1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 static const u8 hclgevf_hash_key[] = {
25 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
26 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
27 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
28 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
29 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
30 };
31 
32 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
33 
34 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
35 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
36 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
37 					 HCLGEVF_CMDQ_TX_TAIL_REG,
38 					 HCLGEVF_CMDQ_TX_HEAD_REG,
39 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
40 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
41 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
42 					 HCLGEVF_CMDQ_RX_TAIL_REG,
43 					 HCLGEVF_CMDQ_RX_HEAD_REG,
44 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
45 					 HCLGEVF_CMDQ_INTR_STS_REG,
46 					 HCLGEVF_CMDQ_INTR_EN_REG,
47 					 HCLGEVF_CMDQ_INTR_GEN_REG};
48 
49 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
50 					   HCLGEVF_RST_ING,
51 					   HCLGEVF_GRO_EN_REG};
52 
53 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
54 					 HCLGEVF_RING_RX_ADDR_H_REG,
55 					 HCLGEVF_RING_RX_BD_NUM_REG,
56 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
57 					 HCLGEVF_RING_RX_MERGE_EN_REG,
58 					 HCLGEVF_RING_RX_TAIL_REG,
59 					 HCLGEVF_RING_RX_HEAD_REG,
60 					 HCLGEVF_RING_RX_FBD_NUM_REG,
61 					 HCLGEVF_RING_RX_OFFSET_REG,
62 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
63 					 HCLGEVF_RING_RX_STASH_REG,
64 					 HCLGEVF_RING_RX_BD_ERR_REG,
65 					 HCLGEVF_RING_TX_ADDR_L_REG,
66 					 HCLGEVF_RING_TX_ADDR_H_REG,
67 					 HCLGEVF_RING_TX_BD_NUM_REG,
68 					 HCLGEVF_RING_TX_PRIORITY_REG,
69 					 HCLGEVF_RING_TX_TC_REG,
70 					 HCLGEVF_RING_TX_MERGE_EN_REG,
71 					 HCLGEVF_RING_TX_TAIL_REG,
72 					 HCLGEVF_RING_TX_HEAD_REG,
73 					 HCLGEVF_RING_TX_FBD_NUM_REG,
74 					 HCLGEVF_RING_TX_OFFSET_REG,
75 					 HCLGEVF_RING_TX_EBD_NUM_REG,
76 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
77 					 HCLGEVF_RING_TX_BD_ERR_REG,
78 					 HCLGEVF_RING_EN_REG};
79 
80 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
81 					     HCLGEVF_TQP_INTR_GL0_REG,
82 					     HCLGEVF_TQP_INTR_GL1_REG,
83 					     HCLGEVF_TQP_INTR_GL2_REG,
84 					     HCLGEVF_TQP_INTR_RL_REG};
85 
86 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
87 	struct hnae3_handle *handle)
88 {
89 	if (!handle->client)
90 		return container_of(handle, struct hclgevf_dev, nic);
91 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
92 		return container_of(handle, struct hclgevf_dev, roce);
93 	else
94 		return container_of(handle, struct hclgevf_dev, nic);
95 }
96 
97 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
98 {
99 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
100 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
101 	struct hclgevf_desc desc;
102 	struct hclgevf_tqp *tqp;
103 	int status;
104 	int i;
105 
106 	for (i = 0; i < kinfo->num_tqps; i++) {
107 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
108 		hclgevf_cmd_setup_basic_desc(&desc,
109 					     HCLGEVF_OPC_QUERY_RX_STATUS,
110 					     true);
111 
112 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
113 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
114 		if (status) {
115 			dev_err(&hdev->pdev->dev,
116 				"Query tqp stat fail, status = %d,queue = %d\n",
117 				status,	i);
118 			return status;
119 		}
120 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
121 			le32_to_cpu(desc.data[1]);
122 
123 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
124 					     true);
125 
126 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
127 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
128 		if (status) {
129 			dev_err(&hdev->pdev->dev,
130 				"Query tqp stat fail, status = %d,queue = %d\n",
131 				status, i);
132 			return status;
133 		}
134 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
135 			le32_to_cpu(desc.data[1]);
136 	}
137 
138 	return 0;
139 }
140 
141 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
142 {
143 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
144 	struct hclgevf_tqp *tqp;
145 	u64 *buff = data;
146 	int i;
147 
148 	for (i = 0; i < kinfo->num_tqps; i++) {
149 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
150 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
151 	}
152 	for (i = 0; i < kinfo->num_tqps; i++) {
153 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
154 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
155 	}
156 
157 	return buff;
158 }
159 
160 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
161 {
162 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
163 
164 	return kinfo->num_tqps * 2;
165 }
166 
167 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
168 {
169 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170 	u8 *buff = data;
171 	int i = 0;
172 
173 	for (i = 0; i < kinfo->num_tqps; i++) {
174 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
175 						       struct hclgevf_tqp, q);
176 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
177 			 tqp->index);
178 		buff += ETH_GSTRING_LEN;
179 	}
180 
181 	for (i = 0; i < kinfo->num_tqps; i++) {
182 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
183 						       struct hclgevf_tqp, q);
184 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
185 			 tqp->index);
186 		buff += ETH_GSTRING_LEN;
187 	}
188 
189 	return buff;
190 }
191 
192 static void hclgevf_update_stats(struct hnae3_handle *handle,
193 				 struct net_device_stats *net_stats)
194 {
195 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
196 	int status;
197 
198 	status = hclgevf_tqps_update_stats(handle);
199 	if (status)
200 		dev_err(&hdev->pdev->dev,
201 			"VF update of TQPS stats fail, status = %d.\n",
202 			status);
203 }
204 
205 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
206 {
207 	if (strset == ETH_SS_TEST)
208 		return -EOPNOTSUPP;
209 	else if (strset == ETH_SS_STATS)
210 		return hclgevf_tqps_get_sset_count(handle, strset);
211 
212 	return 0;
213 }
214 
215 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
216 				u8 *data)
217 {
218 	u8 *p = (char *)data;
219 
220 	if (strset == ETH_SS_STATS)
221 		p = hclgevf_tqps_get_strings(handle, p);
222 }
223 
224 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
225 {
226 	hclgevf_tqps_get_stats(handle, data);
227 }
228 
229 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
230 {
231 	u8 resp_msg;
232 	int status;
233 
234 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
235 				      true, &resp_msg, sizeof(u8));
236 	if (status) {
237 		dev_err(&hdev->pdev->dev,
238 			"VF request to get TC info from PF failed %d",
239 			status);
240 		return status;
241 	}
242 
243 	hdev->hw_tc_map = resp_msg;
244 
245 	return 0;
246 }
247 
248 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
249 {
250 	struct hnae3_handle *nic = &hdev->nic;
251 	u8 resp_msg;
252 	int ret;
253 
254 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
255 				   HCLGE_MBX_GET_PORT_BASE_VLAN_STATE,
256 				   NULL, 0, true, &resp_msg, sizeof(u8));
257 	if (ret) {
258 		dev_err(&hdev->pdev->dev,
259 			"VF request to get port based vlan state failed %d",
260 			ret);
261 		return ret;
262 	}
263 
264 	nic->port_base_vlan_state = resp_msg;
265 
266 	return 0;
267 }
268 
269 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
270 {
271 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
272 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
273 	int status;
274 
275 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
276 				      true, resp_msg,
277 				      HCLGEVF_TQPS_RSS_INFO_LEN);
278 	if (status) {
279 		dev_err(&hdev->pdev->dev,
280 			"VF request to get tqp info from PF failed %d",
281 			status);
282 		return status;
283 	}
284 
285 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
286 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
287 	memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));
288 
289 	return 0;
290 }
291 
292 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
293 {
294 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
295 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
296 	int ret;
297 
298 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
299 				   true, resp_msg,
300 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
301 	if (ret) {
302 		dev_err(&hdev->pdev->dev,
303 			"VF request to get tqp depth info from PF failed %d",
304 			ret);
305 		return ret;
306 	}
307 
308 	memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
309 	memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));
310 
311 	return 0;
312 }
313 
314 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
315 {
316 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
317 	u8 msg_data[2], resp_data[2];
318 	u16 qid_in_pf = 0;
319 	int ret;
320 
321 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
322 
323 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
324 				   2, true, resp_data, 2);
325 	if (!ret)
326 		qid_in_pf = *(u16 *)resp_data;
327 
328 	return qid_in_pf;
329 }
330 
331 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
332 {
333 	u8 resp_msg[2];
334 	int ret;
335 
336 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MEDIA_TYPE, 0, NULL, 0,
337 				   true, resp_msg, sizeof(resp_msg));
338 	if (ret) {
339 		dev_err(&hdev->pdev->dev,
340 			"VF request to get the pf port media type failed %d",
341 			ret);
342 		return ret;
343 	}
344 
345 	hdev->hw.mac.media_type = resp_msg[0];
346 	hdev->hw.mac.module_type = resp_msg[1];
347 
348 	return 0;
349 }
350 
351 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
352 {
353 	struct hclgevf_tqp *tqp;
354 	int i;
355 
356 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
357 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
358 	if (!hdev->htqp)
359 		return -ENOMEM;
360 
361 	tqp = hdev->htqp;
362 
363 	for (i = 0; i < hdev->num_tqps; i++) {
364 		tqp->dev = &hdev->pdev->dev;
365 		tqp->index = i;
366 
367 		tqp->q.ae_algo = &ae_algovf;
368 		tqp->q.buf_size = hdev->rx_buf_len;
369 		tqp->q.tx_desc_num = hdev->num_tx_desc;
370 		tqp->q.rx_desc_num = hdev->num_rx_desc;
371 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
372 			i * HCLGEVF_TQP_REG_SIZE;
373 
374 		tqp++;
375 	}
376 
377 	return 0;
378 }
379 
380 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
381 {
382 	struct hnae3_handle *nic = &hdev->nic;
383 	struct hnae3_knic_private_info *kinfo;
384 	u16 new_tqps = hdev->num_tqps;
385 	int i;
386 
387 	kinfo = &nic->kinfo;
388 	kinfo->num_tc = 0;
389 	kinfo->num_tx_desc = hdev->num_tx_desc;
390 	kinfo->num_rx_desc = hdev->num_rx_desc;
391 	kinfo->rx_buf_len = hdev->rx_buf_len;
392 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
393 		if (hdev->hw_tc_map & BIT(i))
394 			kinfo->num_tc++;
395 
396 	kinfo->rss_size
397 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
398 	new_tqps = kinfo->rss_size * kinfo->num_tc;
399 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
400 
401 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
402 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
403 	if (!kinfo->tqp)
404 		return -ENOMEM;
405 
406 	for (i = 0; i < kinfo->num_tqps; i++) {
407 		hdev->htqp[i].q.handle = &hdev->nic;
408 		hdev->htqp[i].q.tqp_index = i;
409 		kinfo->tqp[i] = &hdev->htqp[i].q;
410 	}
411 
412 	return 0;
413 }
414 
415 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
416 {
417 	int status;
418 	u8 resp_msg;
419 
420 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
421 				      0, false, &resp_msg, sizeof(u8));
422 	if (status)
423 		dev_err(&hdev->pdev->dev,
424 			"VF failed to fetch link status(%d) from PF", status);
425 }
426 
427 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
428 {
429 	struct hnae3_handle *rhandle = &hdev->roce;
430 	struct hnae3_handle *handle = &hdev->nic;
431 	struct hnae3_client *rclient;
432 	struct hnae3_client *client;
433 
434 	client = handle->client;
435 	rclient = hdev->roce_client;
436 
437 	link_state =
438 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
439 
440 	if (link_state != hdev->hw.mac.link) {
441 		client->ops->link_status_change(handle, !!link_state);
442 		if (rclient && rclient->ops->link_status_change)
443 			rclient->ops->link_status_change(rhandle, !!link_state);
444 		hdev->hw.mac.link = link_state;
445 	}
446 }
447 
448 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
449 {
450 #define HCLGEVF_ADVERTISING 0
451 #define HCLGEVF_SUPPORTED   1
452 	u8 send_msg;
453 	u8 resp_msg;
454 
455 	send_msg = HCLGEVF_ADVERTISING;
456 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0, &send_msg,
457 			     sizeof(u8), false, &resp_msg, sizeof(u8));
458 	send_msg = HCLGEVF_SUPPORTED;
459 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0, &send_msg,
460 			     sizeof(u8), false, &resp_msg, sizeof(u8));
461 }
462 
463 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
464 {
465 	struct hnae3_handle *nic = &hdev->nic;
466 	int ret;
467 
468 	nic->ae_algo = &ae_algovf;
469 	nic->pdev = hdev->pdev;
470 	nic->numa_node_mask = hdev->numa_node_mask;
471 	nic->flags |= HNAE3_SUPPORT_VF;
472 
473 	ret = hclgevf_knic_setup(hdev);
474 	if (ret)
475 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
476 			ret);
477 	return ret;
478 }
479 
480 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
481 {
482 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
483 		dev_warn(&hdev->pdev->dev,
484 			 "vector(vector_id %d) has been freed.\n", vector_id);
485 		return;
486 	}
487 
488 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
489 	hdev->num_msi_left += 1;
490 	hdev->num_msi_used -= 1;
491 }
492 
493 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
494 			      struct hnae3_vector_info *vector_info)
495 {
496 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
497 	struct hnae3_vector_info *vector = vector_info;
498 	int alloc = 0;
499 	int i, j;
500 
501 	vector_num = min(hdev->num_msi_left, vector_num);
502 
503 	for (j = 0; j < vector_num; j++) {
504 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
505 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
506 				vector->vector = pci_irq_vector(hdev->pdev, i);
507 				vector->io_addr = hdev->hw.io_base +
508 					HCLGEVF_VECTOR_REG_BASE +
509 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
510 				hdev->vector_status[i] = 0;
511 				hdev->vector_irq[i] = vector->vector;
512 
513 				vector++;
514 				alloc++;
515 
516 				break;
517 			}
518 		}
519 	}
520 	hdev->num_msi_left -= alloc;
521 	hdev->num_msi_used += alloc;
522 
523 	return alloc;
524 }
525 
526 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
527 {
528 	int i;
529 
530 	for (i = 0; i < hdev->num_msi; i++)
531 		if (vector == hdev->vector_irq[i])
532 			return i;
533 
534 	return -EINVAL;
535 }
536 
537 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
538 				    const u8 hfunc, const u8 *key)
539 {
540 	struct hclgevf_rss_config_cmd *req;
541 	struct hclgevf_desc desc;
542 	int key_offset;
543 	int key_size;
544 	int ret;
545 
546 	req = (struct hclgevf_rss_config_cmd *)desc.data;
547 
548 	for (key_offset = 0; key_offset < 3; key_offset++) {
549 		hclgevf_cmd_setup_basic_desc(&desc,
550 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
551 					     false);
552 
553 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
554 		req->hash_config |=
555 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
556 
557 		if (key_offset == 2)
558 			key_size =
559 			HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
560 		else
561 			key_size = HCLGEVF_RSS_HASH_KEY_NUM;
562 
563 		memcpy(req->hash_key,
564 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
565 
566 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
567 		if (ret) {
568 			dev_err(&hdev->pdev->dev,
569 				"Configure RSS config fail, status = %d\n",
570 				ret);
571 			return ret;
572 		}
573 	}
574 
575 	return 0;
576 }
577 
578 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
579 {
580 	return HCLGEVF_RSS_KEY_SIZE;
581 }
582 
583 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
584 {
585 	return HCLGEVF_RSS_IND_TBL_SIZE;
586 }
587 
588 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
589 {
590 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
591 	struct hclgevf_rss_indirection_table_cmd *req;
592 	struct hclgevf_desc desc;
593 	int status;
594 	int i, j;
595 
596 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
597 
598 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
599 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
600 					     false);
601 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
602 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
603 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
604 			req->rss_result[j] =
605 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
606 
607 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
608 		if (status) {
609 			dev_err(&hdev->pdev->dev,
610 				"VF failed(=%d) to set RSS indirection table\n",
611 				status);
612 			return status;
613 		}
614 	}
615 
616 	return 0;
617 }
618 
619 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
620 {
621 	struct hclgevf_rss_tc_mode_cmd *req;
622 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
623 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
624 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
625 	struct hclgevf_desc desc;
626 	u16 roundup_size;
627 	int status;
628 	int i;
629 
630 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
631 
632 	roundup_size = roundup_pow_of_two(rss_size);
633 	roundup_size = ilog2(roundup_size);
634 
635 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
636 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
637 		tc_size[i] = roundup_size;
638 		tc_offset[i] = rss_size * i;
639 	}
640 
641 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
642 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
643 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
644 			      (tc_valid[i] & 0x1));
645 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
646 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
647 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
648 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
649 	}
650 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
651 	if (status)
652 		dev_err(&hdev->pdev->dev,
653 			"VF failed(=%d) to set rss tc mode\n", status);
654 
655 	return status;
656 }
657 
658 /* for revision 0x20, vf shared the same rss config with pf */
659 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
660 {
661 #define HCLGEVF_RSS_MBX_RESP_LEN	8
662 
663 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
664 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
665 	u16 msg_num, hash_key_index;
666 	u8 index;
667 	int ret;
668 
669 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
670 			HCLGEVF_RSS_MBX_RESP_LEN;
671 	for (index = 0; index < msg_num; index++) {
672 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_RSS_KEY, 0,
673 					   &index, sizeof(index),
674 					   true, resp_msg,
675 					   HCLGEVF_RSS_MBX_RESP_LEN);
676 		if (ret) {
677 			dev_err(&hdev->pdev->dev,
678 				"VF get rss hash key from PF failed, ret=%d",
679 				ret);
680 			return ret;
681 		}
682 
683 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
684 		if (index == msg_num - 1)
685 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
686 			       &resp_msg[0],
687 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
688 		else
689 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
690 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
691 	}
692 
693 	return 0;
694 }
695 
696 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
697 			   u8 *hfunc)
698 {
699 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
700 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
701 	int i, ret;
702 
703 	if (handle->pdev->revision >= 0x21) {
704 		/* Get hash algorithm */
705 		if (hfunc) {
706 			switch (rss_cfg->hash_algo) {
707 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
708 				*hfunc = ETH_RSS_HASH_TOP;
709 				break;
710 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
711 				*hfunc = ETH_RSS_HASH_XOR;
712 				break;
713 			default:
714 				*hfunc = ETH_RSS_HASH_UNKNOWN;
715 				break;
716 			}
717 		}
718 
719 		/* Get the RSS Key required by the user */
720 		if (key)
721 			memcpy(key, rss_cfg->rss_hash_key,
722 			       HCLGEVF_RSS_KEY_SIZE);
723 	} else {
724 		if (hfunc)
725 			*hfunc = ETH_RSS_HASH_TOP;
726 		if (key) {
727 			ret = hclgevf_get_rss_hash_key(hdev);
728 			if (ret)
729 				return ret;
730 			memcpy(key, rss_cfg->rss_hash_key,
731 			       HCLGEVF_RSS_KEY_SIZE);
732 		}
733 	}
734 
735 	if (indir)
736 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
737 			indir[i] = rss_cfg->rss_indirection_tbl[i];
738 
739 	return 0;
740 }
741 
742 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
743 			   const  u8 *key, const  u8 hfunc)
744 {
745 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
746 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
747 	int ret, i;
748 
749 	if (handle->pdev->revision >= 0x21) {
750 		/* Set the RSS Hash Key if specififed by the user */
751 		if (key) {
752 			switch (hfunc) {
753 			case ETH_RSS_HASH_TOP:
754 				rss_cfg->hash_algo =
755 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
756 				break;
757 			case ETH_RSS_HASH_XOR:
758 				rss_cfg->hash_algo =
759 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
760 				break;
761 			case ETH_RSS_HASH_NO_CHANGE:
762 				break;
763 			default:
764 				return -EINVAL;
765 			}
766 
767 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
768 						       key);
769 			if (ret)
770 				return ret;
771 
772 			/* Update the shadow RSS key with user specified qids */
773 			memcpy(rss_cfg->rss_hash_key, key,
774 			       HCLGEVF_RSS_KEY_SIZE);
775 		}
776 	}
777 
778 	/* update the shadow RSS table with user specified qids */
779 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
780 		rss_cfg->rss_indirection_tbl[i] = indir[i];
781 
782 	/* update the hardware */
783 	return hclgevf_set_rss_indir_table(hdev);
784 }
785 
786 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
787 {
788 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
789 
790 	if (nfc->data & RXH_L4_B_2_3)
791 		hash_sets |= HCLGEVF_D_PORT_BIT;
792 	else
793 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
794 
795 	if (nfc->data & RXH_IP_SRC)
796 		hash_sets |= HCLGEVF_S_IP_BIT;
797 	else
798 		hash_sets &= ~HCLGEVF_S_IP_BIT;
799 
800 	if (nfc->data & RXH_IP_DST)
801 		hash_sets |= HCLGEVF_D_IP_BIT;
802 	else
803 		hash_sets &= ~HCLGEVF_D_IP_BIT;
804 
805 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
806 		hash_sets |= HCLGEVF_V_TAG_BIT;
807 
808 	return hash_sets;
809 }
810 
811 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
812 				 struct ethtool_rxnfc *nfc)
813 {
814 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
815 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
816 	struct hclgevf_rss_input_tuple_cmd *req;
817 	struct hclgevf_desc desc;
818 	u8 tuple_sets;
819 	int ret;
820 
821 	if (handle->pdev->revision == 0x20)
822 		return -EOPNOTSUPP;
823 
824 	if (nfc->data &
825 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
826 		return -EINVAL;
827 
828 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
829 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
830 
831 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
832 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
833 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
834 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
835 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
836 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
837 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
838 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
839 
840 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
841 	switch (nfc->flow_type) {
842 	case TCP_V4_FLOW:
843 		req->ipv4_tcp_en = tuple_sets;
844 		break;
845 	case TCP_V6_FLOW:
846 		req->ipv6_tcp_en = tuple_sets;
847 		break;
848 	case UDP_V4_FLOW:
849 		req->ipv4_udp_en = tuple_sets;
850 		break;
851 	case UDP_V6_FLOW:
852 		req->ipv6_udp_en = tuple_sets;
853 		break;
854 	case SCTP_V4_FLOW:
855 		req->ipv4_sctp_en = tuple_sets;
856 		break;
857 	case SCTP_V6_FLOW:
858 		if ((nfc->data & RXH_L4_B_0_1) ||
859 		    (nfc->data & RXH_L4_B_2_3))
860 			return -EINVAL;
861 
862 		req->ipv6_sctp_en = tuple_sets;
863 		break;
864 	case IPV4_FLOW:
865 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
866 		break;
867 	case IPV6_FLOW:
868 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
869 		break;
870 	default:
871 		return -EINVAL;
872 	}
873 
874 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
875 	if (ret) {
876 		dev_err(&hdev->pdev->dev,
877 			"Set rss tuple fail, status = %d\n", ret);
878 		return ret;
879 	}
880 
881 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
882 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
883 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
884 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
885 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
886 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
887 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
888 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
889 	return 0;
890 }
891 
892 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
893 				 struct ethtool_rxnfc *nfc)
894 {
895 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
896 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
897 	u8 tuple_sets;
898 
899 	if (handle->pdev->revision == 0x20)
900 		return -EOPNOTSUPP;
901 
902 	nfc->data = 0;
903 
904 	switch (nfc->flow_type) {
905 	case TCP_V4_FLOW:
906 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
907 		break;
908 	case UDP_V4_FLOW:
909 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
910 		break;
911 	case TCP_V6_FLOW:
912 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
913 		break;
914 	case UDP_V6_FLOW:
915 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
916 		break;
917 	case SCTP_V4_FLOW:
918 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
919 		break;
920 	case SCTP_V6_FLOW:
921 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
922 		break;
923 	case IPV4_FLOW:
924 	case IPV6_FLOW:
925 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
926 		break;
927 	default:
928 		return -EINVAL;
929 	}
930 
931 	if (!tuple_sets)
932 		return 0;
933 
934 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
935 		nfc->data |= RXH_L4_B_2_3;
936 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
937 		nfc->data |= RXH_L4_B_0_1;
938 	if (tuple_sets & HCLGEVF_D_IP_BIT)
939 		nfc->data |= RXH_IP_DST;
940 	if (tuple_sets & HCLGEVF_S_IP_BIT)
941 		nfc->data |= RXH_IP_SRC;
942 
943 	return 0;
944 }
945 
946 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
947 				       struct hclgevf_rss_cfg *rss_cfg)
948 {
949 	struct hclgevf_rss_input_tuple_cmd *req;
950 	struct hclgevf_desc desc;
951 	int ret;
952 
953 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
954 
955 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
956 
957 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
958 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
959 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
960 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
961 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
962 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
963 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
964 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
965 
966 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
967 	if (ret)
968 		dev_err(&hdev->pdev->dev,
969 			"Configure rss input fail, status = %d\n", ret);
970 	return ret;
971 }
972 
973 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
974 {
975 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
976 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
977 
978 	return rss_cfg->rss_size;
979 }
980 
981 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
982 				       int vector_id,
983 				       struct hnae3_ring_chain_node *ring_chain)
984 {
985 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
986 	struct hnae3_ring_chain_node *node;
987 	struct hclge_mbx_vf_to_pf_cmd *req;
988 	struct hclgevf_desc desc;
989 	int i = 0;
990 	int status;
991 	u8 type;
992 
993 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
994 
995 	for (node = ring_chain; node; node = node->next) {
996 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
997 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
998 
999 		if (i == 0) {
1000 			hclgevf_cmd_setup_basic_desc(&desc,
1001 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1002 						     false);
1003 			type = en ?
1004 				HCLGE_MBX_MAP_RING_TO_VECTOR :
1005 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1006 			req->msg[0] = type;
1007 			req->msg[1] = vector_id;
1008 		}
1009 
1010 		req->msg[idx_offset] =
1011 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1012 		req->msg[idx_offset + 1] = node->tqp_index;
1013 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
1014 							   HNAE3_RING_GL_IDX_M,
1015 							   HNAE3_RING_GL_IDX_S);
1016 
1017 		i++;
1018 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
1019 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
1020 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
1021 		    !node->next) {
1022 			req->msg[2] = i;
1023 
1024 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1025 			if (status) {
1026 				dev_err(&hdev->pdev->dev,
1027 					"Map TQP fail, status is %d.\n",
1028 					status);
1029 				return status;
1030 			}
1031 			i = 0;
1032 			hclgevf_cmd_setup_basic_desc(&desc,
1033 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1034 						     false);
1035 			req->msg[0] = type;
1036 			req->msg[1] = vector_id;
1037 		}
1038 	}
1039 
1040 	return 0;
1041 }
1042 
1043 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1044 				      struct hnae3_ring_chain_node *ring_chain)
1045 {
1046 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1047 	int vector_id;
1048 
1049 	vector_id = hclgevf_get_vector_index(hdev, vector);
1050 	if (vector_id < 0) {
1051 		dev_err(&handle->pdev->dev,
1052 			"Get vector index fail. ret =%d\n", vector_id);
1053 		return vector_id;
1054 	}
1055 
1056 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1057 }
1058 
1059 static int hclgevf_unmap_ring_from_vector(
1060 				struct hnae3_handle *handle,
1061 				int vector,
1062 				struct hnae3_ring_chain_node *ring_chain)
1063 {
1064 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1065 	int ret, vector_id;
1066 
1067 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1068 		return 0;
1069 
1070 	vector_id = hclgevf_get_vector_index(hdev, vector);
1071 	if (vector_id < 0) {
1072 		dev_err(&handle->pdev->dev,
1073 			"Get vector index fail. ret =%d\n", vector_id);
1074 		return vector_id;
1075 	}
1076 
1077 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1078 	if (ret)
1079 		dev_err(&handle->pdev->dev,
1080 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1081 			vector_id,
1082 			ret);
1083 
1084 	return ret;
1085 }
1086 
1087 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1088 {
1089 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1090 	int vector_id;
1091 
1092 	vector_id = hclgevf_get_vector_index(hdev, vector);
1093 	if (vector_id < 0) {
1094 		dev_err(&handle->pdev->dev,
1095 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1096 			vector_id);
1097 		return vector_id;
1098 	}
1099 
1100 	hclgevf_free_vector(hdev, vector_id);
1101 
1102 	return 0;
1103 }
1104 
1105 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1106 					bool en_bc_pmc)
1107 {
1108 	struct hclge_mbx_vf_to_pf_cmd *req;
1109 	struct hclgevf_desc desc;
1110 	int ret;
1111 
1112 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1113 
1114 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
1115 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1116 	req->msg[1] = en_bc_pmc ? 1 : 0;
1117 
1118 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1119 	if (ret)
1120 		dev_err(&hdev->pdev->dev,
1121 			"Set promisc mode fail, status is %d.\n", ret);
1122 
1123 	return ret;
1124 }
1125 
1126 static int hclgevf_set_promisc_mode(struct hclgevf_dev *hdev, bool en_bc_pmc)
1127 {
1128 	return hclgevf_cmd_set_promisc_mode(hdev, en_bc_pmc);
1129 }
1130 
1131 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
1132 			      int stream_id, bool enable)
1133 {
1134 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1135 	struct hclgevf_desc desc;
1136 	int status;
1137 
1138 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1139 
1140 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1141 				     false);
1142 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1143 	req->stream_id = cpu_to_le16(stream_id);
1144 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
1145 
1146 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1147 	if (status)
1148 		dev_err(&hdev->pdev->dev,
1149 			"TQP enable fail, status =%d.\n", status);
1150 
1151 	return status;
1152 }
1153 
1154 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1155 {
1156 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1157 	struct hclgevf_tqp *tqp;
1158 	int i;
1159 
1160 	for (i = 0; i < kinfo->num_tqps; i++) {
1161 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1162 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1163 	}
1164 }
1165 
1166 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1167 {
1168 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1169 
1170 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
1171 }
1172 
1173 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1174 				bool is_first)
1175 {
1176 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1177 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1178 	u8 *new_mac_addr = (u8 *)p;
1179 	u8 msg_data[ETH_ALEN * 2];
1180 	u16 subcode;
1181 	int status;
1182 
1183 	ether_addr_copy(msg_data, new_mac_addr);
1184 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1185 
1186 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1187 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1188 
1189 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1190 				      subcode, msg_data, ETH_ALEN * 2,
1191 				      true, NULL, 0);
1192 	if (!status)
1193 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1194 
1195 	return status;
1196 }
1197 
1198 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1199 			       const unsigned char *addr)
1200 {
1201 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1202 
1203 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1204 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1205 				    addr, ETH_ALEN, false, NULL, 0);
1206 }
1207 
1208 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1209 			      const unsigned char *addr)
1210 {
1211 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1212 
1213 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1214 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1215 				    addr, ETH_ALEN, false, NULL, 0);
1216 }
1217 
1218 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1219 			       const unsigned char *addr)
1220 {
1221 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1222 
1223 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1224 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1225 				    addr, ETH_ALEN, false, NULL, 0);
1226 }
1227 
1228 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1229 			      const unsigned char *addr)
1230 {
1231 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1232 
1233 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1234 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1235 				    addr, ETH_ALEN, false, NULL, 0);
1236 }
1237 
1238 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1239 				   __be16 proto, u16 vlan_id,
1240 				   bool is_kill)
1241 {
1242 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1243 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1244 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1245 
1246 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1247 		return -EINVAL;
1248 
1249 	if (proto != htons(ETH_P_8021Q))
1250 		return -EPROTONOSUPPORT;
1251 
1252 	msg_data[0] = is_kill;
1253 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1254 	memcpy(&msg_data[3], &proto, sizeof(proto));
1255 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1256 				    HCLGE_MBX_VLAN_FILTER, msg_data,
1257 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1258 }
1259 
1260 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1261 {
1262 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1263 	u8 msg_data;
1264 
1265 	msg_data = enable ? 1 : 0;
1266 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1267 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1268 				    1, false, NULL, 0);
1269 }
1270 
1271 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1272 {
1273 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1274 	u8 msg_data[2];
1275 	int ret;
1276 
1277 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
1278 
1279 	/* disable vf queue before send queue reset msg to PF */
1280 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1281 	if (ret)
1282 		return ret;
1283 
1284 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1285 				    2, true, NULL, 0);
1286 }
1287 
1288 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1289 {
1290 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1291 
1292 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1293 				    sizeof(new_mtu), true, NULL, 0);
1294 }
1295 
1296 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1297 				 enum hnae3_reset_notify_type type)
1298 {
1299 	struct hnae3_client *client = hdev->nic_client;
1300 	struct hnae3_handle *handle = &hdev->nic;
1301 	int ret;
1302 
1303 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1304 	    !client)
1305 		return 0;
1306 
1307 	if (!client->ops->reset_notify)
1308 		return -EOPNOTSUPP;
1309 
1310 	ret = client->ops->reset_notify(handle, type);
1311 	if (ret)
1312 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1313 			type, ret);
1314 
1315 	return ret;
1316 }
1317 
1318 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1319 {
1320 	struct hclgevf_dev *hdev = ae_dev->priv;
1321 
1322 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1323 }
1324 
1325 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1326 				    unsigned long delay_us,
1327 				    unsigned long wait_cnt)
1328 {
1329 	unsigned long cnt = 0;
1330 
1331 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1332 	       cnt++ < wait_cnt)
1333 		usleep_range(delay_us, delay_us * 2);
1334 
1335 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1336 		dev_err(&hdev->pdev->dev,
1337 			"flr wait timeout\n");
1338 		return -ETIMEDOUT;
1339 	}
1340 
1341 	return 0;
1342 }
1343 
1344 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1345 {
1346 #define HCLGEVF_RESET_WAIT_US	20000
1347 #define HCLGEVF_RESET_WAIT_CNT	2000
1348 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1349 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1350 
1351 	u32 val;
1352 	int ret;
1353 
1354 	/* wait to check the hardware reset completion status */
1355 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1356 	dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1357 
1358 	if (hdev->reset_type == HNAE3_FLR_RESET)
1359 		return hclgevf_flr_poll_timeout(hdev,
1360 						HCLGEVF_RESET_WAIT_US,
1361 						HCLGEVF_RESET_WAIT_CNT);
1362 
1363 	ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1364 				 !(val & HCLGEVF_RST_ING_BITS),
1365 				 HCLGEVF_RESET_WAIT_US,
1366 				 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1367 
1368 	/* hardware completion status should be available by this time */
1369 	if (ret) {
1370 		dev_err(&hdev->pdev->dev,
1371 			"could'nt get reset done status from h/w, timeout!\n");
1372 		return ret;
1373 	}
1374 
1375 	/* we will wait a bit more to let reset of the stack to complete. This
1376 	 * might happen in case reset assertion was made by PF. Yes, this also
1377 	 * means we might end up waiting bit more even for VF reset.
1378 	 */
1379 	msleep(5000);
1380 
1381 	return 0;
1382 }
1383 
1384 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1385 {
1386 	int ret;
1387 
1388 	/* uninitialize the nic client */
1389 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1390 	if (ret)
1391 		return ret;
1392 
1393 	/* re-initialize the hclge device */
1394 	ret = hclgevf_reset_hdev(hdev);
1395 	if (ret) {
1396 		dev_err(&hdev->pdev->dev,
1397 			"hclge device re-init failed, VF is disabled!\n");
1398 		return ret;
1399 	}
1400 
1401 	/* bring up the nic client again */
1402 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1403 	if (ret)
1404 		return ret;
1405 
1406 	return hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1407 }
1408 
1409 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1410 {
1411 #define HCLGEVF_RESET_SYNC_TIME 100
1412 
1413 	int ret = 0;
1414 
1415 	switch (hdev->reset_type) {
1416 	case HNAE3_VF_FUNC_RESET:
1417 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1418 					   0, true, NULL, sizeof(u8));
1419 		hdev->rst_stats.vf_func_rst_cnt++;
1420 		break;
1421 	case HNAE3_FLR_RESET:
1422 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1423 		hdev->rst_stats.flr_rst_cnt++;
1424 		break;
1425 	default:
1426 		break;
1427 	}
1428 
1429 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1430 	/* inform hardware that preparatory work is done */
1431 	msleep(HCLGEVF_RESET_SYNC_TIME);
1432 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1433 			  HCLGEVF_NIC_CMQ_ENABLE);
1434 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1435 		 hdev->reset_type, ret);
1436 
1437 	return ret;
1438 }
1439 
1440 static int hclgevf_reset(struct hclgevf_dev *hdev)
1441 {
1442 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1443 	int ret;
1444 
1445 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1446 	 * know if device is undergoing reset
1447 	 */
1448 	ae_dev->reset_type = hdev->reset_type;
1449 	hdev->rst_stats.rst_cnt++;
1450 	rtnl_lock();
1451 
1452 	/* bring down the nic to stop any ongoing TX/RX */
1453 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1454 	if (ret)
1455 		goto err_reset_lock;
1456 
1457 	rtnl_unlock();
1458 
1459 	ret = hclgevf_reset_prepare_wait(hdev);
1460 	if (ret)
1461 		goto err_reset;
1462 
1463 	/* check if VF could successfully fetch the hardware reset completion
1464 	 * status from the hardware
1465 	 */
1466 	ret = hclgevf_reset_wait(hdev);
1467 	if (ret) {
1468 		/* can't do much in this situation, will disable VF */
1469 		dev_err(&hdev->pdev->dev,
1470 			"VF failed(=%d) to fetch H/W reset completion status\n",
1471 			ret);
1472 		goto err_reset;
1473 	}
1474 
1475 	hdev->rst_stats.hw_rst_done_cnt++;
1476 
1477 	rtnl_lock();
1478 
1479 	/* now, re-initialize the nic client and ae device*/
1480 	ret = hclgevf_reset_stack(hdev);
1481 	if (ret) {
1482 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1483 		goto err_reset_lock;
1484 	}
1485 
1486 	/* bring up the nic to enable TX/RX again */
1487 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1488 	if (ret)
1489 		goto err_reset_lock;
1490 
1491 	rtnl_unlock();
1492 
1493 	hdev->last_reset_time = jiffies;
1494 	ae_dev->reset_type = HNAE3_NONE_RESET;
1495 	hdev->rst_stats.rst_done_cnt++;
1496 
1497 	return ret;
1498 err_reset_lock:
1499 	rtnl_unlock();
1500 err_reset:
1501 	/* When VF reset failed, only the higher level reset asserted by PF
1502 	 * can restore it, so re-initialize the command queue to receive
1503 	 * this higher reset event.
1504 	 */
1505 	hclgevf_cmd_init(hdev);
1506 	dev_err(&hdev->pdev->dev, "failed to reset VF\n");
1507 	if (hclgevf_is_reset_pending(hdev))
1508 		hclgevf_reset_task_schedule(hdev);
1509 
1510 	return ret;
1511 }
1512 
1513 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1514 						     unsigned long *addr)
1515 {
1516 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1517 
1518 	/* return the highest priority reset level amongst all */
1519 	if (test_bit(HNAE3_VF_RESET, addr)) {
1520 		rst_level = HNAE3_VF_RESET;
1521 		clear_bit(HNAE3_VF_RESET, addr);
1522 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1523 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1524 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1525 		rst_level = HNAE3_VF_FULL_RESET;
1526 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1527 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1528 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1529 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1530 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1531 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1532 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1533 		rst_level = HNAE3_VF_FUNC_RESET;
1534 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1535 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1536 		rst_level = HNAE3_FLR_RESET;
1537 		clear_bit(HNAE3_FLR_RESET, addr);
1538 	}
1539 
1540 	return rst_level;
1541 }
1542 
1543 static void hclgevf_reset_event(struct pci_dev *pdev,
1544 				struct hnae3_handle *handle)
1545 {
1546 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1547 	struct hclgevf_dev *hdev = ae_dev->priv;
1548 
1549 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1550 
1551 	if (hdev->default_reset_request)
1552 		hdev->reset_level =
1553 			hclgevf_get_reset_level(hdev,
1554 						&hdev->default_reset_request);
1555 	else
1556 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1557 
1558 	/* reset of this VF requested */
1559 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1560 	hclgevf_reset_task_schedule(hdev);
1561 
1562 	hdev->last_reset_time = jiffies;
1563 }
1564 
1565 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1566 					  enum hnae3_reset_type rst_type)
1567 {
1568 	struct hclgevf_dev *hdev = ae_dev->priv;
1569 
1570 	set_bit(rst_type, &hdev->default_reset_request);
1571 }
1572 
1573 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1574 {
1575 #define HCLGEVF_FLR_WAIT_MS	100
1576 #define HCLGEVF_FLR_WAIT_CNT	50
1577 	struct hclgevf_dev *hdev = ae_dev->priv;
1578 	int cnt = 0;
1579 
1580 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1581 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1582 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1583 	hclgevf_reset_event(hdev->pdev, NULL);
1584 
1585 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1586 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1587 		msleep(HCLGEVF_FLR_WAIT_MS);
1588 
1589 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1590 		dev_err(&hdev->pdev->dev,
1591 			"flr wait down timeout: %d\n", cnt);
1592 }
1593 
1594 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1595 {
1596 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1597 
1598 	return hdev->fw_version;
1599 }
1600 
1601 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1602 {
1603 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1604 
1605 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1606 					    HCLGEVF_MISC_VECTOR_NUM);
1607 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1608 	/* vector status always valid for Vector 0 */
1609 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1610 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1611 
1612 	hdev->num_msi_left -= 1;
1613 	hdev->num_msi_used += 1;
1614 }
1615 
1616 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1617 {
1618 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1619 	    !test_bit(HCLGEVF_STATE_REMOVING, &hdev->state)) {
1620 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1621 		schedule_work(&hdev->rst_service_task);
1622 	}
1623 }
1624 
1625 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1626 {
1627 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1628 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1629 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1630 		schedule_work(&hdev->mbx_service_task);
1631 	}
1632 }
1633 
1634 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1635 {
1636 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1637 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1638 		schedule_work(&hdev->service_task);
1639 }
1640 
1641 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1642 {
1643 	/* if we have any pending mailbox event then schedule the mbx task */
1644 	if (hdev->mbx_event_pending)
1645 		hclgevf_mbx_task_schedule(hdev);
1646 
1647 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1648 		hclgevf_reset_task_schedule(hdev);
1649 }
1650 
1651 static void hclgevf_service_timer(struct timer_list *t)
1652 {
1653 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1654 
1655 	mod_timer(&hdev->service_timer, jiffies +
1656 		  HCLGEVF_GENERAL_TASK_INTERVAL * HZ);
1657 
1658 	hdev->stats_timer++;
1659 	hclgevf_task_schedule(hdev);
1660 }
1661 
1662 static void hclgevf_reset_service_task(struct work_struct *work)
1663 {
1664 	struct hclgevf_dev *hdev =
1665 		container_of(work, struct hclgevf_dev, rst_service_task);
1666 	int ret;
1667 
1668 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1669 		return;
1670 
1671 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1672 
1673 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1674 			       &hdev->reset_state)) {
1675 		/* PF has initmated that it is about to reset the hardware.
1676 		 * We now have to poll & check if harware has actually completed
1677 		 * the reset sequence. On hardware reset completion, VF needs to
1678 		 * reset the client and ae device.
1679 		 */
1680 		hdev->reset_attempts = 0;
1681 
1682 		hdev->last_reset_time = jiffies;
1683 		while ((hdev->reset_type =
1684 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1685 		       != HNAE3_NONE_RESET) {
1686 			ret = hclgevf_reset(hdev);
1687 			if (ret)
1688 				dev_err(&hdev->pdev->dev,
1689 					"VF stack reset failed %d.\n", ret);
1690 		}
1691 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1692 				      &hdev->reset_state)) {
1693 		/* we could be here when either of below happens:
1694 		 * 1. reset was initiated due to watchdog timeout due to
1695 		 *    a. IMP was earlier reset and our TX got choked down and
1696 		 *       which resulted in watchdog reacting and inducing VF
1697 		 *       reset. This also means our cmdq would be unreliable.
1698 		 *    b. problem in TX due to other lower layer(example link
1699 		 *       layer not functioning properly etc.)
1700 		 * 2. VF reset might have been initiated due to some config
1701 		 *    change.
1702 		 *
1703 		 * NOTE: Theres no clear way to detect above cases than to react
1704 		 * to the response of PF for this reset request. PF will ack the
1705 		 * 1b and 2. cases but we will not get any intimation about 1a
1706 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1707 		 * communication between PF and VF would be broken.
1708 		 */
1709 
1710 		/* if we are never geting into pending state it means either:
1711 		 * 1. PF is not receiving our request which could be due to IMP
1712 		 *    reset
1713 		 * 2. PF is screwed
1714 		 * We cannot do much for 2. but to check first we can try reset
1715 		 * our PCIe + stack and see if it alleviates the problem.
1716 		 */
1717 		if (hdev->reset_attempts > 3) {
1718 			/* prepare for full reset of stack + pcie interface */
1719 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1720 
1721 			/* "defer" schedule the reset task again */
1722 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1723 		} else {
1724 			hdev->reset_attempts++;
1725 
1726 			set_bit(hdev->reset_level, &hdev->reset_pending);
1727 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1728 		}
1729 		hclgevf_reset_task_schedule(hdev);
1730 	}
1731 
1732 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1733 }
1734 
1735 static void hclgevf_mailbox_service_task(struct work_struct *work)
1736 {
1737 	struct hclgevf_dev *hdev;
1738 
1739 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1740 
1741 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1742 		return;
1743 
1744 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1745 
1746 	hclgevf_mbx_async_handler(hdev);
1747 
1748 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1749 }
1750 
1751 static void hclgevf_keep_alive_timer(struct timer_list *t)
1752 {
1753 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1754 
1755 	schedule_work(&hdev->keep_alive_task);
1756 	mod_timer(&hdev->keep_alive_timer, jiffies +
1757 		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
1758 }
1759 
1760 static void hclgevf_keep_alive_task(struct work_struct *work)
1761 {
1762 	struct hclgevf_dev *hdev;
1763 	u8 respmsg;
1764 	int ret;
1765 
1766 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1767 
1768 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
1769 		return;
1770 
1771 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1772 				   0, false, &respmsg, sizeof(u8));
1773 	if (ret)
1774 		dev_err(&hdev->pdev->dev,
1775 			"VF sends keep alive cmd failed(=%d)\n", ret);
1776 }
1777 
1778 static void hclgevf_service_task(struct work_struct *work)
1779 {
1780 	struct hnae3_handle *handle;
1781 	struct hclgevf_dev *hdev;
1782 
1783 	hdev = container_of(work, struct hclgevf_dev, service_task);
1784 	handle = &hdev->nic;
1785 
1786 	if (hdev->stats_timer >= HCLGEVF_STATS_TIMER_INTERVAL) {
1787 		hclgevf_tqps_update_stats(handle);
1788 		hdev->stats_timer = 0;
1789 	}
1790 
1791 	/* request the link status from the PF. PF would be able to tell VF
1792 	 * about such updates in future so we might remove this later
1793 	 */
1794 	hclgevf_request_link_info(hdev);
1795 
1796 	hclgevf_update_link_mode(hdev);
1797 
1798 	hclgevf_deferred_task_schedule(hdev);
1799 
1800 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1801 }
1802 
1803 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1804 {
1805 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1806 }
1807 
1808 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1809 						      u32 *clearval)
1810 {
1811 	u32 cmdq_src_reg, rst_ing_reg;
1812 
1813 	/* fetch the events from their corresponding regs */
1814 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1815 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1816 
1817 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1818 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1819 		dev_info(&hdev->pdev->dev,
1820 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1821 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1822 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1823 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1824 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1825 		*clearval = cmdq_src_reg;
1826 		hdev->rst_stats.vf_rst_cnt++;
1827 		return HCLGEVF_VECTOR0_EVENT_RST;
1828 	}
1829 
1830 	/* check for vector0 mailbox(=CMDQ RX) event source */
1831 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1832 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1833 		*clearval = cmdq_src_reg;
1834 		return HCLGEVF_VECTOR0_EVENT_MBX;
1835 	}
1836 
1837 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1838 
1839 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1840 }
1841 
1842 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1843 {
1844 	writel(en ? 1 : 0, vector->addr);
1845 }
1846 
1847 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1848 {
1849 	enum hclgevf_evt_cause event_cause;
1850 	struct hclgevf_dev *hdev = data;
1851 	u32 clearval;
1852 
1853 	hclgevf_enable_vector(&hdev->misc_vector, false);
1854 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1855 
1856 	switch (event_cause) {
1857 	case HCLGEVF_VECTOR0_EVENT_RST:
1858 		hclgevf_reset_task_schedule(hdev);
1859 		break;
1860 	case HCLGEVF_VECTOR0_EVENT_MBX:
1861 		hclgevf_mbx_handler(hdev);
1862 		break;
1863 	default:
1864 		break;
1865 	}
1866 
1867 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1868 		hclgevf_clear_event_cause(hdev, clearval);
1869 		hclgevf_enable_vector(&hdev->misc_vector, true);
1870 	}
1871 
1872 	return IRQ_HANDLED;
1873 }
1874 
1875 static int hclgevf_configure(struct hclgevf_dev *hdev)
1876 {
1877 	int ret;
1878 
1879 	/* get current port based vlan state from PF */
1880 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
1881 	if (ret)
1882 		return ret;
1883 
1884 	/* get queue configuration from PF */
1885 	ret = hclgevf_get_queue_info(hdev);
1886 	if (ret)
1887 		return ret;
1888 
1889 	/* get queue depth info from PF */
1890 	ret = hclgevf_get_queue_depth(hdev);
1891 	if (ret)
1892 		return ret;
1893 
1894 	ret = hclgevf_get_pf_media_type(hdev);
1895 	if (ret)
1896 		return ret;
1897 
1898 	/* get tc configuration from PF */
1899 	return hclgevf_get_tc_info(hdev);
1900 }
1901 
1902 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1903 {
1904 	struct pci_dev *pdev = ae_dev->pdev;
1905 	struct hclgevf_dev *hdev;
1906 
1907 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1908 	if (!hdev)
1909 		return -ENOMEM;
1910 
1911 	hdev->pdev = pdev;
1912 	hdev->ae_dev = ae_dev;
1913 	ae_dev->priv = hdev;
1914 
1915 	return 0;
1916 }
1917 
1918 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1919 {
1920 	struct hnae3_handle *roce = &hdev->roce;
1921 	struct hnae3_handle *nic = &hdev->nic;
1922 
1923 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1924 
1925 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1926 	    hdev->num_msi_left == 0)
1927 		return -EINVAL;
1928 
1929 	roce->rinfo.base_vector = hdev->roce_base_vector;
1930 
1931 	roce->rinfo.netdev = nic->kinfo.netdev;
1932 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1933 
1934 	roce->pdev = nic->pdev;
1935 	roce->ae_algo = nic->ae_algo;
1936 	roce->numa_node_mask = nic->numa_node_mask;
1937 
1938 	return 0;
1939 }
1940 
1941 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
1942 {
1943 	struct hclgevf_cfg_gro_status_cmd *req;
1944 	struct hclgevf_desc desc;
1945 	int ret;
1946 
1947 	if (!hnae3_dev_gro_supported(hdev))
1948 		return 0;
1949 
1950 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
1951 				     false);
1952 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
1953 
1954 	req->gro_en = cpu_to_le16(en ? 1 : 0);
1955 
1956 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1957 	if (ret)
1958 		dev_err(&hdev->pdev->dev,
1959 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
1960 
1961 	return ret;
1962 }
1963 
1964 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1965 {
1966 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1967 	int i, ret;
1968 
1969 	rss_cfg->rss_size = hdev->rss_size_max;
1970 
1971 	if (hdev->pdev->revision >= 0x21) {
1972 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
1973 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
1974 		       HCLGEVF_RSS_KEY_SIZE);
1975 
1976 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
1977 					       rss_cfg->rss_hash_key);
1978 		if (ret)
1979 			return ret;
1980 
1981 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
1982 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1983 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
1984 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1985 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
1986 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1987 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
1988 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1989 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
1990 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1991 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
1992 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1993 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
1994 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1995 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
1996 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1997 
1998 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
1999 		if (ret)
2000 			return ret;
2001 
2002 	}
2003 
2004 	/* Initialize RSS indirect table for each vport */
2005 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2006 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
2007 
2008 	ret = hclgevf_set_rss_indir_table(hdev);
2009 	if (ret)
2010 		return ret;
2011 
2012 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
2013 }
2014 
2015 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2016 {
2017 	/* other vlan config(like, VLAN TX/RX offload) would also be added
2018 	 * here later
2019 	 */
2020 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2021 				       false);
2022 }
2023 
2024 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2025 {
2026 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2027 
2028 	if (enable) {
2029 		mod_timer(&hdev->service_timer, jiffies + HZ);
2030 	} else {
2031 		del_timer_sync(&hdev->service_timer);
2032 		cancel_work_sync(&hdev->service_task);
2033 		clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2034 	}
2035 }
2036 
2037 static int hclgevf_ae_start(struct hnae3_handle *handle)
2038 {
2039 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2040 
2041 	/* reset tqp stats */
2042 	hclgevf_reset_tqp_stats(handle);
2043 
2044 	hclgevf_request_link_info(hdev);
2045 
2046 	hclgevf_update_link_mode(hdev);
2047 
2048 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2049 
2050 	return 0;
2051 }
2052 
2053 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2054 {
2055 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2056 	int i;
2057 
2058 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2059 
2060 	if (hdev->reset_type != HNAE3_VF_RESET)
2061 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2062 			if (hclgevf_reset_tqp(handle, i))
2063 				break;
2064 
2065 	/* reset tqp stats */
2066 	hclgevf_reset_tqp_stats(handle);
2067 	hclgevf_update_link_status(hdev, 0);
2068 }
2069 
2070 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2071 {
2072 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2073 	u8 msg_data;
2074 
2075 	msg_data = alive ? 1 : 0;
2076 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
2077 				    0, &msg_data, 1, false, NULL, 0);
2078 }
2079 
2080 static int hclgevf_client_start(struct hnae3_handle *handle)
2081 {
2082 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2083 	int ret;
2084 
2085 	ret = hclgevf_set_alive(handle, true);
2086 	if (ret)
2087 		return ret;
2088 
2089 	mod_timer(&hdev->keep_alive_timer, jiffies +
2090 		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
2091 
2092 	return 0;
2093 }
2094 
2095 static void hclgevf_client_stop(struct hnae3_handle *handle)
2096 {
2097 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2098 	int ret;
2099 
2100 	ret = hclgevf_set_alive(handle, false);
2101 	if (ret)
2102 		dev_warn(&hdev->pdev->dev,
2103 			 "%s failed %d\n", __func__, ret);
2104 
2105 	del_timer_sync(&hdev->keep_alive_timer);
2106 	cancel_work_sync(&hdev->keep_alive_task);
2107 }
2108 
2109 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2110 {
2111 	/* setup tasks for the MBX */
2112 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
2113 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2114 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2115 
2116 	/* setup tasks for service timer */
2117 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
2118 
2119 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
2120 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2121 
2122 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
2123 
2124 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2125 
2126 	/* bring the device down */
2127 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2128 }
2129 
2130 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2131 {
2132 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2133 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2134 
2135 	if (hdev->keep_alive_timer.function)
2136 		del_timer_sync(&hdev->keep_alive_timer);
2137 	if (hdev->keep_alive_task.func)
2138 		cancel_work_sync(&hdev->keep_alive_task);
2139 	if (hdev->service_timer.function)
2140 		del_timer_sync(&hdev->service_timer);
2141 	if (hdev->service_task.func)
2142 		cancel_work_sync(&hdev->service_task);
2143 	if (hdev->mbx_service_task.func)
2144 		cancel_work_sync(&hdev->mbx_service_task);
2145 	if (hdev->rst_service_task.func)
2146 		cancel_work_sync(&hdev->rst_service_task);
2147 
2148 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2149 }
2150 
2151 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2152 {
2153 	struct pci_dev *pdev = hdev->pdev;
2154 	int vectors;
2155 	int i;
2156 
2157 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
2158 		vectors = pci_alloc_irq_vectors(pdev,
2159 						hdev->roce_base_msix_offset + 1,
2160 						hdev->num_msi,
2161 						PCI_IRQ_MSIX);
2162 	else
2163 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
2164 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2165 
2166 	if (vectors < 0) {
2167 		dev_err(&pdev->dev,
2168 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2169 			vectors);
2170 		return vectors;
2171 	}
2172 	if (vectors < hdev->num_msi)
2173 		dev_warn(&hdev->pdev->dev,
2174 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2175 			 hdev->num_msi, vectors);
2176 
2177 	hdev->num_msi = vectors;
2178 	hdev->num_msi_left = vectors;
2179 	hdev->base_msi_vector = pdev->irq;
2180 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2181 
2182 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2183 					   sizeof(u16), GFP_KERNEL);
2184 	if (!hdev->vector_status) {
2185 		pci_free_irq_vectors(pdev);
2186 		return -ENOMEM;
2187 	}
2188 
2189 	for (i = 0; i < hdev->num_msi; i++)
2190 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2191 
2192 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2193 					sizeof(int), GFP_KERNEL);
2194 	if (!hdev->vector_irq) {
2195 		devm_kfree(&pdev->dev, hdev->vector_status);
2196 		pci_free_irq_vectors(pdev);
2197 		return -ENOMEM;
2198 	}
2199 
2200 	return 0;
2201 }
2202 
2203 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2204 {
2205 	struct pci_dev *pdev = hdev->pdev;
2206 
2207 	devm_kfree(&pdev->dev, hdev->vector_status);
2208 	devm_kfree(&pdev->dev, hdev->vector_irq);
2209 	pci_free_irq_vectors(pdev);
2210 }
2211 
2212 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2213 {
2214 	int ret = 0;
2215 
2216 	hclgevf_get_misc_vector(hdev);
2217 
2218 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2219 			  0, "hclgevf_cmd", hdev);
2220 	if (ret) {
2221 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2222 			hdev->misc_vector.vector_irq);
2223 		return ret;
2224 	}
2225 
2226 	hclgevf_clear_event_cause(hdev, 0);
2227 
2228 	/* enable misc. vector(vector 0) */
2229 	hclgevf_enable_vector(&hdev->misc_vector, true);
2230 
2231 	return ret;
2232 }
2233 
2234 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2235 {
2236 	/* disable misc vector(vector 0) */
2237 	hclgevf_enable_vector(&hdev->misc_vector, false);
2238 	synchronize_irq(hdev->misc_vector.vector_irq);
2239 	free_irq(hdev->misc_vector.vector_irq, hdev);
2240 	hclgevf_free_vector(hdev, 0);
2241 }
2242 
2243 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2244 {
2245 	struct device *dev = &hdev->pdev->dev;
2246 
2247 	dev_info(dev, "VF info begin:\n");
2248 
2249 	dev_info(dev, "Task queue pairs numbers: %d\n", hdev->num_tqps);
2250 	dev_info(dev, "Desc num per TX queue: %d\n", hdev->num_tx_desc);
2251 	dev_info(dev, "Desc num per RX queue: %d\n", hdev->num_rx_desc);
2252 	dev_info(dev, "Numbers of vports: %d\n", hdev->num_alloc_vport);
2253 	dev_info(dev, "HW tc map: %d\n", hdev->hw_tc_map);
2254 	dev_info(dev, "PF media type of this VF: %d\n",
2255 		 hdev->hw.mac.media_type);
2256 
2257 	dev_info(dev, "VF info end.\n");
2258 }
2259 
2260 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2261 					    struct hnae3_client *client)
2262 {
2263 	struct hclgevf_dev *hdev = ae_dev->priv;
2264 	int ret;
2265 
2266 	ret = client->ops->init_instance(&hdev->nic);
2267 	if (ret)
2268 		return ret;
2269 
2270 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2271 	hnae3_set_client_init_flag(client, ae_dev, 1);
2272 
2273 	if (netif_msg_drv(&hdev->nic))
2274 		hclgevf_info_show(hdev);
2275 
2276 	return 0;
2277 }
2278 
2279 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2280 					     struct hnae3_client *client)
2281 {
2282 	struct hclgevf_dev *hdev = ae_dev->priv;
2283 	int ret;
2284 
2285 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2286 	    !hdev->nic_client)
2287 		return 0;
2288 
2289 	ret = hclgevf_init_roce_base_info(hdev);
2290 	if (ret)
2291 		return ret;
2292 
2293 	ret = client->ops->init_instance(&hdev->roce);
2294 	if (ret)
2295 		return ret;
2296 
2297 	hnae3_set_client_init_flag(client, ae_dev, 1);
2298 
2299 	return 0;
2300 }
2301 
2302 static int hclgevf_init_client_instance(struct hnae3_client *client,
2303 					struct hnae3_ae_dev *ae_dev)
2304 {
2305 	struct hclgevf_dev *hdev = ae_dev->priv;
2306 	int ret;
2307 
2308 	switch (client->type) {
2309 	case HNAE3_CLIENT_KNIC:
2310 		hdev->nic_client = client;
2311 		hdev->nic.client = client;
2312 
2313 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2314 		if (ret)
2315 			goto clear_nic;
2316 
2317 		ret = hclgevf_init_roce_client_instance(ae_dev,
2318 							hdev->roce_client);
2319 		if (ret)
2320 			goto clear_roce;
2321 
2322 		break;
2323 	case HNAE3_CLIENT_ROCE:
2324 		if (hnae3_dev_roce_supported(hdev)) {
2325 			hdev->roce_client = client;
2326 			hdev->roce.client = client;
2327 		}
2328 
2329 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2330 		if (ret)
2331 			goto clear_roce;
2332 
2333 		break;
2334 	default:
2335 		return -EINVAL;
2336 	}
2337 
2338 	return 0;
2339 
2340 clear_nic:
2341 	hdev->nic_client = NULL;
2342 	hdev->nic.client = NULL;
2343 	return ret;
2344 clear_roce:
2345 	hdev->roce_client = NULL;
2346 	hdev->roce.client = NULL;
2347 	return ret;
2348 }
2349 
2350 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2351 					   struct hnae3_ae_dev *ae_dev)
2352 {
2353 	struct hclgevf_dev *hdev = ae_dev->priv;
2354 
2355 	/* un-init roce, if it exists */
2356 	if (hdev->roce_client) {
2357 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2358 		hdev->roce_client = NULL;
2359 		hdev->roce.client = NULL;
2360 	}
2361 
2362 	/* un-init nic/unic, if this was not called by roce client */
2363 	if (client->ops->uninit_instance && hdev->nic_client &&
2364 	    client->type != HNAE3_CLIENT_ROCE) {
2365 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2366 
2367 		client->ops->uninit_instance(&hdev->nic, 0);
2368 		hdev->nic_client = NULL;
2369 		hdev->nic.client = NULL;
2370 	}
2371 }
2372 
2373 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2374 {
2375 	struct pci_dev *pdev = hdev->pdev;
2376 	struct hclgevf_hw *hw;
2377 	int ret;
2378 
2379 	ret = pci_enable_device(pdev);
2380 	if (ret) {
2381 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2382 		return ret;
2383 	}
2384 
2385 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2386 	if (ret) {
2387 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2388 		goto err_disable_device;
2389 	}
2390 
2391 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2392 	if (ret) {
2393 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2394 		goto err_disable_device;
2395 	}
2396 
2397 	pci_set_master(pdev);
2398 	hw = &hdev->hw;
2399 	hw->hdev = hdev;
2400 	hw->io_base = pci_iomap(pdev, 2, 0);
2401 	if (!hw->io_base) {
2402 		dev_err(&pdev->dev, "can't map configuration register space\n");
2403 		ret = -ENOMEM;
2404 		goto err_clr_master;
2405 	}
2406 
2407 	return 0;
2408 
2409 err_clr_master:
2410 	pci_clear_master(pdev);
2411 	pci_release_regions(pdev);
2412 err_disable_device:
2413 	pci_disable_device(pdev);
2414 
2415 	return ret;
2416 }
2417 
2418 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2419 {
2420 	struct pci_dev *pdev = hdev->pdev;
2421 
2422 	pci_iounmap(pdev, hdev->hw.io_base);
2423 	pci_clear_master(pdev);
2424 	pci_release_regions(pdev);
2425 	pci_disable_device(pdev);
2426 }
2427 
2428 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2429 {
2430 	struct hclgevf_query_res_cmd *req;
2431 	struct hclgevf_desc desc;
2432 	int ret;
2433 
2434 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2435 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2436 	if (ret) {
2437 		dev_err(&hdev->pdev->dev,
2438 			"query vf resource failed, ret = %d.\n", ret);
2439 		return ret;
2440 	}
2441 
2442 	req = (struct hclgevf_query_res_cmd *)desc.data;
2443 
2444 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2445 		hdev->roce_base_msix_offset =
2446 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2447 				HCLGEVF_MSIX_OFT_ROCEE_M,
2448 				HCLGEVF_MSIX_OFT_ROCEE_S);
2449 		hdev->num_roce_msix =
2450 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2451 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2452 
2453 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2454 		 * are queued before Roce vectors. The offset is fixed to 64.
2455 		 */
2456 		hdev->num_msi = hdev->num_roce_msix +
2457 				hdev->roce_base_msix_offset;
2458 	} else {
2459 		hdev->num_msi =
2460 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2461 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2462 	}
2463 
2464 	return 0;
2465 }
2466 
2467 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2468 {
2469 	struct pci_dev *pdev = hdev->pdev;
2470 	int ret = 0;
2471 
2472 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2473 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2474 		hclgevf_misc_irq_uninit(hdev);
2475 		hclgevf_uninit_msi(hdev);
2476 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2477 	}
2478 
2479 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2480 		pci_set_master(pdev);
2481 		ret = hclgevf_init_msi(hdev);
2482 		if (ret) {
2483 			dev_err(&pdev->dev,
2484 				"failed(%d) to init MSI/MSI-X\n", ret);
2485 			return ret;
2486 		}
2487 
2488 		ret = hclgevf_misc_irq_init(hdev);
2489 		if (ret) {
2490 			hclgevf_uninit_msi(hdev);
2491 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2492 				ret);
2493 			return ret;
2494 		}
2495 
2496 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2497 	}
2498 
2499 	return ret;
2500 }
2501 
2502 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2503 {
2504 	struct pci_dev *pdev = hdev->pdev;
2505 	int ret;
2506 
2507 	ret = hclgevf_pci_reset(hdev);
2508 	if (ret) {
2509 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2510 		return ret;
2511 	}
2512 
2513 	ret = hclgevf_cmd_init(hdev);
2514 	if (ret) {
2515 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2516 		return ret;
2517 	}
2518 
2519 	ret = hclgevf_rss_init_hw(hdev);
2520 	if (ret) {
2521 		dev_err(&hdev->pdev->dev,
2522 			"failed(%d) to initialize RSS\n", ret);
2523 		return ret;
2524 	}
2525 
2526 	ret = hclgevf_config_gro(hdev, true);
2527 	if (ret)
2528 		return ret;
2529 
2530 	ret = hclgevf_init_vlan_config(hdev);
2531 	if (ret) {
2532 		dev_err(&hdev->pdev->dev,
2533 			"failed(%d) to initialize VLAN config\n", ret);
2534 		return ret;
2535 	}
2536 
2537 	dev_info(&hdev->pdev->dev, "Reset done\n");
2538 
2539 	return 0;
2540 }
2541 
2542 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2543 {
2544 	struct pci_dev *pdev = hdev->pdev;
2545 	int ret;
2546 
2547 	ret = hclgevf_pci_init(hdev);
2548 	if (ret) {
2549 		dev_err(&pdev->dev, "PCI initialization failed\n");
2550 		return ret;
2551 	}
2552 
2553 	ret = hclgevf_cmd_queue_init(hdev);
2554 	if (ret) {
2555 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2556 		goto err_cmd_queue_init;
2557 	}
2558 
2559 	ret = hclgevf_cmd_init(hdev);
2560 	if (ret)
2561 		goto err_cmd_init;
2562 
2563 	/* Get vf resource */
2564 	ret = hclgevf_query_vf_resource(hdev);
2565 	if (ret) {
2566 		dev_err(&hdev->pdev->dev,
2567 			"Query vf status error, ret = %d.\n", ret);
2568 		goto err_cmd_init;
2569 	}
2570 
2571 	ret = hclgevf_init_msi(hdev);
2572 	if (ret) {
2573 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2574 		goto err_cmd_init;
2575 	}
2576 
2577 	hclgevf_state_init(hdev);
2578 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2579 
2580 	ret = hclgevf_misc_irq_init(hdev);
2581 	if (ret) {
2582 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2583 			ret);
2584 		goto err_misc_irq_init;
2585 	}
2586 
2587 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2588 
2589 	ret = hclgevf_configure(hdev);
2590 	if (ret) {
2591 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2592 		goto err_config;
2593 	}
2594 
2595 	ret = hclgevf_alloc_tqps(hdev);
2596 	if (ret) {
2597 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2598 		goto err_config;
2599 	}
2600 
2601 	ret = hclgevf_set_handle_info(hdev);
2602 	if (ret) {
2603 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2604 		goto err_config;
2605 	}
2606 
2607 	ret = hclgevf_config_gro(hdev, true);
2608 	if (ret)
2609 		goto err_config;
2610 
2611 	/* vf is not allowed to enable unicast/multicast promisc mode.
2612 	 * For revision 0x20, default to disable broadcast promisc mode,
2613 	 * firmware makes sure broadcast packets can be accepted.
2614 	 * For revision 0x21, default to enable broadcast promisc mode.
2615 	 */
2616 	ret = hclgevf_set_promisc_mode(hdev, true);
2617 	if (ret)
2618 		goto err_config;
2619 
2620 	/* Initialize RSS for this VF */
2621 	ret = hclgevf_rss_init_hw(hdev);
2622 	if (ret) {
2623 		dev_err(&hdev->pdev->dev,
2624 			"failed(%d) to initialize RSS\n", ret);
2625 		goto err_config;
2626 	}
2627 
2628 	ret = hclgevf_init_vlan_config(hdev);
2629 	if (ret) {
2630 		dev_err(&hdev->pdev->dev,
2631 			"failed(%d) to initialize VLAN config\n", ret);
2632 		goto err_config;
2633 	}
2634 
2635 	hdev->last_reset_time = jiffies;
2636 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2637 
2638 	return 0;
2639 
2640 err_config:
2641 	hclgevf_misc_irq_uninit(hdev);
2642 err_misc_irq_init:
2643 	hclgevf_state_uninit(hdev);
2644 	hclgevf_uninit_msi(hdev);
2645 err_cmd_init:
2646 	hclgevf_cmd_uninit(hdev);
2647 err_cmd_queue_init:
2648 	hclgevf_pci_uninit(hdev);
2649 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2650 	return ret;
2651 }
2652 
2653 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2654 {
2655 	hclgevf_state_uninit(hdev);
2656 
2657 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2658 		hclgevf_misc_irq_uninit(hdev);
2659 		hclgevf_uninit_msi(hdev);
2660 	}
2661 
2662 	hclgevf_pci_uninit(hdev);
2663 	hclgevf_cmd_uninit(hdev);
2664 }
2665 
2666 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2667 {
2668 	struct pci_dev *pdev = ae_dev->pdev;
2669 	struct hclgevf_dev *hdev;
2670 	int ret;
2671 
2672 	ret = hclgevf_alloc_hdev(ae_dev);
2673 	if (ret) {
2674 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2675 		return ret;
2676 	}
2677 
2678 	ret = hclgevf_init_hdev(ae_dev->priv);
2679 	if (ret) {
2680 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2681 		return ret;
2682 	}
2683 
2684 	hdev = ae_dev->priv;
2685 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2686 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2687 
2688 	return 0;
2689 }
2690 
2691 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2692 {
2693 	struct hclgevf_dev *hdev = ae_dev->priv;
2694 
2695 	hclgevf_uninit_hdev(hdev);
2696 	ae_dev->priv = NULL;
2697 }
2698 
2699 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2700 {
2701 	struct hnae3_handle *nic = &hdev->nic;
2702 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2703 
2704 	return min_t(u32, hdev->rss_size_max,
2705 		     hdev->num_tqps / kinfo->num_tc);
2706 }
2707 
2708 /**
2709  * hclgevf_get_channels - Get the current channels enabled and max supported.
2710  * @handle: hardware information for network interface
2711  * @ch: ethtool channels structure
2712  *
2713  * We don't support separate tx and rx queues as channels. The other count
2714  * represents how many queues are being used for control. max_combined counts
2715  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2716  * q_vectors since we support a lot more queue pairs than q_vectors.
2717  **/
2718 static void hclgevf_get_channels(struct hnae3_handle *handle,
2719 				 struct ethtool_channels *ch)
2720 {
2721 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2722 
2723 	ch->max_combined = hclgevf_get_max_channels(hdev);
2724 	ch->other_count = 0;
2725 	ch->max_other = 0;
2726 	ch->combined_count = handle->kinfo.rss_size;
2727 }
2728 
2729 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2730 					  u16 *alloc_tqps, u16 *max_rss_size)
2731 {
2732 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2733 
2734 	*alloc_tqps = hdev->num_tqps;
2735 	*max_rss_size = hdev->rss_size_max;
2736 }
2737 
2738 static int hclgevf_get_status(struct hnae3_handle *handle)
2739 {
2740 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2741 
2742 	return hdev->hw.mac.link;
2743 }
2744 
2745 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2746 					    u8 *auto_neg, u32 *speed,
2747 					    u8 *duplex)
2748 {
2749 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2750 
2751 	if (speed)
2752 		*speed = hdev->hw.mac.speed;
2753 	if (duplex)
2754 		*duplex = hdev->hw.mac.duplex;
2755 	if (auto_neg)
2756 		*auto_neg = AUTONEG_DISABLE;
2757 }
2758 
2759 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2760 				 u8 duplex)
2761 {
2762 	hdev->hw.mac.speed = speed;
2763 	hdev->hw.mac.duplex = duplex;
2764 }
2765 
2766 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
2767 {
2768 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2769 
2770 	return hclgevf_config_gro(hdev, enable);
2771 }
2772 
2773 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
2774 				   u8 *module_type)
2775 {
2776 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2777 
2778 	if (media_type)
2779 		*media_type = hdev->hw.mac.media_type;
2780 
2781 	if (module_type)
2782 		*module_type = hdev->hw.mac.module_type;
2783 }
2784 
2785 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2786 {
2787 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2788 
2789 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2790 }
2791 
2792 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2793 {
2794 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2795 
2796 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2797 }
2798 
2799 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2800 {
2801 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2802 
2803 	return hdev->rst_stats.hw_rst_done_cnt;
2804 }
2805 
2806 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
2807 				  unsigned long *supported,
2808 				  unsigned long *advertising)
2809 {
2810 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2811 
2812 	*supported = hdev->hw.mac.supported;
2813 	*advertising = hdev->hw.mac.advertising;
2814 }
2815 
2816 #define MAX_SEPARATE_NUM	4
2817 #define SEPARATOR_VALUE		0xFFFFFFFF
2818 #define REG_NUM_PER_LINE	4
2819 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
2820 
2821 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2822 {
2823 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2824 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2825 
2826 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2827 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2828 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2829 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2830 
2831 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2832 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2833 }
2834 
2835 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
2836 			     void *data)
2837 {
2838 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2839 	int i, j, reg_um, separator_num;
2840 	u32 *reg = data;
2841 
2842 	*version = hdev->fw_version;
2843 
2844 	/* fetching per-VF registers values from VF PCIe register space */
2845 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
2846 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2847 	for (i = 0; i < reg_um; i++)
2848 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
2849 	for (i = 0; i < separator_num; i++)
2850 		*reg++ = SEPARATOR_VALUE;
2851 
2852 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
2853 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2854 	for (i = 0; i < reg_um; i++)
2855 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
2856 	for (i = 0; i < separator_num; i++)
2857 		*reg++ = SEPARATOR_VALUE;
2858 
2859 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
2860 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2861 	for (j = 0; j < hdev->num_tqps; j++) {
2862 		for (i = 0; i < reg_um; i++)
2863 			*reg++ = hclgevf_read_dev(&hdev->hw,
2864 						  ring_reg_addr_list[i] +
2865 						  0x200 * j);
2866 		for (i = 0; i < separator_num; i++)
2867 			*reg++ = SEPARATOR_VALUE;
2868 	}
2869 
2870 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
2871 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2872 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
2873 		for (i = 0; i < reg_um; i++)
2874 			*reg++ = hclgevf_read_dev(&hdev->hw,
2875 						  tqp_intr_reg_addr_list[i] +
2876 						  4 * j);
2877 		for (i = 0; i < separator_num; i++)
2878 			*reg++ = SEPARATOR_VALUE;
2879 	}
2880 }
2881 
2882 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
2883 					u8 *port_base_vlan_info, u8 data_size)
2884 {
2885 	struct hnae3_handle *nic = &hdev->nic;
2886 
2887 	rtnl_lock();
2888 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
2889 	rtnl_unlock();
2890 
2891 	/* send msg to PF and wait update port based vlan info */
2892 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
2893 			     HCLGE_MBX_PORT_BASE_VLAN_CFG,
2894 			     port_base_vlan_info, data_size,
2895 			     false, NULL, 0);
2896 
2897 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
2898 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
2899 	else
2900 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
2901 
2902 	rtnl_lock();
2903 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
2904 	rtnl_unlock();
2905 }
2906 
2907 static const struct hnae3_ae_ops hclgevf_ops = {
2908 	.init_ae_dev = hclgevf_init_ae_dev,
2909 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2910 	.flr_prepare = hclgevf_flr_prepare,
2911 	.flr_done = hclgevf_flr_done,
2912 	.init_client_instance = hclgevf_init_client_instance,
2913 	.uninit_client_instance = hclgevf_uninit_client_instance,
2914 	.start = hclgevf_ae_start,
2915 	.stop = hclgevf_ae_stop,
2916 	.client_start = hclgevf_client_start,
2917 	.client_stop = hclgevf_client_stop,
2918 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
2919 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2920 	.get_vector = hclgevf_get_vector,
2921 	.put_vector = hclgevf_put_vector,
2922 	.reset_queue = hclgevf_reset_tqp,
2923 	.get_mac_addr = hclgevf_get_mac_addr,
2924 	.set_mac_addr = hclgevf_set_mac_addr,
2925 	.add_uc_addr = hclgevf_add_uc_addr,
2926 	.rm_uc_addr = hclgevf_rm_uc_addr,
2927 	.add_mc_addr = hclgevf_add_mc_addr,
2928 	.rm_mc_addr = hclgevf_rm_mc_addr,
2929 	.get_stats = hclgevf_get_stats,
2930 	.update_stats = hclgevf_update_stats,
2931 	.get_strings = hclgevf_get_strings,
2932 	.get_sset_count = hclgevf_get_sset_count,
2933 	.get_rss_key_size = hclgevf_get_rss_key_size,
2934 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2935 	.get_rss = hclgevf_get_rss,
2936 	.set_rss = hclgevf_set_rss,
2937 	.get_rss_tuple = hclgevf_get_rss_tuple,
2938 	.set_rss_tuple = hclgevf_set_rss_tuple,
2939 	.get_tc_size = hclgevf_get_tc_size,
2940 	.get_fw_version = hclgevf_get_fw_version,
2941 	.set_vlan_filter = hclgevf_set_vlan_filter,
2942 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2943 	.reset_event = hclgevf_reset_event,
2944 	.set_default_reset_request = hclgevf_set_def_reset_request,
2945 	.get_channels = hclgevf_get_channels,
2946 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2947 	.get_regs_len = hclgevf_get_regs_len,
2948 	.get_regs = hclgevf_get_regs,
2949 	.get_status = hclgevf_get_status,
2950 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2951 	.get_media_type = hclgevf_get_media_type,
2952 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
2953 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
2954 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
2955 	.set_gro_en = hclgevf_gro_en,
2956 	.set_mtu = hclgevf_set_mtu,
2957 	.get_global_queue_id = hclgevf_get_qid_global,
2958 	.set_timer_task = hclgevf_set_timer_task,
2959 	.get_link_mode = hclgevf_get_link_mode,
2960 };
2961 
2962 static struct hnae3_ae_algo ae_algovf = {
2963 	.ops = &hclgevf_ops,
2964 	.pdev_id_table = ae_algovf_pci_tbl,
2965 };
2966 
2967 static int hclgevf_init(void)
2968 {
2969 	pr_info("%s is initializing\n", HCLGEVF_NAME);
2970 
2971 	hnae3_register_ae_algo(&ae_algovf);
2972 
2973 	return 0;
2974 }
2975 
2976 static void hclgevf_exit(void)
2977 {
2978 	hnae3_unregister_ae_algo(&ae_algovf);
2979 }
2980 module_init(hclgevf_init);
2981 module_exit(hclgevf_exit);
2982 
2983 MODULE_LICENSE("GPL");
2984 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
2985 MODULE_DESCRIPTION("HCLGEVF Driver");
2986 MODULE_VERSION(HCLGEVF_MOD_VERSION);
2987