460 
1461 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1462 {
1463 	int ret;
1464 
1465 	/* uninitialize the nic client */
1466 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1467 	if (ret)
1468 		return ret;
1469 
1470 	/* re-initialize the hclge device */
1471 	ret = hclgevf_reset_hdev(hdev);
1472 	if (ret) {
1473 		dev_err(&hdev->pdev->dev,
1474 			"hclge device re-init failed, VF is disabled!\n");
1475 		return ret;
1476 	}
1477 
1478 	/* bring up the nic client again */
1479 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1480 	if (ret)
1481 		return ret;
1482 
1483 	/* clear handshake status with IMP */
1484 	hclgevf_reset_handshake(hdev, false);
1485 
1486 	/* bring up the nic to enable TX/RX again */
1487 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1488 }
1489 
1490 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1491 {
1492 #define HCLGEVF_RESET_SYNC_TIME 100
1493 
1494 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1495 		struct hclge_vf_to_pf_msg send_msg;
1496 		int ret;
1497 
1498 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1499 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1500 		if (ret) {
1501 			dev_err(&hdev->pdev->dev,
1502 				"failed to assert VF reset, ret = %d\n", ret);
1503 			return ret;
1504 		}
1505 		hdev->rst_stats.vf_func_rst_cnt++;
1506 	}
1507 
1508 	set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1509 	/* inform hardware that preparatory work is done */
1510 	msleep(HCLGEVF_RESET_SYNC_TIME);
1511 	hclgevf_reset_handshake(hdev, true);
1512 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1513 		 hdev->reset_type);
1514 
1515 	return 0;
1516 }
1517 
1518 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1519 {
1520 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1521 		 hdev->rst_stats.vf_func_rst_cnt);
1522 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1523 		 hdev->rst_stats.flr_rst_cnt);
1524 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1525 		 hdev->rst_stats.vf_rst_cnt);
1526 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1527 		 hdev->rst_stats.rst_done_cnt);
1528 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1529 		 hdev->rst_stats.hw_rst_done_cnt);
1530 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1531 		 hdev->rst_stats.rst_cnt);
1532 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1533 		 hdev->rst_stats.rst_fail_cnt);
1534 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1535 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1536 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1537 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG));
1538 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1539 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG));
1540 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1541 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1542 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1543 }
1544 
1545 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1546 {
1547 	/* recover handshake status with IMP when reset fail */
1548 	hclgevf_reset_handshake(hdev, true);
1549 	hdev->rst_stats.rst_fail_cnt++;
1550 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1551 		hdev->rst_stats.rst_fail_cnt);
1552 
1553 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1554 		set_bit(hdev->reset_type, &hdev->reset_pending);
1555 
1556 	if (hclgevf_is_reset_pending(hdev)) {
1557 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1558 		hclgevf_reset_task_schedule(hdev);
1559 	} else {
1560 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1561 		hclgevf_dump_rst_info(hdev);
1562 	}
1563 }
1564 
1565 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1566 {
1567 	int ret;
1568 
1569 	hdev->rst_stats.rst_cnt++;
1570 
1571 	/* perform reset of the stack & ae device for a client */
1572 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1573 	if (ret)
1574 		return ret;
1575 
1576 	rtnl_lock();
1577 	/* bring down the nic to stop any ongoing TX/RX */
1578 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1579 	rtnl_unlock();
1580 	if (ret)
1581 		return ret;
1582 
1583 	return hclgevf_reset_prepare_wait(hdev);
1584 }
1585 
1586 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1587 {
1588 	int ret;
1589 
1590 	hdev->rst_stats.hw_rst_done_cnt++;
1591 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1592 	if (ret)
1593 		return ret;
1594 
1595 	rtnl_lock();
1596 	/* now, re-initialize the nic client and ae device */
1597 	ret = hclgevf_reset_stack(hdev);
1598 	rtnl_unlock();
1599 	if (ret) {
1600 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1601 		return ret;
1602 	}
1603 
1604 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1605 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1606 	 * times
1607 	 */
1608 	if (ret &&
1609 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1610 		return ret;
1611 
1612 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1613 	if (ret)
1614 		return ret;
1615 
1616 	hdev->last_reset_time = jiffies;
1617 	hdev->rst_stats.rst_done_cnt++;
1618 	hdev->rst_stats.rst_fail_cnt = 0;
1619 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1620 
1621 	return 0;
1622 }
1623 
1624 static void hclgevf_reset(struct hclgevf_dev *hdev)
1625 {
1626 	if (hclgevf_reset_prepare(hdev))
1627 		goto err_reset;
1628 
1629 	/* check if VF could successfully fetch the hardware reset completion
1630 	 * status from the hardware
1631 	 */
1632 	if (hclgevf_reset_wait(hdev)) {
1633 		/* can't do much in this situation, will disable VF */
1634 		dev_err(&hdev->pdev->dev,
1635 			"failed to fetch H/W reset completion status\n");
1636 		goto err_reset;
1637 	}
1638 
1639 	if (hclgevf_reset_rebuild(hdev))
1640 		goto err_reset;
1641 
1642 	return;
1643 
1644 err_reset:
1645 	hclgevf_reset_err_handle(hdev);
1646 }
1647 
1648 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1649 						     unsigned long *addr)
1650 {
1651 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1652 
1653 	/* return the highest priority reset level amongst all */
1654 	if (test_bit(HNAE3_VF_RESET, addr)) {
1655 		rst_level = HNAE3_VF_RESET;
1656 		clear_bit(HNAE3_VF_RESET, addr);
1657 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1658 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1659 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1660 		rst_level = HNAE3_VF_FULL_RESET;
1661 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1662 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1663 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1664 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1665 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1666 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1667 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1668 		rst_level = HNAE3_VF_FUNC_RESET;
1669 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1670 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1671 		rst_level = HNAE3_FLR_RESET;
1672 		clear_bit(HNAE3_FLR_RESET, addr);
1673 	}
1674 
1675 	return rst_level;
1676 }
1677 
1678 static void hclgevf_reset_event(struct pci_dev *pdev,
1679 				struct hnae3_handle *handle)
1680 {
1681 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1682 	struct hclgevf_dev *hdev = ae_dev->priv;
1683 
1684 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1685 
1686 	if (hdev->default_reset_request)
1687 		hdev->reset_level =
1688 			hclgevf_get_reset_level(hdev,
1689 						&hdev->default_reset_request);
1690 	else
1691 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1692 
1693 	/* reset of this VF requested */
1694 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1695 	hclgevf_reset_task_schedule(hdev);
1696 
1697 	hdev->last_reset_time = jiffies;
1698 }
1699 
1700 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1701 					  enum hnae3_reset_type rst_type)
1702 {
1703 	struct hclgevf_dev *hdev = ae_dev->priv;
1704 
1705 	set_bit(rst_type, &hdev->default_reset_request);
1706 }
1707 
1708 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1709 {
1710 	writel(en ? 1 : 0, vector->addr);
1711 }
1712 
1713 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
1714 					  enum hnae3_reset_type rst_type)
1715 {
1716 #define HCLGEVF_RESET_RETRY_WAIT_MS	500
1717 #define HCLGEVF_RESET_RETRY_CNT		5
1718 
1719 	struct hclgevf_dev *hdev = ae_dev->priv;
1720 	int retry_cnt = 0;
1721 	int ret;
1722 
1723 	while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
1724 		down(&hdev->reset_sem);
1725 		set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1726 		hdev->reset_type = rst_type;
1727 		ret = hclgevf_reset_prepare(hdev);
1728 		if (!ret && !hdev->reset_pending)
1729 			break;
1730 
1731 		dev_err(&hdev->pdev->dev,
1732 			"failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
1733 			ret, hdev->reset_pending, retry_cnt);
1734 		clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1735 		up(&hdev->reset_sem);
1736 		msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
1737 	}
1738 
1739 	/* disable misc vector before reset done */
1740 	hclgevf_enable_vector(&hdev->misc_vector, false);
1741 
1742 	if (hdev->reset_type == HNAE3_FLR_RESET)
1743 		hdev->rst_stats.flr_rst_cnt++;
1744 }
1745 
1746 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
1747 {
1748 	struct hclgevf_dev *hdev = ae_dev->priv;
1749 	int ret;
1750 
1751 	hclgevf_enable_vector(&hdev->misc_vector, true);
1752 
1753 	ret = hclgevf_reset_rebuild(hdev);
1754 	if (ret)
1755 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
1756 			 ret);
1757 
1758 	hdev->reset_type = HNAE3_NONE_RESET;
1759 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1760 	up(&hdev->reset_sem);
1761 }
1762 
1763 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1764 {
1765 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1766 
1767 	return hdev->fw_version;
1768 }
1769 
1770 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1771 {
1772 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1773 
1774 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1775 					    HCLGEVF_MISC_VECTOR_NUM);
1776 	vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1777 	/* vector status always valid for Vector 0 */
1778 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1779 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1780 
1781 	hdev->num_msi_left -= 1;
1782 	hdev->num_msi_used += 1;
1783 }
1784 
1785 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1786 {
1787 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1788 	    test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) &&
1789 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1790 			      &hdev->state))
1791 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1792 }
1793 
1794 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1795 {
1796 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1797 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
1798 			      &hdev->state))
1799 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1800 }
1801 
1802 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
1803 				  unsigned long delay)
1804 {
1805 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1806 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1807 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
1808 }
1809 
1810 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1811 {
1812 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
1813 
1814 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1815 		return;
1816 
1817 	down(&hdev->reset_sem);
1818 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1819 
1820 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1821 			       &hdev->reset_state)) {
1822 		/* PF has intimated that it is about to reset the hardware.
1823 		 * We now have to poll & check if hardware has actually
1824 		 * completed the reset sequence. On hardware reset completion,
1825 		 * VF needs to reset the client and ae device.
1826 		 */
1827 		hdev->reset_attempts = 0;
1828 
1829 		hdev->last_reset_time = jiffies;
1830 		hdev->reset_type =
1831 			hclgevf_get_reset_level(hdev, &hdev->reset_pending);
1832 		if (hdev->reset_type != HNAE3_NONE_RESET)
1833 			hclgevf_reset(hdev);
1834 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1835 				      &hdev->reset_state)) {
1836 		/* we could be here when either of below happens:
1837 		 * 1. reset was initiated due to watchdog timeout caused by
1838 		 *    a. IMP was earlier reset and our TX got choked down and
1839 		 *       which resulted in watchdog reacting and inducing VF
1840 		 *       reset. This also means our cmdq would be unreliable.
1841 		 *    b. problem in TX due to other lower layer(example link
1842 		 *       layer not functioning properly etc.)
1843 		 * 2. VF reset might have been initiated due to some config
1844 		 *    change.
1845 		 *
1846 		 * NOTE: Theres no clear way to detect above cases than to react
1847 		 * to the response of PF for this reset request. PF will ack the
1848 		 * 1b and 2. cases but we will not get any intimation about 1a
1849 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1850 		 * communication between PF and VF would be broken.
1851 		 *
1852 		 * if we are never geting into pending state it means either:
1853 		 * 1. PF is not receiving our request which could be due to IMP
1854 		 *    reset
1855 		 * 2. PF is screwed
1856 		 * We cannot do much for 2. but to check first we can try reset
1857 		 * our PCIe + stack and see if it alleviates the problem.
1858 		 */
1859 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1860 			/* prepare for full reset of stack + pcie interface */
1861 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1862 
1863 			/* "defer" schedule the reset task again */
1864 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1865 		} else {
1866 			hdev->reset_attempts++;
1867 
1868 			set_bit(hdev->reset_level, &hdev->reset_pending);
1869 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1870 		}
1871 		hclgevf_reset_task_schedule(hdev);
1872 	}
1873 
1874 	hdev->reset_type = HNAE3_NONE_RESET;
1875 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1876 	up(&hdev->reset_sem);
1877 }
1878 
1879 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1880 {
1881 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
1882 		return;
1883 
1884 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1885 		return;
1886 
1887 	hclgevf_mbx_async_handler(hdev);
1888 
1889 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1890 }
1891 
1892 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1893 {
1894 	struct hclge_vf_to_pf_msg send_msg;
1895 	int ret;
1896 
1897 	if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1898 		return;
1899 
1900 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
1901 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1902 	if (ret)
1903 		dev_err(&hdev->pdev->dev,
1904 			"VF sends keep alive cmd failed(=%d)\n", ret);
1905 }
1906 
1907 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
1908 {
1909 	unsigned long delta = round_jiffies_relative(HZ);
1910 	struct hnae3_handle *handle = &hdev->nic;
1911 
1912 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1913 		return;
1914 
1915 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
1916 		delta = jiffies - hdev->last_serv_processed;
1917 
1918 		if (delta < round_jiffies_relative(HZ)) {
1919 			delta = round_jiffies_relative(HZ) - delta;
1920 			goto out;
1921 		}
1922 	}
1923 
1924 	hdev->serv_processed_cnt++;
1925 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
1926 		hclgevf_keep_alive(hdev);
1927 
1928 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
1929 		hdev->last_serv_processed = jiffies;
1930 		goto out;
1931 	}
1932 
1933 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
1934 		hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
1935 
1936 	/* VF does not need to request link status when this bit is set, because
1937 	 * PF will push its link status to VFs when link status changed.
1938 	 */
1939 	if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
1940 		hclgevf_request_link_info(hdev);
1941 
1942 	hclgevf_update_link_mode(hdev);
1943 
1944 	hclgevf_sync_vlan_filter(hdev);
1945 
1946 	hclgevf_sync_mac_table(hdev);
1947 
1948 	hclgevf_sync_promisc_mode(hdev);
1949 
1950 	hdev->last_serv_processed = jiffies;
1951 
1952 out:
1953 	hclgevf_task_schedule(hdev, delta);
1954 }
1955 
1956 static void hclgevf_service_task(struct work_struct *work)
1957 {
1958 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
1959 						service_task.work);
1960 
1961 	hclgevf_reset_service_task(hdev);
1962 	hclgevf_mailbox_service_task(hdev);
1963 	hclgevf_periodic_service_task(hdev);
1964 
1965 	/* Handle reset and mbx again in case periodical task delays the
1966 	 * handling by calling hclgevf_task_schedule() in
1967 	 * hclgevf_periodic_service_task()
1968 	 */
1969 	hclgevf_reset_service_task(hdev);
1970 	hclgevf_mailbox_service_task(hdev);
1971 }
1972 
1973 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1974 {
1975 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr);
1976 }
1977 
1978 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1979 						      u32 *clearval)
1980 {
1981 	u32 val, cmdq_stat_reg, rst_ing_reg;
1982 
1983 	/* fetch the events from their corresponding regs */
1984 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
1985 					 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG);
1986 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1987 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1988 		dev_info(&hdev->pdev->dev,
1989 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1990 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1991 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1992 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1993 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
1994 		hdev->rst_stats.vf_rst_cnt++;
1995 		/* set up VF hardware reset status, its PF will clear
1996 		 * this status when PF has initialized done.
1997 		 */
1998 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
1999 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2000 				  val | HCLGEVF_VF_RST_ING_BIT);
2001 		return HCLGEVF_VECTOR0_EVENT_RST;
2002 	}
2003 
2004 	/* check for vector0 mailbox(=CMDQ RX) event source */
2005 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2006 		/* for revision 0x21, clearing interrupt is writing bit 0
2007 		 * to the clear register, writing bit 1 means to keep the
2008 		 * old value.
2009 		 * for revision 0x20, the clear register is a read & write
2010 		 * register, so we should just write 0 to the bit we are
2011 		 * handling, and keep other bits as cmdq_stat_reg.
2012 		 */
2013 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2014 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2015 		else
2016 			*clearval = cmdq_stat_reg &
2017 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2018 
2019 		return HCLGEVF_VECTOR0_EVENT_MBX;
2020 	}
2021 
2022 	/* print other vector0 event source */
2023 	dev_info(&hdev->pdev->dev,
2024 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2025 		 cmdq_stat_reg);
2026 
2027 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2028 }
2029 
2030 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2031 {
2032 	enum hclgevf_evt_cause event_cause;
2033 	struct hclgevf_dev *hdev = data;
2034 	u32 clearval;
2035 
2036 	hclgevf_enable_vector(&hdev->misc_vector, false);
2037 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2038 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2039 		hclgevf_clear_event_cause(hdev, clearval);
2040 
2041 	switch (event_cause) {
2042 	case HCLGEVF_VECTOR0_EVENT_RST:
2043 		hclgevf_reset_task_schedule(hdev);
2044 		break;
2045 	case HCLGEVF_VECTOR0_EVENT_MBX:
2046 		hclgevf_mbx_handler(hdev);
2047 		break;
2048 	default:
2049 		break;
2050 	}
2051 
2052 	hclgevf_enable_vector(&hdev->misc_vector, true);
2053 
2054 	return IRQ_HANDLED;
2055 }
2056 
2057 static int hclgevf_configure(struct hclgevf_dev *hdev)
2058 {
2059 	int ret;
2060 
2061 	hdev->gro_en = true;
2062 
2063 	ret = hclgevf_get_basic_info(hdev);
2064 	if (ret)
2065 		return ret;
2066 
2067 	/* get current port based vlan state from PF */
2068 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2069 	if (ret)
2070 		return ret;
2071 
2072 	/* get queue configuration from PF */
2073 	ret = hclgevf_get_queue_info(hdev);
2074 	if (ret)
2075 		return ret;
2076 
2077 	/* get queue depth info from PF */
2078 	ret = hclgevf_get_queue_depth(hdev);
2079 	if (ret)
2080 		return ret;
2081 
2082 	return hclgevf_get_pf_media_type(hdev);
2083 }
2084 
2085 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2086 {
2087 	struct pci_dev *pdev = ae_dev->pdev;
2088 	struct hclgevf_dev *hdev;
2089 
2090 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2091 	if (!hdev)
2092 		return -ENOMEM;
2093 
2094 	hdev->pdev = pdev;
2095 	hdev->ae_dev = ae_dev;
2096 	ae_dev->priv = hdev;
2097 
2098 	return 0;
2099 }
2100 
2101 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2102 {
2103 	struct hnae3_handle *roce = &hdev->roce;
2104 	struct hnae3_handle *nic = &hdev->nic;
2105 
2106 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2107 
2108 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2109 	    hdev->num_msi_left == 0)
2110 		return -EINVAL;
2111 
2112 	roce->rinfo.base_vector = hdev->roce_base_msix_offset;
2113 
2114 	roce->rinfo.netdev = nic->kinfo.netdev;
2115 	roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2116 	roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2117 
2118 	roce->pdev = nic->pdev;
2119 	roce->ae_algo = nic->ae_algo;
2120 	roce->numa_node_mask = nic->numa_node_mask;
2121 
2122 	return 0;
2123 }
2124 
2125 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2126 {
2127 	struct hclgevf_cfg_gro_status_cmd *req;
2128 	struct hclge_desc desc;
2129 	int ret;
2130 
2131 	if (!hnae3_ae_dev_gro_supported(hdev->ae_dev))
2132 		return 0;
2133 
2134 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG,
2135 				     false);
2136 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2137 
2138 	req->gro_en = hdev->gro_en ? 1 : 0;
2139 
2140 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2141 	if (ret)
2142 		dev_err(&hdev->pdev->dev,
2143 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2144 
2145 	return ret;
2146 }
2147 
2148 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2149 {
2150 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
2151 	u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
2152 	u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
2153 	u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
2154 	int ret;
2155 
2156 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2157 		ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw,
2158 						  rss_cfg->rss_algo,
2159 						  rss_cfg->rss_hash_key);
2160 		if (ret)
2161 			return ret;
2162 
2163 		ret = hclge_comm_set_rss_input_tuple(&hdev->nic, &hdev->hw.hw,
2164 						     false, rss_cfg);
2165 		if (ret)
2166 			return ret;
2167 	}
2168 
2169 	ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
2170 					     rss_cfg->rss_indirection_tbl);
2171 	if (ret)
2172 		return ret;
2173 
2174 	hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map,
2175 				   tc_offset, tc_valid, tc_size);
2176 
2177 	return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
2178 					  tc_valid, tc_size);
2179 }
2180 
2181 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2182 {
2183 	struct hnae3_handle *nic = &hdev->nic;
2184 	int ret;
2185 
2186 	ret = hclgevf_en_hw_strip_rxvtag(nic, true);
2187 	if (ret) {
2188 		dev_err(&hdev->pdev->dev,
2189 			"failed to enable rx vlan offload, ret = %d\n", ret);
2190 		return ret;
2191 	}
2192 
2193 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2194 				       false);
2195 }
2196 
2197 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2198 {
2199 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2200 
2201 	unsigned long last = hdev->serv_processed_cnt;
2202 	int i = 0;
2203 
2204 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2205 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2206 	       last == hdev->serv_processed_cnt)
2207 		usleep_range(1, 1);
2208 }
2209 
2210 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2211 {
2212 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2213 
2214 	if (enable) {
2215 		hclgevf_task_schedule(hdev, 0);
2216 	} else {
2217 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2218 
2219 		/* flush memory to make sure DOWN is seen by service task */
2220 		smp_mb__before_atomic();
2221 		hclgevf_flush_link_update(hdev);
2222 	}
2223 }
2224 
2225 static int hclgevf_ae_start(struct hnae3_handle *handle)
2226 {
2227 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2228 
2229 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2230 	clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2231 
2232 	hclge_comm_reset_tqp_stats(handle);
2233 
2234 	hclgevf_request_link_info(hdev);
2235 
2236 	hclgevf_update_link_mode(hdev);
2237 
2238 	return 0;
2239 }
2240 
2241 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2242 {
2243 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2244 
2245 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2246 
2247 	if (hdev->reset_type != HNAE3_VF_RESET)
2248 		hclgevf_reset_tqp(handle);
2249 
2250 	hclge_comm_reset_tqp_stats(handle);
2251 	hclgevf_update_link_status(hdev, 0);
2252 }
2253 
2254 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2255 {
2256 #define HCLGEVF_STATE_ALIVE	1
2257 #define HCLGEVF_STATE_NOT_ALIVE	0
2258 
2259 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2260 	struct hclge_vf_to_pf_msg send_msg;
2261 
2262 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2263 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2264 				HCLGEVF_STATE_NOT_ALIVE;
2265 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2266 }
2267 
2268 static int hclgevf_client_start(struct hnae3_handle *handle)
2269 {
2270 	return hclgevf_set_alive(handle, true);
2271 }
2272 
2273 static void hclgevf_client_stop(struct hnae3_handle *handle)
2274 {
2275 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2276 	int ret;
2277 
2278 	ret = hclgevf_set_alive(handle, false);
2279 	if (ret)
2280 		dev_warn(&hdev->pdev->dev,
2281 			 "%s failed %d\n", __func__, ret);
2282 }
2283 
2284 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2285 {
2286 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2287 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2288 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2289 
2290 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2291 
2292 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2293 	sema_init(&hdev->reset_sem, 1);
2294 
2295 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2296 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2297 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2298 
2299 	/* bring the device down */
2300 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2301 }
2302 
2303 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2304 {
2305 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2306 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2307 
2308 	if (hdev->service_task.work.func)
2309 		cancel_delayed_work_sync(&hdev->service_task);
2310 
2311 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2312 }
2313 
2314 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2315 {
2316 	struct pci_dev *pdev = hdev->pdev;
2317 	int vectors;
2318 	int i;
2319 
2320 	if (hnae3_dev_roce_supported(hdev))
2321 		vectors = pci_alloc_irq_vectors(pdev,
2322 						hdev->roce_base_msix_offset + 1,
2323 						hdev->num_msi,
2324 						PCI_IRQ_MSIX);
2325 	else
2326 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2327 						hdev->num_msi,
2328 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2329 
2330 	if (vectors < 0) {
2331 		dev_err(&pdev->dev,
2332 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2333 			vectors);
2334 		return vectors;
2335 	}
2336 	if (vectors < hdev->num_msi)
2337 		dev_warn(&hdev->pdev->dev,
2338 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2339 			 hdev->num_msi, vectors);
2340 
2341 	hdev->num_msi = vectors;
2342 	hdev->num_msi_left = vectors;
2343 
2344 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2345 					   sizeof(u16), GFP_KERNEL);
2346 	if (!hdev->vector_status) {
2347 		pci_free_irq_vectors(pdev);
2348 		return -ENOMEM;
2349 	}
2350 
2351 	for (i = 0; i < hdev->num_msi; i++)
2352 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2353 
2354 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2355 					sizeof(int), GFP_KERNEL);
2356 	if (!hdev->vector_irq) {
2357 		devm_kfree(&pdev->dev, hdev->vector_status);
2358 		pci_free_irq_vectors(pdev);
2359 		return -ENOMEM;
2360 	}
2361 
2362 	return 0;
2363 }
2364 
2365 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2366 {
2367 	struct pci_dev *pdev = hdev->pdev;
2368 
2369 	devm_kfree(&pdev->dev, hdev->vector_status);
2370 	devm_kfree(&pdev->dev, hdev->vector_irq);
2371 	pci_free_irq_vectors(pdev);
2372 }
2373 
2374 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2375 {
2376 	int ret;
2377 
2378 	hclgevf_get_misc_vector(hdev);
2379 
2380 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2381 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2382 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2383 			  0, hdev->misc_vector.name, hdev);
2384 	if (ret) {
2385 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2386 			hdev->misc_vector.vector_irq);
2387 		return ret;
2388 	}
2389 
2390 	hclgevf_clear_event_cause(hdev, 0);
2391 
2392 	/* enable misc. vector(vector 0) */
2393 	hclgevf_enable_vector(&hdev->misc_vector, true);
2394 
2395 	return ret;
2396 }
2397 
2398 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2399 {
2400 	/* disable misc vector(vector 0) */
2401 	hclgevf_enable_vector(&hdev->misc_vector, false);
2402 	synchronize_irq(hdev->misc_vector.vector_irq);
2403 	free_irq(hdev->misc_vector.vector_irq, hdev);
2404 	hclgevf_free_vector(hdev, 0);
2405 }
2406 
2407 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2408 {
2409 	struct device *dev = &hdev->pdev->dev;
2410 
2411 	dev_info(dev, "VF info begin:\n");
2412 
2413 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2414 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2415 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2416 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2417 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2418 	dev_info(dev, "PF media type of this VF: %u\n",
2419 		 hdev->hw.mac.media_type);
2420 
2421 	dev_info(dev, "VF info end.\n");
2422 }
2423 
2424 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2425 					    struct hnae3_client *client)
2426 {
2427 	struct hclgevf_dev *hdev = ae_dev->priv;
2428 	int rst_cnt = hdev->rst_stats.rst_cnt;
2429 	int ret;
2430 
2431 	ret = client->ops->init_instance(&hdev->nic);
2432 	if (ret)
2433 		return ret;
2434 
2435 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2436 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2437 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2438 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2439 
2440 		client->ops->uninit_instance(&hdev->nic, 0);
2441 		return -EBUSY;
2442 	}
2443 
2444 	hnae3_set_client_init_flag(client, ae_dev, 1);
2445 
2446 	if (netif_msg_drv(&hdev->nic))
2447 		hclgevf_info_show(hdev);
2448 
2449 	return 0;
2450 }
2451 
2452 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2453 					     struct hnae3_client *client)
2454 {
2455 	struct hclgevf_dev *hdev = ae_dev->priv;
2456 	int ret;
2457 
2458 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2459 	    !hdev->nic_client)
2460 		return 0;
2461 
2462 	ret = hclgevf_init_roce_base_info(hdev);
2463 	if (ret)
2464 		return ret;
2465 
2466 	ret = client->ops->init_instance(&hdev->roce);
2467 	if (ret)
2468 		return ret;
2469 
2470 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2471 	hnae3_set_client_init_flag(client, ae_dev, 1);
2472 
2473 	return 0;
2474 }
2475 
2476 static int hclgevf_init_client_instance(struct hnae3_client *client,
2477 					struct hnae3_ae_dev *ae_dev)
2478 {
2479 	struct hclgevf_dev *hdev = ae_dev->priv;
2480 	int ret;
2481 
2482 	switch (client->type) {
2483 	case HNAE3_CLIENT_KNIC:
2484 		hdev->nic_client = client;
2485 		hdev->nic.client = client;
2486 
2487 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2488 		if (ret)
2489 			goto clear_nic;
2490 
2491 		ret = hclgevf_init_roce_client_instance(ae_dev,
2492 							hdev->roce_client);
2493 		if (ret)
2494 			goto clear_roce;
2495 
2496 		break;
2497 	case HNAE3_CLIENT_ROCE:
2498 		if (hnae3_dev_roce_supported(hdev)) {
2499 			hdev->roce_client = client;
2500 			hdev->roce.client = client;
2501 		}
2502 
2503 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2504 		if (ret)
2505 			goto clear_roce;
2506 
2507 		break;
2508 	default:
2509 		return -EINVAL;
2510 	}
2511 
2512 	return 0;
2513 
2514 clear_nic:
2515 	hdev->nic_client = NULL;
2516 	hdev->nic.client = NULL;
2517 	return ret;
2518 clear_roce:
2519 	hdev->roce_client = NULL;
2520 	hdev->roce.client = NULL;
2521 	return ret;
2522 }
2523 
2524 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2525 					   struct hnae3_ae_dev *ae_dev)
2526 {
2527 	struct hclgevf_dev *hdev = ae_dev->priv;
2528 
2529 	/* un-init roce, if it exists */
2530 	if (hdev->roce_client) {
2531 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2532 			msleep(HCLGEVF_WAIT_RESET_DONE);
2533 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2534 
2535 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2536 		hdev->roce_client = NULL;
2537 		hdev->roce.client = NULL;
2538 	}
2539 
2540 	/* un-init nic/unic, if this was not called by roce client */
2541 	if (client->ops->uninit_instance && hdev->nic_client &&
2542 	    client->type != HNAE3_CLIENT_ROCE) {
2543 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2544 			msleep(HCLGEVF_WAIT_RESET_DONE);
2545 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2546 
2547 		client->ops->uninit_instance(&hdev->nic, 0);
2548 		hdev->nic_client = NULL;
2549 		hdev->nic.client = NULL;
2550 	}
2551 }
2552 
2553 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2554 {
2555 	struct pci_dev *pdev = hdev->pdev;
2556 	struct hclgevf_hw *hw = &hdev->hw;
2557 
2558 	/* for device does not have device memory, return directly */
2559 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2560 		return 0;
2561 
2562 	hw->hw.mem_base =
2563 		devm_ioremap_wc(&pdev->dev,
2564 				pci_resource_start(pdev, HCLGEVF_MEM_BAR),
2565 				pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2566 	if (!hw->hw.mem_base) {
2567 		dev_err(&pdev->dev, "failed to map device memory\n");
2568 		return -EFAULT;
2569 	}
2570 
2571 	return 0;
2572 }
2573 
2574 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2575 {
2576 	struct pci_dev *pdev = hdev->pdev;
2577 	struct hclgevf_hw *hw;
2578 	int ret;
2579 
2580 	ret = pci_enable_device(pdev);
2581 	if (ret) {
2582 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2583 		return ret;
2584 	}
2585 
2586 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2587 	if (ret) {
2588 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2589 		goto err_disable_device;
2590 	}
2591 
2592 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2593 	if (ret) {
2594 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2595 		goto err_disable_device;
2596 	}
2597 
2598 	pci_set_master(pdev);
2599 	hw = &hdev->hw;
2600 	hw->hw.io_base = pci_iomap(pdev, 2, 0);
2601 	if (!hw->hw.io_base) {
2602 		dev_err(&pdev->dev, "can't map configuration register space\n");
2603 		ret = -ENOMEM;
2604 		goto err_release_regions;
2605 	}
2606 
2607 	ret = hclgevf_dev_mem_map(hdev);
2608 	if (ret)
2609 		goto err_unmap_io_base;
2610 
2611 	return 0;
2612 
2613 err_unmap_io_base:
2614 	pci_iounmap(pdev, hdev->hw.hw.io_base);
2615 err_release_regions:
2616 	pci_release_regions(pdev);
2617 err_disable_device:
2618 	pci_disable_device(pdev);
2619 
2620 	return ret;
2621 }
2622 
2623 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2624 {
2625 	struct pci_dev *pdev = hdev->pdev;
2626 
2627 	if (hdev->hw.hw.mem_base)
2628 		devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
2629 
2630 	pci_iounmap(pdev, hdev->hw.hw.io_base);
2631 	pci_release_regions(pdev);
2632 	pci_disable_device(pdev);
2633 }
2634 
2635 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2636 {
2637 	struct hclgevf_query_res_cmd *req;
2638 	struct hclge_desc desc;
2639 	int ret;
2640 
2641 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RSRC, true);
2642 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2643 	if (ret) {
2644 		dev_err(&hdev->pdev->dev,
2645 			"query vf resource failed, ret = %d.\n", ret);
2646 		return ret;
2647 	}
2648 
2649 	req = (struct hclgevf_query_res_cmd *)desc.data;
2650 
2651 	if (hnae3_dev_roce_supported(hdev)) {
2652 		hdev->roce_base_msix_offset =
2653 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2654 				HCLGEVF_MSIX_OFT_ROCEE_M,
2655 				HCLGEVF_MSIX_OFT_ROCEE_S);
2656 		hdev->num_roce_msix =
2657 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2658 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2659 
2660 		/* nic's msix numbers is always equals to the roce's. */
2661 		hdev->num_nic_msix = hdev->num_roce_msix;
2662 
2663 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2664 		 * are queued before Roce vectors. The offset is fixed to 64.
2665 		 */
2666 		hdev->num_msi = hdev->num_roce_msix +
2667 				hdev->roce_base_msix_offset;
2668 	} else {
2669 		hdev->num_msi =
2670 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2671 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2672 
2673 		hdev->num_nic_msix = hdev->num_msi;
2674 	}
2675 
2676 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2677 		dev_err(&hdev->pdev->dev,
2678 			"Just %u msi resources, not enough for vf(min:2).\n",
2679 			hdev->num_nic_msix);
2680 		return -EINVAL;
2681 	}
2682 
2683 	return 0;
2684 }
2685 
2686 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
2687 {
2688 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
2689 
2690 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2691 
2692 	ae_dev->dev_specs.max_non_tso_bd_num =
2693 					HCLGEVF_MAX_NON_TSO_BD_NUM;
2694 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2695 	ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2696 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2697 	ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2698 }
2699 
2700 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
2701 				    struct hclge_desc *desc)
2702 {
2703 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2704 	struct hclgevf_dev_specs_0_cmd *req0;
2705 	struct hclgevf_dev_specs_1_cmd *req1;
2706 
2707 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
2708 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
2709 
2710 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
2711 	ae_dev->dev_specs.rss_ind_tbl_size =
2712 					le16_to_cpu(req0->rss_ind_tbl_size);
2713 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
2714 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
2715 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
2716 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
2717 }
2718 
2719 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
2720 {
2721 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
2722 
2723 	if (!dev_specs->max_non_tso_bd_num)
2724 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
2725 	if (!dev_specs->rss_ind_tbl_size)
2726 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2727 	if (!dev_specs->rss_key_size)
2728 		dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2729 	if (!dev_specs->max_int_gl)
2730 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2731 	if (!dev_specs->max_frm_size)
2732 		dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2733 }
2734 
2735 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
2736 {
2737 	struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
2738 	int ret;
2739 	int i;
2740 
2741 	/* set default specifications as devices lower than version V3 do not
2742 	 * support querying specifications from firmware.
2743 	 */
2744 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
2745 		hclgevf_set_default_dev_specs(hdev);
2746 		return 0;
2747 	}
2748 
2749 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2750 		hclgevf_cmd_setup_basic_desc(&desc[i],
2751 					     HCLGE_OPC_QUERY_DEV_SPECS, true);
2752 		desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2753 	}
2754 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true);
2755 
2756 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
2757 	if (ret)
2758 		return ret;
2759 
2760 	hclgevf_parse_dev_specs(hdev, desc);
2761 	hclgevf_check_dev_specs(hdev);
2762 
2763 	return 0;
2764 }
2765 
2766 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2767 {
2768 	struct pci_dev *pdev = hdev->pdev;
2769 	int ret = 0;
2770 
2771 	if ((hdev->reset_type == HNAE3_VF_FULL_RESET ||
2772 	     hdev->reset_type == HNAE3_FLR_RESET) &&
2773 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2774 		hclgevf_misc_irq_uninit(hdev);
2775 		hclgevf_uninit_msi(hdev);
2776 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2777 	}
2778 
2779 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2780 		pci_set_master(pdev);
2781 		ret = hclgevf_init_msi(hdev);
2782 		if (ret) {
2783 			dev_err(&pdev->dev,
2784 				"failed(%d) to init MSI/MSI-X\n", ret);
2785 			return ret;
2786 		}
2787 
2788 		ret = hclgevf_misc_irq_init(hdev);
2789 		if (ret) {
2790 			hclgevf_uninit_msi(hdev);
2791 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2792 				ret);
2793 			return ret;
2794 		}
2795 
2796 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2797 	}
2798 
2799 	return ret;
2800 }
2801 
2802 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
2803 {
2804 	struct hclge_vf_to_pf_msg send_msg;
2805 
2806 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
2807 			       HCLGE_MBX_VPORT_LIST_CLEAR);
2808 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2809 }
2810 
2811 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
2812 {
2813 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2814 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
2815 }
2816 
2817 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
2818 {
2819 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2820 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
2821 }
2822 
2823 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2824 {
2825 	struct pci_dev *pdev = hdev->pdev;
2826 	int ret;
2827 
2828 	ret = hclgevf_pci_reset(hdev);
2829 	if (ret) {
2830 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2831 		return ret;
2832 	}
2833 
2834 	hclgevf_arq_init(hdev);
2835 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2836 				  &hdev->fw_version, false,
2837 				  hdev->reset_pending);
2838 	if (ret) {
2839 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2840 		return ret;
2841 	}
2842 
2843 	ret = hclgevf_rss_init_hw(hdev);
2844 	if (ret) {
2845 		dev_err(&hdev->pdev->dev,
2846 			"failed(%d) to initialize RSS\n", ret);
2847 		return ret;
2848 	}
2849 
2850 	ret = hclgevf_config_gro(hdev);
2851 	if (ret)
2852 		return ret;
2853 
2854 	ret = hclgevf_init_vlan_config(hdev);
2855 	if (ret) {
2856 		dev_err(&hdev->pdev->dev,
2857 			"failed(%d) to initialize VLAN config\n", ret);
2858 		return ret;
2859 	}
2860 
2861 	/* get current port based vlan state from PF */
2862 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2863 	if (ret)
2864 		return ret;
2865 
2866 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
2867 
2868 	hclgevf_init_rxd_adv_layout(hdev);
2869 
2870 	dev_info(&hdev->pdev->dev, "Reset done\n");
2871 
2872 	return 0;
2873 }
2874 
2875 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2876 {
2877 	struct pci_dev *pdev = hdev->pdev;
2878 	int ret;
2879 
2880 	ret = hclgevf_pci_init(hdev);
2881 	if (ret)
2882 		return ret;
2883 
2884 	ret = hclgevf_devlink_init(hdev);
2885 	if (ret)
2886 		goto err_devlink_init;
2887 
2888 	ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
2889 	if (ret)
2890 		goto err_cmd_queue_init;
2891 
2892 	hclgevf_arq_init(hdev);
2893 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2894 				  &hdev->fw_version, false,
2895 				  hdev->reset_pending);
2896 	if (ret)
2897 		goto err_cmd_init;
2898 
2899 	/* Get vf resource */
2900 	ret = hclgevf_query_vf_resource(hdev);
2901 	if (ret)
2902 		goto err_cmd_init;
2903 
2904 	ret = hclgevf_query_dev_specs(hdev);
2905 	if (ret) {
2906 		dev_err(&pdev->dev,
2907 			"failed to query dev specifications, ret = %d\n", ret);
2908 		goto err_cmd_init;
2909 	}
2910 
2911 	ret = hclgevf_init_msi(hdev);
2912 	if (ret) {
2913 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2914 		goto err_cmd_init;
2915 	}
2916 
2917 	hclgevf_state_init(hdev);
2918 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2919 	hdev->reset_type = HNAE3_NONE_RESET;
2920 
2921 	ret = hclgevf_misc_irq_init(hdev);
2922 	if (ret)
2923 		goto err_misc_irq_init;
2924 
2925 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2926 
2927 	ret = hclgevf_configure(hdev);
2928 	if (ret) {
2929 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2930 		goto err_config;
2931 	}
2932 
2933 	ret = hclgevf_alloc_tqps(hdev);
2934 	if (ret) {
2935 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2936 		goto err_config;
2937 	}
2938 
2939 	ret = hclgevf_set_handle_info(hdev);
2940 	if (ret)
2941 		goto err_config;
2942 
2943 	ret = hclgevf_config_gro(hdev);
2944 	if (ret)
2945 		goto err_config;
2946 
2947 	/* Initialize RSS for this VF */
2948 	ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev,
2949 				      &hdev->rss_cfg);
2950 	if (ret) {
2951 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
2952 		goto err_config;
2953 	}
2954 
2955 	ret = hclgevf_rss_init_hw(hdev);
2956 	if (ret) {
2957 		dev_err(&hdev->pdev->dev,
2958 			"failed(%d) to initialize RSS\n", ret);
2959 		goto err_config;
2960 	}
2961 
2962 	/* ensure vf tbl list as empty before init */
2963 	ret = hclgevf_clear_vport_list(hdev);
2964 	if (ret) {
2965 		dev_err(&pdev->dev,
2966 			"failed to clear tbl list configuration, ret = %d.\n",
2967 			ret);
2968 		goto err_config;
2969 	}
2970 
2971 	ret = hclgevf_init_vlan_config(hdev);
2972 	if (ret) {
2973 		dev_err(&hdev->pdev->dev,
2974 			"failed(%d) to initialize VLAN config\n", ret);
2975 		goto err_config;
2976 	}
2977 
2978 	hclgevf_init_rxd_adv_layout(hdev);
2979 
2980 	set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state);
2981 
2982 	hdev->last_reset_time = jiffies;
2983 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
2984 		 HCLGEVF_DRIVER_NAME);
2985 
2986 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
2987 
2988 	return 0;
2989 
2990 err_config:
2991 	hclgevf_misc_irq_uninit(hdev);
2992 err_misc_irq_init:
2993 	hclgevf_state_uninit(hdev);
2994 	hclgevf_uninit_msi(hdev);
2995 err_cmd_init:
2996 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
2997 err_cmd_queue_init:
2998 	hclgevf_devlink_uninit(hdev);
2999 err_devlink_init:
3000 	hclgevf_pci_uninit(hdev);
3001 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3002 	return ret;
3003 }
3004 
3005 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3006 {
3007 	struct hclge_vf_to_pf_msg send_msg;
3008 
3009 	hclgevf_state_uninit(hdev);
3010 	hclgevf_uninit_rxd_adv_layout(hdev);
3011 
3012 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3013 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3014 
3015 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3016 		hclgevf_misc_irq_uninit(hdev);
3017 		hclgevf_uninit_msi(hdev);
3018 	}
3019 
3020 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3021 	hclgevf_devlink_uninit(hdev);
3022 	hclgevf_pci_uninit(hdev);
3023 	hclgevf_uninit_mac_list(hdev);
3024 }
3025 
3026 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3027 {
3028 	struct pci_dev *pdev = ae_dev->pdev;
3029 	int ret;
3030 
3031 	ret = hclgevf_alloc_hdev(ae_dev);
3032 	if (ret) {
3033 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3034 		return ret;
3035 	}
3036 
3037 	ret = hclgevf_init_hdev(ae_dev->priv);
3038 	if (ret) {
3039 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3040 		return ret;
3041 	}
3042 
3043 	return 0;
3044 }
3045 
3046 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3047 {
3048 	struct hclgevf_dev *hdev = ae_dev->priv;
3049 
3050 	hclgevf_uninit_hdev(hdev);
3051 	ae_dev->priv = NULL;
3052 }
3053 
3054 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3055 {
3056 	struct hnae3_handle *nic = &hdev->nic;
3057 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3058 
3059 	return min_t(u32, hdev->rss_size_max,
3060 		     hdev->num_tqps / kinfo->tc_info.num_tc);
3061 }
3062 
3063 /**
3064  * hclgevf_get_channels - Get the current channels enabled and max supported.
3065  * @handle: hardware information for network interface
3066  * @ch: ethtool channels structure
3067  *
3068  * We don't support separate tx and rx queues as channels. The other count
3069  * represents how many queues are being used for control. max_combined counts
3070  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3071  * q_vectors since we support a lot more queue pairs than q_vectors.
3072  **/
3073 static void hclgevf_get_channels(struct hnae3_handle *handle,
3074 				 struct ethtool_channels *ch)
3075 {
3076 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3077 
3078 	ch->max_combined = hclgevf_get_max_channels(hdev);
3079 	ch->other_count = 0;
3080 	ch->max_other = 0;
3081 	ch->combined_count = handle->kinfo.rss_size;
3082 }
3083 
3084 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3085 					  u16 *alloc_tqps, u16 *max_rss_size)
3086 {
3087 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3088 
3089 	*alloc_tqps = hdev->num_tqps;
3090 	*max_rss_size = hdev->rss_size_max;
3091 }
3092 
3093 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3094 				    u32 new_tqps_num)
3095 {
3096 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3097 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3098 	u16 max_rss_size;
3099 
3100 	kinfo->req_rss_size = new_tqps_num;
3101 
3102 	max_rss_size = min_t(u16, hdev->rss_size_max,
3103 			     hdev->num_tqps / kinfo->tc_info.num_tc);
3104 
3105 	/* Use the user's configuration when it is not larger than
3106 	 * max_rss_size, otherwise, use the maximum specification value.
3107 	 */
3108 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3109 	    kinfo->req_rss_size <= max_rss_size)
3110 		kinfo->rss_size = kinfo->req_rss_size;
3111 	else if (kinfo->rss_size > max_rss_size ||
3112 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3113 		kinfo->rss_size = max_rss_size;
3114 
3115 	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3116 }
3117 
3118 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3119 				bool rxfh_configured)
3120 {
3121 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3122 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3123 	u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
3124 	u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
3125 	u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
3126 	u16 cur_rss_size = kinfo->rss_size;
3127 	u16 cur_tqps = kinfo->num_tqps;
3128 	u32 *rss_indir;
3129 	unsigned int i;
3130 	int ret;
3131 
3132 	hclgevf_update_rss_size(handle, new_tqps_num);
3133 
3134 	hclge_comm_get_rss_tc_info(kinfo->rss_size, hdev->hw_tc_map,
3135 				   tc_offset, tc_valid, tc_size);
3136 	ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
3137 					 tc_valid, tc_size);
3138 	if (ret)
3139 		return ret;
3140 
3141 	/* RSS indirection table has been configured by user */
3142 	if (rxfh_configured)
3143 		goto out;
3144 
3145 	/* Reinitializes the rss indirect table according to the new RSS size */
3146 	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3147 			    sizeof(u32), GFP_KERNEL);
3148 	if (!rss_indir)
3149 		return -ENOMEM;
3150 
3151 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3152 		rss_indir[i] = i % kinfo->rss_size;
3153 
3154 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3155 
3156 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3157 	if (ret)
3158 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3159 			ret);
3160 
3161 	kfree(rss_indir);
3162 
3163 out:
3164 	if (!ret)
3165 		dev_info(&hdev->pdev->dev,
3166 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3167 			 cur_rss_size, kinfo->rss_size,
3168 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3169 
3170 	return ret;
3171 }
3172 
3173 static int hclgevf_get_status(struct hnae3_handle *handle)
3174 {
3175 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3176 
3177 	return hdev->hw.mac.link;
3178 }
3179 
3180 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3181 					    u8 *auto_neg, u32 *speed,
3182 					    u8 *duplex, u32 *lane_num)
3183 {
3184 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3185 
3186 	if (speed)
3187 		*speed = hdev->hw.mac.speed;
3188 	if (duplex)
3189 		*duplex = hdev->hw.mac.duplex;
3190 	if (auto_neg)
3191 		*auto_neg = AUTONEG_DISABLE;
3192 }
3193 
3194 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3195 				 u8 duplex)
3196 {
3197 	hdev->hw.mac.speed = speed;
3198 	hdev->hw.mac.duplex = duplex;
3199 }
3200 
3201 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3202 {
3203 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3204 	bool gro_en_old = hdev->gro_en;
3205 	int ret;
3206 
3207 	hdev->gro_en = enable;
3208 	ret = hclgevf_config_gro(hdev);
3209 	if (ret)
3210 		hdev->gro_en = gro_en_old;
3211 
3212 	return ret;
3213 }
3214 
3215 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3216 				   u8 *module_type)
3217 {
3218 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3219 
3220 	if (media_type)
3221 		*media_type = hdev->hw.mac.media_type;
3222 
3223 	if (module_type)
3224 		*module_type = hdev->hw.mac.module_type;
3225 }
3226 
3227 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3228 {
3229 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3230 
3231 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3232 }
3233 
3234 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3235 {
3236 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3237 
3238 	return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3239 }
3240 
3241 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3242 {
3243 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3244 
3245 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3246 }
3247 
3248 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3249 {
3250 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3251 
3252 	return hdev->rst_stats.hw_rst_done_cnt;
3253 }
3254 
3255 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3256 				  unsigned long *supported,
3257 				  unsigned long *advertising)
3258 {
3259 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3260 
3261 	*supported = hdev->hw.mac.supported;
3262 	*advertising = hdev->hw.mac.advertising;
3263 }
3264 
3265 #define MAX_SEPARATE_NUM	4
3266 #define SEPARATOR_VALUE		0xFDFCFBFA
3267 #define REG_NUM_PER_LINE	4
3268 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3269 
3270 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3271 {
3272 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3273 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3274 
3275 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3276 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3277 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3278 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3279 
3280 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3281 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3282 }
3283 
3284 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3285 			     void *data)
3286 {
3287 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3288 	int i, j, reg_um, separator_num;
3289 	u32 *reg = data;
3290 
3291 	*version = hdev->fw_version;
3292 
3293 	/* fetching per-VF registers values from VF PCIe register space */
3294 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3295 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3296 	for (i = 0; i < reg_um; i++)
3297 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3298 	for (i = 0; i < separator_num; i++)
3299 		*reg++ = SEPARATOR_VALUE;
3300 
3301 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3302 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3303 	for (i = 0; i < reg_um; i++)
3304 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3305 	for (i = 0; i < separator_num; i++)
3306 		*reg++ = SEPARATOR_VALUE;
3307 
3308 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3309 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3310 	for (j = 0; j < hdev->num_tqps; j++) {
3311 		for (i = 0; i < reg_um; i++)
3312 			*reg++ = hclgevf_read_dev(&hdev->hw,
3313 						  ring_reg_addr_list[i] +
3314 						  HCLGEVF_TQP_REG_SIZE * j);
3315 		for (i = 0; i < separator_num; i++)
3316 			*reg++ = SEPARATOR_VALUE;
3317 	}
3318 
3319 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3320 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3321 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3322 		for (i = 0; i < reg_um; i++)
3323 			*reg++ = hclgevf_read_dev(&hdev->hw,
3324 						  tqp_intr_reg_addr_list[i] +
3325 						  4 * j);
3326 		for (i = 0; i < separator_num; i++)
3327 			*reg++ = SEPARATOR_VALUE;
3328 	}
3329 }
3330 
3331 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3332 				struct hclge_mbx_port_base_vlan *port_base_vlan)
3333 {
3334 	struct hnae3_handle *nic = &hdev->nic;
3335 	struct hclge_vf_to_pf_msg send_msg;
3336 	int ret;
3337 
3338 	rtnl_lock();
3339 
3340 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3341 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3342 		dev_warn(&hdev->pdev->dev,
3343 			 "is resetting when updating port based vlan info\n");
3344 		rtnl_unlock();
3345 		return;
3346 	}
3347 
3348 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3349 	if (ret) {
3350 		rtnl_unlock();
3351 		return;
3352 	}
3353 
3354 	/* send msg to PF and wait update port based vlan info */
3355 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3356 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3357 	memcpy(send_msg.data, port_base_vlan, sizeof(*port_base_vlan));
3358 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3359 	if (!ret) {
3360 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3361 			nic->port_base_vlan_state = state;
3362 		else
3363 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3364 	}
3365 
3366 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3367 	rtnl_unlock();
3368 }
3369 
3370 static const struct hnae3_ae_ops hclgevf_ops = {
3371 	.init_ae_dev = hclgevf_init_ae_dev,
3372 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3373 	.reset_prepare = hclgevf_reset_prepare_general,
3374 	.reset_done = hclgevf_reset_done,
3375 	.init_client_instance = hclgevf_init_client_instance,
3376 	.uninit_client_instance = hclgevf_uninit_client_instance,
3377 	.start = hclgevf_ae_start,
3378 	.stop = hclgevf_ae_stop,
3379 	.client_start = hclgevf_client_start,
3380 	.client_stop = hclgevf_client_stop,
3381 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3382 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3383 	.get_vector = hclgevf_get_vector,
3384 	.put_vector = hclgevf_put_vector,
3385 	.reset_queue = hclgevf_reset_tqp,
3386 	.get_mac_addr = hclgevf_get_mac_addr,
3387 	.set_mac_addr = hclgevf_set_mac_addr,
3388 	.add_uc_addr = hclgevf_add_uc_addr,
3389 	.rm_uc_addr = hclgevf_rm_uc_addr,
3390 	.add_mc_addr = hclgevf_add_mc_addr,
3391 	.rm_mc_addr = hclgevf_rm_mc_addr,
3392 	.get_stats = hclgevf_get_stats,
3393 	.update_stats = hclgevf_update_stats,
3394 	.get_strings = hclgevf_get_strings,
3395 	.get_sset_count = hclgevf_get_sset_count,
3396 	.get_rss_key_size = hclge_comm_get_rss_key_size,
3397 	.get_rss = hclgevf_get_rss,
3398 	.set_rss = hclgevf_set_rss,
3399 	.get_rss_tuple = hclgevf_get_rss_tuple,
3400 	.set_rss_tuple = hclgevf_set_rss_tuple,
3401 	.get_tc_size = hclgevf_get_tc_size,
3402 	.get_fw_version = hclgevf_get_fw_version,
3403 	.set_vlan_filter = hclgevf_set_vlan_filter,
3404 	.enable_vlan_filter = hclgevf_enable_vlan_filter,
3405 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3406 	.reset_event = hclgevf_reset_event,
3407 	.set_default_reset_request = hclgevf_set_def_reset_request,
3408 	.set_channels = hclgevf_set_channels,
3409 	.get_channels = hclgevf_get_channels,
3410 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3411 	.get_regs_len = hclgevf_get_regs_len,
3412 	.get_regs = hclgevf_get_regs,
3413 	.get_status = hclgevf_get_status,
3414 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3415 	.get_media_type = hclgevf_get_media_type,
3416 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3417 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3418 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3419 	.set_gro_en = hclgevf_gro_en,
3420 	.set_mtu = hclgevf_set_mtu,
3421 	.get_global_queue_id = hclgevf_get_qid_global,
3422 	.set_timer_task = hclgevf_set_timer_task,
3423 	.get_link_mode = hclgevf_get_link_mode,
3424 	.set_promisc_mode = hclgevf_set_promisc_mode,
3425 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3426 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3427 };
3428 
3429 static struct hnae3_ae_algo ae_algovf = {
3430 	.ops = &hclgevf_ops,
3431 	.pdev_id_table = ae_algovf_pci_tbl,
3432 };
3433 
3434 static int __init hclgevf_init(void)
3435 {
3436 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3437 
3438 	hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME);
3439 	if (!hclgevf_wq) {
3440 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3441 		return -ENOMEM;
3442 	}
3443 
3444 	hnae3_register_ae_algo(&ae_algovf);
3445 
3446 	return 0;
3447 }
3448 
3449 static void __exit hclgevf_exit(void)
3450 {
3451 	hnae3_unregister_ae_algo(&ae_algovf);
3452 	destroy_workqueue(hclgevf_wq);
3453 }
3454 module_init(hclgevf_init);
3455 module_exit(hclgevf_exit);
3456 
3457 MODULE_LICENSE("GPL");
3458 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3459 MODULE_DESCRIPTION("HCLGEVF Driver");
3460 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3461